Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed
NASA Astrophysics Data System (ADS)
Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy
2015-09-01
Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.
Interest of A Morphological Explanation of The Unit Hydrograph Concept: Case of Urban Catchments
NASA Astrophysics Data System (ADS)
Rodriguez, F.; Cudennec, C.; Cellier, G.; Andrieu, H.
Expansion of urbanised areas has put emphasis on related water management prob- lems, such as flooding and pollution control, which requires a good knowledge of the hydrological response of urban catchments. Unfortunately, most of urban catchments are ungauged and their hydrological features must be deduced from existent data. A good description of the urban characteristics can give some advances in the field of urban hydrology : the geographical and physical knowledge of the city is made eas- ier by the emergence of urban data banks, introducing a meter-scale morphological description of the city. Linking the hydrological response of a catchment to its geo- morphology has been successfully implemented in natural settings within the concept of GIUH (Geomorphologic Instantaneous Unit Hydrograph). In the same manner, the available description of urban catchments makes it possible to deduce their hydrolog- ical behaviour throughout the Unit Hydrograph concept. We suggest to compare three complementary methods of determination of Unit Hydrographs, with increasing de- grees of description of the catchment morphology. The first method, presenting a high degree of accounting for the catchment morphology, is called MIUH (Morphologi- cal Instantaneous Unit Hydrograph; Rodriguez et al., 2000), and is derived from the analysis of urban databanks allowing an explicit description of the runoff production areas and their downstream flow channels. The second one, called H2U (Duchesne et al., 1997) and corresponding to a moderate degree, is a gamma law whose 2 pa- rameters are based on the Strahler order of the catchment and the mean hydraulic length of water paths through the drainage system. The third method, called FDTF (First Derivative Transfert Function; Duband et al., 1993) and corresponding to a low degree, is a validation method deriving Unit Hydrograph by a deconvolution itera- tive identification technique, from a sample of observed rainfall and flow data. The three methods are shortly summarised, and applied to two urban catchments of the Nantes urban center (60 and 180 ha), Western France. Their comparison is discussed and shows encouraging results. Deriving Unit Hydrographs from the morphology of ungauged catchment appears to be of high interest for hydrology, and the degree of accounting for informations about this morphology can be adapted according to the availability of geographical data on the studied catchment. Duchesne, J., C. Cudennec, and V. Corbierre, 1997. Relevance of the H2U model to 1 predict the discharge of a catchment, Water Science and Technology, 36(5), 169-175. Duband, D., C. Obled, and J. Rodriguez, 1993. Unit hydrograph revisited : an alterna- tive approach to UH and effective precipitation identification. Journal of Hydrology, 150(1): p 115-150. Rodriguez, F., H. Andrieu, J.D. Creutin, and G. Raimbault, 2000. Hydrological anal- ysis using urban data banks, paper presented at Hydroinformatics, IIHR Iowa City, USA. 2
Application of two direct runoff prediction methods in Puerto Rico
Sepulveda, N.
1997-01-01
Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.
NASA Astrophysics Data System (ADS)
Farmer, W. H.; Kiang, J. E.
2017-12-01
The development, deployment and maintenance of water resources management infrastructure and practices rely on hydrologic characterization, which requires an understanding of local hydrology. With regards to streamflow, this understanding is typically quantified with statistics derived from long-term streamgage records. However, a fundamental problem is how to characterize local hydrology without the luxury of streamgage records, a problem that complicates water resources management at ungaged locations and for long-term future projections. This problem has typically been addressed through the development of point estimators, such as regression equations, to estimate particular statistics. Physically-based precipitation-runoff models, which are capable of producing simulated hydrographs, offer an alternative to point estimators. The advantage of simulated hydrographs is that they can be used to compute any number of streamflow statistics from a single source (the simulated hydrograph) rather than relying on a diverse set of point estimators. However, the use of simulated hydrographs introduces a degree of model uncertainty that is propagated through to estimated streamflow statistics and may have drastic effects on management decisions. We compare the accuracy and precision of streamflow statistics (e.g. the mean annual streamflow, the annual maximum streamflow exceeded in 10% of years, and the minimum seven-day average streamflow exceeded in 90% of years, among others) derived from point estimators (e.g. regressions, kriging, machine learning) to that of statistics derived from simulated hydrographs across the continental United States. Initial results suggest that the error introduced through hydrograph simulation may substantially bias the resulting hydrologic characterization.
Karlinger, M.R.; Troutman, B.M.
1985-01-01
An instantaneous unit hydrograph (iuh) based on the theory of topologically random networks (topological iuh) is evaluated in terms of sets of basin characteristics and hydraulic parameters. Hydrographs were computed using two linear routing methods for each of two drainage basins in the southeastern United States and are the basis of comparison for the topological iuh's. Elements in the sets of basin characteristics for the topological iuh's are the number of first-order streams only, (N), or the nuber of sources together with the number of channel links in the topological diameter (N, D); the hydraulic parameters are values of the celerity and diffusivity constant. Sensitivity analyses indicate that the mean celerity of the internal links in the network is the critical hydraulic parameter for determining the shape of the topological iuh, while the diffusivity constant has minimal effect on the topological iuh. Asymptotic results (source-only) indicate the number of sources need not be large to approximate the topological iuh with the Weibull probability density function.
SIMULATION OF FLOOD HYDROGRAPHS FOR GEORGIA STREAMS.
Inman, E.J.; Armbruster, J.T.
1986-01-01
Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at urban and rural ungauged sites in Georgia is presented. The O'Donnell method was used to compute unit hydrographs from 355 flood events from 80 stations. An average unit hydrograph and an average lag time were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lag time and then reduced to dimensionless terms by dividing the time by lag time and the discharge by peak discharge. Hydrographs were simulated for these 355 flood events and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. For simulating hydrographs at sites larger than 500 mi**2, the U. S. Geological Survey computer model CONROUT can be used.
NASA Astrophysics Data System (ADS)
Candela, A.; Brigandì, G.; Aronica, G. T.
2014-07-01
In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall-runoff model, is presented. Rainfall-runoff modelling (R-R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service - Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R-R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.
NASA Astrophysics Data System (ADS)
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
Stanislawski, Larry V.; Liu, Yan; Buttenfield, Barbara P.; Survila, Kornelijus; Wendel, Jeffrey; Okok, Abdurraouf
2016-01-01
The National Hydrography Dataset (NHD) for the United States furnishes a comprehensive set of vector features representing the surface-waters in the country (U.S. Geological Survey 2000). The high-resolution (HR) layer of the NHD is largely comprised of hydrographic features originally derived from 1:24,000-scale (24K) U.S. Topographic maps. However, in recent years (2009 to present) densified hydrographic feature content, from sources as large as 1:2,400, have been incorporated into some watersheds of the HR NHD within the conterminous United States to better support the needs of various local and state organizations. As such, the HR NHD is a multiresolution dataset with obvious data density variations because of scale changes. In addition, data density variations exist within the HR NHD that are particularly evident in the surface-water flow network (NHD flowlines) because of natural variations of local geographic conditions; and also because of unintentional compilation inconsistencies due to variations in data collection standards and climate conditions over the many years of 24K hydrographic data collection (US Geological Survey 1955).
NHDPlusHR: A national geospatial framework for surface-water information
Viger, Roland; Rea, Alan H.; Simley, Jeffrey D.; Hanson, Karen M.
2016-01-01
The U.S. Geological Survey is developing a new geospatial hydrographic framework for the United States, called the National Hydrography Dataset Plus High Resolution (NHDPlusHR), that integrates a diversity of the best-available information, robustly supports ongoing dataset improvements, enables hydrographic generalization to derive alternate representations of the network while maintaining feature identity, and supports modern scientific computing and Internet accessibility needs. This framework is based on the High Resolution National Hydrography Dataset, the Watershed Boundaries Dataset, and elevation from the 3-D Elevation Program, and will provide an authoritative, high precision, and attribute-rich geospatial framework for surface-water information for the United States. Using this common geospatial framework will provide a consistent basis for indexing water information in the United States, eliminate redundancy, and harmonize access to, and exchange of water information.
Melching, C.S.; Marquardt, J.S.
1997-01-01
Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area had multiple correlation coefficients of 0.873, 0.961, 0.968, and 0.963 for TC, R, UL, and TL, respectively, and the estimation equations utilizing main channel length had multiple correlation coefficients of 0.845, 0.957, 0.961, and 0.963 for TC, R, UL, and TL, respectively. Simulation of the measured hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results without calibration. The peak discharge for 8 of the 11 storms was estimated within 25 percent and the time-to-peak discharge for 10 of the 11 storms was estimated within 20 percent. Thus, application of the estimation equations to determine synthetic unit-hydrograph parameters for design-storm simulation may result in reliable design hydrographs; as long as the physical characteristics of the watersheds under consideration are within the range of those for the watersheds in this study (area: 0.06-37 mi2, main channel length: 0.33-16.6 miles, main channel slope: 3.13-55.3 feet per mile, and percentage of impervious cover: 7.32-40.6 percent). The estimation equations are most reliable when applied to watersheds with areas less than 25 mi2.
Automated Method to Develop a Clark Synthetic Unit Hydrograph within ArcGIS
2015-08-01
assumption of superposition, a simulated outflow hydrograph is created. Peff represents the fraction of precipitation that contributes to immediate runoff ...the spatial features of the watershed affect the runoff of the basin and therefore the unit hydrograph at the outlet of the basin. BACKGROUND...Rainfall- runoff response within a watershed is a core consideration of hydrologists. The use of unit hydrographs as a way to analyze the rainfall- runoff
Simulation of flood hydrographs for Georgia streams
Inman, Ernest J.
1987-01-01
Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at ungaged sites in Georgia is presented in this report. The O'Donnell method was used to compute unit hydrographs and lagtimes for 355 floods at 80 gaging stations. An average unit hydrograph and an average lagtime were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lagtime, then reduced to dimensionless terms by dividing the time by lagtime and the discharge by peak discharge. Hydrographs were simulated for these 355 floods and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. The dimensionless hydrograph based on one-half lagtime duration provided the best fit of the observed data. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics; of these characteristics, drainage area and slope were found to be significant for the rural-stream equations and drainage area, slope, and impervious area were found to be significant for the Atlanta urban-stream equation. A hydrograph can be simulated from the dimensionless hydrograph, the peak discharge of a specific recurrence interval, and the lagtime obtained from regression equations for any site in Georgia having a drainage area of less than 500 square miles. For simulating hydrographs at sites having basins larger than 500 square miles, the U.S. Geological Survey computer model CONROUT can be used. This model routes streamflow from an upstream channel location to a user-defined location downstream. The product of CONROUT is a simulated discharge hydrograph for the downstream site that has a peak discharge of a specific recurrence interval.
Determination of rainfall losses in Virginia, phase II : final report.
DOT National Transportation Integrated Search
1982-01-01
A procedure is presented by which regional unit hydrograph and loss rate parameters are estimated for the generation of design storm hydrographs for watershed in Virginia. The state is divided into seven hydrological regions, and unit hydrograph and ...
Asquith, William H.; Roussel, Meghan C.
2007-01-01
Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is limited to a previously described, watershed-specific, gamma distribution model of the unit hydrograph. In particular, the initial-abstraction, constant-loss model is tuned to the gamma distribution model of the unit hydrograph. A complex computational analysis of observed rainfall and runoff for the 92 watersheds was done to determine, by storm, optimal values of initial abstraction and constant loss. Optimal parameter values for a given storm were defined as those values that produced a modeled runoff hydrograph with volume equal to the observed runoff hydrograph and also minimized the residual sum of squares of the two hydrographs. Subsequently, the means of the optimal parameters were computed on a watershed-specific basis. These means for each watershed are considered the most representative, are tabulated, and are used in further statistical analyses. Statistical analyses of watershed-specific, initial abstraction and constant loss include documentation of the distribution of each parameter using the generalized lambda distribution. The analyses show that watershed development has substantial influence on initial abstraction and limited influence on constant loss. The means and medians of the 92 watershed-specific parameters are tabulated with respect to watershed development; although they have considerable uncertainty, these parameters can be used for parameter prediction for ungaged watersheds. The statistical analyses of watershed-specific, initial abstraction and constant loss also include development of predictive procedures for estimation of each parameter for ungaged watersheds. Both regression equations and regression trees for estimation of initial abstraction and constant loss are provided. The watershed characteristics included in the regression analyses are (1) main-channel length, (2) a binary factor representing watershed development, (3) a binary factor representing watersheds with an abundance of rocky and thin-soiled terrain, and (4) curve numb
Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.
2011-01-01
Estimates of peak and time of peak streamflow for small watersheds (less than about 640 acres) in a suburban to urban, low-slope setting are needed for drainage design that is cost-effective and risk-mitigated. During 2007-10, the U.S. Geological Survey (USGS), in cooperation with the Harris County Flood Control District and the Texas Department of Transportation, developed a method to estimate peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area. To develop the method, 24 watersheds in the study area with drainage areas less than about 3.5 square miles (2,240 acres) and with concomitant rainfall and runoff data were selected. The method is based on conjunctive analysis of rainfall and runoff data in the context of the unit hydrograph method and the rational method. For the unit hydrograph analysis, a gamma distribution model of unit hydrograph shape (a gamma unit hydrograph) was chosen and parameters estimated through matching of modeled peak and time of peak streamflow to observed values on a storm-by-storm basis. Watershed mean or watershed-specific values of peak and time to peak ("time to peak" is a parameter of the gamma unit hydrograph and is distinct from "time of peak") of the gamma unit hydrograph were computed. Two regression equations to estimate peak and time to peak of the gamma unit hydrograph that are based on watershed characteristics of drainage area and basin-development factor (BDF) were developed. For the rational method analysis, a lag time (time-R), volumetric runoff coefficient, and runoff coefficient were computed on a storm-by-storm basis. Watershed-specific values of these three metrics were computed. A regression equation to estimate time-R based on drainage area and BDF was developed. Overall arithmetic means of volumetric runoff coefficient (0.41 dimensionless) and runoff coefficient (0.25 dimensionless) for the 24 watersheds were used to express the rational method in terms of excess rainfall (the excess rational method). Both the unit hydrograph method and excess rational method are shown to provide similar estimates of peak and time of peak streamflow. The results from the two methods can be combined by using arithmetic means. A nomograph is provided that shows the respective relations between the arithmetic-mean peak and time of peak streamflow to drainage areas ranging from 10 to 640 acres. The nomograph also shows the respective relations for selected BDF ranging from undeveloped to fully developed conditions. The nomograph represents the peak streamflow for 1 inch of excess rainfall based on drainage area and BDF; the peak streamflow for design storms from the nomograph can be multiplied by the excess rainfall to estimate peak streamflow. Time of peak streamflow is readily obtained from the nomograph. Therefore, given excess rainfall values derived from watershed-loss models, which are beyond the scope of this report, the nomograph represents a method for estimating peak and time of peak streamflow for applicable watersheds in the Houston metropolitan area. Lastly, analysis of the relative influence of BDF on peak streamflow is provided, and the results indicate a 0:04log10 cubic feet per second change of peak streamflow per positive unit of change in BDF. This relative change can be used to adjust peak streamflow from the method or other hydrologic methods for a given BDF to other BDF values; example computations are provided.
Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study
2017-05-01
ER D C/ CH L TR -1 7- 6 Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study Co as ta l a nd H yd ra...default. ERDC/CHL TR-17-6 May 2017 Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study Nawa Raj Pradhan and...confidence interval precipitation depths to the watershed in addition to the 50% value. This study concluded that a design event with a return period greater
A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure
NASA Astrophysics Data System (ADS)
Gnecco, Ilaria; Palla, Anna; La Barbera, Paolo
2018-02-01
The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event structure on the hydrograph peak. To this end a methodology to describe the rainfall event structure is proposed based on the similarity with the depth-duration-frequency (DDF) curves. The rainfall input consists of a constant hyetograph where all the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using the Soil Conservation Service method and the instantaneous unit hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma distribution is selected to test the proposed methodology. The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time-invariant system). A set of analytical expressions are derived in the case of a constant-intensity hyetograph to assess the maximum runoff peak with respect to a given rainfall event structure irrespective of the specific catchment (such as the return period associated with the reference rainfall event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.
Stanislawski, Larry V.; Falgout, Jeff T.; Buttenfield, Barbara P.
2015-01-01
Hydrographic networks form an important data foundation for cartographic base mapping and for hydrologic analysis. Drainage density patterns for these networks can be derived to characterize local landscape, bedrock and climate conditions, and further inform hydrologic and geomorphological analysis by indicating areas where too few headwater channels have been extracted. But natural drainage density patterns are not consistently available in existing hydrographic data for the United States because compilation and capture criteria historically varied, along with climate, during the period of data collection over the various terrain types throughout the country. This paper demonstrates an automated workflow that is being tested in a high-performance computing environment by the U.S. Geological Survey (USGS) to map natural drainage density patterns at the 1:24,000-scale (24K) for the conterminous United States. Hydrographic network drainage patterns may be extracted from elevation data to guide corrections for existing hydrographic network data. The paper describes three stages in this workflow including data pre-processing, natural channel extraction, and generation of drainage density patterns from extracted channels. The workflow is concurrently implemented by executing procedures on multiple subbasin watersheds within the U.S. National Hydrography Dataset (NHD). Pre-processing defines parameters that are needed for the extraction process. Extraction proceeds in standard fashion: filling sinks, developing flow direction and weighted flow accumulation rasters. Drainage channels with assigned Strahler stream order are extracted within a subbasin and simplified. Drainage density patterns are then estimated with 100-meter resolution and subsequently smoothed with a low-pass filter. The extraction process is found to be of better quality in higher slope terrains. Concurrent processing through the high performance computing environment is shown to facilitate and refine the choice of drainage density extraction parameters and more readily improve extraction procedures than conventional processing.
NASA Astrophysics Data System (ADS)
Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.
2017-12-01
The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.
A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes
NASA Astrophysics Data System (ADS)
Brigandì, Giuseppina; Tito Aronica, Giuseppe
2015-04-01
Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of one parallel channel and reservoir, thereby corresponding to 'quick' and 'slow' components of runoff. In the non linear model a wetness/soil moisture index, varying from 0 to 1, was derived to define daily soil moisture catchment conditions and then conveniently linked to a corresponding CN value to use as input to derive the corresponding rainfall threshold for a given day. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. Application of the proposed methodology was carried out with reference to a river basin in Sicily, Italy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
NASA Astrophysics Data System (ADS)
Bhattacharjya, Rajib Kumar
2018-05-01
The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.
NASA Astrophysics Data System (ADS)
Said, N. M.; Mahmud, M. R.; Hasan, R. C.
2017-10-01
Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.
Scaling of peak flows with constant flow velocity in random self-similar networks
Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.
2011-01-01
A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow dynamics and runoff generation processes using ensembles of RSNs.
1983-07-01
storage areas were taken into account during the flood routings. AI.36 The computer program REVPULS, developed for this report, reverse Modified Puls...routed the hydrograph at Batavia through the storage upstream of the LVRR embankment. Subtracting this reverse -routed hydrograph from the combined...segments to form a more accurate reconstitution. The hydrographs upstream of Batavia were derived by reverse -routing and prorating by drainage area. Table
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
Sen. Murkowski, Lisa [R-AK
2009-07-24
Senate - 07/24/2009 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Gamble, C.R.
1989-01-01
A dimensionless hydrograph developed for a variety of basin conditions in Georgia was tested for its applicability to streams in East and West Tennessee by comparing it to a similar dimensionless hydrograph developed for streams in East and West Tennessee. Hydrographs of observed discharge at 83 streams in East Tennessee and 38 in West Tennessee were used in the study. Statistical analyses were performed by comparing simulated (or computed) hydrographs, derived by application of the Georgia dimensionless hydrograph, and dimensionless hydrographs developed from Tennessee data, with the observed hydrographs at 50 and 75% of their peak-flow widths. Results of the tests indicate that the Georgia dimensionless hydrography is virtually the same as the one developed for streams in East Tennessee, but that it is different from the dimensionless hydrograph developed for streams in West Tennessee. Because of the extensive testing of the Georgia dimensionless hydrograph, it was determined to be applicable for East Tennessee, whereas the dimensionless hydrograph developed from data on streams in West Tennessee was determined to be applicable in West Tennessee. As part of the dimensionless hydrograph development, an average lagtime in hours for each study basin, and the volume in inches of flood runoff for each flood event were computed. By use of multiple-regression analysis, equations were developed that relate basin lagtime to drainage area size, basin length, and percent impervious area. Similarly, flood volumes were related to drainage area size, peak discharge, and basin lagtime. These equations, along with the appropriate dimensionless hydrograph, can be used to estimate a typical (average) flood hydrograph and volume for recurrence-intervals up to 100 years at any ungaged site draining less than 50 sq mi in East and West Tennessee. (USGS)
Nonlinear scaling of the Unit Hydrograph Peaking Factor for dam safety
NASA Astrophysics Data System (ADS)
Pradhan, N. R.; Loney, D.
2017-12-01
Existing U.S. Army Corps of Engineers (USACE) policy suggests unit hydrograph peaking factor (UHPF), the ratio of an observed and modeled event unit hydrograph peak, range between 1.25 and 1.50 to ensure dam safety. It is pertinent to investigate the impact of extreme flood events on the validity of this range through physically based rainfall-runoff models not available during the planning and design of most USACE dams. The UHPF range was analyzed by deploying the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model in the Goose Creek, VA, watershed to develop a UHPF relationship with excess rainfall across various return-period events. An effective rainfall factor (ERF) is introduced to validate existing UHPF guidance as well as provide a nonlinear UHPF scaling relation when effective rainfall does not match that of the UH design event.
NASA Astrophysics Data System (ADS)
Seo, Y.; Choi, N.-J.; Schmidt, A. R.
2013-05-01
This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute to direct runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.
NASA Astrophysics Data System (ADS)
Seo, Y.; Choi, N.-J.; Schmidt, A. R.
2013-09-01
This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute directly to the runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.
Rep. Young, Don [R-AK-At Large
2009-06-12
Senate - 07/15/2010 Received in the Senate and Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Rep. Young, Don [R-AK-At Large
2011-01-12
Senate - 10/31/2011 Received in the Senate and Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Bivariate analysis of floods in climate impact assessments.
Brunner, Manuela Irene; Sikorska, Anna E; Seibert, Jan
2018-03-01
Climate impact studies regarding floods usually focus on peak discharges and a bivariate assessment of peak discharges and hydrograph volumes is not commonly included. A joint consideration of peak discharges and hydrograph volumes, however, is crucial when assessing flood risks for current and future climate conditions. Here, we present a methodology to develop synthetic design hydrographs for future climate conditions that jointly consider peak discharges and hydrograph volumes. First, change factors are derived based on a regional climate model and are applied to observed precipitation and temperature time series. Second, the modified time series are fed into a calibrated hydrological model to simulate runoff time series for future conditions. Third, these time series are used to construct synthetic design hydrographs. The bivariate flood frequency analysis used in the construction of synthetic design hydrographs takes into account the dependence between peak discharges and hydrograph volumes, and represents the shape of the hydrograph. The latter is modeled using a probability density function while the dependence between the design variables peak discharge and hydrograph volume is modeled using a copula. We applied this approach to a set of eight mountainous catchments in Switzerland to construct catchment-specific and season-specific design hydrographs for a control and three scenario climates. Our work demonstrates that projected climate changes have an impact not only on peak discharges but also on hydrograph volumes and on hydrograph shapes both at an annual and at a seasonal scale. These changes are not necessarily proportional which implies that climate impact assessments on future floods should consider more flood characteristics than just flood peaks. Copyright © 2017. Published by Elsevier B.V.
On river-floodplain interaction and hydrograph skewness
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan S.; Paiva, Rodrigo C. D.; Collischonn, Walter; Sorribas, Mino V.; Pontes, Paulo R. M.
2016-10-01
Understanding hydrological processes occurring within a basin by looking at its outlet hydrograph can improve and foster comprehension of ungauged regions. In this context, we present an extensive examination of the roles that floodplains play on driving hydrograph shapes. Observations of many river hydrographs with large floodplain influence are carried out and indicate that a negative skewness of the hydrographs is present among many of them. Through a series of numerical experiments and analytical reasoning, we show how the relationship between flood wave celerity and discharge in such systems is responsible for determining the hydrograph shapes. The more water inundates the floodplains upstream of the observed point, the more negatively skewed is the observed hydrograph. A case study is performed in the Amazon River Basin, where major rivers with large floodplain attenuation (e.g., Purus, Madeira, and Juruá) are identified with higher negative skewness in the respective hydrographs. Finally, different wetland types could be distinguished by using this feature, e.g., wetlands maintained by endogenous processes, from wetlands governed by overbank flow (along river floodplains). A metric of hydrograph skewness was developed to quantify this effect, based on the time derivative of discharge. Together with the skewness concept, it may be used in other studies concerning the relevance of floodplain attenuation in large, ungauged rivers, where remote sensing data (e.g., satellite altimetry) can be very useful.
Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report
Turner, James F.
1972-01-01
Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a basis for forecasting floods, but also for simulating hydrologic information needed in flood-plain mapping and delineating and evaluating alternative flood control and abatement plans.
A Gulf Stream-derived pycnocline intrusion on the Middle Atlantic Bight shelf
NASA Astrophysics Data System (ADS)
Gawarkiewicz, Glen; McCarthy, Robert K.; Barton, Kenneth; Masse, Ann K.; Church, Thomas M.
1990-12-01
Saline intrusions from the upper slope onto the outer shelf are frequently observed at the pycnocline along the shelfbreak front in the Middle Atlantic Bight during the summer. A brief cruise was conducted in July, 1986 between Baltimore and Washington Canyons to examine along-shelf variability of pycnocline salinity intrusions. A particularly saline intrusion of 35.8 Practical Salinity Units (PSU) was observed between 20 and 40 m in a water depth of 70 to 80 m. The along-shelf extent was at least 40 km. The cooler, sub-pycnocline outer shelf water was displaced 15 km shoreward of the shelfbreak. A Gulf Stream filament was present in the slope region prior to the hydrographic sampling, but was not visible in thermal imagery during the hydrographic sampling. Temperature-salinity characteristics of the intrusion suggest that it was a mixture of Gulf Stream water and slope water, possibly from the filament. The shoreward penetration of saline water was most pronounced at the pycnocline and penetrated the shelfbreak front, with salinities as high as 35.0 PSU reaching as far shoreward as the 35 m isobath. These pycnocline intrusions may be an important mechanism for the transport of Gulf Stream-derived water onto the shelf during the summer. The presence of filaments or other Gulf Stream-derived water on the upper slope may account for some of the along-front variability of the pycnocline salinity maximum that has previously been observed.
Probability distribution functions for unit hydrographs with optimization using genetic algorithm
NASA Astrophysics Data System (ADS)
Ghorbani, Mohammad Ali; Singh, Vijay P.; Sivakumar, Bellie; H. Kashani, Mahsa; Atre, Atul Arvind; Asadi, Hakimeh
2017-05-01
A unit hydrograph (UH) of a watershed may be viewed as the unit pulse response function of a linear system. In recent years, the use of probability distribution functions (pdfs) for determining a UH has received much attention. In this study, a nonlinear optimization model is developed to transmute a UH into a pdf. The potential of six popular pdfs, namely two-parameter gamma, two-parameter Gumbel, two-parameter log-normal, two-parameter normal, three-parameter Pearson distribution, and two-parameter Weibull is tested on data from the Lighvan catchment in Iran. The probability distribution parameters are determined using the nonlinear least squares optimization method in two ways: (1) optimization by programming in Mathematica; and (2) optimization by applying genetic algorithm. The results are compared with those obtained by the traditional linear least squares method. The results show comparable capability and performance of two nonlinear methods. The gamma and Pearson distributions are the most successful models in preserving the rising and recession limbs of the unit hydographs. The log-normal distribution has a high ability in predicting both the peak flow and time to peak of the unit hydrograph. The nonlinear optimization method does not outperform the linear least squares method in determining the UH (especially for excess rainfall of one pulse), but is comparable.
NASA Astrophysics Data System (ADS)
Putnam, S. M.; Harman, C. J.
2017-12-01
Many studies have sought to unravel the influence of landscape structure and catchment state on the quantity and composition of water at the catchment outlet. These studies run into issues of equifinality where multiple conceptualizations of flow pathways or storage states cannot be discriminated against on the basis of the quantity and composition of water alone. Here we aim to parse out the influence of landscape structure, flow pathways, and storage on both the observed catchment hydrograph and chemograph, using hydrometric and water isotope data collected from multiple locations within Pond Branch, a 37-hectare Piedmont catchment of the eastern US. This data is used to infer the quantity and age distribution of water stored and released by individual hydrogeomorphic units, and the catchment as a whole, in order to test hypotheses relating landscape structure, flow pathways, and catchment storage to the hydrograph and chemograph. Initial hypotheses relating internal catchment properties or processes to the hydrograph or chemograph are formed at the catchment scale. Data from Pond Branch include spring and catchment discharge measurements, well water levels, and soil moisture, as well as three years of high frequency precipitation and surface water stable water isotope data. The catchment hydrograph is deconstructed using hydrograph separation and the quantity of water associated with each time-scale of response is compared to the quantity of discharge that could be produced from hillslope and riparian hydrogeomorphic units. Storage is estimated for each hydrogeomorphic unit as well as the vadose zone, in order to construct a continuous time series of total storage, broken down by landscape unit. Rank StorAge Selection (rSAS) functions are parameterized for each hydrogeomorphic unit as well as the catchment as a whole, and the relative importance of changing proportions of discharge from each unit as well as storage in controlling the variability in the catchment chemograph is explored. The results suggest that the quantity of quickflow can be accounted for by direct precipitation onto < 5.2% of the catchment area, representing a zero-order swale plus the riparian area. rSAS modeling suggests that quickflow is largely composed of pre-event, stored water, generated through a process such as groundwater ridging.
NASA Astrophysics Data System (ADS)
Abell, J. T.; Jacobsen, J.; Bjorkstedt, E.
2016-02-01
Determining aragonite saturation state (Ω) in seawater requires measurement of two parameters of the carbonate system: most commonly dissolved inorganic carbon (DIC) and total alkalinity (TA). The routine measurement of DIC and TA is not always possible on frequently repeated hydrographic lines or at moored-time series that collect hydrographic data at short time intervals. In such cases a proxy can be developed that relates the saturation state as derived from one time or infrequent DIC and TA measurements (Ωmeas) to more frequently measured parameters such as dissolved oxygen (DO) and temperature (Temp). These proxies are generally based on best-fit parameterizations that utilize references values of DO and Temp and adjust linear coefficients until the error between the proxy-derived saturation state (Ωproxy) and Ωmeas is minimized. Proxies have been used to infer Ω from moored hydrographic sensors and gliders which routinely collect DO and Temp data but do not include carbonate parameter measurements. Proxies can also calculate Ω in regional oceanographic models which do not explicitly include carbonate parameters. Here we examine the variability and accuracy of Ωproxy along a near-shore hydrographic line and a moored-time series stations at Trinidad Head, CA. The saturation state is determined using proxies from different coastal regions of the California Current Large Marine Ecosystem and from different years of sampling along the hydrographic line. We then calculate the variability and error associated with the use of different proxy coefficients, the sensitivity to reference values and the inclusion of additional variables. We demonstrate how this variability affects estimates of the intensity and duration of exposure to aragonite corrosive conditions on the near-shore shelf and in the water column.
Generation of synthetic flood hydrographs by hydrological donors (SHYDONHY method)
NASA Astrophysics Data System (ADS)
Paquet, Emmanuel
2017-04-01
For the design of hydraulic infrastructures like dams, a design hydrograph is required in most of the cases. Some of its features (e.g. peak value, duration, volume) corresponding to a given return period are computed thanks to a wide range of methods: historical records, mono or multivariate statistical analysis, stochastic simulation, etc. Then various methods have been proposed to construct design hydrographs having such characteristics, ranging from traditional unit-hydrograph to statistical methods (Yue et al., 2002). A new method to build design hydrographs (or more generally synthetic hydrographs) is introduced here, named SHYDONHY, French acronym for "Synthèse d'HYdrogrammes par DONneurs HYdrologiques". It is based on an extensive database of 100 000 flood hydrographs recorded at hourly time-step on 1300 gauging stations in France and Switzerland, covering a wide range of catchment size and climatology. For each station, an average of two hydrographs per year of record has been selected by a peak-over-threshold (POT) method with independence criteria (Lang et al., 1999). This sampling ensures that only hydrographs of intense floods are gathered in the dataset. For a given catchment, where few or no hydrograph is available at the outlet, a sub-set of 10 "donor stations" is selected within the complete dataset, considering several criteria: proximity, size, mean annual values and regimes for both total runoff and POT-selected floods. This sub-set of stations (and their corresponding flood hydrographs) will allow to: • Estimate a characteristic duration of flood hydrographs (e.g. duration for which the discharge is above 50% of the peak value). • For a given duration (e.g. one day), estimate the average peak-to- volume ratio of floods. • For a given duration and peak-to-volume ratio, generation of a synthetic reference hydrograph by combining appropriate hydrographs of the sub-set. • For a given daily discharge sequence, being observed or generated for extreme flood estimation, generate a suitable synthetic hydrograph, also by combining selected hydrographs of the sub-set. The reliability of the method is assessed by performing a jackknife validation on the whole dataset of stations, in particular by reconstructing the hydrograph of the biggest flood of each station and comparing it to the actual one. Some applications are presented, e.g. the coupling of SHYDONHY with the SCHADEX method (Paquet et al., 2003) for the stochastic simulation of extreme reservoir level in dams. References: Lang, M., Ouarda, T. B. M. J., & Bobée, B. (1999). Towards operational guidelines for over-threshold modeling. Journal of hydrology, 225(3), 103-117. Paquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. (2013). The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23-37. Yue, S., Ouarda, T. B., Bobée, B., Legendre, P., & Bruneau, P. (2002). Approach for describing statistical properties of flood hydrograph. Journal of hydrologic engineering, 7(2), 147-153.
Technique for simulating peak-flow hydrographs in Maryland
Dillow, Jonathan J.A.
1998-01-01
The efficient design and management of many bridges, culverts, embankments, and flood-protection structures may require the estimation of time-of-inundation and (or) storage of floodwater relating to such structures. These estimates can be made on the basis of information derived from the peak-flow hydrograph. Average peak-flow hydrographs corresponding to a peak discharge of specific recurrence interval can be simulated for drainage basins having drainage areas less than 500 square miles in Maryland, using a direct technique of known accuracy. The technique uses dimensionless hydrographs in conjunction with estimates of basin lagtime and instantaneous peak flow. Ordinary least-squares regression analysis was used to develop an equation for estimating basin lagtime in Maryland. Drainage area, main channel slope, forest cover, and impervious area were determined to be the significant explanatory variables necessary to estimate average basin lagtime at the 95-percent confidence interval. Qualitative variables included in the equation adequately correct for geographic bias across the State. The average standard error of prediction associated with the equation is approximated as plus or minus (+/-) 37.6 percent. Volume correction factors may be applied to the basin lagtime on the basis of a comparison between actual and estimated hydrograph volumes prior to hydrograph simulation. Three dimensionless hydrographs were developed and tested using data collected during 278 significant rainfall-runoff events at 81 stream-gaging stations distributed throughout Maryland and Delaware. The data represent a range of drainage area sizes and basin conditions. The technique was verified by applying it to the simulation of 20 peak-flow events and comparing actual and simulated hydrograph widths at 50 and 75 percent of the observed peak-flow levels. The events chosen are considered extreme in that the average recurrence interval of the selected peak flows is 130 years. The average standard errors of prediction were +/- 61 and +/- 56 percent at the 50 and 75 percent of peak-flow hydrograph widths, respectively.
Rice, Karen C.; Hornberger, George M.
1998-01-01
Three-component (throughfall, soil water, groundwater) hydrograph separations at peak flow were performed on 10 storms over a 2-year period in a small forested catchment in north-central Maryland using an iterative and an exact solution. Seven pairs of tracers (deuterium and oxygen 18, deuterium and chloride, deuterium and sodium, deuterium and silica, chloride and silica, chloride and sodium, and sodium and silica) were used for three-component hydrograph separation for each storm at peak flow to determine whether or not the assumptions of hydrograph separation routinely can be met, to assess the adequacy of some commonly used tracers, to identify patterns in hydrograph-separation results, and to develop conceptual models for the patterns observed. Results of the three-component separations were not always physically meaningful, suggesting that assumptions of hydrograph separation had been violated. Uncertainties in solutions to equations for hydrograph separations were large, partly as a result of violations of assumptions used in deriving the separation equations and partly as a result of improper identification of chemical compositions of end-members. Results of three-component separations using commonly used tracers were widely variable. Consistent patterns in the amount of subsurface water contributing to peak flow (45-100%) were observed, no matter which separation method or combination of tracers was used. A general conceptual model for the sequence of contributions from the three end-members could be developed for 9 of the 10 storms. Overall results indicated that hydrochemical and hydrometric measurements need to be coupled in order to perform meaningful hydrograph separations.
NASA Astrophysics Data System (ADS)
Penny, M. F.; Phillips, D. M.
1981-03-01
At this Symposium, research on laser hydrography and related development programs currently in progress in the United States of America, Canada, and Australia, were reported. The depth sounding systems described include the US Airborne Oceanographic Lidar and Hydrographic Airborne Laser Sounder, the Canadian Profiling Lidar Bathymeter, and the Australian Laser Airborne Depth Sounder. Other papers presented research on blue-green lasers, theoretical modelling, position fixing, and data processing.
The National Hydrography Dataset
,
1999-01-01
The National Hydrography Dataset (NHD) is a newly combined dataset that provides hydrographic data for the United States. The NHD is the culmination of recent cooperative efforts of the U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS). It combines elements of USGS digital line graph (DLG) hydrography files and the USEPA Reach File (RF3). The NHD supersedes RF3 and DLG files by incorporating them, not by replacing them. Users of RF3 or DLG files will find the same data in a new, more flexible format. They will find that the NHD is familiar but greatly expanded and refined. The DLG files contribute a national coverage of millions of features, including water bodies such as lakes and ponds, linear water features such as streams and rivers, and also point features such as springs and wells. These files provide standardized feature types, delineation, and spatial accuracy. From RF3, the NHD acquires hydrographic sequencing, upstream and downstream navigation for modeling applications, and reach codes. The reach codes provide a way to integrate data from organizations at all levels by linking the data to this nationally consistent hydrographic network. The feature names are from the Geographic Names Information System (GNIS). The NHD provides comprehensive coverage of hydrographic data for the United States. Some of the anticipated end-user applications of the NHD are multiuse hydrographic modeling and water-quality studies of fish habitats. Although based on 1:100,000-scale data, the NHD is planned so that it can incorporate and encourage the development of the higher resolution data that many users require. The NHD can be used to promote the exchange of data between users at the national, State, and local levels. Many users will benefit from the NHD and will want to contribute to the dataset as well.
Stauffer, Beth A.; Miksis-Olds, Jennifer; Goes, Joaquim I.
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009–2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios. PMID:26110822
Stauffer, Beth A; Miksis-Olds, Jennifer; Goes, Joaquim I
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.
NASA Astrophysics Data System (ADS)
Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe
2017-09-01
The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones
in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce warning on a daily basis for the entire region.
Hydrographic Basins Analysis Using Digital Terrain Modelling
NASA Astrophysics Data System (ADS)
Mihaela, Pişleagă; -Minda Codruţa, Bădăluţă; Gabriel, Eleş; Daniela, Popescu
2017-10-01
The paper, emphasis the link between digital terrain modelling and studies of hydrographic basins, concerning the hydrological processes analysis. Given the evolution of computing techniques but also of the software digital terrain modelling made its presence felt increasingly, and established itself as a basic concept in many areas, due to many advantages. At present, most digital terrain modelling is derived from three alternative sources such as ground surveys, photogrammetric data capture or from digitized cartographic sources. A wide range of features may be extracted from digital terrain models, such as surface, specific points and landmarks, linear features but also areal futures like drainage basins, hills or hydrological basins. The paper highlights how the use appropriate software for the preparation of a digital terrain model, a model which is subsequently used to study hydrographic basins according to various geomorphological parameters. As a final goal, it shows the link between digital terrain modelling and hydrographic basins study that can be used to optimize the correlation between digital model terrain and hydrological processes in order to obtain results as close to the real field processes.
NASA Astrophysics Data System (ADS)
Schulz, Karsten; Burgholzer, Reinhard; Klotz, Daniel; Wesemann, Johannes; Herrnegger, Mathew
2018-05-01
The unit hydrograph (UH) has been one of the most widely employed hydrological modelling techniques to predict rainfall-runoff behaviour of hydrological catchments, and is still used to this day. Its concept is based on the idea that a unit of effective precipitation per time unit (e.g. mm h-1) will always lead to a specific catchment response in runoff. Given its relevance, the UH is an important topic that is addressed in most (engineering) hydrology courses at all academic levels. While the principles of the UH seem to be simple and easy to understand, teaching experiences in the past suggest strong difficulties in students' perception of the UH theory and application. In order to facilitate a deeper understanding of the theory and application of the UH for students, we developed a simple and cheap lecture theatre experiment which involved active student participation. The seating of the students in the lecture theatre represented the hydrological catchment
in its size and form. A set of plastic balls, prepared with a piece of magnetic strip to be tacked to any white/black board, each represented a unit amount of effective precipitation. The balls are evenly distributed over the lecture theatre and routed by some given rules down the catchment to the catchment outlet
, where the resulting hydrograph is monitored and illustrated at the black/white board. The experiment allowed an illustration of the underlying principles of the UH, including stationarity, linearity, and superposition of the generated runoff and subsequent routing. In addition, some variations of the experimental setup extended the UH concept to demonstrate the impact of elevation, different runoff regimes, and non-uniform precipitation events on the resulting hydrograph. In summary, our own experience in the classroom, a first set of student exams, as well as student feedback and formal evaluation suggest that the integration of such an experiment deepened the learning experience by active participation. The experiment also initialized a more experienced based discussion of the theory and assumptions behind the UH. Finally, the experiment was a welcome break within a 3 h lecture setting, and great fun to prepare and run.
Model calibration criteria for estimating ecological flow characteristics
Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William J.; Seibert, Jan; Breuer, Lutz; Kraft, Philipp
2016-01-01
Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.
A comparison of hydrographically and optically derived mixed layer depths
Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.
2005-01-01
Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
Equations for estimating Clark Unit-hydrograph parameters for small rural watersheds in Illinois
Straub, Timothy D.; Melching, Charles S.; Kocher, Kyle E.
2000-01-01
Simulation of the measured discharge hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results. The error in peak discharge for 21 of the 29 verification storms was less than 25 percent, and the error in time-to-peak discharge for 18 of the 29 verification storms also was less than 25 percent. Therefore, applying the estimation equations to determine TC and R for design-storm simulation may result in reliable design hydrographs, as long as the physical characteristics of the watersheds under consideration are within the range of those characteristics for the watersheds in this study [area: 0.02-2.3 mi2, main-channel length: 0.17-3.4 miles, main-channel slope: 10.5-229 feet per mile, and insignificant percentage of impervious cover].
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION... and Atmospheric Administration. Applicant means a non-Federal entity that is submitting a hydrographic..., including the production of nautical charts, nautical information databases, and other products derived from...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION... and Atmospheric Administration. Applicant means a non-Federal entity that is submitting a hydrographic..., including the production of nautical charts, nautical information databases, and other products derived from...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION... and Atmospheric Administration. Applicant means a non-Federal entity that is submitting a hydrographic..., including the production of nautical charts, nautical information databases, and other products derived from...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION... and Atmospheric Administration. Applicant means a non-Federal entity that is submitting a hydrographic..., including the production of nautical charts, nautical information databases, and other products derived from...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION... and Atmospheric Administration. Applicant means a non-Federal entity that is submitting a hydrographic..., including the production of nautical charts, nautical information databases, and other products derived from...
A methodology to derive Synthetic Design Hydrographs for river flood management
NASA Astrophysics Data System (ADS)
Tomirotti, Massimo; Mignosa, Paolo
2017-12-01
The design of flood protection measures requires in many cases not only the estimation of the peak discharges, but also of the volume of the floods and its time distribution. A typical solution to this kind of problems is the formulation of Synthetic Design Hydrographs (SDHs). In this paper a methodology to derive SDHs is proposed on the basis of the estimation of the Flow Duration Frequency (FDF) reduction curve and of a Peak-Duration (PD) relationship furnishing respectively the quantiles of the maximum average discharge and the average peak position in each duration. The methodology is intended to synthesize the main features of the historical floods in a unique SDH for each return period. The shape of the SDH is not selected a priori but is a result of the behaviour of FDF and PD curves, allowing to account in a very convenient way for the variability of the shapes of the observed hydrographs at local time scale. The validation of the methodology is performed with reference to flood routing problems in reservoirs, lakes and rivers. The results obtained demonstrate the capability of the SDHs to describe the effects of different hydraulic systems on the statistical regime of floods, even in presence of strong modifications induced on the probability distribution of peak flows.
Hunt, Randall J.; Walker, John F.; Krabbenhoft, David P.
1999-01-01
Although considered the most important component for the establishment and persistence of wetlands, hydrology has been hard to characterize and linkages between hydrology and other environmental conditions are often poorly understood. In this work, methods for characterizing a wetland’s hydrology from hydrographs were developed, and the importance of ground water to the physical and geochemical conditions in the root zone was investigated. Detailed sampling of nearly continuous hydrographs showed that sites with greater ground-water discharge had higher water tables and more stable hydrographs. Subsampling of the continuous hydrograph failed to characterize the sites correctly, even though the wetland complex is located in a strong regional ground-water-discharge area. By comparing soil-moisture-potential measurements to the water-table hydrograph at one site, we noted that the amount of root-zone saturation was not necessarily driven by the water-table hydrograph but can be a result of other soil parameters (i.e., soil texture and associated capillary fringe). Ground-water discharge was not a significant determinant of maximum or average temperatures in the root zone. High ground-water discharge was associated with earliest date of thaw and shortest period of time that the root zone was frozen, however. Finally, the direction and magnitude of shallow ground-water flow was found to affect the migration and importance of a geochemical species. Areas of higher ground-water discharge had less downward penetration of CO2 generated in the root zone. In contrast, biotically derived CO2 was able to penetrate the deeper ground-water system in areas of ground-water recharge. Although ground-water flows are difficult to characterize, understanding these components is critical to the success of wetland restoration and creation efforts.
Advancements in the U.S. Army Corps of Engineers Hydrographic Survey Capabilities: The SHOALS System
2016-05-12
forward direction of the aircraft. The scanner uses feedback from an inertial reference unit , rigidly mounted to the TRS, that measures aircraft roll ...LTN-90 inertial reference unit provides aircraft attitude, including roll , pitch, and heading and vertical accelerations. The unit supports four...Figure 3 The transceiver subsystem. From left to right, receiver optics, receiver electronics, telescope, scanner, and inertial reference unit . The
Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania
Risser, Dennis W.; Conger, Randall W.; Ulrich, James E.; Asmussen, Michael P.
2005-01-01
This study, completed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (T&GS), provides estimates of ground-water recharge for watersheds throughout Pennsylvania computed by use of two automated streamflow-hydrograph-analysis methods--PART and RORA. The PART computer program uses a hydrograph-separation technique to divide the streamflow hydrograph into components of direct runoff and base flow. Base flow can be a useful approximation of recharge if losses and interbasin transfers of ground water are minimal. The RORA computer program uses a recession-curve displacement technique to estimate ground-water recharge from each storm period indicated on the streamflow hydrograph. Recharge estimates were made using streamflow records collected during 1885-2001 from 197 active and inactive streamflow-gaging stations in Pennsylvania where streamflow is relatively unaffected by regulation. Estimates of mean-annual recharge in Pennsylvania computed by the use of PART ranged from 5.8 to 26.6 inches; estimates from RORA ranged from 7.7 to 29.3 inches. Estimates from the RORA program were about 2 inches greater than those derived from the PART program. Mean-monthly recharge was computed from the RORA program and was reported as a percentage of mean-annual recharge. On the basis of this analysis, the major ground-water recharge period in Pennsylvania typically is November through May; the greatest monthly recharge typically occurs in March.
Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities.
Sawyer, Audrey H; David, Cédric H; Famiglietti, James S
2016-08-12
Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers. Copyright © 2016, American Association for the Advancement of Science.
Seasonal cycle of the mixed-layer heat and freshwater budget in the eastern tropical Atlantic
NASA Astrophysics Data System (ADS)
Rath, Willi; Dengler, Marcus; Lüdke, Jan; Schmidtko, Sunke; Schlundt, Michael; Brandt, Peter; Partners, Preface
2016-04-01
A new seasonal mixed-layer heat flux climatology is used to explore the mechanisms driving seasonal variability of sea surface temperature and salinity in the eastern tropical Atlantic (ETA) with a focus on the eastern boundary upwelling regions. Until recently, large areas at the continental margins of the ETA were not well covered by publically available hydrographic data hampering a detailed understanding of the involved processes. In a collaborative effort between African and European partners within the EU-funded PREFACE program, a new seasonal climatology for different components of the heat and freshwater budget was compiled for the ETA using all publically available hydrographic data sets and a large trove of previously not-publically available hydrographic measurements from the territorial waters of western African countries, either from national programs or from the FAO supported EAF-Nansen program. The publically available data includes hydrographic data from global data repositories including most recent ARGO floats and glider measurements. This data set was complemented by velocity data from surface drifter and ARGO floats to allow determining horizontal heat and freshwater advection. Monthly means of air-sea heat fluxes were derived from the TropFlux climatology while precipitation rates were derived from monthly mean fields of the Global Precipitation Climatology Project. Finally, microstructure data from individual measurement campaigns allow estimating diapycnal heat and salt fluxes for certain regions during specific months. A detailed analysis of the seasonal cycle of mixed-layer heat and freshwater balance in previously poorly covered regions in the eastern tropical Atlantic upwelling is presented. In both eastern boundary upwelling region, off Senegal/Mauritania and off Angola/Namibia, average net surface heat fluxes warm the mixed layer at a rate between 50 and 80 W/m2 with maxima in the respective summer seasons. Horizontal advection contributed to cooling of the mixed layer but a residual cooling term remains in both upwelling regions. A surprising result is that this residual is largest in the Angolan upwelling region, where upwelling-favourable winds are generally weaker than off Namibia and in the north-eastern upwelling region. The contributions of windstress-derived vertical advection and diapycnal heat and freshwater fluxes are discussed. In addition, the TropFlux climatology is evaluated against radiative and turbulent ocean-atmosphere heat and freshwater fluxes derived from ship-board observations.
Al-Yamani, Faiza; Yamamoto, Takahiro; Al-Said, Turki; Alghunaim, Aws
2017-09-15
Hydrographic variables were monitored in northwestern Arabian Gulf over the past three decades and the time-series data were statistically analyzed. The results show that while salinity has undergone several shifts, seawater temperature exhibited a steady increasing trend since the 1980s. The observed salinity shows strong correlation with Shatt Al-Arab River discharge indicating primary contribution of freshwater to salinity among other factors (evaporation and desalination effluent). Recent data show that salinity is at its highest level in the last 30years with less pronounced seasonal variability in response to severe decline in the freshwater runoff into the northwestern Arabian Gulf. The changes in hydrographic conditions may have significant implications on hydrodynamics, water quality, and ecosystems in the Gulf. Thus, cooperation among the concerned countries - both coastal and riparian nations - would be essential for prevention of further major changes in the Gulf. Copyright © 2017 Elsevier Ltd. All rights reserved.
The U.S. Geological Survey Monthly Water Balance Model Futures Portal
Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian
2017-05-03
The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download
Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.
2008-01-01
INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.
Welch, Alan H.; Bright, Daniel J.
2007-01-01
Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.
NASA Astrophysics Data System (ADS)
Ascott, M.; Bloomfield, J.; Macdonald, D.; Marchant, B.; McKenzie, A.
2017-12-01
The Cretaceous Chalk, the most important aquifer in the United Kingdom (UK) for public water supply, underlies many large cities in southern and eastern England including parts of London, however, it is prone to groundwater flooding. We have developed a new approach to analyse the spatio-temporal extent of groundwater flooding using statistical analysis of groundwater level hydrographs and impulse response functions (IRFs) applied to a major Chalk groundwater flooding event in the UK during winter 2013/14. Using monthly groundwater levels for 26 boreholes in the Chalk and a new standardised index for groundwater flooding, we have: estimated standardised series; grouped them using k-means cluster analysis; and, cross-correlated the cluster centroids with the Standardised Precipitation Index accumulated over time intervals between 1 and 60 months. This analysis reveals two spatially coherent groups of standardised hydrographs which respond to precipitation over different timescales. We estimate IRF models of the groundwater level response to effective precipitation for three boreholes in each group. The IRF models support the SPI analysis showing different response functions between the two groups. If we apply identical effective precipitation inputs to each of the IRF models we see differences between the hydrographs from each group. It is proposed that these differences are due to the intrinsic, hydrogeological properties of the Chalk and of overlying relatively low permeability superficial deposits. Consequently, it is concluded that the overarching controls on groundwater flood response are a complex combination of antecedent conditions, rainfall and catchment hydrogeological properties. These controls should be taken into consideration when anticipating and managing future groundwater flood events.
Twenty-seventh annual report of the Director of the United States Geological Survey
Walcott, Charles D.
1906-01-01
State cooperation.--Many of the States, following a well-established policy, cooperated with the National Survey in geologic, topographic, and hydrographic work; details are given on pages 12, 29, 72, and 74.
A technique for estimating time of concentration and storage coefficient values for Illinois streams
Graf, Julia B.; Garklavs, George; Oberg, Kevin A.
1982-01-01
Values of the unit hydrograph parameters time of concentration (TC) and storage coefficient (R) can be estimated for streams in Illinois by a two-step technique developed from data for 98 gaged basins in the State. The sum of TC and R is related to stream length (L) and main channel slope (S) by the relation (TC + R)e = 35.2L0.39S-0.78. The variable R/(TC + R) is not significantly correlated with drainage area, slope, or length, but does exhibit a regional trend. Regional values of R/(TC + R) are used with the computed values of (TC + R)e to solve for estimated values of time of concentration (TCe) and storage coefficient (Re). The use of the variable R/(TC + R) is thought to account for variations in unit hydrograph parameters caused by physiographic variables such as basin topography, flood-plain development, and basin storage characteristics. (USGS)
1987-01-01
0- 67°30"S aa S..we1 Rocks HYDROGRAPHIC OFFICE DETACHED SURVEY UNIT APPROACHES TO MAWSON FEBRUARY 1967 Welch I$Lwl 1 25000 1 10000 PLATE XVII / J 0 0i...AD-A19S 765 REPOROF THE HYJRGJAPHIC ’ERICE AOYAl AUSTRALIAN 1/1 NAIJ H N ( VAL A SgALIAN NYY NY NO ElAR1989 DA- t_ u rADE ~, j 111.0IIW~=~ ’ W 22 Z.1...Services Chart Production and Maintenance In Chart Distribution II Records and Libra. .............. .. . ......... . I S u rv e y S u p p o r t
Partial polygon pruning of hydrographic features in automated generalization
Stum, Alexander K.; Buttenfield, Barbara P.; Stanislawski, Larry V.
2017-01-01
This paper demonstrates a working method to automatically detect and prune portions of waterbody polygons to support creation of a multi-scale hydrographic database. Water features are known to be sensitive to scale change; and thus multiple representations are required to maintain visual and geographic logic at smaller scales. Partial pruning of polygonal features—such as long and sinuous reservoir arms, stream channels that are too narrow at the target scale, and islands that begin to coalesce—entails concurrent management of the length and width of polygonal features as well as integrating pruned polygons with other generalized point and linear hydrographic features to maintain stream network connectivity. The implementation follows data representation standards developed by the U.S. Geological Survey (USGS) for the National Hydrography Dataset (NHD). Portions of polygonal rivers, streams, and canals are automatically characterized for width, length, and connectivity. This paper describes an algorithm for automatic detection and subsequent processing, and shows results for a sample of NHD subbasins in different landscape conditions in the United States.
ERIC Educational Resources Information Center
Mid-Hudson Migrant Education Center, New Paltz, NY.
Written in Spanish, the guide comprises the sixth grade unit of a career education curriculum for migrant students. The unit covers 10 marine science, business, and office occupations: hydrographer, marine biologist, fish hatchery technician, boat builder, commercial diver, clerical worker, actuary, cashier, assistant bank manager, and computer…
A Representation of an Instantaneous Unit Hydrograph From Geomorphology
NASA Astrophysics Data System (ADS)
Gupta, Vijay K.; Waymire, Ed; Wang, C. T.
1980-10-01
The channel network and the overland flow regions in a river basin satisfy Horton's empirical geo-morphologic laws when ordered according to the Strahler ordering scheme. This setting is presently employed in a kinetic theoretic framework for obtaining an explicit mathematical representation for the instantaneous unit hydrograph (iuh) at the basin outlet. Two examples are developed which lead to explicit formulae for the iuh. These examples are formally analogous to the solutions that would result if a basin is represented in terms of linear reservoirs and channels, respectively, in series and in parallel. However, this analogy is only formal, and it does not carry through physically. All but one of the parameters appearing in the iuh formulae are obtained in terms of Horton's bifurcation ratio, stream length ratio, and stream area ratio. The one unknown parameter is obtained through specifying the basin mean lag time independently. Three basins from Illinois are selected to check the theoretical results with the observed direct surface runoff hydrographs. The theory provided excellent agreement for two basins with areas of the order of 1100 mi2 (1770 km2) but underestimates the peak flow for the smaller basin with 300-mi2 (483-km2) area. This relative lack of agreement for the smaller basin may be used to question the validity of the linearity assumption in the rainfall runoff transformation which is embedded in the above development.
Stricker, Virginia
1983-01-01
The base flow component of streamflow was separated from hydrographs for unregulated streams in the Cretaceous and Tertiary clastic outcrop area of South Carolina, Georgia, Alabama, and Mississippi. The base flow values are used in estimating recharge to the sand aquifer. Relations developed between mean annual base flow and stream discharge at the 60- and 65-percent streamflow duration point can be used to approximate mean annual base flow in lieu of hydrograph separation methods for base flows above 10 cu ft/s. Base flow recession curves were used to derive estimates of hydraulic diffusivity of the aquifer which was converted to transmissivity using estimated specific yield. These base-flow-derived transmissivities are in general agreement with transmissivities derived from well data. The shape of flow duration curves of streams is affected by the lithology of the Coastal Plain sediments. Steep flow duration curves appear to be associated with basins underlain by clay or chalk where a low percentage of the discharge is base flow while flatter curves appear to be associated with basins underlain by sand and gravel where a high percentage of the discharge is base flow. (USGS)
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.
Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin
2015-01-01
In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 °C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...
Ground-water levels and quality data for Georgia
,
1979-01-01
This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)
NASA Technical Reports Server (NTRS)
Singh, Sandipa; Kelly, Kathryn A.
1997-01-01
Monthly Maps of sea surface height are constructed for the North Atlantic Ocean using TOPEX/Poseidon altimeter data. Mean sea surface height is reconstructed using a weighted combination of historical, hydrographic data and a synthetic mean obtained by fitting a Gaussian model of the Gulf Stream jet to altimeter data. The resultant mean shows increased resolution over the hydrographic mean, and incorporates recirculation information that is absent in the synthetic mean. Monthly maps, obtained by adding the mean field to altimeter sea surface height residuals, are used to derive a set of zonal indices that describe the annual cycle of meandering as well as position and strength of the Gulf Stream.
Maruyama, Toshisuke
2007-01-01
To estimate the amount of evapotranspiration in a river basin, the “short period water balance method” was formulated. Then, by introducing the “complementary relationship method,” the amount of evapotranspiration was estimated seasonally, and with reasonable accuracy, for both small and large areas. Moreover, to accurately estimate river discharge in the low water season, the “weighted statistical unit hydrograph method” was proposed and a procedure for the calculation of the unit hydrograph was developed. Also, a new model, based on the “equivalent roughness method,” was successfully developed for the estimation of flood runoff from newly reclaimed farmlands. Based on the results of this research, a “composite reservoir model” was formulated to analyze the repeated use of irrigation water in large spatial areas. The application of this model to a number of watershed areas provided useful information with regard to the realities of water demand-supply systems in watersheds predominately dedicated to paddy fields, in Japan. PMID:24367144
NASA Technical Reports Server (NTRS)
Zlotnicki, V.; Stammer, D.; Fukumori, I.
2003-01-01
Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C.; Takahashi, T.
2014-12-01
The 2004 Indian Ocean tsunami marked the advent of survivor videos mainly from tourist areas in Thailand and basin-wide locations. Near-field video recordings on Sumatra's north tip at Banda Aceh were limited to inland areas a few kilometres off the beach (Fritz et al., 2006). The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life resulting in the costliest natural disaster in recorded history. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided numerous inundation recordings with unprecedented spatial and temporal resolution. High quality tsunami video recording sites at Yoriisohama, Kesennuma, Kamaishi and Miyako along Japan's Sanriku coast were surveyed, eyewitnesses interviewed and precise topographic data recorded using terrestrial laser scanning (TLS). The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure (Fritz et al., 2012). Measured overland flow velocities during tsunami runup exceed 13 m/s at Yoriisohama. The runup hydrograph at Yoriisohama highlights the under sampling at the Onagawa Nuclear Power Plant (NPP) pressure gauge, which skips the shorter period second crest. Combined tsunami and runup hydrographs are derived from the videos based on water surface elevations at surface piercing objects and along slopes identified in the acquired topographic TLS data. Several hydrographs reveal a draw down to minus 10 m after a first wave crest exposing harbor bottoms at Yoriisohama and Kamaishi. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down. A multi-hour ship track for the Asia Symphony with the vessels complete tsunami drifting motion in Kamaishi Bay is recovered from the universal ship borne AIS (Automatic Identification System). Multiple hydrographs corroborate the tsunami propagation through Miyako Bay and up the Hei River. Tsunami outflow currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs as well as associated flow velocities.
Lag Times and Peak Coefficients for Rural Watersheds in Kansas
DOT National Transportation Integrated Search
1999-10-01
Lag time is an essential input to the most common synthetic unit-hydrograph models. The lag time for an ungaged stream must be estimated from the physical characteristics of the stream and its watershed. In this study, a lag-time formula for small ru...
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.20 Submission of a hydrographic product for certification. (a...
NASA Technical Reports Server (NTRS)
Ganachaud, Alexandre; Wunsch, Carl; Kim, Myung-Chan; Tapley, Byron
1997-01-01
A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceanographic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations. Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.
Estimating flood hydrographs for urban basins in North Carolina
Mason, R.R.; Bales, J.D.
1996-01-01
A dimensionless hydrograph for North Carolina was developed from data collected in 29 urban and urbanizing basins in the State. The dimen- sionless hydrograph can be used with an estimate of peak flow and basin lagtime to synthesize a design flood hydrograph for urban basins in North Carolina. Peak flows can be estimated from a number of avail- able techniques; a procedure for estimating basin lagtime from main channel length, stream slope, and percentage of impervious area was developed from data collected at 50 sites and is presented in this report. The North Carolina dimensionless hydrograph provides satis- factory predictions of flood hydrographs in all regions of the State except for basins in or near Asheville where the method overestimated 11 of 12 measured hydrographs. A previously developed dimensionless hydrograph for urban basins in the Piedmont and upper Coastal Plain of South Carolina provides better flood-hydrograph predictions for the Asheville basins and has a standard error of 21 percent as compared to 41 percent for the North Carolina dimensionless hydrograph.
NASA Technical Reports Server (NTRS)
Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.
1993-01-01
One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The sensitivity analysis also indicated that the incorporation of basin and rainfall storm scale also greatly influences the distributional shape of the flood frequency curve.
Relations for estimating unit-hydrograph parameters in New Mexico
Waltemeyer, Scott D.
2001-01-01
Data collected from 20 U.S. Geological Survey streamflow-gaging stations, most of which were operated in New Mexico between about 1969 and 1977, were used to define hydrograph characteristics for small New Mexico streams. Drainage areas for the gaging stations ranged from 0.23 to 18.2 square miles. Observed values for the hydrograph characteristics were determined for 87 of the most significant rainfall-runoff events at these gaging stations and were used to define regional regression relations with basin characteristics. Regional relations defined lag time (tl), time of concentration (tc), and time to peak (tp) as functions of stream length and basin shape. The regional equation developed for time of concentration for New Mexico agrees well with the Kirpich equation developed for Tennessee. The Kirpich equation is based on stream length and channel slope, whereas the New Mexico equation is based on stream length and basin shape. Both equations, however, underestimate tc when applied to larger basins where tc is greater than about 2 hours. The median ratio between tp and tc for the observed data was 0.66, which equals the value (0.67) recommended by the Natural Resources Conservation Service (formerly the Soil Conservation Service). However, the median ratio between tl and tc was only 0.42, whereas the commonly used ratio is 0.60. A relation also was developed between unit-peak discharge (qu) and time of concentration. The unit-peak discharge relation is similar in slope to the Natural Resources Conservation Service equation, but the equation developed for New Mexico in this study produces estimates of qu that range from two to three times as large as those estimated from the Natural Resources Conservation Service equation. An average value of 833 was determined for the empirical constant Kp. A default value of 484 has been used by the Natural Resources Conservation Service when site-specific data are not available. The use of a lower value of Kp in calculations generally results in a lower peak discharge. A relation between the empirical constant Kp and average channel slope was defined in this study. The predicted Kp values from the equation ranged from 530 to 964 for the 20 flood-hydrograph gaging stations. The standard error of estimate for the equation is 36 percent.
The National Hydrography and updated Watershed Boundary Datasets provide a ready-made framework for hydrographic modeling. Determining particular stream reaches or watersheds in poor ecological condition across large regions is an essential goal for monitoring and management. T...
NASA Astrophysics Data System (ADS)
Harahap, Rumilla; Jeumpa, Kemala; Hadibroto, Bambang
2018-03-01
The problem in this research is how in the rainy season the water does not overflow, does not occur flood and during the dry season does not occur drought so it can adjust the condition or existence of Deli river which is around Medan city. Deli River floods often occur, either caused by a smaller capacity than the existing discharge, lack of maintenance and drainage and disposal systems that do not fit with the environment, resulting in flood subscriptions every year. The purpose of this research is to know flood discharge at Deli river as Flood control in Medan city. This research is analyzed on several methods such as log Pearson, Gumbel and hydrograph unit, while HEC-RAS method is modeling conducted in analyzing the water profile of the Deli River. Furthermore, the calculation of the periodic flood discharge using the Nakayasu Method. Calculation result at Deli River return period flood discharge 2 years with an area of 14.8 km2 annual flood hydrograph the total is 26.79 m3/sec on the hours at the 4th time. Return period flood discharge 5 years with an area of 14.8 km2 annual flood hydrograph the total is 73,44 m3/sec. While 25 annual return period total flood hydrograph is 146.50 m3/sec. With flood analysis can reduce and minimize the risk of losses and land can be mapped if in the area there is flooding.
Seaburn, G.E.
1969-01-01
The study described in this report is concerned with the effects of intensive urban development on direct runoff to East Meadow Brook, a southward-flowing stream in central Nassau County, N.Y., during the period 1937-66. The specific objectives of the study were (a) to relate indices of urban development to increases in the volume of annual direct runoff to the stream; (b) to compare hydrograph features at different periods during the transition of the drainage basin from rural to urban conditions; and (c) to compare the rainfall-runoff relations for periods before and after urban development.Periods of housing and street construction in the drainage basin correspond to three distinct periods of increased direct runoff after the base period 1937-43-namely, 1944-51, 1952-59, and 1960-62. During each period, the average annual direct runoff increased because of an increase in the area served by storm sewers that discharged into East Meadow Brook. The amount of land served by sewers increased from about 570 acres in 1943 to about 3,600 acres in 1962, or about 530 percent. During this same period, the average annual direct runoff increased from about 920 acre-feet per year to about 3,400 acre-feet per year, or about 270 percent.The shape of direct-runoff unit hydrographs of East Meadow Brook also changed during the period of study. The average peak discharge of a 1-hour-duration unit hydrograph increased from 313 cubic feet per second, for storms in 1937-43, to 776 cubic feet per second, for storms in 1960-62, or about 2.5 times. In addition, the widths of the unit hydrographs for 1960-62 at values of 50 and 75 percent of the peak discharge were 38 and 28 percent, respectively, the comparable widths of the unit hydrographs for 1937-43.An analysis of the rainfall-runoff relations for both preurban and urban conditions indicates that the direct runoff for both periods increased with the magnitude of the storm. However, the direct runoff during a period of urbanized conditions (1964- 66) was from 1.1 to 4.6 times greater than the corresponding runoff during the preurban period 1937-43, depending on the size of the individual storm.The volume of direct runoff from the parts of the subarea equipped with storm sewers that discharged into East Meadow Brook is estimated to have been roughly 3,000 acre-feet per year in 1960-62, or about 20 percent of the precipitation on those parts of the area.The increase in direct runoff probably represents a loss of ground-water recharge. However, because data changes in evapo-transpiration are insufficient and because the effects of recharge basins are unknown, adequate quantitative estimates of groundwater recharge can not be made.On the basis of the present zoning regulations and on assumption that an additional 320 acres in the Hempstead subarea will be serviced by storm sewers that discharge into East Meadow Brook, direct runoff from the subarea is expected to increase in the future to an estimated 4,000-4,500 acre-feet per year.
Hydrograph separation techniques in snowmelt-dominated watersheds
NASA Astrophysics Data System (ADS)
Miller, S.; Miller, S. N.
2017-12-01
This study integrates hydrological, geochemical, and isotopic data for a better understanding of different streamflow generation pathways and residence times in a snowmelt-dominated region. A nested watershed design with ten stream gauging sites recording sub-hourly stream stage has been deployed in a snowmelt-dominated region in southeastern Wyoming, heavily impacted by the recent bark beetle epidemic. LiDAR-derived digital elevation models help elucidate effects from topography and watershed metrics. At each stream gauging site, sub-hourly stream water conductivity and temperature data are also recorded. Hydrograph separation is a useful technique for determining different sources of runoff and how volumes from each source vary over time. Following previous methods, diurnal cycles from sub-hourly recorded streamflow and specific conductance data are analyzed and used to separate hydrographs into overland flow and baseflow components, respectively. A final component, vadose-zone flow, is assumed to be the remaining water from the total hydrograph. With access to snowmelt and precipitation data from nearby instruments, runoff coefficients are calculated for the different mechanisms, providing information on watershed response. Catchments are compared to understand how different watershed characteristics translate snowmelt or precipitation events into runoff. Portable autosamplers were deployed at two of the gauging sites for high-frequency analysis of stream water isotopic composition during peak flow to compare methods of hydrograph separation. Sampling rates of one or two hours can detect the diurnal streamflow cycle common during peak snowmelt. Prior research suggests the bark beetle epidemic has had little effect on annual streamflow patterns; however, several results show an earlier shift in the day of year in which peak annual streamflow is observed. The diurnal cycle is likely to comprise a larger percentage of daily streamflow during snowmelt in post-epidemic forests, as more solar radiation is available to penetrate to the ground surface and induce snowmelt, contributing to the effect of an earlier observed peak annual streamflow.
Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Nakanowatari, Takuya; Ohshima, Kay I.; Mensah, Vigan; Mitani, Yoko; Hattori, Kaoru; Kobayashi, Mari; Roquet, Fabien; Sakurai, Yasunori; Mitsudera, Humio; Wakatsuchi, Masaaki
2017-09-01
The Sea of Okhotsk is a challenging environment for obtaining in situ data and satellite observation in winter due to sea ice cover. In this study, we evaluated the validity of hydrographic observations by marine mammals (e.g., seals and sea lions) equipped with oceanographic conductivity-temperature-depth (CTD) sensors. During 4-yr operations from 2011 to 2014, we obtained total of 997 temperature-salinity profiles in and around the Soya Strait, Iony Island, and Urup Strait. The hydrographic data were mainly obtained from May to August and the maximum profile depth in shelf regions almost reaches to the seafloor, while valuable hydrographic data under sea ice cover were also obtained. In strong thermoclines, the seal-derived data sometimes showed positive biases in salinity with spike-like signal. For these salinity biases, we applied a new thermal mass inertia correction scheme, effectively reducing spurious salinity biases in the seasonal thermocline. In the Soya Strait and the adjacent region, the detailed structure of the Soya Warm Current including the cold-water belt was well identified. Dense water up to 27.0σθ, which can be a potential source of Okhotsk Sea Intermediate Water, has flowed from the Soya Strait into the Sea of Okhotsk in mid-winter (February). In summer, around the Iony Island and Urup Strait, remarkable cold and saline waters are localized in the surface layers. These regions are also characterized by weak stratification, suggesting the occurrence of tidally induced vertical mixing. Thus, CTD-tag observations have a great potential in monitoring data-sparse regions in the Sea of Okhotsk.
Hydrograph variances over different timescales in hydropower production networks
NASA Astrophysics Data System (ADS)
Zmijewski, Nicholas; Wörman, Anders
2016-08-01
The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of <1 week, depending on the Peclet number (Pe) of the stream reach. This implies that flow variance becomes more erratic (closer to white noise) as a result of current production objectives.
Uncertainty Assessment of Synthetic Design Hydrographs for Gauged and Ungauged Catchments
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Sikorska, Anna E.; Furrer, Reinhard; Favre, Anne-Catherine
2018-03-01
Design hydrographs described by peak discharge, hydrograph volume, and hydrograph shape are essential for engineering tasks involving storage. Such design hydrographs are inherently uncertain as are classical flood estimates focusing on peak discharge only. Various sources of uncertainty contribute to the total uncertainty of synthetic design hydrographs for gauged and ungauged catchments. These comprise model uncertainties, sampling uncertainty, and uncertainty due to the choice of a regionalization method. A quantification of the uncertainties associated with flood estimates is essential for reliable decision making and allows for the identification of important uncertainty sources. We therefore propose an uncertainty assessment framework for the quantification of the uncertainty associated with synthetic design hydrographs. The framework is based on bootstrap simulations and consists of three levels of complexity. On the first level, we assess the uncertainty due to individual uncertainty sources. On the second level, we quantify the total uncertainty of design hydrographs for gauged catchments and the total uncertainty of regionalizing them to ungauged catchments but independently from the construction uncertainty. On the third level, we assess the coupled uncertainty of synthetic design hydrographs in ungauged catchments, jointly considering construction and regionalization uncertainty. We find that the most important sources of uncertainty in design hydrograph construction are the record length and the choice of the flood sampling strategy. The total uncertainty of design hydrographs in ungauged catchments depends on the catchment properties and is not negligible in our case.
Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Viviroli, Daniel; Furrer, Reinhard; Seibert, Jan; Favre, Anne-Catherine
2018-03-01
Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establish these regions is very flexible and has the potential to be extended to other geographical regions or toward the use in climate impact studies.
Huizinga, Richard J.
2014-01-01
The rainfall-runoff pairs from the storm-specific GUH analysis were further analyzed against various basin and rainfall characteristics to develop equations to estimate the peak streamflow and flood volume based on a quantity of rainfall on the basin.
Sediment production from forest road surfaces.
Leslie Reid; T. Dunne
2011-01-01
Erosion on roads is an important source of fine-grained sediment in streams draining logged basins of the Pacific Northwest. Runoff rates and sediment concentrations from 10 road segments subject to a variety of traffic levels were monitored to produce sediment rating curves and unit hydrographs for different use levels and types of surfaces. These relationships are...
Desired future condition: Fish habitat in southwestern riparian-stream habitats
John N. Rinne
1996-01-01
Riparian ecosystems in the southwestern United States provide valuable habitats for many living organisms including native fishes. An analysis of habitat components important to native fishes was made based on the literature, case histories, and unpublished and observational data. Results suggest a natural, surface water hydrograph and lack of introduced species of...
Marine Science/Business & Office. B7. CHOICE: Challenging Options in Career Education.
ERIC Educational Resources Information Center
Putnam and Northern Westchester Counties Board of Cooperative Educational Services, Yorktown Heights, NY.
The documents aggregated here comprise the grade six unit of a career education curriculum designed for migrant students. Focusing on marine science, business, and office occupations, the combined teacher and student logs contain learning activities related to nine jobs: hydrographer, marine biologist, fish hatchery technician, boat builder,…
Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danny L. Anderson
Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates amore » new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.« less
Cary, L.E.
1984-01-01
The U.S. Geological Survey 's precipitation-runoff modeling system was tested using 2 year 's data for the daily mode and 17 storms for the storm mode from a basin in southeastern Montana. Two hydrologic response unit delineations were studied. The more complex delineation did not provide superior results. In this application, the optimum numbers of hydrologic response units were 16 and 18 for the two alternatives. The first alternative with 16 units was modified to facilitate interfacing with the storm mode. A parameter subset was defined for the daily mode using sensitivity analysis. Following optimization, the simulated hydrographs approximated the observed hydrograph during the first year, a year of large snowfall. More runoff was simulated than observed during the second year. There was reasonable correspondence between the observed snowpack and the simulated snowpack the first season but poor the second. More soil moisture was withdrawn than was indicated by soil moisture observations. Optimization of parameters in the storm mode resulted in much larger values than originally estimated, commonly larger than published values of the Green and Ampt parameters. Following optimization, variable results were obtained. The results obtained are probably related to inadequate representation of basin infiltration characteristics and to precipitation variability. (USGS)
Effect of uncertainty in Digital Surface Models on the boundary of inundated areas
NASA Astrophysics Data System (ADS)
Nalbantis, I.; Papageorgaki, I.; Sioras, P.; Ioannidis, Ch.
2012-04-01
The planning, design and operation of flood damage reduction works or non-structural measures require the construction of maps that indicate zones to be potentially inundated during floods. Referring to floods due to heavy rainfall, the common procedure for flood mapping consists of the following five computational steps: (1) Frequency analysis of extreme rainfall; (2) construction of design hyetographs for various return periods; (3) construction of the related direct runoff hydrographs; (4) routing of these hydrographs through the hydrographic network; (5) mapping of the inundated area that corresponds to the temporally maximum depth for each location in the flood plain. Steps 3 through 5 require the use of spatial information which can be easily obtained from a Digital Surface Model (DSM). The DSM contains grid-based elevations of the ground or overlying objects that influence the propagation of flood waves. In this work, the SCS-CN method is used in step 3 in combination with a synthetic Unit Hydrograph based on the SCS dimensionless Unit Hydrograph. In step 4, the full one-dimensional Saint Venant equations for non-uniform unsteady flow on fixed bed are used, which are numerically solved. The impact of uncertainty in the DSM on the inundated area boundary is investigated. For this the Monte Carlo simulation method is employed to produce a large number of erroneous DSMs through introducing errors in elevation with a standard deviation equal to σ. These DSMs are then used for delineating potentially flooded areas. The standard deviation of the distance (from the riverbed axis) of the boundary of these areas, herein denoted as σF, is used as the measure of the resulting uncertainty. The link between σ and σF is examined for a spectrum of large return periods (100 to 10000). A computer experiment was set up based on data from two drainage basins. The first basin is located in East Attica and is drained by a branch of the Erasinos Torrent named the South-East Kalyvia Torrent; it extends over an area of about 17 square kilometres. The second basin is that of the Kerynitis River in north-western Peloponnesus; it covers an area of 89 square kilometres. In each one of the two basins hydrographs at the outlet of the upper part of the basin are estimated with the aid of hydrological modelling, while, for the lower part hydraulic routing is employed. The South-East Kalyvia basin is hilly, whereas the Kerynitis Basin shows high ground slopes in its upper part and low slopes in the lower part. Graphs of σ vs. σF and maps showing the mean position μF of the boundary of flooded area along with limits of this boundary that reflect positions μF±2σF help visualize the impact of the uncertainty in DSM. To acquire a better feeling of the effect of DSM uncertainty, results are compared to those obtained from uncertain rainfall depths of the design hyetographs.
Eckley, Chris S; Branfireun, Brian
2009-08-01
This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.
1989-06-30
charts 369 are Austral- ian and 44 British Admiralty. Australian charts represent 170 in imperial units and 199 in metric units: 92 in metric for...and operations advi(.e for the introduction into service of Vaisala Marwin Systems by the Royal Austral- ian Artiller,. 15 SURVEY INSTRUCTION, RAN... Maitland Pemberton Scott South Seringapatam Timor Trough Wilson Promontory Shark Bay BATHYMETRIC MANUSCRIPT AUSLIG Cove Blue Mud Ba Port Langdon Roper
Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study
2017-05-01
increment would not exceed 1.5 times the designed unit peak. The purpose of this study is to analyze the validity of this UHPF range of the Goose...confidence interval precipitation depths to the watershed in addition to the 50% value. This study concluded that a design event with a return period greater...In this study , the physically based GSSHA model was deployed to obtain corresponding design discharge from probable rainfall events. 3.2.1 GSSHA
NASA Astrophysics Data System (ADS)
Brunner, Manuela Irene; Seibert, Jan; Favre, Anne-Catherine
2018-02-01
Traditional design flood estimation approaches have focused on peak discharges and have often neglected other hydrograph characteristics such as hydrograph volume and shape. Synthetic design hydrograph estimation procedures overcome this deficiency by jointly considering peak discharge, hydrograph volume, and shape. Such procedures have recently been extended to allow for the consideration of process variability within a catchment by a flood-type specific construction of design hydrographs. However, they depend on observed runoff time series and are not directly applicable in ungauged catchments where such series are not available. To obtain reliable flood estimates, there is a need for an approach that allows for the consideration of process variability in the construction of synthetic design hydrographs in ungauged catchments. In this study, we therefore propose an approach that combines a bivariate index flood approach with event-type specific synthetic design hydrograph construction. First, regions of similar flood reactivity are delineated and a classification rule that enables the assignment of ungauged catchments to one of these reactivity regions is established. Second, event-type specific synthetic design hydrographs are constructed using the pooled data divided by event type from the corresponding reactivity region in a bivariate index flood procedure. The approach was tested and validated on a dataset of 163 Swiss catchments. The results indicated that 1) random forest is a suitable classification model for the assignment of an ungauged catchment to one of the reactivity regions, 2) the combination of a bivariate index flood approach and event-type specific synthetic design hydrograph construction enables the consideration of event types in ungauged catchments, and 3) the use of probabilistic class memberships in regional synthetic design hydrograph construction helps to alleviate the problem of misclassification. Event-type specific synthetic design hydrograph sets enable the inclusion of process variability into design flood estimation and can be used as a compromise between single best estimate synthetic design hydrographs and continuous simulation studies.
Sources and routing of the Amazon River Flood Wave
NASA Astrophysics Data System (ADS)
Richey, Jeffrey E.; Mertes, Leal A. K.; Dunne, Thomas; Victoria, Reynaldo L.; Forsberg, Bruce R.; Tancredi, AntôNio C. N. S.; Oliveira, Eurides
1989-09-01
We describe the sources and routing of the Amazon River flood wave through a 2000-km reach of the main channel, between São Paulo de Olivença and Obidos, Brazil. The damped hydrograph of the main stem reflects the large drainage basin area, the 3-month phase lag in peak flows between the north and south draining tributaries due to seasonal differences in precipitation, and the large volume of water stored on the floodplain. We examined several aspects of the valley floor hydrology that are important for biogeochemistry. These include volumes of water storage in the channel and the floodplain and the rates of transfer between these two storage elements at various seasons and in each segment of the valley. We estimate that up to 30% of the water in the main stem is derived from water that has passed through the floodplain. To predict the discharge at any cross section within the study reach, we used the Muskingum formula to predict the hydrograph at downriver cross sections from a known hydrograph at upstream cross-sections and inputs and outputs along each reach. The model was calibrated using three years of data and was successfully tested against an additional six years of data. With this model it is possible to interpolate discharges for unsampled times and sites.
Reconciling fisheries with conservation in watersheds: tools for informed decisions.
Peter A. Bisson; Timothy J. Beechie; George R. Pess
2007-01-01
Watersheds capture and deliver fresh water to streams, rivers, wetlands and lakes. They are fundamental landscape units for freshwater fisheries because they govern the characteristics of the annual hydrograph, the configuration and physical features of stream channels, and the input of organic matter and nutrients. Watersheds are also where we live, grow crops, and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality Assurance Program for Hydrographic Products § 996.12 Development of standards compliance tests for...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality Assurance Program for Hydrographic Products § 996.10 Submission and...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2010 CFR
2010-01-01
... certification for a hydrographic product or class. 996.13 Section 996.13 Commerce and Foreign Trade Regulations..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The...
Sanders, C.L.
1987-01-01
A study to determine the effect of the construction of a shopping and business center, and of the construction and improvement of several highways on floodflow in the Filbin Creek drainage basin near North Charleston, South Carolina was performed. Discharge hydrographs were synthesized using computerized U.S. Soil Conservation Service unit hydrograph methods and routed using reservoir, step backwater, and culvert flow programs. Construction of the shopping and business center, according to plans of July 1986, will raise the water surface elevations upstream of Interstate Highway 26 by about 2.0 ft for runoff from 100-yr rainfall. Structures at Seaboard Railroad downstream of U.S. Highway 52, U.S. Highway 52, and Virginia Avenue would cause about 2.0, 2.6, and 4.1 ft of backwater, respectively. (Author 's abstract)
Spin-Down of the North Atlantic Subpolar Circulation
NASA Technical Reports Server (NTRS)
Hakkinen, S.; Rhines, P. B.
2004-01-01
Dramatic changes have occurred in the mid-to-high-latitude North Atlantic Ocean as evidenced by TOPEX/Poseidon observations of sea surface height (SSH) in the subpolar gyre and the Gulf Stream. Analysis of altimeter data shows that subpolar SSH has increased during the 1990s and the geostrophic velocity derived from altimeter data shows a decline in the gyre circulation. Direct current-meter observations in the boundary current of the Labrador Sea support the trend in the 199Os, and, together with hydrographic data show that in the mid-late 1990s the trend extends deep in the water column. We find that buoyancy forcing over the northern North Atlantic has a dynamic effect consistent with the altimeter data and hydrographic observations: a weak thermohaline forcing and the subsequent decay of the domed structure of the subpolar isopycnals would give rise to the observed anticyclonic circulation trend.
Effect of Hydrograph Characteristics on Vertical Grain Sorting in Gravel Bed Rivers
NASA Astrophysics Data System (ADS)
Hassan, M. A.; Parker, G.; Egozi, R.
2005-12-01
This study focuses on the formation of armour layers over a range of hydrologic conditions that includes two limiting cases; a relatively flat hydrograph that represents conditions produced by continuous snowmelt and a sharply peaked hydrograph that represents conditions associated with flash floods. To achieve our objective we analyzed field evidence, conducted flume experiments and performed numerical simulations. Sediment supply appears to be a first-order control on bed surface armouring, while the shape of the hydrograph plays a secondary role. All constant hydrograph experiments developed a well-armored structured surface while short asymmetrical hydrographs did not show substantial vertical sorting. All symmetrical hydrographs show some degree of sorting, and the sorting tended to become more pronounced with longer duration. Using the numerical framework of Parker, modified Powell, et al. and Wilcock and Crowe, we were able to achieve similar results.
Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.
2005-01-01
This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.
Thomas H. Epps; Daniel R. Hitchcock; Anand D. Jayakaran; Drake R. Loflin; Thomas M. Williams; Devendra M. Amatya
2013-01-01
Hydrologic monitoring was conducted in two first-order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three-year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph...
Brasher, Anne M.D.; Konrad, Chris P.; May, Jason T.; Edmiston, C. Scott; Close, Rebecca N.
2010-01-01
Hydrographic characteristics of streamflow, such as high-flow pulses, base flow (background discharge between floods), extreme low flows, and floods, significantly influence aquatic organisms. Streamflow can be described in terms of magnitude, timing, duration, frequency, and variation (hydrologic regime). These characteristics have broad effects on ecosystem productivity, habitat structure, and ultimately on resident fish, invertebrate, and algae communities. Increasing human use of limited water resources has modified hydrologic regimes worldwide. Identifying the most ecologically significant hydrographic characteristics would facilitate the development of water-management strategies.Benthic invertebrates include insects, mollusks (snails and clams), worms, and crustaceans (shrimp) that live on the streambed. Invertebrates play an important role in the food web, consuming other invertebrates and algae and being consumed by fish and birds. Hydrologic alteration associated with land and water use can change the natural hydrologic regime and may affect benthic invertebrate assemblage composition and structure through changes in density of invertebrates or taxa richness (number of different species).This study examined associations between the hydrologic regime and characteristics of benthic invertebrate assemblages across the western United States and developed tools to identify streamflow characteristics that are likely to affect benthic invertebrate assemblages.
Halford, K.J.; Mayer, G.C.
2000-01-01
Ground water discharge and recharge frequently have been estimated with hydrograph-separation techniques, but the critical assumptions of the techniques have not been investigated. The critical assumptions are that the hydraulic characteristics of the contributing aquifer (recession index) can be estimated from stream-discharge records; that periods of exclusively ground water discharge can be reliably identified; and that stream-discharge peaks approximate the magnitude and tinting of recharge events. The first assumption was tested by estimating the recession index from st earn-discharge hydrographs, ground water hydrographs, and hydraulic diffusivity estimates from aquifer tests in basins throughout the eastern United States and Montana. The recession index frequently could not be estimated reliably from stream-discharge records alone because many of the estimates of the recession index were greater than 1000 days. The ratio of stream discharge during baseflow periods was two to 36 times greater than the maximum expected range of ground water discharge at 12 of the 13 field sites. The identification of the ground water component of stream-discharge records was ambiguous because drainage from bank-storage, wetlands, surface water bodies, soils, and snowpacks frequently exceeded ground water discharge and also decreased exponentially during recession periods. The timing and magnitude of recharge events could not be ascertained from stream-discharge records at any of the sites investigated because recharge events were not directly correlated with stream peaks. When used alone, the recession-curve-displacement method and other hydrograph-separation techniques are poor tools for estimating ground water discharge or recharge because the major assumptions of the methods are commonly and grossly violated. Multiple, alternative methods of estimating ground water discharge and recharge should be used because of the uncertainty associated with any one technique.
Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying
NASA Astrophysics Data System (ADS)
Elsobeiey, M.
2017-10-01
The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.
Buttenfield, B.P.; Stanislawski, L.V.; Brewer, C.A.
2011-01-01
This paper reports on generalization and data modeling to create reduced scale versions of the National Hydrographic Dataset (NHD) for dissemination through The National Map, the primary data delivery portal for USGS. Our approach distinguishes local differences in physiographic factors, to demonstrate that knowledge about varying terrain (mountainous, hilly or flat) and varying climate (dry or humid) can support decisions about algorithms, parameters, and processing sequences to create generalized, smaller scale data versions which preserve distinct hydrographic patterns in these regions. We work with multiple subbasins of the NHD that provide a range of terrain and climate characteristics. Specifically tailored generalization sequences are used to create simplified versions of the high resolution data, which was compiled for 1:24,000 scale mapping. Results are evaluated cartographically and metrically against a medium resolution benchmark version compiled for 1:100,000, developing coefficients of linear and areal correspondence.
DeMeo, Guy A.; Smith, J. LaRue; Damar, Nancy A.; Darnell, Jon
2008-01-01
Rapid population growth in southern Nevada has increased the demand for additional water supplies from rural areas of northern Clark and southern Lincoln counties to meet projected water-supply needs. Springs and rivers in these undeveloped areas sustain fragile riparian habitat and may be susceptible to ground-water withdrawals. Most natural ground-water and surface-water discharge from these basins occurs by evapotranspiration (ET) along narrow riparian corridors that encompassed about 45,000 acres or about 1 percent of the study area. This report presents estimates of ground- and surface-water discharge from ET across 3.5 million acres in 12 hydrographic areas of the Colorado Regional Ground-Water Flow System. Ground-and surface-water discharge from ET were determined by identifying areas of ground- and surface-water ET, delineating areas of similar vegetation and soil conditions (ET units), and computing ET rates for each of these ET units. Eight ET units were identified using spectral-reflectance characteristics determined from 2003 satellite imagery, high-resolution aerial photography, and land classification cover. These ET units are dense meadowland vegetation (200 acres), dense woodland vegetation (7,200 acres), moderate woodland vegetation (6,100 acres), dense shrubland vegetation (5,800 acres), moderate shrubland vegetation (22,600 acres), agricultural fields (3,100 acres), non-phreatophytic areas (3,400,000 acres), and open water (300 acres). ET from diffuse ground-water and channelized surface-water is expressed as ETgs and is equal to the difference between total annual ET and precipitation. Total annual ET rates were calculated by the Bowen ratio and eddy covariance methods using micrometeorological data collected from four sites and estimated at 3.9 ft at a dense woodland site (February 2003 to March 2005), 3.6 ft at a moderate woodland site (July 2003 to October 2006), 2.8 ft at a dense shrubland site (June 2005 to October 2006), and 1.5 ft at a moderate shrubland site (April 2006 to October 2006). Annual ETgs rates were 3.4 ft for dense woodland vegetation, 3.2 ft for moderate woodland vegetation, 2.2 ft for dense shrubland vegetation, and 1.0 ft for moderate shrubland vegetation. Published annual rates of ETgs were used for the other ET units found in the study area. These rates were 3.4 ft for dense meadowland vegetation, 5.2 ft for agricultural fields, and 4.9 ft for open water. For the non-phreatophytic ET unit, ETgs was assumed to be zero. Estimated ground- and surface-water discharge from ET was calculated by multiplying the ETgs by the ET-unit acreage and equaled 24,480 acre-ft for dense woodland vegetation, 19,520 acre-ft for moderate woodland vegetation, 12,760 acre-ft for dense shrubland vegetation, 22,600 acre-ft for moderate shrubland vegetation, 680 acre-ft for dense meadowland vegetation, 16,120 acre-ft for agricultural fields, 1,440 acre-ft for open water, and 0 acre-ft for the non-phreatophytic ET unit. Estimated ground-water and surface-water discharge from ET from each hydrographic area was calculated by summing the total annual ETgs rate for ET units found within each hydrographic area and equaled 1,952 acre-ft for the Black Mountains Area, 6,080 acre-ft for California Wash, 4,090 acre-ft for the Muddy River Springs Area, 11,510 acre-ft for Lower Moapa Valley, 51,960 acre-ft for the Virgin River Valley, 16,168 acre-ft for Lower Meadow Valley Wash, 5,840 acre-ft for Clover Valley, and 0 acre-ft for Coyote Spring Valley, Kane Springs Valley, Tule Desert, Hidden Valley (North), and Garnet Valley. The annual discharge from ETgs for the study area totals about 98,000 acre-ft.
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification...
Synoptic evaluation of scale-dependent metrics for hydrographic line feature geometry
Stanislawski, Larry V.; Buttenfield, Barbara P.; Raposo, Paulo; Cameron, Madeline; Falgout, Jeff T.
2015-01-01
Methods of acquisition and feature simplification for vector feature data impact cartographic representations and scientific investigations of these data, and are therefore important considerations for geographic information science (Haunert and Sester 2008). After initial collection, linear features may be simplified to reduce excessive detail or to furnish a reduced-scale version of the features through cartographic generalization (Regnauld and McMaster 2008, Stanislawski et al. 2014). A variety of algorithms exist to simplify linear cartographic features, and all of the methods affect the positional accuracy of the features (Shahriari and Tao 2002, Regnauld and McMaster 2008, Stanislawski et al. 2012). In general, simplification operations are controlled by one or more tolerance parameters that limit the amount of positional change the operation can make to features. Using a single tolerance value can have varying levels of positional change on features; depending on local shape, texture, or geometric characteristics of the original features (McMaster and Shea 1992, Shahriari and Tao 2002, Buttenfield et al. 2010). Consequently, numerous researchers have advocated calibration of simplification parameters to control quantifiable properties of resulting changes to the features (Li and Openshaw 1990, Raposo 2013, Tobler 1988, Veregin 2000, and Buttenfield, 1986, 1989).This research identifies relations between local topographic conditions and geometric characteristics of linear features that are available in the National Hydrography Dataset (NHD). The NHD is a comprehensive vector dataset of surface 18 th ICA Workshop on Generalisation and Multiple Representation, Rio de Janiero, Brazil 2015 2 water features within the United States that is maintained by the U.S. Geological Survey (USGS). In this paper, geometric characteristics of cartographic representations for natural stream and river features are summarized for subbasin watersheds within entire regions of the conterminous United States and compared to topographic metrics. A concurrent processing workflow is implemented using a Linux high-performance computing cluster to simultaneously process multiple subbasins, and thereby complete the work in a fraction of the time required for a single-process environment. In addition, similar metrics are generated for several levels of simplification of the hydrographic features to quantify the effects of simplification over the various landscape conditions. Objectives of this exploratory investigation are to quantify geometric characteristics of linear hydrographic features over the various terrain conditions within the conterminous United States and thereby illuminate relations between stream geomorphological conditions and cartographic representation. The synoptic view of these characteristics over regional watersheds that is afforded through concurrent processing, in conjunction with terrain conditions, may reveal patterns for classifying cartographic stream features into stream geomorphological classes. Furthermore, the synoptic measurement of the amount of change in geometric characteristics caused by the several levels of simplification can enable estimation of tolerance values that appropriately control simplification-induced geometric change of the cartographic features within the various geomorphological classes in the country. Hence, these empirically derived rules or relations could help generate multiscale-representations of features through automated generalization that adequately maintain surface drainage variations and patterns reflective of the natural stream geomorphological conditions across the country.
Hydrological Signature From River-Floodplain Interactions
NASA Astrophysics Data System (ADS)
Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Sorribas, M.; Pontes, P. R.
2015-12-01
Understanding river-floodplain hydraulic processes is fundamental to promote comprehension of related water paths, biogeochemicalcyclesand ecosystems. Large river basins around the globe present enormous developed floodplains, which strongly affect flood waves and water dynamics. Since most of these river-floodplain interactions are not monitored, it is interesting to develop strategies to understand such processes through characteristic hydrological signatures, e.g. hydrographs. We studied observed hydrographs from large South American rivers and found that in several cases rivers with extensive wetlands present a particular hydrograph shape, with slower rising limb in relation to the receding one, due to storage effects and the associated decrease of wave celerity with stage. A negative asymmetry in the hydrograph is generated, which is higher when more water flows through floodplains upstream of the observed point. Finally, we studied the Amazon basin using gauged information and simulation results from the MGB-IPH regional hydrological model. Major rivers with larger wetland areas (e.g. Purus, Madeira and Juruá) were identified with higher negative asymmetry in their hydrographs. The hydrodynamic model was run in scenarios with and without floodplains, and results supported that floodplain storage affects hydrographs in creating a negative asymmetry, besides attenuating peaks, increasing hydrograph smoothness and increasing minimum flows. Finally, different wetland types could be distinguished with hydrograph shape, e.g. differing wetlands fed by local rainfall from wetlands due to overbank flow (floodplains). These metrics and concepts on hydrograph features have great potential to infer about river-floodplain processes from large rivers and wetland systems.
Multiobjective Risk Partitioning: An Application to Dam Safety Risk Analysis
1988-04-01
Charlottesville, VA 22901 Fort Belvoir, VA 22060-5586 Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER...Resources. The successful collaboration throughout the study between the two groups is indeed a model ef an effective partnership among government ...catchment response shows good agreement with historical data. Wood and Hebson [19851 also developed a dimensionless geomorphologic unit hydrograph (DGUH
Stormwater runoff in watersheds: a system for prediciting impacts of development and climate change
Ann Blair; Denise Sanger; Susan Lovelace
2016-01-01
The Stormwater Runoff Modeling System (SWARM) enhances understanding of impacts of land-use and climate change on stormwater runoff in watersheds. We developed this singleevent system based on US Department of Agriculture, Natural Resources Conservation Service curve number and unit hydrograph methods. We tested SWARM using US Geological Survey discharge and rain data...
NASA Astrophysics Data System (ADS)
Serinaldi, Francesco; Kilsby, Chris G.
2013-06-01
The information contained in hyetographs and hydrographs is often synthesized by using key properties such as the peak or maximum value Xp, volume V, duration D, and average intensity I. These variables play a fundamental role in hydrologic engineering as they are used, for instance, to define design hyetographs and hydrographs as well as to model and simulate the rainfall and streamflow processes. Given their inherent variability and the empirical evidence of the presence of a significant degree of association, such quantities have been studied as correlated random variables suitable to be modeled by multivariate joint distribution functions. The advent of copulas in geosciences simplified the inference procedures allowing for splitting the analysis of the marginal distributions and the study of the so-called dependence structure or copula. However, the attention paid to the modeling task has overlooked a more thorough study of the true nature and origin of the relationships that link Xp,V,D, and I. In this study, we apply a set of ad hoc bootstrap algorithms to investigate these aspects by analyzing the hyetographs and hydrographs extracted from 282 daily rainfall series from central eastern Europe, three 5 min rainfall series from central Italy, 80 daily streamflow series from the continental United States, and two sets of 200 simulated universal multifractal time series. Our results show that all the pairwise dependence structures between Xp,V,D, and I exhibit some key properties that can be reproduced by simple bootstrap algorithms that rely on a standard univariate resampling without resort to multivariate techniques. Therefore, the strong similarities between the observed dependence structures and the agreement between the observed and bootstrap samples suggest the existence of a numerical generating mechanism based on the superposition of the effects of sampling data at finite time steps and the process of summing realizations of independent random variables over random durations. We also show that the pairwise dependence structures are weakly dependent on the internal patterns of the hyetographs and hydrographs, meaning that the temporal evolution of the rainfall and runoff events marginally influences the mutual relationships of Xp,V,D, and I. Finally, our findings point out that subtle and often overlooked deterministic relationships between the properties of the event hyetographs and hydrographs exist. Confusing these relationships with genuine stochastic relationships can lead to an incorrect application of multivariate distributions and copulas and to misleading results.
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and...
NASA Astrophysics Data System (ADS)
Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Diez-Herrero, Andres
2015-04-01
Flash floods constitute one of the natural hazards better able to generate risk, particularly with regard to Society. The complexity of this process and its dependence on various factors related to the characteristics of the basin and rainfall make flash floods are difficult to characterize in terms of their hydrological response.To do this, it is essential a proper analysis of the so called 'initial abstractions'. Among all of these processes, infiltration plays a crucial role in explaining the occurrence of floods in mountainous basins.For its characterization the Green-Ampt model , which depends on the characteristics of rainfall and physical properties of soil has been used in this work.This is a method enabling to simulate floods in mountainous basins where hydrological response is sub-daily. However, it has the disadvantage that it is based on physical properties of soil which have a high spatial variability. To address this difficulty soil mapping units have been delineated according to the geomorphological landforms and elements. They represent hydro-functional mapping units that are theoretically homogeneous from the perspective of the pedostructure parameters of the pedon. So the soil texture of each homogeneous group of landform units was studied by granulometric analyses using standarized sieves and Sedigraph devices. In addition, uncertainty associated with the parameterization of the Green-Ampt method has been estimated by implementing a Monte Carlo approach, which required assignment of the proper distribution function to each parameter.The suitability of this method was contrasted by calibrating and validating a hydrological model, in which the generation of runoff hydrograph has been simulated using the SCS unit hydrograph (HEC-GeoHMS software), while flood wave routing has been characterized using the Muskingum-Cunge method. Calibration and validation of the model was from the use of an automatic routine based on the employ of the search algorithm known as univariate gradient, while the objective function to be used was the percentage of error in the flow-peak of the hydrograph. The methodology proposed here was implemented in the torrential Venero Claro basin, which is a tributary of the Alberche river on its right bank, located in the Sierra del Valle (eastern foothills of the Sierra de Gredos, Spanish Central System). Currently this basin has an active network of six rainfall gauges, one stream gauging, three complete weather stations and one weather X-band radar. This hydrologic instrumentation makes this basin, with its 15 km², is one of the most densely instrumented basins from a hydrological and meteorological point of view in Spain.
Messinger, Terence
2003-01-01
During storms when rainfall intensity exceeded about 1 inch per hour, peak unit runoff from the Unnamed Tributary (surface-mined and filled) Watershed exceeded peak unit runoff from the Spring Branch (unmined) Watershed in the Ballard Fork Watershed in southern West Virginia. During most storms, those with intensity less than about 1 inch per hour, peak unit (area-normalized) flows were greater from the Spring Branch Watershed than the Unnamed Tributary Watershed. One storm that produced less than an inch of rain before flow from the previous storm had receded caused peak unit flow from the Unnamed Tributary Watershed to exceed peak unit flow from the Spring Branch Watershed. Peak unit flow was usually similar in Spring Branch and Ballard Fork. Peak unit flows are expected to decrease with increasing watershed size in homogeneous watersheds; drainage area and proportion of the three watersheds covered by valley fills are 0.19 square mile (mi?) and 44 percent for the Unnamed Tributary Watershed, 0.53 mi? and 0 percent for the Spring Branch Watershed, and 2.12 mi? and 12 percent for the Ballard Fork Watershed. Following all storms with sufficient rainfall intensity, about 0.25 inches per hour, the storm hydrograph from the Unnamed Tributary Watershed showed a double peak, as a sharp initial rise was followed by a decrease in flow and then a delayed secondary peak of water that had apparently flowed through the valley fill. Hortonian (excess overland) flow may be important in the Unnamed Tributary Watershed during intense storms, and may cause the initial peak on the rising arm of storm hydrographs; the water composing the initial peaks may be conveyed by drainage structures on the mine. Ballard Fork and Spring Branch had hydrographs with single peaks, typical of elsewhere in West Virginia. During all storms with 1-hour rainfall greater than 0.75 inches or 24-hour rainfall greater than 1.75 inches during which all stream gages recorded a complete record, the Unnamed Tributary yielded the most total unit flow. In three selected major storms, total unit flow from the Unnamed Tributary during recessions exceeded storm flow, and its total unit flow was greatest among the streams during all three recessions. Runoff patterns from the mined watershed are influenced by the compaction of soils on the mine, the apparent low maximum rate of infiltration into the valley fill compared to that in the unmined, forested watershed, storage of water in the valley fill, and the absence of interception from trees and leaf litter. No storms during this study produced 1-hour or 24-hour rainfall in excess of the 5-year return period, and streamflow during this study never exceeded a magnitude equivalent to the 1.5-year return period; relative peak unit flow among the three streams in this study could be different in larger storms. Rainfall-runoff relations on altered landscapes are site-specific, and aspects of mining and reclamation practice that affect storm response may vary among mines.
76 FR 32957 - Hydrographic Services Review Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... Review Panel AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of membership solicitation for Hydrographic Services Review Panel...), to solicit nominations for membership on the Hydrographic Services Review Panel (HSRP). The HSRP, a...
75 FR 20809 - Hydrographic Services Review Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... Review Panel AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of Additional Membership Solicitation for Hydrographic Services Review... applications for membership on the Hydrographic Services Review Panel (the Panel), a Federal advisory committee...
75 FR 20816 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Hydrographic Services Review Panel (HSRP) is a Federal Advisory Committee established to advise the Under Secretary of Commerce...
76 FR 61091 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Hydrographic Services Review Panel (HSRP) is a Federal Advisory Committee established to advise the Under Secretary of Commerce...
76 FR 20323 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Hydrographic Services Review Panel (HSRP) is a Federal Advisory Committee established to advise the Under Secretary of Commerce...
Hydrograph matching method for measuring model performance
NASA Astrophysics Data System (ADS)
Ewen, John
2011-09-01
SummaryDespite all the progress made over the years on developing automatic methods for analysing hydrographs and measuring the performance of rainfall-runoff models, automatic methods cannot yet match the power and flexibility of the human eye and brain. Very simple approaches are therefore being developed that mimic the way hydrologists inspect and interpret hydrographs, including the way that patterns are recognised, links are made by eye, and hydrological responses and errors are studied and remembered. In this paper, a dynamic programming algorithm originally designed for use in data mining is customised for use with hydrographs. It generates sets of "rays" that are analogous to the visual links made by the hydrologist's eye when linking features or times in one hydrograph to the corresponding features or times in another hydrograph. One outcome from this work is a new family of performance measures called "visual" performance measures. These can measure differences in amplitude and timing, including the timing errors between simulated and observed hydrographs in model calibration. To demonstrate this, two visual performance measures, one based on the Nash-Sutcliffe Efficiency and the other on the mean absolute error, are used in a total of 34 split-sample calibration-validation tests for two rainfall-runoff models applied to the Hodder catchment, northwest England. The customised algorithm, called the Hydrograph Matching Algorithm, is very simple to apply; it is given in a few lines of pseudocode.
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
NASA Astrophysics Data System (ADS)
Burt, William J.; Westberry, Toby K.; Behrenfeld, Michael J.; Zeng, Chen; Izett, Robert W.; Tortell, Philippe D.
2018-02-01
We present optically derived estimates of phytoplankton carbon (Cphyto) and chlorophyll a concentration (Chl) across a wide range of productivity and hydrographic regimes in the Subarctic Pacific Ocean. Our high-frequency measurements capture changes in Cphyto and Chl across regional gradients in macronutrient and micronutrient limitations and submesoscale hydrographic frontal zones. Throughout the majority of our survey region, carbon to chlorophyll ratios (Cphyto:Chl) ranged between 50 and 100. Lower values (10-20) were constrained to the highly productive coastal upwelling system along Vancouver Island, whereas higher estimated values (>200) were found directly off the southern British Columbia continental shelf. Further offshore, Cphyto:Chl was less variable, ranging from 50 to 80 in high nutrient low Chl waters in June and from 80 to 120 in the Gulf of Alaska in July. Much of the variability in Cphyto:Chl throughout the study region could be explained by mixed-layer light levels (i.e., photoacclimation), with additional variability attributed to nutrient-controlled changes in phytoplankton growth rates in some regions. Elevated Cphyto:Chl ratios resulting from apparent nutrient stress were found in areas of low macronutrient concentrations. In contrast, iron-limited waters exhibited Cphyto:Chl ratios lower than predicted from the photoacclimation model. Applying the carbon-based production model, we derived Cphyto and Chl-based estimates of net primary productivity, which showed good coherence with independent 14C uptake measurements. Our results highlight the utility of ship-board optical data to examine phytoplankton physiological ecology and productivity in surface marine waters.
A New ɛNd Record Covering Termination II
NASA Astrophysics Data System (ADS)
Deaney, E. L.; Thornalley, D. J.; van de Flierdt, T.; Kreissig, K.; Barker, S.
2014-12-01
The 143Nd/144Nd ratio (ɛNd) of seawater is used as a quasi-conservative tracer to examine past changes in water mass composition of the deep ocean. Records of ɛNd across the last deglaciation (Termination 1, T1) provide valuable information about water mass mixing that has improved our understanding of the ocean dynamics relevant to the process of deglaciation. However, questions remain concerning end-member source characteristics and regional hydrographic processes. Here we present a high resolution record of ɛNd derived from fish debris from ODP site 1063 across Termination 2. The different external and internal forcing (e.g. insolation versus freshwater) applicable to T2 make this a useful comparator for studies focused on T1. Accordingly we find large (up to 4 ɛNd units) fluctuations across T2 that can be related to high latitude climate changes as recorded by ice cores and other high resolution climate archives. We also identify periods of extremely negative values that require new explanations for changing end-member compositions. Our results have important implications for understanding North Atlantic deep water formation processes during critical climate transitions.
The role of event water, a rapid shallow flow component, and catchment size in summer stormflow
Brown, V.A.; McDonnell, Jeffery J.; Burns, Douglas A.; Kendall, C.
1999-01-01
Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... adopt or reject the standard as the NOAA Quality Assurance Program Standard for the particular...
A methodology for investigation of the seasonal evolution in proglacial hydrograph form
NASA Astrophysics Data System (ADS)
Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.
1999-11-01
This paper advances an objective method of diurnal hydrograph classification as an aid to exploring changes in the hydrological functioning of glacierized catchments over the ablation season. The temporal sequencing of different hydrograph classes allows identification of seasonal evolution in hydrograph form and also assists delimitation of hydrologically-meaningful time periods of similar diurnal discharge response. The effectiveness of this approach is illustrated by applying it to two contrasting summer discharge records for a small cirque basin. By comparing the results with patterns of surface energy receipt and glacier ablation, the seasonally transient relative influences of: (i) surface meltwater production and (ii) meltwater routing and storage conditions within the intervening glacier drainage system in determining runoff are elucidated. The method successfully characterizes distinct seasonal-scale changes in the diurnal outflow hydrograph during the ablation-dominated 1995 melt season but is also able to reveal underlying trends and short-term fluctuations in the precipitation-dominated, poorly ablation-regulated 1996 melt season. The limitations and benefits of this hydrograph classification technique are evaluated.
Estimating flood hydrographs and volumes for Alabama streams
Olin, D.A.; Atkins, J.B.
1988-01-01
The hydraulic design of highway drainage structures involves an evaluation of the effect of the proposed highway structures on lives, property, and stream stability. Flood hydrographs and associated flood volumes are useful tools in evaluating these effects. For design purposes, the Alabama Highway Department needs information on flood hydrographs and volumes associated with flood peaks of specific recurrence intervals (design floods) at proposed or existing bridge crossings. This report will provide the engineer with a method to estimate flood hydrographs, volumes, and lagtimes for rural and urban streams in Alabama with drainage areas less than 500 sq mi. Existing computer programs and methods to estimate flood hydrographs and volumes for ungaged streams have been developed in Georgia. These computer programs and methods were applied to streams in Alabama. The report gives detailed instructions on how to estimate flood hydrographs for ungaged rural or urban streams in Alabama with drainage areas less than 500 sq mi, without significant in-channel storage or regulations. (USGS)
Flood type specific construction of synthetic design hydrographs
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Viviroli, Daniel; Sikorska, Anna E.; Vannier, Olivier; Favre, Anne-Catherine; Seibert, Jan
2017-02-01
Accurate estimates of flood peaks, corresponding volumes, and hydrographs are required to design safe and cost-effective hydraulic structures. In this paper, we propose a statistical approach for the estimation of the design variables peak and volume by constructing synthetic design hydrographs for different flood types such as flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods. Our approach relies on the fitting of probability density functions to observed flood hydrographs of a certain flood type and accounts for the dependence between peak discharge and flood volume. It makes use of the statistical information contained in the data and retains the process information of the flood type. The method was tested based on data from 39 mesoscale catchments in Switzerland and provides catchment specific and flood type specific synthetic design hydrographs for all of these catchments. We demonstrate that flood type specific synthetic design hydrographs are meaningful in flood-risk management when combined with knowledge on the seasonality and the frequency of different flood types.
Locating Noctiluca Miliaris in the Arabian Sea: An Optical Proxy Approach
NASA Technical Reports Server (NTRS)
Thibodeau, Patricia S.; Roesler, Collin S.; Drapeau, Susan L.; Matondkar, S. G. Prabhu; Goes, Joaquim I.; Werdell, P. Jeremy
2014-01-01
Coincident with shifting monsoon weather patterns over India, the phytoplankter Noctiluca miliaris has recently been observed to be dominating phytoplankton blooms in the northeastern Arabian Sea during the winter monsoons. Identifying the exact environmental and/or ecological conditions that favor this species has been hampered by the lack of concurrent environmental and biological observations on time and space scales relevant to ecologic and physiologic processes. We present a bio-optical proxy for N. miliaris measured on highly resolved depth scales coincident with hydrographic observations with the goal to identify conducive hydrographic conditions for the bloom. The proxy is derived from multichannel excitation chlorophyll a fluorescence and is validated with microscopy, pigment composition, and spectral absorption. Phytoplankton populations dominated by either diatoms or other dinoflagellates were additionally discerned. N. miliaris populations in full bloom were identified offshore in low-nutrient and low-N : P ratio surface waters within a narrow temperature and salinity range. These populations transitioned to high-biomass diatom-dominated coastal upwelling populations. A week later, the N. miliaris blooms were observed in declining phase, transitioning to very-low-biomass populations of non-N. miliaris dinoflagellates. There were no clear hydrographic conditions uniquely associated with the N. miliaris populations, although N. miliaris was not found in the upwelling or extremely oligotrophic waters. Taxonomic transitions were not discernible in the spatial structure of the bloom as identified by the ocean color Chl imagery, indicating that in situ observations may be necessary to resolve community structure, particularly for populations below the surface.
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hydrographic products it has certified. NOAA may conduct audits without advance notification. However, visits... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Audit and decertification of... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND...
Sulfur isotope dynamics in a high-elevation catchment, West Glacier Lake, Wyoming
J. B. Finley; J. I. Drever; J. T. Turk
1995-01-01
Stable isotopes of S are used in conjunction with dissolved SO2-|4 concentrations to evaluate the utility of ä34S ratios in tracing contributions of bedrock-derived S to SO2-|4 in runoff. Water samples were collected over the annual hydrograph from two tributaries in the West Glacier Lake, Wyoming, catchment. Concentrations of SO2-|4 ranged from 12.6 to 43.0 Ãeq L-1;...
NASA Astrophysics Data System (ADS)
Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.
2010-05-01
We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.
Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.
2016-01-01
This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.
Hydrographic Variability off the Coast of Oman
NASA Astrophysics Data System (ADS)
Belabbassi, L.; Dimarco, S. F.; Jochens, A. E.; Al Gheilani, H.; Wang, Z.
2010-12-01
Data from hydrographic transects made in 2001 and 2002 and between 2007 and 2009 were obtained from the Oman Ministry of Fisheries Wealth. Property-depth plots of temperature, salinity, and dissolved oxygen were produced for all transects and in all months for which data were available. These were analyzed for temporal and spatial variability. For all transects, there exist large variability on various timescales, with strong spatial variability. Two common features that are seen in the hydrographic data sets are the Persian Gulf Water (PGW) and a layer of continuous low oxygen concentrations in the lower part of the water column. Plots of salinity produced for transects located in the northern part of the Gulf of Oman show a one-unit increase in salinity of the water at the bottom of deepest station during the months of August and September as compared to the other months. Similarly, cross-shelf contour plots of temperature shows an increase in water temperature near the bottom station during the months of August and September. These indicate the presence of the PGW outflow in the northern part of the Gulf of Oman. For dissolved oxygen distributions, hydrographic transects that did not extend far offshore show monthly differences in the presence of water with low oxygen concentrations. For transects that do extend far offshore and also show a layer of low oxygen water throughout the year, there is generally a monthly difference on whether this water is found close to the surface or deeper in the water column. The variability seen in the data could only be explained by comparing these data to data collected from the real time cable ocean observing system installed by Lighthouse R &D Enterprise in the Oman Sea and the Arabian Sea in 2005. The analysis of these data reveal that the variability observed is related to processes such as ocean conditions, monsoonal cycle, and extreme weather events.
NASA Astrophysics Data System (ADS)
Koloskov, Evgenii
2017-04-01
The report examines modern hydrographic technologies for the Russian northern seas investigations. The new hydro acoustics methods for seabed study are discussed. It presents stages of seafloor relief studies in the Russian Arctic seas since the 1950s and the obtained results. At the beginning of the 21st century an entirely new phase of bathymetric investigations began with the use of Multibeam Echosounders (MB) and modern hydrographic software. The software tools to process and analyze the bathymetry, and more recently to characterize the seabed from the backscatter, are available in a majority of modern sonar systems. Besides the bathymetry and sonar data, modern MB can produce water column images. These hydrographic technologies provide the possibility to achieve a high level of the seafloor topography. The latest generation of hydrographic MB now has the ability to provide the water column images along with the seafloor. The gas seeps from multibeam water column data can be distantly discerned against the seabed relief background with the aid of the Fledermause software package ("FMMidwater" module). The ability to integrate the water column data with the seafoor and other information,in an integrated geospatial and temporal environment, enhanced the analysis and interpretation of the data which is essential for marine geological research and investigations. The modern hydrographic equipment presents the ability to integrate the MB digital relief models (DTM) and sub bottom profiler data. This provide the possibility to obtain not only the detailed seabed topography, but also the additional information concerning the structure of under bottom soil layers and presence of the endogenous objects in near bottom environment. The importance of the hydrographic software tools needed to process and analyze the bathymetry and water column data are emphasized. The practical importance of the water column and bottom profiler data processing for the submarine gas-hydrates survey is stated. The attention is paid to the implementation of the parametric sub bottom profilers - the low frequency sonar for the sea bottom vertical section investigation. The ability for the integrated presentation of the multibeam bathymetry and vertical curtains in the 3D environment are discussed. As an example of the modern swath survey results achieved with Kongsberg EM2040CD MB and hydrographic information technology QINSy/ Fledermause, are discussed and presented. This survey was performed for the RosNeft company in the Kara sea. Recommendations for the implementation of the multi beam echo sounder and parametric sub bottom profiler for the combined hydrographic and submarine gas-hydrates survey in the Russian northern seas are delivered.The gas-hydrate survey guidelines using MB and QINSy/Fledermause software are provided. The hydrographic software tools used to process and analyze the bathymetry can create the seafloor DTM with the high degree of resolution and provide 3D visualization.These new possibilities provide such realistic view of the sea bottom relief and environment that can be characterized as the marine landscapes. Thus it became possible to investigate the relief morphological peculiarities and obtain the information about the relief genesis. This opens the new opportunities for using the acoustic techniques for varies types of marine activity including the bottom environmental study. The appearance of the bottom thermokarst activity derived from the high resolution DTM generated from the real time MB data is presented. The bottom thermokarst provides the potential threat for underwater pipelines and other submarine communications. The arctic bottom relief peculiarities are also covered including grounded hummock traces and dome-shaped elevations. The investigation of such bottom land forms has become possible recently as the result of implementing the wide swath survey methods. Such unique relief features are in general related to seabed gas venting in the form of the submarine gas-hydrates seeps. The opportunities for investigation of the morphological relief peculiarities and getting the new information is mportant also for varies types of marine activity including the marine ecology study. The arctic sea specific microrelief images are provided to show the abnormality of the bottom surface. The main attention is paid to specific and bottom features such as trenches the grounded hummock traces and dome-shaped elevations of the Pingo-type-unique forms of microrelief usually confined to the bottom gas flow in the form of methane emissions. The attention is also paid to the consequences of the global climate change and its influence on the bottom sole. Key words: hydrographic technologies, hydro acoustics methods, swathe survey, sea bottom vertical section, submarine gas-hydrates, submarine permafrost, seafloor gas venting,multi beam echo sounder, parametric sub bottom profiler.
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
NASA Technical Reports Server (NTRS)
1996-01-01
The Hatizyo Hydrographic Observatory, which is one of the essential magnetic observatories in Japan, was established in 1979 and is currently operated by the Hydrographic Department, Maritime Safety Agency. This is the annual report compiled from the results of magnetic observations carried out at the observatory in 1994. As to the instruments used for magnetic observations, the digital recording variometer was replaced by a fluxgate magnetometer in 1986, and one set each of the proton and fluxgate magnetometers was additionally installed in January and October 1992, respectively.
NASA Technical Reports Server (NTRS)
1995-01-01
The Hatizyo Hydrographic Observatory, which is one of the essential magnetic observatories in Japan, was established in 1979 and is currently operated by the Hydrographic Department, Maritime Safety Agency. This is the annual report compiled from the results of magnetic observations carried out at the observatory in 1993. As to the instruments used for magnetic observations, the digital recording variometer was replaced by a fluxgate magnetometer in 1986, and one set each of the proton and fluxgate magnetometers was additionally installed in January and October 1992, respectively.
NASA Astrophysics Data System (ADS)
McNamara, J. P.; Semenova, O.; Restrepo, P. J.
2011-12-01
Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in terms of runoff and variable states of soil and snow over a simulation period 2000 - 2009. The parameters of the model were hand-adjusted based on rational sense, observational data and available understanding of underlying processes. For the first run some processes as riparian vegetation impact on runoff and streamflow/groundwater interaction were handled in a conceptual way. It was shown that the use of Hydrograph model which requires modest amount of parameter calibration may serve also as a quality control for observations. Based on the obtained parameters values and process understanding at the research watershed the model was applied to the larger scale watersheds located in similar environment - the Boise River at South Fork (1660 km2) and Twin Springs (2155 km2). The evaluation of the results of such upscaling will be presented.
Powell, J.W.
1891-01-01
The work of the United States Irrigation Survey during the second year has been carried oil under the appropriation of $250,000 made March 2, 1889, by the force organized and equipped during the previous year. This is pursuant to the purposes outlined in the first annual report, which explains the origin, purpose, and plan of the Survey, publishes the instructions to the chiefs of the larger divisions, and gives the report of the topographic division to the end of the first fiscal year, and the reports of the hydrographic and engineering divisions during the greater part of the calendar year 1889.
Integrated Hydrographical Basin Management. Study Case - Crasna River Basin
NASA Astrophysics Data System (ADS)
Visescu, Mircea; Beilicci, Erika; Beilicci, Robert
2017-10-01
Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.
NASA Technical Reports Server (NTRS)
Tai, Chang-Kou
1988-01-01
Direct estimation of the absolute dynamic topography from satellite altimetry has been confined to the largest scales (basically the basin-scale) owing to the fact that the signal-to-noise ratio is more unfavorable everywhere else. But even for the largest scales, the results are contaminated by the orbit error and geoid uncertainties. Recently a more accurate Earth gravity model (GEM-T1) became available, providing the opportunity to examine the whole question of direct estimation under a more critical limelight. It is found that our knowledge of the Earth's gravity field has indeed improved a great deal. However, it is not yet possible to claim definitively that our knowledge of the ocean circulation has improved through direct estimation. Yet, the improvement in the gravity model has come to the point that it is no longer possible to attribute the discrepancy at the basin scales between altimetric and hydrographic results as mostly due to geoid uncertainties. A substantial part of the difference must be due to other factors; i.e., the orbit error, or the uncertainty of the hydrographically derived dynamic topography.
NASA Astrophysics Data System (ADS)
Johnston, G.
2016-02-01
The current increased awareness in the oceans and marine areas has presented a challenge to the various institutions that work to gather data and manage information for the wider community of stakeholders. A number of trends and developments are becoming available to assist and further the national and international ocean mapping and monitoring initiatives. Some are technical in nature whilst others are related to the promotion and availability of information. This paper highlights a number of these key trends, their impact on ocean mapping and how we as scientists may be able to better engage and promote the need for good data and the potential added value and benefits to be derived. Whilst a significant amount of resources can be expended on acquiring and collecting high resolution bathymetric and hydrographic data there are new technologies to mitigate some of the bigger costs and with collaboration and cooperation greater benefits may be realized by the wider socio-economic communities who rely upon well governed and sustainable seas and oceans.
NASA Astrophysics Data System (ADS)
Mathien-Blard, Elise; Bassinot, Franck
2009-12-01
Mg/Ca in foraminiferal calcite has recently been extensively used to estimate past oceanic temperatures. Here we show, however, that the Mg/Ca temperature relationship of the planktonic species Globigerinoides ruber is significantly affected by seawater salinity, with a +1 psu change in salinity resulting in a +1.6°C bias in Mg/Ca temperature calculations. If not accounted for, such a bias could lead, for instance, to systematic overestimations of Mg/Ca temperatures during glacial periods, when global ocean salinity had significantly increased compared to today. We present here a correction procedure to derive unbiased sea surface temperatures (SST) and δ18Osw from G. ruber TMg/Ca and δ18Of measurements. This correction procedure was applied to a sedimentary record to reconstruct hydrographic changes since the Last Glacial Maximum (LGM) in the Western Pacific Warm Pool. While uncorrected TMg/Ca data indicate a 3°C warming of the Western Pacific Warm Pool since the LGM, the salinity-corrected SST result in a stronger warming of 4°C.
Hoos, Anne B.; Moore, Richard B.; Garcia, Ana Maria; Noe, Gregory B.; Terziotti, Silvia E.; Johnston, Craig M.; Dennis, Robin L.
2013-01-01
Existing Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models for the northeastern and southeastern regions of the United States were recalibrated to achieve a hydrographically consistent model with which to assess nutrient sources and stream transport and investigate specific management questions about the effects of wetlands and atmospheric deposition on nutrient transport. Recalibrated nitrogen models for the northeast and southeast were sufficiently similar to be merged into a single nitrogen model for the eastern United States. The atmospheric deposition source in the nitrogen model has been improved to account for individual components of atmospheric input, derived from emissions from agricultural manure, agricultural livestock, vehicles, power plants, other industry, and background sources. This accounting makes it possible to simulate the effects of altering an individual component of atmospheric deposition, such as nitrate emissions from vehicles or power plants. Regional differences in transport of phosphorus through wetlands and reservoirs were investigated and resulted in two distinct phosphorus models for the northeast and southeast. The recalibrated nitrogen and phosphorus models account explicitly for the influence of wetlands on regional-scale land-phase and aqueous-phase transport of nutrients and therefore allow comparison of the water-quality functions of different wetland systems over large spatial scales. Seven wetland systems were associated with enhanced transport of either nitrogen or phosphorus in streams, probably because of the export of dissolved organic nitrogen and bank erosion. Six wetland systems were associated with mitigating the delivery of either nitrogen or phosphorus to streams, probably because of sedimentation, phosphate sorption, and ground water infiltration.
Como, Michael D.; Noll, Michael L.; Finkelstein, Jason S.; Monti, Jack; Busciolano, Ronald J.
2015-01-01
Hydrographs are included on these maps for selected wells that have digital recording equipment. These hydrographs are representative of the 2013 water year to show the changes that have occurred throughout that period. The synoptic survey water level measured at the well is included on each hydrograph.
Simulating double-peak hydrographs from single storms over mixed-use watersheds
Yang Yang; Theodore A. Endreny; David J. Nowak
2015-01-01
Two-peak hydrographs after a single rain event are observed in watersheds and storms with distinct volumes contributing as fast and slow runoff. The authors developed a hydrograph model able to quantify these separate runoff volumes to help in estimation of runoff processes and residence times used by watershed managers. The model uses parallel application of two...
Lagtime relations for urban streams in Georgia
Inman, Ernest J.
2000-01-01
Urban flood hydrographs are needed for the design of many highway drainage structures, embankments, and entrances to detention ponds. The three components that are needed to simulate urban flood hydrographs at ungaged sites are the design flood, the dimensionless hydrograph, and lagtime. The design flood and the dimensionless hydrograph have been presented in earlier studies for urban streams in Georgia. The objective of this study was to develop equations for estimating lagtime for urban streams in Georgia. Lagtimes were computed for 329 floods at 69 urban gaging stations in 11 cities in Georgia. These data were used to compute an average lagtime for each gaging station. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics, of which drainage area, slope, and impervious area were found to be significant. A qualitative variable was used to account for a geographical bias in flood-frequency region 4, a small area of southwestern Georgia. Information from this report can be used to simulate a flood hydrograph using a dimensionless hydrograph, the design flood, and the lagtime obtained from regression equations for any urban site with less than a 25-square-mile drainage area in Georgia.
The role of varying flow on channel morphology: a flume experiment
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Grant, G.; Eaton, B. C.; Hassan, M. A.; Lewis, S.
2017-12-01
Numerous studies have explored how alluvial channels develop under different sediment and flow conditions, yet we still know very little about how channels adjust and respond to changing flow conditions. One reason for this oversight is the long-held idea that channels with complex flow regimes are adjusted to a single, channel-forming discharge. But growing evidence shows that channel form reflects time-dependent processes occuring over multiple flows. To better understand how stream channels adjust to a range of flows, and identify the timescales associated with those adjustments, we conducted a series of hydrograph experiments in a freely-adjustable flume that developed a self-formed, meander pattern with pool-riffle morphology. Hydrographs had different shapes, magnitudes, and durations, but the total sediment volume fed under equilibrium conditions was kept constant among experiments. We found that hydrograph shape controlled channel morphology, the rate of channel development, and degree of regularity in the pool-riffle pattern. Hydrographs with slowly rising rates of rise and fall produced channels that were equivalent in size to channels generated from constant flow experiments, and had regularly spaced pool-riffle and meander patterns, while hydrographs with fast rates of rise and fall produced undersized channels with a chaotic bed structure and pool-riffle pattern. The latter suggests that during quickly rising hydrographs, the flow rate increases faster than the channel capacity and planform pattern adjusts. We confirmed these observations by comparing the timescales associated with pool-riffle and planform curvature development, which were identified under simple, constant flow conditions, to the total duration of the hydrograph. Hydrographs with step durations equal to or longer than the channel adjustment time produced channels with a more regular pool-riffle patterns compared to channels with step durations shorter than the adjustment time. This work points to the importance of the hydrograph as a fundamental control on channel adjustment and offers the prospect of better understanding of how changes in the flow regime, either through climate, land use, or dams, translate into morphodynamic changes.
Modeling the probability distribution of peak discharge for infiltrating hillslopes
NASA Astrophysics Data System (ADS)
Baiamonte, Giorgio; Singh, Vijay P.
2017-07-01
Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecedent soil moisture condition (ASMC) significantly affects the rate of infiltration, its effect on the probability distribution of peak discharge is investigated. Application to a watershed in Sicily, Italy, shows that with the increase of probability, the expected effect of ASMC to increase the maximum discharge diminishes. Only for low values of probability, the critical duration of rainfall is influenced by ASMC, whereas its effect on the peak discharge seems to be less for any probability. For a set of parameters, the derived probability distribution of peak discharge seems to be fitted by the gamma distribution well. Finally, an application to a small watershed, with the aim to test the possibility to arrange in advance the rational runoff coefficient tables to be used for the rational method, and a comparison between peak discharges obtained by the GABS model with those measured in an experimental flume for a loamy-sand soil were carried out.
Intense Mixing and Recirculations of Intermediate and Deep Water in the Northwest Argentine Basin
NASA Astrophysics Data System (ADS)
Valla, D.; Piola, A. R.
2016-02-01
The sources of the South Atlantic upper and intermediate waters that form the upper layer flow needed to maintain mass balance due the export of North Atlantic Deep Water from the North Atlantic are still under debate. The "cold path" scheme postulates that intermediate waters are injected into the South Atlantic from the Pacific through the Drake Passage, advected north by the Malvinas Current up to the Brazil/Malvinas Confluence (BMC) and circulated around the basin following the path of the subtropical gyre. We report high-quality hydrographic observations collected in the South Atlantic western boundary at 34.5 °S during 7 hydrographic cruises as part of the SAMOC project. We focus on the flow and characteristics of Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The water mass analysis indicates the presence of "young" (fresh and highly oxygenated) varieties of AAIW (S<34.2, O2>6 ml·l-1) which must be derived from south of the SAMOC array. This suggests an alternative pathway for intermediate waters that involves a short circuit beneath the BMC. Simultaneous full-depth velocity measurements using lowered acoustic Doppler current profilers confirm this hypothesis. The flow direction across the SAMOC array in the UCDW range inferred from dissolved oxygen measurements also indicate the presence of UCDW (O2<4.2 ml·l-1) derived from farther south. However, the wider range of oxygen concentrations suggests strong recirculations of both water masses within the northwestern Argentine Basin.
NASA Astrophysics Data System (ADS)
Aiello, Antonello; Adamo, Maria; Canora, Filomena
2014-05-01
The transfer of sediments from hydrographic basins towards the coast is a significant pathway of material transfer on Earth. In sedimentary environment, the main portion of sediment that enters the coastal areas is derived originally from erosion in the coastal watersheds. Extensive anthropogenic pressures carried out within coastal basins have long shown negative impacts on littoral environments. In fluvial systems, sediments trapped behind dams and in-stream gravel mining cause the reduction in sediment supply to the coast. Along the Jonian littoral of the Basilicata Region (southern Italy), natural coastal processes have been severely disrupted since the second half of the 20th century as a result of riverbed sand and gravel mining and dam construction, when economic advantages were measured in terms of the development of infrastructure, water storage, and hydropower production for the agricultural, industrial and socio-economic development of the area. Particularly, the large numbers of dams and impoundments that have been built in the hydrographic basins have led a signi?cant reduction on river sediment loads. As a result, the Jonian littoral is experiencing a catalysed erosion phenomenon. In order to increase understanding of the morpho-dynamics of the Jonian littoral environment and more fully appreciate the amount of coastal erosion, an evaluation of the sediment budget change due to dam construction within the hydrographic basins of the Basilicata Region needs to be explored. Since quantitative data on decadal trends in river sediment supply before and after dam construction are lacking, as well as updated dam silting values, river basin assessment of the spatial patterns and estimated amount of sediment erosion and deposition are important in evaluating changes in the sediment budget. As coastal areas are being affected by an increasing number of population and socio-economic activities, the amount of sediment deficit at the littoral can permit to forecast coastline fluctuations caused by such anthropogenic interventions. These are valuable information for both the management of and development of future plans for coastal environments and for reducing exposure risk to coastal erosion. The purpose of this study was to compare and to evaluate the suitability of the RUSLE (Revised Universal Soil Loss Equation), RUSLE 3D and USPED (Unit Stream Power-based Erosion Deposition) models in assessing the sediment budget variation at watershed scale. In order to assess the rate of net soil erosion, the three models were applied to the Bradano river basin and to the sub-basin subtended by the San Giuliano Dam. To this end, digital terrain model, products derived from satellite remote sensing (multi-temporal Landsat imagery), soil texture maps and ancillary data were integrated and processed in a GIS. To test the models, the computed soil erosion rates were integrated over the San Giuliano sub-basin surface, and compared with the dam silting value provided by an interregional authority responsible for its management. The three models have proven to be effective in quantifying the soil erosion at watershed scale.
Techniques for estimating flood hydrographs for ungaged urban watersheds
Stricker, V.A.; Sauer, V.B.
1984-01-01
The Clark Method, modified slightly was used to develop a synthetic, dimensionless hydrograph which can be used to estimate flood hydrographs for ungaged urban watersheds. Application of the technique results in a typical (average) flood hydrograph for a given peak discharge. Input necessary to apply the technique is an estimate of basin lagtime and the recurrence interval peak discharge. Equations for this purpose were obtained from a recent nationwide study on flood frequency in urban watersheds. A regression equation was developed which relates flood volumes to drainage area size, basin lagtime, and peak discharge. This equation is useful where storage of floodwater may be a part of design of flood prevention. (USGS)
The design and implementation of hydrographical information management system (HIMS)
NASA Astrophysics Data System (ADS)
Sui, Haigang; Hua, Li; Wang, Qi; Zhang, Anming
2005-10-01
With the development of hydrographical work and information techniques, the large variety of hydrographical information including electronic charts, documents and other materials are widely used, and the traditional management mode and techniques are unsuitable for the development of the Chinese Marine Safety Administration Bureau (CMSAB). How to manage all kinds of hydrographical information has become an important and urgent problem. A lot of advanced techniques including GIS, RS, spatial database management and VR techniques are introduced for solving these problems. Some design principles and key techniques of the HIMS including the mixed mode base on B/S, C/S and stand-alone computer mode, multi-source & multi-scale data organization and management, multi-source data integration and diverse visualization of digital chart, efficient security control strategies are illustrated in detail. Based on the above ideas and strategies, an integrated system named Hydrographical Information Management System (HIMS) was developed. And the HIMS has been applied in the Shanghai Marine Safety Administration Bureau and obtained good evaluation.
Rice, Karen C.; Bricker, Owen P.
1996-01-01
Hydrologic and water-quality data were collected at a precipitation-collection station and from two small watersheds on Catoctin Mountain, north- central Maryland, as part of an investigation of episodic acidification and its effects on streamwater quality. Data were collected from June 1990 through December 1993. Descriptions of the water shed instrumentation, data-collection techniques, and laboratory methods used to conduct the studies are included. Data that were collected on precipitation, throughfall, soil water, ground water, and streamwater during base flow and stormflow indicate that the streams undergo episodic acidification during storms. Both streams showed decreases in pH to less than 5.0 standard units during stormflow. The acid-neutralizing capacity (ANC) of both streams decreased during stormflow, and the ANC of one of the streams, Bear Branch, became negative. The chemistries of the different types of waters that were sampled indicate that shallow subsurface water with minimal residence time in the watersheds is routed to the streams to become stormflow and is the cause of the episodic acidification observed. Three-component hydrograph separations were performed on the data collected during several storms in each watershed. The hydrograph separations of all of the storms indicate that throughfall contributed 0 to 50 percent of the stormflow, soil water contributed 0 to 80 percent, and ground water contributed 20 to 90 percent. The results of the hydrograph separations indicate that, in general, the watershed with higher hydraulic gradients tends to have shallower and shorter flow paths than the watershed with lower hydraulic gradients.
1981-03-01
mi. - 24 hour). The Corps of Engineers has recommended the use of the SCS triangular unit hydrograph with the curvilinear transformation. Hydrologic ...construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam’s general condition...FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING
Customizing WRF-Hydro for the Laurentian Great Lakes Basin
NASA Astrophysics Data System (ADS)
Gronewold, A.; Pei, L.; Gochis, D.; Mason, L.; Sampson, K. M.; Dugger, A. L.; Read, L.; McCreight, J. L.; Xiao, C.; Lofgren, B. M.; Anderson, E. J.; Chu, P. Y.
2017-12-01
To advance the state of the art in regional hydrological forecasting, and to align with operational deployment of the National Water Model, a team of scientists has been customizing WRF-Hydro (the Weather Research and Forecasting model - Hydrological modeling extension package) to the entirety (including binational land and lake surfaces) of the Laurentian Great Lakes basin. Objectives of this customization project include opererational simulation and forecasting of the Great Lakes water balance and, in the short-term, research-oriented insights into modeling one- and two-way coupled lake-atmosphere and near-shore processes. Initial steps in this project have focused on overcoming inconsistencies in land surface hydrographic datasets between the United States and Canada. Improvements in the model's current representation of lake physics and stream routing are also critical components of this effort. Here, we present an update on the status of this project, including a synthesis of offline tests with WRF-Hydro based on the newly developed Great Lakes hydrographic data, and an assessment of the model's ability to simulate seasonal and multi-decadal hydrological response across the Great Lakes.
Spatially distributed storm runoff modeling using remote sensing and geographic information systems
NASA Astrophysics Data System (ADS)
Melesse, Assefa Mekonnen
Advances in scientific knowledge and new techniques of remote sensing permit a better understanding of the physical land features governing hydrologic processes, and make possible efficient, large-scale hydrologic modeling. The need for land-cover and hydrologic response change detection at a larger scale and at times of the year when hydrologic studies are critical makes satellite imagery the most cost effective, efficient and reliable source of data. The use of a Geographic Information System (GIS) to store, manipulate and visualize these data, and ultimately to estimate runoff from watersheds, has gained increasing attention in recent years. In this work, remotely-sensed data and GIS tools were used to estimate the changes in land-cover, and to estimate runoff response, for three watersheds (Etonia, Econlockhatchee, and S-65A sub-basins) in Florida. Land-use information from Digital Orthophoto Quarter Quadrangles (DOQQ), Landsat Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) were analyzed for the years 1973, 1984, 1990, 1995, and 2000. Spatial distribution of land-cover was assessed over time. The corresponding infiltration excess runoff response of the study areas due to these changes was estimated using the United States Department of Agriculture, Natural Resources Conservation Service Curve Number (USDA-NRCS-CN) method. A Digital Elevation Model (DEM)-GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. The method was tested on a representative watershed (Simms Creek) in the Etonia sub-basin. Simulated and observed runoff volume and hydrographs were compared for 17 storm events. Isolated storms, with volumes of not less than 12.75 mm (0.5 inch) were selected. This is the minimum amount of rainfall volume recommended for the NRCS-CN method. Results show that the model predicts the runoff response of the study area with an average efficiency of 57%. Comparison of the runoff prediction to Snyder's synthetic Unit hydrograph method and TOPMODEL shows the spatially distributed infiltration excess travel time model performs better than both the Snyder's method and TOPMODEL. The model is applicable to ungaged watersheds and useful for predicting runoff hydrographs resulting from changes in the land-cover.
NASA Astrophysics Data System (ADS)
Field, Malcolm S.; Goldscheider, Nico; Li, Guangquan
2018-02-01
We are pleased to learn that the model presented in our paper dealing with the "modeling karst spring hydrograph recession based on head drop at sinkholes," published in the Journal of Hydrology in 2016 (Li et al., 2016), is of interest to readers of this journal. Our study presented a new non-exponential model for assessing spring hydrographs in terms of head drop at flooded sinkholes, as an extension of an earlier model proposed by Li and Field (2014). In both papers, we used two spring hydrographs measured in the St. Marks Karst Watershed in northwest Florida to test the applicability and to verify the validity of our models.
Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.
2014-01-01
During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are more prone to erosion or scour. Data collected from multibeam echosounder hydrographic surveys at selected bridges aided State agencies in evaluating the structural integrity of the bridges during the flood, by assessing the amount of scour present around piers and abutments. Hydrographic surveys of the riverbed detected scour depths ranging from zero (no scour) to approximately 5.8 meters in some areas adjacent to North Dakota bridge piers, zero to approximately 6 meters near bridge piers in Nebraska, and zero to approximately 10.4 meters near bridge piers in Missouri. Substructural support elements of some bridge piers in North Dakota, Nebraska, and Missouri that usually are buried were exposed to moving water and sediment. At five Missouri bridge piers the depth of scour left less than 1.8 meters of bed material between the bottom of the scour hole and bedrock. State agencies used this information along with bridge design and construction information to determine if reported scour depths would have a substantial effect on the stability of the structure. Multibeam echosounder hydrographic surveys of the riverbed near pipeline crossings did not detect exposed pipelines. However, analysis of the USGS survey data by pipeline companies aided in their evaluation of pipeline safety and led one company to further investigate the safety of their line and assisted another company in getting one offline pipeline back into operation. Multibeam echosounder hydrographic surveys of the banks, riverbed, and underwater infrastructure at Omaha Public Power District power plants documented the bed and scour conditions. These datasets were used by Omaha Public Power District to evaluate the effects that the flood had on operation, specifically to evaluate if scour during the peak of the flood or sediment deposition during the flood recession would affect the water intake structures. Hydrographic surveys at an Omaha Public Power District electrical transmission tower documented scour so that they could evaluate the structural integrity of the tower as well as have the information needed to make proper repairs after flood waters receded.
Ghunmi, Lina Abu; Zeeman, Grietje; van Lier, Jules; Fayyed, Manar
2008-01-01
The objective of this work is to assess the potentials and requirements for grey water reuse in Jordan. The results revealed that urban, rural and dormitory grey water production rate and concentration of TS, BOD(5), COD and pathogens varied between 18-66 L cap(-1)d(-1), 848-1,919, 200-1,056, and 560-2,568 mg L(-1) and 6.9E2-2.7E5 CFU mL(-1), respectively. The grey water compromises 64 to 85% of the total water flow in the rural and urban areas. Storing grey water is inevitable to meet reuse requirements in terms of volume and timing. All the studied grey waters need treatment, in terms of solids, BOD(5), COD and pathogens, before storage and reuse. Storage and physical treatment, as a pretreatment step should be avoided, since it produces unstable effluents and non-stabilized sludge. However, extensive biological treatment can combine storage and physical treatments. Furthermore, a batch-fed biological treatment system combining anaerobic and aerobic processes copes with the fluctuations in the hydrographs and pollutographs as well as the present nutrients. The inorganic content of grey water in Jordan is about drinking water quality and does not need treatment. Moreover, the grey water SAR values were 3-7, revealing that the concentrations of monovalent and divalent cations comply with agricultural demand in Jordan. The observed patterns in the hydrographs and pollutographs showed that the hydraulic load could be used for the design of both physical and biological treatment units for dormitories and hotels. For family houses the hydraulic load was identified as the key design parameter for physical treatment units and the organic load is the key design parameter for biological treatment units. Copyright IWA Publishing 2008.
2014-09-30
Here we use the newly launched Aquarius satellite derived Sea Surface Salinity ( SSS ) data as well as Argo salinity profiles, model simulations and...dipolar sea surface salinity ( SSS ) structure with the salty Arabian Sea (AS) on the west and the fresher Bay of Bengal (BoB) on the east. At the surface...interconnected, region is quantified. PRELIMINARY RESULTS Figure 1 shows the mean Aquarius SSS during August 2011-May 2014 and several boxes that
NASA Astrophysics Data System (ADS)
Şen, Zekâi
2018-02-01
Groundwater movement model development in karstic aquifers is very difficult due to the complexity of the solution cavities. The authors (Li et al., 2016) have proposed a square law model for expressing the discharge ratio in terms of hydraulic head ratio, with an exponent equal to 0.5. They have also provided the mathematical derivation in detail with application. It is noticed that the methodology can be expanded towards a better and refined solutions by consideration of the following explanations.
NASA Astrophysics Data System (ADS)
Lie, Heung-Jae; Cho, Cheol-Ho
2016-08-01
We investigated seasonal circulation patterns of the Yellow and East China Seas (YECS), by reviewing previous works on the circulation and its dominant currents, and taking into account newly-compiled trajectories of satellite-tracked drifters collected between the 1980s and 2000s. The circulation patterns suggested before the 1990s can be categorized into two groups, depending on the identified origin of the Tsushima Warm Current in the Korea-Tsushima Straits: (i) branching from the Kuroshio southwest of Kyushu, or (ii) northeastward continuation of the Taiwan Strait throughflow. The branching of the Kuroshio southwest of Kyushu and northeast of Taiwan was clearly evidenced by current measurements and concurrent hydrographic surveys. However, there is still no clear evidence for the northeastward pathway of Taiwan Strait throughflow across the mid-shelf area of the East China Sea. Target-oriented surveys in the 1990s and 2000s employing advanced instruments, such as drifter tracking and acoustic Doppler current profiler measurements, now provide decisive proof of the clockwise rounding of the Cheju Warm Current around Jeju-do throughout the year, of the northeastward extension of Changjiang discharge in summer, and of the presence of the Yellow Sea Warm Current only in winter. Thus, both coastal currents in shallow water and secondary branch currents of the Kuroshio (such as the Yellow Sea Warm Current) are found to significantly change from winter to summer. To better present the basic pattern of YECS circulation and its seasonality, we have constructed seasonal circulations patterns, based on review results, on the newly-compiled drifter trajectories, and on hydrographic observations. Further investigations should be carried out in future, with support of comprehensive current measurements on shelf areas and through elaborate numerical modeling.
OCEANOGRAPHIC SURVEY OF THE GULF OF MEXICO
psychrometer readings were taken at 3 levels and wind, cloud, and other auxiliary data were taken at 6-hr intervals. A short hydrographic survey was made of...upon the loss of a hydrographic cable. The second cruise covered about 2160 mi. No hydrographic casts were made below 1200 m. Thirty-four stations were...occupied, of which 11 were in the water deeper than 1000 fathoms. Sixty-six bathy-thermographic observations were made , 2 on each deep station and the
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.3 Availability of other publications. (a) For further...
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.3 Availability of other publications. (a) For further...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.3 Availability of other publications. (a) For further...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
15 CFR 995.22 - Training of data users.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
15 CFR 995.22 - Training of data users.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
Controls on Characteristics of Event-based Catchment Flood Response over Continental United States
NASA Astrophysics Data System (ADS)
Shen, X.; Mei, Y.; Nikolopoulos, E. I.; Anagnostou, E. N.
2017-12-01
Understanding the primary drivers of regional flood characteristics is of utmost importance for the development of flood early warning system. Many studies have dedicated their efforts on this topic, but the majority of these works is limited in terms of either the size of event population or the extent of their study domain. This prevents us from drawing a comprehensive understanding of the primary factors controlling the variability of catchment flood response across different hydroclimatic regimes and basin geomorphologies. In this study, we render an exhaustive analysis that includes the effect of climate, hydrometeorology, geomorphology, land cover and initial wetness conditions on the catchment's flood response for 318,000 flood events distributed across 5,900 catchments (basin scales ranging from 1 to 106 km2) of the Continental United States (CONUS) over a 10-year (2002 to 2013) period. Event runoff coefficients, response time lag and hydrograph shape are used as diagnostic variables to represent catchment flood response. Our results indicate different distributions of runoff coefficient over different climate regions and seasons. The magnitude of runoff coefficient increases as function of initial basin wetness condition and rainfall depth. Opposite patterns are found for the actual evapotranspiration rate and baseflow index. On the other hand, response time lag is controlled by the relief ratio of the basins and the mean flow length of the events; hydrograph shape reveals increasing trend with soil moisture condition and relief ratio.
Asquith, William H.; Thompson, David B.; Cleveland, Theodore G.; Fang, Xing
2004-01-01
In the early 2000s, the Texas Department of Transportation funded several research projects to examine the unit hydrograph and rainfall hyetograph techniques for hydrologic design in Texas for the estimation of design flows for stormwater drainage systems. A research consortium comprised of Lamar University, Texas Tech University, the University of Houston, and the U.S. Geological Survey (USGS), was chosen to examine the unit hydrograph and rainfall hyetograph techniques. Rainfall and runoff data collected by the USGS at 91 streamflow-gaging stations in Texas formed a basis for the research. These data were collected as part of USGS small-watershed projects and urban watershed studies that began in the late 1950s and continued through most of the 1970s; a few gages were in operation in the mid-1980s. Selected hydrologic events from these studies were available in the form of over 220 printed reports, which offered the best aggregation of hydrologic data for the research objectives. Digital versions of the data did not exist. Therefore, significant effort was undertaken by the consortium to manually enter the data into a digital database from the printed record. The rainfall and runoff data for over 1,650 storms were entered. To enhance data integrity, considerable quality-control and quality-assurance efforts were conducted as the database was assembled and after assembly to enhance data integrity. This report documents the database and informs interested parties on its usage.
Probable flood predictions in ungauged coastal basins of El Salvador
Friedel, M.J.; Smith, M.E.; Chica, A.M.E.; Litke, D.
2008-01-01
A regionalization procedure is presented and used to predict probable flooding in four ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. The flood-prediction problem is sequentially solved for two regions: upstream mountains and downstream alluvial plains. In the upstream mountains, a set of rainfall-runoff parameter values and recurrent peak-flow discharge hydrographs are simultaneously estimated for 20 tributary-basin models. Application of dissimilarity equations among tributary basins (soft prior information) permitted development of a parsimonious parameter structure subject to information content in the recurrent peak-flow discharge values derived using regression equations based on measurements recorded outside the ungauged study basins. The estimated joint set of parameter values formed the basis from which probable minimum and maximum peak-flow discharge limits were then estimated revealing that prediction uncertainty increases with basin size. In the downstream alluvial plain, model application of the estimated minimum and maximum peak-flow hydrographs facilitated simulation of probable 100-year flood-flow depths in confined canyons and across unconfined coastal alluvial plains. The regionalization procedure provides a tool for hydrologic risk assessment and flood protection planning that is not restricted to the case presented herein. ?? 2008 ASCE.
Fosness, Ryan L.; Dietsch, Benjamin J.
2015-10-21
This report presents the surveying techniques and data-processing methods used to collect, process, and disseminate topographic and hydrographic data. All standard and non‑standard data-collection methods, techniques, and data process methods were documented. Additional discussion describes the quality-assurance and quality-control elements used in this study, along with the limitations for the Torrinha-Itacoatiara study reach data. The topographic and hydrographic geospatial data are published along with associated metadata.
Lane, R.C.; Julich, R.J.; Justin, G.B.
2013-01-01
Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.
1983-01-01
eastwards of MORESBY’s 1981 survey. The ship suffered considerable problems in establishing her ARGO stations on this barren and inhospitable coast...on 6 months exchange whilst an RFMF officer pined experience in Australia. A CPOSR has continued the loan service arrang-ments in support of the...training in hydrographic surveying is undertaken at the Royal Navy’s Hydrographic School in Plymouth . It is expected that an average of four officers will
CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.
2017-12-01
The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.
HydroSHEDS: A global comprehensive hydrographic dataset
NASA Astrophysics Data System (ADS)
Wickel, B. A.; Lehner, B.; Sindorf, N.
2007-12-01
The Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) is an innovative product that, for the first time, provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent. HydroSHEDS is derived from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution. The original SRTM data have been hydrologically conditioned using a sequence of automated procedures. Existing methods of data improvement and newly developed algorithms have been applied, including void filling, filtering, stream burning, and upscaling techniques. Manual corrections were made where necessary. Preliminary quality assessments indicate that the accuracy of HydroSHEDS significantly exceeds that of existing global watershed and river maps. HydroSHEDS was developed by the Conservation Science Program of the World Wildlife Fund (WWF) in partnership with the U.S. Geological Survey (USGS), the International Centre for Tropical Agriculture (CIAT), The Nature Conservancy (TNC), and the Center for Environmental Systems Research (CESR) of the University of Kassel, Germany.
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.
2012-12-01
The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of the Tohoku region caused catastrophic damage and loss of life in Japan. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided spontaneous spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s per second were measured in Kesennuma Bay making navigation impossible. Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to -10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities.;
Exploratory analysis of environmental interactions in central California
De Cola, Lee; Falcone, Neil L.
1996-01-01
As part of its global change research program, the United States Geological Survey (USGS) has produced raster data that describe the land cover of the United States using a consistent format. The data consist of elevations, satellite measurements, computed vegetation indices, land cover classes, and ancillary political, topographic and hydrographic information. This open-file report uses some of these data to explore the environment of a (256-km)? region of central California. We present various visualizations of the data, multiscale correlations between topography and vegetation, a path analysis of more complex statistical interactions, and a map that portrays the influence of agriculture on the region's vegetation. An appendix contains C and Mathematica code used to generate the graphics and some of the analysis.
Farahmand, Touraj; Fleming, Sean W; Quilty, Edward J
2007-10-01
Urbanization often alters catchment storm responses, with a broad range of potentially significant environmental and engineering consequences. At a practical, site-specific management level, efficient and effective assessment and control of such downstream impacts requires a technical capability to rapidly identify development-induced storm hydrograph changes. The method should also speak specifically to alteration of internal watershed dynamics, require few resources to implement, and provide results that are intuitively accessible to all watershed stakeholders. In this short paper, we propose a potential method which might satisfy these criteria. Our emphasis lies upon the integration of existing concepts to provide tools for pragmatic, relatively low-cost environmental monitoring and management. The procedure involves calibration of rainfall-runoff time-series models in each of several successive time windows, which sample varying degrees of watershed urbanization. As implemented here, only precipitation and stream discharge or stage data are required. The readily generated unit impulse response functions of these time-series models might then provide a mathematically formal, yet visually based and intuitive, representation of changes in watershed storm response. Nominally, the empirical response functions capture such changes as soon as they occur, and the assessments of storm hydrograph alteration are independent of variability in meteorological forcing. We provide a preliminary example of how the technique may be applied using a low-order linear ARX model. The technique may offer a fresh perspective on such watershed management issues, and potentially also several advantages over existing approaches. Substantial further testing is required before attempting to apply the concept as a practical environmental management technique; some possible directions for additional work are suggested.
Eogenetic karst hydrology: insights from the 2004 hurricanes, peninsular Florida.
Florea, Lee J; Vacher, H L
2007-01-01
Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a...
NASA Astrophysics Data System (ADS)
Isoguchi, O.; Matsui, K.; Kamachi, M.; Usui, N.; Miyazawa, Y.; Ishikawa, Y.; Hirose, N.
2017-12-01
Several operational ocean assimilation models are currently available for the Northwestern Pacific and surrounding marginal seas. One of the main targets is predicting the Kuroshio/Kuroshio Extension, which have an impact not only on social activities, such as fishery and ship routing, but also on local weather. There is a demand to assess their quality comprehensively and make the best out the available products. In the present study, several ocean data assimilation products and their multi-ensemble product were assessed by comparing with satellite-derived sea surface temperature (SST), sea surface height (SSH), and in-situ hydrographic sections. The Kuroshio axes were also computed from the surface currents of these products and were compared with the Kuroshio Axis data produced analyzing satellite-SST, SSH, and in-situ observations by Marine Information Research Center (MIRC). The multi-model ensemble products generally showed the best accuracy in terms of the comparisons with the satellite-derived SST and SSH. On the other hand, the ensemble products didn't result in the best one in the comparison with the hydrographic sections. It is thus suggested that the multi-model ensemble works efficiently for the horizontally 2D parameters for which each assimilation product tends to have random errors while it does not work well for the vertical 2D comparisons for which it tends to have bias errors with respect to in-situ data. In the assessment with the Kuroshio Axis Data, some products showed more energetic behavior than the Kuroshio Axis data, resulting in the large path errors which are defined as a ratio between an area surrounded by the reference and model-derived ones and a path length. It is however not determined which are real, because in-situ observations are still lacking to resolve energetic Kuroshio behavior even though the Kuroshio is one of the strongest current.
1985-01-01
Mapping Council which will be held in October 1985. IJS. COMPTONAPTAIN RAN HYDROGRAPHER RAN Accesion For NTIS -CRAMI LDrIC TAB U,.annournced 0 J ...itifcation By .-........ . Di.. t ibution Availability Codes Dit Avail ar-.I or A-1 QUALITYSSPECTED - 2 L. 2. GENERAL The RAN Hydrographic Service, the...FLINDERS used Side Scan Sonar and her diving team to find, and determine the least depths over, the wrecks SAFARI and ERICA J lying on the sea-bed in the
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Reichert, Peter; Kavetski, Dmitri; Albert, Calro
2016-04-01
The calibration of hydrological models based on signatures (e.g. Flow Duration Curves - FDCs) is often advocated as an alternative to model calibration based on the full time series of system responses (e.g. hydrographs). Signature based calibration is motivated by various arguments. From a conceptual perspective, calibration on signatures is a way to filter out errors that are difficult to represent when calibrating on the full time series. Such errors may for example occur when observed and simulated hydrographs are shifted, either on the "time" axis (i.e. left or right), or on the "streamflow" axis (i.e. above or below). These shifts may be due to errors in the precipitation input (time or amount), and if not properly accounted in the likelihood function, may cause biased parameter estimates (e.g. estimated model parameters that do not reproduce the recession characteristics of a hydrograph). From a practical perspective, signature based calibration is seen as a possible solution for making predictions in ungauged basins. Where streamflow data are not available, it may in fact be possible to reliably estimate streamflow signatures. Previous research has for example shown how FDCs can be reliably estimated at ungauged locations based on climatic and physiographic influence factors. Typically, the goal of signature based calibration is not the prediction of the signatures themselves, but the prediction of the system responses. Ideally, the prediction of system responses should be accompanied by a reliable quantification of the associated uncertainties. Previous approaches for signature based calibration, however, do not allow reliable estimates of streamflow predictive distributions. Here, we illustrate how the Bayesian approach can be employed to obtain reliable streamflow predictive distributions based on signatures. A case study is presented, where a hydrological model is calibrated on FDCs and additional signatures. We propose an approach where the likelihood function for the signatures is derived from the likelihood for streamflow (rather than using an "ad-hoc" likelihood for the signatures as done in previous approaches). This likelihood is not easily tractable analytically and we therefore cannot apply "simple" MCMC methods. This numerical problem is solved using Approximate Bayesian Computation (ABC). Our result indicate that the proposed approach is suitable for producing reliable streamflow predictive distributions based on calibration to signature data. Moreover, our results provide indications on which signatures are more appropriate to represent the information content of the hydrograph.
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian; Yu, Dapeng
2017-04-01
Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope, surface permeability and building density have a significant influence on physical model hydrological outputs. For example, changes in building density across the urban model catchment are shown to result in hydrographs having (i) a more rapid rising limb; (ii) higher peak discharges; (iii) a reduction in the total hydrograph time, and; (iv) a faster falling limb, with the dense building scenario having a 22% increase in peak discharge when compared to the no building scenario. Furthermore, the layout of buildings across the plot surface and their proximity to the outflow unit (i.e. downstream, upstream or to the side of the physical model outlet) is shown to influence outflow hydrograph response, with downstream concentrated building scenarios resulting in a delay in hydrograph onset time and a reduction in the time of the total outflow hydrograph event.
NASA Astrophysics Data System (ADS)
Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; Hsieh, I. H.
2017-12-01
This study develops an innovative calibration method for regional groundwater modeling by using multi-class empirical orthogonal functions (EOFs). The developed method is an iterative approach. Prior to carrying out the iterative procedures, the groundwater storage hydrographs associated with the observation wells are calculated. The combined multi-class EOF amplitudes and EOF expansion coefficients of the storage hydrographs are then used to compute the initial gauss of the temporal and spatial pattern of multiple recharges. The initial guess of the hydrogeological parameters are also assigned according to in-situ pumping experiment. The recharges include net rainfall recharge and boundary recharge, and the hydrogeological parameters are riverbed leakage conductivity, horizontal hydraulic conductivity, vertical hydraulic conductivity, storage coefficient, and specific yield. The first step of the iterative algorithm is to conduct the numerical model (i.e. MODFLOW) by the initial guess / adjusted values of the recharges and parameters. Second, in order to determine the best EOF combination of the error storage hydrographs for determining the correction vectors, the objective function is devised as minimizing the root mean square error (RMSE) of the simulated storage hydrographs. The error storage hydrograph are the differences between the storage hydrographs computed from observed and simulated groundwater level fluctuations. Third, adjust the values of recharges and parameters and repeat the iterative procedures until the stopping criterion is reached. The established methodology was applied to the groundwater system of Ming-Chu Basin, Taiwan. The study period is from January 1st to December 2ed in 2012. Results showed that the optimal EOF combination for the multiple recharges and hydrogeological parameters can decrease the RMSE of the simulated storage hydrographs dramatically within three calibration iterations. It represents that the iterative approach that using EOF techniques can capture the groundwater flow tendency and detects the correction vector of the simulated error sources. Hence, the established EOF-based methodology can effectively and accurately identify the multiple recharges and hydrogeological parameters.
Hydrograph Shape Controls Channel Morphology and Organization in a Sand-Gravel Flume
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Grant, G.; Hassan, M. A.; Eaton, B. C.
2016-12-01
A fundamental research question in fluvial geomorphology is to understand what flows shape river channels. Historically, the prevailing view has been that channel dimensions adjust to a so-termed "dominant discharge", which is often approximated as the bankfull flow. But using a single flow to reference the geomorphic effectiveness of an entire flow regime discounts many observations showing that different flows control different channel processes. Some flows entrain fine sediment, some entrain the full size distribution of bed sediment; some destabilize or build bars, some erode the banks, and so forth. To explore the relation between the full flow regime and channel morphology, we conducted a series of flume experiments to examine how hydrographs with different shapes, durations, and magnitudes result in different degrees of channel organization, which we define in terms of the regularity, spacing and architecture of self-formed channel features, such as bed patches, geometry and spacing of bedforms, and channel planform. Our experiments were run in a 12m long adjustable-width flume that developed a self-formed meandering, pool-riffle pattern. We found that hydrograph shape does control channel organization. In particular, channels formed by hydrographs with slower rising limbs and broader peaks were more organized than those formed by flashier hydrographs. To become organized, hydrographs needed to exceed a minimum flow threshold, defined by the intensity of sediment transport; below which the channel lacked bedforms and a regular meander pattern. Above an upper flow threshold, bars became disorganized and the channel planform transitioned towards braiding. Field studies of channels with different flow regimes but located in a similar physiographic setting support our experimental findings. Taken together, this work points to the importance of the hydrograph as a fundamental control on channel morphology, and offers the prospect of better understanding how changing hydrologic regimes, either through climate, land use, or dams, translates into geomorphic changes.
Densmore, Brenda K.; Strauch, Kellan R.; Ziegeweid, Jeffrey R.
2013-01-01
The U.S. Geological Survey performed multibeam echosounder hydrographic surveys of four narrows in the Namakan reservoir system in August 2011, in cooperation with the International Joint Commission and Environment Canada. The data-collection effort was completed to provide updated and detailed hydrographic data to Environment Canada for inclusion in a Hydrologic Engineering Centers River Analysis System hydraulic model. The Namakan reservoir system is composed of Namakan, Kabetogama, Sand Point, Crane, and Little Vermilion Lakes. Water elevations in the Namakan reservoir system are regulated according to rule curves, or guidelines for water-level management based on the time of year, established by the International Joint Commission. Water levels are monitored by established gages on Crane Lake and the outlet of Namakan Lake at Kettle Falls, but water elevations throughout the system may deviate from these measured values by as much as 0.3 meters, according to lake managers and residents. Deviations from expected water elevations may be caused by between-lake constrictions (narrows). According to the 2000 Rule Curve Assessment Workgroup, hydrologic models of the reservoir system are needed to better understand the system and to evaluate the recent changes made to rule curves in 2000. Hydrographic surveys were performed using a RESON SeaBat™7125 multibeam echosounder system. Surveys were completed at Namakan Narrows, Harrison Narrows, King Williams Narrows, and Little Vermilion Narrows. Hydrographic survey data were processed using Caris HIPSTM and SIPSTM software that interpolated a combined uncertainty and bathymetric estimator (CUBE) surface. Quality of the survey results was evaluated in relation to standards set by the International Hydrographic Organization (IHO) for describing the uncertainty of hydrographic surveys. More than 90 percent of the surveyed areas at the four narrows have resulting bed elevations that meet the IHO “Special Order” quality. Survey datasets published in this report are formatted as text files of x-y-z coordinates and as CARIS Spatial ArchiveTM (CSARTM) files with corresponding metadata.
Southern Ocean Seasonal Net Production from Satellite, Atmosphere, and Ocean Data Sets
NASA Technical Reports Server (NTRS)
Keeling, Ralph F.; Campbell, J. (Technical Monitor)
2002-01-01
A new climatology of monthly air-sea O2 flux was developed using the net air-sea heat flux as a template for spatial and temporal interpolation of sparse hydrographic data. The climatology improves upon the previous climatology of Najjar and Keeling in the Southern Hemisphere, where the heat-based approach helps to overcome limitations due to sparse data coverage. The climatology is used to make comparisons with productivity derived from CZCS images. The climatology is also used in support of an investigation of the plausible impact of recent global warming an oceanic O2 inventories.
Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R
2013-01-01
Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers.
Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R.
2013-01-01
Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers. PMID:24098778
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
User's guide for a general purpose dam-break flood simulation model (K-634)
Land, Larry F.
1981-01-01
An existing computer program for simulating dam-break floods for forecast purposes has been modified with an emphasis on general purpose applications. The original model was formulated, developed and documented by the National Weather Service. This model is based on the complete flow equations and uses a nonlinear implicit finite-difference numerical method. The first phase of the simulation routes a flood wave through the reservoir and computes an outflow hydrograph which is the sum of the flow through the dam 's structures and the gradually developing breach. The second phase routes this outflow hydrograph through the stream which may be nonprismatic and have segments with subcritical or supercritical flow. The results are discharge and stage hydrographs at the dam as well as all of the computational nodes in the channel. From these hydrographs, peak discharge and stage profiles are tabulated. (USGS)
Eogenetic karst hydrology: Insights from the 2004 hurricanes, peninsular Florida
Florea, L.J.; Vacher, H. Leonard
2007-01-01
Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix - both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous. ?? 2007 National Ground Water Association.
A computer program for predicting recharge with a master recession curve
Heppner, Christopher S.; Nimmo, John R.
2005-01-01
Water-table fluctuations occur in unconfined aquifers owing to ground-water recharge following precipitation and infiltration, and ground-water discharge to streams between storm events. Ground-water recharge can be estimated from well hydrograph data using the water-table fluctuation (WTF) principle, which states that recharge is equal to the product of the water-table rise and the specific yield of the subsurface porous medium. The water-table rise, however, must be expressed relative to the water level that would have occurred in the absence of recharge. This requires a means for estimating the recession pattern of the water-table at the site. For a given site there is often a characteristic relation between the water-table elevation and the water-table decline rate following a recharge event. A computer program was written which extracts the relation between decline rate and water-table elevation from well hydrograph data and uses it to construct a master recession curve (MRC). The MRC is a characteristic water-table recession hydrograph, representing the average behavior for a declining water-table at that site. The program then calculates recharge using the WTF method by comparing the measured well hydrograph with the hydrograph predicted by the MRC and multiplying the difference at each time step by the specific yield. This approach can be used to estimate recharge in a continuous fashion from long-term well records. Presented here is a description of the code including the WTF theory and instructions for running it to estimate recharge with continuous well hydrograph data.
77 FR 76001 - Hydrographic Services Review Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... Review Panel AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of membership solicitation for Hydrographic Services Review Panel... Review Panel (HSRP). The HSRP, a Federal advisory committee, advises the Administrator on matters related...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and...
78 FR 23909 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting (via webinar and teleconference). SUMMARY... the Under Secretary of Commerce for Oceans and Atmosphere on matters related to the responsibilities...
How can streamflow and climate-landscape data be used to estimate baseflow mean response time?
NASA Astrophysics Data System (ADS)
Zhang, Runrun; Chen, Xi; Zhang, Zhicai; Soulsby, Chris; Gao, Man
2018-02-01
Mean response time (MRT) is a metric describing the propagation of catchment hydraulic behavior that reflects both hydro-climatic conditions and catchment characteristics. To provide a comprehensive understanding of catchment response over a longer-time scale for hydraulic processes, the MRT function for baseflow generation was derived using an instantaneous unit hydrograph (IUH) model that describes the subsurface response to effective rainfall inputs. IUH parameters were estimated based on the "match test" between the autocorrelation function (ACFs) derived from the filtered base flow time series and from the IUH parameters, under the GLUE framework. Regionalization of MRT was conducted using estimates and hydroclimate-landscape indices in 22 sub-basins of the Jinghe River Basin (JRB) in the Loess Plateau of northwest China. Results indicate there is strong equifinality in determination of the best parameter sets but the median values of the MRT estimates are relatively stable in the acceptable range of the parameters. MRTs vary markedly over the studied sub-basins, ranging from tens of days to more than a year. Climate, topography and geomorphology were identified as three first-order controls on recharge-baseflow response processes. Human activities involving the cultivation of permanent crops may elongate the baseflow MRT and hence increase the dynamic storage. Cross validation suggests the model can be used to estimate MRTs in ungauged catchments in similar regions of throughout the Loess Plateau. The proposed method provides a systematic approach for MRT estimation and regionalization in terms of hydroclimate and catchment characteristics, which is helpful in the sustainable water resources utilization and ecological protection in the Loess Plateau.
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
75 FR 59697 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... Health, Columbia River and Northwest Regional navigation and hydrographic surveying, climate change and... Review Panel Meeting AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration... for Oceans and Atmosphere on matters related to the responsibilities and authorities set forth in...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
Justin, G.B.; Julich, R.; Payne, K.L.
2009-01-01
Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.
NASA Astrophysics Data System (ADS)
Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao
2017-10-01
Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however, Phase III can only de-silt after the release at spillway reaches 827 m3/s, and before reservoir discharge reaches 1924 m3/s, with corresponding maximum desiltation ratio being 0.221 and 0.323, respectively. Moreover, the model construction results demonstrated that the self-adaption/fuzzy inference of ANFIS can effectively simulate the SC hydrograph in an unsteady state for suspended load-dominated water bodies, and that the real-time recurrent deterministic routing of RTRLNN can accurately simulate that of a bedload-dominated flow regime.
Deposition, erosion, and bathymetric change in South San Francisco Bay: 1858-1983
Foxgrover, Amy C.; Higgins, Shawn A.; Ingraca, Melissa K.; Jaffe, Bruce E.; Smith, Richard E.
2004-01-01
Since the California Gold Rush of 1849, sediment deposition, erosion, and the bathymetry of South San Francisco Bay have been altered by both natural processes and human activities. Historical hydrographic surveys can be used to assess how this system has evolved over the past 150 years. The National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS), collected five hydrographic surveys of South San Francisco Bay from 1858 to 1983. Analysis of these surveys enables us to reconstruct the surface of the bay floor for each time period and quantify spatial and temporal changes in deposition, erosion, and bathymetry. The creation of accurate bathymetric models involves many steps. Sounding data was obtained from the original USCGS and NOS hydrographic sheets and were supplemented with hand drawn depth contours. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings and shorelines were entered into a Geographic Information System (GIS), and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 50 m were developed for each of the five hydrographic surveys. Prior to conducting analyses of sediment deposition and erosion, we converted all of the grids to a common vertical datum and made adjustments to correct for land subsidence that occurred from 1934 to 1967. Deposition and erosion that occurred during consecutive periods was then computed by differencing the corrected grids. From these maps of deposition and erosion, we calculated volumes and rates of net sediment change in the bay. South San Francisco Bay has lost approximately 90 x 106 m3 of sediment from 1858 to 1983; however within this timeframe there have been periods of both deposition and erosion. During the most recent period, from 1956 to 1983, sediment loss approached 3 x 106 m3/yr. One of the most striking changes that occurred from 1858 to 1983 was the conversion of more than 80% of the tidal marsh to salt ponds, agricultural, and urban areas. In addition, there has been a decline of approximately 40% in intertidal mud flat area. Restoration of these features will require a detailed understanding of the morphology and sediment sources of this complex system.
Global Marine Gravity and Bathymetry at 1-Minute Resolution
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Smith, W. H.
2008-12-01
We have developed global gravity and bathymetry grids at 1-minute resolution. Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors occur on the crests of narrow large seamounts. The bathymetry grid is based on prediction from satellite gravity and available ship soundings. Global soundings were assembled from a wide variety of sources including NGDC/GEODAS, NOAA Coastal Relief, CCOM, IFREMER, JAMSTEC, NSF Polar Programs, UKHO, LDEO, HIG, SIO and numerous miscellaneous contributions. The National Geospatial-intelligence Agency and other volunteering hydrographic offices within the International Hydrographic Organization provided global significant shallow water (< 300 m) soundings derived from their nautical charts. All soundings were converted to a common format and were hand-edited in relation to a smooth bathymetric model. Land elevations and shoreline location are based on a combination SRTM30, GTOPO30, and ICESAT data. A new feature of the bathymetry grid is a matching grid of source identification number that enables one to establish the origin of the depth estimate in each grid cell. Both the gravity and bathymetry grids are freely available.
NASA Astrophysics Data System (ADS)
Bowman, A. L.; Franz, K.; Hogue, T. S.
2015-12-01
We are investigating the implications for use of satellite data in operational streamflow prediction. Specifically, the consequence of potential hydrologic model structure deficiencies on the ability to achieve improved forecast accuracy through the use of satellite data. We want to understand why advanced data do not lead to improved streamflow simulations by exploring how various fluxes and states differ among models of increasing complexity. In a series of prior studies, we investigated the use of a daily satellite-derived potential evapotranspiration (PET) estimate as input to the National Weather Service (NWS) streamflow forecast models for watersheds in the Upper Mississippi and Red river basins. Although the spatial PET product appears to represent the day-to-day variability in PET more realistically than current climatological methods used by the NWS, the impact of the satellite data on streamflow simulations results in slightly poorer model efficiency overall. Analysis of the model states indicates the model progresses differently between simulations with baseline PET and the satellite-derived PET input, though variation in streamflow simulations overall is negligible. For instance, the upper zone states, responsible for the high flows of a hydrograph, show a profound difference, while simulation of the peak flows tend to show little variation in the timing and magnitude. Using the spatial PET input, the lower zone states show improvement with simulating the recession limb and baseflow portion of the hydrograph. We anticipate that through a better understanding of the relationship between model structure, model states, and simulated streamflow we will be able to diagnose why simulations of discharge from the forecast model have failed to improve when provided seemingly more representative input data. Identifying model limitations are critical to demonstrating the full benefit of a satellite data for operational use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
Methods of Hydrographic Surveying Used by Different Countries.
1983-03-01
902 Greece 16. Training and Education Division Hellenic Navy General Staff GENIKO EPITELIO NAYTIKOY (GEN) Greece 17. Hellenic Naval Academy SHOLI...Maratos Hellenic Navy Hydrographic Service Athens BST 902 Greece 21. Hellenic Army Geographic Service V. GENIKO EPITELIO STRATOU Athens, Greece 22. LT
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
Circulation in a bay influenced by flooding of a river discharging outside the bay
NASA Astrophysics Data System (ADS)
Kakehi, Shigeho; Takagi, Takamasa; Okabe, Katsuaki; Takayanagi, Kazufumi
2017-03-01
To investigate the influence of a river discharging outside a bay on circulation in the bay, we carried out current and salinity measurements from mooring systems and hydrographic observations in Matsushima Bay, Japan, and off the Naruse River, which discharges outside the bay. Previously, enhancement of horizontal circulation in the bay induced by increased freshwater input from the Naruse River was reported to have degraded the seedling yield of wild Pacific oysters in the bay, but the freshwater inflow from the river was not directly measured. Our hydrographic observations in Katsugigaura Strait, approximately 3 km southwest of the Naruse River mouth, detected freshwater derived from the river. The mooring data revealed that freshwater discharged by the river flowed into Matsushima Bay via the strait and that the freshwater transport increased when the river was in flood. The inflow through straits other than Katsugigaura was estimated by a box model analysis to be 26-145 m3 s-1 under normal river discharge conditions, and it decreased to 6 m3 s-1 during flood conditions. During flood events, the salt and water budgets in the bay were maintained by the horizontal circulation: inflow occurred mainly via Katsugigaura Strait, and outflow was mainly via other straits.
Holmes, Robert R.
2016-01-01
Accuracy of streamflow data depends on the veracity of the rating model used to derive a continuous time series of discharge from the surrogate variables that can readily be collected autonomously at a streamgage. Ratings are typically represented as a simple monotonic increasing function (simple rating), meaning the discharge is a function of stage alone, however this is never truly the case unless the flow is completely uniform at all stages and in transitions from one stage to the next. For example, at some streamflow-monitoring sites the discharge on the rising limb of the hydrograph is discernably larger than the discharge at the same stage on the falling limb of the hydrograph. This is the so-called “loop rating curve” (loop rating). In many cases, these loops are quite small and variation between rising- and falling-limb discharge measurements made at the same stage are well within the accuracy of the measurements. However, certain hydraulic conditions can produce a loop that is large enough to preclude use of a monotonic rating. A detailed data campaign for the Mississippi River at St. Louis, Missouri during a multi-peaked flood over a 56-day period in 2015 demonstrates the rating complexity at this location. The shifting-control method used to deal with complexity at this site matched all measurements within 8%.
NASA Astrophysics Data System (ADS)
Fritz, Hermann M.; Phillips, David A.; Okayasu, Akio; Shimozono, Takenori; Liu, Haijiang; Takeda, Seiichi; Mohammed, Fahad; Skanavis, Vassilis; Synolakis, Costas E.; Takahashi, Tomoyuki
2013-04-01
The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life to a tsunami aware population. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided fragmented spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible (Fritz et al., 2012). Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to minus 10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities. Lastly a perspective on the recovery and reconstruction process is provided based on numerous revisits of identical sites between April 2011 and July 2012.
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
USDA-ARS?s Scientific Manuscript database
Water quality issues continue to vex agriculture. Understanding contaminant-specific pathways could help clarify effective water quality management strategies in watersheds. Hypothesis: If conducted at nested scales, hydrograph separation techniques can identify contaminant-specific pathways that co...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... Collection; Comment Request; Certification Requirements for NOAA's Hydrographic Product Quality Assurance... hydrographic products are proposed for certification; by which standards and compliance tests are developed, adopted, and applied for those products; and by which certification is awarded or denied. These procedures...
NASA Astrophysics Data System (ADS)
Stieglitz, Marc; Rind, David; Famiglietti, James; Rosenzweig, Cynthia
1997-01-01
The current generation of land-surface models used in GCMs view the soil column as the fundamental hydrologic unit. While this may be effective in simulating such processes as the evolution of ground temperatures and the growth/ablation of a snowpack at the soil plot scale, it effectively ignores the role topography plays in the development of soil moisture heterogeneity and the subsequent impacts of this soil moisture heterogeneity on watershed evapotranspiration and the partitioning of surface fluxes. This view also ignores the role topography plays in the timing of discharge and the partitioning of discharge into surface runoff and baseflow. In this paper an approach to land-surface modeling is presented that allows us to view the watershed as the fundamental hydrologic unit. The analytic form of TOPMODEL equations are incorporated into the soil column framework and the resulting model is used to predict the saturated fraction of the watershed and baseflow in a consistent fashion. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts the partitioning of surface fluxes, including evapotranspiration and runoff. The approach is computationally efficient, allows for a greatly improved simulation of the hydrologic cycle, and is easily coupled into the existing framework of the current generation of single column land-surface models. Because this approach uses the statistics of the topography rather than the details of the topography, it is compatible with the large spatial scales of today's regional and global climate models. Five years of meteorological and hydrological data from the Sleepers River watershed located in the northeastern United States where winter snow cover is significant were used to drive the new model. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture.
NASA Astrophysics Data System (ADS)
Grant, G.; Hempel, L. A.; Marwan, H.; Eaton, B. C.; Lewis, S.
2017-12-01
Predicting how alluvial channels adjust to changes in their flow and sediment regimes is one of the Holy Grails of geomorphology. Consider Lane's balance - one of the most widely recognized conceptual models in geomorphology - which graphically shows how a change in any one of the driving variables of slope, grain size, sediment transport rate, or discharge can be accommodated by changes in the other variables. Much of the history of process geomorphology addresses how channels respond to these controlling factors. Yet the emphasis has been disproportionately focused on the effects and consequences of changing sediment transport rates or grain size. Much less attention has been paid to how changing discharge itself, particularly over short, event-based timescales influences the channel. Discharge has typically been treated as a single value - often the bankfull discharge - with little attention paid to how the unsteady nature of flow during floods may influence the morphology of the channel. More attention has been paid recently to the effect of hydrograph shape on channel characteristics, notably the texture of the channel bed. There is little theory and scant data, however, that highlights how the hydrograph affects the channel. We have begun to address this problem through models and targeted experiments. Our goal is to explore the idea of the geomorphically effective hydrograph: the concept that hydrographs with different forms, durations, and sequences play a major, controlling role in shaping the form and organization of alluvial channels. We report on results from both field studies and flume experiments that lend support to this hypothesis. We compare channel forms in channels with radically different flow regimes. The distinctive rectangular shape, constant slope, and absence of alluvial bars in spring-fed channels are in sharp contrast to the more asymmetric channels with regular pool/riffle patterns observed in systems where discharge varies over orders of magnitude. Flume studies reveal how channel organization, defined as the tendency to form regularly-spaced pools, riffles, and bars, is related to the flashiness of the hydrograph. Drawing on these and other studies, we develop a conceptual model that accounts for hydrograph shape as an overarching control on channel development and evolution.
Effect of reservoir storage on peak flow
Mitchell, William D.
1962-01-01
For observation of small-basin flood peaks, numerous crest-stage gages now are operated at culverts in roadway embankments. To the extent that they obstruct the natural flood plains of the streams, these embankments serve to create detention reservoirs, and thus to reduce the magnitude of observed peak flows. Hence, it is desirable to obtain a factor, I/O, by which the observed outflow peaks may be adjusted to corresponding inflow peaks. The problem is made more difficult by the fact that, at most of these observation sites, only peak stages and discharges are observed, and complete hydrographs are not available. It is postulated that the inflow hydrographs may be described in terms of Q, the instantaneous discharge; A, the size of drainage area; Pe, the amount of rainfall excess; H, the time from beginning of rainfall excess; D, the duration of rainfall excess; and T and k, characteristic times for the drainage area, and indicative of the time lag between rainfall and runoff. These factors are combined into the dimensionless ratios (QT/APe), (H/T), (k/T), and (D/T), leading to families of inflow hydrographs in which the first ratio is the ordinate, the second is the abscissa, and the third and fourth are distinguishing parameters. Sixteen dimensionless inflow hydrographs have been routed through reservoir storage to obtain 139 corresponding outflow hydrographs. In most of the routings it has been assumed that the storage-outflow relation is linear; that is, that storage is some constant, K, times the outflow. The existence of nonlinear storage is recognized, and exploratory nonlinear routings are described, but analyses and conclusions are confined to the problems of linear storage. Comparisons between inflow hydrographs and outflow hydrographs indicate that, at least for linear storage, I/O=f(k/T, D/T, K/T) in which I and O are, respectively, the magnitudes of the inflow and the outflow peaks, and T, k, D, and K are as defined above. Diagrams are presented to show the functional relation indicated by the foregoing equation.
NASA Astrophysics Data System (ADS)
Plancherel, Yves
2015-01-01
Comparison of the volumetric θ/S distribution of models participating in the Climate Model Intercomparison Project 3 (CMIP3) indicates that these models differ widely in their ability to represent the thermohaline properties of water masses. Relationships between features of the quasi-equilibrium hydrographic mean state of these models and aspects of their overturning circulations are investigated. This is achieved quantitatively with the help of seven diagnostic hydrographic stations. These few stations were specifically selected to provide a minimalist schematic of the global water mass system. Relationships between hydrographic conditions in the North Atlantic measured with a subset of these stations suggest that hydrographic properties in the subpolar North Atlantic are set by the circulation field of each model, pointing towards deficiencies in the models ability to resolve the Gulf Stream-North Atlantic Current system as a major limitation. Since diapycnal mixing and viscosity parameterizations differ across CMIP3 models and exert a strong control on the overturning, it is likely that these architectural differences ultimately explain the main across-model differences in overturning circulation, temperature and salinity in the North Atlantic. The analysis of properties across the quasi-equilibrium states of the CMIP3 models agrees with previously reported relationships between meridional steric height gradients or horizontal density contrasts at depth and the strength of the deep water cell. Robust relationships are also found in the Southern Ocean linking measures of vertical stratification with the strength of the abyssal circulations across the CMIP3 models. Consistent correlations between aspects of the quasi-equilibrium hydrography in the Southern Ocean and the sensitivity of the abyssal cell to increasing radiative forcing by 2100 were found. Using these relations in conjunction with modern hydrographic observations to interpolate the fate of the abyssal cell suggests that the Southern abyssal cell may decrease by roughly 20 % by the end of the century. Similar systematic relationships between the quasi-equilibrium hydrographic states of the models and the sensitivity of their Atlantic deep water cell could not be found.
NASA Astrophysics Data System (ADS)
Ramage, J. M.; McKenney, R. A.; Thorson, B.; Maltais, P.; Kopczynski, S. E.
2006-03-01
Snow volume and melt timing are major factors influencing the water cycle at northern high altitudes and latitudes, yet both are hard to quantify or monitor in remote mountainous regions. Twice-daily special sensor microwave imager (SSM/I) passive microwave observations of seasonal snow melt onset in the Wheaton River basin, Yukon Territory, Canada (60 ° 0805N, 134 ° 5345W), are used to test the idea that melt onset date and duration of snowpack melt-refreeze fluctuations control the timing of the early hydrograph peaks with predictable lags. This work uses the SSM/I satellite data from 1988 to 2002 to evaluate the chronology of melt and runoff patterns in the upper Yukon River basin. The Wheaton River is a small (875 km2) tributary to the Yukon, and is a subarctic, partly glacierized heterogeneous basin with near-continuous hydrographic records dating back to 1966. SSM/I pixels are sensitive to melt onset due to the strong increase in snow emissivity, and have a robust signal, in spite of coarse (>25 × 25 km2) pixel resolution and varied terrain. Results show that Wheaton River peak flows closely follow the end of large daily variations in brightness temperature of pixels covering the Wheaton River, but the magnitude of flow is highly variable, as might be expected from interannual snow mass variability. Spring rise in the hydrograph follows the end of high diurnal brightness temperature (Tb) amplitude variations (DAV) by 0 to 5 days approximately 90% of the time for this basin. Subsequent work will compare these findings for a larger (7250 km2), unglacierized tributary, the Ross River, which is farther northeast (61 ° 5940N, 132 ° 2240W) in the Yukon Territory. These techniques will also be used to try to determine the improvement in melt detection and runoff prediction from the higher resolution (15 × 15 km2) advanced microwave scanning radiometer for EOS (AMSR-E) sensor.
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR Appendix A to Subpart C of... - Certification Application Templates
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products Pt. 995, Subpt. C, App. A Appendix A to Subpart C of Part 995...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR 995.21 - Registry of data users.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.21 Registry of data users. (a) CED or CEVAD shall maintain a registry of customers receiving NOAA...
15 CFR Appendix A to Subpart C of... - Certification Application Templates
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products Pt. 995, Subpt. C, App. A Appendix A to Subpart C of Part 995...
15 CFR Appendix A to Subpart C of... - Certification Application Templates
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products Pt. 995, Subpt. C, App. A Appendix A to Subpart C of Part 995...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR 995.21 - Registry of data users.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.21 Registry of data users. (a) CED or CEVAD shall maintain a registry of customers receiving NOAA...
15 CFR 995.21 - Registry of data users.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.21 Registry of data users. (a) CED or CEVAD shall maintain a registry of customers receiving NOAA...
The Development and Validation of a New Land Surface Model for Regional and Global Climate Modeling
NASA Astrophysics Data System (ADS)
Lynch-Stieglitz, Marc
1995-11-01
A new land-surface scheme intended for use in mesoscale and global climate models has been developed and validated. The ground scheme consists of 6 soil layers. Diffusion and a modified tipping bucket model govern heat and water flow respectively. A 3 layer snow model has been incorporated into a modified BEST vegetation scheme. TOPMODEL equations and Digital Elevation Model data are used to generate baseflow which supports lowland saturated zones. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts watershed evapotranspiration, the partitioning of surface fluxes, and the development of the storm hydrograph. Five years of meteorological and hydrological data from the Sleepers river watershed located in the eastern highlands of Vermont where winter snow cover is significant were then used to drive and validate the new scheme. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture. By including topographic effects, not only are the main spring hydrographs and individual storm hydrographs adequately resolved, but the mechanisms generating runoff are consistent with current views of hydrologic processes. The seasonal movement of the mean water table depth and the saturated area of the watershed are consistent with site data and the overall model hydroclimatology, including the surface fluxes, seems reasonable.
Bathymetry and selected perspective views of 6 reef and coastal areas in Northern Lake Michigan
Barnes, Peter; Fleisher, Guy; Gardner, James V.; Lee, Kristen
2003-01-01
We apply state of the art laser technology and derivative imagery to map the detailed morphology and of principal lake trout spawning sites on reefs in Northern Lake Michigan and to provide a geologic interpretation. We sought to identify the presence of ideal spawning substrate: shallow, "clean" gravel/cobble substrate, adjacent to deeper water. This study is a pilot collaborative effort with the US Army Corps of Engineers SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) program. The high-definition maps are integrated with known and developing data on fisheries, as well as limited substrate sedimentologic information and underlying Paleozoic carbonate rocks.
Mueller, David S.
2013-01-01
profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers’ software.
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
Hydrographic Service Royal Australian Navy
1993-01-01
relocation of the Hydrographic Office to Wollongong, NSW; "* A marked decline in chart production caused by workforce changes as a result of the impending...amalgamate the plans of Clinton Coal Loader Wharf and Auckland Point to Barney Point in one plan at scale 1:10 000. The chart now provides continuous
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... Draft Programmatic Environmental Assessment for Office of Coast Survey Hydrographic Survey Projects... Programmatic Environmental Assessment; Request for comments. SUMMARY: NOAA's Office of Coast Survey (OCS) seeks comment on a draft programmatic environmental assessment (PEA) of the hydrographic surveys and related...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
CHARACTERIZING STORM HYDROGRAPH RISE AND FALL DYNAMICS AND THEIR RELATIONSHIP WITH STREAM STAGE DATA
Stormflow transients (i.e., hydrograph rise and fall dynamics) have been shown to impact stream biota through impacts on habitat quality and availability. However, little is known about how climate variability and temporal resolution of transient data may color the putative relat...
Daily values flow comparison and estimates using program HYCOMP, version 1.0
Sanders, Curtis L.
2002-01-01
A method used by the U.S. Geological Survey for quality control in computing daily value flow records is to compare hydrographs of computed flows at a station under review to hydrographs of computed flows at a selected index station. The hydrographs are placed on top of each other (as hydrograph overlays) on a light table, compared, and missing daily flow data estimated. This method, however, is subjective and can produce inconsistent results, because hydrographers can differ when calculating acceptable limits of deviation between observed and estimated flows. Selection of appropriate index stations also is judgemental, giving no consideration to the mathematical correlation between the review station and the index station(s). To address the limitation of the hydrograph overlay method, a set of software programs, written in the SAS macrolanguage, was developed and designated Program HYDCOMP. The program automatically selects statistically comparable index stations by correlation and regression, and performs hydrographic comparisons and estimates of missing data by regressing daily mean flows at the review station against -8 to +8 lagged flows at one or two index stations and day-of-week. Another advantage that HYDCOMP has over the graphical method is that estimated flows, the criteria for determining the quality of the data, and the selection of index stations are determined statistically, and are reproducible from one user to another. HYDCOMP will load the most-correlated index stations into another file containing the ?best index stations,? but will not overwrite stations already in the file. A knowledgeable user should delete unsuitable index stations from this file based on standard error of estimate, hydrologic similarity of candidate index stations to the review station, and knowledge of the individual station characteristics. Also, the user can add index stations not selected by HYDCOMP, if desired. Once the file of best-index stations is created, a user may do hydrographic comparison and data estimates by entering the number of the review station, selecting an index station, and specifying the periods to be used for regression and plotting. For example, the user can restrict the regression to ice-free periods of the year to exclude flows estimated during iced conditions. However, the regression could still be used to estimate flow during iced conditions. HYDCOMP produces the standard error of estimate as a measure of the central scatter of the regression and R-square (coefficient of determination) for evaluating the accuracy of the regression. Output from HYDCOMP includes plots of percent residuals against (1) time within the regression and plot periods, (2) month and day of the year for evaluating seasonal bias in the regression, and (3) the magnitude of flow. For hydrographic comparisons, it plots 2-month segments of hydrographs over the selected plot period showing the observed flows, the regressed flows, the 95 percent confidence limit flows, flow measurements, and regression limits. If the observed flows at the review station remain outside the 95 percent confidence limits for a prolonged period, there may be some error in the flows at the review station or at the index station(s). In addition, daily minimum and maximum temperatures and daily rainfall are shown on the hydrographs, if available, to help indicate whether an apparent change in flow may result from rainfall or from changes in backwater from melting ice or freezing water. HYDCOMP statistically smooths estimated flows from non-missing flows at the edges of the gaps in data into regressed flows at the center of the gaps using the Kalman smoothing algorithm. Missing flows are automatically estimated by HYDCOMP, but the user also can specify that periods of erroneous, but nonmissing flows, be estimated by the program.
Asquith, William H.; Roussel, Meghan C.; Thompson, David B.; Cleveland, Theodore G.; Fang, Xing
2005-01-01
Hyetographs and storm depth distributions are important elements of hydraulic design by Texas Department of Transportation engineers. Design hyetographs are used in conjunction with unit hydrographs to obtain peak discharge and hydrograph shape for hydraulic design. Storm-depth distributions can be used to assess the probability of a total rainfall depth for a storm. A research project from 2000–2004 has been conducted to (1) determine if existing Natural Resources Conservation Service (NRCS) dimensionless hyetographs are representative of storms in Texas, (2) provide new procedures for dimensionless hyetograph estimation if the NRCS hyetographs are not representative, and (3) provide a procedure to estimate the distribution of storm depth for Texas. This report summarizes the research activities and results of the research project. The report documents several functional models of dimensionless hyetographs and provides curves and tabulated ordinates of empirical (nonfunctional) dimensionless hyetographs for a database of runoff-producing storms in Texas. The dimensionless hyetographs are compared to the NRCS dimensionless hyetographs. The distribution of storm depth is documented for seven values of minimum interevent time through dimensionless frequency curves and tables of mean storm depth for each county in Texas. Conclusions regarding application of the research results are included in the report.
Accuracy of selected techniques for estimating ice-affected streamflow
Walker, John F.
1991-01-01
This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.
Davis, Arthur Powell; Leverett, Frank; Darton, N.H.; Schuyler, J.D.
1897-01-01
The completion of this volume marks the revival of extended systematic investigation of the hydrography of the United State. This book is, in effect, the ninth annual report of what has been known as the Irrigation Survey. Its preparation and publication has been made possible by the act of June 11, 1896 (Stat. L., vol. 29, p. 436), which enlarged the scope of the work and authorized the preparation of reports upon the best methods of utilizing the water resources of arid and semiarid sections. For some years before this date the sums available for hydrographic work were so small that it was practicable merely to continue observations at previously established stations, compute discharges, and compile for publication the data accumulated in the office.
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2018-04-01
In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting
. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade
and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.
NASA Astrophysics Data System (ADS)
Stander, E. K.; Ehrenfeld, J. G.
2006-12-01
Wetlands are increasingly being used as management tools to combat the widespread problem of excess nitrogen in surface waters of the United States. This is particularly true in urban or urbanizing watersheds. However, due to hypothesized higher rates of atmospheric nitrogen deposition and altered hydrology in the urban context, urban wetlands may actually be acting as sources of nitrate to receiving bodies of water. Fourteen palustrine, forested wetlands in northeastern New Jersey, the most urban part of the state, were sampled for hydrology and rates of nitrogen cycling processes. One autowell in each site recorded water table measurements four times daily. In situ rates of net nitrogen mineralization and nitrification were measured monthly during the same time period using the static core technique. Denitrification rates were measured monthly in laboratory incubations using the acetylene block technique. Additionally, in nine of the 14 sites, which represent a gradient of urban intensity from very urban to less urban, we measured inorganic nitrogen in throughfall and leachate on a weekly basis. Throughfall collectors and lysimeters to 50cm depth were installed in three locations in each of the nine sites. Throughfall and leachate samples were analyzed for 15N and 18O isotopes to distinguish between atmospheric versus nitrification sources of nitrate in soil leachate. Hydrographs demonstrated that many sites have water table depths below 30 cm (i.e., below the biologically active zone) for long periods of time. Many wetlands display uncharacteristically flashy hydrographs. Wetlands with dry or flashy hydrographs had higher rates of nitrification and lower rates of denitrification than wetlands with more normal hydrology. Rates of atmospheric N deposition were higher in wetlands located in municipalities with higher population densities. Population density, however, was not a good predictor of nitrification or denitrification rates. Results from the isotopic analysis are forthcoming.
Streamflow characterization using functional data analysis of the Potomac River
NASA Astrophysics Data System (ADS)
Zelmanow, A.; Maslova, I.; Ticlavilca, A. M.; McKee, M.
2013-12-01
Flooding and droughts are extreme hydrological events that affect the United States economically and socially. The severity and unpredictability of flooding has caused billions of dollars in damage and the loss of lives in the eastern United States. In this context, there is an urgent need to build a firm scientific basis for adaptation by developing and applying new modeling techniques for accurate streamflow characterization and reliable hydrological forecasting. The goal of this analysis is to use numerical streamflow characteristics in order to classify, model, and estimate the likelihood of extreme events in the eastern United States, mainly the Potomac River. Functional data analysis techniques are used to study yearly streamflow patterns, with the extreme streamflow events characterized via functional principal component analysis. These methods are merged with more classical techniques such as cluster analysis, classification analysis, and time series modeling. The developed functional data analysis approach is used to model continuous streamflow hydrographs. The forecasting potential of this technique is explored by incorporating climate factors to produce a yearly streamflow outlook.
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Hydrographic Data, edition 2.0, dated October 2003, describes the validation checks to be used on ENC data... the 1974 SOLAS Convention. IEC Publication 61174, dated August 1998, can be purchased from the IEC Web site: http://www.iec.ch. (2) IHO Special Publication S57—The IHO Transfer Standard for Hydrographic...
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Hydrographic Data, edition 2.0, dated October 2003, describes the validation checks to be used on ENC data... the 1974 SOLAS Convention. IEC Publication 61174, dated August 1998, can be purchased from the IEC Web site: http://www.iec.ch. (2) IHO Special Publication S57—The IHO Transfer Standard for Hydrographic...
Catchment land use impacts the rise and fall dynamic of hydrographs, and may also help explain variation in biological assemblages known to be sensitive to flow regime. We collected continuous stream depth records for the 2002 water year (5 min. intervals) from eight streams dra...
Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07
Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.
2009-01-01
The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed criterion in all but four stream samples (266 of 270). Similarly, only 2 of 84 Missouri River samples had total phosphorus concentrations less than the proposed criterion. The proposed total nitrogen criterion for the Corn Belt and Northern Great Plains ecoregion was surpassed in 80 percent of the water samples collected from the stream sites. Samples with total nitrogen concentrations greater than the proposed criterion were most common at Papillion Creek and Big Papillion Creek sites, where the proposed criterion was surpassed in 90 and 96 percent of the samples collected, respectively. Elevated concentrations of total nitrogen were less common at the Missouri River sites, with 33 percent of the samples analyzed having concentrations that surpassed the proposed nutrient criterion for total nitrogen. The three constituents with measured concentrations greater than their respective health-based screening levels were nickel, zinc, and dichlorvos. Differences in water quality during the beginning, middle, and end of the combined sewer overflow discharge and the stream hydrograph rise, peak, and recession were investigated. Concentrations from the ending part of the combined sewer overflow hydrograph were significantly different than those from the beginning and middle parts for 3 and 11 constituents, respectively. No constituents were significantly different between the beginning and middle parts of the combined sewer overflow discharge hydrograph. For the stream site upstream from combined sewer overflow outfalls on Cole Creek, the constituents with geometric mean values for the hydrograph rise that were at least twice those for the values of the peak and recession were specific conductance, magnesium, nitrite, N,N-diethyl-meta-toluamide (DEET), methyl salicylate, p-cresol, and Escherichia coli. Similarly, the constituents where the hydrograph peak was at least twice that for the rise and recession at the upstream Cole Creek site were total suspended solids, silver, an
Design flow factors for sewerage systems in small arid communities.
Imam, Emad H; Elnakar, Haitham Y
2014-09-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.
Design flow factors for sewerage systems in small arid communities
Imam, Emad H.; Elnakar, Haitham Y.
2013-01-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521
Origins, seasonality, and fluxes of organic matter in the Congo River
NASA Astrophysics Data System (ADS)
Spencer, Robert G. M.; Hernes, Peter J.; Dinga, Bienvenu; Wabakanghanzi, Jose N.; Drake, Travis W.; Six, Johan
2016-07-01
The Congo River in central Africa represents a major source of organic matter (OM) to the Atlantic Ocean. This study examined elemental (%OC, %N, and C:N), stable isotopic (δ13C and δ15N), and biomarker composition (lignin phenols) of particulate OM (POM) and dissolved OM (DOM) across the seasonal hydrograph. Even though the Congo exhibits an extremely stable intra-annual discharge regime, seasonal variability in OM composition was evident. DOM appears predominantly derived from vascular plant inputs with greater relative contribution during the rising limb and peak in discharge associated with the major November-December discharge maximum. Generally, POM appears to be sourced from soil-derived mineral-associated OM (low C:N, low Λ8, and higher (Ad:Al)v) but the relative proportion of fresh vascular plant material (higher C:N, higher Λ8, and lower (Ad:Al)v) increases with higher discharge. During the study period (September 2009 to November 2010) the Congo exported 29.21 Tg yr-1 of total suspended sediment (TSS), 1.96 Tg yr-1 of particulate organic carbon (POC), and 12.48 Tg yr-1 of dissolved organic carbon. The Congo exports an order of magnitude lower TSS load in comparison to other major riverine sources of TSS (e.g., Ganges and Brahmaputra), but due to its OM-rich character it actually exports a comparable amount of POC. The Congo is also 2.5 times more efficient at exporting dissolved lignin per unit volume compared to the Amazon. Including Congo dissolved lignin data in residence time calculations for lignin in the Atlantic Ocean results in an approximately 10% reduction from the existing estimate, suggesting that this material is more reactive than previously thought.
The application of electrical conductivity as a tracer for hydrograph separation in urban catchments
Pellerin, B.A.; Wollheim, W.M.; Feng, X.; Vororsmarty, C.J.
2008-01-01
Two-component hydrograph separation was performed on 19 low-to-moderate intensity rainfall events in a 4.1-km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12-46 ??S/cm) and pre-event streamwater EC values (520-1297 ??S/cm). While new water accounted for most of the increased discharge during storms (61-117%), the contribution of new water to total discharge during events was typically lower (18-78%) and negatively correlated with antecedent stream discharge (r2 = 0??55, p < 0??01). The amount of new water was positively correlated with total rainfall (r2 = 0??77), but hydrograph separation results suggest that less than half (9-46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non-conservative tracers (EC and Si) and a conservative isotopic tracer (??D) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer-based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non-point-source pollutant loading to urban streams. Copyright ?? 2007 John Wiley & Sons, Ltd.
Stormflow-hydrograph separation based on isotopes: the thrill is gone--what's next?
Burns, Douglas A.
2002-01-01
Beginning in the 1970s, the promise of a new method for separatingstormflow hydrographs using18O,2H, and3Hprovedanirresistibletemptation, and was a vast improvement over graphical separationand solute tracer methods that were prevalent at the time. Eventu-ally, hydrologists realized that this new method entailed a plethoraof assumptions about temporal and spatial homogeneity of isotopiccomposition (many of which were commonly violated). Nevertheless,hydrologists forged ahead with dozens of isotope-based hydrograph-separation studies that were published in the 1970s and 1980s.Hortonian overland flow was presumed dead. By the late 1980s,the new isotope-based hydrograph separation technique had movedinto adolescence, accompanied by typical adolescent problems suchas confusion and a search for identity. As experienced hydrologistscontinued to use the isotope technique to study stormflow hydrol-ogy in forested catchments in humid climates, their younger peersfollowed obligingly—again and again. Was Hortonian overland flowreally dead and forgotten, though? What about catchments in whichpeople live and work? And what about catchments in dry climatesand the tropics? How useful were study results when several of theassumptions about the homogeneity of source waters were commonlyviolated? What if two components could not explain the variation ofisotopic composition measured in the stream during stormflow? Andwhat about uncertainty? As with many new tools, once the initialshine wore off, the limitations of the method became a concern—oneof which was that isotope-based hydrograph separations alone couldnot reveal much about the flow paths by which water arrives at astream channel during storms.
NASA Astrophysics Data System (ADS)
Wesemann, Johannes; Burgholzer, Reinhard; Herrnegger, Mathew; Schulz, Karsten
2017-04-01
In recent years, a lot of research in hydrological modelling has been invested to improve the automatic calibration of rainfall-runoff models. This includes for example (1) the implementation of new optimisation methods, (2) the incorporation of new and different objective criteria and signatures in the optimisation and (3) the usage of auxiliary data sets apart from runoff. Nevertheless, in many applications manual calibration is still justifiable and frequently applied. The hydrologist performing the manual calibration, with his expert knowledge, is able to judge the hydrographs simultaneously concerning details but also in a holistic view. This integrated eye-ball verification procedure available to man can be difficult to formulate in objective criteria, even when using a multi-criteria approach. Comparing the results of automatic and manual calibration is not straightforward. Automatic calibration often solely involves objective criteria such as Nash-Sutcliffe Efficiency Coefficient or the Kling-Gupta-Efficiency as a benchmark during the calibration. Consequently, a comparison based on such measures is intrinsically biased towards automatic calibration. Additionally, objective criteria do not cover all aspects of a hydrograph leaving questions concerning the quality of a simulation open. This contribution therefore seeks to examine the quality of manually and automatically calibrated hydrographs by interactively involving expert knowledge in the evaluation. Simulations have been performed for the Mur catchment in Austria with the rainfall-runoff model COSERO using two parameter sets evolved from a manual and an automatic calibration. A subset of resulting hydrographs for observation and simulation, representing the typical flow conditions and events, will be evaluated in this study. In an interactive crowdsourcing approach experts attending the session can vote for their preferred simulated hydrograph without having information on the calibration method that produced the respective hydrograph. Therefore, the result of the poll can be seen as an additional quality criterion for the comparison of the two different approaches and help in the evaluation of the automatic calibration method.
Geologic Controls of Sand Boil Formation at Buck Chute, Mississippi
2017-06-30
12 Figure 6. 1915 MRC hydrographic survey of Buck Chute (Modified from MRC 1975, sheet 48). ............ 13 Figure 7. 1926 MRC...hydrographic survey of Buck Chute (Modified from MRC 1975, sheet 48). ............ 14 Figure 8. Diagram of the evolution of the Mississippi River...library). .................... 17 Figure 11. AGI SuperSting 8 ERT survey equipment
Ken Vance-Borland; Kelly Burnett; Sharon Clarke
2009-01-01
1. Digital hydrographic data are commonly employed in research, planning, and monitoring for freshwater conservation, but hydrographic data sets differ in spatial resolution and accuracy of spatial representation, possibly leading to inaccurate conclusions or unsuitable policies for streams and streamside areas. 2. To examine and illustrate the potential for...
Report of the Hydrographic Service, Royal Australian Navy for the Year Ending 30 June 1991
1991-06-01
1992. A survey of the approaches to the Antarctic bases of Casey and Mawson . (Area 12 on Figure 12). 11 m 4 A I. 12 TIDAL SECTION The Tidal Section’s...Australian Antarctic Territory Australian Construction Services Mawson , Casey, Davis RN Hydrographic Office, Taunton Pravda Coast 51 Boatn Charts Dept of
Reed M. Perkins; Julia A. Jones
2008-01-01
Large floods are often attributed to the melting of snow during a rain event. This study tested how climate variability, snowpack presence, and basin physiography were related to storm hydrograph shape in three small (2) basins with old-growth forest in western Oregon. Relationships between hydrograph characteristics and precipitation...
Effects of timber harvesting on the lag time of Caspar Creek watershed
Karen Hardison Sendek
1985-01-01
Abstract - Hydrograph lag time was analyzed to determine changes after road construction and after selective, tractor-yarded logging in a Caspar Creek watershed, Mendocino County, California. The paired watershed technique was used. Hydrograph lag time for each storm was the time separation between the midpoint of precipitation and the time coordinate of the runoff...
Hydrographic Data Curation and Stewardship: GO-SHIP
NASA Astrophysics Data System (ADS)
Stephen, Diggs; Lynne, Talley; Martin, Kramp; Bernadette, Sloyan
2014-05-01
Expert data management (access, formats, data life-cycle) facilitates the successful re-use of information which address many important scientific questions such as detecting decadal and longer-term changes in global ocean heat and freshwater content. Modern hydrographic data management has its origins in the WOCE program where new and existing distributed resources were identified and organized into an effective "super DAC". Data from this program are referenced in hundreds of scientific papers. The distributed hydrographic data system, now under the name GO-SHIP, exists today and has adapted to the new geoscience demands of the 21st century. This presentation will describe science drivers and the required data center resources (CCHDO, CDIAC, JCOMMOPS) which together provide reliable access for the global research community.
Woods, Paul F.
2001-01-01
Hysteresis effects on concentrations and loads over the ascending and descending limbs of the snowmelt-runoff hydrograph were quite apparent, especially for whole-water recoverable constituents. Hysteresis is present when a property, such as constituent concentration or load, has different values for a given discharge over the ascending and descending limbs of a hydrograph. During this study, loads of whole-water recoverable constituents on the ascending limb were between 1.5 and 3.6 times larger than those mea- sured on the descending limb at nearly equal discharge. In contrast, dissolved constituents showed minimal hysteresis effects.
Reitz, Meredith; Sanford, Ward E.; Senay, Gabriel; Cazenas, J.
2017-01-01
This study presents new data-driven, annual estimates of the division of precipitation into the recharge, quick-flow runoff, and evapotranspiration (ET) water budget components for 2000-2013 for the contiguous United States (CONUS). The algorithms used to produce these maps ensure water budget consistency over this broad spatial scale, with contributions from precipitation influx attributed to each component at 800 m resolution. The quick-flow runoff estimates for the contribution to the rapidly varying portion of the hydrograph are produced using data from 1,434 gaged watersheds, and depend on precipitation, soil saturated hydraulic conductivity, and surficial geology type. Evapotranspiration estimates are produced from a regression using water balance data from 679 gaged watersheds and depend on land cover, temperature, and precipitation. The quick-flow and ET estimates are combined to calculate recharge as the remainder of precipitation. The ET and recharge estimates are checked against independent field data, and the results show good agreement. Comparisons of recharge estimates with groundwater extraction data show that in 15% of the country, groundwater is being extracted at rates higher than the local recharge. These maps of the internally consistent water budget components of recharge, quick-flow runoff, and ET, being derived from and tested against data, are expected to provide reliable first-order estimates of these quantities across the CONUS, even where field measurements are sparse.
Potential of commercial microwave link network derived rainfall for river runoff simulations
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald
2017-03-01
Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.
NASA Astrophysics Data System (ADS)
Zeng, Chen; Rosengard, Sarah Z.; Burt, William; Peña, M. Angelica; Nemcek, Nina; Zeng, Tao; Arrigo, Kevin R.; Tortell, Philippe D.
2018-06-01
We evaluate several algorithms for the estimation of phytoplankton size class (PSC) and functional type (PFT) biomass from ship-based optical measurements in the Subarctic Northeast Pacific Ocean. Using underway measurements of particulate absorption and backscatter in surface waters, we derived estimates of PSC/PFT based on chlorophyll-a concentrations (Chl-a), particulate absorption spectra and the wavelength dependence of particulate backscatter. Optically-derived [Chl-a] and phytoplankton absorption measurements were validated against discrete calibration samples, while the derived PSC/PFT estimates were validated using size-fractionated Chl-a measurements and HPLC analysis of diagnostic photosynthetic pigments (DPA). Our results showflo that PSC/PFT algorithms based on [Chl-a] and particulate absorption spectra performed significantly better than the backscatter slope approach. These two more successful algorithms yielded estimates of phytoplankton size classes that agreed well with HPLC-derived DPA estimates (RMSE = 12.9%, and 16.6%, respectively) across a range of hydrographic and productivity regimes. Moreover, the [Chl-a] algorithm produced PSC estimates that agreed well with size-fractionated [Chl-a] measurements, and estimates of the biomass of specific phytoplankton groups that were consistent with values derived from HPLC. Based on these results, we suggest that simple [Chl-a] measurements should be more fully exploited to improve the classification of phytoplankton assemblages in the Northeast Pacific Ocean.
Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park
Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.
2008-01-01
This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.
A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu
2011-01-01
Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...
Utilizing Wavelet Analysis to assess hydrograph change in northwestern North America
NASA Astrophysics Data System (ADS)
Tang, W.; Carey, S. K.
2017-12-01
Historical streamflow data in the mountainous regions of northwestern North America suggest that changes flows are driven by warming temperature, declining snowpack and glacier extent, and large-scale teleconnections. However, few sites exist that have robust long-term records for statistical analysis, and pervious research has focussed on high and low-flow indices along with trend analysis using Mann-Kendal test and other similar approaches. Furthermore, there has been less emphasis on ascertaining the drivers of change in changes in shape of the streamflow hydrograph compared with traditional flow metrics. In this work, we utilize wavelet analysis to evaluate changes in hydrograph characteristics for snowmelt driven rivers in northwestern North America across a range of scales. Results suggest that wavelets can be used to detect a lengthening and advancement of freshet with a corresponding decline in peak flows. Furthermore, the gradual transition of flows from nival to pluvial regimes in more southerly catchments is evident in the wavelet spectral power through time. This method of change detection is challenged by evaluating the statistical significance of changes in wavelet spectra as related to hydrograph form, yet ongoing work seeks to link these patters to driving weather and climate along with larger scale teleconnections.
Payton, Gardner W.; Susong, D.D.; Kip, Solomon D.; Heasler, H.
2010-01-01
Snowmelt hydrograph analysis and groundwater age dates of cool water springs on the Yellowstone volcanic plateau provide evidence of high volumes of groundwater circulation in watersheds comprised of quaternary Yellowstone volcanics. Ratios of maximum to minimum mean daily discharge and average recession indices are calculated for watersheds within and surrounding the Yellowstone volcanic plateau. A model for snowmelt recession is used to separate groundwater discharge from overland runoff, and compare groundwater systems. Hydrograph signal interpretation is corroborated with chlorofluorocarbon (CFC) and tritium concentrations in cool water springs on the Yellowstone volcanic plateau. Hydrograph parameters show a spatial pattern correlated with watershed geology. Watersheds comprised dominantly of quaternary Yellowstone volcanics are characterized by slow streamflow recession, low maximum to minimum flow ratios. Cool springs sampled within the Park contain CFC's and tritium and have apparent CFC age dates that range from about 50 years to modern. Watersheds comprised of quaternary Yellowstone volcanics have a large volume of active groundwater circulation. A large, advecting groundwater field would be the dominant mechanism for mass and energy transport in the shallow crust of the Yellowstone volcanic plateau, and thus control the Yellowstone hydrothermal system. ?? 2009 Elsevier B.V.
High Resolution Airborne Shallow Water Mapping
NASA Astrophysics Data System (ADS)
Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.
2012-07-01
In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved throughout the project. During the data processing meshes for multiple purposes like monitoring sediment transport or accumulation and hydro-dynamic numeric modeling were generated. The meshes were professionally conditioned considering the adherence of, both, geometric and physical mesh quality criterions. Whereas the research is focused on the design and implementation of monitoring database structures, the airborne hydrographic data are also made available for classical processing means (cross sections, longitudinal section).
Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.
2005-01-01
Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A
Granato, Gregory E.
2012-01-01
A nationwide study to better define triangular-hydrograph statistics for use with runoff-quality and flood-flow studies was done by the U.S. Geological Survey (USGS) in cooperation with the Federal Highway Administration. Although the triangular hydrograph is a simple linear approximation, the cumulative distribution of stormflow with a triangular hydrograph is a curvilinear S-curve that closely approximates the cumulative distribution of stormflows from measured data. The temporal distribution of flow within a runoff event can be estimated using the basin lagtime, (which is the time from the centroid of rainfall excess to the centroid of the corresponding runoff hydrograph) and the hydrograph recession ratio (which is the ratio of the duration of the falling limb to the rising limb of the hydrograph). This report documents results of the study, methods used to estimate the variables, and electronic files that facilitate calculation of variables. Ten viable multiple-linear regression equations were developed to estimate basin lagtimes from readily determined drainage basin properties using data published in 37 stormflow studies. Regression equations using the basin lag factor (BLF, which is a variable calculated as the main-channel length, in miles, divided by the square root of the main-channel slope in feet per mile) and two variables describing development in the drainage basin were selected as the best candidates, because each equation explains about 70 percent of the variability in the data. The variables describing development are the USGS basin development factor (BDF, which is a function of the amount of channel modifications, storm sewers, and curb-and-gutter streets in a basin) and the total impervious area variable (IMPERV) in the basin. Two datasets were used to develop regression equations. The primary dataset included data from 493 sites that have values for the BLF, BDF, and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and BDF variables. The secondary dataset included data from 896 sites that have values for the BLF and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and IMPERV variables. Analysis of hydrograph recession ratios and basin characteristics for 41 sites indicated that recession ratios are random variables. Thus, recession ratios cannot be estimated quantitatively using multiple linear regression equations developed using the data available for these sites. The minimums of recession ratios for different streamgages are well characterized by a value of one. The most probable values and maximum values of recession ratios for different streamgages are, however, more variable than the minimums. The most probable values of recession ratios for the 41 streamgages analyzed ranged from 1.0 to 3.52 and had a median of 1.85. The maximum values ranged from 2.66 to 11.3 and had a median of 4.36.
Hydrogeologic and chemical data for the O-Field area, Aberdeen Proving Ground, Maryland
Nemoff, P.R.; Vroblesky, D.A.
1989-01-01
O-Field, located at the Edgewood area of Aberdeen Proving Ground , Maryland, was periodically used for disposal of munitions, waste chemicals, and chemical-warfare agents from World War II through the 1950' s. This report includes various physical, geologic, chemical, and hydrologic data obtained from well-core, groundwater, surface water, and bottom-sediment sampling sites at and near the O-Field disposal area. The data are presented in tables and hydrographs. Three site-location maps are also included. Well-core data include lithologic logs for 11 well- cluster sites, grain-size distributions, various chemical characteristics, and confining unit characteristics. Groundwater data include groundwater chemistry, method blanks for volatile organic carbon, available data on volatile and base/neutral organics, and compilation of corresponding method blanks, chemical-warfare agents, explosive-related products, radionuclides, herbicides, and groundwater levels. Surface-water data include field-measured characteristics; concentrations of various inorganic constituents including arsenic; selected organic constituents with method blanks; detection limits of organics; and a compilation of information on corresponding acids, volatiles, and semivolatiles. Bottom- sediment data include inorganic properties and constituents; organic chemistry; detection limits for organic chemicals; a compilation of information on acids, volatiles, and semivolatiles; and method blanks corresponding to acids, volatiles, and semivolatiles. A set of 15 water- level hydrographs for the period March 1986 through September 1987 also is included in the report. (USGS)
A look inside 'black box' hydrograph separation models: A study at the hydrohill catchment
Kendall, C.; McDonnell, Jeffery J.; Gu, W.
2001-01-01
Runoff sources and dominant flowpaths are still poorly understood in most catchments; consequently, most hydrograph separations are essentially 'black box' models where only external information is used. The well-instrumented 490 m2 Hydrohill artificial grassland catchment located near Nanjing (China) was used to examine internal catchment processes. Since groundwater levels never reach the soil surface at this site, two physically distinct flowpaths can unambiguously be defined: surface and subsurface runoff. This study combines hydrometric, isotopic and geochemical approaches to investigating the relations between the chloride, silica, and oxygen isotopic compositions of subsurface waters and rainfall. During a 120 mm storm over a 24 h period in 1989, 55% of event water input infiltrated and added to soil water storage; the remainder ran off as infiltration-excess overland flow. Only about 3-5% of the pre-event water was displaced out of the catchment by in-storm rainfall. About 80% of the total flow was quickflow, and 10% of the total flow was pre-event water, mostly derived from saturated flow from deeper soils. Rain water with high ??18O values from the beginning of the storm appeared to be preferentially stored in shallow soils. Groundwater at the end of the storm shows a wide range of isotopic and chemical compositions, primarily reflecting the heterogeneous distribution of the new and mixed pore waters. High chloride and silica concentrations in quickflow runoff derived from event water indicate that these species are not suitable conservative tracers of either water sources or flowpaths in this catchment. Determining the proportion of event water alone does not constrain the possible hydrologic mechanisms sufficiently to distinguish subsurface and surface flowpaths uniquely, even in this highly controlled artificial catchment. We reconcile these findings with a perceptual model of stormflow sources and flowpaths that explicitly accounts for water, isotopic, and chemical mass balance. Copyright ?? 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sahoo, Ramendra; Jain, Vikrant
2018-02-01
Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.
NASA Astrophysics Data System (ADS)
Wan, X. Y.
2017-12-01
The extensive constructions of reservoirs change the hydrologic characteristics of the associated watersheds, which obviously increases the complexity of watershed flood control decisions. By evaluating the impacts of the multi-reservoir system on the flood hydrograph, it becomes possible to improve the effectiveness of the flood control decisions. In this paper we compare the non-reservoir flood hydrograph with the actual observed flood hydrograph using the Lutaizi upstream of Huai river in East China as a representative case, where 20 large-scale/large-sized reservoirs have been built. Based on the total impact of the multi-reservoir system, a novel strategy, namely reservoir successively added (RSA) method, is presented to evaluate the contribution of each reservoir to the total impact. According each reservoir contribution, the "highly effective" reservoirs for watershed flood control are identified via hierarchical clustering. Moreover, we estimate further the degree of impact of the reservoir current operation rules on the flood hydrograph on the base of the impact of dams themselves. As a result, we find that the RSA method provides a useful method for analysis of multi-reservoir systems by partitioning the contribution of each reservoir to the total impacts on the flooding at the downstream section. For all the historical large floods examined, the multi-reservoir system in the Huai river watershed has a significant impact on flooding at the downstream Lutaizi section, on average reducing the flood volume and peak discharge by 13.92 × 108 m3 and 18.7% respectively. It is more informative to evaluate the maximum impact of each reservoir (on flooding at the downstream section) than to examine the average impact. Each reservoir has a different impact on the flood hydrograph at the Lutaizi section. In particular, the Meishan, Xianghongdian, Suyahu, Nanwan, Nianyushan and Foziling reservoirs exert a strong influence on the flood hydrograph, and are therefore important for flood control on the Huai river. Under the current operation rules, the volume and peak discharge of flooding at the Lutaizi section are reduced by 13.69 × 108m3 and 1429 m3/s respectively, accounting for 98% and 80.5% of the real reduction respectively.
What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping Yang; Daniel B. Ames; Andre Fonseca
This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicatemore » that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.« less
Reverse Flood Routing with the Lag-and-Route Storage Model
NASA Astrophysics Data System (ADS)
Mazi, K.; Koussis, A. D.
2010-09-01
This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted Kalinin-Miljukov model. The latter applies the lag-and-route model’s single-reservoir inversion scheme sequentially to its cascade of linear reservoirs, the number of which is related to the stream's hydromorphology. For this purpose, we used the example of Bruen & Dooge (2007), who back-routed flow hydrographs in a 100-km long prismatic channel using a scheme for the reverse solution of the St. Venant equations of flood wave motion. The lag-and-route reverse routing model recovered the inflow hydrograph with comparable accuracy to that of the multi-reservoir, inverted Kalinin-Miljukov model, both performing as well as the box-scheme for reverse routing with the St. Venant equations. In conclusion, the success in the regaining of the inflow signal by the devised single-reservoir reverse routing procedure, with multipoint low-pass filtering, can be attributed to its simple computational structure that endows it with remarkable robustness and exceptional efficiency.
Applications of the Coastal Zone Color Scanner in oceanography
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1988-01-01
Research activity has continued to be focused on the applications of the Coastal Zone Color Scanner (CZCS) imagery in oceanography. A number of regional studies were completed including investigations of temporal and spatial variability of phytoplankton populations in the South Atlantic Bight, Northwest Spain, Weddell Sea, Bering Sea, Caribbean Sea and in tropical Atlantic Ocean. In addition to the regional studies, much work was dedicated to developing ancillary global scale meteorological and hydrographic data sets to complement the global CZCS processing products. To accomplish this, SEAPAK's image analysis capability was complemented with an interface to GEMPAK (Severe Storm Branch's meteorological analysis software package) for the analysis and graphical display of gridded data fields. Plans are being made to develop a similar interface to SEAPAK for hydrographic data using EPIC (a hydrographic data analysis package developed by NOAA/PMEL).
HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis
Sloto, Ronald A.; Crouse, Michele Y.
1996-01-01
HYSEP is a computer program that can be used to separate a streamflow hydrograph into base-flow and surface-runoff components. The base-flow component has traditionally been associated with ground-water discharge and the surface-runoff component with precipitation that enters the stream as overland runoff. HYSEP includes three methods of hydrograph separation that are referred to in the literature as the fixed interval, sliding-interval, and local-minimum methods. The program also describes the frequency and duration of measured streamflow and computed base flow and surface runoff. Daily mean stream discharge is used as input to the program in either an American Standard Code for Information Interchange (ASCII) or binary format. Output from the program includes table,s graphs, and data files. Graphical output may be plotted on the computer screen or output to a printer, plotter, or metafile.
Takahiro Sayama; Jeffrey J. McDonnell
2009-01-01
Hydrograph source components and stream water residence time are fundamental behavioral descriptors of watersheds but, as yet, are poorly represented in most rainfall-runoff models. We present a new time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, mean residence time, and spatial source of streamflow at the watershed scale. We...
Hydrography for the non-Hydrographer: A Paradigm shift in Data Processing
NASA Astrophysics Data System (ADS)
Malzone, C.; Bruce, S.
2017-12-01
Advancements in technology have led to overall systematic improvements including; hardware design, software architecture, data transmission/ telepresence. Historically, utilization of this technology has required a high knowledge level obtained with many years of experience, training and/or education. High training costs are incurred to achieve and maintain an acceptable level proficiency within an organization. Recently, engineers have developed off-the-shelf software technology called Qimera that has simplified the processing of hydrographic data. The core technology is centered around the isolation of tasks within the work- flow to capitalize on the technological advances in computing technology to automate the mundane error prone tasks to bring more value to the stages in which the human brain brings value. Key design features include: guided workflow, transcription automation, processing state management, real-time QA, dynamic workflow for validation, collaborative cleaning and production line processing. Since, Qimera is designed to guide the user, it allows expedition leaders to focus on science while providing an educational opportunity for students to quickly learn the hydrographic processing workflow including ancillary data analysis, trouble-shooting, calibration and cleaning. This paper provides case studies on how Qimera is currently implemented in scientific expeditions, benefits of implementation and how it is directing the future of on-board research for the non-hydrographer.
NASA Astrophysics Data System (ADS)
Seo, Y.; Hwang, J.; Kwon, Y.
2017-12-01
The existence of impervious areas is one of the most distinguishing characteristics of urban catchments. It decreases infiltration and increases direct runoff in urban catchments. The recent introduction of green infrastructure in urban catchments for the purpose of sustainable development contributes to the decrease of the directly connected impervious areas (DCIA) by isolating existing impervious areas and consequently, to the flood risk mitigation. This study coupled the width function-based instantaneous hydrograph (WFIUH), which is able to handle the spatial distribution of the impervious areas, with the concept of the DCIA to assess the impact of decreasing DCIA on the shape of direct runoff hydrographs. Using several scenarios for typical green infrastructure and corresponding changes of DCIA in a test catchment, this study evaluated the effect of green infrastructure on the shape of the resulting direct runoff hydrographs and peak flows. The results showed that the changes in the DCIA immediately affects the shape of the direct runoff hydrograph and decreases peak flows depending on spatial implementation scenarios. The quantitative assessment of the spatial distribution of impervious areas and also the changes to the DCIA suggests effective and well-planned green infrastructure can be introduced in urban environments for flood risk management.
Hydrologic Unit Map -- 1978, state of South Dakota
,
1978-01-01
This map and accompanying table show Hydrologic Unites that are basically hydrographic in nature. The Cataloging Unites shown supplant the Cataloging Units previously depicted n the 1974 State Hydrologic Unit Map. The boundaries as shown have been adapted from the 1974 State Hydrologic Unit Map, "The Catalog of Information on Water Data" (1972), "Water Resources Regions and Subregions for the National Assessment of Water and Related Land Resources" by the U.S. Water Resources Council (1970), "River Basin of the United States" by the U.S. Soil Conservation Service (1963, 1970), "River Basin Maps Showing Hydrologic Stations" by the Inter-Agency Committee on Water Resources, Subcommittee on Hydrology (1961), and State planning maps. The Political Subdivision has been adopted from "Counties and County Equivalents of the States if the United States" presented in Federal Information Processing Standards Publication 6-2, issued by the National Bureau of Standards (1973) in which each county or county equivalent is identified by a 2-character State code and a 3-character county code. The Regions, Subregions and Accounting Units are aggregates of the Cataloging Unites. The Regions and Sub regions are currently (1978) used by the U.S> Water Resources Council for comprehensive planning, including the National Assessment, and as a standard geographical framework for more detailed water and related land-resources planning. The Accounting Units are those currently (1978) in use by the U.S. Geological Survey for managing the National Water Data Network. This map was revised to include a boundary realinement between Cataloging Units 10140103 and 10160009.
NASA Technical Reports Server (NTRS)
Mueller-Karger, Frank E.; Walsh, John J.; Meyers, Mark B.; Evans, Robert H.
1991-01-01
Multiyear series of coastal zone color scanner (CZCS) and AVHRR observations are presently used to derive monthly climatologies of near-surface phytoplankton pigment concentration and SST for the Gulf of Mexico; these, in combination with 1946-1987 SST data and NOAA hydrographic profile data covering 1914-1985, show that the most important single factor controlling seasonal cycle surface-pigment concentration is the depth of the mixed layer. The CZCS images indicate that seasonal variation seaward of the continental shelf is synchronous throughout the Gulf. The combination of ocean color and IR images allows year-round observation of surface circulation spatial structure in the Gulf, as well as of the dispersal pattern of the Mississippi River's plume.
The kinematic and hydrographic structure of the Gulf of Maine Coastal Current
Pettigrew, N.R.; Churchill, J.H.; Janzen, C.D.; Mangum, L.J.; Signell, R.P.; Thomas, A.C.; Townsend, D.W.; Wallinga, J.P.; Xue, H.
2005-01-01
The Gulf of Maine Coastal Current (GMCC), which extends from southern Nova Scotia to Cape Cod Massachusetts, was investigated from 1998 to 2001 by means of extensive hydrographic surveys, current meter moorings, tracked drifters, and satellite-derived thermal imagery. The study focused on two principal branches of the GMCC, the Eastern Maine Coastal Current (EMCC) that extends along the eastern coast of Maine to Penobscot Bay, and the Western Maine Coastal Current (WMCC) that extends westward from Penobscot Bay to Massachusetts Bay. Results confirm that GMCC is primarily a pressure gradient-driven system with both principal branches increasing their transport in the spring and summer due to fresh-water inflows, and flowing southwestward against the mean wind forcing during this period. In the spring and summer the subtidal surface currents in the EMCC range from 0.15 to 0.30 ms−1 while subtidal WMCC currents range from 0.05 to 0.15 ms−1. The reduction of southwestward transport near Penobscot Bay is accomplished via an offshore veering of a variable portion of the EMCC, some of which recirculates cyclonically within the eastern Gulf of Maine. The degree of summer offshore veering, versus leakage into the WMCC, varied strongly over the three study years, from nearly complete disruption in 1998 to nearly continuous through-flow in 2000. Observations show strong seasonal and interannual variability in both the strength of the GMCC and the degree of connectivity of its principal branches.
Flooding dynamics on the lower Amazon floodplain
NASA Astrophysics Data System (ADS)
Rudorff, C.; Melack, J. M.; Bates, P. D.
2013-05-01
We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).
2012-12-01
positive definite approximation of the Hessian is updated according to the modified Broyden–Fletcher–Goldfarb– Shanno method (Powell 1978). 3. Data Evident...averaged observational hydrographic data . This method adjusts the temperature and salinity profiles fDTk,DSk,k5 1, 2, . . . ,Kg simultaneously and...in data assimilations since it does not simply reject profiles with static instability. This method edits the profiles with the inequality constraint
Ground-water levels in the alluvial aquifer at Louisville, Kentucky, 1982-87
Faust, R.J.; Lyverse, M.A.
1987-01-01
Water level data have been collected in the alluvial aquifer at Louisville, Kentucky by the U.S. Geological Survey since 1943. Interpretations of these data have been published in several reports by the Survey, but none have been published since 1983. Contour maps and hydrographs are presented in this report to document and to help interpret water level changes for the period 1982-87. Maps and hydrographs show that groundwater levels generally stabilized in the 1980 's after rising for many years. Two areas of groundwater withdrawals are apparent in the maps and hydrographs. Withdrawals in an industrial area in west Louisville disrupt the typical pattern of the contours to curve landward around the area of withdrawal. Resumption of pumping of groundwater for heating and cooling of some buildings in the downtown area in 1985 caused declines of about 3 to 4 ft in the downtown area. (Author 's abstract)
Groundwater-level data from an earthen dam site in southern Westchester County, New York
Noll, Michael L.; Chu, Anthony
2018-05-01
In 2005, the U.S. Geological Survey began a cooperative study with New York City Department of Environmental Protection to characterize the local groundwater-flow system and identify potential sources of seeps on the southern embankment of the Hillview Reservoir in Westchester County, New York. Groundwater levels were collected at 49 wells at Hillview Reservoir, and 1 well in northern Bronx County, from April 2005 through November 2016. Groundwater levels were measured discretely with a chalked steel or electric tape, or continuously with a digital pressure transducer, or both, in accordance with U.S. Geological Survey groundwatermeasurement standards. These groundwater-level data were plotted as time series and are presented in this report as hydrographs. Twenty-eight of the 50 hydrographs have continuous record and discrete field groundwater-level measurements, 22 of the hydrographs contain only discrete measurements.
Comparing English, Mandarin, and Russian Hydrographic and Terrain Categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Chen-Chieh; Sorokine, Alexandre
The paper compares hydrographic and terrain categories in the geospatial data standards of the US, Taiwan, and Russian Federation where the dominant languages used are from di erent language families. It aims to identify structural and semantic di erences between similar categories across three geospatial data standards. By formalizing the data standard structures and identifying the properties that di erentiate sibling categories in each geospatial data standard using well-known formal relations and quality universals, we develop a common basis on which hydrographic and terrain categories in the three data standards can be compared. The result suggests that all three datamore » standards structure categories with a mixture of relations with di erent meaning even though most of them are well-known relations in top-level ontologies. Similar categories can be found across all three standards but exact match between similar categories are rare.« less
Topobathymetric model of Mobile Bay, Alabama
Danielson, Jeffrey J.; Brock, John C.; Howard, Daniel M.; Gesch, Dean B.; Bonisteel-Cormier, Jamie M.; Travers, Laurinda J.
2013-01-01
Topobathymetric Digital Elevation Models (DEMs) are a merged rendering of both topography (land elevation) and bathymetry (water depth) that provides a seamless elevation product useful for inundation mapping, as well as for other earth science applications, such as the development of sediment-transport, sea-level rise, and storm-surge models. This 1/9-arc-second (approximately 3 meters) resolution model of Mobile Bay, Alabama was developed using multiple topographic and bathymetric datasets, collected on different dates. The topographic data were obtained primarily from the U.S. Geological Survey (USGS) National Elevation Dataset (NED) (http://ned.usgs.gov/) at 1/9-arc-second resolution; USGS Experimental Advanced Airborne Research Lidar (EAARL) data (2 meters) (http://pubs.usgs.gov/ds/400/); and topographic lidar data (2 meters) and Compact Hydrographic Airborne Rapid Total Survey (CHARTS) lidar data (2 meters) from the U.S. Army Corps of Engineers (USACE) (http://www.csc.noaa.gov/digitalcoast/data/coastallidar/). Bathymetry was derived from digital soundings obtained from the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/geodas/geodas.html) and from water-penetrating lidar sources, such as EAARL and CHARTS. Mobile Bay is ecologically important as it is the fourth largest estuary in the United States. The Mobile and Tensaw Rivers drain into the bay at the northern end with the bay emptying into the Gulf of Mexico at the southern end. Dauphin Island (a barrier island) and the Fort Morgan Peninsula form the mouth of Mobile Bay. Mobile Bay is 31 miles (50 kilometers) long by a maximum width of 24 miles (39 kilometers) with a total area of 413 square miles (1,070 square kilometers). The vertical datum of the Mobile Bay topobathymetric model is the North American Vertical Datum of 1988 (NAVD 88). All the topographic datasets were originally referenced to NAVD 88 and no transformations were made to these input data. The NGDC hydrographic, multibeam, and trackline surveys were transformed from mean low water (MLW) or mean lower low water (MLLW) to NAVD 88 using VDatum (http://vdatum.noaa.gov). VDatum is a tool developed by the National Geodetic Survey (NGS) that performs transformations among tidal, ellipsoid-based, geoid-based, and orthometric datums using calibrated hydrodynamic models. The vertical accuracy of the input topographic data varied depending on the input source. Because the input elevation data were derived primarily from lidar, the vertical accuracy ranges from 6 to 20 centimeters in root mean square error (RMSE). he horizontal datum of the Mobile Bay topobathymetric model is the North American Datum of 1983 (NAD 83), geographic coordinates. All the topographic and bathymetric datasets were originally referenced to NAD 83, and no transformations were made to the input data. The bathymetric surveys were downloaded referenced to NAD 83 geographic, and therefore no horizontal transformations were required. The topbathymetric model of Mobile Bay and detailed metadata can be obtained from the USGS Web sites: http://nationalmap.gov/.
NASA Astrophysics Data System (ADS)
Gee, L. J.; Raineault, N.; Kane, R.; Saunders, M.; Heffron, E.; Embley, R. W.; Merle, S. G.
2017-12-01
Exploration Vessel (E/V) Nautilus has been mapping the seafloor off the west coast of the United States, from Washington to California, for the past three years with a Kongsberg EM302 multibeam sonar. This system simultaneously collects bathymetry, seafloor and water column backscatter data, allowing an integrated approach to mapping to more completely characterize a region, and has identified over 1,000 seafloor seeps. Hydrographic multibeam sonars like the EM302 were designed for mapping the bathymetry. It is only in the last decade that major mapping projects included an integrated approach that utilizes the seabed and water column backscatter information in addition to the bathymetry. Nautilus mapping in the Eastern Pacific over the past three years has included a number of seep-specific expeditions, and utilized and adapted the preliminary mapping guidelines that have emerged from research. The likelihood of seep detection is affected by many factors: the environment: seabed geomorphology, surficial sediment, seep location/depth, regional oceanography and biology, the nature of the seeps themselves: size variation, varying flux, depth, and transience, the detection system: design of hydrographic multibeam sonars limits use for water column detection, the platform: variations in the vessel and operations such as noise, speed, and swath overlap. Nautilus integrated seafloor mapping provided multiple indicators of seep locations, but it remains difficult to assess the probability of seep detection. Even when seeps were detected, they have not always been located during ROV dives. However, the presence of associated features (methane hydrate and bacterial mats) serve as evidence of potential seep activity and reinforce the transient nature of the seeps. Not detecting a seep in the water column data does not necessarily indicate that there is not a seep at a given location, but with multiple passes over an area and by the use of other contextual data, an area may be classified as likely or unlikely to host seeps.
NASA Astrophysics Data System (ADS)
Luo, L.; Wang, Z.
2010-12-01
Soil Conservation Service Curve Number (SCS-CN) based hydrologic model, has widely been used for agricultural watersheds in recent years. However, there will be relative error when applying it due to differentiation of geographical and climatological conditions. This paper introduces a more adaptable and propagable model based on the modified SCS-CN method, which specializes into two different scale cases of research regions. Combining the typical conditions of the Zhanghe irrigation district in southern part of China, such as hydrometeorologic conditions and surface conditions, SCS-CN based models were established. The Xinbu-Qiao River basin (area =1207 km2) and the Tuanlin runoff test area (area =2.87 km2)were taken as the study areas of basin scale and field scale in Zhanghe irrigation district. Applications were extended from ordinary meso-scale watershed to field scale in Zhanghe paddy field-dominated irrigated . Based on actual measurement data of land use, soil classification, hydrology and meteorology, quantitative evaluation and modifications for two coefficients, i.e. preceding loss and runoff curve, were proposed with corresponding models, table of CN values for different landuse and AMC(antecedent moisture condition) grading standard fitting for research cases were proposed. The simulation precision was increased by putting forward a 12h unit hydrograph of the field area, and 12h unit hydrograph were simplified. Comparison between different scales show that it’s more effectively to use SCS-CN model on field scale after parameters calibrated in basin scale These results can help discovering the rainfall-runoff rule in the district. Differences of established SCS-CN model's parameters between the two study regions are also considered. Varied forms of landuse and impacts of human activities were the important factors which can impact the rainfall-runoff relations in Zhanghe irrigation district.
Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)
NASA Astrophysics Data System (ADS)
Shuster, William; Rhea, Lee
2013-04-01
SummaryThe effectiveness of stormwater management strategies is a key issue affecting decision making on urban water resources management, and so proper monitoring and analysis of pilot studies must be addressed before drawing conclusions. We performed a pilot study in the suburban Shepherd Creek watershed located in Cincinnati, Ohio to evaluate the practicality of voluntary incentives for stormwater quantity reduction on privately owned suburban properties. Stream discharge and precipitation were monitored 3 years before and after implementation of the stormwater management treatments. To implement stormwater control measures, we elicited the participation of citizen landowners with two successive reverse-auctions. Auctions were held in spring 2007, and 2008, resulting in the installation of 85 rain gardens and 174 rain barrels. We demonstrated an analytic process of increasing model flexibility to determine hydrologic effectiveness of stormwater management at the sub-catchment level. A significant albeit small proportion of total variance was explained by both the effects of study period (˜69%) and treatment-vs.-control (˜7%). Precipitation-discharge relationships were synthesized in estimated unit hydrographs, which were decomposed and components tested for influence of treatments. Analysis of unit hydrograph parameters showed a weakened correlation between precipitation and discharge, and support the output from the initial model that parcel-level green infrastructure added detention capacity to treatment basins. We conclude that retrofit management of stormwater runoff quantity with green infrastructure in a small suburban catchment can be successfully initiated with novel economic incentive programs, and that these measures can impart a small, but statistically significant decrease in otherwise uncontrolled runoff volume. Given consistent monitoring data and analysis, water resource managers can use our approach as a way to estimate actual effectiveness of stormwater runoff volume management, with potential benefits for management of both separated and combined sewer systems. We also discuss lessons-learned with regard to monitoring design for catchment-scale hydrologic studies.
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...
2017-09-14
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
Seasonal and weekly variability of Atlantic inflow into the northern North Sea
NASA Astrophysics Data System (ADS)
Sheehan, Peter; Berx, Bee; Gallego, Alejandro; Hall, Rob; Heywood, Karen
2017-04-01
Quantifying the variability of Atlantic inflow is necessary for managing the North Sea ecosystem and for producing accurate models for forecasting, for example, oil spill trajectories. The JONSIS hydrographic section (2.23°W to 0° at 59.28°N) crosses the path of the main inflow of Atlantic water into the northwestern North Sea. 122 occupations between 1989 and 2015 are examined to determine the annual cycle of thermohaline-driven volume transport into the North Sea. Thermohaline transport is at a minimum (0.1 Sv) during winter when it is driven by a horizontal salinity gradient across a zonal bottom front; it is at a maximum (0.35 Sv) in early autumn when it is driven by a horizontal temperature gradient that develops across the same front. The amplitude of the annual cycle of temperature-driven transport (0.15 Sv) is bigger than the amplitude of the annual cycle of salinity-driven transport (0.025 Sv). The annual cycles are approximately six months out of phase. Our quantitative results are the first to be based on a long-term dataset, and we advance previous understanding by identifying a salinity-driven flow in winter. Week-to-week variability of the Atlantic inflow is examined from ten Seaglider occupations of the JONSIS section in October and November 2013. Tidal ellipses produced from glider dive-average current observations are in good agreement with ellipses produced from tide model predictions. Total transport is derived by referencing geostrophic shear to dive-average-current observations once the tidal component of the flow has been removed. Total transport through the section during the deployment (0.5-1 Sv) is bigger than the thermohaline component (0.1-0.2 Sv), suggesting non-thermohaline forcings (e.g. wind forcing) are important at that time of year. Thermohaline transport during the glider deployment is in agreement with the annual cycle derived from the long-term observations. The addition of the glider-derived barotropic current permits a more accurate estimate of the transport than is possible from long-term hydrographic monitoring, and enables the separation of barotropic and depth-varying components. These results refine our understanding of the variability of Atlantic inflow into the North Sea on key timescales, and of the contribution of frontal flow to shelf sea circulation.
Ganju, N.K.; Knowles, N.; Schoellhamer, D.H.
2008-01-01
In this study we used hydrologic proxies to develop a daily sediment load time-series, which agrees with decadal sediment load estimates, when integrated. Hindcast simulations of bathymetric change in estuaries require daily sediment loads from major tributary rivers, to capture the episodic delivery of sediment during multi-day freshwater flow pulses. Two independent decadal sediment load estimates are available for the Sacramento/San Joaquin River Delta, California prior to 1959, but they must be downscaled to a daily interval for use in hindcast models. Daily flow and sediment load data to the Delta are available after 1930 and 1959, respectively, but bathymetric change simulations for San Francisco Bay prior to this require a method to generate daily sediment load estimates into the Delta. We used two historical proxies, monthly rainfall and unimpaired flow magnitudes, to generate monthly unimpaired flows to the Sacramento/San Joaquin Delta for the 1851-1929 period. This step generated the shape of the monthly hydrograph. These historical monthly flows were compared to unimpaired monthly flows from the modern era (1967-1987), and a least-squares metric selected a modern water year analogue for each historical water year. The daily hydrograph for the modern analogue was then assigned to the historical year and scaled to match the flow volume estimated by dendrochronology methods, providing the correct total flow for the year. We applied a sediment rating curve to this time-series of daily flows, to generate daily sediment loads for 1851-1958. The rating curve was calibrated with the two independent decadal sediment load estimates, over two distinct periods. This novel technique retained the timing and magnitude of freshwater flows and sediment loads, without damping variability or net sediment loads to San Francisco Bay. The time-series represents the hydraulic mining period with sustained periods of increased sediment loads, and a dramatic decrease after 1910, corresponding to a reduction in available mining debris. The analogue selection procedure also permits exploration of the morphological hydrograph concept, where a limited set of hydrographs is used to simulate the same bathymetric change as the actual set of hydrographs. The final daily sediment load time-series and morphological hydrograph concept will be applied as landward boundary conditions for hindcasting simulations of bathymetric change in San Francisco Bay.
Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams
NASA Astrophysics Data System (ADS)
Plitzuweit, S. J.; Springer, G. S.
2008-12-01
Channel network geometry (CNG) is a critical determinant of hydrological response and may significantly affect incision processes within the Appalachian Plateau near Richwood, West Virginia. The Williams, Cherry, and Cranberry Rivers share drainage divides and their lower reaches flow atop resistant, quartz-rich sandstones. The lower two-thirds of the Cranberry and Williams Rivers display linear profiles atop the sandstones; whereas the Cherry is concave upwards atop the sandstones. Because lithologies and geological structures are similar among the watersheds, we tested whether differences in CNGs explain the profile shapes and reach-scale channel properties. Specifically, we quantified CNG by calculating reach- specific area-distance functions using DEMs. The area-distance functions were then converted into synthetic hydrographs to model hydrological responses. The Cherry River exhibits a classic dendritic drainage pattern, producing peaked hydrographs and low interval transit times. The Cranberry River displays a trellis-like drainage pattern, which produces attenuated hydrographs and high interval transit times. The upstream reaches of the Williams River have a dendritic drainage pattern, but the lower two-thirds of the watershed transitions into an elongated basin with trellis-like CNG. Reach gradients are steeper in the lower reaches of the Williams and Cranberry Rivers where hydrographs are attenuated. In contrast, peaked hydrographs within the Cherry River are associated with lower reach gradients despite resistant sandstone channel beds. Trellis-like CNG may restrict the ability of downstream reaches within the Williams and Cranberry Rivers to achieve the critical discharge needed to cause incision during floods (all other things being equal). If so, increased reach gradients may be hydraulic adjustments that compensate for comparatively low discharges. We are now applying the synthetic hydrographs to HEC-RAS flow models generated from field channel surveys in order to analyze whether stream power and shear stress are adjusted to reflect CNG at the reach- scale. These models are compared to those with discharges calculated using drainage area and precipitation totals alone. We conclude that gradients in bedrock mountain streams may reflect basin-scale hydrology (CNG) and not simply local geological or geomorphic factors. This challenges the conclusions of others who ascribe local channel adjustments to: i) lithology and structure alone, or ii) local colluvium grain sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Miller, Julianne J.
Accurate precipitation frequency data are important for Environmental Management Soils Activities on the Nevada National Security Site (NNSS). These data are important for environmental assessments performed for regulatory closure of Soils Corrective Action Unit (CAU) Sites, as well as engineering mitigation designs and post-closure monitoring strategies to assess and minimize potential contaminant migration from Soils CAU Sites. Although the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (Bonnin et al., 2011) provides precipitation frequency data for the NNSS area, the NNSS-specific observed precipitation data were not consistent with the NOAA Atlas 14 predicted data. This is primarily due to themore » NOAA Atlas 14 products being produced from analyses without including the approximately 30 NNSS precipitation gage records, several of which approach or exceed 50 year of record. Therefore, a study of precipitation frequency that incorporated the NNSS precipitation gage records into the NOAA Atlas 14 dataset, was performed specifically for the NNSS to derive more accurate site-specific precipitation data products. Precipitation frequency information, such as the depth-duration-frequency (DDF) relationships, are required to generate synthetic standard design storm hydrographs and assess actual precipitation events. In this study, the actual long-term NNSS precipitation gage records, some of which are the longest gage records in southern and central Nevada, were analyzed to allow for more accurate precipitation DDF estimates to be developed for the NNSS. Gridded maps of precipitation frequency for the NNSS and surrounding areas were then produced.« less
NASA Astrophysics Data System (ADS)
Bhattarai, K. P.; O'Connor, K. M.
2003-04-01
Inefficient natural land drainage and the consequent frequent flooding of rivers are a problem of particular significance to the Irish economy. Such problems can be attributed less to the amount of annual rainfall, than to the topological configuration of Ireland. Its high maritime rim and relatively flat interior results in poor river gradients, intercepted by many lakes. As a remedial measure to tackle these problems, Arterial Drainage Schemes (ADSs) were started in Ireland from as early as the beginning of the nineteenth century. The major activities carried out under ADSs have been the deepening and widening of channels to increase their discharge-carrying capacity, which naturally affected the hydrological behaviour of the catchments involved. Earlier studies carried out in order to assess the effects of such ADSs on the hydrological behaviour of Irish catchments were concentrated mainly on comparisons of unit hydrographs and relationship between flood peaks of pre- and post-drainage periods. The present study, carried out on the River Brosna catchment in Ireland, concentrates on assessing the changes in the rainfall runoff transformation process, by using the conceptual Soil Moisture Accounting and Routing Model (SMAR), one of the constituent models of the "Galway River Flow Modelling and Forecasting System (GFMFS)" software package. Hydro-meteorological data of the pre-drainage (1942--1947) and post-drainage (1954--2000) periods have been used in this study. The results of the present study show that, for similar patterns of rainfall, the catchment produces higher annual maximum daily flows, and lower annual minimum daily flows in the post-drainage period than in the pre-drainage period. Moreover, the post-drainage unit hydrographs are more "peaky" and have quicker recessions than the pre-drainage counterparts, thus confirming the findings of the earlier studies. It is also observed that, apart from the expected pre-to-post-drainage change, the nature of the catchment response throughout the post-drainage period has not remained the same as it reverted to pre-drainage-like behaviour after the first one-and-a-half decades (around 1969), indicating that the effects of the ADS had died out over that time. This behaviour was also confirmed by comparing the evolving nature of the unit hydrograph produced for a five-year moving calibration window period from 1959 to 1974. It is unclear at this point whether this change was due to the observed reduction in rainfall in the mid-seventies, inefficient maintenance of the channels, land subsidence following drainage, changes in land use, urbanization, climate change, or some other factors or combinations. The results of the present study further show that, during the nineties, the response pattern changed back again to something akin to early post-drainage-like behaviour, the reason for which is even less clear but obviously can not be attributed to the ADS. Further investigations are currently underway to try to explain such changes in the catchment response to rainfall and also to establish if similar changes occurred on other Irish catchments which also underwent arterial drainage schemes.
NASA Astrophysics Data System (ADS)
Brigandı, G.; Aronica, G. T.; Basile, G.; Pasotti, L.; Panebianco, M.
2012-04-01
On November 2011 a thunderstorms became almost exceptional over the North-East part of the Sicily Region (Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The storm was concentrated on the Tyrrhenian sea coast near the city of Barcellona within the Longano catchment. Main focus of the paper is to present an experimental operative system for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds, soil moisture indexes and quantitative precipitation forecasting. As matter of fact, shallow landslide and flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. It is well known how the triggering of shallow landslides is strongly influenced by the initial soil moisture conditions of catchments. Therefore, the early warning system here applied is based on the combined use of rainfall thresholds, derived both for flash flood and for landslide, and soil moisture conditions; the system is composed of several basic component related to antecedent soil moisture conditions, real-time rainfall monitoring and antecedent rainfall. Soil moisture conditions were estimated using an Antecedent Precipitation Index (API), similar to this widely used for defining soil moisture conditions via Antecedent Moisture conditions index AMC. Rainfall threshold for landslides were derived using historical and statistical analysis. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. After the implementation and calibration of the model, a testing phase was carried out by using real data collected for the November 2001 event in the Longano catchment. Moreover, in order to test the capability of the system to forecast thise event, Quantitative Precipitation Forecasting provided by the SILAM (Sicily Limited Area Model), a meteorological model run by SIAS (Sicilian Agrometeorological Service) with a forecast horizon up to 144 hours, have been used to run the system.
Dunn, David D.; Solis, R.S.; Ockerman, D.J.
1997-01-01
A hydrographic survey of Sabine Lake, a broad, shallow estuary lying on the Texas-Louisiana border, was conducted in June 1996 to help address questions relating to potential environmental effects of future water demands in Texas. The use of a variety of new instruments in this study is one means by which automation is improving efficiency and effectiveness of these efforts by increasing the quality and quantity of data collected.
Fasser, E.T.; Julich, R.J.
2009-01-01
Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.
CCHDO: Data Management for US and International GO-SHIP and Related Programs
NASA Astrophysics Data System (ADS)
Diggs, S. C.
2016-02-01
An ever-expanding universe of oceanographic data that includes ship-based measurements (CTD, Nutrients, CFCs, etc.) - as well as the data collected from floats, drifters, gliders and moorings - are continuously gathered, scrutinized, documented and disseminated by the CLIVAR and Carbon Hydrographic Data Office (CCHDO) at Scripps Institution of Oceanography. As the official data assembly center for US GO-SHIP (a decadal global hydrography program) the CCHDO is involved in setting and promoting standards of modern data exchange - from observations at sea to final archive. Established in 1996, the CCHDO has a solid history of curating the highest quality full-depth hydrographic data and associated documentation, metadata and DOIs on an API-based web site that provides data in multiple formats and platforms that have been specifically requested by the hydrographic research community. The CCHDO's website, programming platforms, and documentation standards constantly evolve, based on the feedback we receive from the hydrographic community. Technical convergence and collaboration with organizations that include CDIAC, Princeton, NOAA/NCEI, Argo, OceanSITES, BCO-DMO and GO-SHIP is central to our success. We were early adopters of small crowd-sourcing for quality control, and by being involved in all aspects of data use we reintegrate suggested changes to the data, flags and documentation supplied by the most highly recognized and regarded hydrography researchers and institutions in the world.
NASA Astrophysics Data System (ADS)
He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno
2018-03-01
This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.
NASA Astrophysics Data System (ADS)
Cooper, C.; Nayegandhi, A.; Faux, R.
2013-12-01
Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.
NASA Astrophysics Data System (ADS)
Widyastuti, M.; Fatchurohman, H.; Fathoni, W. A.; Hakim, A. A.; Haryono, E.
2018-04-01
Karst aquifer stores abundant water resources within its matrix, conduits, and intergranular pores. Karst aquifer plays an important role in providing water supply, especially in the areas nearby that commonly dry and lack of surface water resources. Karst spring hydrograph analysis is very fundamental step to–assess and determines the condition of the catchment area in karst terrain. Recession curve is believed to be the most stable part in single flood hydrograph that represents the aquifer characteristics. Nyadeng is one of the most significant karst springs that located in Merabu Karst Area, East Borneo. Villagers in Merabu highly depend on Nyadeng Spring for fulfilled their freshwater need. Hydrograph monitoring has been initiated for one year in Nyadeng Spring as a preliminary action for karst water management in Merabu. Water level data series obtained using automatic water level data logger and then correlated with manual discharge measurement to generate stage-discharge rating curve. The stage-discharge rating curve formula for Nyadeng Spring calculated as y = 0,0102e5,8547x with r2 value = 0.8759. From the combination of several single flood events, Master Recession Curve (MRC) was generated to determine flow regime as the main consideration for karstification degree calculation. From the MRC result, flow regimes formula determined as Qt = 3.2-0.001t + 1.2(1-0.012t)+1.6(1-0.035t) indicated that one sub-regime with laminar flow and two sub-regimes with turbulent flow existed. From the MRC formula, the degree of karstification in Nyadeng Spring classified at seventh scale (developed karstification of the aquifer) based on Malik’s karstification degree (2012). The degree of karstification in Nyadeng Spring indicates that the aquifer formed by large conduit channels, fissures, and macro fissures which are able to provide significant water sources that can be utilized for multi purposes. Therefore, it is concluded that spring hydrograph monitoring provide essential information in order to establish a careful water resources management actions.
NASA Astrophysics Data System (ADS)
Hurst, A. A.; Anderson, R. S.; Tucker, G. E.
2017-12-01
Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and landscape evolution over longer timescales.
NASA Astrophysics Data System (ADS)
Bond, C. E.; Howell, J.; Butler, R.
2016-12-01
With an increase in flood and storm events affecting infrastructure the role of weather systems, in a changing climate, and their impact is of increasing interest. Here we present a new workflow integrating crowd sourced imagery from the public with UAV photogrammetry to create, the first 3D hydrograph of a major flooding event. On December 30th 2015, Storm Frank resulted in high magnitude rainfall, within the Dee catchment in Aberdeenshire, resulting in the highest ever-recorded river level for the Dee, with significant impact on infrastructure and river morphology. The worst of the flooding occurred during daylight hours and was digitally captured by the public on smart phones and cameras. After the flood event a UAV was used to shoot photogrammetry to create a textured elevation model of the area around Aboyne Bridge on the River Dee. A media campaign aided crowd sourced digital imagery from the public, resulting in over 1,000 images submitted by the public. EXIF data captured by the imagery of the time, date were used to sort the images into a time series. Markers such as signs, walls, fences and roads within the images were used to determine river level height through the flood, and matched onto the elevation model to contour the change in river level. The resulting 3D hydrograph shows the build up of water on the up-stream side of the Bridge that resulted in significant scouring and under-mining in the flood. We have created the first known data based 3D hydrograph for a river section, from a UAV photogrammetric model and crowd sourced imagery. For future flood warning and infrastructure management a solution that allows a realtime hydrograph to be created utilising augmented reality to integrate the river level information in crowd sourced imagery directly onto a 3D model, would significantly improve management planning and infrastructure resilience assessment.
1981-07-01
3 1982 Distribution/ Availability Codes Avall and/or D Dist Special orb .5., .1.: A -AI@O sT;!u ,_.,’ - . .. - .... .... .... . . .. ... .. f...OP YI Reproduction in whc~1e or in pazt is perntted for any purpose of the United States Govexzemnt. Appoved for pibaic release; distribdtion unimit( d ...0 rtW Q) <u Q) 410 ()I rI (n > CU) U jpw ULLI 1 ( D V7 0 ( 4-J~a’~ U) -’aro a’)4UU U)-OQ oa , (U 1 r U) 0 Lf)U) U)U) V) Q) 0 > Qz Wu C) m C .HH1
Hydrography synthesis using LANDSAT remote sensing and the SCS models
NASA Technical Reports Server (NTRS)
Ragan, R. M.; Jackson, T. J.
1976-01-01
The land cover requirements of the Soil Conservation Service (SCS) Model used for hydrograph synthesis in urban areas were modified to be LANDSAT compatible. The Curve Numbers obtained with these alternate land cover categories compare well with those obtained in published example problems using the conventional categories. Emergency spillway hydrographs and synthetic flood frequency flows computed for a 21.1 sq. mi. test area showed excellent agreement between the conventional aerial photo-based and the Landsat-based SCS approaches.
Establishment of Hydrographic Shore Control by Doppler Satellite Techniques.
1984-06-01
entered in 8116,h 20. if different tromn Report) 10.SPAccuNTRaY NSdrs AHOacurcystndrd, raslcaio, IS. AEY WRDC (Continue en roer@e side it necessary And...the Defense Mapping Agency, Hydrographic-Topographlc Center (DMA-HTC); the ephemerides are computed and distributed by the DMA-HTC [Ref. 3J. The...all,_ C: En m zz E-4~E- 0 .4 0 = 0 z 4 .4 z 4 c -4 4 1 0j 0 heU 7 60 VIII. ACCURACY STANDARDS AND SPECIFICATIONS A. CURRENT ACCURACY
Analysis of water-level fluctuations in Wisconsin wells
Patterson, G.L.; Zaporozec, A.
1987-01-01
Long-term trends are apparent on hydrographs of wells Br-46, Mr-2S, Pt-276, Ro-3, and Ve-8. The trend of average annual water levels has been generally increasing since the late 1950's and is in general agreement with the increasing trend of precipitation. Hydrographs of well Ve-8, which has the longest period of record in Wisconsin, indicate that the generally rising trend started even earlier at the end of an extensive drought period in the 1930's.
Soenksen, P.J.
1990-01-01
Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.
Sea Ice and Hydrographic Variability in the Northwest North Atlantic
NASA Astrophysics Data System (ADS)
Fenty, I. G.; Heimbach, P.; Wunsch, C. I.
2010-12-01
Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.
A Flash Flood Study on the Small Montaneous River Catchments in Western Romania
NASA Astrophysics Data System (ADS)
Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël
2013-04-01
The present study focuses on flash flood modeling on several mountaneous catchments situated in Western Romania by the use of two methodologies, when rainfall and catchment characteristics are known. Hence, the Soil Conservation Service (SCS) Method and the Rational Method will be employed for the generation of the 1%, 2% and 10% historical flash flood hydrographs on the basis of data spanning from 1989-2009. The SCS Method has been applied on the three gauged catchments in the study area: Petris, Troas and Monorostia making use of the existing interconnection between GIS and the rainfall-runoff models. The DEM, soil data and land use preprocessing in GIS allowed a determination of the hydrologic parameters needed for the rainfall-runoff model, with special emphasis on determining the time of concentration, Lag time and the weighted Curve Number according to Antecedent Moisture Conditions II, adapted for the Romanian territory. HEC-HMS rainfall-runoff model (Hydrologic Engineering Center- Hydrologic Modeling System) facilitates the historical 1%, 2% and 10% flash flood hydrograph generation for the three afore mentioned watersheds. The model is calibrated against measured streamflow data from the three existing gauging stations. The results show a good match between the resulted hydrographs and the observed hydrographs under the form of the Peak Weighted Error RMS values. The hydrographs generated by surface runoff on the ungauged catchments in the area is based on an automation of a workflow in GIS, built with ArcGIS Model Builder graphical interface, as a large part of the functions needed were available as ArcGIS tools. The several components of this model calculate: the runoff depth in mm, the runoff coefficient, the travel time and finally the discharge module which is an application of the rational method, allowing the discharge computation for every cell within the catchment. The result consists of discharges for each isochrones that will be subsequently interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".
Accounting for Rainfall Spatial Variability in Prediction of Flash Floods
NASA Astrophysics Data System (ADS)
Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.
2016-12-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
Accounting for rainfall spatial variability in the prediction of flash floods
NASA Astrophysics Data System (ADS)
Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.
2017-04-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
Reducing calibration parameters to increase insight in catchment organization and similarity
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Onof, Christian
2013-04-01
Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.
High-mountain lakes as a hotspot of dissolved organic matter production in a changing climate
NASA Astrophysics Data System (ADS)
Abood, P. H.; Williams, M. W.; McKnight, D. M.; Hood, E. H.
2004-12-01
Changes in climate may adversely affect mountain environments before downstream ecosystems are affected. Steep topography, thin soils with limited extent, sparse vegetation, short growing seasons, and climatic extremes (heavy snowfalls, cold temperatures, high winds), all contribute to the sensitivity of high mountain environments to perturbations. Here we evaluate the role of oligatrophic high-elevation lakes as "hot spots" of aquatic production that may respond to changes in temperature, precipitation amount, and pollution deposition faster and more directly than co-located terrestrial ecosystems. Our research was conducted in the Rocky Mountains, USA. Water samples were collected for dissolved organic carbon (DOC), other solutes, and water isotopes over the course of the runoff season along a longitudinal transect of North Boulder Creek in the Colorado Front Range from the continental divide and alpine areas to downstream forested systems. Sources of DOC were evaluated using chemical fractionation with XAD-8 resins and fluorescence spectroscopy. There was net DOC production in the two alpine lakes but not for the forested subalpine lake. Oxygen-18 values showed that water residence times in lakes increased dramatically in late summer compared to snowmelt. Chemical fractionation of DOC showed there was a increase in the non-humic acid content across the summer of 2003 at all elevations, with alpine waters showing greater increases than subalpine waters. The fluorescence properties of DOC and water isotopes suggested that DOC in aquatic systems was primarily derived from terrestrial precursor material during snowmelt. However, fluorescence properties of DOC in high-elevation lakes on the recession limb of the hydrograph suggest DOC derived from algal and microbial biomass in the lakes was a more important source of DOC in late summer and fall. Alpine lakes produced 14 times more DOC on unit area basis compared to the surrounding terrestrial ecosystems. We hypothesize that much of the authochthonous production is a result of algal growth in alpine lakes caused by the increases in nitrogen deposition from wetfall.
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S. M.; Melling, H.; McLaughlin, F. A.; Kwok, R.; Smethie, W. M.; Schlosser, P.
2013-09-01
Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008-2010, the freshest surface waters in the western Lincoln Sea show water mass properties similar to fresh Canada Basin waters north of the Canadian Arctic Archipelago. In the northeastern Lincoln Sea fresh surface waters showed a strong link with those observed in the Makarov Basin near the North Pole. The freshening in the Lincoln Sea was associated with a return of a subsurface Pacific Water temperature signal although this was not as strong as observed in the early 1990s. Comparison of repeat stations from the 2000s with the data from the 1990s at 65°W showed an increase of the Atlantic temperature maximum which was associated with the arrival of warmer Atlantic water from the Eurasian Basin. Satellite-derived dynamic ocean topography of winter 2009 showed a ridge extending parallel to the Canadian Archipelago shelf as far as the Lincoln Sea, causing a strong flow toward Nares Strait and likely Fram Strait. The total volume of anomalous freshwater observed in the Lincoln Sea and exported by 2011 was close to 1100±250km3, approximately 13% of the total estimated FW increase in the Arctic in 2008.
A Novel Method of Measuring Upwelling Radiance in the Hydrographic Sub-Hull
NASA Astrophysics Data System (ADS)
Rüssmeier, N.; Zielinski, O.
2016-01-01
In this study we present a new method useful in collecting upwelling radiance (Lu) from a platform submerged in a hydrographic sub-hull or moon pool of a research vessel. The information analyzed here was obtained during a field campaign in the Northwestern European shelf seas aboard the new research vessel SONNE. As the platform was located at the center of the ship, there is minimal effect from pitch and roll which is known to influence upwelling radiance observations. A comparison of the measurements from this platform with a free falling hyperspectral profiler was performed to determine the degree of uncertainty that results from ship shadow. For given Lu(λ) in situ data we observed ±33% intensity deviations compared to profiling measurements that can be attributed to instrument shading during moon pool installation and environmental perturbations. Furthermore Lu(λ) in situ spectra variations were observed at lower wavelengths, therefore a form fitting algorithm was adapted to receive corresponding depths with identical spectral form from Lu(z, λ) profiler casts. During an east to west transect in North Sea with a schedule speed up to 12 knots in situ radiance reflectance rrs(7, λ) measurements at 7 meter depth were performed with this novel radiometer setup. In spite of any restrictions originating from the sub-hull installation, water masses mixing zone from CDOM dominated coastal waters in the Skagerrak Strait towards the open North Sea were successfully derived thus offering an underway applicable upwelling radiance sensing not suffering from sun glint or other typical restrictions of above water radiometer installations.
Effects of Varying Cloud Cover on Springtime Runoff in California's Sierra Nevada
NASA Astrophysics Data System (ADS)
Sumargo, E.; Cayan, D. R.
2017-12-01
This study investigates how cloud cover modifies snowmelt-runoff processes in Sierra Nevada watersheds during dry and wet periods. We use two of the California Department of Water Resources' (DWR's) quasi-operational models of the Tuolumne and Merced River basins developed from the USGS Precipitation-Runoff Modeling System (PRMS) hydrologic modeling system. Model simulations are conducted after a validated optimization of model performance in simulating recent (1996-2014) historical variability in the Tuolumne and Merced basins using solar radiation (Qsi) derived from Geostationary Operational Environmental Satellite (GOES) remote sensing. Specifically, the questions we address are: 1) how sensitive are snowmelt and runoff in the Tuolumne and Merced River basins to Qsi variability associated with cloud cover variations?, and 2) does this sensitivity change in dry vs. wet years? To address these question, we conduct two experiments, where: E1) theoretical clear-sky Qsi is used as an input to PRMS, and E2) the annual harmonic cycle of Qsi is used as an input to PRMS. The resulting hydrographs from these experiments exhibit changes in peak streamflow timing by several days to a few weeks and smaller streamflow variability when compared to the actual flows and the original simulations. For E1, despite some variations, this pattern persists when the result is evaluated for dry-year and wet-year subsets, reflecting the consistently higher Qsi input available. For E2, the hydrograph shows a later spring-summer streamflow peak in the dry-year subset when compared to the original simulations, indicating the relative importance of the modulating effect of cloud cover on snowmelt-runoff in drier years.
NASA Astrophysics Data System (ADS)
Mueller, David S.
2013-04-01
Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.
NASA Astrophysics Data System (ADS)
Xu, Bin; Ye, Ming; Dong, Shuning; Dai, Zhenxue; Pei, Yongzhen
2018-07-01
Quantitative analysis of recession curves of karst spring hydrographs is a vital tool for understanding karst hydrology and inferring hydraulic properties of karst aquifers. This paper presents a new model for simulating karst spring recession curves. The new model has the following characteristics: (1) the model considers two separate but hydraulically connected reservoirs: matrix reservoir and conduit reservoir; (2) the model separates karst spring hydrograph recession into three stages: conduit-drainage stage, mixed-drainage stage (with both conduit drainage and matrix drainage), and matrix-drainage stage; and (3) in the mixed-drainage stage, the model uses multiple conduit layers to present different levels of conduit development. The new model outperforms the classical Mangin model and the recently developed Fiorillo model for simulating observed discharge at the Madison Blue Spring located in northern Florida. This is attributed to the latter two characteristics of the new model. Based on the new model, a method is developed for estimating effective porosity of the matrix and conduit reservoirs for the three drainage stages. The estimated porosity values are consistent with measured matrix porosity at the study site and with estimated conduit porosity reported in literature. The new model for simulating karst spring hydrograph recession is mathematically general, and can be applied to a wide range of karst spring hydrographs to understand groundwater flow in karst aquifers. The limitations of the model are discussed at the end of this paper.
Sedimentation and bathymetric change in San Pablo Bay, 1856-1983
Jaffe, Bruce E.; Smith, Richard E.; Torresan, Laura Zink
1998-01-01
A long-term perspective of erosion and deposition in San Francisco Bay is vital to understanding and managing wetland change, harbor and channel siltation, and other sediment-related phenomena such as particle and particle-associated substance (pollutants, trace metals, etc.) transport and deposition. A quantitative comparison of historical hydrographic surveys provides this perspective. This report presents results of such a comparison for San Pablo Bay, California. Six hydrographic surveys from 1856 to 1983 were analyzed to determine long-term changes in the sediment system of San Pablo Bay. Each survey was gridded using surface modeling software. Changes between survey periods were computed by differencing grids. Patterns and volumes of erosion and deposition in the Bay are derived from difference grids. More than 350 million cubic meters of sediment was deposited in San Pablo Bay from 1856 to 1983. This is equivalent to a Baywide accumulation rate of approximately 1 cm/yr. However, sediment deposition was not constant over time or throughout the Bay. Over two-thirds of that sediment was debris from hydraulic mining that accumulated from 1856 to 1887. During this period, deposition occurred in nearly the entire Bay. In contrast, from 1951 to 1983 much of the Bay changed from being depositional to erosional as sediment supply diminished and currents and waves continued to remove sediment from the Bay. The decrease in sediment supply is likely the result of upstream flood-control and water-distribution projects that have reduced peak flows, which are responsible for the greatest sediment transport. One consequence of the change in sedimentation was a loss of about half of the tidal flat areas from the late 1800's to the 1980's. Change in sedimentation must also have affected flow in the Bay, areas where polluted sediments were deposited, exchange of sediment between the nearshore and wetlands, and wave energy reaching the shoreline that was available to erode wetlands. Further work is needed. Studies of historical wetland change and the relationship between change and man-made and natural influences would be valuable for developing sound wetland management plans. Additionally, extending the historical hydrographic and wetland change analyses eastward into Suisun Bay will improve the understanding of the North Bay sediment system.
NASA Astrophysics Data System (ADS)
Schumann, Andreas; Oppel, Henning
2017-04-01
To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark model setups (lumped and semi-distributed by common approaches) to address the benefits for different time and spatial scales. Moreover, the benefits for calibration effort, model performance in validation periods and process extrapolation are shown.
Peak flow estimation in ungauged basins by means of water level data analysis
NASA Astrophysics Data System (ADS)
Corato, G.; Moramarco, T.; Tucciarelli, T.
2009-04-01
Discharge hydrograph estimation in rivers is usually carried out by means of water level measurements and the use of a water depth - discharge relationship. The water depth - discharge curve is obtained by integrating local velocities measured in a given section at specified water depth values. To build up such curve is very expensive and very often the highest points, used for the peak flow estimation, are the result of rough extrapolation of points corresponding to much lower water depths. Recently, discharge estimation methodologies based only on the analysis of synchronous water level data recorded in two different river sections far some kilometers from each other have been developed. These methodologies are based only on the analysis of the water levels, the knowledge of the river bed elevations within the two sections, and the use of a diffusive flow routing numerical model. The bed roughness estimation, in terms of average Manning coefficient, is carried out along with the discharge hydrograph estimation. The 1D flow routing model is given by the following Saint Venant equations, simplified according to the diffusive hypothesis: -+ q-= 0 t x (1) h+ (Sf - S0) = 0 x (2) where q(x,t) is the discharge, h(x,t) is the water depth, Sf is the energy slope and S0 is the bed slope. The energy slope is related to the average n Manning coefficient by the Chezy relationship: -q2n2- Sf = 2â43 (3) whereâ is the hydraulic radius and gs the river section. The upstream boundary condition of the flow routing model is given by the measured upstream water level hydrograph. The computational domain is extended some kilometers downstream the second measurement section and the downstream boundary condition is properly approximated. This avoids the use of the downstream measured data for the solution of the system (1)-(3) and limits the model error even in the case of subcritical flow. The optimal average Manning coefficient is obtained by fitting the water level data available in the downstream measurement section with the computed ones. The optimal discharge hydrograph estimated in the upstream measurement section is given by the function q(0,t) computed in the first section (where x = 0) using the optimal Manning coefficient. Two different fitting quality criteria are compared and their practical implications are discussed; the first one is the equality of the computed and the measured time peak lag between the first and the second measurement section; the second one is the minimization of the total square error between the measured and the computed downstream water level hydrographs. The uniqueness and identifiability properties of the associated inverse problem are analyzed, and a model error analysis is carried out addressing the most relevant sources of error arising from the adopted approximations. Three case studies previously used for the validation of the proposed methodology are reviewed. The first two are water level hydrographs collected in two sections of the Arno river (Tuscany, Italy) and the Tiber river (Umbria, Italy). Water level and discharge hydrographs recorded during many storm events were available in both cases. The optimal average Manning coefficient has been estimated in both cases using the data of a single event, properly selected among all the available ones. In the third case, concerning hystorical data collected in a small tributary of the Tanagro river (Campania, Italy), three water level hydrographs were measured in three different sections of the channel. This allowed to carry on the discharge estimation using the data collected in only two of the three sections, using the data of the third one for validation. The results obtained in the three test cases highlight the advantages and the limits of the adopted analysis. The advantage is the simplicity of the hardware required for the data acquisition, that can be easily performed continuously in time, also during very bad weather conditions and using a long distance control. A first limit is the assumption of negligible inflow between the two measurement sections. Because the distance between the two sections must be large enough to measure the time lag between the two hydrographs, this limit can result in a difficult selection of the measurement sections. A second limit is the real heterogeneity of the bed roughness, that provides a shape of the water level hydrograph different from the computed one. Preliminary results of a new, multiparametric data analysis, are finally presented.
NASA Technical Reports Server (NTRS)
Blanco, J.; Thomas, A.; Strub, T.; Carr, M.
2000-01-01
The evolution of oceanographic conditions in the upwelling region off northern Chile (18(sup o) - 24(sup o)S) betweeen 1996 and 1998 (including 1997-1998 El Nino) is presented using hydrographic measurements acquired on quarterly cruises of the Chilean Fisheries Institute, sea-surface temperature (SST), sea level, and wind speeds from Arica (18.5(sup o)S), Iquique (20.5(sup o)S), and Antofagasta (23.5(sup o)S), and a time series of vertical temperature profiles off Iquique.
1990-09-01
1893 and 1921 Mississippi River Commission Chart 72; ca. 1930s Caving Bank Survey Map; Mississippi River Hydrographic Survey Chart 41; and the U.S.G.S...of 1876-1893 and 1921 Mississippi River Commission Charts 72, the Caving Bank survey (ca. 1940s-1970s) map, the Mississippi River Hydrographic Survey... Chart (41), and the U.S.G.S. 7.5’ Lutcher, LA quadrangle, were used to examine patterns of erosion, stability, and bankline aggradation. The batture
1988-06-30
Issue Number 24 .n .D A u tio U nb~ t d "’(’jj ’)[ Commonwealth of Australia ’ -I REPORT by the Hydrographer, Royal Australian Navy Commodore J . S...Remotely Operated Vehicles - HYDLAPS Data Management System - G.P.S. - HP85 Replacement j I /I 4 i 4 Cc t ~ (4 0 I a A w --- -- - - -- - - - 0 Alii aja, 0U...Australian Oceanographic Data Centre.............................................10l""*,,**"",,11*".*,,I t Naval Weather Centre
Brinda, S; Bragadeeswaran, S
2005-01-01
Studies on the economically important juvenile fin-fishes such as Elops machnata, Chanos chanos, Lates calcarifer, Epinephelus sp., Sillago sihama, Etroplus suratensis, Mugil cephalus, Liza parsia and Liza tade with relation to the hydrographical parameters as rainfall, temperature, salinity, dissolved oxygen and pH of Vellar estuary during September 2001 to August 2002. The simple correlation co-efficient showed positive significance against juvenile density with water temperature and dissolved oxygen. The influence of hydrographical parameters to the fin-fishes and its abundance is discussed.
Remote sensing of rainfall for flash flood prediction in the United States
NASA Astrophysics Data System (ADS)
Gourley, J. J.; Flamig, Z.; Vergara, H. J.; Clark, R. A.; Kirstetter, P.; Terti, G.; Hong, Y.; Howard, K.
2015-12-01
This presentation will briefly describe the Multi-Radar Multi-Sensor (MRMS) system that ingests all NEXRAD and Canadian weather radar data and produces accurate rainfall estimates at 1-km resolution every 2 min. This real-time system, which was recently transitioned for operational use in the National Weather Service, provides forcing to a suite of flash flood prediction tools. The Flooded Locations and Simulated Hydrographs (FLASH) project provides 6-hr forecasts of impending flash flooding across the US at the same 1-km grid cell resolution as the MRMS rainfall forcing. This presentation will describe the ensemble hydrologic modeling framework, provide an evaluation at gauged basins over a 10-year period, and show the FLASH tools' performance during the record-setting floods in Oklahoma and Texas in May and June 2015.
3D SPH numerical simulation of the wave generated by the Vajont rockslide
NASA Astrophysics Data System (ADS)
Vacondio, R.; Mignosa, P.; Pagani, S.
2013-09-01
A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event. Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.
Li, Wei; Wang, Mengmeng; Pan, Haoqin; Burgaud, Gaëtan; Liang, Shengkang; Guo, Jiajia; Luo, Tian; Li, Zhaoxia; Zhang, Shoumei; Cai, Lei
2018-01-01
How ocean currents shape fungal transport, dispersal and more broadly fungal biogeography remains poorly understood. The East China Sea (ECS) is a complex and dynamic habitat with different water masses blending microbial communities. The internal transcribed spacer 2 region of fungal rDNA was analysed in water and sediment samples directly collected from the coastal (CWM), Kuroshio (KSWM), Taiwan warm (TWM) and the shelf mixed water mass (MWM), coupled with hydrographic properties measurements, to determine how ocean currents impact the fungal community composition. Almost 9k fungal operational taxonomic units (OTUs) spanning six phyla, 25 known classes, 102 orders and 694 genera were obtained. The typical terrestrial and freshwater fungal genus, Byssochlamys, was dominant in the CWM, while increasing abundance of a specific OTU affiliated with Aspergillus was revealed from coastal to open ocean water masses (TWM and KSWM). Compared with water samples, sediment harboured an increased diversity with distinct fungal communities. The proximity of the Yangtze and Qiantang estuaries homogenizes the surface water and sediment communities. A significant influence of ocean currents on community structure was found, which is believed to reduce proportionally the variation explained by environmental parameters at the scale of the total water masses. Dissolved oxygen and depth were identified as the major parameters structuring the fungal community. Our results indicate that passive fungal dispersal driven by ocean currents and river run-off, in conjunction with the distinct hydrographic conditions of individual water masses, shapes the fungal community composition and distribution pattern in the ECS. © 2017 John Wiley & Sons Ltd.
Rhea, Lee; Jarnagin, Taylor; Hogan, Dianna; Loperfido, J. V.; Shuster, William
2015-01-01
Understanding the efficacy of revised watershed management methods is important to mitigating the impacts of urbanization on streamflow. We evaluated the influence of land use change, primarily as urbanization, and stormwater control measures on the relationship between precipitation and stream discharge over an 8-year period for five catchments near Clarksburg, Montgomery County, Maryland, USA. A unit-hydrograph model based on a temporal transfer function was employed to account for and standardize temporal variation in rainfall pattern, and properly apportion rainfall to streamflow at different time lags. From these lagged relationships, we quantified a correction to the precipitation time series to achieve a hydrograph that showed good agreement between precipitation and discharge records. Positive corrections appeared to include precipitation events that were of limited areal extent and therefore not captured by our rain gages. Negative corrections were analysed for potential causal relationships. We used mixed-model statistical techniques to isolate different sources of variance as drivers that mediate the rainfall–runoff dynamic before and after management. Seasonal periodicity mediated rainfall–runoff relationships, and land uses (i.e. agriculture, natural lands, wetlands and stormwater control measures) were statistically significant predictors of precipitation apportionment to stream discharge. Our approach is one way to evaluate actual effectiveness of management efforts in the face of complicating circumstances and could be paired with cost data to understand economic efficiency or life cycle aspects of watershed management. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Steinbacher, Frank; Baran, Ramona; Dobler, Wolfgang; Aufleger, Markus
2013-04-01
Repetitive surveying of inshore waters and coastal zones is becoming more and more essential in order to evaluate water-level dynamics, structural and zonal variations of rivers and riparian areas, river degradation, water flow, reservoir sedimentation, delta growth, as well as coastal processes. This can only be achieved in an effective manner by employing hydrographic airborne laser scanning (hydromapping). A new laser scanner is introduced, which has been specifically designed for the acquisition of high-resolution hydrographic data in order to survey and monitor inland waters and shallow coastal zones. Recently, this scanner has been developed within the framework of an Austrian research cooperation between Riegl LMS and the Unit of Hydraulic Engineering at the University of Innsbruck. We present exemplary measurement results obtained with the compact airborne laser-scanning system during our project work. Along the Baltic Sea coast northeast of Kiel city, northern Germany, we obtained measurement depths up to 8 m under clear-water conditions. Moreover, we detect underwater dune-structures and the accumulation of sediment within groin structures. In contrast, under turbid water conditions we obtained depths of approximately 3 m along the Rhine River at Rheinfelden, German-Swiss border east of Basel city. Nevertheless, we were able to map small-scale and complex morphologic features within a fish ramp or bedrock cliffs. The laser data had been combined with sonar measurements displaying the bathymetry at depths of ca. 2-25 m in order to document comprehensively the actual hydrographic setting after the new construction of the hydropower plant Rheinfelden. In summary, a high-resolution spatial view on the ground of various waterbodies is now possible for the first time with point densities in the usual range of approximately 10-20 points/m². However, the combination of these data with high-resolution aerial (approximately < 5 cm/pixel) or spectral images offers a variety of new opportunities for further analysis. Lastly, the combined datasets - all of them captured during a single flight including topography, bathymetry, aerial and spectral pictures - provide a comprehensive and homogeneous database for the detailed and precise description of river- or coastal-bed hydraulic, morphologic and ecohydraulic processes. The high density and accuracy (less than 10 cm) of information offer the extended possibility for monitoring and supervisory purposes.
A framework for quantification of groundwater dynamics - concepts and hydro(geo-)logical metrics
NASA Astrophysics Data System (ADS)
Haaf, Ezra; Heudorfer, Benedikt; Stahl, Kerstin; Barthel, Roland
2017-04-01
Fluctuation patterns in groundwater hydrographs are generally assumed to contain information on aquifer characteristics, climate and environmental controls. However, attempts to disentangle this information and map the dominant controls have been few. This is due to the substantial heterogeneity and complexity of groundwater systems, which is reflected in the abundance of morphologies of groundwater time series. To describe the structure and shape of hydrographs, descriptive terms like "slow"/ "fast" or "flashy"/ "inert" are frequently used, which are subjective, irreproducible and limited. This lack of objective and refined concepts limit approaches for regionalization of hydrogeological characteristics as well as our understanding of dominant processes controlling groundwater dynamics. Therefore, we propose a novel framework for groundwater hydrograph characterization in an attempt to categorize morphologies explicitly and quantitatively based on perceptual concepts of aspects of the dynamics. This quantitative framework is inspired by the existing and operational eco-hydrological classification frameworks for streamflow. The need for a new framework for groundwater systems is justified by the fundamental differences between the state variable groundwater head and the flow variable streamflow. Conceptually, we extracted exemplars of specific dynamic patterns, attributing descriptive terms for means of systematisation. Metrics, primarily taken from streamflow literature, were subsequently adapted to groundwater and assigned to the described patterns for means of quantification. In this study, we focused on the particularities of groundwater as a state variable. Furthermore, we investigated the descriptive skill of individual metrics as well as their usefulness for groundwater hydrographs. The ensemble of categorized metrics result in a framework, which can be used to describe and quantify groundwater dynamics. It is a promising tool for the setup of a successful similarity classification framework for groundwater hydrographs. However, the overabundance of metrics available calls for a systematic redundancy analysis of the metrics, which we describe in a second study (Heudorfer et al., 2017). Heudorfer, B., Haaf, E., Barthel, R., Stahl, K., 2017. A framework for quantification of groundwater dynamics - redundancy and transferability of hydro(geo-)logical metrics. EGU General Assembly 2017, Vienna, Austria.
Estimation of the Probable Maximum Flood for a Small Lowland River in Poland
NASA Astrophysics Data System (ADS)
Banasik, K.; Hejduk, L.
2009-04-01
The planning, designe and use of hydrotechnical structures often requires the assesment of maximu flood potentials. The most common term applied to this upper limit of flooding is the probable maximum flood (PMF). The PMP/UH (probable maximum precipitation/unit hydrograph) method has been used in the study to predict PMF from a small agricultural lowland river basin of Zagozdzonka (left tributary of Vistula river) in Poland. The river basin, located about 100 km south of Warsaw, with an area - upstream the gauge of Plachty - of 82 km2, has been investigated by Department of Water Engineering and Environmenal Restoration of Warsaw University of Life Sciences - SGGW since 1962. Over 40-year flow record was used in previous investigation for predicting T-year flood discharge (Banasik et al., 2003). The objective here was to estimate the PMF using the PMP/UH method and to compare the results with the 100-year flood. A new relation of depth-duration curve of PMP for the local climatic condition has been developed based on Polish maximum observed rainfall data (Ozga-Zielinska & Ozga-Zielinski, 2003). Exponential formula, with the value of exponent of 0.47, i.e. close to the exponent in formula for world PMP and also in the formula of PMP for Great Britain (Wilson, 1993), gives the rainfall depth about 40% lower than the Wilson's one. The effective rainfall (runoff volume) has been estimated from the PMP of various duration using the CN-method (USDA-SCS, 1986). The CN value as well as parameters of the IUH model (Nash, 1957) have been established from the 27 rainfall-runoff events, recorded in the river basin in the period 1980-2004. Varibility of the parameter values with the size of the events will be discussed in the paper. The results of the analyse have shown that the peak discharge of the PMF is 4.5 times larger then 100-year flood, and volume ratio of the respective direct hydrographs caused by rainfall events of critical duration is 4.0. References 1.Banasik K., Byczkowski A., Gładecki J., 2003: Prediction of T-year flood discharge from a small river basin using direct and indirect methods. Annals of Warsaw Agricultural University - SGGW, Land Reclamation, No 34, p. 3 - 8. 2.Nash J.E., 1957. The form of the instantaneous unit hydrograph. Publ. IAHS, nr 59, p.202-213. 3.Ozga-Zielińska M. & Ozga-Zielinski B., 2003. The floodgenerativity of rivers as a measure of danger for hydrotechnical structures and determination of flood protection zones (in Polish with English summary). Gospodarka Wodna, no 1, p. 10-17. 4.Shalaby A.,I., 1995. Sensitivity to probable maximum flood. Journal of Irrigation and Drainage Engineering. Vol. 121, No. 5, p. 327-337. 5.USDA-SCS (Soil Conservation Service), 1986. TR-55: Urban hydrolgy for small watershed. Wasington, D.C. 6.Wilson E.M., 1993. Engineering hydrology. MacMillan, London.
Estimation of the Probable Maximum Flood for a Small Lowland River in Poland
NASA Astrophysics Data System (ADS)
Banasik, K.; Hejduk, L.
2009-04-01
The planning, designe and use of hydrotechnical structures often requires the assesment of maximu flood potentials. The most common term applied to this upper limit of flooding is the probable maximum flood (PMF). The PMP/UH (probable maximum precipitation/unit hydrograph) method has been used in the study to predict PMF from a small agricultural lowland river basin of Zagozdzonka (left tributary of Vistula river) in Poland. The river basin, located about 100 km south of Warsaw, with an area - upstream the gauge of Plachty - of 82 km2, has been investigated by Department of Water Engineering and Environmenal Restoration of Warsaw University of Life Sciences - SGGW since 1962. Over 40-year flow record was used in previous investigation for predicting T-year flood discharge (Banasik et al., 2003). The objective here was to estimate the PMF using the PMP/UH method and to compare the results with the 100-year flood. A new relation of depth-duration curve of PMP for the local climatic condition has been developed based on Polish maximum observed rainfall data (Ozga-Zielinska & Ozga-Zielinski, 2003). Exponential formula, with the value of exponent of 0.47, i.e. close to the exponent in formula for world PMP and also in the formula of PMP for Great Britain (Wilson, 1993), gives the rainfall depth about 40% lower than the Wilson's one. The effective rainfall (runoff volume) has been estimated from the PMP of various duration using the CN-method (USDA-SCS, 1986). The CN value as well as parameters of the IUH model (Nash, 1957) have been established from the 27 rainfall-runoff events, recorded in the river basin in the period 1980-2004. Varibility of the parameter values with the size of the events will be discussed in the paper. The results of the analyse have shown that the peak discharge of the PMF is 4.5 times larger then 100-year flood, and volume ratio of the respective direct hydrographs caused by rainfall events of critical duration is 4.0. References 1.Banasik K., Byczkowski A., Gładecki J., 2003: Prediction of T-year flood discharge from a small river basin using direct and indirect methods. Annals of Warsaw Agricultural University - SGGW, Land Reclamation, No 34, p. 3 - 8. 2.Nash J.E., 1957. The form of the instantaneous unit hydrograph. Publ. IAHS, nr 59, p.202-213. 3.Ozga-Zielińska M. & Ozga-Zielinski B., 2003. The floodgenerativity of rivers as a measure of danger for hydrotechnical structures and determination of flood protection zones (in Polish with English summary). Gospodarka Wodna, no 1, p. 10-17. 4.Shalaby A.,I., 1995. Sensitivity to probable maximum flood. Journal of Irrigation and Drainage Engineering. Vol. 121, No. 5, p. 327-337. 5.USDA-SCS (Soil Conservation Service), 1986. TR-55: Urban hydrolgy for small watershed. Wasington, D.C. 6. Wilson E.M., 1993. Engineering hydrology. MacMillan, London.
Bathymetric terrain model of the Atlantic margin for marine geological investigations
Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.; Lobecker, Elizabeth A.; Calder, Brian R.
2016-01-01
A bathymetric terrain model of the Atlantic margin covering almost 725,000 square kilometers of seafloor from the New England Seamounts in the north to the Blake Basin in the south is compiled from existing multibeam bathymetric data for marine geological investigations. Although other terrain models of the same area are extant, they are produced from either satellite-derived bathymetry at coarse resolution (ETOPO1), or use older bathymetric data collected by using a combination of single beam and multibeam sonars (Coastal Relief Model). The new multibeam data used to produce this terrain model have been edited by using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined 100-meter resolution grid. The final grid provides the largest high-resolution, seamless terrain model of the Atlantic margin..
A statistical analysis of the daily streamflow hydrograph
NASA Astrophysics Data System (ADS)
Kavvas, M. L.; Delleur, J. W.
1984-03-01
In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Gonzalez-Pola, C.; Lopez-Urrutia, A.; Nogueira, E.
2011-09-01
During summer, wind driven coastal upwelling dominates in the Central Cantabrian Sea (southern Bay of Biscay). Nevertheless, atmospheric forcing is highly variable and wind pulses may cause noticeable and fast hydrographic responses in the shelf region. In this paper, the composition and vertical distribution of the summer ichthyoplankton assemblage during the daytime at a fixed station, located on the Central Cantabrian Sea shelf, are documented. Also, the impact of a short-time scale hydrographic event on the abundance and structure of the larval fish assemblage is examined. Significant small-scale temporal hydrographic variability was observed. Currents showed changes in speed and direction and significant changes in thermocline depth were also observed. A total of 34 taxa of fish larvae were identified. Engraulis encrasicolus eggs and larvae of the shelf-dwelling species Trachurus trachurus, Capros aper and E. encrasicolus dominated the ichthyoplankton assemblage. The distribution of E. encrasicolus eggs and fish larvae was vertically structured. E. encrasicolus egg concentration increased exponentially towards the surface. Fish larvae showed a subsurface peak of concentration and their vertical distribution was not conditioned by thermocline depths. The short term hydrographic event did not affect the vertical distribution of fish larvae but it accounted for significant temporal changes in larval fish assemblage structure and abundance. Results suggest that temperature and light intensity are important factors in the vertical distribution of fish larvae. They also indicate that the temporal monitoring of the larval fish assemblage in this region requires multiple sampling sites.
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Collischonn, Walter; Jardim, Pedro; Meyer, Aline; Paiva, Rodrigo
2017-04-01
The non-linear relationship between flood wave celerity (C) and discharge (Q) plays an important role on defining how flood waves are routed through the river network. The behavior of this curve is driven by cross section geometry, which leads to increasing celerity with discharge in rivers without floodplains. In reaches with floodplain storage, C may decrease after bankfull Q. Thus, in a set of studies we investigate the effects of C x Q relationships on the basin hydrological response. (i) We studied these curves for several Brazilian river reaches, and analyzed to which extent they are related to river channel geometry and other characteristics (e.g., slope, width, drainage area and sinuosity). (ii) It is shown through empirical, analytical and numerical experiments how C x Q relation affects hydrograph skewness, and how the decreasing relationship existent in rivers with important floodplain storage leads to negatively skewed hydrographs, such as in the Amazon and Pantanal regions, which could be used to infer important floodplain processes (e.g., presence of overbank flow wetlands, which feature negatively skewed hydrographs or interfluvial wetlands not directly connected to rivers). (iii) Finally, we found that it is possible to use these concepts to calibrate the effective bathymetry of a hydrodynamic model by fitting the C x Q relationship using SCE-UA optimization method. Our results show how important it is to investigate the non-linear hydraulic processes occurring throughout river basins to understand the overall hydrological response, and propose new frameworks to assist such studies, including the evaluation of hydrograph skewness and estimation of hydraulic geometry.
NASA Astrophysics Data System (ADS)
Nichersu, Iulian; Mierla, Marian; Trifanov, Cristian
2013-04-01
Cumulative River Dynamic Assessment using Topo-Hydrographical High Definition Surveying in the Danube River area - Km 347-Km344 Iulian NICHERSU, Cristian TRIFANOV, Marian MIERLA The purpose of this paper is to depict and illustrate the benefits of Topo-Hydrographical High Definition Surveying (THHDS), also known as 3D multi-beam scanning, on a topo-hydrological survey application in Danube Valley. This research investigates the evolution of Danube river dynamics. We start with cross-sections made in 2002, 2007 and 2010 in this area and we coupled with 2012 THHDS. 3D multi-beam scanning method of data acquisition improve the spatial hydrological model and offers better dynamics assessment for future studies, considering that this area is carried out dredging works to improve navigation conditions - THHDS technique true modeling capabilities have applications in hydrotechnical works. Dynamics stands out on all 3 axes and cartographic documents have used both the 1930, 1950, and orthophoto images taken during flight to obtain the 3D model of the floodplain through LIDAR method, in 2007.
Dietsch, Benjamin J.; Densmore, Brenda K.; Wilson, Richard C.
2014-01-01
Detailed hydrographic maps of Mekong, Tonlé Sap, and Bassac Rivers showing the riverbed elevations surveyed April 21–May 2, 2012, referenced to Ha Tien 1960 were produced. The surveyed area included a 2-km stretch of the Mekong River between the confluence with the Tonlé Sap and Bassac Rivers, and extended 4 km upstream and 3.6 km downstream from the 2,000-m confluence stretch of the Mekong River. In addition, 0.7 km of the Bassac River downstream and 3.5 km of the Tonlé Sap River (from the confluence to Chroy Changvar Bridge) upstream from their confluence with the Mekong River were surveyed. Riverbed features (such as dunes, shoals, and the effects of sediment mining, which were observed during data collection) are visible on the hydrographic maps. All surveys were completed at low annual water levels as referenced to nearby Mekong River Commission streamflow-gaging stations. Riverbed elevations surveyed ranged from 24.08 m below to 1.54 m above Ha Tien 1960.
The San Juan Canyon, southeastern Utah: A geographic and hydrographic reconnaissance
Miser, Hugh D.
1924-01-01
This report, which describes the San Juan Canyon, San Juan River and the tributary streams and the geography and to some extent the geology of the region, presents information obtained by me during the descent of the river with the Trimble party in 1921. The exploration of the canyon, which was financed jointly by the United States Geological Survey and the Southern California Edison Co., had as its primary object the mapping and study of the San Juan in connection with proposed power and storage projects along this and Colorado rivers.1 The exploration party was headed by K. W. Thimble, topographic engineer of the United States Geological Survey. Other members of the party were Robert N. Allen, Los Angeles, Calif., recorder; H. E. Blake, jr., Monticello, Utah, and Hugh Hyde, Salt Lake City, Utah, rodmen; Bert Loper, Green River, Utah, boatman; Heber Christensen, Moab, Utah, cook; and H. D. Miser, geologist. Wesley Oliver, of Mexican Hat, Utah, served as packer for the party and brought mail and provisions by pack train twice a month to specified accessible places west of Goodridge.
Outlaw, G.S.; Butner, D.E.; Kemp, R.L.; Oaks, A.T.; Adams, G.S.
1992-01-01
Rainfall, stage, and streamflow data in the Murfreesboro area, Middle Tennessee, were collected from March 1989 through July 1992 from a network of 68 gaging stations. The network consists of 10 tipping-bucket rain gages, 2 continuous-record streamflow gages, 4 partial-record flood hydrograph gages, and 72 crest-stage gages. Data collected by the gages includes 5minute time-step rainfall hyetographs, 15-minute time-step flood hydrographs, and peak-stage elevations. Data are stored in a computer data base and are available for many computer modeling and engineering applications.
Recession curve analysis for groundwater levels: case study in Latvia
NASA Astrophysics Data System (ADS)
Gailuma, A.; Vītola, I.; Abramenko, K.; Lauva, D.; Vircavs, V.; Veinbergs, A.; Dimanta, Z.
2012-04-01
Recession curve analysis is powerful and effective analysis technique in many research areas related with hydrogeology where observations have to be made, such as water filtration and absorption of moisture, irrigation and drainage, planning of hydroelectric power production and chemical leaching (elution of chemical substances) as well as in other areas. The analysis of the surface runoff hydrograph`s recession curves, which is performed to conceive the after-effects of interaction of precipitation and surface runoff, has approved in practice. The same method for analysis of hydrograph`s recession curves can be applied for the observations of the groundwater levels. There are manually prepared hydrograph for analysis of recession curves for observation wells (MG2, BG2 and AG1) in agricultural monitoring sites in Latvia. Within this study from the available monitoring data of groundwater levels were extracted data of declining periods, splitted by month. The drop-down curves were manually (by changing the date) moved together, until to find the best match, thereby obtaining monthly drop-down curves, representing each month separately. Monthly curves were combined and manually joined, for obtaining characterizing drop-down curves of the year for each well. Within the process of decreased recession curve analysis, from the initial curve was cut out upward areas, leaving only the drops of the curve, consequently, the curve is transformed more closely to the groundwater flow, trying to take out the impact of rain or drought periods from the curve. Respectively, the drop-down curve is part of the data, collected with hydrograph, where data with the discharge dominates, without considering impact of precipitation. Using the recession curve analysis theory, ready tool "A Visual Basic Spreadsheet Macro for Recession Curve Analysis" was used for selection of data and logarithmic functions matching (K. Posavec et.al., GROUND WATER 44, no. 5: 764-767, 2006), as well as functions were developed by manual processing of data. For displaying data the mathematical model of data equalization was used, finding the corresponding or closest logarithmic function of the recession for the graph. Obtained recession curves were similar but not identical. With full knowledge of the fluctuations of ground water level, it is possible to indirectly (without taking soil samples) determine the filtration coefficient: more rapid decline in the recession curve correspond for the better filtration conditions. This research could be very useful in construction planning, road constructions, agriculture etc. Acknowledgments The authors gratefully acknowledge the funding from ESF Project "Establishment of interdisciplinary scientist group and modeling system for groundwater research" (Agreement No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060EF7)
NASA Astrophysics Data System (ADS)
Stancanelli, Laura Maria; Peres, David Johnny; Cancelliere, Antonino; Foti, Enrico
2017-07-01
Rainfall-induced shallow slides can evolve into debris flows that move rapidly downstream with devastating consequences. Mapping the susceptibility to debris flow is an important aid for risk mitigation. We propose a novel practical approach to derive debris flow inundation maps useful for susceptibility assessment, that is based on the integrated use of DEM-based spatially-distributed hydrological and slope stability models with debris flow propagation models. More specifically, the TRIGRS infiltration and infinite slope stability model and the FLO-2D model for the simulation of the related debris flow propagation and deposition are combined. An empirical instability-to-debris flow triggering threshold calibrated on the basis of observed events, is applied to link the two models and to accomplish the task of determining the amount of unstable mass that develops as a debris flow. Calibration of the proposed methodology is carried out based on real data of the debris flow event occurred on 1 October 2009, in the Peloritani mountains area (Italy). Model performance, assessed by receiver-operating-characteristics (ROC) indexes, evidences fairly good reproduction of the observed event. Comparison with the performance of the traditional debris flow modeling procedure, in which sediment and water hydrographs are inputed as lumped at selected points on top of the streams, is also performed, in order to assess quantitatively the limitations of such commonly applied approach. Results show that the proposed method, besides of being more process-consistent than the traditional hydrograph-based approach, can potentially provide a more accurate simulation of debris-flow phenomena, in terms of spatial patterns of erosion and deposition as well on the quantification of mobilized volumes and depths, avoiding overestimation of debris flow triggering volume and, thus, of maximum inundation flow depths.
Recirculation of the Canary Current in fall 2014
NASA Astrophysics Data System (ADS)
Hernández-Guerra, Alonso; Espino-Falcón, Elisabet; Vélez-Belchí, Pedro; Dolores Pérez-Hernández, M.; Martínez-Marrero, Antonio; Cana, Luis
2017-10-01
Hydrographic measurements together with Ship mounted Acoustic Doppler Current Profilers and Lowered Acoustic Doppler Current Profilers (LADCP) obtained in October 2014 are used to describe water masses, geostrophic circulation and mass transport of the Canary Current System, as the Eastern Boundary of the North Atlantic Subtropical Gyre. Geostrophic velocities are adjusted to velocities from LADCP data to estimate an initial velocity at the reference layer. The adjustment results in a northward circulation at the thermocline layers over the African slope from an initial convergent flow. Final reference velocities and consequently absolute circulation are estimated from an inverse box model applied to an ocean divided into 13 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport is estimated from the wind data derived from the Weather Research and Forecasting model. Ekman transport is added to the first layer and adjusted with the inverse model. The Canary Current located west of Lanzarote Island transports to the south a mass of - 1.5 ± 0.7 Sv (1 Sv = 106 m3 s- 1 ≈ 109 kg s- 1) of North Atlantic Central Water at the surface and thermocline layers ( 0-700 m). In fall 2014, hydrographic data shows that the Canary Current in the thermocline (below at about 80 m depth to 700 m) recirculates to the north over the African slope and flows through the Lanzarote Passage. At intermediate layers ( 700-1400 m), the Intermediate Poleward Undercurrent transports northward a relatively fresh Antarctic Intermediate Water in the range of 0.8 ± 0.4 Sv through the Lanzarote Passage and west of Lanzarote Island beneath the recirculation of the Canary Current.
Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen
2017-12-31
Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Humphreys, Matthew P.; Griffiths, Alex M.; Achterberg, Eric P.; Holliday, N. Penny; Rérolle, Victoire M. C.; Menzel Barraqueta, Jan-Lukas; Couldrey, Matthew P.; Oliver, Kevin I. C.; Hartman, Susan E.; Esposito, Mario; Boyce, Adrian J.
2016-02-01
Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80 ± 0.45 µmol kg-1 yr-1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (δ13CDIC) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO2 accumulation rate of 2.8 ± 0.4 mg C m-3 yr-1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31 ± 6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas.
Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall
NASA Astrophysics Data System (ADS)
Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo
2013-04-01
Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is performed. Then hydrologic component of the runoff hydrographs, peak flows and total runoffs from the estimated rainfall and the observed rainfall are compared. The results show that hydrologic components have high fluctuations depending on storm rainfall event. Thus, it is necessary to choose appropriate radar rainfall data derived from the above radar rainfall transform formulas to analyze the runoff of radar rainfall. The simulated hydrograph by radar in the three basins of agricultural areas is more similar to the observed hydrograph than the other three basins of mountainous areas. Especially the peak flow and shape of hydrograph of the agricultural areas is much closer to the observed ones than that of mountainous areas. This result comes from the difference of radar rainfall depending on the basin elevation. Therefore we need the examination of radar rainfall transform formulas following rainfall event and runoff analysis based on basin elevation for the improvement of radar rainfall application. Acknowledgment This study was financially supported by the Construction Technology Innovation Program(08-Tech-Inovation-F01) through the Research Center of Flood Defence Technology for Next Generation in Korea Institute of Construction & Transportation Technology Evaluation and Planning(KICTEP) of Ministry of Land, Transport and Maritime Affairs(MLTM)
Daniel, C. C.; Harned, D.A.
1998-01-01
Quantitative information concerning recharge rates to aquifers and ground water in storage is needed to manage the development of ground- water resources. The amount of ground water available from the regolith-fractured crystalline rock aquifer system in Guilford County, North Carolina, is largely unknown. If historical patterns seen throughout the Piedmont continue into the future, the number of ground- water users in the county can be expected to increase. In order to determine the maximum population that can be supplied by ground water, planners and managers of suburban development must know the amount of ground water that can be withdrawn without exceeding recharge and(or) overdrafting water in long-term storage. Results of the study described in this report help provide this information. Estimates of seasonal and long-term recharge rates were estimated for 15 selected drainage basins and subbasins using streamflow data and an anlytical technique known as hydrograph separation. Methods for determining the quantity of ground water in storage also are described. Guilford County covers approximately 658 square miles in the central part of the Piedmont Province. The population of the county in 1990 was about 347,420; approximately 21 percent of the population depends on ground water as a source of potable supplies. Ground water is obtained from wells tapping the regolith-fractured crystalline rock aquifer system that underlies all of the county. Under natural conditions, recharge to the ground-water system in the county is derived from infiltration of precipitation. Ground-water recharge from precipitation cannot be measured directly; however, an estimate of the amount of precipitation that infiltrates into the ground and ultimately reaches the streams of the region can be determined by the technique of hydrograph separation. Data from 19 gaging stations that measure streamflow within or from Guilford County were analyzed to produce daily estimates of ground-water recharge in 15 drainage basins and subbasins in the county. The recharge estimates were further analyzed to determine seasonal and long-term recharge rates, as well as recharge duration statistics. Mean annual recharge in the 15 basins and subbasins ranges from 4.03 to 9.69 inches per year, with a mean value of 6.28 inches per year for all basins. In general, recharge rates are highest for basins in the northern and northwestern parts of the county and lowest in the southern and southeastern parts of the county. Median recharge rates in the 15 basins range from 2.47 inches per year (184 gallons per day per acre) to 9.15 inches per year (681 gallons per day per acre), with a median value of 4.65 inches per year (346 gallons per day per acre) for all basins. The distribution of recharge rates in the county suggests a correlation between recharge rates and hydrogeologic units (and derived regolith). The highest recharge estimates occur in the northwestern part of Guilford County in basins unlain by felsic igneous intrusive rocks and lesser areas of metasedimentary rocks. Recharge estimates in this area range from 6.37 to 9.33 inches per year. Basins in the southwestern, central, and northeastern parts of the county are underlain primarily by metaigneous rocks of felsic and intermediate compositions, and recharge estimates range from 5.32 to 5.51 inches per year. In the extreme southern and southeastern parts of the county, the lower Deep River subbasin and the lower Haw River subbasins have the lowest estimated recharges at 4.15 and 4.03 inches per year, respectively. Although the areas of these subbasins that lie within Guilford County are underlain primarily by metaigneous rocks of felsic and intermediate compositions, the larger part of these subbasins lies south and southeast of Guilford County in areas underlain by hydrogeologic units of metavolcanic origin. The distribution of recharge rates in the study area is almost the reverse of the distributio
Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Druffel, E. R. M.; Bauer, J. E.; Griffin, S.
2005-03-01
We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.
Sediment Transport in the Lower Yampa River, Northwestern Colorado
Elliott, John G.; Kircher, James E.; Von Guerard, Paul
1984-01-01
Discharge measurements and sediment samples were taken at streamflow-gaging station 09260050 Yampa River at Deerlodge Park in 1982 and 1983 to determine the annual sediment supply to the Yampa Canyon in Dinosaur National Monument. Forty-three years of discharge records at two tributary sites were combined to determine the historic discharge of the Yampa River at Deerlodge Park. A mean annual hydrograph and flow-duration curve were derived from these data. Sediment-transport equations were derived for total sediment discharge, suspended-sediment discharge, bedload dischagre, and the discharge of sediment in several particle-sizes. Annual sediment discharge were determined by the flow-duration, sediment-rating-curve method and indicated annual total sediment discharge was approximately 2.0 million tons per year of which 0.8 million tons per year was sand-sized material. Bedload was almost entirely sand, and annual bedload discharge was 0.1 million tons per year. Development of water resources in the Yampa River basin could effect the geomorphic character of the Yampa River at Deerlodge Park and the Yampa Canyon. Several scenarios of altered streamflow frequency distribution, reduced streamflow volume, and reduced sediment supply are examined to estimate the effect on the sediment budget at Deerlodge Park. (USGS)
NASA Astrophysics Data System (ADS)
Dillon, Chris
Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.
Study on ecological regulation of coastal plain sluice
NASA Astrophysics Data System (ADS)
Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo
2018-02-01
Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.
Hydrographic changes in the subpolar North Atlantic at the MCA to LIA transition
NASA Astrophysics Data System (ADS)
Divine, Dmitry; Miettinen, Arto; Husum, Katrine; Koc, Nalan
2016-04-01
A network of four marine sediment cores from the northern North Atlantic is used to study hydrographic changes in surface water masses during the last 2000 years with a special focus on the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA) transition. Three of the cores are recovered from the sites located on main pathways of warm Atlantic water to the Arctic: M95-2011 (Vøring plateau, Norwegian Sea), Rapid-21 COM and LO-14 (Reykjanes Ridge, south of Iceland). The fourth core MD99-2322 is from the SE Greenland shelf (Denmark Strait), and it is influenced by the cold water outflow from the Arctic. The cores were analyzed continuously for planktonic diatoms with a high decadal to subdecadal temporal resolution. Past changes in the spatial distribution of surface water masses have been studied identifying factors, or typical species compositions, in downcore diatom assemblages. To derive the factors a Q-mode factor analysis has been applied to the extended modern calibration data set of 184 surface sediment samples from the North Atlantic, the Labrador Sea, the Nordic Seas, and Baffin Bay. SSTs have also been reconstructed using transfer functions. Variations of the reconstructed SSTs and loadings of major contributing factors reveal a complex regional pattern of changes in the structure of circulation during the MCA/LIA transition (1200-1400 AD). In the Norwegian Sea, the factors associated with assemblages typical for warmer and saline North Atlantic waters are partly displaced by colder and fresher water dwelling diatoms suggesting an eastward migration of mixed Arctic/Atlantic water masses into the Norwegian Sea. The two cores south of Iceland show a westward propagation of a warm water pulse as evidenced by the dominance of assemblages, which today are typical for the waters ca 5° further south than the current study sites. At the SE Greenland shelf an abrupt shift (ca. 50 years) in factors associated with different sea ice zone dwelling diatoms signifies an intensified inflow of the cold and saline mixed water masses advected from the area north of Iceland and/or partly formed by the Irminger current. Such regional patterns of hydrographic changes agree well with a hypothesis of a persistent shift in the vigor of the two main branches of the North Atlantic Drift (NAD) during the onset of LIA, namely strengthening of the Irminger current and a parallel weakening of the Norwegian Atlantic current. Modeling studies also corroborate this hypothesis demonstrating the possibility of such shift triggered by persistent negative volcanic/solar forcing during the studied period.
Modeling the Effects of Land Use and Climate Change on Streamflow in the Delaware River Basin
NASA Astrophysics Data System (ADS)
Kwon, P. Y. S.; Endreny, T. A.; Kroll, C. N.; Williamson, T. N.
2014-12-01
Forest-cover loss and drinking-water reservoirs in the upper Delaware River Basin of New York may alter summer low streamflows, which could degrade the in-stream habitat for the endangered dwarf wedgemussel. Our project analyzes how flow statistics change with land-cover change for 30-year increments of model-simulated streamflow hydrographs for three watersheds of concern to the National Park Service: the East Branch, West Branch, and main stem of the Delaware River. We use four treatments for land cover ranging from historical high to low forest cover. We subject each land cover to adjusted GCM climate scenarios for 1600, 1900, 1940, and 2040 to isolate land cover from potential climate-change effects. Hydrographs are simulated using the Water Availability Tool for Environmental Resources (WATER), a TOPMODEL-based United States Geological Survey hydrologic decision-support tool, which uses the variable-source-area concept and water budgets to generate streamflow. Model parameters for each watershed change with land-use, and capture differences in soil-physical properties that control how rainfall infiltrates, evaporates, transpires, is stored in the soil, and moves to the stream. Our results analyze flow statistics used as indicators of hydrologic alteration, and access streamflow events below the critical flow needed to provide sustainable habitat for dwarf wedgemussels. These metrics will demonstrate how changes in climate and land use might affect flow statistics. Initial results show that the 1940 WATER simulation outputs generally match observed unregulated low flows from that time period, while performance for regulated flow from the same time period and from 1600, 1900, and 2040 require model input adjustments. Our study will illustrate how increased forest cover could potentially restore in-stream habitat for the endangered dwarf wedgemussel for current and future climate conditions.
NASA Astrophysics Data System (ADS)
Tassi, R.; Lorenzini, F.; Allasia, D. G.
2015-06-01
In the last decades, new approaches were adopted to manage stormwater as close to its source as possible through technologies and devices that preserve and recreate natural landscape features. Green Roofs (GR) are examples of these devices that are also incentivized by city's stormwater management plans. Several studies show that GR decreases on-site runoff from impervious surfaces, however, the analysis of the effect of widespread implementation of GR in the flood characteristics at the urban basin scale in subtropical areas are little discussed, mainly because of the absence of data. Thereby, this paper shows results related to the monitoring of an extensive modular GR under subtropical weather conditions, the development of a rainfall-runoff model based on the modified Curve Number (CN) and SCS Triangular Unit Hydrograph (TUH) methods and the analysis of large-scale impact of GR by modelling different basins. The model was calibrated against observed data and showed that GR absorbed almost all the smaller storms and reduced runoff even during the most intense rainfall. The overall CN was estimated in 83 (consistent with available literature) with the shape of hydrographs well reproduced. Large-scale modelling (in basins ranging from 0.03 ha to several square kilometers) showed that the widespread use of GRs reduced peak flows (volumes) around 57% (48%) at source and 38% (32%) at the basin scale. Thus, this research validated a tool for the assessment of structural management measures (specifically GR) to address changes in flood characteristics in the city's water management planning. From the application of this model it was concluded that even if the efficiency of GR decreases as the basin scale increase they still provide a good option to cope with urbanization impact.
Sauer, Vernon B.
2002-01-01
Surface-water computation methods and procedures are described in this report to provide standards from which a completely automated electronic processing system can be developed. To the greatest extent possible, the traditional U. S. Geological Survey (USGS) methodology and standards for streamflow data collection and analysis have been incorporated into these standards. Although USGS methodology and standards are the basis for this report, the report is applicable to other organizations doing similar work. The proposed electronic processing system allows field measurement data, including data stored on automatic field recording devices and data recorded by the field hydrographer (a person who collects streamflow and other surface-water data) in electronic field notebooks, to be input easily and automatically. A user of the electronic processing system easily can monitor the incoming data and verify and edit the data, if necessary. Input of the computational procedures, rating curves, shift requirements, and other special methods are interactive processes between the user and the electronic processing system, with much of this processing being automatic. Special computation procedures are provided for complex stations such as velocity-index, slope, control structures, and unsteady-flow models, such as the Branch-Network Dynamic Flow Model (BRANCH). Navigation paths are designed to lead the user through the computational steps for each type of gaging station (stage-only, stagedischarge, velocity-index, slope, rate-of-change in stage, reservoir, tide, structure, and hydraulic model stations). The proposed electronic processing system emphasizes the use of interactive graphics to provide good visual tools for unit values editing, rating curve and shift analysis, hydrograph comparisons, data-estimation procedures, data review, and other needs. Documentation, review, finalization, and publication of records are provided for with the electronic processing system, as well as archiving, quality assurance, and quality control.
Ghumman, Abul Razzaq; Al-Salamah, Ibrahim Saleh; AlSaleem, Saleem Saleh; Haider, Husnain
2017-02-01
Geomorphological instantaneous unit hydrograph (GIUH) usually uses geomorphologic parameters of catchment estimated from digital elevation model (DEM) for rainfall-runoff modeling of ungauged watersheds with limited data. Higher resolutions (e.g., 5 or 10 m) of DEM play an important role in the accuracy of rainfall-runoff models; however, such resolutions are expansive to obtain and require much greater efforts and time for preparation of inputs. In this research, a modeling framework is developed to evaluate the impact of lower resolutions (i.e., 30 and 90 m) of DEM on the accuracy of Clark GIUH model. Observed rainfall-runoff data of a 202-km 2 catchment in a semiarid region was used to develop direct runoff hydrographs for nine rainfall events. Geographical information system was used to process both the DEMs. Model accuracy and errors were estimated by comparing the model results with the observed data. The study found (i) high model efficiencies greater than 90% for both the resolutions, and (ii) that the efficiency of Clark GIUH model does not significantly increase by enhancing the resolution of the DEM from 90 to 30 m. Thus, it is feasible to use lower resolutions (i.e., 90 m) of DEM in the estimation of peak runoff in ungauged catchments with relatively less efforts. Through sensitivity analysis (Monte Carlo simulations), the kinematic wave parameter and stream length ratio are found to be the most significant parameters in velocity and peak flow estimations, respectively; thus, they need to be carefully estimated for calculation of direct runoff in ungauged watersheds using Clark GIUH model.
NASA Astrophysics Data System (ADS)
Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.
2014-12-01
In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.
CARINA data synthesis project: pH data scale unification and cruise adjustments
NASA Astrophysics Data System (ADS)
Velo, A.; Pérez, F. F.; Lin, X.; Key, R. M.; Tanhua, T.; de La Paz, M.; van Heuven, S.; Jutterström, S.; Ríos, A. F.
2009-10-01
Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Artic Mediterranean Seas (AMS), Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; AMS, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 59 reported pH measured values. Here we present details of the secondary QC on pH for the CARINA database. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the pH values for 21 of the cruises in the CARINA dataset. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA pH data to be 0.005 pH units. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.
Rapid fluctuations in the northern Baltic Sea H2S layer
NASA Astrophysics Data System (ADS)
Kankaanpää, Harri T.; Virtasalo, Joonas J.
2017-12-01
Hydrogen sulfide (H2S) is linked to water quality deterioration in the Baltic Sea, with widespread seafloor hypoxia. We examined the vertical and temporal variability of in situ [H2S], oxygen concentration ([O2]), temperature (T) and pH at weekly, hourly and minute intervals at 13 locations in the western Gulf of Finland in 2013-2014. The main target was the 60-100 m water depth range, containing 3.2-290 μM O2 and 6.3-22.6 μM H2S. Where gas was detected by acoustic surveys, the structure of the H2S layer was more complex compared to stations devoid of gas. Local minima and maxima in pH frequently occurred near the H2S upper boundary (redox transition zone). Except for the homogeneous, tranquil zone above the seafloor at some stations, substantial rapid changes in hydrographic conditions were common. Typically, a layer of marked temporal T variability was present atop or within the topmost H2S layers. The largest temporal changes over a weekly period were - 0.44 °C/- 10.8 μM H2S/- 0.12 pH units (at seafloor level), + 0.18 °C/+7.9 μM H2S between casts (1 h) and + 0.03 °C/- 2.5 μM H2S per minute (high resolution logging). Abrupt [H2S] changes were recorded at two stations with sediments containing free gas. The T and [H2S] changes were synchronous at several layers, reflecting water movement. We conclude that rapid changes occur in hydrographic conditions in the near-bottom H2S layer in the northern Baltic Sea, especially at locations where free gas is present in the underlying sediments.
Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.
2014-01-01
Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.
Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts
NASA Astrophysics Data System (ADS)
Hemri, S.; Klein, B.
2017-11-01
Inland waterway transport benefits from probabilistic forecasts of water levels as they allow to optimize the ship load and, hence, to minimize the transport costs. Probabilistic state-of-the-art hydrologic ensemble forecasts inherit biases and dispersion errors from the atmospheric ensemble forecasts they are driven with. The use of statistical postprocessing techniques like ensemble model output statistics (EMOS) allows for a reduction of these systematic errors by fitting a statistical model based on training data. In this study, training periods for EMOS are selected based on forecast analogs, i.e., historical forecasts that are similar to the forecast to be verified. Due to the strong autocorrelation of water levels, forecast analogs have to be selected based on entire forecast hydrographs in order to guarantee similar hydrograph shapes. Custom-tailored measures of similarity for forecast hydrographs comprise hydrological series distance (SD), the hydrological matching algorithm (HMA), and dynamic time warping (DTW). Verification against observations reveals that EMOS forecasts for water level at three gauges along the river Rhine with training periods selected based on SD, HMA, and DTW compare favorably with reference EMOS forecasts, which are based on either seasonal training periods or on training periods obtained by dividing the hydrological forecast trajectories into runoff regimes.
NASA Astrophysics Data System (ADS)
Owen, Gareth; Quinn, Paul; O'Donnell, Greg
2014-05-01
This paper explains how flood management projects might be better informed in the future by using more observations and a novel impact modelling tool in a simple transparent framework. The understanding of how local scale impacts propagate downstream to impact on the downstream hydrograph is difficult to determine using traditional rainfall runoff and hydraulic routing methods. The traditional approach to modelling essentially comprises selecting a fixed model structure and then calibrating to an observational hydrograph, which make those model predictions highly uncertain. Here, a novel approach is used in which the structure of the runoff generation is not specified a priori and incorporates expert knowledge. Rather than using externally for calibration, the observed outlet hydrographs are used directly within the model. Essentially the approach involves the disaggregation of the outlet hydrograph by making assumptions about the spatial distribution of runoff generated. The channel network is parameterised through a comparison of the timing of observed hydrographs at a number of nested locations within the catchment. The user is then encouraged to use their expert knowledge to define how runoff is generated locally and what the likely impact of any local mitigation is. Therefore the user can specify any hydrological model or flow estimation method that captures their expertise. Equally, the user is encouraged to install as many instruments as they can afford to cover the catchment network. A Decision Support Matrix (DSM) is used to encapsulate knowledge of the runoff dynamics gained from simulation in a simple visual way and hence to convey the likely impacts that arise from a given flood management scenario. This tool has been designed primarily to inform and educate landowners, catchment managers and decision makers. The DSM outlines scenarios that are likely to increase or decrease runoff rates and allows the user to contemplate the implications and uncertainty of their decisions. The tool can also be used to map the likely changes in flood peak due to land use management options. An example case study will be shown for a 35km2 catchment in Northern England which is prone to flooding. The method encourages end users to instrument and quantify their own catchment network and to make informed, evidence based decisions appropriate to their own flooding problems.
Variable parameter McCarthy-Muskingum routing method considering lateral flow
NASA Astrophysics Data System (ADS)
Yadav, Basant; Perumal, Muthiah; Bardossy, Andras
2015-04-01
The fully mass conservative variable parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price (2013) for routing floods in channels and rivers without considering lateral flow is extended herein for accounting uniformly distributed lateral flow contribution along the reach. The proposed procedure is applied for studying flood wave movement in a 24.2 km river stretch between Rottweil and Oberndorf gauging stations of Neckar River in Germany wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave movement. The geometrical elements of the cross-sectional information of the considered routing river stretch without considering lateral flow are estimated using the Robust Parameter Estimation (ROPE) algorithm that allows for arriving at the best performing set of bed width and side slope of a trapezoidal section. The performance of the VPMM method is evaluated using the Nash-Sutcliffe model efficiency criterion as the objective function to be maximized using the ROPE algorithm. The twenty-seven flood events in the calibration set are considered to identify the relationship between 'total rainfall' and 'total losses' as well as to optimize the geometric characteristics of the prismatic channel (width and slope of the trapezoidal section). Based on this analysis, a relationship between total rainfall and total loss of the intermediate catchment is obtained and then used to estimate the lateral flow in the reach. Assuming the lateral flow hydrograph is of the form of inflow hydrograph and using the total intervening catchment runoff estimated from the relationship, the uniformly distributed lateral flow rate qL at any instant of time is estimated for its use in the VPMM routing method. All the 27 flood events are simulated using this routing approach considering lateral flow along the reach. Many of these simulations are able to simulate the observed hydrographs very closely. The proposed approach of accounting lateral flow using the VPMM method is independently verified by routing flood hydrograph of 6 flood events which are not used in the total rainfall vs total loss relationship established for the intervening catchment of the studied river reach. Close reproduction of the outflow hydrographs of these independent events using the proposed VPMM method accounting for lateral flow demonstrate the practical utility of the method.
NASA Astrophysics Data System (ADS)
Koskelo, Antti I.; Fisher, Thomas R.; Utz, Ryan M.; Jordan, Thomas E.
2012-07-01
SummaryBaseflow separation methods are often impractical, require expensive materials and time-consuming methods, and/or are not designed for individual events in small watersheds. To provide a simple baseflow separation method for small watersheds, we describe a new precipitation-based technique known as the Sliding Average with Rain Record (SARR). The SARR uses rainfall data to justify each separation of the hydrograph. SARR has several advantages such as: it shows better consistency with the precipitation and discharge records, it is easier and more practical to implement, and it includes a method of event identification based on precipitation and quickflow response. SARR was derived from the United Kingdom Institute of Hydrology (UKIH) method with several key modifications to adapt it for small watersheds (<50 km2). We tested SARR on watersheds in the Choptank Basin on the Delmarva Peninsula (US Mid-Atlantic region) and compared the results with the UKIH method at the annual scale and the hydrochemical method at the individual event scale. Annually, SARR calculated a baseflow index that was ˜10% higher than the UKIH method due to the finer time step of SARR (1 d) compared to UKIH (5 d). At the watershed scale, hydric soils were an important driver of the annual baseflow index likely due to increased groundwater retention in hydric areas. At the event scale, SARR calculated less baseflow than the hydrochemical method, again because of the differences in time step (hourly for hydrochemical) and different definitions of baseflow. Both SARR and hydrochemical baseflow increased with event size, suggesting that baseflow contributions are more important during larger storms. To make SARR easy to implement, we have written a MatLab program to automate the calculations which requires only daily rainfall and daily flow data as inputs.
Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.
2008-01-01
A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.
Parsley, M.J.; Kofoot, P.
2006-01-01
River discharge and water temperatures that occurred during April through July 2004 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph was relatively low compared to past years, which is reflected in the relatively low monthly and annual indices of suitable spawning habitat. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-theyear (YOY) white sturgeon.
Long term hydrographic variability near Bermuda and relation to surface forcing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, T.M.
1997-11-01
This paper provides an extremely brief description of long-term hydrographic observations at Bermuda. The time series of observations near the island goes back to 1922. A secular increase of temperature of approximately 0.5 C per century in the deep water pressure range has been observed; this depth layer is the only one observed at Bermuda to have such a long-term increase. Decadal time scale fluctuations have also been identified, and are correlated to decadal variations in the Labrador Sea. The recent period of decreasing temperature at Bermuda may be a reflection of the increased cooling in the Labrador Sea inmore » recent years. 2 figs.« less
Tests of peak flow scaling in simulated self-similar river networks
Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.
2001-01-01
The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Soulsby, Chris; Dunn, Sarah M.
2003-02-01
Hydrochemical tracers (alkalinity and silica) were used in an end-member mixing analysis (EMMA) of runoff sources in the 10 km2 Allt a' Mharcaidh catchment. A three-component mixing model was used to separate the hydrograph and estimate, to a first approximation, the range of likely contributions of overland flow, shallow subsurface storm flow, and groundwater to the annual hydrograph. A conceptual, catchment-scale rainfall-runoff model (DIY) was also used to separate the annual hydrograph in an equivalent set of flow paths. The two approaches produced independent representations of catchment hydrology that exhibited reasonable agreement. This showed the dominance of overland flow in generating storm runoff and the important role of groundwater inputs throughout the hydrological year. Moreover, DIY was successfully adapted to simulate stream chemistry (alkalinity) at daily time steps. Sensitivity analysis showed that whilst a distinct groundwater source at the catchment scale could be identified, there was considerable uncertainty in differentiating between overland flow and subsurface storm flow in both the EMMA and DIY applications. Nevertheless, the study indicated that the complementary use of tracer analysis in EMMA can increase the confidence in conceptual model structure. However, conclusions are restricted to the specific spatial and temporal scales examined.
Runoff prediction using rainfall data from microwave links: Tabor case study.
Stransky, David; Fencl, Martin; Bares, Vojtech
2018-05-01
Rainfall spatio-temporal distribution is of great concern for rainfall-runoff modellers. Standard rainfall observations are, however, often scarce and/or expensive to obtain. Thus, rainfall observations from non-traditional sensors such as commercial microwave links (CMLs) represent a promising alternative. In this paper, rainfall observations from a municipal rain gauge (RG) monitoring network were complemented by CMLs and used as an input to a standard urban drainage model operated by the water utility of the Tabor agglomeration (CZ). Two rainfall datasets were used for runoff predictions: (i) the municipal RG network, i.e. the observation layout used by the water utility, and (ii) CMLs adjusted by the municipal RGs. The performance was evaluated in terms of runoff volumes and hydrograph shapes. The use of CMLs did not lead to distinctively better predictions in terms of runoff volumes; however, CMLs outperformed RGs used alone when reproducing a hydrograph's dynamics (peak discharges, Nash-Sutcliffe coefficient and hydrograph's rising limb timing). This finding is promising for number of urban drainage tasks working with dynamics of the flow. Moreover, CML data can be obtained from a telecommunication operator's data cloud at virtually no cost. That makes their use attractive for cities unable to improve their monitoring infrastructure for economic or organizational reasons.
NASA Astrophysics Data System (ADS)
Fenty, I. G.; Willis, J. K.; Rignot, E. J.
2016-12-01
Motivated by the need to understand the connection between the warming North Atlantic Ocean and increasing ice mass loss from the Greenland Ice Sheet, in 2015 we initiated "Oceans Melting Greenland" (OMG), a 5-year NASA sub-orbital mission. One component of OMG is a once-yearly sampling of full-depth vertical profiles of ocean temperature and salinity around Greenland's continental shelf at 250 locations. These measurements have the potential to provide an unprecedented view of ocean properties around Greenland, especially the warm, salty subsurface Atlantic Waters that have been implicated in tidewater glacier retreat, acceleration, and thinning. However, OMG'S ocean measurements are essentially large-scale synoptic snapshots of an ocean state whose characteristic scales of temporal and spatial variability around Greenland are largely unknown. In this talk we discuss how high-resolution numerical ocean modelling is being employed to quantitatively estimate the region's natural hydrographic variability for the dual purposes of (1) informing our pan-Greenland ocean sampling strategy and (2) informing our interpretation of temperature trends in the data. OMG hydrographic shelf data collected in ship-based CTDs (2015, 2016) and Airborne eXpendable CTDs (2016) will be examined in the context of this estimated ocean variability.
NASA Astrophysics Data System (ADS)
Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy
Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.
Itaipu royalties: The role of the hydroelectric sector in water resource management.
Lorenzon, Alexandre Simões; Alvares Soares Ribeiro, Carlos Antonio; Rosa Dos Santos, Alexandre; Marcatti, Gustavo Eduardo; Domingues, Getulio Fonseca; Soares, Vicente Paulo; Martins de Castro, Nero Lemos; Teixeira, Thaisa Ribeiro; Martins da Costa de Menezes, Sady Júnior; Silva, Elias; de Oliveira Barros, Kelly; Amaral Dino Alves Dos Santos, Gleissy Mary; Ferreira da Silva, Samuel; Santos Mota, Pedro Henrique
2017-02-01
For countries dependent on hydroelectricity, water scarcity poses a real risk. Hydroelectric plants are among the most vulnerable enterprises to climate change. Investing in the conservation of the hydrographic basin is a solution found by the hydropower sector. Given the importance of the Itaipu plant to the energy matrix of Brazil and Paraguay, the aim of this study is to review the current distribution of royalties from Itaipu, using the hydrographic basin as a of criterion of analysis. Approximately 98.73% of the Itaipu basin is in Brazil. The flow contributes 99% of the total electricity generated there, while the drop height of the water contributes only 1%. Under the current policy, royalties are shared equally between Brazil and Paraguay. In the proposed approach, each country would receive a percentage for their participation in the drop height and water flow in the output of the turbines, which are intrinsic factors for electricity generation. Thus, Brazil would receive 98.35% of the royalties and Paraguay, 1.65%. The inclusion of the hydrographic basin as a criterion for the distribution of royalties will promote more efficient water resource management, since the payment will be distributed throughout the basin of the plant. The methodology can be applied to hydroelectric projects worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Merwade, V.; Ruddell, B. L.; Fox, S.; Iverson, E. A. R.
2014-12-01
With the access to emerging datasets and computational tools, there is a need to bring these capabilities into hydrology classrooms. However, developing curriculum modules using data and models to augment classroom teaching is hindered by a steep technology learning curve, rapid technology turnover, and lack of an organized community cyberinfrastructure (CI) for the dissemination, publication, and sharing of the latest tools and curriculum material for hydrology and geoscience education. The objective of this project is to overcome some of these limitations by developing a cyber enabled collaborative environment for publishing, sharing and adoption of data and modeling driven curriculum modules in hydrology and geosciences classroom. The CI is based on Carleton College's Science Education Resource Center (SERC) Content Management System. Building on its existing community authoring capabilities the system is being extended to allow assembly of new teaching activities by drawing on a collection of interchangeable building blocks; each of which represents a step in the modeling process. Currently the system hosts more than 30 modules or steps, which can be combined to create multiple learning units. Two specific units: Unit Hydrograph and Rational Method, have been used in undergraduate hydrology class-rooms at Purdue University and Arizona State University. The structure of the CI and the lessons learned from its implementation, including preliminary results from student assessments of learning will be presented.
NASA Astrophysics Data System (ADS)
Hernandez, Fabrice; Le Traon, Pierre-Yves; Morrow, Rosemary
1995-12-01
The SEMAPHORE mesoscale air/sea experiment was conducted in the Azores-Madeira region from July to November 1993. TOPEX/POSEIDON (T/P) and ERS 1 were flying simultaneously at that time. The main purposes of this paper are to evaluate the estimation of the oceanic mesoscale circulation from the two different sets of altimetric data (T/P and ERS 1) and to compare the results with in situ measurements provided by the SEMAPHORE hydrographic surveys and surface drifters (three expendable bathytermograph conductivity-temperature-depth surveys in a 500-km2 box and a set of 47 Lagrangian surface drifters drogued at 150 m). Comparisons are carried out through the maps obtained by objective analysis from the four data sets. The mapping accuracy of T/P, ERS 1, T/P and ERS 1 combined, and in situ data is investigated, as well as the sensitivity of the mapping to the correlation functions used. There is a good qualitative agreement between altimetric maps and corresponding drifter and hydrographic maps for the three hydrographic surveys. Correlations are about 0.8, and the regression fit is about 0.6-0.7; the lower values are due to the smooth climatology used to reference the altimetric maps. The correlation for time differences is better, with regression lines not significantly different from 1, especially when ERS 1 and T/P are combined. T/P mapping is almost as good as ERS 1 mapping, which was rather unexpected since the ERS 1 space-time sampling is better suited for the mesoscale. This may reflect the fact that the signal mapped by the hydrography and drifters does not contain the high frequency/wavenumber components. T/P and ERS 1 combined provide better results, although the improvement is not as large as expected, probably for the same reason.
Singer, M.B.
2007-01-01
This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and/or manipulation of sediment supplies. Copyright ?? 2006 John Wiley & Sons, Ltd.
Vaill, J.E.
1995-01-01
A bridge-scour study by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation, was begun in 1991 to evaluate bridges in the State for potential scour during floods. A part of that study was to apply a computer model for sediment-transport routing to simulate channel aggradation or degradation and pier scour during floods at three bridge sites in Colorado. Stream-channel reaches upstream and downstream from the bridges were simulated using the Bridge Stream Tube model for Alluvial River Simulation (BRI-STARS). Synthetic flood hydrographs for the 500-year floods were developed for Surveyor Creek near Platner and for the Rio Grande at Wagon Wheel Gap. A part of the recorded mean daily hydrograph for the peak flow of record was used for the Yampa River near Maybell. The recorded hydrograph for the peak flow of record exceeded the computed 500-year-flood magnitude for this stream by about 22 percent. Bed-material particle-size distributions were determined from samples collected at Surveyor Creek and the Rio Grande. Existing data were used for the Yampa River. The model was used to compute a sediment-inflow hydrograph using particle-size data collected and a specified sediment-transport equation at each site. Particle sizes ranged from less than 0.5 to 16 millimeters for Surveyor Creek, less than 4 to 128 millimeters for the Yampa River, and 22.5 to 150 millimeters for the Rio Grande. Computed scour at the peak steamflows ranged from -2.32 feet at Surveyor Creek near Platner to +0.63 foot at the Rio Grande at Wagon Wheel Gap. Pier- scour depths computed at the peak streamflows ranged from 4.46 feet at the Rio Grande at Wagon Wheel Gap to 5.94 feet at the Yampa River near Maybell. The number of streamtubes used in the model varied at each site.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej
2016-04-01
The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.
Discovery of Marine Datasets and Geospatial Metadata Visualization
NASA Astrophysics Data System (ADS)
Schwehr, K. D.; Brennan, R. T.; Sellars, J.; Smith, S.
2009-12-01
NOAA's National Geophysical Data Center (NGDC) provides the deep archive of US multibeam sonar hydrographic surveys. NOAA stores the data as Bathymetric Attributed Grids (BAG; http://www.opennavsurf.org/) that are HDF5 formatted files containing gridded bathymetry, gridded uncertainty, and XML metadata. While NGDC provides the deep store and a basic ERSI ArcIMS interface to the data, additional tools need to be created to increase the frequency with which researchers discover hydrographic surveys that might be beneficial for their research. Using Open Source tools, we have created a draft of a Google Earth visualization of NOAA's complete collection of BAG files as of March 2009. Each survey is represented as a bounding box, an optional preview image of the survey data, and a pop up placemark. The placemark contains a brief summary of the metadata and links to directly download of the BAG survey files and the complete metadata file. Each survey is time tagged so that users can search both in space and time for surveys that meet their needs. By creating this visualization, we aim to make the entire process of data discovery, validation of relevance, and download much more efficient for research scientists who may not be familiar with NOAA's hydrographic survey efforts or the BAG format. In the process of creating this demonstration, we have identified a number of improvements that can be made to the hydrographic survey process in order to make the results easier to use especially with respect to metadata generation. With the combination of the NGDC deep archiving infrastructure, a Google Earth virtual globe visualization, and GeoRSS feeds of updates, we hope to increase the utilization of these high-quality gridded bathymetry. This workflow applies equally well to LIDAR topography and bathymetry. Additionally, with proper referencing and geotagging in journal publications, we hope to close the loop and help the community create a true “Geospatial Scholar” infrastructure.
Liscum, Fred
2001-01-01
A study was done to estimate the effects of urban development in the Houston, Texas, metropolitan area on nine stormwater runoff characteristics. Three of the nine characteristics define the magnitude of stormwater runoff, and the remaining six characteristics describe the shape and duration of a storm hydrograph. Multiple linear regression was used to develop equations to estimate the nine stormwater runoff characteristics from basin and rainfall characteristics. Five basin characteristics and five rainfall characteristics were tested in the regressions to determine which basin and rainfall characteristics significantly affect stormwater runoff characteristics. Basin development factor was found to be significant in equations for eight of the nine stormwater runoff characteristics. Two sets of equations were developed, one for each of two regions based on soil type, from a database containing 1,089 storm discharge hydrographs for 42 sites compiled during 1964–89.The effects of urban development on the eight stormwater runoff characteristics were quantified by varying basin development factor in the equations and recomputing the stormwater runoff characteristics. The largest observed increase in basin development factor for region 1 (north of Buffalo Bayou) during the study resulted in corresponding increases in the characteristics that define magnitude of stormwater runoff ranging from about 40 percent (for direct runoff) to 235 percent (for peak yield); and corresponding decreases in the characteristics that describe hydrograph shape and duration ranging from about 22 percent (for direct runoff duration) to about 58 percent (for basin lag). The largest observed increase in basin development factor for region 2 (south of Buffalo Bayou) during the study resulted in corresponding increases in the characteristics that define magnitude of stormwater runoff ranging from about 33 percent (for direct runoff) to about 210 percent (for both peak flow and peak yield); and corresponding decreases in the characteristics that describe hydrograph shape and duration ranging from about 38 percent (for direct runoff duration) to about 64 percent (for basin lag).
Griffin, Eleanor R.; Wiele, Stephen M.
1996-01-01
A one-dimensional model of unsteady discharge waves was applied to research flowr that were released from Glen Canyon Dam in support of the Glen Canyon Environmental Studies. These research flows extended over periods of 11 days during which the discharge followed specific, regular patterns repeated on a daily cycle that were similar to the daily releases for power generation. The model was used to produce discharge hydrographs at 38 selected sites in Marble and Grand Canyons for each of nine unsteady flows released from the dam in 1990 and 1991. In each case, the discharge computed from stage measurements and the associated stage-discharge relation at the streamflow-gaging station just below the dam (09379910 Colorado River Hlow Glen Canyon Dam) was routed to Diamond Creek, which is 386 kilometers downstream. Steady and unsteady tributary inflows downstream from the dam were included in the model calculations. Steady inflow to the river from tributaries downstream from the dam was determined for each case by comparing the steady base flow preceding and following the unsteady flow measured at six streamflow-gaging stations between Glen Canyon Dam and Diamond Creek. During three flow periods, significant unsteady inflow was received from the Paria River, or the Little Colorado River, or both. The amount and timing of unsteady inflow was determined using the discharge computed from records of streamflow-gaging stations on the tributaries. Unsteady flow then was added to the flow calculated by the model at the appropriate location. Hydrographs were calculated using the model at 5 streamflow-gaging stations downstream from the dam and at 33 beach study sites. Accuracy of model results was evaluated by comparing the results to discharge hydrographs computed from the records of the five streamflow-gaging stations between Lees Ferry and Lake Mead. Results show that model predictions of wave speed and shape agree well with data from the five streamflow-gaging stations.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Gatien, Philippe; Renaud, Benoit; Brissette, François; Martel, Jean-Luc
2015-10-01
This study aims to test whether a weighted combination of several hydrological models can simulate flows more accurately than the models taken individually. In addition, the project attempts to identify the most efficient model averaging method and the optimal number of models to include in the weighting scheme. In order to address the first objective, streamflow was simulated using four lumped hydrological models (HSAMI, HMETS, MOHYSE and GR4J-6), each of which were calibrated with three different objective functions on 429 watersheds. The resulting 12 hydrographs (4 models × 3 metrics) were weighted and combined with the help of 9 averaging methods which are the simple arithmetic mean (SAM), Akaike information criterion (AICA), Bates-Granger (BGA), Bayes information criterion (BICA), Bayesian model averaging (BMA), Granger-Ramanathan average variant A, B and C (GRA, GRB and GRC) and the average by SCE-UA optimization (SCA). The same weights were then applied to the hydrographs in validation mode, and the Nash-Sutcliffe Efficiency metric was measured between the averaged and observed hydrographs. Statistical analyses were performed to compare the accuracy of weighted methods to that of individual models. A Kruskal-Wallis test and a multi-objective optimization algorithm were then used to identify the most efficient weighted method and the optimal number of models to integrate. Results suggest that the GRA, GRB, GRC and SCA weighted methods perform better than the individual members. Model averaging from these four methods were superior to the best of the individual members in 76% of the cases. Optimal combinations on all watersheds included at least one of each of the four hydrological models. None of the optimal combinations included all members of the ensemble of 12 hydrographs. The Granger-Ramanathan average variant C (GRC) is recommended as the best compromise between accuracy, speed of execution, and simplicity.
Heat and Freshwater Convergence Anomalies in the Atlantic Ocean Inferred from Observations
NASA Astrophysics Data System (ADS)
Kelly, K. A.; Drushka, K.; Thompson, L.
2015-12-01
Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean. An "unknown control" version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content. The model is run for 1993-2014. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding a spatially uniform, time-varying MHT derived from updated MHT estimates at 41N (Willis 2010). Estimated anomalies in MHT are comparable to those recently observed at the RAPID/MOCHA line at 26.5N. MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. MHT anomalies at 35S resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates in the Atlantic Ocean (67N to 35S) resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009). Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.
Everett, Rhett; Gibbs, Dennis R.; Hanson, Randall T.; Sweetkind, Donald S.; Brandt, Justin T.; Falk, Sarah E.; Harich, Christopher R.
2013-01-01
To assess the water resources of the Cuyama Valley groundwater basin in Santa Barbara County, California, a series of cooperative studies were undertaken by the U.S. Geological Survey and the Santa Barbara County Water Agency. Between 2008 and 2012, geologic, water-quality, hydrologic and geomechanical data were collected from selected sites throughout the Cuyama Valley groundwater basin. Geologic data were collected from three multiple-well groundwater monitoring sites and included lithologic descriptions of the drill cuttings, borehole geophysical logs, temperature logs, as well as bulk density and sonic velocity measurements of whole-core samples. Generalized lithologic characterization from the monitoring sites indicated the water-bearing units in the subsurface consist of unconsolidated to partly consolidated sand, gravel, silt, clay, and occasional cobbles within alluvial fan and stream deposits. Analysis of geophysical logs indicated alternating layers of finer- and coarser-grained material that range from less than 1 foot to more than 20 feet thick. On the basis of the geologic data collected, the principal water-bearing units beneath the monitoring-well sites were found to be composed of younger alluvium of Holocene age, older alluvium of Pleistocene age, and the Tertiary-Quaternary Morales Formation. At all three sites, the contact between the recent fill and younger alluvium is approximately 20 feet below land surface. Water-quality samples were collected from 12 monitoring wells, 27 domestic and supply wells, 2 springs, and 4 surface-water sites and were analyzed for a variety of constituents that differed by site, but, in general, included trace elements; nutrients; dissolved organic carbon; major and minor ions; silica; total dissolved solids; alkalinity; total arsenic and iron; arsenic, chromium, and iron species; and isotopic tracers, including the stable isotopes of hydrogen and oxygen, activities of tritium, and carbon-14 abundance. Of the 39 wells sampled, concentrations of total dissolved solids and sulfate from 38 and 37 well samples, respectively, were greater than the U.S. Environmental Protection Agency’s secondary maximum contaminant levels. Concentrations greater than the maximum contaminant levels for nitrate were observed in five wells and were observed for arsenic in four wells. Differences in the stable-isotopic values of hydrogen and oxygen among groundwater samples indicated that water does not move freely between different formations or between different zones within the Cuyama Valley. Variations in isotopic composition indicated that recharge is derived from several different sources. The age of the groundwater, expressed as time since recharge, was between 600 and 38,000 years before present. Detectable concentrations of tritium indicated that younger water, recharged since the early 1950s, is present in parts of the groundwater basin. Hydrologic data were collected from 12 monitoring wells, 56 domestic and supply wells, 3 surface-water sites, and 4 rainfall-gaging stations. Rainfall in the valley averaged about 8 inches annually, whereas the mountains to the south received between 12 and 19 inches. Stream discharge records showed seasonal variability in surface-water flows ranging from no-flow to over 1,500 cubic feet per second. During periods when inflow to the valley exceeds outflow, there is potential recharge from stream losses to the groundwater system Water-level records included manual quarterly depth-to-water measurements collected from 68 wells, time-series data collected from 20 of those wells, and historic water levels from 16 wells. Hydrographs of the manual measurements showed declining water levels in 16 wells, mostly in the South-Main zone, and rising water levels in 14 wells, mostly in the Southern Ventucopa Uplands. Time-series hydrographs showed daily, seasonal, and longer-term effects associated with local pumping. Water-level data from the multiple-well monitoring sites indicated seasonal fluctuations as great as 80 feet and water-level differences between aquifers as great as 40 feet during peak pumping season. Hydrographs from the multiple-well groundwater monitoring sites showed vertical hydraulic gradients were upward during the winter months and downward during the irrigation season. Historic hydrographs showed water-level declines in the Southern-Main, Western Basin, Caliente Northern-Main, and Southern Sierra Madre zone ranging from 1 to 7 feet per year. Hydrographs of wells in the Southern Ventucopa Uplands zone showed several years with marked increases in water levels that corresponded to increased precipitation in the Cuyama Valley. Investigation of hydraulic properties included hydraulic conductivity and transmissivity estimated from aquifer tests performed on 63 wells. Estimates of horizontal hydraulic conductivity ranged from about 1.5 to 28 feet per day and decreased with depth. The median estimated hydraulic conductivity for the older alluvium was about five times that estimated for the Morales Formation. Estimates of transmissivity ranged from 560 to 163,400 gallons per day per foot and decreased with depth. The median estimated transmissivity for the younger alluvium was about three times that estimated for the older alluvium. Geomechanical analysis included land-surface elevation changes at five continuously operating global positioning systems (GPS) and land-subsidence detection at five interferometric synthetic aperture radar (InSAR) reference points. Analysis of data collected from continuously operating GPS stations showed the mountains to the south and west moved upward about 1 millimeter (mm) annually, whereas the station in the center of the Southern-Main zone moved downward more than 7 mm annually, indicating subsidence. It is likely that this subsidence is inelastic (permanent) deformation and indicates reduced storage capacity in the aquifer sediments. Analysis of InSAR data showed local and regional changes that appeared to be dependent, in part, on the time span of the interferogram, seasonal variations in pumping, and tectonic uplift. Long-term InSAR time series showed a total maximum detected subsidence rate of approximately 12 mm per year at one location and approximately 8 mm per year at a second location, while short-term InSAR time series showed maximum subsidence of about 15 mm at one location and localized maximum uplift of about 10 mm at another location.