NASA Astrophysics Data System (ADS)
Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.
2015-04-01
The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.
Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications
NASA Astrophysics Data System (ADS)
Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash
2017-03-01
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf
2013-11-01
Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S
2010-03-01
Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.
Sol-gel derived antireflective structures for applications in silicon solar cells
NASA Astrophysics Data System (ADS)
Karasiński, Paweł; Skolik, Marcin
2016-12-01
This work presents theoretical and experimental results of antireflective coatings (ARCs) obtained for applications in silicon solar cells. ARCs were derived from sol-gel process and dip-coated using silica (SiO2) and titania (TiO2). Theoretical results were obtained using 2×2 transfer matrix calculation method. Technological process of SiO2 and TiO2 thin film fabrication as well as measurement techniques are described in this paper. Strong correlation between theoretical and experimental data is demonstrated. It is shown, that weighted average reflection from a substrate can be reduced ten times with the use of SiO2/TiO2/Si double layer ARCs, when compared to a bare silica substrate.
NASA Astrophysics Data System (ADS)
Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir
2018-05-01
Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.
Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro
Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique
2016-01-01
Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740
NASA Astrophysics Data System (ADS)
Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko
2018-04-01
The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.
NASA Astrophysics Data System (ADS)
Kawamura, Kinya; Suzuki, Naoya; Tsuchiya, Takashi; Shimazu, Yuichi; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru
2016-06-01
Anatase TiO2-δ thin film was prepared by RF magnetron sputtering using oxygen radical and Ti-metal target. Degrees of the TiO2-δ crystal orientation in the thin film depends of the oxygen gas pressure (P\\text{O2}) in the radical gun. The (004)- and (112)-oriented TiO2-δ thin films crystallized without postannealing have the mixed valence Ti4+/Ti3+ state. The electrical conductivities, which corresponds to n-type oxide semiconductor, is higher in the case of (004)-oriented TiO2-δ thin film containing with high concentration of oxygen vacancy. The donor band of TiO2-δ thin film is observed at ˜1.0 eV from the Fermi level (E F). The density-of-state at E F is higher in (004)-oriented TiO2-δ thin film. The above results indicate that the oxygen vacancies can control by changing the P\\text{O2} of the oxygen radical.
[Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].
Tang, Xiaoshan; Li, Da
2010-12-01
Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.
Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik
2011-04-01
A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.
Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering
López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique
2014-01-01
We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667
Yun, Kwidug; Oh, Gyejeong; Vang, Mongsook; Yang, Hongso; Lim, Hyunpil; Koh, Jeongtae; Jeong, Woonjo; Yoon, Dongjoo; Lee, Kyungku; Lee, Kwangmin; Park, Sangwon
2011-08-01
This study evaluated the antibacterial effect of a visible light reactive TiO2/Ag nanocomposite thin film on dental orthodontic wire (STS 304 wire). The growth of S. mutans and A. actinomycetemcomitans was suppressed on the specimens coated with TiO2/Ag compared to the uncoated specimens. The antibacterial effect of the TiO2/Ag nanocomposite thin film was improved under visible light irradiation.
Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar
2018-05-01
Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.
Dip coated TiO2 nanostructured thin film: synthesis and application
NASA Astrophysics Data System (ADS)
Vanaraja, Manoj; Muthukrishnan, Karthika; Boomadevi, Shanmugam; Karn, Rakesh Kumar; Singh, Vijay; Singh, Pramod K.; Pandiyan, Krishnamoorthy
2016-02-01
TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.
Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2
NASA Astrophysics Data System (ADS)
Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin
2017-05-01
In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.
Micropatterning of TiO2 thin films by MOCVD and study of their growth tendency.
Hwang, Ki-Hwan; Kang, Byung-Chang; Jung, Duk Young; Kim, Youn Jea; Boo, Jin-Hyo
2015-03-23
In this work, we studied the growth tendency of TiO2 thin films deposited on a narrow-stripe area (<10 μm). TiO2 thin films were selectively deposited on OTS patterned Si(100) substrates by MOCVD. The experimental data showed that the film growth tendency was divided into two behaviors above and below a line patterning width of 4 μm. The relationship between the film thickness and the deposited area was obtained as a function of f(x) = a[1 - e((-bx))]c. To find the tendency of the deposition rate of the TiO2 thin films onto the various linewidth areas, the relationship between the thickness of the TiO2 thin film and deposited linewidth was also studied. The thickness of the deposited TiO2 films was measured from the alpha-step profile analyses and cross-sectional SEM images. At the same time, a computer simulation was carried out to reveal the relationship between the TiO2 film thickness and deposited line width. The theoretical results suggest that the mass (velocity) flux in flow direction is directly affected to the film thickness.
Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...
NASA Astrophysics Data System (ADS)
Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang
2018-03-01
Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.
NASA Astrophysics Data System (ADS)
Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.
2014-06-01
This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.
NASA Astrophysics Data System (ADS)
Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang
2016-12-01
Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.
NASA Astrophysics Data System (ADS)
Anitha, B.; Ravidhas, C.; Venkatesh, R.; Raj, A. Moses Ezhil; Ravichandran, K.; Subramanian, B.; Sanjeeviraja, C.
2017-07-01
Pristine TiO2 and sulfur doped TiO2 (S-TiO2) thin films were coated over the glass substrates by varying the concentration of sulfur source (thiourea - 2, 4, 6, 8 and 10 at%) using a cost-effective Jet nebulizer spray technique. The deposited thin films were in anatase phase with the tetragonal structure analyzed from the XRD pattern. The chemical state of the elements was determined from XPS analysis. Pristine TiO2 and S-TiO2 thin films depict the presence of spherical particles embedded over 3-D interconnected wire-like structure from SEM analysis. Optical studies revealed reduction in band gap of S-TiO2 films on increasing the sulfur concentration (3.2-2.8 eV). The sulfur incorporation in TiO2 lattice confirmed by the fall in intensity of near band edge emission as observed from room temperature PL spectra. The charge carrier dynamics of the prepared thin films were studied by means of steady state and transient photoconduction measurements. The photocatalytic performance of pristine TiO2 and S-TiO2 thin films for the degradation of malachite green dye was investigated under visible light.
Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu
2018-01-01
In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.
Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)
NASA Astrophysics Data System (ADS)
Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.
2014-11-01
Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.
NASA Astrophysics Data System (ADS)
Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif
2018-03-01
The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.
Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.
Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong
2012-09-26
Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.
NASA Astrophysics Data System (ADS)
Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.
2016-07-01
In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.
Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films
NASA Astrophysics Data System (ADS)
Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.
2014-04-01
In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.
NASA Astrophysics Data System (ADS)
Kupa, I.; Unal, Y.; Cetin, S. S.; Durna, L.; Topalli, K.; Okyay, A. K.; Ates, H.
2018-05-01
TiO2 thin films have been deposited on glass and Si(100) by atomic layer deposition (ALD) technique using tetrakis(diethylamido)titanium(IV) and water vapor as reactants. Thorough investigation of the properties of the TiO2/glass and TiO2/Si thin films was carried out, varying the deposition temperature in the range from 100°C to 250°C while keeping the number of reaction cycles fixed at 1000. Physical and material property analyses were performed to investigate optical and electrical properties, composition, structure, and morphology. TiO2 films grown by ALD may represent promising materials for future applications in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.
2014-01-01
We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.
Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate
NASA Astrophysics Data System (ADS)
Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.
2018-04-01
In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.
NASA Astrophysics Data System (ADS)
Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha
2012-08-01
Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.
The effect of TiO2 thin film thickness on self-cleaning glass properties
NASA Astrophysics Data System (ADS)
Mufti, Nandang; Laila, Ifa K. R.; Hartatiek; Fuad, Abdulloh
2017-05-01
TiO2 is one of semiconductor materials which are widely used as photocatalyst in the form of a thin film. The TiO2 thin film is prepared by using the spin coating sol-gel method. The researcher prepared TiO2 thin film with 3 coating variations and X-Ray Diffraction characterization, UV-Vis Spectrophotometer, Electron Microscopy Scanning, and examined its hydrophilic and anti-fogging properties. The result of X-Ray Diffraction showed that the phase formed is the anatase on 101crystal field. The Electron Microscopy Scanning images showed that TiO2 thin films had a homogeneous surface with the particle sizes as big as 235 nm, 179 nm, and 137 nm. The thickness of each thin film was 2.06μm, 3.33μm, and 5.20μm. The characterization of UV-Vis Spectrophotometer showed that the greatest absorption to the wavelength of visible light was in the thin film’s thickness of 3 coatings with the band-gap determined by using 3.30 eV, 3.33 eV, and 3.33 eV Plot Tuoc. These results indicated that the rate of absorption would be increased by increasing the thickness of film. The increasing thickness of the thin film makes the film hydrophilic able to be used as an anti-fogging substance.
Nanostructured Gd3+-TiO2 surfaces for self-cleaning application
NASA Astrophysics Data System (ADS)
Saif, M.; El-Molla, S. A.; Aboul-Fotouh, S. M. K.; Ibrahim, M. M.; Ismail, L. F. M.; Dahn, Douglas C.
2014-06-01
Preparation of self-cleaning surfaces based on lanthanide modified titanium dioxide nanoparticles has rarely been reported. In the present work, gadolinium doped titanium dioxide thin films (x mol Gd3+-TiO2 where x = 0.000, 0.005, 0.008, 0.010, 0.020 and 0.030 mol) were synthesized by sol-gel method and deposited using doctor-blade method. These films were characterized by studying their structural, optical and electrical properties. Doping with gadolinium decreases the band gap energy and increase conductivity of thin films. The photo self-cleaning activity in term of quantitative determination of the active oxidative species (rad OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results show that, the highly active thin film is the 0.020 Gd3+-TiO2. The structural, morphology, optical, electrical and photoactivity properties of Gd3+-TiO2 thin films make it promising surfaces for self-cleaning application. Mineralization of commercial textile dye (Remazol Red RB-133, RR) and durability using 0.020Gd3+-TiO2 film surface was studied.
Ameen, Sadia; Nazim, M; Akhtar, M Shaheer; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik
2017-11-16
This work highlights the utilization of a novel hole-transporting material (HTM) derived from benzothiadiazole: 4-(3,5-bis(trifluoromethyl)phenyl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (CF-BTz-ThR) and aligned TiO 2 nano-bundles (TiO 2 NBs) as the electron transporting layer (ETL) for perovskite solar cells (PSCs). The aligned TiO 2 NBs were grown on titanium (Ti)-coated FTO substrates using a facile hydrothermal method. The newly designed CF-BTz-ThR molecule with suitable highest occupied molecular orbital (HOMO) favored the effective hole injection from perovskite deposited aligned TiO 2 NBs thin film. The PSCs demonstrated a power conversion efficiency (PCE) of ∼15.4% with a short circuit current density (J sc ) of ∼22.42 mA cm -2 and an open circuit voltage (V oc ) of ∼1.02 V. The efficiency data show the importance of proper molecular engineering whilst highlighting the advantages of dopant-free HTMs in PSCs.
Effects of atomic oxygen on titanium dioxide thin film
NASA Astrophysics Data System (ADS)
Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi
2018-05-01
In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.
NASA Astrophysics Data System (ADS)
Deng, Siwei; Yu, Jiang; Yang, Chun; Chang, Jiahua; Wang, Yizheng; Wang, Ping; Xie, Shiqian
2017-10-01
In this work, titanium dioxide thin films doped with different concentrations of gadolinium (Gd) and iodine (I) were synthesized using the sol-gel method and successfully coated on solid waste material (made in our lab) by dipping, resulting in the titanium dioxide thin-film-coated material (TiO2M). Then, the doped titanium dioxide thin films were characterized by X-ray diffraction (XRD), SEM, and UV-Vis spectroscopy; the optimum coating cycle was evaluated by removal rates of COD and ammonia nitrogen in raw wastewater and secondary effluent. Moreover, the photocatalytic activity was determined by degradation efficiency of methyl orange. The results showed that TiO2M had desirable reusability and the photocatalytic activity was attractive under ultraviolet light irradiation. Furthermore, it is found that the amount of dopant in TiO2 was a key parameter in increasing the photoactivity. 1% Gd-doped TiO2M exhibited the best photocatalytic activity for the degradation of methyl orange with the removal rate reaching 85.55%. The result was in good agreement with the observed smaller crystallite size and profitable crystal structure (anatase phase). Besides, the TiO2M (0.8% Gd-doped TiO2M, 1% Gd-doped TiO2M, 10% I-doped TiO2M, and 5% I-1% Gd-doped TiO2M) with desirable photocatalytic activity at ultraviolet light irradiation was selected for the visible light photocatalytic experiments with taking methyl orange as the target pollutants. The results showed that all of them exhibited the similar photocatalytic activity after 7 h of sunlight irradiation (around 90% removal effect). In general, this research developed a very effective and environmentally friendly photocatalyst for pollutant degradation.
Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...
SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties
NASA Astrophysics Data System (ADS)
Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar
2017-05-01
Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.
NASA Astrophysics Data System (ADS)
Khan, M. I.; Ali, Asghar
TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW) diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m) respectively, according to four point probe.
Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film
NASA Astrophysics Data System (ADS)
Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.
2015-02-01
Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.
Tunability of morphological properties of Nd-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Rehan, Imran; Sultana, Sabiha; Khan, Nauman; Qamar, Zahid; Rehan, Kamran
2016-11-01
In this work, an endeavor is made toward structural assessment and morphological variation of titanium dioxide (TiO2) thin films when doped with neodymium (Nd). The electron beam deposition technique was employed to fabricate Nd-based TiO2 thin films on n-Type Si substrates. Nd concentration was varied from 0.0 to 2.0 atomic percent (at.%) under identical growth environments. The films were deposited in an oxygen-deficient environment to cause the growth of rutile phases. Energy dispersive x-ray spectroscopy confirmed the presence and variation of Nd dopant in TiO2. X-ray diffraction analysis showed the transformation of amorphous structures of the as-grown samples to anatase polycrystalline after annealing at 500 °C, while atomic force microscopy exposed linearity in grain density in as-grown samples with doping until 1 at.%. Raman spectrums of as-grown and annealed samples revealed the growth of the anatase phase in the annealed samples. Based on these results it can be proposed that Nd doping has pronounced effects on the structural characteristics of TiO2 thin films.
NASA Astrophysics Data System (ADS)
Kannangara, Yasun Y.; Wijesena, Ruchira; Rajapakse, R. M. G.; de Silva, K. M. Nalin
2018-04-01
Photocatalytic semiconductor thin films have the ability to degrade volatile organic compounds (VOCs) causing numerous health problems. The group of VOCs called "BTEX" is abundant in houses and indoor of automobiles. Anatase phase of TiO2 has a band gap of 3.2 eV and UV radiation is required for photogeneration of electrons and holes in TiO2 particles. This band gap can be decreased significantly when TiO2 is doped with nitrogen (N-TiO2). Dopants like Pd, Cd, and Ag are hazardous to human health but N-doped TiO2 can be used in indoor pollutant remediation. In this research, N-doped TiO2 nano-powder was prepared and characterized using various analytical techniques. N-TiO2 was made in sol-gel method and triethylamine (N(CH2CH3)3) was used as the N-precursor. Modified quartz cell was used to measure the photocatalytic degradation of toluene. N-doped TiO2 nano-powder was illuminated with visible light (xenon lamp 200 W, λ = 330-800 nm, intensity = 1 Sun) to cause the degradation of VOCs present in static air. Photocatalyst was coated on a thin glass plate, using the doctor-blade method, was inserted into a quartz cell containing 2.00 µL of toluene and 35 min was allowed for evaporation/condensation equilibrium and then illuminated for 2 h. Remarkably, the highest value of efficiency 85% was observed in the 1 μm thick N-TiO2 thin film. The kinetics of photocatalytic degradation of toluene by N-TiO2 and P25-TiO2 has been compared. Surface topology was studied by varying the thickness of the N-TiO2 thin films. The surface nanostructures were analysed and studied with atomic force microscopy with various thin film thicknesses.
Effect of molarity on sol-gel routed nano TiO2 thin films
NASA Astrophysics Data System (ADS)
Lourduraj, Stephen; Williams, Rayar Victor
The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.
Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis
NASA Astrophysics Data System (ADS)
Juma, A.; Oja Acik, I.; Oluwabi, A. T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M.
2016-11-01
Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO2 thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO2 thin films were uniform and homogeneous showing much smaller grains than the undoped TiO2 films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO2 film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO4 phase started forming after annealing at 800 °C. The optical band gap for TiO2 decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO2:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.
NASA Astrophysics Data System (ADS)
Supriyanto, A.; Nandani; Wahyuningsih, S.; Ramelan, A. H.
2018-03-01
The working electrode based on semiconductor transparent TiO2 type 18NR-T for transparent solar cells have been grown by screen printing method. This study aim is to determine the effect of sintering on TiO2 thin films transparent as the working electrode of transparent solar cells. TiO2 films will be sintered at temperature 450°C, 500°C, 550°C and 600°C. TiO2 films optical properties were characterized using UV-Vis spectrophotometer, electrical properties were characterized using 4 point probemethods and the crystallization was characterized by X-Ray Diffraction (XRD). The lowest transmittance due to the treatment of annealing temperature variations is 550°C because the 550°C TiO2 layer is more absorbing. The peaks resulted from the annealing temperature treatment show that the high temperature the more anatase peaks. Characterization using four-point probe showed that the highest conductivity of TiO2 18NR-T thin film was 2.42 x 102 Ω-1m-1 at annealing temperature 550°C.
QCM gas sensor characterization of ALD-grown very thin TiO2 films
NASA Astrophysics Data System (ADS)
Boyadjiev, S.; Georgieva, V.; Vergov, L.; Szilágyi, I. M.
2018-03-01
The paper presents a technology for preparation and characterization of titanium dioxide (TiO2) thin films suitable for gas sensor applications. Applying atomic layer deposition (ALD), very thin TiO2 films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The TiO2 thin films were grown using Ti(iOPr)4 and water as precursors. The surface of the films was observed by scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) used for a composition study. The research was focused on the gas-sensing properties of the films. Films of 10-nm thickness were deposited on quartz resonators with Au electrodes and the QCMs were used to build highly sensitive gas sensors, which were tested for detecting NO2. Although very thin, these ALD-grown TiO2 films were sensitive to NO2 already at room temperature and could register as low concentrations as 50 ppm, while the sorption was fully reversible, and the sensors could be fully recovered. With the technology presented, the manufacturing of gas sensors is simple, fast and cost-effective, and suitable for energy-effective portable equipment for real-time environmental monitoring of NO2.
Self-Organized Formation of Short TiO2 Nanotube Arrays By Complete Anodization of Ti Thin Films
NASA Astrophysics Data System (ADS)
Okada, Masahisa; Tajima, Kazuki; Yamada, Yasusei; Yoshimura, Kazuki
We investigate the self-organized growth of short TiO2 nanotubes by complete anodization of Ti thin films deposited on Si substrates in ethylene glycol electrolytes with small addition of NH4F. During the anodization process, real-time inspection of the current transient is performed to anodize the Ti films completely. X-ray photoelectron spectroscopy and scanning electron microscopy are employed to characterize the resulting samples. We find that the length of the formed TiO2 nanotubes is governed by the thickness of Ti thin films independently of the tube diameter. Short TiO2 nanotubes are also found to be stable up to 550 °C in air atmosphere even after crystallization to rutile.
NASA Astrophysics Data System (ADS)
Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.
2014-02-01
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.
NASA Astrophysics Data System (ADS)
Bahar, Mahmood; Dermani, Ensieh Khalili
The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.
Sol-gel preparation of silica and titania thin films
NASA Astrophysics Data System (ADS)
Thoř, Tomáš; Václavík, Jan
2016-11-01
Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.
Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping
2018-01-01
We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612
NASA Astrophysics Data System (ADS)
Degioanni, S.; Jurdyc, A.-M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D.
2013-12-01
In this paper, amorphous titanium dioxide (TiO2) thin films have been deposited on a commercially available Klarite substrate using the sol-gel process to produce surface-enhanced Raman scattering (SERS). The substrate consists of square arrays of micrometer-sized pyramidal pits in silicon with a gold coating. Several thin TiO2 layers have been deposited on the surface to study the influence of film thickness. Ultimately, we obtained information on SERS of an amorphous TiO2 layer by gold nanostructures, whose range is less than a few nanometers. Mechanisms responsible for the enhancement are the product of concomitant chemical and electromagnetic effects with an important contribution from plasmon-induced charge transfer.
The effect of TiO2 phase on the surface plasmon resonance of silver thin film
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Jing, Ming; Tao, Chunxian; Zhang, Dawei
2016-10-01
A series of silver films with various thicknesses were deposited on TiO2 covered silica substrates by magnetron sputtering at room temperature. The effects of TiO2 phase on the structure, optical properties and surface plasmon resonance of silver thin films were investigated by x-ray diffraction, optical absorption and Raman scattering measurements, respectively. By adjusting the silver layer thickness, the resonance wavelength shows a redshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and TiO2 layer. Raman scattering measurement results showed that optical absorption plays an important role in surface plasmon enhancement, which is also related to different crystal phase.
Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications
NASA Astrophysics Data System (ADS)
Latha, H. K. E.; Lalithamba, H. S.
2018-03-01
Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.
Synthesis of nanodimensional TiO2 thin films.
Thakurdesai, Madhavi; Mohanty, T; John, J; Rao, T K Gundu; Raychaudhuri, Pratap; Bhattacharyya, V; Kanjilal, D
2008-08-01
Nanodimensional TiO2 has wide application in the field of photocatalysis, photovoltaic and photochromic devices. In present investigation TiO2 thin films deposited by pulsed laser deposition method are irradiated by 100 MeV Ag ion beam to achieve growth of nanophases. The nanostructure evolution is characterized by atomic force microscopy (AFM). The phases of TiO2 formed after irradiation are identified by glancing angle X-ray diffraction and Raman spectroscopy. The particle radius estimated by AFM varies from 10-13 nm. Anatase phase of TiO2 is formed after irradiation. The blue shift observed in UV-VIS absorption spectra indicates the nanostructure formation. The shape and size of nanoparticles formed due to high electronic excitation depend upon thickness of the film.
DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.
2017-01-01
Two sensitizers, [Ru(bpy)2(dcb)]2+ (RuC) and [Ru(bpy)2(dpb)]2+ (RuP), where bpy is 2,2′-bipyridine, dcb is 4,4′-dicarboxylic acid-2,2′-bipyridine and dpb is 4,4′-diphosphonic acid-2,2′-bipyridine, were anchored to mesoporous TiO2 thin films and utilized to sensitize the reaction of TiO2 electrons with oxidized triphenylamines, TiO2(e–) + TPA+ → TiO2 + TPA, to visible light in CH3CN electrolytes. A family of four symmetrically substituted triphenylamines (TPAs) with formal Eo(TPA+/0) reduction potentials that spanned a 0.5 eV range was investigated. Surprisingly, the reaction followed first-order kinetics for two TPAs that provided the largest thermodynamic driving force. Such first-order reactivity indicates a strong Coulombic interaction between TPA+ and TiO2 that enables the injected electron to tunnel back in one concerted step. The kinetics for the other TPA derivatives were non-exponential and were modelled with the Kohlrausch–William–Watts (KWW) function. A Perrin-like reaction sphere model is proposed to rationalize the kinetic data. The activation energies were the same for all of the TPAs, within experimental error. The average rate constants were found to increase with the thermodynamic driving force, consistent with electron transfer in the Marcus normal region. PMID:29629161
Montero-Ocampo, C; Gago, A; Abadias, G; Gombert, B; Alonso-Vante, N
2012-11-01
In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO(2) thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics. TiO(2) 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy. The annealed TiO(2) thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO(2) electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir-Hinshelwood model, with first-order kinetics. The feasibility of dye discoloration on TiO(2) thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E (AP)) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50 min) produced 80% discoloration with an external anodic potential of 0.931 V and a flow rate of 12.2 mL min(-1).
Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor
NASA Astrophysics Data System (ADS)
Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.
2018-04-01
Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.
Mesoporous TiO2 implants for loading high dosage of antibacterial agent
NASA Astrophysics Data System (ADS)
Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun
2014-06-01
We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.
Cheng, Fei; Lorch, Mark; Sajedin, Seyed Mani; Kelly, Stephen M; Kornherr, Andreas
2013-08-01
To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2 ) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2 , commercial rutile phase TiO2 , rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4 , were coated with a thin, but dense, coating of silica (SiO2 ) using a conventional sol-gel technique to form TiO2 /SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2 /SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.
2016-03-01
In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.
Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2
NASA Astrophysics Data System (ADS)
Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.
2018-05-01
Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.
Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.
Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man
2018-02-13
Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.
Perovskite solar cell with an efficient TiO₂ compact film.
Ke, Weijun; Fang, Guojia; Wang, Jing; Qin, Pingli; Tao, Hong; Lei, Hongwei; Liu, Qin; Dai, Xin; Zhao, Xingzhong
2014-09-24
A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-01-01
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-07-23
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.
Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases
Kusior, Anna; Trenczek-Zajac, Anita
2016-01-01
2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising material for application as an acetone sensor. PMID:28144521
Matching characteristics of different buffer layers with VO2 thin films
NASA Astrophysics Data System (ADS)
Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong
2016-10-01
VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.
NASA Astrophysics Data System (ADS)
Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon
2015-04-01
To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.
Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu
2015-10-12
Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition
Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo
2015-01-01
We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.
Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung
2009-05-15
For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.
NASA Astrophysics Data System (ADS)
Pessoa, R. S.; dos Santos, V. P.; Cardoso, S. B.; Doria, A. C. O. C.; Figueira, F. R.; Rodrigues, B. V. M.; Testoni, G. E.; Fraga, M. A.; Marciano, F. R.; Lobo, A. O.; Maciel, H. S.
2017-11-01
Atomic layer deposition (ALD) surges as an attractive technology to deposit thin films on different substrates for many advanced biomedical applications. Herein titanium dioxide (TiO2) thin films were successful obtained on polyurethane (PU) and polydimethylsiloxane (PDMS) substrates using ALD. The effect of TiO2 films on Candida albicans growth and inactivation process were also systematic discussed. TiCl4 and H2O were used as precursors at 80 °C, while the reaction cycle number ranged from 500 to 2000. Several chemical, physical and physicochemical techniques were used to evaluate the growth kinetics, elemental composition, material structure, chemical bonds, contact angle, work of adhesion and surface morphology of the ALD TiO2 thin films grown on both substrates. For microbiological analyses, yeasts of standard strains of C. albicans were grown on non- and TiO2-coated substrates. Next, the antifungal and photocatalytic activities of the TiO2 were also investigated by counting the colony-forming units (CFU) before and after UV-light treatment. Chlorine-doped amorphous TiO2 films with varied thicknesses and Cl concentration ranging from 2 to 12% were obtained. In sum, the ALD TiO2 films suppressed the yeast-hyphal transition of C. albicans onto PU, however, a high adhesion of yeasts was observed. Conversely, for PDMS substrate, the yeast adhesion did not change, as observed in control. Comparatively to control, the TiO2-covered PDMS had a reduction in CFU up to 59.5% after UV treatment, while no modification was observed to TiO2-covered PU. These results pointed out that ALD chlorine-doped amorphous TiO2 films grown on biomedical polymeric surfaces may act as fungistatic materials. Furthermore, in case of contamination, these materials may also behave as antifungal materials under UV light exposure.
Thermophysical properties study of micro/nanoscale materials
NASA Astrophysics Data System (ADS)
Feng, Xuhui
Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and 25.8˜373 kg/m3, respectively, much lower than bulk values. Then single anatase TiO2 nanowire is synthesized to understand intrinsic thermophysical properties and secondary porosity. Thermal diffusivity of nanowires varies from 1.76 to 5.08 × 10-6 m 2/s, while thermal conductivity alters from 1.38 to 6.01 W/m·K. SEM image of TiO2 nanowire shows secondary porous surface structure. In addition, nonlinear effects are also observed with experimental data. Two methods, generalized function analysis and direct capacitance derivation, are developed to suppress nonlinear effects. Effective thermal diffusivities from both modified analysis agree well with each other.
Synthesis and electronic properties of Fe 2TiO 5 epitaxial thin films
Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; ...
2018-05-02
Here, we investigate the growth phase diagram of pseudobrookite Fe 2TiO 5 epitaxial thin films on LaAlO 3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20–80 Ω cm, which are significantly lower than α-Fe 2O 3, making Fe 2TiO 5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe 2TiO 5 in oxide heterostructures for photocatalytic and photoelectrochemicalmore » applications.« less
Synthesis and electronic properties of Fe2TiO5 epitaxial thin films
NASA Astrophysics Data System (ADS)
Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki
2018-05-01
We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.
NASA Astrophysics Data System (ADS)
Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long
2017-07-01
Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm-2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open-circuit voltage of 0.52 V, a short-circuit photocurrent density of 13.56 mA cm-2 and a fill factor of 0.58.
NASA Astrophysics Data System (ADS)
Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit
2018-04-01
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.
Optical properties of titanium di-oxide thin films prepared by dip coating method
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar
2018-05-01
Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.
Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida
NASA Astrophysics Data System (ADS)
Angelov, O.; Stoyanova, D.; Ivanova, I.
2016-10-01
Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.
Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.
Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho
2013-04-01
Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Momeni, Mansour; Saghafian, Hasan; Golestani-Fard, Farhad; Barati, Nastaran; Khanahmadi, Amirhossein
2017-01-01
Nanostructured N doped TiO2/20%SiO2 thin films were developed on steel surface via sol gel method using a painting airbrush. Thin films then were calcined at various temperatures in a range of 400-600 °C. The effect of SiO2 addition on phase composition and microstructural evolution of N doped TiO2 films were studied using XRD and FESEM. Optical properties, visible light photocatalytic activity, hydrophilic behavior, and mechanical behavior of the films were also investigated by DRS, methylene blue degradation, water contact angle measurements, and nanoscratch testing. Results indicated that the band gap energy of N doped TiO2/SiO2 was increased from 2.93 to 3.09 eV. Crack formation during calcination was also significantly promoted in the composite films. All composite films demonstrated weaker visible light photocatalytic activities and lower mechanical stability in comparison with N doped TiO2 films. Moreover, the N doped TiO2/SiO2 film calcined at 600 °C showed undesirable hydrophilic behavior with a water contact angle of 57° after 31 h of visible light irradiation. Outcomes of the present study reveal some different results to previous reports on TiO2/SiO2 films. In general, we believe the differences in substrate material as well as application in visible light are the main reasons for the above mentioned contradiction.
NASA Astrophysics Data System (ADS)
Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.
2014-02-01
Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.
Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film
NASA Astrophysics Data System (ADS)
Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae
2008-11-01
Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.
Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih
2013-05-01
2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.
Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi
2016-01-01
Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry. PMID:26846687
Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi
2016-02-05
Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry.
Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira
2015-11-20
In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Lae Ho; Jeong, Yong Jin; An, Tae Kyu; Park, Seonuk; Jang, Jin Hyuk; Nam, Sooji; Jang, Jaeyoung; Kim, Se Hyun; Park, Chan Eon
2016-01-14
Encapsulation is essential for protecting the air-sensitive components of organic light-emitting diodes (OLEDs), such as the active layers and cathode electrodes. Thin film encapsulation approaches based on an oxide layer are suitable for flexible electronics, including OLEDs, because they provide mechanical flexibility, the layers are thin, and they are easy to prepare. This study examined the effects of the oxide ratio on the water permeation barrier properties of Al2O3/TiO2 nanolaminate films prepared by plasma-enhanced atomic layer deposition. We found that the Al2O3/TiO2 nanolaminate film exhibited optimal properties for a 1 : 1 atomic ratio of Al2O3/TiO2 with the lowest water vapor transmission rate of 9.16 × 10(-5) g m(-2) day(-1) at 60 °C and 90% RH. OLED devices that incorporated Al2O3/TiO2 nanolaminate films prepared with a 1 : 1 atomic ratio showed the longest shelf-life, in excess of 2000 hours under 60 °C and 90% RH conditions, without forming dark spots or displaying edge shrinkage.
Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications
NASA Astrophysics Data System (ADS)
Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei
2006-02-01
We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.
A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth
NASA Astrophysics Data System (ADS)
Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan
2006-11-01
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.
Polarization-Dependent Raman Spectroscopy of Epitaxial TiO 2 (B) Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokisaari, Jacob R.; Bayerl, Dylan; Zhang, Kui
2015-12-08
The bronze polymorph of titanium dioxide, known as TiO 2(B), has promising photochemical and electronic properties for potential applications in Li-ion batteries, photocatalysis, chemical sensing, and solar cells. In contrast to previous studies performed with powder samples, which often suffer from impurities and lattice water, here we report Raman spectra from highly crystalline TiO 2(B) films epitaxially grown on Si substrates with a thin SrTiO 3 buffer layer. The reduced background from the Si substrate significantly benefits acquisition of polarization-dependent Raman spectra collected from the high-quality thin films, which are compared to nanopowder results reported in the literature. The experimentalmore » spectra were compared with density functional theory calculations to analyze the atomic displacements associated with each Raman-active vibrational mode. These results provide a standard reference for further investigation of the crystallinity, structure, composition, and properties of TiO 2(B) materials with Raman spectroscopy.« less
NASA Astrophysics Data System (ADS)
Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.
2010-01-01
The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.
DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.; ...
2018-01-01
Two sensitizers, [Ru(bpy) 2 (dcb)] 2+ ( RuC ) and [Ru(bpy) 2 (dpb)] 2+ ( RuP ), were anchored to mesoporous TiO 2 thin films and utilized to sensitize the reaction of TiO 2 electrons with oxidized triphenylamines to visible light in CH 3 CN electrolytes.
Electrochemical properties of thin films of V2O5 doped with TiO2
NASA Astrophysics Data System (ADS)
Moura, E. A.; Cholant, C. M.; Balboni, R. D. C.; Westphal, T. M.; Lemos, R. M. J.; Azevedo, C. F.; Gündel, A.; Flores, W. H.; Gomez, J. A.; Ely, F.; Pawlicka, A.; Avellaneda, C. O.
2018-08-01
The paper presents a systematic study of the electrochromic properties of thin films of V2O5:TiO2 for a possible utilization as counter-electrode in electrochromic devices. The V2O5:TiO2 thin films were prepared by the sol-gel process and deposited on a substrate of fluorine-tin oxide transparent electrode (FTO) using the dip coating technique and heat treatment at 350 °C for 30 min. The films were characterized by chronocoulometry, cyclic voltammetry (CV), UV-Vis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), profilometry, and X-ray diffraction (XRD). The best results were obtained for the film of V2O5 with 7.5 mol% of TiO2, which presented highest ion storage capacity of ∼106 mC cm-2 and redox reversibility of 1. The diffusion of the Li+ ions into the thin films was modeled by solving Fick equations with appropriate boundary conditions for a plane sheet geometry. Besides that, these films showed optical modulation of 35% at 633 nm after coloration and bleaching. The XRD patterns revealed that the films have an orthorhombic crystal structure; the AFM and the profilometry confirmed roughness and thickness of 16.76 and 617 nm, respectively.
Wen, Wei; Wu, Jin-ming; Jiang, Yin-zhu; Yu, Sheng-lan; Bai, Jun-qiang; Cao, Min-hua; Cui, Jie
2015-01-01
Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate outstanding performances for lithium storage because of the unique nanoarchitecture and appropriate composition. Unlike conventional alkali-hydrothermal approaches to hydrogen titanates, the present room temperature alkaline-free wet chemistry strategy guarantees the ultrathin thickness for the resultant titanate nanobelts. The anatase TiO2 ultrathin nanobelts were achieved simply by a subsequent calcination in air. The synthesis route is convenient for metal decoration and also for fabricating thin films of one/three dimensional arrays on various substrates at low temperatures, in absence of any seed layers. PMID:26133276
2013-01-01
In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric. PMID:23294730
Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming
2013-01-08
In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.
NASA Astrophysics Data System (ADS)
Afanasiev, Pavel
2018-02-01
A novel inorganic-organic hybrid barium tungstate - ethylene glycol Ba(C2H6O2)W2O7 phase has been prepared by non-aqueous precipitation and characterized. According to powder X-ray diffraction, the solid has an orthorhombic lattice (a = b = 6.415 Å, c = 13.05 Å) and represents a derivative of the H2W2O7 lamellar acid. The Ba(C2H6O2)W2O7 hybrid material is a layered solid and crystallizes as thin plates, which can be further topotacticaly transformed to few-layer WS2 nanoplates. Tungsten sulfide as obtained possesses high specific surface area and increased defectness of layers. Thin-layer WS2 materials as prepared show advantageous properties as hydrogen evolution electrocatalysts, or in combination with TiO2 as co-catalysts for photo catalytic hydrogen production from methanol.
Synthesis of TiO2 NRs - ZnO Composite for Dye Sensitized Solar Cell Photoanodes
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Ramelan, A. H.; Hidayat, R.; Fadillah, G.; Munawaroh, H.; Saputri, L. N. M. Z.
2017-07-01
Composite of TiO2 NRs - ZnO were synthesized for DSSCs photoanode materials. TiO2 NRs was synthesized from TiO2 anatase by mechanochemical technique using ball milling process with agitation speed of 1000 rpm. While, the further hydrothermal refluxing process was conducted at 120°C under various concentration of NaOH in aqueous solution. The starting material of ZnO was prepared from ZnSO4.7H2O as a precursor. The hydrothermal treated TiO2 was added to the ZnO powder in a certain composition of 1:1, 1:2 and 2:1 (w/w), and the mixtures were then annealed at 400°C. The resulting material was characterized by X-ray diffraction (XRD), Surface area analyzer (SAA), Transmission electron microscopy (TEM), and Thermogravimetry/Differential thermal analysis (TG/DTA). The TiO2 revolution occurs from anatase phase into brookite phase. Rutile TiO2 phase was increasing when the NaOH was added at about 12 M. Nanograf of TEM showed the optimum condition for the formation of TiO2 NRs was obtained when 12 M NaOH was used. Structural transformation to 1D nanorods of TiO2 capable increase surface area up to 79 m2/g. TiO2 NRs-ZnO composite was prepared from TiO2 NRs and ZnO using comparation of TiO2 NRs: ZnO = 1:1, 1:2, dan 2:1. Anatase phase TiO2 as a single phase TiO2 was obtained in the TiO2-ZnO composite (1:1 w/w) upon heating the sample until 400°C. Difference TiO2 NRs-ZnO composite materials were investigated as good photovoltaic materials. Evaluation of the performance of DSSCs was conducted by I-V Keithley 2602A measurement indicate that photoanode built of TiO2 NRs - ZnO thin film has a higher solar cell efficiency than that of TiO2 thin film photoanode.
NASA Astrophysics Data System (ADS)
Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.
2012-01-01
In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.
Strain Effects in Epitaxial VO2 Thin Films on Columnar Buffer-Layer TiO2/Al2O3 Virtual Substrates.
Breckenfeld, Eric; Kim, Heungsoo; Burgess, Katherine; Charipar, Nicholas; Cheng, Shu-Fan; Stroud, Rhonda; Piqué, Alberto
2017-01-18
Epitaxial VO 2 /TiO 2 thin film heterostructures were grown on (100) (m-cut) Al 2 O 3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO 2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO 2 buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO 2 /TiO 2 /Al 2 O 3 heterostructures as a function of TiO 2 film growth temperatures. Atomic force microscopy and transmission electron microscopy analyses show that the columnar microstructure present in TiO 2 buffer films is responsible for the partially strained VO 2 film behavior and subsequently favorable transport characteristics with a lower SMT temperature. Such findings are of crucial importance for both the technological implementation of the VO 2 system, where reduction of its SMT temperature is widely sought, as well as the broader complex oxide community, where greater understanding of the evolution of microstructure, strain, and functional properties is a high priority.
Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics
Kim, In Soo; Haasch, Richard T.; Cao, Duyen H.; ...
2016-09-06
A low temperature (< 120 °C) route to pinhole-free amorphous TiO 2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultra-thin (12 nm) compact TiO 2 underlayers for planar halide perovskite PV. While device performance with as-deposited TiO 2 films is poor, we identify room temperature UV-O 3 treatment as a route to device efficiency comparable to crystalline TiO 2 thin films synthesized by higher temperature methods. Here, we further explore the chemical, physical, and interfacial properties 2more » that might explain the improved performance through x-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and x-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.« less
NASA Astrophysics Data System (ADS)
Kumar, Promod; Swart, H. C.
2018-04-01
Graphene based hybrid nanostructures have received special attention in both the scientific and technological development due to their unique physicochemical behavior, which make them attractive in various applications such as, batteries, supercapacitors, fuel cells, solar cells, photovoltaic devices and bio-sensors. In the present study, the role of plasmonic metamaterials in light trapping photovoltaics for inorganic semiconducting materials by a simple and low cost spray pyrolysis technique has been studied. The plasmonic metamaterials thin film has been fabricated by depositing chemically converted graphene (CCG) onto TiO2-Ag nanoparticles which has a low resistivity and a low electron-hole recombination probability. The localized surface plasmon resonance at the metal-dielectric interface for the Ag nanoparticles has been observed at 403 nm after depositing chemical converted graphene (CCG) on the TiO2-Ag thin film. The results suggest that the stacking order of the CCG/TiO2/Ag plasmonic metamaterials samples did not change the band gap of TiO2 while it changed the conductivity of the film. Thus the diffusion of the noble metals in the glass and TiO2 matrices based thin films can trap the light of a particular wavelength by mean of plasmonic resonance and may be useful for superior photovoltaic and optoelectronic applications.
Korte, Dorota; Franko, Mladen
2015-01-01
In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.
Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie
2013-01-01
A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.
Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin
2015-05-15
A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. Copyright © 2014 Elsevier B.V. All rights reserved.
Hyperbranched TiO2-CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes.
Mezzetti, Alessandro; Balandeh, Mehrdad; Luo, Jingshan; Bellani, Sebastiano; Tacca, Alessandra; Divitini, Giorgio; Cheng, Chuanwei; Ducati, Caterina; Meda, Laura; Fan, Hongjin; Di Fonzo, Fabio
2018-08-17
Quasi-1D-hyperbranched TiO 2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO 2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm -2 and reaching saturation with applied biases as low as 0.35 V RHE . The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO 2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.
Study of the Ag-Doped Effect on the LPD-TiO2 Gas Sensing Properties
NASA Astrophysics Data System (ADS)
Georgieva, V. B.; Stefchev, P. L.; Stefanov, P. K.; Raicheva, Z. G.; Atanassov, M. J.; Lazarov, Y. V.
2010-01-01
In this investigation, the gas-sensing properties of TiO2 thin layers are enhanced by Ag-doping. The TiO2 layers are prepared by the method of Liquid Phase Deposition (LPD) through a reaction between the metal fluorocomplex and boric acid in aqueous solution. The LPD-TiO2 layers are grown on AT-cut quartz resonators with gold electrodes (4 mm diameter). The prepared samples are divided in two (Ag-Doped TiO2 and un-doped TiO2) groups. The Ag-doped TiO2 thin films are created by vertically dipping in AgNO3 diluted water solution and UV irradiation with nine lamps of 6 W power each and light intensity of 0.35 mW/cm2 at room temperature. The sensing properties of two kinds of layers (Ag-doped TiO2 and un-doped TiO2) to NH3 are being studied by the method of Quartz Crystal Microbalance (QCM). The experiments are implemented at different NH3 concentrations—from 10 to 1000 ppm on a special laboratory set-up in dynamic regime. Comparing the results of measured sorbed mass of both kinds of layers show that the sensitivity of TiO2 is significantly affected by Ag presence. The role of Ag is to generate more active surface for TiO2 sorption. The obtained results show that the system QCM—LPD Ag TiO2 can be successfully applied as sensor element for NH3 registration in environment.
Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun
2014-10-14
A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.
Nam, Jung Eun; Kwon, Soon Jin; Jo, Hyo Jeong; Yi, Kwang Bok; Kim, Dae-Hwan; Kang, Jin-Kyu
2014-12-01
In this study, we report synthesis and growth of rutile-anatase TiO2 thin film on fluorine-doped tin oxide (FTO) glass by a two-step hydrothermal method. The effects of additional treatments (i.e., TiCl4 post-treatment and seed layer formation were also studied. Photocurrent-voltage (I-V) measurement of rutile-anatase TiO2 thin film was performed under 1.5 G light illumination. Photovoltaic performance was investigated by incident photon-to-electron conversion efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent/photovoltage spectroscopy (IMVS/IMPS) and open-circuit photovoltage decay (OCVD).
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto
2017-02-01
We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.
NASA Astrophysics Data System (ADS)
Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.
2018-04-01
Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.
NASA Astrophysics Data System (ADS)
Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka
2018-06-01
Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.
Two sensitizers, [Ru(bpy) 2 (dcb)] 2+ ( RuC ) and [Ru(bpy) 2 (dpb)] 2+ ( RuP ), were anchored to mesoporous TiO 2 thin films and utilized to sensitize the reaction of TiO 2 electrons with oxidized triphenylamines to visible light in CH 3 CN electrolytes.
NASA Astrophysics Data System (ADS)
Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran
2017-11-01
Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.
Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector
NASA Astrophysics Data System (ADS)
Bhowmik, Kishan; Mondal, Aniruddha
2015-03-01
Glancing angle deposited silver (Ag) nanoparticles (NPs) were employed to fabricate the silicon (Si) nanowire (NW) network on p-type Si substrate. The Si NWs were characterized by X-ray diffraction, which shows the (311) oriented single crystalline nature. The FEG-SEM images show that the nanowire diameters are in the order of 60-180 nm. The photoluminescence emission at 525 nm was recognized from the Si NWs. The Ag-TiO2 contacts exhibit Schottky behavior and higher photoconduction was observed for TiO2-Si NW detector than that of TiO2 Thin film under illumination up to 2.5 V applied potential. A threefold enhanced photodetection for the Silicon nanowire device was observed compared to the TiO2 thin film device, under applied voltages of 0.4-1.5 V. [Figure not available: see fulltext.
Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
NASA Astrophysics Data System (ADS)
Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian
2018-02-01
Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; ...
2017-10-26
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj
2018-05-01
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible lightmore » absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.« less
Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells
Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...
2015-11-03
The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less
Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari
2014-10-27
Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wilson, Rachel L.; Blackman, Christopher S.; Carmalt, Claire J.; Stanoiu, Adelina; Di Maggio, Francesco
2018-01-01
Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated. PMID:29494504
NASA Astrophysics Data System (ADS)
Levchuk, Irina; Sillanpää, Mika; Guillard, Chantal; Gregori, Damia; Chateau, Denis; Parola, Stephane
2016-10-01
The aim of the work was to study photocatalytic activity of composite TiO2/Au/SiO2 thin films. Coatings were prepared using sol-gel technique. Physicochemical parameters of coatings were characterized using UV-vis spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, tactile measurements, goniometry and diffuse reflectance measurements. The photocatalytic activity of the films was tested in batch mode using aqueous solution of formic acid. Changes of formic acid concentration were determined by means of high pressure liquid chromatography (HPLC). Increase of initial degradation rate of formic acid was detected for TiO2/Au/SiO2 films with gold nanoparticle's load 0.5 wt.% and 1.25 wt.%. However, deeper insights using more detailed characterization of these coatings demonstrated that the improvement of the photocatalytic activity is more probably attributed to an increase in the areal loading of TiO2.
NASA Astrophysics Data System (ADS)
Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal
2016-08-01
Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.
NASA Astrophysics Data System (ADS)
Cho, Kwang-Hwan; Lee, Chil-Hyoung; Kang, Chong-Yun; Yoon, Seok-Jin; Lee, Young-Pak
2007-04-01
The effect of heat treatment in electric field on the structure and dielectric properties at microwave range of rf magnetron sputtering derived (Ba0.5Sr0.5)TiO3 thin films have been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability. The increased out-of-plane lattice constant in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature. And in dielectric loss, as the Ti-O bonding lengths increase, the energy scattering on the ferroelectric mode also increases. So, the value of dielectric loss is slightly increased.
Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping
2016-03-23
Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.
NASA Astrophysics Data System (ADS)
Gu, Yi-Jie; Wen, Wei; Xu, Yang; Wu, Jin-Ming
2018-03-01
When compared with nanoparticulate counterparts, TiO2 thin films with vertically aligned one-dimensional (1D) nanostructures exhibit enhanced photocatalytic activity because of the highly accessible surface area. The perpendicular of the 1D nanostructure reduces the charge migration path and hence the carrier recombination rate, which also contributes to the photocatalytic activity. Furthermore, TiO2 thin films on flexible substrates are more suitable to degrade pollutants in either water or air because of its easy recovery and free-bending shape. In this study, flexible polyethylene fabrics were firstly coated with a sol-gel nanoparticulate TiO2 seed layer. Quasi-aligned TiO2 nanorods were then precipitated homogeneously under an atmospheric pressure and a low temperature not exceeding 80 °C, using a peroxy-titanium complex precursor with the additive of pyrrole. It is found that the density of TiO2 nanorods increased with the increasing amount of pyrrole monomers. The resultant TiO2 film on polyethylene fabrics exhibited a much reduced band gap of ca. 2.86 eV, which can be attributed to the surface oxygen deficiencies. When utilized to assist photocatalytic degradation of trace toluene in air under the UV light illumination, the TiO2 film exhibited a gradually increased photocatalytic activity upon the increasing cycles for up to six, because of the gradual removal of trace organics on the TiO2 surface. The highest photocatalytic efficiency is recorded to be 5 times that of TiO2 nanotube arrays, which are regarded as an excellent photocatalyst for air cleaning.
Tunability of p- and n-channel TiOx thin film transistors.
Peng, Wu-Chang; Chen, Yao-Ching; He, Ju-Liang; Ou, Sin-Liang; Horng, Ray-Hua; Wuu, Dong-Sing
2018-06-18
To acquire device-quality TiO x films usually needs high-temperature growth or additional post-thermal treatment. However, both processes make it very difficult to form the p-type TiO x even under oxygen-poor growth condition. With the aid of high energy generated by high power impulse magnetron sputtering (HIPIMS), a highly stable p-type TiO x film with good quality can be achieved. In this research, by varying the oxygen flow rate, p-type γ-TiO and n-type TiO 2 films were both prepared by HIPIMS. Furthermore, p- and n-type thin film transistors employing γ-TiO and TiO 2 as channel layers possess the field-effect carrier mobilities of 0.2 and 0.7 cm 2 /Vs, while their on/off current ratios are 1.7 × 10 4 and 2.5 × 10 5 , respectively. The first presented p-type γ-TiO TFT is a major breakthrough for fabricating the TiO x -based p-n combinational devices. Additionally, our work also confirms HIPIMS offers the possibility of growing both p- and n-type conductive oxides, significantly expanding the practical usage of this technique.
NASA Astrophysics Data System (ADS)
Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng
2016-05-01
Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min-1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL-1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation.
Masood, Muhammad Talha; Weinberger, Christian; Sarfraz, Jawad; Rosqvist, Emil; Sandén, Simon; Sandberg, Oskar J; Vivo, Paola; Hashmi, Ghufran; Lund, Peter D; Österbacka, Ronald; Smått, Jan-Henrik
2017-05-31
Uniform and pinhole-free electron-selective TiO 2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO 2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl 4 precursor concentration. The formed TiO 2 follows the texture of the underlying FTO substrates, but at higher TiCl 4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl 4 concentration is needed to produce crystalline TiO 2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO 2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO 2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO 2 layer. Devices without or with very thin compact TiO 2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO 2 layer when it is too thin.
NASA Astrophysics Data System (ADS)
Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh
2018-03-01
By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B = Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ = 365 nm) and LED lamps (λ = 400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ = 622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.
Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad
2016-08-09
Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.
2013-01-01
High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm−2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies. PMID:23286741
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Guanxi; Fan, Jiajie; Liu, Baoshun; Cao, Shaowen; Yu, Jiaguo
2015-01-01
Dye-sensitized solar cells (DSSCs) were fabricated by using g-C3N4 modified TiO2 nanosheets (CTS) as photoanode materials in this research. A thin layer of g-C3N4 was coated on the surface of TiO2 nanosheets by simply heating the mixture of TiO2 nanosheets and urea, which led to the formation of TiO2@g-C3N4 nanosheet heterostructure. The experimental results showed that the photoelectric conversion efficiency of DSSCs was obviously improved after modified by g-C3N4. The measurements of I-V characteristic indicated that the introduction of g-C3N4 could increase both the open circuit voltage and short-circuit photocurrent density. Along with the analysis of electrochemical impedance spectroscopy, it is considered that the thin layer of g-C3N4 can act as the blocking layer for electron backward recombination with electrolyte, which can be used as the functional material to increase the DSSC performance.
Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers
NASA Astrophysics Data System (ADS)
Colombi, Paolo; Bergese, Paolo; Bontempi, Elza; Borgese, Laura; Federici, Stefania; Sylvest Keller, Stephan; Boisen, Anja; Eleonora Depero, Laura
2013-12-01
A method for the highly sensitive determination of the Young's modulus of TiO2 thin films exploiting the resonant frequency shift of a SU-8 polymer microcantilever (MC) is presented. Amorphous TiO2 films with different thickness ranging from 10 to 125 nm were grown at low temperature (90 °C) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films (>75 nm) was estimated to be about 110 GPa, this value being consistent with the value of amorphous TiO2. On the other hand we observed a marked decrease of the Young's modulus for TiO2 films with a thickness below 50 nm. This behavior was found not to be related to a decrease of the film mass density, but to surface effects according to theoretical predictions on size-dependent mechanical properties of nano- and microstructures.
Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong
2018-05-04
A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Madoui, Karima; Medjahed, Aicha; Hamici, Melia; Djamila, Abdi; Boudissa, Mokhtar
2018-05-01
Thin films of titanium oxide (TiO2) deposited on glass substrates were fabricated by using the sol-gel route. The realization of these thin layers was made using the dip-coating technique with a solution of titanium isopropoxyde as a precursor. The samples prepared with different numbers of deposited layers were annealed at 400 ° C for 2 hours. The main purposes of this work were investigations of both the effect of the number of thin TiO2 layers on the crystal structure of the anatase form first and, their ability to adsorb the solution of methylene blue in order to make colored filters from a photocatalytic process. The deposited titanium-oxide layers were characterized by using various techniques: namely, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and UV-Visible spectrometry. The result obtained by using the XRD technique showed the appearance of an anatase phase, as was confirmed by using Raman spectroscopy. The AFM surface analysis allowed the surface topography to be characterized and the surface roughness to be measured, which increased with increasing number of layers. The UV-Visible spectra showed that the TiO2 films had a good transmittance varying from 65% to 95% according to the number of layers. The gap energy varied as a function of the number of deposited layers. The as deposited TiO2 layers were tested as a photocatalyst towards the adsorption of methylene blue dye. The results obtained during this study showed that the adsorption capacity varied according to the number of deposited thin layers and the exposing duration to ultraviolet (UV) light. The maximum absorption rate of the dye was obtained for the two-layer sample. Seventy-two hours of irradiation allowed the adsorption intensity of the dye to be maximized for two-layer films.
Texture control and seeded nucleation of nanosize structures of ferroelectric thin films
NASA Astrophysics Data System (ADS)
Muralt, Paul
2006-09-01
An overview is given on nucleation phenomena of Pb(Zr ,Ti)O3 (PZT) thin films on Pt(111)-based substrates. Emphasis is given on in situ growth methods, particularly in situ reactive sputtering from three metallic targets. Growth of PZT thin films is discussed from the point of view of the PbOx-TiO2 phase diagram, PbO vapor pressure, and classical nucleation theory. The role of thin TiO2 affinity layers and spots is explained in the frame of this theory. Activation energies for desorption and chemisorption are adapted to comply with the fact that nucleation rates on TiO2 are much larger than the ones on bare Pt(111). The model reproduces well the PbO surface flux from bare Pt(111) to the affinity spots in the case of PbTiO3 nucleation and the reversed tendency in the case of PZT 40/60 nucleation, explaining experimental observations. The critical size of nuclei was calculated to contain 8-10unit cells for PbTiO3/Pt nucleation and 14-17 for PZT/Pt nucleation.
S180 cell growth on low ion energy plasma treated TiO 2 thin films
NASA Astrophysics Data System (ADS)
Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna
2008-03-01
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.
NASA Astrophysics Data System (ADS)
Liau, Leo Chau-Kuang; Lin, Yun-Guo
2015-01-01
Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.
Ghrairi, Najla; Bouaicha, Mongi
2012-07-01
In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet-visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current-voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2.
2012-01-01
In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet–visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current–voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2. PMID:22747886
Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng
2016-01-01
Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min−1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL−1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation. PMID:27161821
NASA Astrophysics Data System (ADS)
Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad
2015-10-01
A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.
NASA Astrophysics Data System (ADS)
Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana
2012-08-01
TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.
NASA Astrophysics Data System (ADS)
Quynh, Luu Manh; Tien, Nguyen Thi; Thanh, Pham Van; Hieu, Nguyen Minh; Doanh, Sai Cong; Thuat, Nguyen Tran; Tuyen, Nguyen Viet; Luong, Nguyen Hoang; Hoang, Ngoc Lam Huong
2018-03-01
Nb-doped TiO2 (TNO) thin films were prepared by annealing at 300 °C for 30 min after a magnetron-sputter process. A laser-irradiated post-annealing Raman scattering analysis indirectly showed the possible formation of small size anatase TNO clusters within the thin film matrix Although the TNO thin films were not crystallized, oxygen vacancies were created by adding H2 into the sputter gas during the deposition process. This improved the conductivity and carrier concentration of the thin films. As the ratio of H2 in sputter gas is f(H2) = [H2/Ar+H2] = 10%, the carrier concentration of the amorphous TNO thin film reached 1022 (cm-3) with the resistivity being about 10-2 (Ω.cm). Even though a new methodology to decrease the fabrication temperature is not presented; this study demonstrates an efficient approach to shorten the annealing process, which ends prior to the crystallization of the thin films. Besides, in situ H2 addition into the sputter atmosphere is proven to be a good solution to enhance the electrical conductivity of semiconductor thin films like TNOs, despite the fact that they are not well crystallized.
NASA Astrophysics Data System (ADS)
Hossain, I.; Jiang, J.; Matras, M.; Trociewitz, U. P.; Lu, J.; Kametani, F.; Larbalestier, D.; Hellstrom, E.
2017-12-01
In order to develop a high current density in coils, Bi-2212 wires must be electrically discrete in tight winding packs. It is vital to use an insulating layer that is thin, fulfils the dielectric requirements, and can survive the heat treatment whose maximum temperature reaches 890 °C in oxygen. A thin (20-30 µm) ceramic coating could be better as the insulating layer compared to alumino-silicate braided fiber insulation, which is about 150 μm thick and reacts with the Ag sheathed Bi-2212 wire during heat treatment. At present, TiO2 seems to be the most viable ceramic material for such a thin insulation because it is chemically compatible with Ag and Bi-2212 and its sintering temperature is lower than the maximum temperature used for the Bi-2212 heat treatment. However, recent tests of a large Bi-2212 coil insulated only with TiO2 showed severe electrical shorting between the wires after over pressure heat treatment (OPHT). The origin of the shorting was frequent silver protrusions into the porous TiO2 layer that electrically connected adjacent Bi-2212 wires. To understand the mechanism of this unexpected behaviour, we investigated the effect of sheath material and hydrostatic pressure on Ag protrusions. We found that Ag protrusions occur only when TiO2-insulated Ag-0.2%Mg sheathed wire (Ag(Mg) wire) undergoes OPHT at 50 bar. No Ag protrusions were observed when the TiO2-insulated Ag(Mg) wire was processed at 1 bar. The TiO2-insulated wires sheathed with pure Ag that underwent 50 bar OPHT were also free from Ag protrusions. A key finding is that the Ag protrusions from the Ag(Mg) sheath actually contain no MgO, suggesting that local depletion of MgO facilitates local, heterogeneous deformation of the sheath under hydrostatic overpressure. Our study also suggests that predensifying the Ag(Mg) wire before insulating it with TiO2 and doing the final OPHT can potentially limit Ag protrusions.
NASA Astrophysics Data System (ADS)
Hassan, Mohamed Elfatih; Cong, Longchao; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo
2014-03-01
C-TiO2 thin films were synthesized by a modified sol-gel route based on the self-assembly technique exploiting Tween80 (T80) as a pore directing agent and carbon source. The effect of calcination time on the photocatalytic activity of C-doped TiO2 catalyst was studied. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared (FTIR), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). The XRD results showed that C-TiO2 sample calcined at 400 °C for various times exhibited anatase phase and no other crystal phase was identified. C-TiO2 exhibited a shift in an absorption edge of samples in the visible region than that of conventional or reference TiO2. The XPS results showed an existence of C in the TiO2 catalysts and C might be existed as Csbnd Osbnd Ti group. Moreover, the C-TiO2 thin film calcined at 400 °C for 30 min showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under UV light irradiation. Also the photocatalytic activity of synthesized catalyst was evaluated by decomposition of methyl orange (MO) under visible light irradiation. The results showed that the optimum preparations of C-TiO2 thin films were found to be under calcination temperature of 400, calcination time of 30 min, and with preparation 9 layers film.
The effect of heat treatment on superhydrophilicity of TiO2 nano thin films
NASA Astrophysics Data System (ADS)
Ashkarran, A. A.; Mohammadizadeh, M. R.
2007-11-01
TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.
Guo, Jing; Valdesueiro, David; Yuan, Shaojun; Liang, Bin; van Ommen, J. Ruud
2018-01-01
This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2) pigment powders by extremely thin aluminum oxide (Al2O3) films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA) and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development. PMID:29364840
Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.
Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H
2015-04-29
Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.
Surface-modified TiO2 powders with phenol derivatives: A comparative DFT and experimental study
NASA Astrophysics Data System (ADS)
Sredojević, Dušan N.; Kovač, Tijana; Džunuzović, Enis; Ðorđević, Vesna; Grgur, Branimir N.; Nedeljković, Jovan M.
2017-10-01
The charge transfer complex formation between TiO2 powder and variety of phenol derivatives (phenol, 4-nitrophenol, 4-bromophenol, 4-tert-butylphenol, hydroquinone) was achieved. The red-shift of optical absorption was observed upon surface modification of TiO2 powders with phenol derivatives. The influence of substituent functional groups in para position on the optical band gap and conduction band edge of inorganic/organic hybrids was studied using reflection spectroscopy and cyclic voltammetry. The experimental findings were supported by density functional theory calculations. The measured reflection spectra of surface-modified TiO2 powders with phenol derivatives were compared with calculated electronic excitation spectra of corresponding model systems.
Multivalent Mn-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.
2012-07-01
Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.
Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung
2008-05-01
Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.
Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds
NASA Astrophysics Data System (ADS)
Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh
2016-02-01
A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.
NASA Astrophysics Data System (ADS)
Seeley, Zachary Mark
Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average of the layers; however, electrical and gas response studies revealed that the majority of the conductivity and gas-surface reactions took place on the outer layer of the film. Further research is necessary to understand the influence of p-n junctions on the gas sensing behavior.
Ochsenbein, Anne; Chai, Feng; Winter, Stefan; Traisnel, Michel; Breme, Jürgen; Hildebrand, Hartmut F
2008-09-01
In order to improve the osseointegration of endosseous implants made from titanium, the structure and composition of the surface were modified. Mirror-polished commercially pure (cp) titanium substrates were coated by the sol-gel process with different oxides: TiO(2), SiO(2), Nb(2)O(5) and SiO(2)-TiO(2). The coatings were physically and biologically characterized. Infrared spectroscopy confirmed the absence of organic residues. Ellipsometry determined the thickness of layers to be approximately 100nm. High resolution scanning electron microscopy (SEM) and atomice force microscopy revealed a nanoporous structure in the TiO(2) and Nb(2)O(5) layers, whereas the SiO(2) and SiO(2)-TiO(2) layers appeared almost smooth. The R(a) values, as determined by white-light interferometry, ranged from 20 to 50nm. The surface energy determined by the sessile-drop contact angle method revealed the highest polar component for SiO(2) (30.7mJm(-2)) and the lowest for cp-Ti and 316L stainless steel (6.7mJm(-2)). Cytocompatibility of the oxide layers was investigated with MC3T3-E1 osteoblasts in vitro (proliferation, vitality, morphology and cytochemical/immunolabelling of actin and vinculin). Higher cell proliferation rates were found in SiO(2)-TiO(2) and TiO(2), and lower in Nb(2)O(5) and SiO(2); whereas the vitality rates increased for cp-Ti and Nb(2)O(5). Cytochemical assays showed that all substrates induced a normal cytoskeleton and well-developed focal adhesion contacts. SEM revealed good cell attachment for all coating layers. In conclusion, the sol-gel-derived oxide layers were thin, pure and nanostructured; consequent different osteoblast responses to those coatings are explained by the mutual action and coadjustment of different interrelated surface parameters.
NASA Astrophysics Data System (ADS)
Islam, Syed Z.; Wanninayake, Namal; Reed, Allen D.; Kim, Doo-Young; Rankin, Stephen E.
2016-10-01
The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, we prepared ordered mesoporous TiO2 films co-modified by graphene quantum dot sensitization and nitrogen doping (GQD-N-TiO2) for hydrogen production from photoelectrochemical water splitting under visible light irradiation. First, cubic ordered mesoporous TiO2 films were prepared by a surfactant templated sol-gel method. Then, TiO2 films were treated with N2/Ar plasma for the incorporation of substitutional N atoms into the lattice of TiO2. GQDs were prepared by chemically oxidizing carbon nano-onions. The immobilization of GQDs was accomplished by reacting carboxyl groups of GQDs with amine groups of N-TiO2 developed by the prior immobilization of (3-aminopropyl)triethoxysilane (APTES). Successful immobilization of GQDs onto N-TiO2 was probed by UV-Vis, FT-IR, and scanning electron microscopy. Further, zeta potential and contact angle measurements showed enhanced surface charge and hydrophilicity, confirming the successful immobilization of GQDs. The GQD-N-TiO2, N-TiO2 and GQD-TiO2 films showed 400 times, 130 times and 8 times photocurrent enhancement, respectively, compared to TiO2 films for water splitting with a halogen bulb light source. This outstanding enhancement is attributed to the high surface area of mesoporous films and synergistic effects of nitrogen doping and GQD sensitization resulting in enhanced visible light absorption, efficient charge separation and transport.
NASA Astrophysics Data System (ADS)
Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi
2018-04-01
The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.
NASA Astrophysics Data System (ADS)
Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.
2007-06-01
Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.
Structural and optical properties of glancing angle deposited TiO2 nanowires array.
Chinnamuthu, P; Mondal, A; Singh, N K; Dhar, J C; Das, S K; Chattopadhyay, K K
2012-08-01
TiO2 nanowires (NWs) have been synthesized by glancing angle deposition technique using e-beam evaporator. The average length 490 nm and diameter 80 nm of NWs were examined by field emission-scanning electron microscopy. Transmission electron microscopy emphasized that the NWs were widely dispersed at the top. X-ray diffraction has been carried out on the TiO2 thin film (TF) and NW array. A small blue shift of 0.03 eV was observed in Photoluminescence (PL) main band emission for TiO2 NW as compared to TiO2 TF. The high temperature annealing at 980 degrees C partially removed the oxygen vacancy from the sample, which was investigated by PL and optical absorption measurements.
NASA Astrophysics Data System (ADS)
Zhang, Lujie; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing
2017-11-01
In this study, using an atmospheric pressure air plasma jet generated by a dielectric barrier structure with hollow electrodes (HEDBS), we developed an ultrafast process for spraying TiO2 self-cleaning films inside tubular substrates. Importantly, SEM images showed that the TiO2 particles were dispersed evenly in the tubular substrates. Furthermore, Raman and XRD pattern indicated the anatase structure of the HEDBS-spayed TiO2 coating after heating at 270 °C. Further results of the self cleaning test suggested that the proposed cost- and time-saving HEDBS approach with air working gas could provide a feasible way for synthesizing thin TiO2 nanofilms.
NASA Astrophysics Data System (ADS)
Cheng, Zhenxiang; Kannan, Chinna Venkatasamy; Ozawa, Kiyoshi; Kimura, Hideo; Wang, Xiaolin
2006-07-01
Samarium doped bismuth titanate thin films with the composition of Bi3.25Sm0.75Ti3O12 and with strong preferred orientations along the c axis and the (117) direction were fabricated on Pt /TiO2/SiO2/Si substrate by pulsed laser ablation. Measurements on Pt /BSmT/Pt capacitors showed that the c-axis oriented film had a small remanent polarization (2Pr) of 5μC/cm2, while the highly (117) oriented film showed a 2Pr value of 54μC/cm2 at an electrical field of 268kV/cm and a coercive field Ec of 89kV/cm. This is different from the sol-gel derived c-axis oriented Bi3.15Sm0.85Ti3O12 film showing a 2Pr value of 49μC/cm2.
NASA Astrophysics Data System (ADS)
Nakano, Takuma; Yazawa, Shota; Araki, Shota; Kogoshi, Sumio; Katayama, Noboru; Kudo, Yusuke; Nakanishi, Tetsuya
2015-01-01
Oxygen-deficient TiO2 (TiO2-x) has been proposed as a visible-light-responsive photocatalyst. TiO2-x thin films were prepared by Ar/H2 plasma surface treatment, applying varying levels of microwave input power and processing times. The highest visible light photocatalytic activity was observed when using an input power of 200 W, a plasma processing time of 10 min, and a 1:1 \\text{Ar}:\\text{H}2 ratio, conditions that generate an electron temperature of 5.7(±1.0) eV and an electron density of 8.5 × 1010 cm-3. The maximum formaldehyde (HCHO) removal rate of the TiO2-x film was 2.6 times higher than that obtained from a TiO2-xNx film under the same test conditions.
The fabrication of visible light responsive Ag-SiO2 co-doped TiO2 thin films by the sol-gel method
NASA Astrophysics Data System (ADS)
Dam Le, Duy; Dung Dang, Thi My; Thang Chau, Vinh; Chien Dang, Mau
2010-03-01
In this study we have successfully deposited Ag-SiO2 co-doped TiO2 thin films on glass substrates by the sol-gel method. After being coated by a dip coating method, the film was transparent, smooth and had strong adhesion on the glass surface. The deposited film was characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), a scanning electron microscope (SEM) and atomic force microscope (AFM) to investigate its crystallization, transmittance and surface structure. The antifogging ability is explained by the contact angle of water on the surface of the glass substrates under visible-light. The obtained results show that Ag-SiO2 co-doped TiO2 film has potential applications for self cleaning and anti-bacterial ceramic tiles.
Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films
NASA Astrophysics Data System (ADS)
Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang
2018-04-01
In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.
Bourgeois, Briley; Luo, Sijun; Riggs, Brian; Ji, Yaping; Adireddy, Shiva; Schroder, Kurt; Farnsworth, Stan; Chrisey, Douglas; Escarra, Matthew
2018-08-03
This work reports a new technique for scalable and low-temperature processing of nanostructured TiO 2 thin films, allowing for practical manufacturing of TiO 2 -based devices such as perovskite solar cells at low-temperature or on flexible substrates. Dual layers of dense and mesoporous TiO 2 /graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J cm -2 ) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 and 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 ± 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO 2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 ± 1.11 Ω/□ and 28.90 ± 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO 2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO 2 while offering the distinct advantages of scalable manufacturing, low-temperature processing, simultaneous bilayer fabrication, and in situ formation of removable carbon nanocomposites.
Titanium dioxide thin films by atomic layer deposition: a review
NASA Astrophysics Data System (ADS)
Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit
2017-09-01
Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.
NASA Astrophysics Data System (ADS)
Weisenbach, Lori Ann
An experimental study of the processing and attenuation characteristics of solution derived, thin film, planar waveguides was made. In this study, the densification and attenuation characteristics of a variety of compositions were compared. To insure that the effects measured reflected compositional differences and not processing artifacts, guidelines for the reproducible fabrication of optical quality layers, irrespective of composition, were established. A broad range of compositions were prepared and an effort was made to keep the various solution syntheses as simple and similar as possible. The densification and attenuation of binary SiO _2-TiO_2 compositions was measured, then compared to the densification and attenuation of SiO_2-TiO_2 -R_{rm x}O _{rm y} (where R = Al or Zn) ternary compositions. Film densification was not strongly dependent upon composition, and was successfully modelled using the Lorentz-Lorenz relation, assuming the open volume in the undensified films were filled with adsorbed water. The attenuation measured at 632.8 nm did not vary with composition, except for the Zn ternary samples. Waveguides with losses of <1dB/cm could be fabricated from all other compositions. Waveguide attenuation was measured for films of different thickness, and compared to modelled predictions. The attenuation increased as layer thickness decreased, suggesting the predominance of the surface scattering contribution. To confirm that absorption losses were negligible, the wavelength dependence of the waveguides was measured. The wavelength dependence varied with composition, suggesting the absorption varied with composition. Possible mechanisms of absorption in the waveguides were discussed; the interaction of the atmosphere with the film structure is proposed as the cause of the deterioration. Film development for the binary SiO_2 -TiO_2 films was also studied as a function of increased firing time at 500^ circC. Multiple firings at 500^ circC increased the film density and the resistance to deterioration, but also increased the surface roughness of the films. Increased surface roughness, increased the scattering losses measured for the guide. The application of solution derived thin films was demonstrated with the successful fabrication of a novel optical device. The fabrication of the Single Leakage -Channel Grating Coupler illustrated specific design tolerances could be met and the resulting device performance near the theoretical maximum.
Photoinduced underwater superoleophobicity of TiO2 thin films.
Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro
2013-06-11
The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter.
Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.
Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin
2010-05-01
Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.
Increased manufacture of TiO2 nano-products has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO2 nanoparticles derived from consumer products as opposed to industrial TiO...
Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2
NASA Astrophysics Data System (ADS)
Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan
2016-07-01
Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.
NASA Astrophysics Data System (ADS)
Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng
2016-01-01
Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.
NASA Astrophysics Data System (ADS)
Ahmad, M. K.; Rusop, M.
2009-06-01
Nanostructured Titanium Dioxide (TiO2) thin film with various sol-gel concentration has been successfully prepared using sol-gel spin coating method. The sol-gel concentration of nanostructured TiO2 thin films are varied at 0.1 M, 0.2 M, 0.3 M and 0.4 M, respectively. The effects of different sol-gel concentration of nanostructured TiO2 thin film structural, electrical and optical properties have been studied. The effects of these properties were characterized using X-Ray Diffractometer (XRD), 2-point probe I-V measurement and UV-Vis-NIR Spectrophotometer. For electrical properties, 0.2 M of sol-gel concentration gives the lowest sheet resistance among other concentrated sol-gels. As for structural properties, 0.1 M of concentration gives very weak peak, and continues stronger as in comes to 0.2 M until 0.4 M. It is due to amount of solute (i.e Titanium Isopropoxide) increases in the solution and therefore the intensity of (101) planes become higher. The optical transmission in the visible region (450-1000 nm) for 0.1 M and 0.2 M are the highest (>80%), indicating that the films are transparent in the visible region. The transmission decreases sharply near the ultraviolet region due to the band gap absorption.
NASA Astrophysics Data System (ADS)
Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon
2018-02-01
In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.
NASA Astrophysics Data System (ADS)
Yakuphanoglu, Fahrettin
2012-06-01
Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10-6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10-7 S/m) and TiO2 thin film in air (5 × 10-9 S/m) and in vacuum (8.8 × 10-10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.
Sharmila, V Godvin; Dhanalakshmi, P; Rajesh Banu, J; Kavitha, S; Gunasekaran, M
2017-11-01
In the present study, the deflocculated sludge was disintegrated through thin layer immobilized titanium dioxide (TiO 2 ) as photocatalyst under solar irradiation. The deflocculation of sludge was carried out by 0.05g/g SS of sodium citrate aiming to facilitate more surface area for subsequent TiO 2 mediated disintegration. The proposed mode of disintegration was investigated by varying TiO 2 dosage, pH and time. The maximum COD solubilization of 18.4% was obtained in the optimum 0.4g/L of TiO 2 dosage with 5.5 pH and exposure time of 40min. Anaerobic assay of disintegrated samples confirms the role of deflocculation as methane yield was found to be higher in deflocculated (235.6mL/gVS) than the flocculated sludge (146.8mL/gVS). Moreover, the proposed method (Net cost for control - Net cost for deflocculation) saves sludge management cost of about $132 with 53.8% of suspended solids (SS) reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vishwas, M; Narasimha Rao, K; Chakradhar, R P S
2012-12-01
Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Lei; Xiao, Dingquan; Lin, Dunmin; Zhang, Yongbin; Zhu, Jianguo
2009-02-01
Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 (BNKLT) thin films were prepared on Pt/Ti/SiO 2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Kar, Asit Kumar
2018-02-01
Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.
NASA Astrophysics Data System (ADS)
Liu, Wenwu; Zhang, Huanyu; Wang, Hui-gang; Zhang, Mei; Guo, Min
2017-11-01
Ti-mesh supported TiO2 nanowire arrays (NWAs)/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles (UC-EY-TiO2 NPs) composite structured photoanodes for fully flexible dye sensitized solar cells (DSSCs) were firstly constructed via a hydrothermal and spin coating process. UV-vis-NIR absorption spectra of the TiO2 NWAs/UC-EY-TiO2 NPs composites exhibited strong absorption around near infrared (NIR) 980 nm. The composites excited by 980 nm NIR laser could emit upconversion fluorescence at 489, 526, 549 and 658 nm, which expanded the spectral response range and sunlight capturing capability of formed flexible DSSCs. Moreover, the TiO2 NWAs/UC-EY-TiO2 NPs was coated with an Nb2O5 thin layer to further suppress electron recombination losses. The complete flexible DSSCs based on Nb2O5 coated TiO2 NWAs/2.0 mol% Er3+-1.0 mol% Yb3+ codoped TiO2 NPs photoanode and Pt/ITO-PEN counter electrode exhibited an enhanced photon to current conversion efficiency of 8.10%, a 68% improvement compared to TiO2 NWAs/undoped TiO2 NPs based DSSCs (4.82%).
Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan
2018-04-04
The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.
NASA Astrophysics Data System (ADS)
Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai
2017-01-01
Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.
High-fraction brookite films from amorphous precursors.
Haggerty, James E S; Schelhas, Laura T; Kitchaev, Daniil A; Mangum, John S; Garten, Lauren M; Sun, Wenhao; Stone, Kevin H; Perkins, John D; Toney, Michael F; Ceder, Gerbrand; Ginley, David S; Gorman, Brian P; Tate, Janet
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2 , where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2 , a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.
A micro oxygen sensor based on a nano sol-gel TiO2 thin film.
Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong
2014-09-03
An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10(-4) and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.
NASA Astrophysics Data System (ADS)
Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.
2018-02-01
The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.
Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor
2017-04-01
In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei
2015-07-01
In this study, three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth are synthesized by a combination of the hydrothermal method for ZnO nanorods and a subsequent SnO2 and TiO2 thin film coating with atomic layer deposition (ALD). The as-prepared SnO2@TiO2 double-shell nanotubes are further tested as a flexible anode for Li ion batteries. The SnO2@TiO2 double-shell nanotubes/carbon cloth electrode exhibited a high initial discharge capacity (e.g. 778.8 mA h g-1 at a high current density of 780 mA g-1) and good cycling performance, which could be attributed to the 3D double-layer nanotube structure. The interior space of the stable TiO2 hollow tube can accommodate the large internal stress caused by volume expansion of SnO2 and protect SnO2 from pulverization and exfoliation.
Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.
Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A
2012-09-01
We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.
Photocatalytic production of hydrogen from fixed titanium dioxide thin film
NASA Astrophysics Data System (ADS)
Okoye, Njideka Helen
This thesis is focused on further developing of an efficient method for the photocatalytic hydrogen production. The research aimed to use thin films deposited with TiO2 and doped with Pt in order to substitute slurry solutions that are currently being used. A new depositing experimental approach to manufacture the thin films was proposed and tested for both physical properties and chemical reactivity. Therefore, the experiment was designed into two parts: The first part was on the manufacturing and the physical characterization of titanium dioxide deposited on glass surfaces and the second part was focused on the ability of the thin film to produce hydrogen. For the second part, a photochemical reactor vessel was used to properly place the glass slides to UV-irradiation. This was yielded by a mercury lamp located at the centre of the reactor. The thesis is organized into five different chapters including introduction, literature review, characterization of TiO2 coated surface, experimental design and hydrogen production, finally conclusive observations and future work. Hydrogen production by photodecomposition of water into H2 and O2 has a very low efficiency due to rapid reverse reaction and, as mentioned above, it usually requires a slurry type of solution. This needs additional processing steps such as filtration and recycling of particles. Therefore, it is important to develop an efficient process for hydrogen production. TiO2 coated surfaces could be an excellent technological alternative. In this study, a sol-gel method was used to produce a transparent TiO 2 thin film which was deposited on a glass substrate by using a new coating technique introduced in this work for H2 production. The TiO2 deposited film on a glass substrate by using the spraying method of coating was characterized for physical analysis (surface characteristics, size of nanoparticles and distribution, etc.) by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UV-Visible optical fiber spectrophotometer. Platinum was deposited on the coated thin film by adsorption from aqueous solutions containing Na 2PtCl4 followed by calcination at 500o C. The chemical reactivity of the new coated thin film for H2 production was tested by examining the effect of different ethanol concentrations and surface area available to hydrogen production rate by using a mercury lamp in a bench scale photo reactor with ethanol and water as the reactants. It was observed over a period of two hr interval that increase in ethanol concentration investigated in this work showed substantial increase in the hydrogen production rate as well as when increasing the surface area.
Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S
2011-12-01
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.
2014-01-01
This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements. PMID:25313302
Hajjaji, Anouar; Trabelsi, Khaled; Atyaoui, Atef; Gaidi, Mounir; Bousselmi, Latifa; Bessais, Brahim; El Khakani, My Ali
2014-01-01
This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements.
Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries
NASA Astrophysics Data System (ADS)
Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae
Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.
NASA Astrophysics Data System (ADS)
Sahu, Vikas Kumar; Das, Amit K.; Ajimsha, R. S.; Misra, P.
2018-05-01
The transient characteristics of resistive switching processes have been investigated in TiO2 thin films grown by atomic layer deposition (ALD) to study the temporal evolution of the switching processes and measure the switching times. The reset and set switching times of unipolar Au/TiO2/Pt devices were found to be ~250 µs and 180 ns, respectively in the voltage windows of 0.5–0.9 V for reset and 1.9–4.8 V for set switching processes, obtained from quasi-static measurements. The reset switching time decreased exponentially with increasing amplitude of applied reset voltage pulse, while the set switching time remained insensitive to the amplitude of the set voltage pulse. A fast reset process with a switching time of ~400 ns was achieved by applying a reset voltage of ~1.8 V, higher than that of the quasi-static reset voltage window but below the set voltage window. The sluggish reset process in TiO2 thin film and the dependence of the reset switching time on the amplitude of the applied voltage pulse was understood on the basis of a self-accelerated thermal dissolution model of conducting filaments (CFs), where a higher temperature of the CFs owing to enhanced Joule heating at a higher applied voltage imposes faster diffusion of oxygen vacancies, resulting in a shorter reset switching time. Our results clearly indicate that fast resistive switching with switching times in hundreds of nanoseconds can be achieved in ALD-grown TiO2 thin films. This may find applications in fast non-volatile unipolar resistive switching memories.
NASA Astrophysics Data System (ADS)
Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana
2016-07-01
In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.
Colmenares, Juan Carlos; Nair, Vaishakh; Kuna, Ewelina; Łomot, Dariusz
2018-03-01
Formation of thin layers of photocatalyst in photo-microreactor is a challenging work considering the properties of both catalyst and the microchannel material. The deposition of semiconductor materials on fluoropolymer based microcapillary requires the use of economical methods which are also less energy dependent. The current work introduces a new method for depositing nanoparticles of TiO 2 on the inner walls of a hexafluoropropylene tetrafluoroethylene microtube under mild conditions using ultrasound technique. During the ultrasonication process, changes in the polymer surface were observed and characterized using Attenuated Total Reflectance spectroscopy, Scanning Electron Microscopy and Confocal Microscopy. The rough patches form sites for catalyst deposition resulting in the formation of thin layer of TiO 2 nanoparticles in the inner walls of the microtube. The photocatalytic activity of the TiO 2 coated fluoropolymer based microcapillary was evaluated for removal of phenol present in water. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sutanto, Heri; Nurhasanah, Iis; Hidayanto, Eko; Wibowo, Singgih; Hadiyanto
2015-12-01
In this work, (ZnO)x:(TiO2)1-x nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol-gel spray coating technique onto glass substrate. Pure TiO2 and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO2 and ZnO:TiO2 thin films at different composition have been investigated. Ultraviolet - Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO2 on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.
The role of surface oxides on hydrogen sorption kinetics in titanium thin films
NASA Astrophysics Data System (ADS)
Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido
2018-05-01
Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.
Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming
2017-02-01
Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.
NASA Astrophysics Data System (ADS)
Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon
2018-03-01
We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.
NASA Astrophysics Data System (ADS)
Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon
2018-05-01
We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.
Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa
2017-01-01
Pure TiO2, Y-N single-doped and codoped TiO2 powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO2 was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms. PMID:28772962
Fabrication of a pure TiO2 thin film using a self-polymeric titania nano-sol and its properties.
Park, Won-Kyu; Song, Jeong-Hwan; Kim, Soo-Ryong; Kim, Tae-Hyun; Iwasaki, Mitusnobo
2012-02-01
A pure TiO2 thin film without adding any organic binder was fabricated by using a self-polymeric titania nano-sol (14 mass%), which was prepared by the acid peptization method. The particle size distribution in the 14 mass% TiO2 sol, in which almost of particles had a size below 10.2 nm and the crystal phase confirmed by X-ray diffraction analysis was anatase. The diluted nano-sol had a capability to form a thin film at a low temperature (100-400 degrees C) on the slide glass by dipping method. The average thickness of a coating film was measured to be about 0.25-0.30 microm. A coated film had a high refractive index over 1.88 at least irrespective of the heat-treatment even at room temperature drying and showed a super-hydrophilicity (< 5 degrees) after 20 minutes under Ultra Violet light irradiation, and it sustained in the darkness during a long period over 7 days depending on the heat-treatment conditions. Atomic Force Microscopic observation shows that the morphology of a heat-treated film had a relationship with the long-term hydrophilicity in the darkness.
Photoelectronic Sensor with Gold Nanoparticle Plasmon Antenna
2016-07-20
on glass substrate, GNP is absorbed on the film. After removing outer protein by UV ozone, TiO2 is deposited again and annealed. As optical... SiO2 Thin Films by CO2 Laser Annealing for Polycrystalline Silicon Thin Film Transistors”, AMD8-3L, The International Display Workshops Volume 21
Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2014-04-23
The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.
NASA Astrophysics Data System (ADS)
Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi; Liu, Bin; Cao, Baocheng
2014-08-01
In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO2 thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.
Liang, Yuan-Chang; Xu, Nian-Cih; Wang, Chein-Chung; Wei, Da-Hua
2017-07-10
TiO₂-CdO composite rods were synthesized through a hydrothermal method and sputtering thin-film deposition. The hydrothermally derived TiO₂ rods exhibited a rectangular cross-sectional crystal feature with a smooth surface, and the as-synthesized CdO thin film exhibited a rounded granular surface feature. Structural analyses revealed that the CdO thin film sputtered onto the surfaces of the TiO₂ rods formed a discontinuous shell layer comprising many island-like CdO crystallites. The TiO₂-CdO composite rods were highly crystalline, and their surfaces were rugged. A comparison of the NO₂ gas-sensing properties of the CdO thin film, TiO₂ rods, and TiO₂-CdO composite rods revealed that the composite rods exhibited superior gas-sensing responses to NO₂ gas than did the CdO thin film and TiO 2 rods, which can be attributed to the microstructural differences and the formation of heterojunctions between the TiO₂ core and CdO crystallites.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul
2006-07-01
The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.
NASA Astrophysics Data System (ADS)
Hurain, Syyeda Sana; Habib, Amir; Hussain, Syed Muzammil; Ul-Haq, Noaman
2015-11-01
Nanosized titania (TiO2) films and powders were prepared from titanium isopropoxide by ultrasonication then ultrasonic aerosol-assisted chemical vapor deposition (UAACVD). X-ray diffraction (XRD), used to study the crystal structure, phase, and crystallite size of TiO2 samples annealed at 500°C, revealed anatase was the main crystalline phase. Scanning electron microscopy and atomic force microscopy revealed the quasi-spherical morphology of the TiO2 nanoparticles; average size distribution was in the range 20-35 nm. Ultraviolet-visible spectroscopy was used to evaluate the photocatalytic activity of the anatase TiO2, on the basis of efficiency of degradation of β-naphthol. Pure TiO2 nanoparticles synthesized by use of sonication-UAACVD then calcination at 500°C enabled effective photodegradation under UV light. This method of synthesis of TiO2 is superior to the reflux-UAACVD method with titanium isopropoxide as precursor.
Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...
2016-08-18
Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less
Influence of TiO2(110) surface roughness on growth and stability of thin organic films.
Szajna, K; Kratzer, M; Wrana, D; Mennucci, C; Jany, B R; Buatier de Mongeot, F; Teichert, C; Krok, F
2016-10-14
We have investigated the growth and stability of molecular ultra-thin films, consisting of rod-like semiconducting para-hexaphenyl (6P) molecules vapor deposited on ion beam modified TiO 2 (110) surfaces. The ion bombarded TiO 2 (110) surfaces served as growth templates exhibiting nm-scale anisotropic ripple patterns with controllable parameters, like ripple depth and length. In turn, by varying the ripple depth one can tailor the average local slope angle and the local step density/terrace width of the stepped surface. Here, we distinguish three types of substrates: shallow, medium, and deep rippled surfaces. On these substrates, 6P sub-monolayer deposition was carried out in ultra-high vacuum by organic molecular beam evaporation (OMBE) at room temperature leading to the formation of islands consisting of upright standing 6P molecules, which could be imaged by scanning electron microscopy and atomic force microscopy (AFM). It has been found that the local slope and terrace width of the TiO 2 template strongly influences the stability of OMBE deposited 6P islands formed on the differently rippled substrates. This effect is demonstrated by means of tapping mode AFM, where an oscillating tip was used as a probe for testing the stability of the organic structures. We conclude that by increasing the local slope of the TiO 2 (110) surface the bonding strength between the nearest neighbor standing molecules is weakened due to the presence of vertical displacement in the molecular layer in correspondence to the TiO 2 atomic step height.
NASA Astrophysics Data System (ADS)
Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua
2016-04-01
P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m2 g-1) than that of Co0.85Se nanofilms (55.17 m2 g-1) and TiO2 nanoparticles (19.49 m2 g-1). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.
Fan, Chenyao; Chen, Chao; Wang, Jia; Fu, Xinxin; Ren, Zhimin; Qian, Guodong; Wang, Zhiyu
2015-01-01
The amorphous TiO2 derived from hydroxylation has become an effective approach for the enhancement of photocatalytic activity of TiO2 since a kind of special black TiO2 was prepared by engineering disordered layers on TiO2 nanocrystals via hydrogenation. In this contribution, we prepared totally amorphous TiO2 with various degrees of blackness by introducing hydroxyls via ultrasonic irradiation, through which can we remarkably enhance the photocatalytic activity of TiO2 with improved light harvesting and narrowed band gap. PMID:26133789
The structure and photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering
NASA Astrophysics Data System (ADS)
Yang, W. J.; Hsu, C. Y.; Liu, Y. W.; Hsu, R. Q.; Lu, T. W.; Hu, C. C.
2012-12-01
This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ˜ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.
NASA Astrophysics Data System (ADS)
Vargas, Mirella
Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement of the physio-chemical and optical properties. In the present case, WO3 and TiO2 composite films have been fabricated by reactive magnetron sputtering employing W/Ti alloy targets, and individual W and Ti targets for co-sputtering. Composite WO3-TiO2 films were fabricated with variable chemical composition and the effect of variable bulk chemistry on film structure, surface/interface chemistry and chemical valence state of the W and Ti cations was investigated in detail. The process-property relationships between composition and physical properties for the films deposited by using W/Ti alloy targets of variable Ti content are associated with decreases in the deposition rate of the WO3-TiO2 films due to the lower sputter yield of the strongly bonded TiO2 formed on the target surface. Additionally, for the co-sputtered films using variable tungsten power, the optical properties demonstrate unique optical modulation. The changes associated with the physical color of the films demonstrate the potential to tailor the optical behavior for the design and fabrication of multilayer photovoltaic and catalytic devices. The process-structure-property correlation derived in this work will provide a road-map to optimize and produce W-Ti-O thin films with desired properties for a given technological application.
Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film
Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...
We have developed a process that combines the use of surface corona for the production of ozone by passing air or oxygen through a high voltage electrical discharge and the emitted UV is being used to activate a photocatalyst. A thin film of nanostructured TiO2 with primary part...
Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik
2016-05-01
TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.
A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film
Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong
2014-01-01
An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required. PMID:25192312
Optical properties of rhodamine 6G-doped TiO2 sol-gel films
NASA Astrophysics Data System (ADS)
Tomás, S. A.; Stolik, S.; Palomino, R.; Lozada, R.; Persson, C.; Ahuja, R.; Pepe, I.; Ferreira da Silva, A.
2005-06-01
The optical properties of titania (TiO2) thin films prepared by the sol-gel process and doped with rhodamine 6G were studied by Photoacoustic Spectroscopy. Rhodamine 6G-doping was achieved by adding 0.01%, 0.02%, 0.05% y 0.1% mol rhodamine to a solution that contained titanium isopropoxide as precursor. Two absorption regions were distinguished in the absorption spectrum of a typical rhodamine 6G-doped TiO2 film. A shift of these bands occured as a function of rhodamine 6G-doping concentration. In addition, the optical absorption and band gap energy for rutile-phase TiO2 films were calculated employing the full-potential linearized augmented plane wave method. A comparison of these calculations with experimental data of TiO2 films prepared by sol-gel at room temperature was performed.
Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique
NASA Astrophysics Data System (ADS)
Suriani, S.; Kamisah, M. M.
2002-12-01
Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials. PMID:28904612
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells.
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Zentel, Rudolf
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO 2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO 2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.
High-fraction brookite films from amorphous precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggerty, James E. S.; Schelhas, Laura T.; Kitchaev, Daniil A.
2017-11-09
Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating themore » previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.« less
NASA Astrophysics Data System (ADS)
Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.
TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique
NASA Astrophysics Data System (ADS)
Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.
2018-06-01
Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.
NASA Astrophysics Data System (ADS)
Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu
2016-10-01
Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.
Electronic properties of Cr-N codoped rutile TiO2(110) thin films
NASA Astrophysics Data System (ADS)
Cheng, Zhengwang; Zhang, Lili; Dong, Shihui; Ma, Xiaochuan; Ju, Huanxin; Zhu, Junfa; Cui, Xuefeng; Zhao, Jin; Wang, Bing
2017-12-01
We report our investigation on the electronic properties of Cr-N codoped rutile TiO2(110) single crystal thin films, homoepitaxially grown by pulsed-laser-deposition method, and characterized using scanning tunneling microscopy and spectroscopy (STM/STS), X-ray/ultraviolet photoemission spectroscopy (XPS/UPS), in combination with first-principles calculations. Our results show that the bandgap reduction of the TiO2(110) surface is mainly contributed by the delocalized states whose position is at 2.0 eV below the Fermi level, introduced by the substitutional codoped Cr-2N pair, which is evidenced by the accordance of the results between the STS spectra and the calculated DOS. The codoped Cr-N pair contributes the gap state at about 0.8 eV below the Fermi level, in consistent with the theoretical calculations. While, the monodoped Cr contributes the states either close to the valence band maximum or the conduction band minimum, which should not contribute to the bandgap reduction too much. Our experimental results joint with theoretical calculations provide an atomic view of the bandgap reduction of the rutile TiO2(110) surface, which indicates that the excess substitutional N atoms should be important to efficiently narrow the bandgap by introducing the Cr-2N pairs.
Control of Interfacial Phenomena in Artificial Oxide Heterostructures
2015-09-01
heterostructures using the field effect to control superconductivity, magnetism, and metal‐insulator transitions. We also identify the existence of double TiO2 ...double TiO2 layers play a crucial role in determining the superconducting states of monolayer FeSe/SrTiO3. 15. SUBJECT TERMS Thin films, conductor...development of oxide‐based electronic devices. We also identify the existence of double TiO2 layers at the surface of SrTiO3 in the recently
Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst
NASA Astrophysics Data System (ADS)
Li, Juan; Zhang, Min; Li, Qiuye; Yang, Jianjun
2017-01-01
Direct contact Z-scheme g-C3N4-TiO2 nanocomposites without an electron mediator are prepared via simple annealing the mixture of bulk g-C3N4 and nanotube titanic acid (NTA) in air at 600 °C for 2 h. In the process of annealing, the bulk g-C3N4 transformed to ultra-thin g-C3N4 nanosheets, and NTA converted to a novel anatase TiO2, then the two components formed a close interaction. The XPS result reveals that some amount of nitrogen is doped into this novel-TiO2, and g-C3N4 nanosheets exist in the composites. The results of XRD, TEM and TG indicate that the thickness of g-C3N4 nanosheets is very thin. The ESR spectrum shows the existence of Ti3+ and single-electron-trapped oxygen vacancy in the 30%g-C3N4-TiO2 composites. In photocatalytic activity test, the 30%g-C3N4-TiO2 nanocomposites showed an excellent photo-oxidation activity of propylene under visible light irradiation (λ≥ 420 nm), and the removal efficiency of propylene reached as high as 56.6%, and the activity kept nearly 82% after four consecutive recycles. Photoluminescence (PL) result using terephthalic acid (TA) as a probe molecule indicated that the g-C3N4-TiO2 nanocomposites displayed a Z-sheme photocatalytic reaction system and this should be the main reason for the high photocatalytic activity. A possible photocatalytic mechanism was proposed on the basis of PL result and transient photocurrent-time curves.
2012-01-01
In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure. PMID:22546416
Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)
NASA Astrophysics Data System (ADS)
Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa
2017-01-01
This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.
NASA Astrophysics Data System (ADS)
Shen, Yu-Lin; Chen, Shih-Yun; Song, Jenn-Ming; Chen, In-Gann
2012-06-01
In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure.
NASA Astrophysics Data System (ADS)
Qin, Hongmei; Maruyama, Kyouhei; Amano, Tsukuru; Murakami, Takashi; Komatsu, Naoki
2016-10-01
We have been developing surface functionalization of various nanoparticles including nanodiamond and iron oxide nanoparticles in view of biomedical applications. In this context, TiO2 nanoparticles (TiO2 NP) are functionalized with polyglycerol (PG) to provide water-dispersible TiO2-PG, which is further derivatized through multi-step organic transformations. The resulting TiO2-PG and its derivatives are fully characterized by various analyses including solution-phase 1H and 13C NMR. TiO2-PG was size-tuned with centrifugation by changing the acceleration and duration. At last, no cytotoxicity of TiO2 NP, TiO2-PG, and TiO2-PG functionalized with RGD peptide was observed under dark conditions.
Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions
NASA Astrophysics Data System (ADS)
Feng, Qi
Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.
NASA Technical Reports Server (NTRS)
Gillis, J. J.; Jolliff, B. L.
2001-01-01
A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.
Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.
Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Nomoto, Toyokazu; Yagi, Shinya
2015-06-01
The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1⩽x⩽2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics
NASA Astrophysics Data System (ADS)
Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis
2017-05-01
Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.
Peralta-Hernández, J M; Manríquez, J; Meas-Vong, Y; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A
2007-08-17
Recent studies have shown that the light-absorption and photocatalytic efficiencies of TiO2 can be improved by coupling TiO2 nano-particles with nonmetallic dopants, such as carbon. In this paper, we describe the electrophoretic preparation of a novel TiO2-carbon nano-composite photocatalyst on a glass indium thin oxide (ITO) substrate. The objective is to take better advantage of the (e-/h+) pair generated by photoexcitation of semiconducting TiO2 particles. The transfer of electrons (e-) into adjacent carbon nano-particles promotes reduction of oxygen to produce hydrogen peroxide (H2O2) which, in the presence of iron ions, can subsequently form hydroxyl radicals (*OH) via the Fenton reaction. At the same time, *OH is formed from water by the (h+) holes in the TiO2. Thus, the *OH oxidant is produced by two routes. The efficiency of this photolytic-Fenton process was tested with a model organic compound, Orange-II (OG-II) azo dye, which is employed in the textile industry.
Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application
NASA Astrophysics Data System (ADS)
Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun
2011-03-01
TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yu; Liu, Bin; Lu, Junling
The effect of residue chlorine on the synthesis of well-dispersed Pd nanoparticles on TiO2 supports using Pd atomic layer deposition (ALD) was investigated. The dispersion of Pd nanoparticles was compared over chlorine-containing and chlorine-free TiO2 supports prepared by selecting proper precursors. The detailed X-ray photoelectron spectroscopy and scanning transmission electron microscopy characterizations showed that higher dispersion of Pd nanoparticles was achieved on the chlorine-containing TiO2 surface than the chlorine-free TiO2. The preparation of TiO2 thin films and Pd nanoparticles was characterized by in situ FT-IR. The temperature required for complete deligation of palladium hexafluoroacetylacetonate decreased from 175 to 100 degreesmore » C with the presence of chlorine on the TiO2 surface. Density functional theory calculations confirm that Pdligand bond strength could be weakened as Pd binds to the Cl sites. The water-gas-shift reaction was chosen as the model reaction, and the catalytic performance of the ALD Pd catalysts was discussed. Compared to reported catalysts, the Pd nanocatalysts supported by TiO2/SiO2 mixed oxides showed promising performance in the low-temperature water-gas-shift reaction.« less
NASA Astrophysics Data System (ADS)
Naghibi, Sanaz; Vahed, Shohreh; Torabi, Omid; Jamshidi, Amin; Golabgir, Mohammad Hossein
2015-02-01
Antibacterial properties of Fe-doped TiO2 thin films prepared on glass by the sol-gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.
Fabrication and characterization of TiO2/SiO2 based Bragg reflectors for light trapping applications
NASA Astrophysics Data System (ADS)
Dubey, R. S.; Ganesan, V.
Distributed Bragg reflectors (DBRs) have received an intensive attention due to their increasing demand in optoelectronic and photonic devices. Such reflectors are capable to prohibit the light propagation within the specified wavelength range of interest. In this paper, we present the fabrication of TiO2/SiO2 stacks based Bragg reflectors by using a simple and in-expensive sol-gel spin coating technique. The prepared single-layer thin films of TiO2 and SiO2 onto glass substrates were characterized for their optical constants. By tuning the process parameters, one-seven DBR stacks of TiO2/SiO2 were prepared. The corresponding shift of the Bragg reflection peak was observed with the increased number of DBR stacks and as much as about 90% reflectance is observed from the 7DBR stacks. The experimentally measured reflectance was compared with the simulated one, which showed good in agreement. FESEM measurement has confirmed the formation of bright and dark strips of TiO2 and SiO2 films with their thicknesses 80 and 115 nm respectively. The simulation study was explored to a design of thin film silicon solar cell using 7DBR stacks. An enhancement in light absorption in the visible wavelength range is observed which coincides with the experimental result of the reflectance. The use of DBR at the bottom of the solar cell could felicitate the better light harvesting with the occurrence of Fabry-Perot resonances in the absorbing layer.
Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won
2018-06-01
We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.
Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates
NASA Astrophysics Data System (ADS)
Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.
2009-12-01
In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.
TiO2 nanorods thin-films embedded with gold nanoparticles for enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Raval, Dhyey; Jani, Margi; Mukhopadhyay, Indrajit; Ray, Abhijit
2018-05-01
This article reports on the gold nanoparticle (Au-NP) induced absorption enhancement in the hydrothermally grown titanium dioxide nanorods (TiO2-NRs). The localized surface plasmon resonance (LSPR) and transfer of electron from Au-NPs attached to the TiO2-NR have been related to their photocatalytic response. The photocurrent enhancement observed in the studies of IPCE has been explained on the basis of electrons in the conduction band of TiO2-NR. The electrons from the Au-NP to the conduction band of TiO2-NR with respect to the wavelength of the incident spectrum shows an increase in efficiency over pristine TiO2-NRs sample. Further, to investigate the role of Au-NP, an absorption spectra with its incident wavelength shows an increase in the visible spectrum in the present study. This provides an explanation for the response to the absorption of the wide bandgap semiconductor oxide which gives an opportunity to develop a hybrid structure on the transparent substrates. The better response of Au-NPs/TiO2-NRs system can be used in photocatalytic processes.
Tunable growth of TiO2 nanostructures on Ti substrates
NASA Astrophysics Data System (ADS)
Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng
2005-10-01
A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.
A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2
NASA Astrophysics Data System (ADS)
Zanatta, A. R.
2017-07-01
Titanium-dioxide (TiO2) is a low-cost, chemically inert material that became the basis of many modern applications ranging from, for example, cosmetics to photovoltaics. TiO2 exists in three different crystal phases - Rutile, Anatase and, less commonly, Brookite - and, in most of the cases, the presence or relative amount of these phases are essential to decide the TiO2 final application and its related efficiency. Traditionally, X-ray diffraction has been chosen to study TiO2 and provides both the phases identification and the Rutile-to-Anatase ratio. Similar information can be achieved from Raman scattering spectroscopy that, additionally, is versatile and involves rather simple instrumentation. Motivated by these aspects this work took into account various TiO2 Rutile+Anatase powder mixtures and their corresponding Raman spectra. Essentially, the method described here was based upon the fact that the Rutile and Anatase crystal phases have distinctive phonon features, and therefore, the composition of the TiO2 mixtures can be readily assessed from their Raman spectra. The experimental results clearly demonstrate the suitability of Raman spectroscopy in estimating the concentration of Rutile or Anatase in TiO2 and is expected to influence the study of TiO2-related thin films, interfaces, systems with reduced dimensions, and devices like photocatalytic and solar cells.
Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact
NASA Astrophysics Data System (ADS)
Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.
2012-04-01
The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.
Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan
2015-01-01
Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.
NASA Astrophysics Data System (ADS)
Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong
2017-11-01
MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.
Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.
Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong
2018-02-01
In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.
Woo, Seouk-Hoon; Hwangbo, Chang Kwon
2006-03-01
Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.
Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John
2018-04-25
Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.
Ganesh, Ibram; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G.
2012-01-01
Different amounts of Ni-doped TiO2 (Ni = 0.1 to 10%) powders and thin films were prepared by following a conventional coprecipitation and sol-gel dip coating techniques, respectively, at 400 to 800°C, and were thoroughly characterized by means of XRD, FT-IR, FT-Raman, DRS, UV-visible, BET surface area, zeta potential, flat band potential, and photocurrent measurement techniques. Photocatalytic abilities of Ni-doped TiO2 powders were evaluated by means of methylene blue (MB) degradation reaction under simulated solar light. Characterization results suggest that as a dopant, Ni stabilizes TiO2 in the form of anatase phase, reduces its bandgap energy, and adjusts its flat band potentials such that this material can be employed for photoelectrochemical (PEC) oxidation of water reaction. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of Ni in TiO2. The kinetic studies revealed that the MB degradation reaction follows the Langmuir-Hinshelwood first-order reaction relationship. PMID:22619580
Room-Temperature Processing of TiOx Electron Transporting Layer for Perovskite Solar Cells.
Deng, Xiaoyu; Wilkes, George C; Chen, Alexander Z; Prasad, Narasimha S; Gupta, Mool C; Choi, Joshua J
2017-07-20
In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO 2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiO x layer that performs as well as the high temperature TiO 2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiO x is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO 2 . Flexible perovskite solar cells that employ a room-temperature TiO x layer with a power conversion efficiency of 14.3% are demonstrated.
NASA Astrophysics Data System (ADS)
Ye, Xiaoyun; Cai, Shuguang; Zheng, Chan; Xiao, Xueqing; Hua, Nengbin; Huang, Yanyi
2015-08-01
SiO2/TiO2/Ag core-shell multilayered microspheres were successfully synthesized by the combination of anatase of TiO2 modification on the surfaces of SiO2 spheres and subsequent Ag nanoparticles deposition and Ag shell growth with face-centered cubic (fcc) Ag. The composites were characterized by TEM, FT-IR, UV-vis, Raman spectroscopy and XRD, respectively. The infrared emissivity values during 8-14 μm wavelengths of the composites were measured. The results revealed that TiO2 thin layers with the thickness of ∼10 nm were coated onto the SiO2 spheres of ∼220 nm in diameter. The thickness of the TiO2 layers was controlled by varying the amount of TBOT precursor. Homogeneous Ag nanoparticles of ∼20 nm in size were successfully deposited by ultrasound on the surfaces of SiO2/TiO2 composites, followed by complete covering of Ag shell. The infrared emissivity value of the SiO2/TiO2 composites was decreased than that of pure SiO2. Moreover, the introduction of the Ag brought the remarkably lower infrared emissivity value of the SiO2/TiO2/Ag multilayered microspheres with the lowest value down to 0.424. Strong chemical effects in the interface of SiO2/TiO2 core-shell composites and high reflection performance of the metal Ag are two decisive factors for the improved infrared radiation performance of the SiO2/TiO2/Ag multilayered microspheres.
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Nayak, J.
2018-05-01
Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.
Structure and optical properties of TiO2 thin films deposited by ALD method
NASA Astrophysics Data System (ADS)
Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz
2017-12-01
This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.
Ingrosso, Chiara; Curri, M Lucia; Fini, Paola; Giancane, Gabriele; Agostiano, Angela; Valli, Ludovico
2009-09-01
This article reports on an extensive investigation on a functionalized phthalocyanine, namely, copper(II) tetrakis-(isopropoxy-carbonyl)-phthalocyanine (TIPCuPc). The self-association of the molecules is extensively described in solution in different solvents (DMSO, DMF, CHCl(3), pyridine) by means of UV-vis steady state spectroscopy at the air/water interface by Brewster angle microscopy (BAM) and in thin films by using atomic force microscopy (AFM). We investigated the morphology of TIPCuPc as thin film by evaluating different factors: temperature, solvent, concentration, transferring procedure (spin-coating and Langmuir-Schafer technique), and nature of the substrate (mica and quartz). The behavior of the molecules under UV light irradiation and their thermal stability were studied as well. Such a detailed study can allow a suitable processing of this phthalocyanine derivative for future applications. Here the photoelectrochemical activity of the phthalocyanine was investigated when suitably combined as sensitizer with rodlike TiO(2) nanocrystals (NCs) in hybrid junctions integrated in a photoelectrochemical cell.
Development of mirrors for precision laser gyros
NASA Astrophysics Data System (ADS)
Schmitt, Dirk-Roger
1987-11-01
Substrate polishing and interference-layer deposition techniques for the preparation of laser-gyro mirrors to operate at laser wavelength 633 nm and incidence angle 30 deg are investigated experimentally. The importance of high reflectivity and low backscatter for accurate laser-gyro angular-velocity measurement is explained, and the methods used to measure these parameters are outlined. Results for uncoated quartz glass, Zerodur, and Si monocrystal; thin Ag layers; alternate layers of SiO2 and TiO2, and Ag with a thin layer of SiO2 are presented in graphs and micrographs and characterized in detail. It is predicted that further improvements in polishing, the use of ion-beam deposition techniques, and perhaps the replacement of TiO2 with Ta2O5 will give mirrors with lower backscatter values.
NASA Astrophysics Data System (ADS)
Jilavi, M. H.; Mousavi, S. H.; Müller, T. S.; de Oliveira, P. W.
2018-05-01
Anti-reflection and photocatalytic properties are desirable for improving the optical properties of electronic devices. We describe a method of fabrication a single-layer, anti-reflective (AR) thin film with an additional photocatalytic property. The layer is deposited on glass substrates by means of a low-cost dip-coating method using a SiO2-TiO2 solution. A comparative study was undertaken to investigate the effects of TiO2 concentrations on the photocatalytic properties of the film and to determine the optimal balance between transmittance and photocatalysis. The average transmittance increases from T = 90.51% to T = 95.46 ± 0.07% for the wavelengths between 380 and 1200 nm. The structural characterization indicated the formation of thin, porous SiO2-TiO2 films with a roughness of less than 7.5 nm. The quality of the samples was evaluated by a complete test program of the mechanical, chemical and accelerated weathering stability. This results open up new possibilities for cost-effective AR coatings for the glass and solar cell industries.
A blue optical filter for narrow-band imaging in endoscopic capsules
NASA Astrophysics Data System (ADS)
Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.
2014-05-01
This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.
TiO2 fotokatalyse in de gasfase van morfologisch ontwerp tot plasmoneffecten
NASA Astrophysics Data System (ADS)
Verbruggen, Sammy
In this PhD TiO2 gas phase photocatalysis is investigated in all its facets. Work has been done on the level of the reactor as well as the catalyst and structural as well as electronic improvements have been proposed. Apart from actual experiments, also theoretical models and a techno-economic assessment have been carried out. The first main achievement is the development of a cost and material-efficient immobilization method and testing procedure. The design, based on glass bead supports packed around a lamp in a cylindrical glass reactor tube, offers the advantages of good immobilization, efficient light utilization, intimate contact with gaseous pollutants and a catalyst weight gain by a factor of 25 compared to self-supporting pellets. The reactor is used for performing a cost effectiveness analysis on six different commercial photocatalytic materials. The second achievement is the fundamental insight that is gathered in the driving factors for gas phase photocatalytic reactions. Structural properties such as large surface area and accessible pores seem to dominate over electronic properties. This knowledge is exploited in the development of well-immobilized, spacious T1O2 thin films. These films are prepared by depositing a thin, conformal TiO2 layer onto sacrificial carbonaceous templates by means of atomic layer deposition. After calcination, the sacrificial template is removed, TiO2 is crystallized into the anatase phase and the as-deposited continuous TiO2 layer has transformed into an interconnected network of nanoparticles. This way open thin films are prepared with surface area enhancement factors of up to 260 with regard to a dense, flat TiO 2 film. Thus obtained films exhibit superior photocatalytic activity compared to a commercial reference film. The final achievement is the extension of TiO2 photoactivity toward the visible light region of the spectrum. This is done by exploiting surface plasmon resonance effects of gold-silver alloy nanoparticles. Surface plasmon resonance can be regarded as a collective oscillation of free electrons in a metal. This way incident (visible) light energy can be 'captured' in the resonance and subsequently transferred to T1O2. First, a theoretical model is established that enables to predict the plasmon resonance wavelength of such alloy nanoparticles, based on the combined effect of particle size and alloy composition. It is shown that the feature of alloying presents high wavelength tunability of the visible light response. Next, alloy nanoparticles are deposited on TiO2. Thus obtained plasmonic photocatalysts are tested towards their self-cleaning performance in the degradation of stearic acid located at the catalyst-air interface. The highest quantum efficiency is obtained when the resonance wavelength of the plasmonic catalyst exactly matches that of the incident light. This is demonstrated for the case of Au 0.3Ag0.7, nanoparticles on TiO2 under 490 nm illumination, provided by LEDs.
NASA Astrophysics Data System (ADS)
Ye, Fei; Li, Houfen; Yu, Hongtao; Chen, Shuo; Quan, Xie
2017-12-01
Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS2 nanosheets. As a result, the thickness of the prepared MoS2 nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H2 evolution rate of 897.5 μmol h-1 g-1, which is nearly twice as much as free-stand MoS2 nanosheets and twenty times more than physical mixture of MoS2 with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO2 are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER.
Galletti, Andrea; Seo, Seokju; Joo, Sung Hee; Su, Chunming; Blackwelder, Pat
2016-10-01
Increased manufacture of TiO 2 nanoproducts has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO 2 nanoparticles derived from consumer products as opposed to industrial TiO 2 NPs warrant examination in exploring the significance of their release and resultant impacts on the environment. To this end, we examined the significance of the release of these particles and their toxic effect on the marine diatom algae Thalassiosira pseudonana. Our results indicate that nano-TiO 2 sunscreen and toothpaste exhibit more toxicity in comparison to industrial TiO 2 and inhibited the growth of the marine diatom T. pseudonana. This inhibition was proportional to the exposure time and concentrations of nano-TiO 2 . Our findings indicate a significant effect, and therefore, further research is warranted in evaluation and assessment of the toxicity of modified nano-TiO 2 derived from consumer products and their physicochemical properties.
Effects of titanium dioxide nanoparticles derived from ...
Increased manufacture of TiO2 nano-products has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO2 nanoparticles derived from consumer products as opposed to industrial TiO2 NPs warrants examination in exploring the significance of their release and resultant impacts on the environment. To this end we examined the significance of the release of these particles and their toxic effect on the marine diatom algae Thalassiosira pseudonana. Our results indicate that nano-TiO2 sunscreen and toothpaste exhibit more toxicity in comparison to industrial TiO2, and inhibited the growth of the marine diatom Thalassiosira pseudonana. This inhibition was proportional to the exposure time and concentrations of nano-TiO2. Our findings indicate a significant effect, and therefore further research is warranted in evaluation and assessment of the toxicity of modified nano-TiO2 derived from consumer products and their physicochemical properties. Submit to journal Environmental Science and Pollution Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.
Here, we investigate the growth phase diagram of pseudobrookite Fe 2TiO 5 epitaxial thin films on LaAlO 3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20–80 Ω cm, which are significantly lower than α-Fe 2O 3, making Fe 2TiO 5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe 2TiO 5 in oxide heterostructures for photocatalytic and photoelectrochemicalmore » applications.« less
A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays
NASA Astrophysics Data System (ADS)
Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.
2012-03-01
A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.
NASA Astrophysics Data System (ADS)
Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu
2018-02-01
Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.
Photocatalytic degradation of polystyrene plastic under fluorescent light.
Shang, Jing; Chai, Ming; Zhu, Yongfa
2003-10-01
Plastic is used widely all over the world, due to the fact that it is low cost, is easily processable, and has lightweight properties. However, the hazard of discarding waste plastic, so-called "white pollution", is becoming more and more severe. In this paper, solid-phase photocatalytic degradation of polystyrene (PS) plastic, one of the most common commercial plastics, over copper phthalocyanine (CuPc) sensitized TiO2 photocatalyst (TiO2/CuPc) has been investigated under fluorescent light irradiation in the air. UV-vis spectra show that TiO2/CuPc extends its photoresponse range to visible light, contrasting to only UV light absorption of pure TiO2. The PS photodegradation experiments exhibit that higher PS weight loss rate, lower PS average molecular weight, less amount of volatile organic compounds, and more CO2 can be obtained in the system of PS-(TiO2/CuPc), in comparison with the PS-TiO2 system. Therefore, PS photodegradation over TiO2 CuPc composite is more complete and efficient than over pure TiO2, suggesting the potential application of dye-sensitized TiO2 catalyst in the thorough photodegradation of PS plastic under fluorescent light. During the photodegradation of PS plastic, the reactive oxygen species generated on TiO2 or TiO2/CuPc particle surfaces play important roles in chain scission. The present study demonstrates that the combination of polymer plastic with dye-sensitized TiO2 catalyst in the form of thin film is a practical and useful way to photodegrade plastic contaminants in the sunlight.
NASA Astrophysics Data System (ADS)
Liang, Chao; Li, Pengwei; Zhang, Yiqiang; Gu, Hao; Cai, Qingbin; Liu, Xiaotao; Wang, Jiefei; Wen, Hua; Shao, Guosheng
2017-12-01
TiO2 is extensively used as electron-transporting material on perovskite solar cells (PSCs). However, traditional TiO2 processing method needs high annealing temperature (>450 °C) and pure TiO2 suffers from low electrical mobility and poor conductivity. In this study, a general one-pot solution-processed method is devised to grow uniform crystallized metal-doped TiO2 thin film as large as 15 × 15 cm2. The doping process can be controlled effectively via a series of doping precursors from niobium (V), tin (IV), tantalum (V) to tungsten (VI) chloride. As far as we know, this is so far the lowest processing temperature for metal-doped TiO2 compact layers, as low as 70 °C. The overall performance of PSCs employing the metal-doped TiO2 layers is significantly improved in term of hysteresis effect, short circuit current, open-circuit voltage, fill factor, power conversion efficiency, and device stability. With the insertion of metal ions into TiO2 lattice, the corresponding CH3NH3PbI3 PSC leads to a ∼25% improved PCE of over 16% under irradiance of 100 mW cm-2 AM1.5G sunlight, compared with control device. The results indicate that this mild solution-processed metal-doped TiO2 is an effective industry-scale way for fabricating hysteresis-less and high-performance PSCs.
Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.
Stambolova, Irina; Shipochka, Capital Em Cyrillicaria; Blaskov, Vladimir; Loukanov, Alexandrе; Vassilev, Sasho
2012-12-05
Spray pyrolysis procedure for preparation of nanostructured TiO(2) films with higher photocatalytic effectiveness and longer exploitation life is presented in this study. Thin films of active nanocrystalline TiO(2) were obtained from titanium isopropoxide, stabilized with acetyl acetone and characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The activity of sprayed nanostructured TiO(2) is tested for photocatalytic degradation of Reactive Black 5 dye with concentrations up to 80 ppm. Interesting result of the work is the reduction of toxicity after photocatalytic treatment of RB5 with TiO(2), which was confirmed by the lower percentage of mortality of Artemia salina. It was proved that the film thickness, conditions of post deposition treatment and the type of the substrate affected significantly the photocatalytic reaction. Taking into account that the parameters are interdependent, it is necessary to optimize the preparation conditions in order to synthesize photocatalytic active films. Copyright © 2012 Elsevier B.V. All rights reserved.
Mahoney, Luther; Koodali, Ranjit T.
2014-01-01
Evaporation-Induced Self-Assembly (EISA) method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs), photocatalytic degradation of organics and splitting of water, and batteries. PMID:28788590
NASA Astrophysics Data System (ADS)
Tejasvi, Ravi; Basu, Suddhasatwa
2017-12-01
A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.
He+ ion irradiation response of Fe–TiO2 multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderoglu, O.; Zhou, M. J.; Zhang, J.
2013-04-01
The accumulation of radiation-induced defect clusters and He bubble formation in He+ ion irradiated nanocrystalline TiO2 and Fe–TiO2 multilayer thin films were investigated using transmission electron microscopy (TEM). Prior to ion irradiation it was found that the crystallinity of TiO2 layers depends on the individual layer thickness: While all TiO2 layers are amorphous at 5 nm individual layer thickness, at 100 nm they are crystalline with a rutile polymorph. After He+ irradiation up to ~6 dpa at room temperature, amorphization of TiO2 layers was not observed in both nanocrystalline TiO2 single layers and Fe–TiO2 multilayers. The suppression of radiation-induced amorphizationmore » in TiO2 is interpreted in terms of a high density of defect sinks in these nano-composites in the form of Fe–TiO2 interphase boundaries and columnar grains within each layer with nano-scale intercolumnar porosity. In addition, a high concentration of He is believed to be trapped at these interfaces in the form of sub-nanometer-scale clusters retarding the formation of relatively larger He bubbles that can be resolved in TEM.« less
NASA Astrophysics Data System (ADS)
Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko
2013-09-01
Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.
Wang, Hsin-Yi; Chen, Han-Yi; Hsu, Ying-Ya; Stimming, Ulrich; Chen, Hao Ming; Liu, Bin
2016-10-26
We report that an ultrafast kinetics of reversible metal-ion insertion can be realized in anatase titanium dioxide (TiO 2 ). Niobium ions (Nb 5+ ) were carefully chosen to dope and drive anatase TiO 2 into very thin nanosheets standing perpendicularly onto transparent conductive electrode (TCE) and simultaneously construct TiO 2 with an ion-conducting surface together with expanded ion diffusion channels, which enabled ultrafast metal ions to diffuse across the electrolyte/solid interface and into the bulk of TiO 2 . To demonstrate the superior metal-ion insertion rate, the electrochromic features induced by ion intercalation were examined, which exhibited the best color switching speed of 4.82 s for coloration and 0.91 s for bleaching among all reported nanosized TiO 2 devices. When performed as the anode for the secondary battery, the modified TiO 2 was capable to deliver a highly reversible capacity of 61.2 mAh/g at an ultrahigh specific current rate of 60 C (10.2 A/g). This fast metal-ion insertion behavior was systematically investigated by the well-controlled electrochemical approaches, which quantitatively revealed both the enhanced surface kinetics and bulk ion diffusion rate. Our study could provide a facile methodology to modulate the ion diffusion kinetics for metal oxides.
Influence of Ta doping in resistive switching behavior of TiO2
NASA Astrophysics Data System (ADS)
Barman, Arabinda; Saini, Chetan P.; Deshmukh, Sujit; Dhar, Sankar; Kanjilal, Aloke
An approach has been made to understand the resistive switching behavior in Ta-doped TiO2 films on Pt substrates. Prior to thin film deposition, Ta-doped TiO2 powder has been synthesized chemically using Ta and Ti precursor solutions. However, the Ta doping has seriously been affected by increasing Ta concentration above 1 at% due to the segregation of Ta2O5 phase. The Ta-doped TiO2 targets have been prepared for pulsed laser deposition of the films on Pt substrates using an excitation wavelength of 248 nm. The structural and chemical properties of the Ta-doped TiO2 films have been investigated in details with the help of XRD, SIMS, XAS and XPS. The stoichiometry of the Ta-doped TiO2 films with increasing depth has been verified initially by SIMS. The electrical study of the corresponding device structures further suggests that the optimized resistive switching effect can be accomplished up to a threshold Ta-doping of 1 at%. Nevertheless, a highly conducting behavior has been shown when the TiO2 films are doped with 2 at% Ta. These results will be discussed in details in the light of defect induced resistive switching phenomenon.
Properties of TiO2 thin films and a study of the TiO2-GaAs interface
NASA Technical Reports Server (NTRS)
Chen, C. Y.; Littlejohn, M. A.
1977-01-01
Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.
Optical and electrical properties of sol-gel spin coated titanium dioxide thin films
NASA Astrophysics Data System (ADS)
Sahoo, Anusuya; Jayakrishnan, A. R.; Kamakshi, K.; Silva, J. P. B.; Sekhar, K. C.; Gomes, M. J. M.
2017-08-01
In this work; TiO2 thin films were deposited on glass and stainless steel substrates by sol-gel spin coating method. The films deposited on glass were annealed at different temperatures (Ta) in the range of 200 to 500 0C and that are deposited on steel substrate were annealed at 800 0C. The optical properties of TiO2 thin films were studied by using UV-VIS spectroscopy and photoluminescence (PL) spectroscopy. The transmittance on the average was found to ≥ 80 % and is found to sensitive to Ta. The PL spectra exhibited the strong emission band associated with band- to- band transition around 390 nm and the two weak bands at 480 and 510 nm associated to the oxygen defects and surface defects respectively. The current-voltage (I-V) characteristics of the Al/TiO2/steel capacitors were studied and analysed with application of various current mechanisms. Analysis reveals that the conduction in Al/TiO2/steel capacitors is governed by Poole-Frenkel mechanism.
Influence of annealing on X-ray radiation sensing properties of TiO2 thin film
NASA Astrophysics Data System (ADS)
Sarma, M. P.; Kalita, J. M.; Wary, G.
2018-03-01
A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.
NASA Astrophysics Data System (ADS)
Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna
2016-09-01
In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.
NASA Astrophysics Data System (ADS)
Iwagoshi, Joel A.
Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V. Our research on the deposition process will contribute to the understanding of PVDF/TiO2 composite thin films. These results will lead to further investigation of PVDF/TiO2 high density energy storage capacitors. These capacitors can potentially increase the efficiency of alternative energy sources already in use.
Synthesis and energy applications of mesoporous titania thin films
NASA Astrophysics Data System (ADS)
Islam, Syed Z.
The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the intrinsic modification of titania by doping, graphene quantum dot sensitization in mesoporous titania film was also investigated for visible light photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered mesoporous titania films showed synergistic effect in water splitting due to high surface area, band gap reduction, enhanced visible light absorption, and efficient charge separation and transport. This study suggests that plasma based doping and graphene quantum dot sensitization are promising strategies to reduce band gap and enhance visible light absorption of high surface area surfactant templated mesoporous titania films, leading to superior visible-light driven photoelectrochemical hydrogen production. The results demonstrate the importance of designing and manipulating the energy band alignment in composite nanomaterials for fundamentally improving visible light absorption, charge separation and transport, and thereby photoelectrochemical properties.
Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua
2016-04-08
P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m(2) g(-1)) than that of Co0.85Se nanofilms (55.17 m(2) g(-1)) and TiO2 nanoparticles (19.49 m(2) g(-1)). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.
Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy
NASA Astrophysics Data System (ADS)
Paik, Hanjong; Moyer, Jarrett A.; Spila, Timothy; Tashman, Joshua W.; Mundy, Julia A.; Freeman, Eugene; Shukla, Nikhil; Lapano, Jason M.; Engel-Herbert, Roman; Zander, Willi; Schubert, Jürgen; Muller, David A.; Datta, Suman; Schiffer, Peter; Schlom, Darrell G.
2015-10-01
We report the growth of (001)-oriented VO2 films as thin as 1.5 nm with abrupt and reproducible metal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinner films with sharp MITs are discussed, including the Volmer-Weber type growth mode due to the high energy of the (001) VO2 surface. Another key limitation is interdiffusion with the (001) TiO2 substrate, which we quantify using low angle annular dark field scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy. We find that controlling island coalescence on the (001) surface and minimization of cation interdiffusion by using a low growth temperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO2 films with abrupt MIT behavior.
A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method
Kim, Kwang-Su; Baek, Woon-Hyuk; Kim, Jung-Min; Yoon, Tae-Sik; Lee, Hyun Ho; Kang, Chi Jung; Kim, Yong-Sang
2010-01-01
Toluene gas was successfully measured at room temperature using a device microfabricated by a nanoimprinting method. A highly uniform nanoporous thin film was produced with a dense array of titania (TiO2) pores with a diameter of 70∼80 nm using this method. This thin film had a Pd/TiO2 nanoporous/SiO2/Si MIS layered structure with Pd-TiO2 as the catalytic sensing layer. The nanoimprinting method was useful in expanding the TiO2 surface area by about 30%, as confirmed using AFM and SEM imaging. The measured toluene concentrations ranged from 50 ppm to 200 ppm. The toluene was easily detected by changing the Pd/TiO2 interface work function, resulting in a change in the I–V characteristics. PMID:22315567
Ready fabrication of thin-film electrodes from building nanocrystals for micro-supercapacitors.
Chen, Zheng; Weng, Ding; Wang, Xiaolei; Cheng, Yanhua; Wang, Ge; Lu, Yunfeng
2012-04-18
Thin-film pseudocapacitor electrodes with ultrafast lithium storage kinetics, high capacitance and excellent cycling stability were fabricated from monodispersed TiO(2) building nanocrystals, providing a novel approach towards next-generation micro-supercapacitor applications. This journal is © The Royal Society of Chemistry 2012
Akhavan, Shahab; Yeltik, Aydan; Demir, Hilmi Volkan
2014-06-25
We propose and demonstrate light-sensitive nanocrystal skins that exhibit broadband sensitivity enhancement based on electron transfer to a thin TiO2 film grown by atomic layer deposition. In these photosensors, which operate with no external bias, photogenerated electrons remain trapped inside the nanocrystals. These electrons generally recombine with the photogenerated holes that accumulate at the top interfacing contact, which leads to lower photovoltage buildup. Because favorable conduction band offset aids in transferring photoelectrons from CdTe nanocrystals to the TiO2 layer, which decreases the exciton recombination probability, TiO2 has been utilized as the electron-accepting material in these light-sensitive nanocrystal skins. A controlled interface thickness between the TiO2 layer and the monolayer of CdTe nanocrystals enables a photovoltage buildup enhancement in the proposed nanostructure platform. With TiO2 serving as the electron acceptor, we observed broadband sensitivity improvement across 350-475 nm, with an approximately 22% enhancement. Furthermore, time-resolved fluorescence measurements verified the electron transfer from the CdTe nanocrystals to the TiO2 layer in light-sensitive skins. These results could pave the way for engineering nanocrystal-based light-sensing platforms, such as smart transparent windows, light-sensitive walls, and large-area optical detection systems.
Physics and applications of electrochromic devices
NASA Astrophysics Data System (ADS)
Pawlicka, Agnieszka; Avellaneda, Cesar O.
2003-07-01
Solid state electrochromic devices (ECD) are of considerable technological and commercial interest because of their controllable transmission, absorption and/or reflectance. For instance, a major application of these devices is in smart windows that can regulate the solar gains of buildings and also in glare attenuation in automobile rear view mirrors. Other applications include solar cells, small and large area flat panel displays, satellite temperature control, food monitoring, and document authentication. A typical electrochromic device has a five-layer structure: GS/TC/EC/IC/IS/TC/GS, where GS is a glass substrate, TC is a transparent conductor, generally ITO (indium tin oxide) or FTO (fluorine tin oxide), EC is an electrochromic coating, IC is an ion conductor (solid or liquid electrolyte) and IS is an ion storage coating. Generally, the EC and IS layers are deposited separately on the TC coatings and then jointed with the IC and sealed. The EC and IS are thin films that can be deposited by sputtering, CVD, sol-gel precursors, etc. There are different kinds of organic, inorganic and organic-inorganic films that can be used to make electrochromic devices. Thin electrochromic films can be: WO3, Nb2O5, Nb2O5:Li+ or Nb2O5-TiO2 coatings, ions storage films: CeO2-TiO2, CeO2-ZrO2 or CeO2-TiO2-ZrO2 and electrolytes like Organically Modified Electrolytes (Ormolytes) or polymeric films also based on natural polymers like starch or cellulose. These last are very interesting due to their high ionic conductivity, high transparency and good mechanical properties. This paper describes construction and properties of different thin oxide and polymeric films and also shows the optical response of an all sol-gel electrochromic device with WO3/Ormolyte/CeO2-TiO2 configuration.
NASA Astrophysics Data System (ADS)
Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef
2014-07-01
We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a < 1.07 grown on SrTiO3 (001) substrates, which results in significant frequency dispersion of the dielectric constant and strong Rayleigh type behavior in those samples. This combined structural-electrical study provides a framework for investigating strain relaxation in thin films and can provide useful insights into the mechanisms of fatigue in ferroelectric materials.
NASA Astrophysics Data System (ADS)
Chia, Elbert; Cheng, Liang; Lourembam, James; Wu, S. G.; Motapothula, Mallikarjuna R.; Sarkar, Tarapada; Venkatesan, Venky
Using terahertz time-domain spectroscopy (THz-TDS), we obtained the complex optical conductivity [ σ (ω) ] of Ta-doped TiO2 thin films - a transparent conducting oxide (TCO), in the frequency range 0.3-2.7 THz, temperature range 10-300 K and various Ta dopings. Our results reveal the existence of an interacting polaronic gas in these TCOs, and suggest that their large conductivity is caused by the combined effects of large carrier density and small electron-phonon coupling constant due to Ta doping. NUSNNI-NanoCore, NRF-CRP (NRF2008NRF-CRP002-024), NUS cross-faculty Grant and FRC (ARF Grant No. R-144-000-278-112), MOE Tier 1 (RG123/14), SinBeRISE CREATE.
Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.
Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue
2016-08-01
TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure
NASA Astrophysics Data System (ADS)
Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng
2016-07-01
An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.
Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors.
Jiang, Lili; Ren, Zhifeng; Chen, Shuo; Zhang, Qinyong; Lu, Xiong; Zhang, Hongping; Wan, Guojiang
2018-03-13
This paper reports a novel loofah-derived hierarchical scaffold to obtain three-dimensional biocarbon-graphene-TiO 2 (BC-G-TiO 2 ) composite materials as electrodes for supercapacitors. The loofah scaffold was first loaded with G and TiO 2 by immersing, squeezing, and loosening into the mixed solution of graphene oxide and titania, and then carbonized at 900 °C to form the BC-G-TiO 2 composite. The synergistic effects of the naturally hierarchical biocarbon structure, graphene, and TiO 2 nanoparticles on the electrochemical properties are analyzed. The biocarbon provides a high interconnection and an easy accessibility surface for the electrolyte. Graphene bridged the BC and TiO 2 nanoparticles, improved the conductivity of the BC-G-TiO 2 composite, and increased the electron transfer efficiency. TiO 2 nanoparticles also contributed to the pesudocapacitance and electrochemical stability.
NASA Astrophysics Data System (ADS)
Boyadjiev, Stefan I.; Kéri, Orsolya; Bárdos, Péter; Firkala, Tamás; Gáber, Fanni; Nagy, Zsombor K.; Baji, Zsófia; Takács, Máté; Szilágyi, Imre M.
2017-12-01
In the present work, core TiO2 and ZnO oxide nanofibers were prepared by electrospinning, then shell oxide (ZnO, TiO2) layers were deposited on them by atomic layer deposition (ALD). The aim of preparing ZnO and TiO2 nanofibers, as well as ZnO/TiO2 and TiO2/ZnO nanocomposites is to study the interaction between the oxide materials when a pure oxide fiber is covered with thin film of the other oxide, and explore the influence of exchanging the core and shell materials on their photocatalytic and gas sensing properties. The composition, structure and morphology of the pure and composite nanofibers were studied by SEM-EDX, TEM, XRD, FTIR, UV-vis and Raman. The photocatalytic activity of the as-prepared materials was analyzed by UV-vis spectroscopy through decomposing aqueous methyl orange under UV irradiation. The gas sensing of the nanofibers was investigated by detecting 100 ppm NH3 at 150 and 220 °C using interdigital electrode based sensors.
NASA Astrophysics Data System (ADS)
Lin, Luchan; Zou, Guisheng; Liu, Lei; Duley, Walt W.; Zhou, Y. Norman
2016-05-01
We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO2 structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO2 resulting in the modification of both surfaces and an increase in wettability of TiO2, facilitating the interconnection of Ag and TiO2 nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO2 in the contact region between the Ag and TiO2 nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO2 nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.
Synthesis and Characterization of TiO2/SiO2 Thin Film via Sol-Gel Method
NASA Astrophysics Data System (ADS)
Halin, D. S. C.; Abdullah, M. M. A. B.; Mahmed, N.; Malek, S. N. A. Abdul; Vizureanu, P.; Azhari, A. W.
2017-06-01
TiO2/SiO2 thin films were prepared by sol-gel spin coating method. Structural, surface morphology and optical properties were investigated for different annealing temperatures at 300°C, 400°C and 500°C. X-ray diffraction pattern show that brookite TiO2 crystalline phase with SiO2 phase presence at 300°C. At higher temperatures of 400-500°C, the only phase presence was brookite. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films annealed at 300°C shows an agglomeration of small flaky with crack free. When the temperature of annealing increase to 400-500°C, the films with large flaky and large cracks film were formed which was due to surface tension between the film and the air during the drying process. The UV-Vis spectroscopy shows that the film exhibits a low transmittance around 30% which was due to the substrate is inhomogeneously covered by the films. In order to improve the coverage of the film on the substrate, it has to repeatable the spin coating to ensure the substrate is fully covered by the films.
NASA Astrophysics Data System (ADS)
Szkoda, Mariusz; Siuzdak, Katarzyna; Lisowska-Oleksiak, Anna
2016-10-01
Titanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms: nitrogen, iodine and boron applied for photodegradation of organic dye - methylene blue and terephtalic acid. The doped samples act as a much better photocatalyst in the degradation process of methylene blue and lead to the formation of much higher amount of hydroxyl radicals (•OH) than undoped TiO2 nanotube arrays. The use of a catalyst active under solar light illumination in the form of thin films on a stable substrate can be scaled up for an industrial application.
Hu, Xiaohong; Zhu, Qi; Gu, Zhibin; Zhang, Nan; Liu, Na; Stanislaus, Mishma S; Li, Dawei; Yang, Yingnan
2017-05-01
TiO 2 photocatalyst film recently has been utilized as the potential candidate for the wastewater treatment, due to its high stability and low toxicity. In order to further increase the photocatalytic ability and stability, different molecular weight of polyethylene glycol (PEG) were used to modify TiO 2 structure to synthesize porous thin film used in the developed Photocatalytic-Ultrasonic system in this work. The results showed that PEG2000 modified TiO 2 calcinated under 450°C for 2h exhibited the highest photocatalytic activity, attributed to the smallest crystallite size and optimal particle size. Over 95.0% of rhodamine B (Rh B) was photocatalytically degraded by optimized PEG 2000 -TiO 2 film after 60min of UV irradiation, while only about 50.8% of Rh B was decolored over pure TiO 2 film. Furthermore, optimized PEG 2000 -TiO 2 film was used in a circular Photocatalytic-Ultrasonic system, and the obtained synergy (0.6519) of sonophotocatalysis indicated its extremely high efficiency for Rh B degradation. In this Photocatalytic-Ultrasonic system, larger amount of PEG 2000 -TiO 2 coated glass beads, stronger ultrasonic power and longer experimental time could result to higher degradation efficiency of Rh B. In addition, repetitive experiments showed that about 97.2% of Rh B were still degraded in the fifth experiment by sonophotocatalysis using PEG 2000 -TiO 2 film. Therefore, PEG 2000 -TiO 2 film used in Photocatalytic-Ultrasonic system has promising potential for wastewater treatment, due to its excellent photocatalytic activity and high stability. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Chao; Li, Hongji; Li, Cuiping; Li, Mingji; Qu, Changqing; Yang, Baohe
2015-12-01
We report nanostructured TiO2/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO2/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO2 and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO2/BDD/Ta film was used as the working electrode with 0.1 M Na2SO4 as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm-2 at a scan rate of 5 mV s-1 for a B/C ratio of 0.1% w/w. Furthermore, the TiO2/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO2 layer and Ta nanoporous structures, and the synergies between them. These results show that TiO2/BDD/Ta films are promising as capacitor electrodes for special applications.
NASA Astrophysics Data System (ADS)
Hu, G. D.
2006-11-01
Bi3.15Nd0.85Ti3O12 (BNT0.85) thin films with (100) [α(100)=87.8%], (117) [α(117)=77.1%], and (001) [α(001)=98.8%] preferred orientations were deposited on Pt(100)/TiO2/SiO2/Si substrates using a metal organic decomposition process. The remanent polarization of (100)-predominant BNT0.85 film is about 50% and three times larger than those of (117)-preferred and (001)-oriented films, respectively, suggesting that the major polarization vector of BNT0.85 is close to the a axis rather than the c axis. This result can be further demonstrated by the piezoelectric measurements using an atomic force microscope in the piezoresponse mode.
Two-Functional Direct Current Sputtered Silver-Containing Titanium Dioxide Thin Films
NASA Astrophysics Data System (ADS)
Musil, J.; Louda, M.; Cerstvy, R.; Baroch, P.; Ditta, I. B.; Steele, A.; Foster, H. A.
2009-04-01
The article reports on structure, mechanical, optical, photocatalytic and biocidal properties of Ti-Ag-O films. The Ti-Ag-O films were reactively sputter-deposited from a composed Ti/Ag target at different partial pressures of oxygen p_{O2} on unheated glass substrate held on floating potential U fl. It was found that addition of 2 at.% of Ag into TiO2 film has no negative influence on UV-induced hydrophilicity of TiO2 film. Thick ( 1,500 nm) TiO2/Ag films containing (200) anatase phase exhibit the best hydrophilicity with water droplet contact angle (WDCA) lower than 10° after UV irradiation for 20 min. Thick ( 1,500 nm) TiO2/Ag films exhibited a better UV-induced hydrophilicity compared to that of thinner ( 700 nm) TiO2/Ag films. Further it was found that hydrophilic TiO2/Ag films exhibit a strong biocidal effect under both the visible light and the UV irradiation with 100% killing efficiency of Escherichia coli ATCC 10536 after UV irradiation for 20 min. Reported results show that single layer of TiO2 with Ag distributed in its whole volume exhibits, after UV irradiation, simultaneously two functions: (1) excellent hydrophilicity with WDCA < 10° and (2) strong power to kill E. coli even under visible light due to direct toxicity of Ag.
Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films
NASA Astrophysics Data System (ADS)
Patra, Snehangshu; Andriamiadamanana, Christian; Tulodziecki, Michal; Davoisne, Carine; Taberna, Pierre-Louis; Sauvage, Frédéric
2016-02-01
Anatase TiO2, a wide bandgap semiconductor, likely the most worldwide studied inorganic material for many practical applications, offers unequal characteristics for applications in photocatalysis and sun energy conversion. However, the lack of controllable, cost-effective methods for scalable fabrication of homogeneous thin films of anatase TiO2 at low temperatures (ie. < 100 °C) renders up-to-date deposition processes unsuited to flexible plastic supports or to smart textile fibres, thus limiting these wearable and easy-to-integrate emerging technologies. Here, we present a very versatile template-free method for producing robust mesoporous films of nanocrystalline anatase TiO2 at temperatures of/or below 80 °C. The individual assembly of the mesoscopic particles forming ever-demonstrated high optical quality beads of TiO2 affords, with this simple methodology, efficient light capture and confinement into the photo-anode, which in flexible dye-sensitized solar cell technology translates into a remarkable power conversion efficiency of 7.2% under A.M.1.5G conditions.
Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films
Patra, Snehangshu; Andriamiadamanana, Christian; Tulodziecki, Michal; Davoisne, Carine; Taberna, Pierre-Louis; Sauvage, Frédéric
2016-01-01
Anatase TiO2, a wide bandgap semiconductor, likely the most worldwide studied inorganic material for many practical applications, offers unequal characteristics for applications in photocatalysis and sun energy conversion. However, the lack of controllable, cost-effective methods for scalable fabrication of homogeneous thin films of anatase TiO2 at low temperatures (ie. < 100 °C) renders up-to-date deposition processes unsuited to flexible plastic supports or to smart textile fibres, thus limiting these wearable and easy-to-integrate emerging technologies. Here, we present a very versatile template-free method for producing robust mesoporous films of nanocrystalline anatase TiO2 at temperatures of/or below 80 °C. The individual assembly of the mesoscopic particles forming ever-demonstrated high optical quality beads of TiO2 affords, with this simple methodology, efficient light capture and confinement into the photo-anode, which in flexible dye-sensitized solar cell technology translates into a remarkable power conversion efficiency of 7.2% under A.M.1.5G conditions. PMID:26911529
Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets
NASA Astrophysics Data System (ADS)
Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki
2017-01-01
Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.
NASA Astrophysics Data System (ADS)
Mighri, F.; Duong, Vu Thi Thuy; On, Do Trong; Ajji, A.
2014-05-01
This study presents the synthesis details of titanium dioxide (TiO2) nanoparticles (NPs) of different shapes (nanospheres, nanorods and nanorhombics) using oleic acid (OA) and oleyl amine (OM) as capping agents. In order to develop nanocomposite thin films for photovoltaic cells, these TiO2 NPs were carefully dispersed in 2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene (MEH-PPV) matrix. The properties of synthesized TiO2 NPs and MEH-PPV/TiO2 nanocomposites were characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA), UV-Visible spectroscopy, and Photoluminescence technique. It was found that the shape of NPs and the amount of OA and OM surfactants capped on their surface have an effect on their energy bandgap and also on the dispersion quality of MEH-PPV/TiO2 nanocomposites. Even though there was no evidence of chemical bonding between MEH-PPV matrix and TiO2 dispersed NPs, MEH-PPV/TiO2 nanocomposites showed very promising results for light absorption properties and charge transfer at the interface of the conjugated MEH-PPV matrix and TiO2 dispersed NPs, which are two main characteristics for photovoltaic materials.
Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin
2018-05-10
A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.
Farsinezhad, Samira; Banerjee, Shyama Prasad; Bangalore Rajeeva, Bharath; Wiltshire, Benjamin D; Sharma, Himani; Sura, Anton; Mohammadpour, Arash; Kar, Piyush; Fedosejevs, Robert; Shankar, Karthik
2017-01-11
Localized surface plasmon resonances (LSPR) in TiO 2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO 2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO 2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO 2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO 2 . We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.
Wang, Danling; Chen, Antao; Jen, Alex K-Y
2013-04-14
Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.
NASA Astrophysics Data System (ADS)
Nemaga, Abirdu Woreka; Mallet, Jeremy; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu
2018-07-01
The development of high energy density Li-ion batteries requires to look for electrode materials with high capacity while keeping their stability upon cycling. In this study, amorphous silicon (a-Si) thin film deposited on self-organized TiO2 nanotubes is investigated as negative electrode for Li-ion batteries. Nanostructured composite negative electrodes were fabricated by a two-step cost effective electrochemical process. Firstly, self-organized TiO2 nanotube arrays were synthesised by anodizing of Ti foil. Subsequently, thanks to the use of room temperature ionic liquid, conformal Si layer was electrodeposited on the TiO2 nanotubes to achieve the synthesis of nanostructured a-Si/TiO2 nanotube composite negative electrodes. The influence of the Si loading as well as the crystallinity of the TiO2 nanotubes have been studied in terms of capacity and cyclic stability. For an optimized a-Si loading, it is shown that the amorphous state for the TiO2 nanotubes enables to get stable lithiation and delithiation with a total areal charge capacity of about 0.32 mA h cm-2 with improved capacity retention of about 84% after 50 cycles, while a-Si on crystalline TiO2 nanotubes shows poor cyclic stability independently from the Si loading.
Qiu, Longbin; Ono, Luis K; Jiang, Yan; Leyden, Matthew R; Raga, Sonia R; Wang, Shenghao; Qi, Yabing
2018-01-18
The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO 2 compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO 2 , but the device is not stable and degrades rapidly. With an amorphous TiO 2 compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO 2 . Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CH 3 NH 3 PbI 3 leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO 2 and CH 3 NH 3 PbI 3 can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO 2 can enhance device stability, strongly suggests that the interface interaction between TiO 2 and CH 3 NH 3 PbI 3 plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.
Some studies on TiO2 films deposited by sol-gel technique
NASA Astrophysics Data System (ADS)
Narasimha Rao, K.; Vishwas, M.; Kumar Sharma, Sudhir; Arjuna Gowda, K. V.
2008-08-01
TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.
NASA Astrophysics Data System (ADS)
Bayati, Mohammad Reza
The main focus of this study was placed on structure-property correlation in TiO2 and VO2 based epitaxial heterostructures where the photochemical and electrical properties were tuned through microstructural engineering. In the framework of domain matching epitaxy, epitaxial growth of TiO2 and VO2 heterostructures on different substrates were explained. The theta-2theta and ϕ scan X-ray diffraction measurements and detailed high resolution electron microscopy studies corroborated our understanding of the epitaxial growth and the crystallographic arrangement across the interfaces. The influence of the laser and substrate variables on structural characteristics of the films was investigated using X-ray photoelectron spectroscopy, room temperature photoluminescence spectroscopy, and UV-Vis spectrophotometry. In addition, morphological studies were performed by atomic force microscopy. Photochemical properties of the heterostructures were assessed through measuring surface wettability characteristics and photocatalytic reaction rate constant of degradation of 4-chlorophenol under ultraviolet and visible irradiations. We also studied electrical properties employing 4-probe measurement technique. The effect of post treatment processes, such as vacuum annealing and laser treatment, on structure and properties was investigated as well. The role of point defects and deviation from the stoichiometry on photochemical and electrical properties was addressed. In this research, TiO2 epilayers with controlled phase structure, defect content, and crystallographic alignments were grown on sapphire and silicon substrates. Integration with silicon was achieved using cubic and tetragonal yttria-stabilized zirconia buffer layers. I was able to tune the phase structure of the TiO2 based heterostructures from pure rutile to pure anatase and establish an epitaxial relationship across the interfaces in each case. These heterostructures were used for two different purposes. First, their application in environmental remediation was taken into account. The photochemical efficiency of the samples was evaluated under ultraviolet and visible illuminations. I was able to establish a correlation between the growth conditions and the photocatalytic activity of single crystalline TiO 2 thin films. Visible-light-responsive TiO2 films were fabricated via vacuum annealing of the samples where point defects, namely oxygen vacancies and titanium interstitial, are surmised to play a critical role. An ultrafast switching was observed in wetting characteristics of the single crystalline rutile TiO2 films from a hydrophobic state to a superhydrophilic state by single pulsed excimer laser annealing. It was observed that the laser annealing almost doubles the photocatalytic efficiency of the anatase epitaxial thin films. I was able to measure the photochemical properties of the rutile and the anatase TiO2 heterostructures in a controlled way due to the single crystalline nature of the films. Second, the rutile TiO2 epilayers with different out-of-plane orientations were deposited and used as a platform for VO2 based epitaxial heterostructures with the aim of manipulating of microstructure and electrical properties of the VO 2 films. Vanadium dioxide (VO2) is an interesting material due to the abrupt change in electrical resistivity and infrared transmittance at about 68 °C. The transition temperature can be tuned through microstructural engineering. It was the idea behind using rutile TiO2 with different crystallographic orientations as a template to tune the semiconductor to metal transition characteristics of the VO2 top layer. I successfully grew VO2(001), VO2(100), and VO2(2¯01) epitaxial thin films on TiO2(100)/c-sapphire, TiO2(101)/r-sapphire, and TiO2(001)/ m-sapphire platforms, respectively. It was observed that tetragonal phase of VO2 was stabilized at lower temperatures leading to a significant decrease in the semiconductor to metal transition temperature. In other words, we were able to tune the transition temperature of the VO 2 epitaxial heterostructures. This achievement introduces the VO 2 based single crystalline heterostructures as a promising candidate for a wide range of applications where different transition temperatures are required. The epitaxial relationships were established and atomic arrangement across the interfaces was studied in detail.
2017-01-01
We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942
Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers
NASA Astrophysics Data System (ADS)
Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun
2017-04-01
Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.
NASA Astrophysics Data System (ADS)
Désières, Yohan; Chen, Ding Yuan; Visser, Dennis; Schippers, Casper; Anand, Srinivasan
2018-06-01
Colloidal TiO2 nanoparticles were used for embossing of composite microcone arrays on III-Nitride vertical-thin-film blue light emitting diodes (LEDs) as well as on silicon, glass, gallium arsenide, and gallium nitride surfaces. Ray tracing simulations were performed to optimize the design of microcones for light extraction and to explain the experimental results. An optical power enhancement of ˜2.08 was measured on III-Nitride blue LEDs embossed with a hexagonal array of TiO2 microcones of ˜1.35 μm in height and ˜2.6 μm in base width, without epoxy encapsulation. A voltage increase in ˜70 mV at an operating current density of ˜35 A/cm2 was measured for the embossed LEDs. The TiO2 microcone arrays were embossed on functioning LEDs, using low pressures (˜100 g/cm2) and temperatures ≤100 °C.
Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications
NASA Astrophysics Data System (ADS)
Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.
2018-02-01
Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.
Deposition of functional nanoparticle thin films by resonant infrared laser ablation.
NASA Astrophysics Data System (ADS)
Haglund, Richard; Johnson, Stephen; Park, Hee K.; Appavoo, Kannatessen
2008-03-01
We have deposited thin films containing functional nanoparticles, using tunable infrared light from a picosecond free-electron laser (FEL). Thin films of the green light-emitting molecule Alq3 were first deposited by resonant infrared laser ablation at 6.68 μm, targeting the C=C ring mode of the Alq3. TiO2 nanoparticles 50-100 nm diameter were then suspended in a water matrix, frozen, and transferred by resonant infrared laser ablation at 2.94 μm through a shadow mask onto the Alq3 film. Photoluminescence was substantially enhanced in the regions of the film covered by the TiO2 nanoparticles. In a second experiment, gold nanoparticles with diameters in the range of 50-100 nm were suspended in the conducting polymer and anti-static coating material PEDOT:PSS, which was diluted by mixing with N-methyl pyrrolidinone (NMP). The gold nanoparticle concentration was 8-10% by weight. The mixture was frozen and then ablated by tuning the FEL to 3.47 μm, the C-H stretch mode of NMP. Optical spectroscopy of the thin film deposited by resonant infrared laser ablation exhibited the surface-plasmon resonance characteristic of the Au nanoparticles. These experiments illustrate the versatility of matrix-assisted resonant infrared laser ablation as a technique for depositing thin films containing functionalized nanoparticles.
Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth
Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...
2016-01-01
The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less
NASA Astrophysics Data System (ADS)
Chen, Daimei; Jiang, Zhongyi; Geng, Jiaqing; Zhu, Juhong; Yang, Dong
2009-02-01
The nitrogen and fluorine co-doped TiO2 (N-F-TiO2) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH4)2TiF6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH4)2TiF6 decomposed into TiOF2 and NH4TiOF3 at first, and then formed anatase-type TiO2 with thin sheet morphology. H3BO3 as oxygen source can promote the formation of anatase TiO2, but decrease the F content in the N-F-TiO2 materials due to the formation of volatile BF3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO2 are discussed.
Kratzer, Markus; Szajna, Konrad; Wrana, Domink; Belza, Wojciech; Krok, Franciszek; Teichert, Christian
2018-05-23
Control over organic thin film growth is a central issue in the development of organic electronics. The anisotropy and extended size of the molecular building blocks introduce a high degree of complexity within the formation of thin films. This complexity can be even increased for substrates with induced, sophisticated morphology and anisotropy. Thus, targeted structuring like ion beam mediated modification of substrates in order to create ripples, pyramids, or pit structures provides a further degree of freedom in manipulating the growth morphology of organic thin films. We provide a comprehensive review of recent work on para-hexaphenyl (C36H26, 6P) as a typical representative of the class of small, rod-like conjugated molecules and rutile TiO2(110) as an example for a transparent oxide electrode to demonstrate the effect of ion beam induced nanostructuring on organic thin film growth. Starting from molecular growth on smooth, atomically flat TiO2(110) (11) surfaces, we investigate the influence of the ripple size on the resulting 6P thin films. The achieved 6P morphologies are either crystalline nano-needles composed of flat lying molecules or islands consisting of upright standing 6P, which are elongated in ripple direction. The islands' length to width ratio can be controlled by tuning of the ripples' shape. © 2018 IOP Publishing Ltd.
Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition
NASA Astrophysics Data System (ADS)
Al-Jawad, Selma M. H.
2017-10-01
Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.
Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO 2 /TiO 2
Sikong, Lek; Niyomwas, Sutham; Rachpech, Vishnu
2014-01-01
Both N-doped and undoped thin films of 3SnO2/TiO2 composite were prepared, by sol-gel and dip-coating methods, and then calcined at 600°C for 2 hours. The films were characterized by FTIR, XRD, UV-Vis, SEM, and XPS, and their photocatalytic activities to degrade methylene blue in solution were determined, expecting these activities to correlate with the inactivation of bacteria, which was confirmed. The doped and undoped films were tested for activities against Gram-negative Escherichia coli (E. coli) and Salmonella typhi (S. typhi), and Gram-positive Staphylococcus aureus (S. aureus). The effects of doping on these composite films included reduced energy band gap, high crystallinity of anatase phase, and small crystallite size as well as increased photocatalytic activity and water disinfection efficiency. PMID:24693250
Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances
NASA Astrophysics Data System (ADS)
Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik
2018-04-01
Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.
NASA Astrophysics Data System (ADS)
Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri
2013-09-01
The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers λ up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (λ = 365 nm) and visible (λ = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.
Sol-gel synthesis and optical properties of titanium dioxide thin film
NASA Astrophysics Data System (ADS)
Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali
2018-03-01
The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.
NASA Astrophysics Data System (ADS)
Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.
2012-09-01
The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.
Synthesis, characterization and application of Co doped TiO2 multilayer thin films
NASA Astrophysics Data System (ADS)
Khan, M. I.
2018-06-01
To use the visible portion of solar light, 2% cobalt doped TiO2 (Co: TiO2) multilayer thin films having 1, 2, 3 and 4 stacked layers have been deposited on FTO substrates using spray pyrolysis technique. XRD results show that 1 and 2 layers of films have anatase phase. Brookite phase has been appeared at the 3 and 4 layered films. The average grain size of 1, 2, 3 and 4 layers of films are 14.4, 23.5, 29.7 and 33.6 nm respectively. UV-Vis results show that 4th layer film has high absorption in the visible region. The calculated Eg of 1, 2, 3 and 4 layers is 3.54, 3.42, 3.30 and 3.03 eV respectively. The calculated average sheet resistivity of 1, 2, 3 and 4 layers of films is 7.68 × 104, 4.54 × 104, 8.85 × 103 and 7.95 × 102 (ohm-m) respectively, according to four point probe technique. Solar simulator results show that highest solar conversion efficiency (5.6%) has been obtained by using 3 stacked layers photoanode. This new structure in the form of stack layers provides a way to improve the efficiency of optoelectronic devices.
NASA Astrophysics Data System (ADS)
Kawamura, Kinya; Tsuchiya, Takashi; Takayanagi, Makoto; Terabe, Kazuya; Higuchi, Tohru
2017-06-01
Resistivity modulation behavior in Pt/TiO2-δ/Pt multilayer devices was investigated in terms of nanoionics-based neuromorphic function. The current relaxation behavior, which corresponds to short-term and long-term memorization in neuromorphic function, was analyzed using electrical pulses. In contrast to the huge difference in ionic conductivity for bulk crystal materials of TiO2-δ and WO3, the difference in the relaxation behavior was small. Rutherford backscattering spectrometry and hydrogen forward scattering spectrometry revealed that the TiO2-δ thin film contained 5.6 at. % of protons. This indicates that the neuromorphic function in TiO2-δ-based devices is caused by extrinsic proton transport, presumably through the grain boundary.
Synthesis of Ag metallic nanoparticles by 120 keV Ag- ion implantation in TiO2 matrix
NASA Astrophysics Data System (ADS)
Sharma, Himanshu; Singhal, Rahul
2017-12-01
TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag- ion with different doses (3 × 1014, 1 × 1015, 3 × 1015, 1 × 1016 and 3 × 1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV-visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3 × 1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.
NASA Astrophysics Data System (ADS)
Hirsch, Marzena; Wierzba, Paweł; Jedrzejewska-Szczerska, Małgorzata
2016-11-01
We examine the application of selected thin dielectric films, deposited by atomic layer deposition (ALD), in a low coherence fiber-optic Fabry-Pérot interferometer designed for sensing applications. Such films can be deposited on the end-face of a single mode optical fiber (SMF-28) in order to modify the reflectivity of the Fabry-Pérot cavity, to provide protection of the fibers from aggressive environments or to create a multi-cavity interferometric sensor. Spectral reflectance of films made from zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3) and boron nitride (BN) was calculated for various thickness of the films and compared. The results show that the most promising materials for use in fiber-optic Fabry-Pérot interferometer are TiO2 and ZnO, although Al2O3 is also suitable for this application.
Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.
Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei
2013-01-21
Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.
Foldable and Cytocompatible Sol-gel TiO2 Photonics
NASA Astrophysics Data System (ADS)
Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun
2015-09-01
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.
Foldable and Cytocompatible Sol-gel TiO2 Photonics
Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun
2015-01-01
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices. PMID:26344823
Foldable and Cytocompatible Sol-gel TiO2 Photonics.
Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B; Geiger, Sarah J; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun
2015-09-07
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Takamizawa, Yuta; Miyairi, Keiichi
2008-01-01
We have prepared a photovoltaic device consisting of poly[2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylenevinylene] (MEHPPV) and an n-type crystalline TiO2 (anatase) thin film by high-temperature process and low-temperature process at a temperature lower than 150 °C by sol-gel techniques. The refluxed sol of titanium-tetraisopropoxide (TTI) with water and nitric acid formed anatase phase TiO2 without requiring the high-temperature process, and the wettability of sol is successfully improved by diluting sol with ethanol. The short circuit current JSC, fill factor, and the power conversion efficiency increase with the heat-treatment temperature of TiO2, which is attributed to the improvement of series resistance of the TiO2 film. On the other hand, the open circuit voltage remains almost constant (ca. 1.0 V) with the change in heat-treatment temperature between 60 and 120 °C, whereas it decreases to 0.76 V in the device prepared on the TiO2 film sintered at 500 °C, probably owing to the change in crystallinity. The origin of open circuit voltage in indium tin oxide (ITO)/TiO2/MEHPPV/Au is also discussed. The open circuit voltage corresponds well to the energy difference of the conduction band edge of TiO2 and the highest occupied molecular orbital (HOMO) of MEHPPV (ca. 1 eV) in the device consisting of the ITO/low-temperature TiO2/MEHPPV/Au system.
Characterization of TiO2 films obtained by a wet chemical process
NASA Astrophysics Data System (ADS)
Sedik, Asma; Ferraria, Ana M.; Carapeto, Ana P.; Bellal, Bouzid; Trari, Mohamed; Outemzabet, Ratiba
2017-12-01
TiO2 has an easily tunable bandgap and a great absorption dye ability being widely used in many fields and in a number of fascinating applications. In this study, a wet chemical route, particularly a sol gel method using spin-coating is adopted to deposit TiO2 thin films onto soda lime glass and silicon substrates. TiO2 films were prepared by using an alcoholic solution of analytical reagent grade TiCl4 as titanium precursor at various experimental conditions. The accent was put on the conditions of preparation (spin time, spin speed, precursor concentration, number of coating layers etc), doping and on the post-deposit treatment namely the drying and the crystallization. The results showed a strong dependence on the drying temperature and on the temperature and duration of the crystallization. We found that the solution preparation and its color are important for getting a reproducible final product. The Raman spectra recorded at room temperature, showed the characteristic peaks of anatase which appear at 143 and around 396 cm-1. These peaks confirm the presence of TiO2. The X-ray diffraction (XRD) was used to identify the crystalline characteristic of TiO2 while the chemical states and relative amounts of the main elements existing in the samples were investigated by X-ray Photoelectron Spectroscopy (XPS). The morphology of the samples was visualized by AFM. We show by this work the feasibility to obtain different nanostructured TiO2 by changing the concentration of the solution. Photocatalytic activity of TiO2 films was evaluated. Rhodamine B is a recalcitrant dye and TiO2 was successfully tested for its oxidation. An abatement of 60% was obtained under sunlight for an initial concentration of 10 mg/l.
NASA Astrophysics Data System (ADS)
Marsi, N.; Rus, A. Z. M.
2017-08-01
This project presents the effect of biopolymer composite surface coating on TiO2 fillers by analysing the static water contact angle, SEM micrographs, porosity, density and refractive index of biopolymer doped with different loading of TiO2. The different ratio loading of 0.5, 1.0, 1.5, 2.0 and 2.5 (wt/wt%) TiO2 can be used to improve the material properties in practical use for outdoor application especially to enhance the stability of surface coating. It is found that the smooth surfaces with a low ratio loading of TiO2 fillers on biopolymer composite surface coating increases the static water contact angle up to 162.29°. It is interpreted with respect to nano- features existing on the surface of the water repellent creates a thin superhydrphobic layer. The relationship between porosity and density is indirectly proportional where the higher the loading of TiO2 filler produce the lower porosity up to 0.86% of the surface coating. The movement from shorter to longer of wavelength was observed before and after exposure indicates that there are optimization of absorption of UV-B radiation as the amount of delocalisation.
Solute redistribution and phase stability at FeCr/TiO 2–x interfaces under ion irradiation
Xu, Y.; Aguiar, J. A.; Yadav, S. K.; ...
2015-02-26
Cr diffusion in trilayer thin films of 100 nm Fe–18Cr/125 nm TiO 2–x/100 nm Fe–18Cr deposited on MgO substrates at 500 °C was studied by either annealing at 500 °C or Ni 3+ ion irradiation at 500 °C. Microchemistry and microstructure evolution at the metal/oxide interfaces were investigated using (high-resolution) transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Diffusion of Cr into the O-deficient TiO 2 layer, with negligible segregation to the FeCr/TiO 2–x interface itself, was observed under both annealing and irradiation. Cr diffusion into TiO 2–x was enhanced in ion-irradiated samples as compared to annealed.more » Irradiation-induced voids and amorphization of TiO 2–x was also observed. The experimental results are rationalized using first-principles calculations that suggest an energetic preference for substituting Ti with Cr in sub-stoichiometric TiO 2. Furthermore, the implications of these results on the irradiation stability of oxide-dispersed ferritic alloys are discussed.« less
Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film.
Yao, Yanyan; Ohko, Yoshihisa; Sekiguchi, Yuki; Fujishima, Akira; Kubota, Yoshinobu
2008-05-01
Ag/titanium dioxide (TiO(2))-coated silicon catheters were easily fabricated with Ag nanoparticles deposition on both the inside wall and the outside wall of TiO(2)-coated catheters by TiO(2) photocatalysis. This is an application of the silicon catheters coated with TiO(2), which possess a self-sterilizing and self-cleaning property combining with UV light illumination (Ohko et al., J Biomed Mater Res: Appl Biomater 2001;58:97). Ag/TiO(2)-coated silicon catheters exhibited a strong bactericidal effect even in the dark. When the 2-5 x 10(5) of colony-forming units of Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus were respectively applied to the surface of the Ag/TiO(2) catheters, which were loaded with approximately 15 nmol cm(-2) of Ag, 99% effective sterilization occurred in a very short time: 20 min for E. coli, 60 min for P. aeruginosa, and 90 min for S. aureus. Additionally, the Ag/TiO(2)-coated catheters possessed a strong self-cleaning property. Using UV illumination, the photocatalytic decomposition rate of methylene blue dye representing the self-cleaning capability, on an Ag/TiO(2) catheter which was loaded with 2 nmol cm(-2) of Ag, was approximately 1.2 times higher (at maximum) than that on TiO(2) coating alone. Furthermore, the Ag nanoparticles can be pre-eminently and uniformly deposited onto the TiO(2) coating, and the amount of Ag was easily controllable from a few nanomoles per square centimeter to approximately 70 nmol cm(-2) by changing the UV illumination time for TiO(2) photocatalysis. This type of catheter shows a great promise in lowering the incidence of catheter-related bacterial infections. Copyright 2007 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Chen, C. L.; Feng, H. H.; Zhang, Z.; Brazdeikis, A.; Miranda, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Huang, Z. J.; Liou, Y.; Chu, W. K.;
1999-01-01
Perovskite Ba(0.5)SR(0.5)TiO3 thin films have been synthesized on (001) LaAl03 substrates by pulsed laser ablation. Extensive X-ray diffraction, rocking curve, and pole-figure studies suggest that the films are c-axis oriented and exhibit good in-plane relationship of <100>(sub BSTO)//<100>(sub LAO). Rutherford Backscattering Spectrometry studies indicate that the epitaxial films have excellent crystalline quality with an ion beam minimum yield chi(sub min) Of only 2.6 %. The dielectric property measurements by the interdigital technique at 1 MHz show room temperature values of the relative dielectric constant, epsilon(sub r), and loss tangent, tan(sub delta), of 1430 and 0.007 with no bias, and 960 and 0.001 with 35 V bias, respectively. The obtained data suggest that the as-grown Ba(0.5)SR(0.5)TiO3 films can be used for development of room-temperature high-frequency tunable elements.
NASA Astrophysics Data System (ADS)
Chen, T. L.; Furubayashi, Y.; Hirose, Y.; Hitosugi, T.; Shimada, T.; Hasegawa, T.
2007-10-01
Nb0.06SnxTi0.94-xO2 (x <= 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb0.06Sn0.3 Ti0.64O2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO2. Low resistivity on the order of 10-4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb0.06Snx Ti0.94-xO2 thin films (x <= 0.2). Optical and transport analyses demonstrate that doping Sn into Nb0.06 Ti0.94O2 can reduce the refractivity while maintaining low resistivity and high transparency.
Zhiyong, Yu; Mielczarski, E; Mielczarski, J; Laub, D; Buffat, Ph; Klehm, U; Albers, P; Lee, K; Kulik, A; Kiwi-Minsker, L; Renken, A; Kiwi, J
2007-02-01
An innovative way to fix preformed nanocrystalline TiO(2) on low-density polyethylene film (LDPE-TiO(2)) is presented. The LDPE-TiO(2) film was able to mediate the complete photodiscoloration of Orange II using about seven times less catalyst than a TiO(2) suspension and proceeded with a photonic efficiency of approximately 0.02. The catalyst shows photostability over long operational periods during the photodiscoloration of the azo dye Orange II. The LDPE-TiO(2) catalyst leads to full dye discoloration under simulated solar light but only to a 30% TOC reduction since long-lived intermediates generated in solution seem to preclude full mineralization of the dye. Physical insight is provided into the mechanism of stabilization of the LDPE-TiO(2) composite during the photocatalytic process by X-ray photoelectron spectroscopy (XPS). The adherence of TiO(2) on LDPE is investigated by electron microscopy (EM) and atomic force microscopy (AFM). The thickness of the TiO(2) film is seen to vary between 1.25 and 1.69 microm for an unused LDPE-TiO(2) film and between 1.31 and 1.50 microm for a sample irradiated 10h during Orange II discoloration pointing out to a higher compactness of the TiO(2) film after the photocatalysis.
Francioso, L; De Pascali, C; Capone, S; Siciliano, P
2012-03-09
The present research was motivated by the growing interest of the scientific community towards the understanding of basic gas-surface interaction mechanisms in 1D nanostructured metal oxide semiconductors, whose significantly enhanced chemical detection sensitivity is known. In this work, impedance spectroscopy (IS) was used to evaluate how a top-down patterning of the sensitive layer can modulate the electrical properties of a gas sensor based on a fully integrated nanometric array of TiO(2) polycrystalline strips. The aim of the study was supported by comparative experimental activity carried out on different thin film gas sensors based on identical TiO(2) polycrystalline sensitive thin films. The impedance responses of the investigated devices under dry air (as the reference environment) and ethanol vapors (as the target gas) were fitted by a complex nonlinear least-squares method using LEVM software, in order to find an appropriate equivalent circuit describing the main conduction processes involved in the gas/semiconductor interactions. Two different equivalent circuit models were identified as completely representative of the TiO(2) thin film and the TiO(2) nanostructure-based gas sensors, respectively. All the circuit parameters were quantified and the related standard deviations were evaluated. The simulated results well approximated the experimental data as indicated by the small mean errors of the fits (in the range of 10(-4)) and the small standard deviations of the circuit parameters. In addition to the substrate capacitance, three different contributions to the overall conduction mechanism were identified for both equivalent circuits: bulk conductivity, intergrain contact and semiconductor-electrode contact, electrically represented by an ideal resistor R(g), a parallel R(gb)C(gb) block and a parallel R(c)-CPE(c) combination, respectively. In terms of equivalent circuit modeling, the sensitive layer patterning introduced an additional parameter in parallel connection with the whole circuit block. Such a circuit element (an ideal inductor, L) has an average value of about 125 μH and exhibits no direct dependence on the analyte gas concentration. Its presence could be due to complex mutual inductance effects occurring both between all the adjacent nanostrips (10 µm spaced) and between the nanostrips and the n-type-doped silicon substrate underneath the thermal oxide (wire/plate effect), where a two order of magnitude higher magnetic permeability of silicon can give L values comparable with those estimated by the fitting procedure. Slightly modified experimental models confirmed that the theoretical background, regulating thin film devices based on metal oxide semiconductors, is also valid for nanopatterned devices.
Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho
2013-10-01
This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.
Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.
Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D
2017-04-19
Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.
NASA Astrophysics Data System (ADS)
Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.
2014-02-01
Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO2 (001), only ˜2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ˜500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO2(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700-750 °C in flowing oxygen. This pretreatment removes surface contaminants, TiO2 defects, and provides a terraced, atomically smooth surface.
Resonant infrared matrix-assisted pulsed laser evaporation of TiO2 nanoparticle films
NASA Astrophysics Data System (ADS)
Mayo, Daniel C.; Paul, Omari; Airuoyo, Idemudia J.; Pan, Zhengda; Schriver, Kenneth E.; Avanesyan, Sergey M.; Park, Hee K.; Mu, Richard R.; Haglund, Richard F.
2013-03-01
The successful development of flexible, high performance thin films that are competitive with silicon-based technology will likely require fabricating films of hybrid materials that incorporate nanomaterials, glasses, ceramics, polymers, and thin films. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is an ideal method for depositing organic materials and nanoparticles with minimal photochemical or photothermal damage to the deposited material. Furthermore, there are many nonhazardous solvents containing chemical functional groups with infrared absorption bands that are accessible using IR lasers. We report here results of recent work in which RIR-MAPLE has been employed successfully to deposit thin films of TiO2 nanoparticles on Si substrates. Using an Er:YAG laser ( λ=2.94 μm), we investigated a variety of MAPLE matrices containing -OH moieties, including water and all four isomers of butyl alcohol. The alcohol isomers are shown to provide effective and relatively nontoxic solvents for use in the RIR-MAPLE process. In addition, we examine the effects of varying concentration and laser fluence on film roughness and surface coverage.
NASA Astrophysics Data System (ADS)
Zannotti, Marco; Giovannetti, Rita; D'Amato, Chiara Anna; Rommozzi, Elena
2016-01-01
UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.
Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2
NASA Astrophysics Data System (ADS)
Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng
2012-07-01
A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.
Diapirism and the origin of high TiO2 mare glasses
NASA Technical Reports Server (NTRS)
Hess, Paul C.
1991-01-01
High TiO2 mare picritic glasses are derived from cumulate source regions that are only modestly endowed with ilmenite-enriched crystallization products. These sources are mobilized by the heat derived from the primitive interior and evolve into diapirs which rise adiabatically from depths in excess of 700 km. As these diapirs undergo pressure-release melting, they also stir in significant portions of the surrounding mantle.
NASA Astrophysics Data System (ADS)
Horita, Ryohei; Ohtani, Kyosuke; Kai, Takahiro; Murao, Yusuke; Nishida, Hiroya; Toya, Taku; Seo, Kentaro; Sakai, Mio; Okuda, Tetsuji
2013-11-01
We have fabricated anatase-TiO2 polycrystalline-thin-film field-effect transistors (FETs) with poly(vinyl alcohol) (PVA), ion-liquid (IL), and ion-gel (IG) gate layers, and have tried to improve the response to gate voltage by varying the concentration of mobile ions in these electrolyte gate layers. The increase in the concentration of mobile ions by doping NaOH into the PVA gate layer or reducing the gelator in the IG gate layer markedly increases the drain-source current and reduces the driving gate voltage, which show that the mobile ions in the PVA, IL, and IG gate layers cause the formation of electric double layers (EDLs), which act as nanogap capacitors. In these TiO2-EDL-FETs, the slow formation of EDLs and the oxidation reaction at the interface between the surface of the TiO2 film and the electrolytes cause unideal FET properties. In the optimized IL and IG TiO2-EDL-FETs, the driving gate voltage is less than 1 V and the ON/OFF ratios of the transfer characteristics are about 1×104 at RT, and the nearly metallic state is realized at the interface purely by applying a gate voltage.
Applications of large-area nanopatterning to energy generation and storage devices
NASA Astrophysics Data System (ADS)
Mills, Eric N.
This dissertation encompasses the creation and testing of nanostructured, electrochemically-active energy generation and storage devices, and development of the associated fabrication techniques. The fabricated devices include nanopatterned, plasmonically-active, TiO2+Au thin films for Photocatalytic Water Splitting (PCW), TiO2-based Dye-Sensitized Solar Cells (DSSCs) incorporating nanopatterned, plasmonically-active metallic front electrodes, and Si nanopillar anodes for Li-ion batteries. Techniques were also developed for encapsulation and removal of wet-etched Si nanowires from their mother substrates. TiO2 was the first material to be widely used for PCW. Its use is hampered by its large bandgap (~3.2eV), and poor recombination lifetimes. Au nanoparticles (NPs) have been previously used to improve recombination lifetimes in TiO2 by separating photogenerated carriers near the NP edges, and to increase photocurrents by injecting plasmonically-excited hot electrons into the TiO2 conduction band. Using nanostructured TiO 2+Au electrodes, we aim to increase the PCW efficiency of TiO2 -based electrodes. Dye-sensitized solar cells (DSSCs) employ visible-absorbing dyes anchored to a high-surface-area semiconducting scaffold. The front transparent conducting electrode (TCE) is typically ITO, a scarce and expensive material. We aim to increase the efficiency of thin-film DSSCs and eliminate the use of ITO by using a metallic subwavelength array (MESH) of nanoholes as the front TCE. Silicon holds promise as a high-capacity anode material for Li-ion batteries, as it can store ~10x the Li of graphite, the current leading anode material (3569 vs. 372 mAh/g). However, Si undergoes dramatic (>300%) volume expansion upon "lithiation", pulverizing any structure with non-nanoscopic dimensions (>250nm). We created large-area arrays of "nanopillars" with sub-100nm diameters, using roll-to-roll-compatible flexible-mold NIL on commercially-available metal substrates. Ordered nanopatterning by NIL combined with Metal-Assisted Chemical Etching (MACE) techniques is ideal for creating large-area arrays of high aspect-ratio nanowires, for use in solar cells or battery anodes. We introduce a polymer encapsulation technique that allows separation of the nanowire array from the mother substrate, while leaving the array structure, and original metal nanopattern, intact.
Lu, Wen-Chung; Tseng, Li-Chun; Chang, Kao-Shuo
2017-09-11
This study is the first to employ combinatorial hydrothermal synthesis and facile spin-coating technology to fabricate TiO 2 -reduced graphene oxide (rGO) nanorod composition spreads. The features of this study are (1) the development of a self-designed spin-coating wedge, (2) the systemic investigation of the structure-property relationship of the system, (3) the high-throughput screening of the optimal ratio from a wide range of compositions for photocatalytic and photoelectrochemical (PEC) applications, and (4) the effective coupling between the density gradient TiO 2 nanorod array and the thickness gradient rGO. The formation of rGO in the fabricated TiO 2 -rGO sample was monitored through Fourier transform infrared spectrometry. Transmission electron microscopy images also suggested that the TiO 2 nanorod surfaces were covered with a thin layer of amorphous rGO. The rutile TiO 2 plane evolution along the composition variation was verified through X-ray diffraction. 7% TiO 2 -93% rGO on the nanorod composition spread exhibited the most promising photocatalytic ability; the corresponding photodegradation kinetics, denoted by the photodegradation rate constant (k), was determined to be approximately 12.7 × 10 -3 min -1 . The excellent performance was attributed to the effective coupling between the TiO 2 and rGO, which improved the charge carrier transport, thus inhibiting electron-hole pair recombination. A cycling test implied that 7% TiO 2 -93% rGO is a reliable photocatalyst. A photoluminescence spectroscopy study also supported the superior photocatalytic ability of the sample, which was attributed to its markedly poorer recombination behavior. In addition, without further treatment, the sample exhibited excellent PEC stability; the photocurrent density was more than three times higher than that exhibited by the density gradient TiO 2 nanorods.
NASA Astrophysics Data System (ADS)
Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh
2013-11-01
Nanocomposite thin films of tin oxide (SnO2)/titanium oxide (TiO2) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO2/TiO2 in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO2 doped SnO2 nanocomposite films were irradiated by 100 MeV Au8+ ion beam at fluence range varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2 at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm-1 confirms the presence of O-Sn-O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.
Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing
2014-01-01
Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664
NASA Astrophysics Data System (ADS)
Liu, Yu; Xu, Chao; Feng, ZuDe
2014-09-01
Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region.
Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation
Caricato, Anna Paola; Luches, Armando; Rella, Roberto
2009-01-01
The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039
Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.
Caricato, Anna Paola; Luches, Armando; Rella, Roberto
2009-01-01
The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.
Using TiO2 as a conductive protective layer for photocathodic H2 evolution.
Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib
2013-01-23
Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.
NASA Astrophysics Data System (ADS)
Thao, Tran Thi; Long, Dang Dinh; Truong, Vo-Van; Dinh, Nguyen Nang
2016-08-01
With the aim of findingout the appropriate buffer layers for organic solar cells (OSC), TiO2 and ZnO on ITO/glass were prepared as nanorod-like thin films. The TiO2 films were crystallyzed in the anatase phase and the ZnO films, in the wurtzite structure. The nanorods in both the fims have a similar size of 15 to 20 nm in diameter and 30 to 50 nm in length. The nanorods have an orientation nearly perpendicular to the ITO-substrate surface. From UV-Vis data the bandgap of the TiO2 and ZnO films were determined tobe 3.26 eV and 3.42 eV, respectively. The laminar organic solar cells with added TiO2 and ZnO, namely ITO/TiO2/P3HT:PCBM/LiF/Al (TBD) and ITO/ZnO/P3HT:PCBM/LiF/Al (ZBD)were made for characterization of the energy conversion performance. As a result, comparing to TiO2,the nanorod-likeZnO filmwas found to be a much better buffer layer that made the fill factor improve from a value of 0.60 for TBD to 0.82 for ZBD, and consequently thePCE was enhanced from 0.84 for TBD to 1.17% for ZBD.
Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.
Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk
2017-10-11
We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.
Krýsová, Hana; Krýsa, Josef; Kavan, Ladislav
2018-01-01
For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO 2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO 2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20-200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO 2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO 2 films. The blocking properties of the as-deposited TiO 2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO 2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells.
TiO2 films photocatalytic activity improvements by swift heavy ions irradiation
NASA Astrophysics Data System (ADS)
Rafik, Hazem; Mahmoud, Izerrouken; Mohamed, Trari; Abdenacer, Benyagoub
2014-08-01
TiO2 thin films synthesized by sol-gel on glass substrates are irradiated by 90 MeV Xe ions at various fluences and room temperature under normal incidence. The structural, electrical, optical and surface topography properties before and after Xe ions irradiation are investigated. X-ray diffraction (XRD) reveals that the crystallinity is gradually destroyed, and the films become amorphous above 5×1012 ions/cm2. The band gap is not affected by Xe ions irradiation as evidenced from the optical measurements. By contrast, the conductivity increases with raising Xe fluence. The energy band diagram established from the electrochemical characterization shows the feasibility of TiO2 films for the photo-electrochemical chromate reduction. Xe ion irradiation results in enhanced photocatalytic activity in aquatic medium, evaluated by the reduction of Cr(VI) into trivalent state. TiO2 films irradiated at 1013 Xe/cm2 exhibit the highest photoactivity; 69% of chromate (10 ppm) is reduced at pH 3 after 4 h of exposure to sunlight (1120 mW cm-2) with a quantum yield of 0.06%.
Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells
NASA Astrophysics Data System (ADS)
Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei
2016-12-01
Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.
Thin film growth into the ion track structures in polyimide by atomic layer deposition
NASA Astrophysics Data System (ADS)
Mättö, L.; Malm, J.; Arstila, K.; Sajavaara, T.
2017-09-01
High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was determined to be 51 ± 3 × 1016 at./cm2, corresponding to the thickness of 55 ± 3 nm. Furthermore, the growth per cycle was 1.4 Å/cycle. The growth is highly linear from the first cycles. In the case of TiO2, the growth per cycle is clearly slower during the first 200 cycles but then it increases significantly. The growth rate based on RBS measurements is 0.24 Å/cycle from 3 to 200 cycles and then 0.6 Å/cycle between 200 and 400 cycles. The final areal density of TiO2 film after 400 cycles is 148 ± 3 × 1015 at./cm2 which corresponds to the thickness of 17.4 ± 0.4 nm. The modification of the polyimide surface by etching prior to the deposition did not have an effect on the Al2O3 and TiO2 growth.
NASA Astrophysics Data System (ADS)
Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy
2017-02-01
Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.
Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan
2011-12-01
Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.
Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions
NASA Astrophysics Data System (ADS)
Tang, Haixiong; Zhou, Zhi; Bowland, Christopher C.; Sodano, Henry A.
2015-08-01
Perovskite structure (ABO3) thin films have wide applications in electronic devices due to their unique properties, including high dielectric permittivity, ferroelectricity and piezoelectric coupling. Here, we report an approach to grow highly textured thick lead titanate (PbTiO3) films on conductive substrates by a two-step hydrothermal reaction. Initially, vertically aligned TiO2 nanowire arrays are grown on fluorine-doped tin oxide (FTO) coated glass, which act as template crystals for conversion to the perovskite structure. The PbTiO3 films are then converted from TiO2 NW arrays by diffusing Pb2+ ions into the template through a second hydrothermal reaction. The dielectric permittivity and piezoelectric coupling coefficient (d33) of the PbTiO3 films are as high as 795 at 1 kHz and 52 pm V-1, respectively. The reported process can also potentially be expanded for the assembly of other complex perovskite ATiO3 (A = Ba, Ca, Cd, etc) films by using the highly aligned TiO2 NW arrays as templates. Therefore, the approach introduced here opens up a new door to synthesize ferroelectric thin films on conductive substrates for application in sensors, actuators, and ultrasonic transducers that are important in various industrial and scientific areas.
First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles
NASA Astrophysics Data System (ADS)
Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi
2012-02-01
We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.
Memristive behavior of the SnO2/TiO2 interface deposited by sol-gel
NASA Astrophysics Data System (ADS)
Boratto, Miguel H.; Ramos, Roberto A.; Congiu, Mirko; Graeff, Carlos F. O.; Scalvi, Luis V. A.
2017-07-01
A novel and cheap Resistive Random Access Memory (RRAM) device is proposed within this work, based on the interface between antimony doped Tin Oxide (4%at Sb:SnO2) and Titanium Oxide (TiO2) thin films, entirely prepared through a low-temperature sol-gel process. The device was fabricated on glass slides using evaporated aluminum electrodes. Typical bipolar memristive behavior under cyclic voltage sweeping and square wave voltages, with well-defined high and low resistance states (HRS and LRS), and set and reset voltages are shown in our samples. The switching mechanism, explained by charges trapping/de-trapping by defects in the SnO2/TiO2 interface, is mainly driven by the external electric field. The calculated on/off ratio was about 8 × 102 in best conditions with good reproducibility over repeated measurement cycles under cyclic voltammetry and about 102 under applied square wave voltage.
Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting.
Cho, In Sun; Logar, Manca; Lee, Chi Hwan; Cai, Lili; Prinz, Fritz B; Zheng, Xiaolin
2014-01-08
We report a new flame reduction method to generate controllable amount of oxygen vacancies in TiO2 nanowires that leads to nearly three times improvement in the photoelectrochemical (PEC) water-splitting performance. The flame reduction method has unique advantages of a high temperature (>1000 °C), ultrafast heating rate, tunable reduction environment, and open-atmosphere operation, so it enables rapid formation of oxygen vacancies (less than one minute) without damaging the nanowire morphology and crystallinity and is even applicable to various metal oxides. Significantly, we show that flame reduction greatly improves the saturation photocurrent densities of TiO2 nanowires (2.7 times higher), α-Fe2O3 nanowires (9.4 times higher), ZnO nanowires (2.0 times higher), and BiVO4 thin film (4.3 times higher) in comparison to untreated control samples for PEC water-splitting applications.
Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon
2012-04-01
TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.
Choi, Hyunbong; Nicolaescu, Roxana; Paek, Sanghyun; Ko, Jaejung; Kamat, Prashant V
2011-11-22
The photoresponse of quantum dot solar cells (QDSCs) has been successfully extended to the near-IR (NIR) region by sensitizing nanostructured TiO(2)-CdS films with a squaraine dye (JK-216). CdS nanoparticles anchored on mesoscopic TiO(2) films obtained by successive ionic layer adsorption and reaction (SILAR) exhibit limited absorption below 500 nm with a net power conversion efficiency of ~1% when employed as a photoanode in QDSC. By depositing a thin barrier layer of Al(2)O(3), the TiO(2)-CdS films were further modified with a NIR absorbing squaraine dye. Quantum dot sensitized solar cells supersensitized with a squariand dye (JK-216) showed good stability during illumination with standard global AM 1.5 solar conditions, delivering a maximum overall power conversion efficiency (η) of 3.14%. Transient absorption and pulse radiolysis measurements provide further insight into the excited state interactions of squaraine dye with SiO(2), TiO(2), and TiO(2)/CdS/Al(2)O(3) films and interfacial electron transfer processes. The synergy of combining semiconductor quantum dots and NIR absorbing dye provides new opportunities to harvest photons from different regions of the solar spectrum. © 2011 American Chemical Society
Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen
2014-02-10
Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.
Photolytically driven generation of dissolved oxygen and increased oxyhemoglobin in whole blood.
Monzyk, Bruce F; Burckle, Eric C; Carleton, Linda M; Busch, James; Dasse, Kurt A; Martin, Peter M; Gilbert, Richard J
2006-01-01
The severely debilitating nature of chronic lung disease has long provided the impetus for the development of technologies to supplement the respiratory capacity of the human lung. Although conventional artificial lung technologies function by delivering pressurized oxygen to the blood through a system of hollow fibers or tubes, our approach uses photolytic energy to generate dissolved oxygen (DO) from the water already present in blood, thus eliminating the need for gas delivery. We have previously demonstrated that it is feasible to generate dissolved oxygen from water based on UVA illumination of a highly absorbent TiO2 thin film. In the current study, we extend this work by using photolytic energy to generate DO from whole blood, thus resulting in an increase of oxyhemoglobin as a function of back side TiO2 surface film illumination. Initial experiments, performed with Locke's Ringer solution, demonstrated effective film thickness and material selection for the conductive layer. The application of a small bias voltage was used to conduct photogenerated electrons from the aqueous phase to minimize electron recombination with the DO.Mixed arterial-venous bovine blood was flowed in a recirculating loop over TiO2 nanocrystalline films illuminated on the side opposite the blood (or "back side") to eliminate the possibility of any direct exposure of blood to light. After light exposure of the TiO2 film, the fraction of oxyhemoglobin in the blood rapidly increased to near saturation and remained stable throughout the trial period. Last, we evaluated potential biofouling of the DO generating surface by scanning electron microscopy, after photolytically energized DO generation in whole blood, and observed no white or red blood cell surface deposition, nor the accumulation of any other material at this magnification. We conclude that it is feasible to photolytically oxygenate the hemoglobin contained in whole blood with oxygen derived from the blood's own water content without involving a gaseous phase.
Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics
NASA Astrophysics Data System (ADS)
Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.
Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.
NASA Astrophysics Data System (ADS)
Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro
2015-07-01
We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.
NASA Astrophysics Data System (ADS)
Abdulagatov, Aziz Ilmutdinovich
Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately mixed TiO2 and nanographitized carbon. The graphitized carbon in the film was formed as a result of the removal of hydrogen by pyrolysis of the organic constituency of the MLD film. The presence of graphitic carbon allowed a 14 orders of magnitude increase in the electrical conductivity of the composite material compared fully oxidized rutile TiO 2.
Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels
NASA Astrophysics Data System (ADS)
Desario, Paul A.; Pietron, Jeremy J.; Devantier, Devyn E.; Brintlinger, Todd H.; Stroud, Rhonda M.; Rolison, Debra R.
2013-08-01
We demonstrate plasmonic enhancement of visible-light-driven splitting of water at three-dimensionally (3D) networked gold-titania (Au-TiO2) aerogels. The sol-gel-derived ultraporous composite nanoarchitecture, which contains 1 to 8.5 wt% Au nanoparticles and titania in the anatase form, retains the high surface area and mesoporosity of unmodified TiO2 aerogels and maintains stable dispersion of the ~5 nm Au guests. A broad surface plasmon resonance (SPR) feature centered at ~550 nm is present for the Au-TiO2 aerogels, but not Au-free TiO2 aerogels, and spans a wide range of the visible spectrum. Gold-derived SPR in Au-TiO2 aerogels cast as films on transparent electrodes drives photoelectrochemical oxidation of aqueous hydroxide and extends the photocatalytic activity of TiO2 from the ultraviolet region to visible wavelengths exceeding 700 nm. Films of Au-TiO2 aerogels in which Au nanoparticles are deposited on pre-formed TiO2 aerogels by a deposition-precipitation method (DP Au/TiO2) also photoelectrochemically oxidize aqueous hydroxide, but less efficiently than 3D Au-TiO2, despite having an essentially identical Au nanoparticle weight fraction and size distribution. For example, 3D Au-TiO2 containing 1 wt% Au is as active as DP Au/TiO2 with 4 wt% Au. The higher photocatalytic activity of 3D Au-TiO2 derives only in part from its ability to retain the surface area and porosity of unmodified TiO2 aerogel. The magnitude of improvement indicates that in the 3D arrangement either a more accessible photoelectrochemical reaction interphase (three-phase boundary) exists or more efficient conversion of excited surface plasmons into charge carriers occurs, thereby amplifying reactivity over DP Au/TiO2. The difference in photocatalytic efficiency between the two forms of Au-TiO2 demonstrates the importance of defining the structure of Au||TiO2 interfaces within catalytic Au-TiO2 nanoarchitectures.We demonstrate plasmonic enhancement of visible-light-driven splitting of water at three-dimensionally (3D) networked gold-titania (Au-TiO2) aerogels. The sol-gel-derived ultraporous composite nanoarchitecture, which contains 1 to 8.5 wt% Au nanoparticles and titania in the anatase form, retains the high surface area and mesoporosity of unmodified TiO2 aerogels and maintains stable dispersion of the ~5 nm Au guests. A broad surface plasmon resonance (SPR) feature centered at ~550 nm is present for the Au-TiO2 aerogels, but not Au-free TiO2 aerogels, and spans a wide range of the visible spectrum. Gold-derived SPR in Au-TiO2 aerogels cast as films on transparent electrodes drives photoelectrochemical oxidation of aqueous hydroxide and extends the photocatalytic activity of TiO2 from the ultraviolet region to visible wavelengths exceeding 700 nm. Films of Au-TiO2 aerogels in which Au nanoparticles are deposited on pre-formed TiO2 aerogels by a deposition-precipitation method (DP Au/TiO2) also photoelectrochemically oxidize aqueous hydroxide, but less efficiently than 3D Au-TiO2, despite having an essentially identical Au nanoparticle weight fraction and size distribution. For example, 3D Au-TiO2 containing 1 wt% Au is as active as DP Au/TiO2 with 4 wt% Au. The higher photocatalytic activity of 3D Au-TiO2 derives only in part from its ability to retain the surface area and porosity of unmodified TiO2 aerogel. The magnitude of improvement indicates that in the 3D arrangement either a more accessible photoelectrochemical reaction interphase (three-phase boundary) exists or more efficient conversion of excited surface plasmons into charge carriers occurs, thereby amplifying reactivity over DP Au/TiO2. The difference in photocatalytic efficiency between the two forms of Au-TiO2 demonstrates the importance of defining the structure of Au||TiO2 interfaces within catalytic Au-TiO2 nanoarchitectures. Electronic supplementary information (ESI) available: Nitrogen physisorption isotherms; Au4f X-ray photoelectron spectra; TEM-derived distributions of Au size and aspect ratio; relative IPCE enhancement ratio. See DOI: 10.1039/c3nr01429k
Surface and microstructural properties of photocatalytic cements for pavement applications.
DOT National Transportation Integrated Search
2016-10-01
Thin concrete inlays incorporating flowable fibrous concrete (FFC) mix designs as well as titanium dioxide (TiO2)- containing photocatalytic cements are a promising pavement preservation solution. These multi-functional inlays offer enhanced construc...
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Kouzoudis, D.; Dickey, E. C.; Qian, D.; Anderson, M. A.; Shahidain, R.; Lindsey, M.; Green, L.
2000-01-01
Ribbonlike magnetoelastic sensors can be considered the magnetic analog of an acoustic bell; in response to an externally applied magnetic field impulse the sensors emit magnetic flux with a characteristic resonant frequency. The magnetic flux can be detected external to the test area using a pick-up coil, enabling query remote monitoring of the sensor. The characteristic resonant frequency of a magnetoelastic sensor changes in response to mass loads. [L.D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986). p. 100].Therefore, remote query chemical sensors can be fabricated by combining the magnetoelastic sensors with a mass changing, chemically responsive layer. In this work magnetoelastic sensors are coated with humidity-sensitive thin films of ceramic, nanodimensionally porous TiO2 to make remote query humidity sensors. c2000 American Institute of Physics.
Pure rotational spectra of TiO and TiO2 in VY Canis Majoris
NASA Astrophysics Data System (ADS)
Kamiński, T.; Gottlieb, C. A.; Menten, K. M.; Patel, N. A.; Young, K. H.; Brünken, S.; Müller, H. S. P.; McCarthy, M. C.; Winters, J. M.; Decin, L.
2013-03-01
We report the first detection of pure rotational transitions of TiO and TiO2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, Trot, of about 250 K was derived for TiO2. Although Trot was not well constrained for TiO, it is likely somewhat higher than that of TiO2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the "seeds" of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow. Based on observations carried out with the Submillimeter Array and IRAM Plateau de Bure Interferometer.Plateau de Bure data (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A113
Enhancement of electrical properties in polycrystalline BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Yun, Kwi Young; Ricinschi, Dan; Kanashima, Takeshi; Okuyama, Masanori
2006-11-01
Ferroelectric BiFeO3 thin films were grown on Pt /TiO2/SiO2/Si substrates by pulsed-laser deposition. From the x-ray diffraction analysis, the BiFeO3 thin films consist of perovskite single phase, and the crystal structure shows the tetragonal structure with a space group P4mm. The BiFeO3 thin films show enhanced electrical properties with low leakage current density value of ˜10-4A /cm2 at a maximum applied voltage of 31V. This enhanced electrical resistivity allowed the authors to obtain giant ferroelectric polarization values such as saturation polarizations of 110 and 166μC/cm2 at room temperature and 80K, respectively.
NASA Astrophysics Data System (ADS)
Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub
2017-06-01
A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.
Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak
2014-12-01
We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent.
Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System
NASA Astrophysics Data System (ADS)
Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.
2017-11-01
Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.
Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian
2011-07-10
To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Zhenyu; Eaton, Todd R.; Gallagher, James R.
Controlling metal nanoparticle size is one of the principle challenges in developing new supported catalysts. Typical methods where a metal salt is deposited and reduced can result in a polydisperse mixture of metal nanoparticles, especially at higher loading. Polydispersity can exacerbate the already significant challenge of controlling sintering at high temperatures, which decreases catalytic surface area. Here, we demonstrate the size-selective photoreduction of Ag nanoparticles on TiO2 whose surface has been partially masked with a thin SiO2 layer. To synthesize this layered oxide material, TiO2 particles are grafted with tert-butylcalix[4]arene molecular templates (~2 nm in diameter) at surface densities ofmore » 0.05–0.17 templates.nm–2, overcoated with ~2 nm of SiO2 through repeated condensation cycles of limiting amounts of tetraethoxysilane (TEOS), and the templates are removed oxidatively. Ag photodeposition results in uniform nanoparticle diameters ≤ 3.5 nm (by transmission electron microscopy (TEM)) on the partially masked TiO2, whereas Ag nanoparticles deposited on the unmodified TiO2 are larger and more polydisperse (4.7 ± 2.7 nm by TEM). Furthermore, Ag nanoparticles on the partially masked TiO2 do not sinter after heating at 450 °C for 3 h, while nanoparticles on the control surfaces sinter and grow by at least 30%, as is typical. Overall, this new synthesis approach controls metal nanoparticle dispersion and enhances thermal stability, and this facile synthesis procedure is generalizable to other TiO2-supported nanoparticles and sizes and may find use in the synthesis of new catalytic materials.« less
Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology
NASA Astrophysics Data System (ADS)
Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.
2018-01-01
The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with respect to the thin film reference. The results are discussed in the light of the existing literature on nanofilms of amorphous oxides.
Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro
2015-07-17
We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.
Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng
2018-06-05
Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan
2018-06-01
In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.
NASA Astrophysics Data System (ADS)
Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.
1994-09-01
The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.
Lee, Chang-Gu; Javed, Hassan; Zhang, Danning; Kim, Jae-Hong; Westerhoff, Paul; Li, Qilin; Alvarez, Pedro J J
2018-04-03
Using a bipolymer system consisting of polyvinylpyrrolidone (PVP) and poly(vinylidene fluoride) (PVDF), P25-TiO 2 was immobilized into thin film mats of porous electrospun fibers. Pores were introduced by dissolving sacrificial PVP to increase surface area and enhance access to TiO 2 . The highest photocatalytic activity was achieved using a PVDF:PVP weight ratio of 2:1. Methylene blue (MB) was used to visualize contaminant removal, assess the sorption capacity (5.93 ± 0.23 mg/g) and demonstrate stable removal kinetics ( k MB > 0.045 min -1 ) under UVA irradiation (3.64 × 10 -9 einstein/cm 2 /s) over 10 cycles. Treatment was also accomplished via sequential MB sorption in the dark and subsequent photocatalytic degradation under UVA irradiation, to illustrate that these processes could be uncoupled to overcome limited light penetration. The photocatalytic mat degraded bisphenol A and 17α-ethynylestradiol in secondary wastewater effluent (17 mg TOC/L), and (relative to TiO 2 slurry) immobilization of TiO 2 in the mat mitigated performance inhibition by co-occurring organics that scavenge oxidation capacity. This significantly lowered the electrical energy-per-order of reaction (EEO) needed to remove such endocrine disruptors in the presence of oxidant scavenging/inhibitory organics. Thus, effective TiO 2 immobilization into polymers with affinity toward specific priority pollutants could both increase the efficiency and reduce energy requirements of photocatalytic water treatment.
Benzimidazole derivative vs. different phases of TiO2-physico-chemical approach.
Karunakaran, C; Jayabharathi, J; Jayamoorthy, K
2013-10-01
1-Benzyl-2-phenyl-1H-benzo[d]imidazole (BPBI) has been synthesized by simple steps and characterized by spectral studies. Absorption and fluorescence spectral studies have been employed to investigate the interaction of BPBI with the anatase, hombikat, P25 and rutile phases of TiO2. The emission of the BPBI is efficiently quenched by anatase, hombikat and P25 TiO2 nanoparticles owing to charge injection from the excited singlet state of BPBI to the conduction band of the TiO2 nanoparticles. Surprisingly, rutile phase enhances the fluorescence which is likely due to lowering of LUMO and HOMO levels of the ligand on ducking of the benzimidazole moiety of the BPBI molecule into the void space of rutile TiO2. Electron injection from photoexcited BPBI to the TiO2 conduction band (S*→S(+)+e(-)(CB)) is likely to enhance the fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chadha, Tandeep S.
Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application. Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.
Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae
2018-05-11
Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.
Pulsed photonic fabrication of nanostructured metal oxide thin films
NASA Astrophysics Data System (ADS)
Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.
2017-09-01
Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.
Low temperature growth of ZnO nanorods array via solution-immersion on TiO2 seed layer
NASA Astrophysics Data System (ADS)
Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.
2018-05-01
In this work, TiO2:ZNR thin films were successfully fabricated on glass substrates at low temperatures of 75 to 90°C. The substrates were coated with titanium dioxide (TiO2) using sol-gel spin coating, which act as seed layer to grow zinc oxide nanorods (ZNR) by solution-immersion method. At 90 and 95° C, ZNR with hexagonal tip are well dispersed without any aggregation and exhibit more uniform nanorods array as observed using FESEM. The diffraction peak intensity of the (0 0 2)-plane increased as the temperature increased, indicating improved orientation in the c-axis direction of the ZNR as detected in XRD patterns. From UV-Vis absorbance spectra, it was found that the samples has higher absorption properties at middle range of immersion temperatures; 80, 85 and 90°C.
Titanium-dioxide nanotube p-n homojunction diode
NASA Astrophysics Data System (ADS)
Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant
2014-12-01
Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.
Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells
Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko
2016-01-01
Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499
Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses
NASA Astrophysics Data System (ADS)
Jenko, Monika; Gorenšek, Matevž; Godec, Matjaž; Hodnik, Maxinne; Batič, Barbara Šetina; Donik, Črtomir; Grant, John T.; Dolinar, Drago
2018-01-01
The surface chemistry and microstructures of titanium alloys (both new and used) and CoCrMo alloys used for hip and knee endoprostheses were determined using SEM (morphology), EBSD (phase analysis), AES and XPS (surface chemistry). Two new and two used endoprostheses were studied. The SEM SE and BE images showed their microstructures, while the EBSD provided the phases of the materials. During the production of the hip and knee endoprostheses, these materials are subject to severe thermomechanical treatments and physicochemical processes that are decisive for CoCrMo alloys. The AES and XPS results showed that thin oxide films on (a) Ti6Al4V are primarily a mixture of TiO2 with a small amount of Al2O3, while the V is depleted, (b) Ti6Al7Nb is primarily a mixture of TiO2 with a small amount of Al2O3 and Nb2O5, and (c) the CoCrMo alloy is primarily a mixture of Cr2O3 with small amounts of Co and Mo oxides. The thin oxide film on the CoCrMo alloy should prevent intergranular corrosion and improve the biocompatibility. The thin oxide films on the Ti alloys prevent further corrosion, improve the biocompatibility, and affect the osseointegration.
Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wenjing; Vannucci, Aaron K.; Farnum, Byron H.
2014-06-27
Light-driven dehydrogenation of benzyl alcohol (BnOH) to benzaldehyde and hydrogen has been shown to occur in a dye-sensitized photoelectrosynthesis cell (DSPEC). In the DSPEC, the photoanode consists of mesoporous films of TiO2 nanoparticles or of core/shell nanoparticles with tin-doped In2O3 nanoparticle (nanoITO) cores and thin layers of TiO2 deposited by atomic layer deposition (nanoITO/TiO2). Metal oxide surfaces were coderivatized with both a ruthenium polypyridyl chromophore in excess and an oxidation catalyst. Chromophore excitation and electron injection were followed by cross-surface electron-transfer activation of the catalyst to RuIV=O2+, which then oxidizes benzyl alcohol to benzaldehyde. The injected electrons are transferred tomore » a Pt electrode for H2 production. The nanoITO/TiO2 core/shell structure causes a decrease of up to 2 orders of magnitude in back electron-transfer rate compared to TiO2. At the optimized shell thickness, sustained absorbed photon to current efficiency of 3.7% was achieved for BnOH dehydrogenation, an enhancement of ~10 compared to TiO2.« less
Clavel, Guylhaine; Marichy, Catherine; Willinger, Marc-Georg; Ravaine, Serge; Zitoun, David; Pinna, Nicola
2010-12-07
CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.
NASA Astrophysics Data System (ADS)
Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.
2002-12-01
Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.
Tao, Jie; Wu, Tao; Gao, Peng
2012-03-01
Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.
Study of nitrogen ion doping of titanium dioxide films
NASA Astrophysics Data System (ADS)
Ramos, Raul; Scoca, Diego; Borges Merlo, Rafael; Chagas Marques, Francisco; Alvarez, Fernando; Zagonel, Luiz Fernando
2018-06-01
This study reports on the properties of nitrogen doped titanium dioxide (TiO2) thin films considering the application as a transparent conducting oxide (TCO). Sets of thin films were prepared by sputtering a titanium target under oxygen atmosphere on a quartz substrate at 400 or 500 °C. Films were then doped at the same temperature by 150 eV nitrogen ions. The films were prepared in Anatase phase which was maintained after doping. Up to 30 at% nitrogen concentration was obtained at the surface, as determined by in situ X-ray photoelectron spectroscopy (XPS). Such high nitrogen concentration at the surface lead to nitrogen diffusion into the bulk which reached about 25 nm. Hall measurements indicate that average carrier density reached over 1019 cm-3 with mobility in the range of 0.1-1 cm2 V-1 s-1. Resistivity about 3 · 10-1 Ω cm could be obtained with 85% light transmission at 550 nm. These results indicate that low energy implantation is an effective technique for TiO2 doping that allows an accurate control of the doping process independently from the TiO2 preparation. Moreover, this doping route seems promising to attain high doping levels without significantly affecting the film structure. Such approach could be relevant for preparation of N:TiO2 transparent conducting electrodes (TCE).
Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection
NASA Astrophysics Data System (ADS)
Panigrahi, Shrabani; Basak, Durga
2011-05-01
Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.
Formation of TiO2 nanorings due to rapid thermal annealing of swift heavy ion irradiated films.
Thakurdesai, Madhavi; Sulania, I; Narsale, A M; Kanjilal, D; Bhattacharyya, Varsha
2008-09-01
Amorphous thin films of TiO2 deposited by Pulsed Laser Deposition (PLD) method are irradiated by Swift Heavy Ion (SHI) beam. The irradiated films are subsequently annealed by Rapid Thermal Annealing (RTA) method. Atomic Force Microscopy (AFM) study reveals formation of nano-rings on the surface after RTA processing. Phase change is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopy. Optical characterisation is carried out by UV-VIS absorption spectroscopy. Though no shift of absorption edge is observed after irradiation, RTA processing does show redshift.
Dye-Sensitized Hydrobromic Acid Splitting for Hydrogen Solar Fuel Production.
Brady, Matthew D; Sampaio, Renato N; Wang, Degao; Meyer, Thomas J; Meyer, Gerald J
2017-11-08
Hydrobromic acid (HBr) has significant potential as an inexpensive feedstock for hydrogen gas (H 2 ) solar fuel production through HBr splitting. Mesoporous thin films of anatase TiO 2 or SnO 2 /TiO 2 core-shell nanoparticles were sensitized to visible light with a new Ru II polypyridyl complex that served as a photocatalyst for bromide oxidation. These thin films were tested as photoelectrodes in dye-sensitized photoelectrosynthesis cells. In 1 N HBr (aq), the photocatalyst undergoes excited-state electron injection and light-driven Br - oxidation. The injected electrons induce proton reduction at a Pt electrode. Under 100 mW cm -2 white-light illumination, sustained photocurrents of 1.5 mA cm -2 were measured under an applied bias. Faradaic efficiencies of 71 ± 5% for Br - oxidation and 94 ± 2% for H 2 production were measured. A 12 μmol h -1 sustained rate of H 2 production was maintained during illumination. The results demonstrate a molecular approach to HBr splitting with a visible light absorbing complex capable of aqueous Br - oxidation and excited-state electron injection.
NASA Astrophysics Data System (ADS)
Mohanty, P.; Kabiraj, D.; Mandal, R. K.; Kulriya, P. K.; Sinha, A. S. K.; Rath, Chandana
2014-04-01
TiO2 thin films deposited by electron beam evaporation technique annealed in either O2 or Ar atmosphere showed ferromagnetism at room temperature. The pristine amorphous film demonstrates anatase phase after annealing under Ar/O2 atmosphere. While the pristine film shows a super-paramagnetic behavior, both O2 and Ar annealed films display hysteresis at 300 K. X-ray photo emission spectroscopy (XPS), Raman spectroscopy, Rutherford's backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to refute the possible role of impurities/contaminants in magnetic properties of the films. The saturation magnetization of the O2 annealed film is found to be higher than the Ar annealed one. It is revealed from shifting of O 1s and Ti 2p core level spectra as well as from the enhancement of high binding energy component of O 1s spectra that the higher magnetic moment is associated with higher oxygen vacancies. In addition, O2 annealed film demonstrates better crystallinity, uniform deposition and smoother surface than that of the Ar annealed one from glancing angle X-ray diffraction (GAXRD) and atomic force microscopy (AFM). We conclude that although ferromagnetism is due to oxygen vacancies, the higher magnetization in O2 annealed film could be due to crystallinity, which has been observed earlier in Co doped TiO2 film deposited by pulsed laser deposition (Mohanty et al., 2012 [10]).
Elastic Modulus and Thermal Conductivity of Thiolene/TiO2 Nanocomposites
2017-01-01
Metal oxide based polymer nanocomposites find diverse applications as functional materials, and in particular thiol-ene/TiO2 nanocomposites are promising candidates for dental restorative materials. The important mechanical and thermal properties of the nanocomposites, however, are still not well understood. In this study, the elastic modulus and thermal conductivity of thiol-ene/TiO2 nanocomposite thin films with varying weight fractions of TiO2 nanoparticles are investigated by using Brillouin light scattering spectroscopy and 3ω measurements, respectively. As the TiO2 weight fraction increases from 0 to 90%, the effective elastic longitudinal modulus of the films increases from 6.2 to 37.5 GPa, and the effective thermal conductivity from 0.04 to 0.76 W/m K. The former increase could be attributed to the covalent cross-linking of the nanocomposite constituents. The latter one could be ascribed to the addition of high thermal conductivity TiO2 nanoparticles and the formation of possible conductive channels at high TiO2 weight fractions. The linear dependence of the thermal conductivity on the sound velocity, reported for amorphous polymers, is not observed in the present nanocomposite system. PMID:29755637
Guillén, María G.; Gámez, Francisco; Suárez, Belén; Queirós, Carla; Silva, Ana M. G.; Barranco, Ángel; Sánchez-Valencia, Juan Ramón; Pedrosa, José María; Lopes-Costa, Tânia
2017-01-01
The incorporation of a prototypical rosamine fluorescent dye from organic solutions into transparent and microstructured columnar TiO2 and SiO2 (MO2) thin films, prepared by evaporation at glancing angles (GAPVD), was evaluated. The aggregation of the adsorbed molecules, the infiltration efficiency and the adsorption kinetics were studied by means of UV-Vis absorption and fluorescence spectroscopies. Specifically, the infiltration equilibrium as well as the kinetic of adsorption of the emitting dye has been described by a Langmuir type adsorption isotherm and a pseudosecond order kinetic model, respectively. The anchoring mechanism of the rosamine to the MO2 matrix has been revealed by specular reflectance Fourier transform infrared spectroscopy and infiltration from aqueous solutions at different pH values. Finally, the sensing performance towards NO2 gas of optimized films has been assessed by following the changes of its fluorescence intensity revealing that the so-selected device exhibited improved sensing response compared to similar hybrid films reported in the literature. PMID:28772484
Ashokkumar, R; Kathiravan, A; Ramamurthy, P
2014-01-21
We have synthesized symmetrical and unsymmetrical Zn-phthalocyanine derivatives (PZnPc, MPZnPc and TPZnPc) for dye sensitized solar cells (DSSCs). Steady state and time-resolved absorption and fluorescence studies were performed in DMF solvent and on a TiO2 surface. The mode and extent of aggregation (H- and J-aggregates) of ZnPc adsorbed on a TiO2 surface were demonstrated. MPZnPc shows both H- and J-aggregation, while TPZnPc shows only H-aggregation. Moreover, the fluorescence of ZnP/TiO2 was completely quenched and this was assigned to electron injection from excited ZnPc to TiO2. Energy level calculations show both ZnPc deriviatives have enough driving force to inject electrons into the conduction band of TiO2. Furthermore, the radical cation of ZnPc was observed in nanosecond transient absorption measurements.
Kim, Taeheon; Kumaresan, Yogeenth; Cho, Sung Jun; Lee, Chang-Lyoul; Lee, Heon; Jung, Gun Young
2016-01-01
As metal nanostructures demonstrated extraordinary plasmon resonance, their optical characteristics have widely been investigated in photo-electronic applications. However, there has been no clear demonstration on the location effect of plasmonic metal layer within the photoanode on both optical characteristics and photovoltaic performances. In this research, the gold (Au) nano-islands (NIs) film was embedded at different positions within the TiO 2 nanoparticulate photoanode in dye-sensitized solar cells (DSSC) to check the effect of plasmon resonance location on the device performance; at the top, in the middle, at the bottom of the TiO 2 photoanode, and also at all the three positions. The Au NIs were fabricated by annealing a Au thin film at 550 °C. The DSSC having the Au NIs-embedded TiO 2 photoanode exhibited an increase in short circuit currents (J sc ) and power conversion efficiency (PCE) owing to the plasmon resonance absorption. Thus, the PCE was increased from 5.92% (reference: only TiO 2 photoanode) to 6.52% when the Au NIs film was solely positioned at the bottom, in the middle or at the top of TiO 2 film. When the Au NIs films were placed at all the three positions, the J sc was increased by 16% compared to the reference cell, and consequently the PCE was further increased to 7.01%.
NASA Astrophysics Data System (ADS)
Jovic, Vedran; Idriss, Hicham; Waterhouse, Geoffrey I. N.
2016-11-01
Here we describe the successful fabrication of six titania inverse opal (TiO2 IO) photocatalysts with fcc[1 1 1] pseudo photonic band gaps (PBGs) tuned to span the UV-vis region. Photocatalysts were fabricated by a colloidal crystal templating and sol-gel approach - a robust and highly applicable bottom-up scheme which allowed for precise control over the geometric and optical properties of the TiO2 IO photocatalysts. Optical properties of the TiO2 IO thin films were investigated in detail by UV-vis transmittance and reflectance measurements. The PBG along the fcc[1 1 1] direction in the TiO2 IOs was dependent on the inter-planar spacing in the [1 1 1] direction, the incident angle of light and the refractive index of the medium filling the macropores in the IOs, in agreement with a modified Bragg's law expression. Calculated photonic band structures for the photocatalysts revealed a PBG along the Γ → L direction at a/λ ∼ 0.74, in agreement with the experimental optical data. By coupling the low frequency edge of the PBG along the [1 1 1] direction with the electronic absorption edge of anatase TiO2, a two-fold enhancement in the rate of gas phase ethanol photo-oxidation in air was achieved. This enhancement appears to be associated with a 'slow photon' effect that acts to both enhance TiO2 absorption and inhibit spontaneous emission (i.e. suppress electron-hole pair recombination).
Enhanced photodegradation of phenolic compounds by adding TiO2 to soil in a rotary reactor.
Wang, Jing-xian; Chen, Shuo; Quan, Xie; Zhao, Hui-min; Zhao, Ya-zhi
2006-01-01
Photodegradation of pentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.
Zhang, Rubing; Gao, Lian; Zhang, Qinghong
2004-01-01
Nanosized TiO(2) was synthesized by hydrolysis of titanium tetraisopropoxide in the nanodroplets of microemulsions. The microemulsion provided by functionalized surfactants derived from the mixture of the commercially available sodium dodecylbenzensulfonate (DBS) and sodium dodecyl sulfate (DS). The resulting TiO(2) nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, and differential thermal analysis. Nanosized TiO(2) of anatase was found to show good photocatalytic properties in the photodegradation of DBS and DS surfactants. The cleavage of the aromatic moiety, the intermediate products and ultimate mineralization to CO(2) were examined in the process of photodegradation. A mechanism is also proposed on the basis of these experimental results.
NASA Astrophysics Data System (ADS)
Rajesh, Y.; Sangani, L. D. Varma; Shaik, Ummar Pasha; Gaur, Anshu; Mohiddon, Md Ahamad; Krishna, M. Ghanashyam
2017-05-01
The role of dielectric surrounding over the Au nanostructure for surface plasmon resonance (SPR) behavior is investigated by scanning near field optical microscopy (SNOM). The observed optical field strengths are correlated with the surface enhanced Raman scattering (SERS) enhancement recorded for R6G molecule. Discontinuous nanostructured Au thin films are deposited by RF magnatron sputtering at very low rate on to three different dielectric substrates, ZnO, TiO2 and SiO2. These three Au/dielectric nanostructures are investigated using SNOM by illuminating it in near field and collecting in transmission far field configuration. The observed optical near field images of the three different nanostructures are discussed by taking their dielectric constant into the account. The SERS enhancements are correlated with the optical field strengths derived from the near field optical imaging.
SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses.
Tsugita, Misato; Morimoto, Nobuyuki; Nakayama, Masafumi
2017-04-11
Silicon dioxide (SiO 2 ) nanoparticles (NPs) and titanium dioxide (TiO 2 ) NPs are the most widely used inorganic nanomaterials. Although the individual toxicities of SiO 2 and TiO 2 NPs have been extensively studied, the combined toxicity of these NPs is much less understood. In this study, we observed unexpected and drastic activation of the caspase-1 inflammasome and production of IL-1β in mouse bone marrow-derived macrophages stimulated simultaneously with SiO 2 and TiO 2 NPs at concentrations at which these NPs individually do not cause macrophage activation. Consistent with this, marked lung inflammation was observed in mice treated intratracheally with both SiO 2 and TiO 2 NPs. In macrophages, SiO 2 NPs localized in lysosomes and TiO 2 NPs did not; while only TiO 2 NPs produced ROS, suggesting that these NPs induce distinct cellular damage leading to caspase-1 inflammasome activation. Intriguingly, dynamic light scattering measurements revealed that, although individual SiO 2 and TiO 2 NPs immediately aggregated to be micrometer size, the mixture of these NPs formed a stable and relatively monodisperse complex with a size of ~250 nm in the presence of divalent cations. Taken together, these results suggest that SiO 2 and TiO 2 NPs synergistically induce macrophage inflammatory responses and subsequent lung inflammation. Thus, we propose that it is important to assess the synergistic toxicity of various combinations of nanomaterials.
Khorshidi, Behnam; Biswas, Ishita; Ghosh, Tanushree; Thundat, Thomas; Sadrzadeh, Mohtada
2018-01-15
The development of nano-enabled composite materials has led to a paradigm shift in the manufacture of high-performance nanocomposite membranes with enhanced permeation, thermo-mechanical, and antibacterial properties. The major challenges to the successful incorporation of nanoparticles (NPs) to polymer films are the severe aggregation of the NPs and the weak compatibility of NPs with polymers. These two phenomena lead to the formation of non-selective voids at the interface of the polymer and NPs, which adversely affect the separation performance of the membrane. To overcome these challenges, we have developed a new method for the fabrication of robust TFN reverse osmosis membranes. This approach relies on the simultaneous synthesis and surface functionalization of TiO 2 NPs in an organic solvent (heptane) via biphasic solvothermal reaction. The resulting stable suspension of the TiO 2 NPs in heptane was then utilized in the interfacial (in-situ) polymerization reaction where the NPs were entrapped within the matrix of the polyamide (PA) membrane. TiO 2 NPs of 10 nm were effectively incorporated into the thin PA layer and improved the thermal stability and anti-biofouling properties of the resulting TFN membranes. These features make our synthesized membranes potential candidates for applications where the treatment of high-temperature streams containing biomaterials is desirable.
Mechanism of room temperature oxygen sensor based on nanocrystalline TiO2 film
NASA Astrophysics Data System (ADS)
Bakri, A. S.; Sahdan, M. Z.; Nafarizal, N.; Abdullah, S. A.; Said, N. D. M.; Raship, N. A.; Sari, Y.
2018-04-01
A titanium dioxide (TiO2) thin film is proposed as the active layer for the detection of oxygen gas. The sensor is fabricated on silicon wafer using sol-gel dip coating technique with a constant withdrawal speed. The field emission scanning electron microscope image reveals that the film has a uniform structure while the x-ray diffraction analysis indicates that the film is anatase phase with tetragonal lattice structure. The film exhibit the highest intensity peak at (101) plane. The surface roughness measurement shows that the film has low surface roughness with small grain size. The electrical studies revealed that the resistivity is about 4.02 x 10-3 Ω.cm and the thickness of TiO2 film is 127.44 nm. The gas sensor measurement showed that the sensor response of the film is about 4.21% at room temperature.
NASA Astrophysics Data System (ADS)
Wang, Zhanjun; Sun, Yongqi; Sridrar, Seetharaman; Zhang, Mei; Zhang, Zuotai
2017-02-01
The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal-melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase ( n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from -265.93 to -185.41 KJ·mol-1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize.
NASA Astrophysics Data System (ADS)
Oyarzún, Diego P.; Chardon-Noblat, Sylvie; Linarez Pérez, Omar E.; López Teijelo, Manuel; Zúñiga, César; Zarate, Ximena; Shott, Eduardo; Carreño, Alexander; Arratia-Perez, Ramiro
2018-02-01
In this article we study the anchoring of cis-[Ru(bpyC4pyr)(CO)2(CH3CN)2]2+, cis-[Ru(bpy)2(CO)2]2+ and cis-[Ru(bpyac)(CO)2Cl2], onto nanoporous TiO2 employing electropolymerization, electrostatic interaction and chemical bonding. Also, the [Re(bpyac)(CO)3Cl] rhenium(I) complex for chemical anchorage was analyzed. The characterization of TiO2/Ru(II) and TiO2/Re(I) nanocomposite films was performed by field emission scanning electron microscopy (FESEM), electron dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. In addition, for the more stable nanocomposites obtained, the catalytic properties (solar energy conversion and CO2 reduction) were evaluated. The efficiency improvement in redox process derived from the (photo)electrochemical evidence indicates that modified nanoporous TiO2 structures enhance the rate of charge transfer reactions.
Shin, Jin-Ho; Kim, Jung-Hwa; Koh, Jeong-Tae; Lim, Hyun-Pil; Oh, Gye-Jeong; Lee, Seok-Woo; Lee, Kwang-Min; Yun, Kwi-Dug; Park, Sang-Won
2015-08-01
Hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotubular surface has been developed to complement the defects of both TiO2 and HA. A sol-gel processing technique was used to coat HA on TiO2 nanotubular surface. All the titanium discs were blasted with resorbable blast media (RBM). RBM-blasted Ti surface, anodized Ti surface, and sol-gel HA coating on the anodized Ti surface were prepared. The characteristics of samples were observed using scanning electron microscopy and X-ray photoemission spectroscopy. Biologic responses were evaluated with human osteosarcoma MG63 cells in vitro. The top of the TiO2 nanotubes was not completely covered by HA particles when the coating time was less than 60 sec. It was demonstrated the sol-gel derived HA film was well-crystallized and this enhanced biologic responses in early stage cell response.
Shimakoshi, Hisashi; Hisaeda, Yoshio
2015-12-14
An oxygen switch in catalysis of the cobalamin derivative (B12 )-TiO2 hybrid catalyst for the dechlorination of trichlorinated organic compounds has been developed. The covalently bound B12 on the TiO2 surface transformed trichlorinated organic compounds into an ester and amide by UV light irradiation under mild conditions (in air at room temperature), while dichlorostilbenes (E and Z forms) were formed in nitrogen from benzotrichloride. A benzoyl chloride was formed as an intermediate of the ester and amide, which was detected by GC-MS. The substrate scope of the synthetic strategy is demonstrated with a range of various trichlorinated organic compounds. A photo-duet reaction utilizing the hole and conduction band electron of TiO2 in B12 -TiO2 for the amide formation was also developed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Volpyas, V. A.; Tumarkin, A. V.; Mikhailov, A. K.; Kozyrev, A. B.; Platonov, R. A.
2016-07-01
A method of ion plasma deposition is proposed for obtaining thin multicomponent films with continuously graded composition in depth of the film. The desired composition-depth profile is obtained by varying the working gas pressure during deposition in the presence of an additional adsorbing screen in the drift space between a sputtered target and substrate. Efficiency of the proposed method is confirmed by Monte Carlo simulation of the deposition of thin films of Ba x Sr1- x TiO3 (BSTO) solid solution. It is demonstrated that, during sputtering of a Ba0.3Sr0.7TiO3 target, the parameter of composition stoichiometry in the growing BSTO film varies in the interval of x = 0.3-0.65 when the gas pressure is changed within 2-60 Pa.
Goldstein, Sara; Behar, David; Rajh, Tijana; ...
2015-03-02
The reaction mechanism of nitric oxide (NO) reduction by excess electrons on TiO 2 nanoparticles (e TiO2–) has been studied under anaerobic conditions. TiO 2 was loaded with 10–130 electrons per particle using γ-irradiation of acidic TiO 2 colloid solutions containing 2-propanol. The study is based on time-resolved kinetics and reactants and products analysis. The reduction of NO by e TiO2– is interpreted in terms of competition between a reaction path leading to formation of NH 3 and a path leading to N 2O and N 2. The proposed mechanism involves consecutive one-electron transfers of NO, and its reduction intermediatesmore » HNO, NH 2O•, and NH 2OH. The results show that e TiO2– does not reduce N 2O and N 2. Second-order rate constants of e TiO2– reactions with NO (740 ± 30 M –1 s –1) and NH 2OH (270 ± 30 M –1 s –1) have been determined employing the rapid-mixing stopped-flow technique and that with HNO (>1.3 × 10 6 M –1 s –1) was derived from fitting the kinetic traces to the suggested reaction mechanism, which is discussed in detail.« less
Riedle, Sebastian; Pele, Laetitia C; Otter, Don E; Hewitt, Rachel E; Singh, Harjinder; Roy, Nicole C; Powell, Jonathan J
2017-12-08
Pigment-grade titanium dioxide (TiO 2 ) particles are an additive to some foods (E171 on ingredients lists), toothpastes, and pharma-/nutraceuticals and are absorbed, to some extent, in the human intestinal tract. TiO 2 can act as a modest adjuvant in the secretion of the pro-inflammatory cytokine interleukin 1β (IL-1β) when triggered by common intestinal bacterial fragments, such as lipopolysaccharide (LPS) and/or peptidoglycan. Given the variance in human genotypes, which includes variance in genes related to IL-1β secretion, we investigated whether TiO 2 particles might, in fact, be more potent pro-inflammatory adjuvants in cells that are genetically susceptible to IL-1β-related inflammation. We studied bone marrow-derived macrophages from mice with a mutation in the nucleotide-binding oligomerisation domain-containing 2 gene (Nod2 m/m ), which exhibit heightened secretion of IL-1β in response to the peptidoglycan fragment muramyl dipeptide (MDP). To ensure relevance to human exposure, TiO 2 was food-grade anatase (119 ± 45 nm mean diameter ± standard deviation). We used a short 'pulse and chase' format: pulsing with LPS and chasing with TiO 2 +/- MDP or peptidoglycan. IL-1β secretion was not stimulated in LPS-pulsed bone marrow-derived macrophages, or by chasing with MDP, and only very modestly so by chasing with peptidoglycan. In all cases, however, IL-1β secretion was augmented by chasing with TiO 2 in a dose-dependent fashion (5-100 μg/mL). When co-administered with MDP or peptidoglycan, IL-1β secretion was further enhanced for the Nod2 m/m genotype. Tumour necrosis factor α was triggered by LPS priming, and more so for the Nod2 m/m genotype. This was enhanced by chasing with TiO 2 , MDP, or peptidoglycan, but there was no additive effect between the bacterial fragments and TiO 2 . Here, the doses of TiO 2 that augmented bacterial fragment-induced IL-1β secretion were relatively high. In vivo, however, selected intestinal cells appear to be loaded with TiO 2 , so such high concentrations may be 'exposure-relevant' for localised regions of the intestine where both TiO 2 and bacterial fragment uptake occurs. Moreover, this effect is enhanced in cells from Nod2 m/m mice indicating that genotype can dictate inflammatory signalling in response to (nano)particle exposure. In vivo studies are now merited.
NASA Astrophysics Data System (ADS)
Majidi, Muhammad Aziz; Bupu, Annamaria; Fauzi, Angga Dito
2017-12-01
We present a theoretical study on Ti-vacancy-induced ferromagnetism in anatase TiO2. A recent experimental study has revealed room temperature ferromagnetism in Ta-doped anatase TiO2thin films (Rusydi et al., 2012) [7]. Ta doping assists the formation of Ti vacancies which then induce the formation of localized magnetic moments around the Ti vacancies. As neighboring Ti vacancies are a few unit cells apart, the ferromagnetic order is suspected to be mediated by itinerant electrons. We propose that such an electron-mediated ferromagnetism is driven by Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. To examine our hypothesis, we construct a tight-binding based model Hamiltonian for the anatase TiO2 system. We calculate the RKKY exchange coupling constant of TiO2 as a function of distance between local magnetic moments at various temperatures. We model the system by taking only the layer containing a unit of TiO2, at which the Ti vacancy is believed to form, as our effective two-dimensional unit cell. Our model incorporates the Hubbard repulsive interactions between electrons occupying Ti d orbitals treated within mean-field approximation. The density of states profile resulting from the model captures the relevant electronic properties of TiO2, such as the energy gap of 3.4 eV and the n-type character, which may be a measure of the adequacy of the model. The calculated RKKY coupling constant shows that the ferromagnetic coupling extends up to 3-4 unit cells and enhances slightly as temperature is increased from 0 to 400 K. These results support our hypothesis that the ferromagnetism of this system is driven by RKKY mechanism.
NASA Astrophysics Data System (ADS)
Jiang, Zheng; Kong, Liang; Alenazey, Feraih Sh.; Qian, Yangdong; France, Liam; Xiao, Tiancun; Edwards, Peter P.
2013-05-01
A facile solvent evaporation induced self-assembly (SEISA) strategy was developed to synthesize mesoporous N-doped anatase TiO2 (SE-meso-TON) using a single organic complex precursor derived in situ from titanium butoxide and ethylenediamine in ethanol solution. After the evaporation of ethanol in a fume hood and subsequent calcinations at 450 °C, the obtained N-doped TiO2 (meso-TON) anatase was of finite crystallite size, developed porosity, large surface area (101 m2 g-1) and extended light absorption in the visible region. This SE-meso-TON also showed superior photocatalytic activity to the SG-meso-TON anatase prepared via sol-gel synthesis. On the basis of characterization results from XRD, XPS, N2 adsorption-desorption and ESR, the enhanced visible-light-responsive photocatalytic activity of SE-meso-TON was assigned to its developed mesoporosity and reduced oxygen vacancies.
NASA Astrophysics Data System (ADS)
Guo, Yiping; Akai, Daisuke; Sawada, Kazauki; Ishida, Makoto
2008-07-01
A (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 chemical solution was prepared by using barium acetate, nitrate of sodium, nitrate of bismuth, and Ti-isopropoxide as raw materials. A white precipitation appeared during the preparation was analyzed to be Ba(NO 3) 2. We found that ethanolamine is a very effective coordinating ligand of Ba 2+. A transparent and stable (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 precursor chemical solution has been achieved by using ethanolamine as a ligand of Ba 2+. (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were grown on LaNiO 3/γ-Al 2O 3/Si substrates. Highly (100)-oriented (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were obtained in this work due to lattice match growth. The dielectric, ferroelectric and insulative characteristics against applied field were studied. The conduction current shows an Ohmic conduction behavior at lower voltages and space-charge-limited behavior at higher voltages, respectively. These results indicate that, the (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 film is a promising lead-free ferroelectric film.
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light
Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou
2015-01-01
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001
Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light
NASA Astrophysics Data System (ADS)
Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou
2015-07-01
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.
Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin
2013-11-21
A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.
Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films
NASA Astrophysics Data System (ADS)
Li, Weiwei; Gu, Junxing; He, Qian; Zhang, Kelvin H. L.; Wang, Chunchang; Jin, Kuijuan; Wang, Yongqiang; Acosta, Matias; Wang, Haiyan; Borisevich, Albina Y.; MacManus-Driscoll, Judith L.; Yang, Hao
2018-04-01
Dielectric relaxation in ABO3 perovskite oxides can result from many different charge carrier-related phenomena. Despite a strong understanding of dielectric relaxations, a detailed investigation of the relationship between the content of oxygen vacancies (VO) and dielectric relaxation has not been performed in perovskite oxide films. In this work, we report a systematic investigation of the influence of the VO concentration on the dielectric relaxation of Eu0.5Ba0.5TiO3-δ epitaxial thin films. Nuclear resonance backscattering spectrometry was used to directly measure the oxygen concentration in Eu0.5Ba0.5TiO3-δ films. We found that dipolar defects created by VO interact with the off-centered Ti ions, which results in the dielectric relaxation in Eu0.5Ba0.5TiO3-δ films. Activation energy gradually increases with the increasing content of VO. The present work significantly extends our understanding of relaxation properties in oxide films.
Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies.
Shimizu, Takayoshi; Fujibayashi, Shunsuke; Yamaguchi, Seiji; Yamamoto, Koji; Otsuki, Bungo; Takemoto, Mitsuru; Tsukanaka, Masako; Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi
2016-04-15
A polyetheretherketone (PEEK) surface was modified using a sol-gel-derived TiO2 coating in order to confer bone-bonding ability. To enhance the bonding strength of the coating layer, pretreatment with either O2 plasma or sandblasting was performed prior to sol-gel coating. Additionally, post-treatment with acid was carried out to confer apatite (calcium phosphate)-forming ability to the surface. Biomechanical and histological analyses performed using an in vivo rabbit tibia model showed that PEEK surfaces modified with sol-gel-derived TiO2 and acid post-treatment had better bone-bonding properties than uncoated PEEK surfaces. These modified surfaces also performed well in terms of their in vitro cell responses due to their modified surface chemistries and topographies. Although O2 plasma or sandblasting treatment were, for the most part, equivocal in terms of performance, we conclude that sol-gel-derived TiO2 coating followed by acid post-treatment significantly improves the bone bonding ability of PEEK surfaces, thus rendering them optimal for their use in surgical implants. The role of polyetheretherketone (PEEK) as an alternative biomaterial to conventional metallic implant materials has become increasingly important. However, its low bone bonding ability is yet to be resolved. This in vivo and in vitro investigation on the functionalization of PEEK surfaces highlights the utility of this material in clinical interventions that require implants, and may extend range of applications of PEEK. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Optical and Structural Characterization of ZnO/TiO2 Bilayer Thin Films Grown by Sol-Gel Spin Coating
NASA Astrophysics Data System (ADS)
Gareso, P. L.; Musfitasari; Juarlin, Eko
2018-03-01
Structural and optical properties of ZnO/TiO2 bilayers thin films have been investigated using x-ray diffraction (X-RD), scanning electron microscopy (SEM), and optical transmittance UV-Vis measurements. ZnO thin films were prepared by dissolving zinc acetate dehydrated into a solvent of ethanol and then added triethanolamin. In the case of TiO2 layers, tetraisoproxide was dissolved into ethanol and then added an acetate acid. The layer of ZnO was deposited first followed by TiO2 layer on a glass substrate using a spin coating technique. The ZnO/TiO2 bilayers were annealed at various temperatures from 300°C until 600°C for 60 minutes. The X-ray diffraction results show that there was an enhancement of the x-ray spectra as annealed temperature increased to 600°C in comparison to the samples that were annealed at 300°C. Based on the optical measurement of UV-Vis, the band gap energy of ZnO/TiO2 bilayer is around 3.2 eV at temperature of 300°C. This value is similar to the band gap energy of ZnO. SEM results show that there is no cluster in the surface of ZnO/TiO2 bilayer.
Refractive index investigation of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions.
Yovcheva, Temenuzhka; Vlaeva, Ivanka; Bodurov, Ivan; Dragostinova, Violeta; Sainov, Simeon
2012-11-10
The refractive index (RI) of polymer nanocomposite of poly(vinyl alcohol) films with TiO(2) nanoparticle inclusions with low concentration up to 1.2 wt. % was investigated. Accurate refractometric measurements, by a specially designed laser microrefractometer, were performed at wavelengths 532 and 632.8 nm. The influence of TiO(2) concentration on the RI dispersion curves was predicted based on the well-known Sellmeier model. The theoretical analysis, in a small filling factor approximation, was performed, and a relation between the effective RI of the nanocomposite and weight concentrations of the TiO(2) nanofiller was derived. The experimental values were approximated by two different functions (linear and a quadratic polynom). The polynomial approximation yields better result, where R(2)=0.90.
Water-assisted crystallization of mesoporous anatase TiO2 nanospheres
NASA Astrophysics Data System (ADS)
Li, Na; Zhang, Qiao; Joo, Ji Bong; Lu, Zhenda; Dahl, Michael; Gan, Yang; Yin, Yadong
2016-04-01
We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications.We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01892k
Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures
NASA Astrophysics Data System (ADS)
Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp
2017-04-01
Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.
Kim, Jae-Yup; Kang, Soon Hyung; Kim, Hyun Sik; Sung, Yung-Eun
2010-02-16
Highly ordered mesoporous Al(2)O(3)/TiO(2) was prepared by sol-gel reaction and evaporation-induced self-assembly (EISA) for use in dye-sensitized solar cells. The prepared materials had two-dimensional, hexagonal pore structures with anatase crystalline phases. The average pore size of mesoporous Al(2)O(3)/TiO(2) remained uniform and in the range of 6.33-6.58 nm while the Brunauer-Emmett-Teller (BET) surface area varied from 181 to 212 m(2)/g with increasing the content of Al(2)O(3). The incorporation of Al content retarded crystallite growth, thereby decreasing crystallite size while simultaneously improving the uniformity of pore size and volume. The thin Al(2)O(3) layer was located mostly on the mesopore surface, as confirmed by X-ray photoelectron spectroscopy (XPS). The Al(2)O(3) coating on the mesoporous TiO(2) film contributes to the essential energy barrier which blocks the charge recombination process in dye-sensitized solar cells. Mesoporous Al(2)O(3)/TiO(2) (1 mol % Al(2)O(3)) exhibited enhanced power conversion efficiency (V(oc) = 0.74 V, J(sc) = 15.31 mA/cm(2), fill factor = 57%, efficiency = 6.50%) compared to pure mesoporous TiO(2) (V(oc) = 0.72 V, J(sc) = 16.03 mA/cm(2), fill factor = 51%, efficiency = 5.88%). Therefore, the power conversion efficiency was improved by approximately 10.5%. In particular, the increase in V(oc) and fill factor resulted from the inhibition of charge recombination and the improvement of pore structure.
Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk
2015-12-28
The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.
Krýsová, Hana; Kavan, Ladislav
2018-01-01
For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20–200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO2 films. The blocking properties of the as-deposited TiO2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells. PMID:29719764
Li, Xiang Yuan; Shao, Xing Long; Wang, Yi Chuan; Jiang, Hao; Hwang, Cheol Seong; Zhao, Jin Shi
2017-02-09
Ta 2 O 5 has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick Ta 2 O 5 RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO x (x < 2) and played the role of a series resistor, whose resistance value was comparable to the on-state resistance of the Ta 2 O 5 RS layer. The series resistor TiO x efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO x layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.
Renault, Christophe; Marchuk, Kyle; Ahn, Hyun S; Titus, Eric J; Kim, Jiyeon; Willets, Katherine A; Bard, Allen J
2015-06-02
We report a method to study electro-active defects in passivated electrodes. This method couples fluorescence microscopy and electrochemistry to localize and size electro-active defects. The method was validated by comparison with a scanning probe technique, scanning electrochemical microscopy. We used our method for studying electro-active defects in thin TiO2 layers electrodeposited on 25 μm diameter Pt ultramicroelectrodes (UMEs). The permeability of the TiO2 layer was estimated by measuring the oxidation of ferrocenemethanol at the UME. Blocking of current ranging from 91.4 to 99.8% was achieved. Electro-active defects with an average radius ranging between 9 and 90 nm were observed in these TiO2 blocking layers. The distribution of electro-active defects over the TiO2 layer is highly inhomogeneous and the number of electro-active defect increases for lower degree of current blocking. The interest of the proposed technique is the possibility to quickly (less than 15 min) image samples as large as several hundreds of μm(2) while being able to detect electro-active defects of only a few tens of nm in radius.
NASA Astrophysics Data System (ADS)
Sekhar, M. Chandra; Uthanna, S.; Martins, R.; Jagadeesh Chandra, S. V.; Elangovan, E.
2012-04-01
Thin films of (Ta2O5)0.85(TiO2)0.15 were deposited on quartz and p-Si substrates by DC reactive magnetron sputtering at different substrate temperatures (Ts) in the range 303 - 873 K. The films deposited at 303 0K were in the amorphous and it transformed to crystalline at substrate temperatures >= 573 0K. The crystallite size was increased from 50 nm to 72 nm with the increase of substrate temperature. The surface morphology was significantly influenced with the substrate temperature. After deposition of the (Ta2O5)0.85(TiO2)0.15 films on Si, aluminium (Al) electrode was deposited to fabricate metal/oxide/semiconductor (MOS) capacitors with a configuration of Al/(Ta2O5)0.85(TiO2)0.15/Si. A low leakage current of 7.7 × 10-5 A/cm2 was obtained from the films deposited at 303 K. The leakage current was decreased to 9.3 × 10-8 A/cm2 with the increase of substrate temperature owing to structural changes. The conduction mechanism of the Al/(Ta2O5)0.85(TiO2)0.15/Si capacitors was analyzed and compared with mechanisms of Poole-Frenkel and Schottky emissions. The optical band gap (Eg) was decreased from 4.45 eV to 4.38 eV with the increase in substrate temperature.
NASA Astrophysics Data System (ADS)
Qiu, Fei; Xu, Zhimou
2009-08-01
In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.
NASA Astrophysics Data System (ADS)
Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana
2018-01-01
In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.
Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes
2014-01-01
New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538
Ellipsometric porosimetry on pore-controlled TiO2 layers
NASA Astrophysics Data System (ADS)
Rosu, Dana-Maria; Ortel, Erik; Hodoroaba, Vasile-Dan; Kraehnert, Ralph; Hertwig, Andreas
2017-11-01
The practical performance of surface coatings in applications like catalysis, water splitting or batteries depends critically on the coating materials' porosity. Determining the porosity in a fast and non-destructive way is still an unsolved problem for industrial thin-films technology. As a contribution to calibrated, non-destructive, optical layer characterisation, we present a multi-method comparison study on porous TiO2 films deposited by sol-gel synthesis on Si wafers. The ellipsometric data were collected on a range of samples with different TiO2 layer thickness and different porosity values. These samples were produced by templated sol-gel synthesis resulting in layers with a well-defined pore size and pore density. The ellipsometry measurement data were analysed by means of a Bruggeman effective medium approximation (BEMA), with the aim to determine the mixture ratio of void and matrix material by a multi-sample analysis strategy. This analysis yielded porosities and layer thicknesses for all samples as well as the dielectric function for the matrix material. Following the idea of multi-method techniques in metrology, the data was referenced to imaging by electron microscopy (SEM) and to a new EPMA (electron probe microanalysis) porosity approach for thin film analysis. This work might lead to a better metrological understanding of optical porosimetry and also to better-qualified characterisation methods for nano-porous layer systems.
Gutiérrez Moreno, José Julio; Nolan, Michael
2017-11-01
Titanium nitride (TiN) is widely used in industry as a protective coating due to its hardness and resistance to corrosion and can spontaneously form a thin oxide layer when it is exposed to air, which could modify the properties of the coating. With limited understanding of the TiO 2 -TiN interfacial system at present, this work aims to describe the structural and electronic properties of oxidized TiN based on a density functional theory (DFT) study of the rutile TiO 2 (110)-TiN(100) interface model system, also including Hubbard +U correction on Ti 3d states. The small lattice mismatch gives a good stability to the TiO 2 -TiN interface after depositing the oxide onto TiN through the formation of interfacial Ti-O bonds. Our DFT+U study shows the presence of Ti 3+ cations in the TiO 2 region, which are preferentially located next to the interface region as well as the rotation of the rutile TiO 2 octahedra in the interface structure. The DFT+U TiO 2 electronic density of states (EDOS) shows localized Ti 3+ defect states forming in the midgap between the top edge of the valence and the bottom of the conduction band. We increase the complexity of our models by the introduction of nonstoichiometric compositions. Although the vacancy formation energies for Ti in TiN (E vac (Ti) ≥ 4.03 eV) or O in the oxide (E vac (O) ≥ 3.40 eV) are quite high relative to perfect TiO 2 -TiN, defects are known to form during the oxide growth and can therefore be present after TiO 2 formation. Our results show that a structure with exchanged O and N can lie 0.82 eV higher in energy than the perfect system, suggesting the stability of structures with interdiffused O and N anions at ambient conditions. The presence of N in TiO 2 introduces N 2p states localized between the top edge of the O 2p valence states and the midgap Ti 3+ 3d states, thus reducing the band gap in the TiO 2 region for the exchanged O/N interface EDOS. The outcomes of these simulations give us a most comprehensive insight on the atomic level structure and the electronic properties of oxidized TiN surfaces.
Marycz, Krzysztof; Krzak-Roś, Justyna; Donesz-Sikorska, Anna; Śmieszek, Agnieszka
2014-11-01
In recent years, much attention has been paid to the development of tissue engineering and regenerative medicine, especially when stem cells of various sources are concerned. In addition to the interest in mesenchymal stem cells isolated from bone marrow, recently more consideration has been given to stem cells isolated from adipose tissue (AdMSCs), due to their less invasive method of collection as well as their ease of isolation and culture. However, the development of regenerative medicine requires both the application of biocompatible material and the stem cells to accelerate the regeneration. In this study, we investigated the morphology, proliferation rate index (PRi), and population doubling time factor of adipose-derived mesenchymal stem cells cultured on non-aqueous sol-gel-derived SiO2, TiO2, and SiO2/TiO2 oxide coatings. The results indicated an increase in PRi of AdMSCs when cultured on to titanium dioxide, suggesting its high attractiveness for AdMSCs. In addition, the proper morphology and the shortest doubling time of AdMSCs were observed when cultured on titanium dioxide coating. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cats, K. H.; Andrews, J. C.; Stephan, O.
In this study, the Fischer-Tropsch synthesis (FTS) reaction is one of the most promising processes to convert alternative energy sources, such as natural gas, coal or biomass, into liquid fuels and other high-value products. Despite its commercial implementation, we still lack fundamental insights into the various deactivation processes taking place during FTS. In this work, a combination of three methods for studying single catalyst particles at different length scales has been developed and applied to study the deactivation of Co/TiO 2 Fischer-Tropsch synthesis (FTS) catalysts. By combining transmission X-ray microscopy (TXM), scanning transmission X-ray microscopy (STXM) and scanning transmission electronmore » microscopy-electron energy loss spectroscopy (STEM-EELS) we visualized changes in the structure, aggregate size and distribution of supported Co nanoparticles that occur during FTS. At the microscale, Co nanoparticle aggregates are transported over several μm leading to a more homogeneous Co distribution, while at the nanoscale Co forms a thin layer of ~1-2 nm around the TiO 2 support. The formation of the Co layer is the opposite case to the “classical” strong metal-support interaction (SMSI) in which TiO 2 surrounds the Co, and is possibly related to the surface oxidation of Co metal nanoparticles in combination with coke formation. In other words, the observed migration and formation of a thin CoO x layer are similar to a previously discussed reaction-induced spreading of metal oxides across a TiO 2 surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singaravelu, S.; Mayo, D. C.; Park, H-. K.
2014-07-01
Design of polymer anti-reflective (AR) optical coatings for plastic substrates is challenging because polymers exhibit a relatively narrow range of refractive indices. Here, we report synthesis of a four-layer AR stack using hybrid polymer: nanoparticle materials deposited by resonant infrared matrix-assisted pulsed laser evaporation. An Er: YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and poly(methylmethacrylate) (PMMA), alternating with a layer of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with transmission over 97 %, scattering <3 %, and a reflection coefficient below 0.5 % across the visiblemore » range, with a much smaller number of layers than would be predicted by a standard thin film calculation. The TiO2 nanoparticles contribute more to the enhanced refractive index of the high-index layers than can be accounted for by an effective medium model of the nanocomposite.« less
Hong, Zhensheng; Kang, Meiling; Chen, Xiaohui; Zhou, Kaiqiang; Huang, Zhigao; Wei, Mingdeng
2017-09-20
TiO 2 is a most promising anode candidate for rechargeable Na-ion batteries (NIBs) because of its appropriate working voltage, low cost, and superior structural stability during chage/discharge process. Nevertheless, it suffers from intrinsically low electrical conductivity. Herein, we report an in situ synthesis of Co 2+ -doped TiO 2 through the thermal treatment of metal organic frameworks precursors of MIL-125(Ti)-Co as a superior anode material for NIBs. The Co 2+ -doped TiO 2 possesses uniform nanodisk morphology, a large surface area and mesoporous structure with narrow pore distribution. The reversible capacity, Coulombic efficiency (CE) and rate capability can be improved by Co 2+ doping in mesoporous TiO 2 anode. Co 2+ -doped mesoporous TiO 2 nanodisks exhibited a high reversible capacity of 232 mAhg -1 at 0.1 Ag 1- , good rate capability and cycling stability with a stable capacity of about 140 mAhg -1 at 0.5 Ag 1- after 500 cycles. The enhanced Na-ion storage performance could be due to the increased electrical conductivity revealed by Kelvin probe force microscopy measurements.
NASA Astrophysics Data System (ADS)
Madhavi, V.; Kondaiah, P.; Mohan Rao, G.
2018-04-01
Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.
Growth of metal oxide thin films by laser-induced metalorganic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Tokita, Koji; Okada, Fumio
1996-12-01
The growth of metal oxide thin films by laser-induced metalorganic chemical vapor deposition was investigated by changing wavelength, power, repetition rate, and irradiation angle of the excimer laser. When O2 was used as an oxidizing gas with 193 or 248 nm irradiation, amorphous TiO2 and crystalline PbO films were obtained in the laser-irradiated area of Si substrates from the parent metalorganic compounds, Ti(O-iC3H7)4 and (C2H5)3PbOCH2C(CH3)3, respectively. In contrast, no ZrO2 film could be formed from Zr(O-tC4H9)4. One-photon formation of TiO2 films was confirmed from laser power dependence measurements. The maximum growth rate of 0.05 Å per laser pulse was compared with that estimated by a simple surface reaction model, according to which the slow growth rate is due to the small absorption cross section of Ti(O-iC3H7)4 and mild fluence of laser irradiation. In experiments of ozone gas excitation by KrF laser, a SiO2 film was obtained by gas-phase reactions of the oxygen radical, O(1D), with Si(O-C2H5)4. The direct patterning of TiO2 and PbO films as well as the possibility of producing patterned PbTiO3 film was demonstrated. The growth of the patterned SiO2 film was prevented by gas-phase diffusion of intermediates.
NASA Astrophysics Data System (ADS)
Liu, H. L.; Wang, S. S.; Zhou, Yan; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin
1997-08-01
In this paper, we report the preparation of crack-free relatively thick SiO2-TiO2 thin films on silicon substrates using the sol-gel spin-coating method. The influence of the process parameters on the quality of the film, such as the solution condition, the spin-coating speed, the heat treatment temperature and time, have been studied. We found that the cracking of the film could be avoided by selecting the right sol composition ratios, adding PVA to the sold and properly controlling the heat treatment. Most importantly, we discovered that by polishing the edges of the film after the deposition of each single layer, the number of such layers that deposited without crack formation could be substantially increased. The refractive index profile and thickness of the film have been determined using prism coupling technique and the inverse WKB method. The refractive index was found to depend on the content of TiO2 as well as the heat treatment condition. Using an AFM, the surface morphology of the film was found to be good.
NASA Astrophysics Data System (ADS)
Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.
2018-03-01
This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.
Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.
Panigrahi, Shrabani; Basak, Durga
2011-05-01
Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors. © The Royal Society of Chemistry 2011
TiO2-graphene oxide nanocomposite as advanced photocatalytic materials.
Stengl, Václav; Bakardjieva, Snejana; Grygar, Tomáš Matys; Bludská, Jana; Kormunda, Martin
2013-02-27
Graphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties. TiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer-Emmett-Teller surface area and Barrett-Joiner-Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase. The best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light.
Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S
2016-03-23
Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.
TiO2-graphene oxide nanocomposite as advanced photocatalytic materials
2013-01-01
Background Graphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties. Results TiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer–Emmett–Teller surface area and Barrett–Joiner–Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase. Conclusions The best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light. PMID:23445868
Band gap enhancement of glancing angle deposited TiO2 nanowire array
NASA Astrophysics Data System (ADS)
Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar
2012-09-01
Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.
Aäritalo, Virpi; Areva, Sami; Jokinen, Mika; Lindén, Mika; Peltola, Timo
2007-09-01
A series of sol-gel derived TiO(2)-SiO(2) mixed oxide coatings were prepared by carefully controlling the process parameters to obtain silica-releasing coatings consisting of nanoparticles. These features are of paramount importance for enhanced cell adhesion and activation. To achieve both these goals the Ti-alkoxide and Si-alkoxide were first separately hydrolysed and the titania-silica mixed sol was further reacted before the dipping process to obtain the desired particle sizes resulting to the biologically favourable topographical features. Silica release was observed from all the prepared coatings and it was dependent on SiO(2) amount added to the sols, i.e., the higher the added amount the higher the release. In addition, calcium phosphate was able to nucleate on the coatings. From the obtained SiO(2) dissolution data, together with the detailed XPS peak analysis, the mixed oxide coatings are concluded to be chemically heterogeneous, consisting of TiO(2) and SiO(2) species most likely linked together by Ti-O-Si bonds. TiO(2) is chemically stable making long-term implant coating possible and the desired nanoscale dimensions were well preserved although the composition was changed as a consequence of SiO(2) dissolution under in vitro conditions.
Shimizu, Wataru; Nakamura, Satoshi; Sato, Takaaki; Murakami, Yasushi
2012-08-21
Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.
Improved Treatment of Photothermal Cancer by Coating TiO2 on Porous Silicon.
Na, Kil Ju; Park, Gye-Choon
2016-02-01
In present society, the technology in various field has been sharply developed and advanced. In medical technology, especially, photothermal therapy and photodynamic therapy have had limelight for curing cancers and diseases. The study investigates the photothermal therapy that reduces side effects of existing cancer treatment, is applied to only cancer cells, and dose not harm any other normal cells. The photothermal properties of porous silicon for therapy are analyzed in order to destroy cancer cells that are more weak at heat than normal ones. For improving performance of porous silicon, it also analyzes the properties when irradiating the near infrared by heterologously junction TiO2 and TiO2NW, photocatalysts that are very stable and harmless to the environment and the human body, to porous silicon. Each sample of Si, PSi, TiO2/Psi, and TiO2NW/PSi was irradiated with 808 nm near-IR of 300, 500, and 700 mW/cm2 light intensity, where the maximum heating temperature was 43.8, 61.6, 67.9, and 61.9 degrees C at 300 mW/cm2; 54.1, 64.3, 78.8, and 68.9 degrees C at 500 mW/cm2; and 97.3, 102.8, 102.5, and 95 0C at 700 mW/cm2. The time required to reach the maximum temperature was less than 10 min for every case. The results indicate that TiO2/PSi thin film irradiated with a single near-infrared wavelength of 808 nm, which is known to have the best human permeability, offers the potential of being the most successful photothermal cancer therapy agent. It maximizes the photo-thermal characteristics within the shortest time, and minimizes the adverse effects on the human body.
Biofunctionalization of a “Clickable” Organic Layer Photochemically Grafted on Titanium Substrates
Li, Yan; Zhao, Meirong; Wang, Jun; Liu, Kai; Cai, Chengzhi
2011-01-01
We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO2/Ti substrates provided a “clickable” thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells. PMID:21417429
Falmbigl, Matthias; Karateev, Igor A; Golovina, Iryna S; Plokhikh, Aleksandr V; Parker, Thomas C; Vasiliev, Alexander L; Spanier, Jonathan E
2018-06-22
Thin films of ≈50 nm thickness with Ba/Ti-ratios ranging from 0.8 to 1.06 were prepared by depositing alternating layers of Ba(OH)2 and TiO2. Annealing at 750 °C promoted the solid-solid transformation into polycrystalline BaTiO3 films containing a mixture of the perovskite and the hexagonal polymorphs with average crystallite sizes smaller than 14 nm and without impurity phases. This, together with an increase of the cubic lattice parameters for Ba-rich films, suggests an extended metastable solubility range for the perovskite-phase in these nanocrystalline thin films on both sides of the stoichiometric composition. Mapping of the cation distribution utilizing energy-filtered transmission electron microscopy corroborates defect accommodation within the BaTiO3 grains. While the cation off-stoichiometry in thermodynamic equilibrium is negligible for BaTiO3, the metastable extended solubility range in the thin films can be directly correlated to the low annealing temperature and nanocrystalline nature. The leakage current behavior can be explained by the formation of Schottky defects for nonstoichiometric films, and the cation ratio has a distinct impact on the dielectric properties: while excess-BaO has a marginal detrimental effect on the permittivity, the dielectric constant declines rapidly by more than 50% towards the Ti-rich side. The present findings highlight the importance of compositional control for the synthesis of nanocrystalline BaTiO3 thin films, in particular for low annealing and/or deposition temperatures. Our synthesis approach using alternating layers of Ba(OH)2 and TiO2 provides a route to precisely control the cation stoichiometry.
Effect of solution concentration on MEH-PPV thin films
NASA Astrophysics Data System (ADS)
Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.
Rüdiger, Celine; Favaro, Marco; Valero-Vidal, Carlos; Calvillo, Laura; Bozzolo, Nathalie; Jacomet, Suzanne; Hejny, Clivia; Gregoratti, Luca; Amati, Matteo; Agnoli, Stefano; Granozzi, Gaetano; Kunze-Liebhäuser, Julia
2016-04-07
Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.
2011-09-01
Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.
Nanoscale TiO2 films and their application in remediation of organic pollutants
Photocatalysis is an advanced process for treatment of air, wastewater, and drinking water, the primary advantage being its ability to mineralize many pollutants. Among several nanoscale arrangements of photocatalysts, there has been a strong push to develop them as thin films be...
There has been an increasing demand for efficient, economical and environmentally friendly methods for partial oxidation of hydrocarbons by molecular oxygen, to desirable industrial feedstock oxygenates. Current processes are energy intensive, have low conversion efficiencies and...
Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.
Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang
2016-01-26
An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.
Li, Chia-Hsun; Hsu, Chan-Wei; Lu, Shih-Yuan
2018-07-01
TiO 2 nanocrystals decorated core-shell CdS-CdO nanorod arrays, TiO 2 @CdO/CdS NR, were fabricated as high efficiency anodes for photoelctrochemical hydrogen generation. The novel sandwich heterostructure was constructed from first growth of CdS nanorod arrays on a fluorine doped tin oxide (FTO) substrate with a hydrothermal process, followed by in situ generation of CdO thin films of single digit nanometers from the CdS nanorod surfaces through thermal oxidation, and final decoration of TiO 2 nanocrystals of 10-20 nm via a successive ionic layer absorption and reaction process. The core-shell CdS-CdO heterostructure possesses a Z-scheme band structure to enhance interfacial charge transfer, facilitating effective charge separation to suppress electron-hole recombination within CdS for much improved current density generation. The final decoration of TiO 2 nanocrystals passivates surface defects and trap states of CdO, further suppressing surface charge recombination for even higher photovoltaic conversion efficiencies. The photoelectrochemical performances of the plain CdS nanorod array were significantly improved with the formation of the sandwich heterostructure, achieving a photo current density of 3.2 mA/cm 2 at 1.23 V (vs. RHE), a 141% improvement over the plain CdS nanorod array and a 32% improvement over the CdO/CdS nanorod array. Copyright © 2018 Elsevier Inc. All rights reserved.
Ultra-thin Oxide Membranes: Synthesis and Carrier Transport
NASA Astrophysics Data System (ADS)
Sim, Jai Sung
Self-supported freestanding membranes are films that are devoid of any underlying supporting layers. The key advantage of such structures is that, due to the lack of substrate effects - both mechanical and chemical, the true native properties of the material can be probed. This is crucial since many of the studies done on materials that are used as freestanding membranes are done as films clamped to substrates or in the bulk form. This thesis focuses on the synthesis and fabrication as well as electrical studies of free standing ultrathin < 40nm oxide membranes. It also is one of the first demonstrations for electrically probing nanoscale freestanding oxide membranes. Fabrication of such membranes is non-trivial as oxide materials are often brittle and difficult to handle. Therefore, it requires an understanding of thin plate mechanics coupled with controllable thin film deposition process. Taking things a step further, to electrically probe these membranes required design of complex device architecture and extensive optimization of nano-fabrication processes. The challenges and optimized fabrication method of such membranes are demonstrated. Three materials are probed in this study, VO2, TiO2, and CeO2. VO2 for understanding structural considerations for electronic phase change and nature of ionic liquid gating, TiO2 and CeO2 for understanding surface conduction properties and surface chemistry. The VO2 study shows shift in metal-insulator transition (MIT) temperature arising from stress relaxation and opening of the hysteresis. The ionic liquid gating studies showed reversible modulation of channel resistance and allowed distinguishing bulk process from the surface effects. Comparing the ionic liquid gating experiments to hydrogen doping experiments illustrated that ionic liquid gating can be a surface limited electrostatic effect, if the critical voltage threshold is not exceeded. TiO2 study shows creation of non-stoichiometric forms under ion milling. Utilizing focused ion beam milling, thin membranes of Ti xOy of 100-300 nm thickness have been created. TEM studies indicated polycrystallinity and presence of twins in the FIB-milled nanowalls. Compositional analysis in the transmission electron microscope also showed reduced content of oxygen, confirming non-stoichiometry. Temperature dependence of the electrical resistivity of the nanowall showed semiconducting behavior with an activation energy different from that of TiO2 single crystals and was attributed to formation of TinO2n-1 phases after FIB processing. The CeO2 study involved high temperature conductivity studies on substrate-free self-supported nano-crystalline ceria membranes up to 800 K. Increasing conductivity with oxygen partial pressure directly opposing the behavior of thin film devices 'clamped' by substrate has been observed. This illustrate that the relaxed nature of free standing membranes, and increased surface to volume ratio enables more sensitive electrical response to oxygen adsorption which could have implications for their use in oxygen storage devices, solid oxide fuel cells, and chemical sensors. The work in this thesis advances the understanding of materials in freestanding membrane form and advances fabrication techniques that have not been explored before, having implications for sensors, actuators, SOFC, memristors, and physics of quasi-2D materials.
NASA Astrophysics Data System (ADS)
Farzad, Fereshteh
This thesis describes photo-induced molecular electron and energy transfer processes occurring at nanocrystalline semiconductor interfaces. The Introductory Chapter provides background and describes how these materials may be useful for solar energy conversion. In Chapter 2, results describing excitation of Ru(deeb)(bpy)2 2+, bis(2,2'-bipyridine)(2,2'-bipyridine-4,4 '-diethylester)ruthenium(II) hexafluorophosphate, bound to nanocrystalline TiO2 thin films, immersed in an acetonitrile bath are presented. The data indicates that light excitation forms predominately long-lived metal-to-ligand charge-transfer, MLCT, excited states under these conditions. Modeling of the data as a function of irradiance has been accomplished assuming parallel unimolecular and bimolecular excited state deactivation processes. The quantum yield for excited state formation depends on the excitation irradiance, consistent with triplet-triplet annihilation processes that occur with k > 1 x 108 s-1. Chapter 3 extends the work described in Chapter 2 to LiClO4 acetonitrile solutions. Li+ addition results in a red shift in the MLCT absorption and photoluminescence, PL, and a concentration dependent quenching of the PL intensity on TiO2. The Li+ induced spectroscopic changes were found to be reversible by varying the electrolyte composition. A second-order kinetic model quantified charge recombination transients. A model is proposed wherein Li+ ion adsorption stabilizes TiO2 acceptor states resulting in energetically more favorable interfacial electron transfer. The photophysical and photoelectrochemical properties of porous nanocrystalline anatase TiO2 electrodes modified with Ru(deeb)(bpy)2 2+, Os(deeb)(bpy)22+, and mixtures of both are described in Chapters 4 and 5. In regenerative solar cells with 0.5 M LiI/0.05 M I2 acetonitrile electrolyte, both compounds efficiently inject electrons into TiO2 producing monochromatic incident photon-to-current efficiencies (IPCE), IPCE (460 nm) = 0.70 + 0.05 for Ru(dcb)(bpy)2 2+/TiO2 and 0. 10 + 0.05 for Os(dcb)(bpy)2 2+/TiO2. Os(dcb)(bpy)22+ extends the spectral sensitivity of the TiO2 material beyond 700 rim. Application of a negative bias to the derivatized TiO2 surfaces results in inefficient interfacial electron transfer and no significant photocurrent. Instead, lateral energy transfer cross the nanocrystalline TiO2 surface from Ru(dcb)(bpy)22+* to Os(dcb)(bpy) 22+ is observed. The energy transfer process can be switched off with a positive applied bias ten times with no significant deterioration. The results demonstrate control of molecular excited states at nanostructured interfaces.
NASA Astrophysics Data System (ADS)
Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi
2005-05-01
The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows <110> preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a <111> preferred orientation on a <001>-oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.
NASA Astrophysics Data System (ADS)
Shi, Yongzheng; Yang, Dongzhi; Li, Yuan; Qu, Jin; Yu, Zhong-Zhen
2017-12-01
Although TiO2-based photocatalysts have exhibited a great potential for degradation of organic pollutants, it is still necessary to simultaneously enhance their visible-light-driven photocatalytic efficiency and physical recyclability. Herein, highly efficient, visible-light-driven photocatalytically active, and recyclable nanofibrous membranes with thin TiO2/Ag heterojunction layer are prepared using electrospun polyacrylonitrile (PAN) nanofibrous membrane as the substrate. By regulating the concentration and hydrolysis process of Ti precursors, TiO2 nanoparticles steadily grow on the PAN nanofibers with high-specific surface area to form a continuous mesoporous shell with the thickness of 20 nm for efficient degradation of organic pollutants. Furthermore, to form a stable heterojunction structure, Ag nanoparticles are deposited on the TiO2 surface by using dopamine as a binder and reductant. The presence of Ag nanoparticles leads to an obvious red-shift from 380 nm to 490 nm, which improves the utilization efficiency of visible light, and reduces the electron/hole recombination rate simultaneously. The resulting PAN@TiO2/Ag membranes hold enhanced photocatalytic activity for methylene blue degradation within 1 h under visible light irradiation, and satisfactory recyclability, which endow them with a great potential for adsorption and photocatalytic applications.
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
NASA Astrophysics Data System (ADS)
Golobostanfard, Mohammad Reza; Abdizadeh, Hossein
2013-03-01
The effects of different acid catalysts of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and citric acid on structural, morphological, and optoelectrical properties of nanocrystalline spin-coated TiO2 thin films synthesized via alkoxide sol-gel route were investigated. It was found that only the sols with HNO3 and HCl are suitable for film preparation. The X-ray diffractometry and Raman analysis showed that crystalline phases could be controlled by the type of acid catalyst. Although the H2SO4 sol shows good stability, it causes extremely different morphology to form due to its different sol nature and high contact angle. Fourier transformed infrared spectra confirmed the presence of acid anion species in all samples even after calcination. Furthermore, it was inferred from UV-visable absorption spectra that although the band gap and thickness of the films are independent of acid catalyst type, the refractive index and porosity of the films are strongly affected by the type of acids.
Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Boseong; Dohnálek, Zdenek; Szanyi, János
2016-10-01
Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110)more » surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less
Temperature-programmed desorption study of NO reactions on rutile TiO 2(110)-1×1
Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; ...
2016-02-24
In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO 2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO 2(110) to form N 2O, which desorbs between 50 and 200 K (LT N 2O channels), which leaves the TiO 2 surface populated with adsorbed oxygen atoms (O a) as a by-product of N 2O formation. In addition, we observe simultaneous desorption peaks of NO and N 2O at 270 K (HT1 N 2O) and 400 K (HT2 N 2O), respectively, both ofmore » which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO 2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO 2 and NO 3. The adsorbate-free TiO 2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N 2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less
NASA Astrophysics Data System (ADS)
Lazau, Carmen; Iordache, Tanta-Verona; Florea, Ana-Mihaela; Orha, Corina; Bandas, Cornelia; Radu, Anita-Laura; Sarbu, Andrei; Rotariu, Traian
2016-10-01
In this study, TiO2 films were successfully grown in-situ onto a FTO substrate by a hydrothermal method, using TiCl4 as Ti precursor, and further on functionalized with a 2,4,6-trinitrotoluene-molecularly imprinted polymer (TNT-MIP) film as a preliminary step in developing a trinitrotoluene (TNT) reusable sensor to overcome the international security issues. For investigating the TiO2 film thickness, crystalline structure and morphology, the films were autoclaved at 200 °C at different times. The X-ray diffraction showed that TiO2 films possessed a rutile structure, with no cracks visible by atomic force microscopy (AFM), and the films morphology observed by scanning electron microscopy (SEM) was highly dependent upon the hydrothermal treatment time. Yet, the TiO2 films with a more porous surface were more suitable for TNT-MIP film deposit. Rheology of precursor polymer film solutions, based on poly (acrylonitrile-co-acrylic acid), poly (acrylonitrile-co-methacrylic acid) or poly (acrylonitrile- co-itaconic acid), and the structure and adherence of TNT-MIP films were investigated in order to establish the correct recipe of the MIP. The removal yield of TNT from the imprinted films, the thickness, the porosity and the compatibility with the inorganic TiO2 film were adequate for the poly (acrylonitrile-co-acrylic acid) system with an acrylonitrile: acrylic acid practical ratio of 86.1:13.9 (wt./wt.). Farmore, AFM morphology corroborated with SEM results highlighted the effect of TNT imprinting in the copolymer matrix as the surface of the imprinted layer was quite different from that of the non-imprinted layer.
Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei
2015-01-01
In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493
Solution-Processed hybrid Sb2 S3 planar heterojunction solar cell
NASA Astrophysics Data System (ADS)
Huang, Wenxiao; Borazan, Ismail; Carroll, David
Thin-film solar cells based on inorganic absorbers permit a high efficiency and stability. Among or those absorber candidates, recently Sb2S3 has attracted extensive attention because of its suitable band gap (1.5eV ~1.7 eV) , strong optical absorption, low-cost and earth-abundant constituents. Currently high-efficiency Sb2S3 solar cells have absorber layer deposited on nanostructured TiO2 electrodes in combination with organic hole transport material (HTM) on top. However it's challenging to fill the nanostructured TiO2 layer with Sb2S3 and subsequently by HTM, this leads to uncovered surface permits charge recombination. And the existing of Sb2S3/TiO2/HTM triple interface will enhance the recombination due to the surface trap state. Therefore, a planar junction cell would not only have simpler structure with less steps to fabricate but also ideally also have a higher open circuit voltage because of less interface carrier recombination. By far there is limited research focusing on planar Sb2S3 solar cell, so the feasibility is still unclear. Here, we developed a low-toxic solution method to fabricate Sb2S3 thin film solar cell, then we studied the morphology of the Sb2S3 layer and its impact to the device performance. The best device with a structure of FTO/TiO2/Sb2S3/P3HT/Ag has PCE over 5% which is similar or higher than yet the best nanostructure devices with the same HTM. Furthermore, based on solution engineering and surface modification, we improved the Sb2S3 film quality and achieved a record PCE. .
Removal of 4-Nitrophenol from Water Using Ag–N–P-Tridoped TiO2 by Photocatalytic Oxidation Technique
Achamo, Temesgen; Yadav, O. P.
2016-01-01
Photocatalytic oxidation using semiconductor nanoparticles is an efficient, eco-friendly, and cost-effective process for the removal of organic pollutants, such as dyes, pesticides, phenols, and their derivatives in water. In the present study, nanosize Ag–N–P-tridoped titanium(IV) oxide (TiO2) was prepared by using sol–gel-synthesized Ag-doped TiO2 and soybean (Glycine max) or chickpea (Cicer arietinum) seeds as nonmetallic bioprecursors. As-synthesized photocatalysts were characterized using X-ray diffraction, Fourier transform infrared, and ultra violet (UV)–visible spectroscopic techniques. Average crystallite size of the studied photocatalysts was within 39–46 nm. Whereas doped Ag in TiO2 minimized the photogenerated electron–hole recombination, doped N and P extended its photoabsorption edge to visible region. Tridoping of Ag, N, and P in TiO2 exhibited synergetic effect toward enhancing its photocatalytic degradation of 4-nitrophenol (4-NP), separately, under UV and visible irradiations. At three hours, degradations of 4-NP over Ag–N–P-tridoped TiO2 under UV and visible radiations were 73.8 and 98.1%, respectively. PMID:27081309
Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface
NASA Astrophysics Data System (ADS)
Ge, Chun; Lu, Meng; Zhang, Wei; Cunningham, Brian T.
2010-04-01
A dielectric nanorod structure is used to enhance the label-free detection sensitivity of a vertically-emitting distributed feedback laser biosensor (DFBLB). The device is comprised of a replica molded plastic grating that is subsequently coated with a dye-doped polymer layer and a TiO2 nanorod layer produced by the glancing angle deposition technique. The DFBLB emission wavelength is modulated by the adsorption of biomolecules, whose greater dielectric permittivity with respect to the surrounding liquid media will increase the laser wavelength in proportion to the density of surface-adsorbed biomaterial. The nanorod layer provides greater surface area than a solid dielectric thin film, resulting in the ability to incorporate a greater number of molecules. The detection of a monolayer of protein polymer poly (Lys, Phe) is used to demonstrate that a 90 nm TiO2 nanorod structure improves the detection sensitivity by a factor of 6.6 compared to an identical sensor with a nonporous TiO2 surface.
Oulad-Zian, Youssef; Sanchez-Valencia, Juan R; Parra-Barranco, Julian; Hamad, Said; Espinos, Juan P; Barranco, Angel; Ferrer, Javier; Coll, Mariona; Borras, Ana
2015-08-04
In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2.