Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.
2015-01-01
In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571
Chen, Zehua; Martinez, Diego A.; Gujja, Sharvari; Sykes, Sean M.; Zeng, Qiandong; Szaniszlo, Paul J.; Wang, Zheng; Cuomo, Christina A.
2014-01-01
Black or dark brown (phaeoid) fungi cause cutaneous, subcutaneous, and systemic infections in humans. Black fungi thrive in stressful conditions such as intense light, high radiation, and very low pH. Wangiella (Exophiala) dermatitidis is arguably the most studied phaeoid fungal pathogen of humans. Here, we report our comparative analysis of the genome of W. dermatitidis and the transcriptional response to low pH stress. This revealed that W. dermatitidis has lost the ability to synthesize alpha-glucan, a cell wall compound many pathogenic fungi use to evade the host immune system. In contrast, W. dermatitidis contains a similar profile of chitin synthase genes as related fungi and strongly induces genes involved in cell wall synthesis in response to pH stress. The large portfolio of transporters may provide W. dermatitidis with an enhanced ability to remove harmful products as well as to survive on diverse nutrient sources. The genome encodes three independent pathways for producing melanin, an ability linked to pathogenesis; these are active during pH stress, potentially to produce a barrier to accumulated oxidative damage that might occur under stress conditions. In addition, a full set of fungal light-sensing genes is present, including as part of a carotenoid biosynthesis gene cluster. Finally, we identify a two-gene cluster involved in nucleotide sugar metabolism conserved with a subset of fungi and characterize a horizontal transfer event of this cluster between fungi and algal viruses. This work reveals how W. dermatitidis has adapted to stress and survives in diverse environments, including during human infections. PMID:24496724
Meece, J.K.; Anderson, J.L.; Fisher, M.C.; Henk, D.A.; Sloss, Brian L.; Reed, K.D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n = 112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and ??-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species. ?? 2011, American Society for Microbiology.
Meece, Jennifer K.; Anderson, Jennifer L.; Fisher, Matthew C.; Henk, Daniel A.; Sloss, Brian L.; Reed, Kurt D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n=112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and α-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species.
Blastomycosis in nondomestic felids.
Storms, Timothy N; Clyde, Victoria L; Munson, Linda; Ramsay, Edward C
2003-09-01
Blastomycosis was diagnosed in six nondomestic felids from eastern Tennessee, including two Asian lions (Panthera leo persicus), one African lion (Panthera leo), one Siberian tiger (Panthera tigris), one cheetah (Acinonyx jubatus), and one snow leopard (Panthera uncia). Clinical signs included lethargy, anorexia, weight loss, dyspnea, sneezing. ataxia, and paresis. Variable nonspecific changes included leukocytosis, monocytosis, moderate left shift of neutrophils, moderate hypercalcemia, hyperproteinemia, and hyperglobulinemia. Thoracic radiographs revealed interstitial and alveolar changes, consolidation or collapse of a lung lobe, bullae formation, and a pulmonary mass. Agar gel immunodiffusion (AGID) serology for Blastomyces dermatitidis was performed in five felids and was positive in three. The tiger had cerebral blastomycosis and was positive for AGID serologic tests of both cerebrospinal fluid and serum. One percutaneous lung aspirate in the snow leopard and one bronchial aspirate in an Asian lion demonstrated B. dermatitidis organisms. whereas tracheal wash samples and a nasal discharge were nondiagnostic in others. Treatment with itraconazole was attempted in four cats. The tiger improved before euthanasia, whereas the others did not survive beyond initial treatments. In four felids, B. dermatitidis was found in the lungs and tracheobronchial lymph nodes associated with a florid pyogranulomatous reaction; the tiger had a pyogranulomatous encephalomyelitis, and the cheetah had a single pulmonary granuloma. Thoracic radiography, cytologic examination of lung lesion aspirates, and B. dermatitidis AGID serology should be performed on clinically ill zoo felids in endemic areas to rule out blastomycosis.
Red Fox as Sentinel for Blastomyces dermatitidis, Ontario, Canada.
Nemeth, Nicole M; Campbell, G Douglas; Oesterle, Paul T; Shirose, Lenny; McEwen, Beverly; Jardine, Claire M
2016-07-01
Blastomyces dermatitidis, a fungus that can cause fatal infection in humans and other mammals, is not readily recoverable from soil, its environmental reservoir. Because of the red fox's widespread distribution, susceptibility to B. dermatitidis, close association with soil, and well-defined home ranges, this animal has potential utility as a sentinel for this fungus.
The Transcriptome of Exophiala dermatitidis during Ex-vivo Skin Model Infection
Poyntner, Caroline; Blasi, Barbara; Arcalis, Elsa; Mirastschijski, Ursula; Sterflinger, Katja; Tafer, Hakim
2016-01-01
The black yeast Exophiala dermatitidis is a widespread polyextremophile and human pathogen, that is found in extreme natural habitats and man-made environments such as dishwashers. It can cause various diseases ranging from phaeohyphomycosis and systemic infections, with fatality rates reaching 40%. While the number of cases in immunocompromised patients are increasing, knowledge of the infections, virulence factors and host response is still scarce. In this study, for the first time, an artificial infection of an ex-vivo skin model with Exophiala dermatitidis was monitored microscopically and transcriptomically. Results show that Exophiala dermatitidis is able to actively grow and penetrate the skin. The analysis of the genomic and RNA-sequencing data delivers a rich and complex transcriptome where circular RNAs, fusion transcripts, long non-coding RNAs and antisense transcripts are found. Changes in transcription strongly affect pathways related to nutrients acquisition, energy metabolism, cell wall, morphological switch, and known virulence factors. The L-Tyrosine melanin pathway is specifically upregulated during infection. Moreover the production of secondary metabolites, especially alkaloids, is increased. Our study is the first that gives an insight into the complexity of the transcriptome of Exophiala dermatitidis during artificial skin infections and reveals new virulence factors. PMID:27822460
Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina
2016-01-01
We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We conclude that dishwashers represent a reservoir of enriched opportunistic pathogenic species that can spread from the dishwasher into the indoor biome. PMID:26867131
Sullivan, Thomas D.; Rooney, Peggy J.; Klein, Bruce S.
2002-01-01
The dimorphic fungi Blastomyces dermatitidis and Histoplasma capsulatum cause systemic mycoses in humans and other animals. Forward genetic approaches to generating and screening mutants for biologically important phenotypes have been underutilized for these pathogens. The plant-transforming bacterium Agrobacterium tumefaciens was tested to determine whether it could transform these fungi and if the fate of transforming DNA was suited for use as an insertional mutagen. Yeast cells from both fungi and germinating conidia from B. dermatitidis were transformed via A. tumefaciens by using hygromycin resistance for selection. Transformation frequencies up to 1 per 100 yeast cells were obtained at high effector-to-target ratios of 3,000:1. B. dermatitidis and H. capsulatum ura5 lines were complemented with transfer DNA vectors expressing URA5 at efficiencies 5 to 10 times greater than those obtained using hygromycin selection. Southern blot analyses indicated that in 80% of transformants the transferred DNA was integrated into chromosomal DNA at single, unique sites in the genome. Progeny of B. dermatitidis transformants unexpectedly showed that a single round of colony growth under hygromycin selection or visible selection of transformants by lacZ expression generated homokaryotic progeny from multinucleate yeast. Theoretical analysis of random organelle sorting suggests that the majority of B. dermatitidis cells would be homokaryons after the ca. 20 generations necessary for colony formation. Taken together, the results demonstrate that A. tumefaciens efficiently transfers DNA into B. dermatitidis and H. capsulatum and has the properties necessary for use as an insertional mutagen in these fungi. PMID:12477790
Transtracheal aspiration in the diagnosis of pulmonary blastomycosis (17 cases: 2000–2005)
McMillan, Chantal J.; Taylor, Susan M.
2008-01-01
Blastomyces dermatitidis is a common etiologic agent of fungal pneumonia in dogs. Definitive diagnosis is based on cytologic demonstration of the organism in affected tissues. Fluid obtained through transtracheal aspiration has previously been reported to have a low diagnostic yield for B. dermatitidis organisms. This retrospective study identified B. dermatitidis organisms in 76% of samples when transtracheal aspiration was performed in 17 nonsedated dogs with pulmonary blastomycosis. Transtracheal aspiration is a noninvasive and simple procedure that should be considered as an early diagnostic test whenever blastomycosis is a differential diagnosis in dogs with pulmonary disease. PMID:18320978
Ecologic Niche Modeling of Blastomyces dermatitidis in Wisconsin
Reed, Kurt D.; Meece, Jennifer K.; Archer, John R.; Peterson, A. Townsend
2008-01-01
Background Blastomycosis is a potentially fatal mycosis that is acquired by inhaling infectious spores of Blastomyces dermatitidis present in the environment. The ecology of this pathogen is poorly understood, in part because it has been extremely difficult to identify the niche(s) it occupies based on culture isolation of the organism from environmental samples. Methodology/Principal Findings We investigated the ecology of blastomycosis by performing maximum entropy modeling of exposure sites from 156 cases of human and canine blastomycosis to provide a regional-scale perspective of the geographic and ecologic distribution of B. dermatitidis in Wisconsin. Based on analysis with climatic, topographic, surface reflectance and other environmental variables, we predicted that ecologic conditions favorable for maintaining the fungus in nature occur predominantly within northern counties and counties along the western shoreline of Lake Michigan. Areas of highest predicted occurrence were often in proximity to waterways, especially in northcentral Wisconsin, where incidence of infection is highest. Ecologic conditions suitable for B. dermatitidis are present in urban and rural environments, and may differ at the extremes of distribution of the species in the state. Conclusions/Significance Our results provide a framework for a more informed search for specific environmental factors modulating B. dermatitidis occurrence and transmission and will be useful for improving public health awareness of relative exposure risks. PMID:18446224
Variation in clinical phenotype of human infection among genetic groups of Blastomyces dermatitidis
Meece, Jennifer K.; Anderson, Jennifer L.; Gruszka, Sarah; Sloss, Brian L.; Sullivan, Bradley; Reed, Kurt D.
2013-01-01
Background. Blastomyces dermatitidis, the etiologic agent of blastomycosis, has 2 genetic groups and shows varied clinical presentation, ranging from silent infections to fulminant respiratory disease and dissemination. The objective of this study was to determine whether clinical phenotype and outcomes vary based on the infecting organism's genetic group.Methods. We used microsatellites to genotype 227 clinical isolates of B. dermatitidis from Wisconsin patients. For each isolate, corresponding clinical disease characteristics and patient demographic information were abstracted from electronic health records and Wisconsin Division of Health reportable disease forms and questionnaires.Results. In univariate analysis, group 1 isolates were more likely to be associated with pulmonary-only infections (P < .0001) and constitutional symptoms such as fever (P < .0001). In contrast, group 2 isolates were more likely to be associated with disseminated disease (P < .0001), older patient age (P < .0001), and comorbidities (P = .0019). In multivariate analysis, disease onset to diagnosis of >1 month (P < .0001), older age at diagnosis (P < .0001), and current smoking status (P = .0001) remained predictors for group 2 infections.Conclusions. This study identified previously unknown associations between clinical phenotype of human infection and genetic groups of B. dermatitidis and provides a framework for further investigations of the genetic basis for virulence in B. dermatitidis.
21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3060...
21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3060...
21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3060...
21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3060...
21 CFR 866.3060 - Blastomyces dermatitidis serological reagents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blastomyces dermatitidis serological reagents. 866.3060 Section 866.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3060...
Vasquez, Amber M; Lake, Jason; Ngai, Stephanie; Halbrook, Megan; Vallabhaneni, Snigdha; Keckler, M Shannon; Moulton-Meissner, Heather; Lockhart, Shawn R; Lee, Christopher T; Perkins, Kiran; Perz, Joseph F; Antwi, Mike; Moore, Miranda S; Greenko, Jane; Adams, Eleanor; Haas, Janet; Elkind, Sandra; Berman, Marjorie; Zavasky, Dani; Chiller, Tom; Ackelsberg, Joel
2016-11-18
On May 24, 2016, the New York City Department of Health and Mental Hygiene notified CDC of two cases of Exophiala dermatitidis bloodstream infections among patients with malignancies who had received care from a single physician at an outpatient oncology facility (clinic A). Review of January 1-May 31, 2016 microbiology records identified E. dermatitidis bloodstream infections in two additional patients who also had received care at clinic A. All four patients had implanted vascular access ports and had received intravenous (IV) medications, including a compounded IV flush solution containing saline, heparin, vancomycin, and ceftazidime, compounded and administered at clinic A.
Clinical and molecular epidemiology of veterinary blastomycosis in Wisconsin.
Anderson, Jennifer L; Sloss, Brian L; Meece, Jennifer K
2013-04-22
Several studies have shown that Blastomyces dermatitidis, the etiologic agent of blastomycosis, is a genetically diverse pathogen. Blastomycosis is a significant health issue in humans and other mammals. Veterinary and human isolates matched with epidemiological case data from the same geographic area and time period were used to determine: (i) if differences in genetic diversity and structure exist between clinical veterinary and human isolates of B. dermatitidis and (ii) if comparable epidemiologic features differ among veterinary and human blastomycosis cases. Genetic typing of 301 clinical B. dermatitidis isolates produced 196 haplotypes (59 unique to veterinary isolates, 134 unique to human isolates, and 3 shared between canine and human isolates). Private allelic richness was higher in veterinary (median 2.27) compared to human isolates (median 1.14) (p = 0.005). Concordant with previous studies, two distinct genetic groups were identified among all isolates. Genetic group assignment was different between human and veterinary isolates (p < 0.001), with more veterinary isolates assigned to Group 2. The mean age of dogs diagnosed with blastomycosis was 6 years. Thirty cases were in male dogs (52%) and 24 were females (41%). The breed of dog was able to be retrieved in 38 of 58 cases with 19 (50%) being sporting breeds. Three of four felines infected with blastomycosis were domestic shorthair males between ages 6-12, and presented with disseminated disease. The other was a lynx with pulmonary disease. The equine isolate was from an 11-year-old male Halflinger with disseminated disease. Disseminated disease was reported more often in veterinary (62%) than human cases (19%) (p < 0.001). Isolates from all hosts clustered largely into previously identified genetic groups, with 3 haplotypes being shared between human and canine isolates confirming that B. dermatitidis isolates capable of infecting both species occur in nature. Allelic diversity measures trended higher in veterinary samples, with a higher number of total alleles and private alleles. Veterinary isolates of B. dermatitidis contributed a substantial amount of diversity to the overall population genetic structure demonstrating the importance of including veterinary isolates in genetic studies of evolution and virulence in this organism.
Vasquez, Amber; Zavasky, D; Chow, N A; Gade, L; Zlatanic, E; Elkind, S; Litvintseva, A P; Pappas, P G; Perfect, J R; Revankar, S; Lockhart, S R; Chiller, T; Ackelsberg, J; Vallabhaneni, S
2018-03-05
We report the presentation and management of 17 cases of Exophiala dermatitidis and Rhodotorula mucilaginosa bloodstream infections caused by a compounded parenteral medication at an oncology clinic. Twelve patients were asymptomatic. All central venous catheters were removed and antifungal therapy, primarily voriconazole, was administered to patients. Three patients died.
Paolo, William F; Dadachova, Ekaterina; Mandal, Piyali; Casadevall, Arturo; Szaniszlo, Paul J; Nosanchuk, Joshua D
2006-01-01
Background Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis. Results We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Δ-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Δ-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Δ-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains. Conclusion In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear. PMID:16784529
Disseminated Exophiala dermatitidis causing septic arthritis and osteomyelitis.
Lang, Raynell; Minion, Jessica; Skinner, Stuart; Wong, Alexander
2018-06-04
Exophiala dermatitidis is a melanized fungus isolated from many environmental sources. Infections caused by Exophiala species are typically seen in immunocompromised hosts and manifest most commonly as cutaneous or subcutaneous disease. Systemic infections are exceedingly rare and associated with significant morbidity and mortality CASE PRESENTATION: A 28-year-old female originally from India presented with fevers, chills, weight loss and increasing back pain. She had a recent diffuse maculopapular rash that resulted in skin biopsy and a tentative diagnosis of sarcoidosis, leading to administration of azathioprine and prednisone. An MRI of her spine revealed a large paraspinal abscess requiring surgical intervention and hardware placement. Cultures from the paraspinal abscess grew a colony of dark pigmented mold. Microscopy of the culture revealed a melanized fungus, identified as Exophiala dermatitidis. Voriconazole was initially utilized, but due to relapse of infection involving the right iliac crest and left proximal humerus, she received a prolonged course of amphotericin B and posaconazole in combination and required 7 separate surgical interventions. Prolonged disease stability following discontinuation of therapy was achieved. Described is the first identified case of disseminated Exophiala dermatitidis causing osteomyelitis and septic arthritis in a patient on immunosuppressive therapy. A positive outcome was achieved through aggressive surgical intervention and prolonged treatment with broad-spectrum antifungal agents.
The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest
Sudhadham, M.; Prakitsin, S.; Sivichai, S.; Chaiyarat, R.; Dorrestein, G. M.; Menken, S.B.J.; de Hoog, G.S.
2008-01-01
The black yeast Exophiala dermatitidis is known as a rare etiologic agent of neurotropic infections in humans, occurring particularly in East and Southeast Asia. In search of its natural habitat, a large sampling was undertaken in temperate as well as in tropical climates. Sampling sites were selected on the basis of the origins of previously isolated strains, and on the basis of physiological properties of the species, which also determined a selective isolation protocol. The species was absent from outdoor environments in the temperate climate, but present at low abundance in comparable habitats in the tropics. Positive outdoor sites particularly included faeces of frugivorous birds and bats, in urban as well as in natural areas. Tropical fruits were found E. dermatitidis positive at low incidence. Of the human-made environments sampled, railway ties contaminated by human faeces and oily debris in the tropics were massively positive, while the known abundance of the fungus in steam baths was confirmed. On the basis of the species' oligotrophy, thermotolerance, acidotolerance, moderate osmotolerance, melanization and capsular yeast cells a natural life cycle in association with frugivorous animals in foci in the tropical rain forest, involving passage of living cells through the intestinal tract was hypothesized. The human-dominated environment may have become contaminated by ingestion of wild berries carrying fungal propagules PMID:19287537
Hall, Leslie; Otter, Jonathan A; Chewins, John; Wengenack, Nancy L
2008-03-01
Hydrogen peroxide vapour (HPV) has been proposed as an alternative to formaldehyde fumigation for the decontamination of biosafety level (BSL) III laboratories. The aim of this study was to evaluate the efficacy of HPV against the dimorphic fungi Histoplasma capsulatum, Blastomyces dermatitidis and Coccidioides immitis. Working inside a class II biological safety cabinet (BSC) within a BSL III laboratory, inocula containing approximately 5-log(10) cfu/ml from the mould form of each organism suspended in RPMI medium were deposited on stainless steel discs and allowed to air dry. The organisms were exposed to HPV inside a BSC using a BIOQUELL ClarusS HPV generator. In three replicate experiments, individual discs were transferred into liquid media at timed intervals during a 105 minute HPV exposure period. Control- and HPV-exposed discs were incubated in RPMI media at 30 degrees C for 6 weeks to determine if any viable organisms remained. Positive cultures were confirmed using specific nucleic acid hybridization probes. Results indicate that H. capsulatum, B. dermatitidis and C. immitis were killed within 30 minutes of HPV exposure.
Susceptibility of Blastomyces dermatitidis strains to products of oxidative metabolism.
Sugar, A M; Chahal, R S; Brummer, E; Stevens, D A
1983-09-01
Three strains of Blastomyces dermatitidis which differ in their virulence for mice were exposed in their yeast form to various components of the peroxidase-hydrogen peroxide-halide system. Susceptibility to H2O2 alone correlated with virulence, with the most virulent strain (ATCC 26199) least susceptible (50% lethal dose, greater than 50 mM) and an avirulent strain (ATCC 26197) most susceptible (50% lethal dose less than 3.3 mM). A strain of intermediate virulence (ATCC 26198) was of intermediate susceptibility (50% lethal dose, 11.5 mM). The addition of a nontoxic concentration of KI (5 X 10(-4) M) did not increase H2O2 toxicity. However, the addition of either myeloperoxidase or horseradish peroxidase and KI markedly decreased the amount of H2O2 required to kill the organisms, with 100 +/- 0% of all strains killed at 5 X 10(-5) M H2O2 and 97 +/- 4, 100 +/- 0, and 94 +/- 8% of ATCC 26199, ATCC 26198, and ATCC 26197 killed, respectively, at 5 X 10(-6) M H2O2. Kinetic studies with H2O2 alone revealed a delayed onset of killing, but virtually 100% of organisms were killed by 120 min of exposure in all strains. By comparison, the peroxidase-hydrogen peroxide-halide system was 100% lethal for all strains at 1 min. The relatively high concentrations of H2O2 required to kill the yeast phase of B. dermatitidis suggest that H2O2 alone does not account for host resistance to the organism. However, the rapidly lethal effect of the peroxidase-hydrogen peroxide-halide system at physiologically relevant concentrations suggests that this may be one mechanism of host defense to B. dermatitidis.
Boyce, Kylie J; Andrianopoulos, Alex
2015-11-01
The ability of pathogenic fungi to switch between a multicellular hyphal and unicellular yeast growth form is a tightly regulated process known as dimorphic switching. Dimorphic switching requires the fungus to sense and respond to the host environment and is essential for pathogenicity. This review will focus on the role of dimorphism in fungi commonly called thermally dimorphic fungi, which switch to a yeast growth form during infection. This group of phylogenetically diverse ascomycetes includes Talaromyces marneffei (recently renamed from Penicillium marneffei), Blastomyces dermatitidis (teleomorph Ajellomyces dermatitidis), Coccidioides species (C. immitis and C. posadasii), Histoplasma capsulatum (teleomorph Ajellomyces capsulatum), Paracoccidioides species (P. brasiliensis and P. lutzii) and Sporothrix schenckii (teleomorph Ophiostoma schenckii). This review will explore both the signalling pathways regulating the morphological transition and the transcriptional responses necessary for intracellular growth. The physiological requirements of yeast cells during infection will also be discussed, highlighting recent advances in the understanding of the role of iron and calcium acquisition during infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2012-11-01
laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing...damaged nuclear reactor at Chernobyl , which are constantly exposed to ionizing radiation, harbor large of amounts of microorganisms, including fungal...species [3,4]. Furthermore, Zhdanova et al. reported that beta and gamma radiation promoted directional growth of fungi isolated from the Chernobyl
... dermatitidis fungus. The fungus is found in decaying wood and soil. Causes You can get blastomycosis by ... moist soil, most commonly where there is rotting wood and leaves. The fungus enters the body through ...
Double-stranded RNA virus in the human pathogenic fungus Blastomyces dermatitidis.
Kohno, S; Fujimura, T; Rulong, S; Kwon-Chung, K J
1994-01-01
Double-stranded RNA viruses were detected in a strain of Blastomyces dermatitidis isolated from a patient in Uganda. The viral particles are spherical (mostly 44 to 50 nm in diameter) and consist of about 25% double-stranded RNA (5 kb) and 75% protein (90 kDa). The virus contains transcriptional RNA polymerase activity; it synthesized single-stranded RNA in vitro in a conservative manner. The newly synthesized single-stranded RNA was a full-length strand, and the rate of chain elongation was approximately 170 nucleotides per min. The virus-containing strain shows no morphological difference from virus-free strains in the mycelial phase. Although the association with the presence of the virus is unclear, the virus-infected strain converts to the yeast form at 37 degrees C, but the yeast cells fail to multiply at that temperature. Images PMID:7933142
Marty, Amber J; Gauthier, Gregory M
2013-01-01
Blastomyces dermatitidis, the etiologic agent of blastomycosis, belongs to a group of thermally dimorphic fungi that change between mold (22°C) and yeast (37°C) in response to temperature. The contribution of structural proteins such as septins to this phase transition in these fungi remains poorly understood. Septins are GTPases that serve as a scaffold for proteins involved with cytokinesis, cell polarity, and cell morphology. In this study, we use a GFP sentinel RNA interference system to investigate the impact of CDC3, CDC10, CDC12, and ASPE on the morphology and phase transition of B. dermatitidis. Targeting CDC3, CDC10, and CDC12 by RNA interference resulted in yeast with aberrant morphology at 37°C with defects in cytokinesis. Downshifting the temperature to 22°C promoted the conversion to the mold phase, but did not abrogate the morphologic defects. CDC3, CDC10, and CDC12 knockdown strains grew as mold with curved, thickened hyphae. Knocking down ASPE transcript did not alter morphology of yeast at 37°C or mold at 22°C. Following an increase in temperature from 22°C to 37°C, all septin knockdown strains were able to revert to yeast. In conclusion, CDC3, CDC10, and CDC12 septin- encoding genes are required for proper morphology of yeast and hyphae, but are dispensable for the phase transition.
Blaschke-Hellmessen, R
1996-01-01
Preliminary own results suggest, that the Etest (produced by AB BIODISK, Solna, Sweden) performed on casitone medium meets the requirements of a routine test of yeast susceptibility to fluconazole and itraconazole. Testing of 46 clinical yeast isolates, of 5 strains of Exophiala dermatitidis and 4 strains of algae of the genus Prototheca revealed species-, genus- and strain-specific variations of the susceptibility to fluconazole and itraconazole. Candida glabrata was less susceptible to both triazoles than the other Candida species with exception of Candida krusei. Exophiala dermatitidis was highly susceptible to itraconazole. Prototheca wickerhamii and P. zopfii were resistant to both triazoles. Casitone medium is most appropriate for the determination of susceptibility to fluconazole and itraconazole by the Etest. The results of the Etest were comparable with those of a breakpoint test (microdilution method).
Physics and the canalization of morphogenesis: a grand challenge in organismal biology
von Dassow, Michelangelo; Davidson, Lance A.
2011-01-01
Morphogenesis takes place in a background of organism-to-organism and environmental variation. Therefore, a fundamental question in the study of morphogenesis is how the mechanical processes of tissue movement and deformation are affected by that variability, and in turn, how the mechanics of the system modulates phenotypic variation. We highlight a few key factors, including environmental temperature, embryo size, and environmental chemistry that might perturb the mechanics of morphogenesis in natural populations. Then we discuss several ways in which mechanics – including feedback from mechanical cues – might influence intra-specific variation in morphogenesis. To understand morphogenesis it will be necessary to consider whole-organism, environment, and evolutionary scales because these larger scales present the challenges that developmental mechanisms have evolved to cope with. Studying the variation organisms express and the variation organisms experience will aid in deciphering the causes of birth defects. PMID:21750364
Zupančič, Jerneja; Raghupathi, Prem K; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J; Gunde-Cimerman, Nina
2018-01-01
Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis , the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health.
Zupančič, Jerneja; Raghupathi, Prem K.; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J.; Gunde-Cimerman, Nina
2018-01-01
Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health. PMID:29441043
Maresca, B; Kobayashi, G S
1989-01-01
Several fungi can assume either a filamentous or a unicellular morphology in response to changes in environmental conditions. This process, known as dimorphism, is a characteristic of several pathogenic fungi, e.g., Histoplasma capsulatum, Blastomyces dermatitidis, and Paracoccidioides brasiliensis, and appears to be directly related to adaptation from a saprobic to a parasitic existence. H. capsulatum is the most extensively studied of the dimorphic fungi, with a parasitic phase consisting of yeast cells and a saprobic mycelial phase. In culture, the transition of H. capsulatum from one phase to the other can be triggered reversibly by shifting the temperature of incubation between 25 degrees C (mycelia) and 37 degrees C (yeast phase). Mycelia are found in soil and never in infected tissue, in contrast to the yeast phase, which is the only form present in patients. The temperature-induced phase transition and the events in establishment of the disease state are very likely to be intimately related. Furthermore, the temperature-induced phase transition implies that each growth phase is an adaptation to two critically different environments. A fundamental question concerning dimorphism is the nature of the signal(s) that responds to temperature shifts. So far, both the responding cell component(s) and the mechanism(s) remain unclear. This review describes the work done in the last several years at the biochemical and molecular levels on the mechanisms involved in the mycelium to yeast phase transition and speculates on possible models of regulation of morphogenesis in dimorphic pathogenic fungi. Images PMID:2666842
Wu, Qian; DiBona, Victoria L; Bernard, Laura P; Zhang, Huaye
2012-08-31
The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95.
Kujoth, Gregory C.; Sullivan, Thomas D.; Merkhofer, Richard; Lee, Taek-Jin; Wang, Huafeng; Brandhorst, Tristan; Wüthrich, Marcel
2018-01-01
ABSTRACT Blastomyces dermatitidis is a human fungal pathogen of the lung that can lead to disseminated disease in healthy and immunocompromised individuals. Genetic analysis of this fungus is hampered by the relative inefficiency of traditional recombination-based gene-targeting approaches. Here, we demonstrate the feasibility of applying CRISPR/Cas9-mediated gene editing to Blastomyces, including to simultaneously target multiple genes. We created targeting plasmid vectors expressing Cas9 and either one or two single guide RNAs and introduced these plasmids into Blastomyces via Agrobacterium gene transfer. We succeeded in disrupting several fungal genes, including PRA1 and ZRT1, which are involved in scavenging and uptake of zinc from the extracellular environment. Single-gene-targeting efficiencies varied by locus (median, 60% across four loci) but were approximately 100-fold greater than traditional methods of Blastomyces gene disruption. Simultaneous dual-gene targeting proceeded with efficiencies similar to those of single-gene-targeting frequencies for the respective targets. CRISPR/Cas9 disruption of PRA1 or ZRT1 had a variable impact on growth under zinc-limiting conditions, showing reduced growth at early time points in low-passage-number cultures and growth similar to wild-type levels by later passage. Individual impairment of PRA1 or ZRT1 resulted in a reduction of the fungal burden in a mouse model of Blastomyces infection by a factor of ~1 log (range, up to 3 logs), and combined disruption of both genes had no additional impact on the fungal burden. These results underscore the utility of CRISPR/Cas9 for efficient gene disruption in dimorphic fungi and reveal a role for zinc metabolism in Blastomyces fitness in vivo. PMID:29615501
Wu, Qian; DiBona, Victoria L.; Bernard, Laura P.; Zhang, Huaye
2012-01-01
The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95. PMID:22807451
Carpal intra-articular blastomycosis in a Labrador retriever.
Woods, Katharine S; Barry, Maureen; Richardson, Danielle
2013-02-01
A 6-month-old male castrated Labrador retriever was presented for coughing and forelimb lameness. Blastomyces dermatitidis was identified in cytology of sputum and synovial fluid. Repeat arthrocentesis 7 months later revealed resolution of septic arthritis. Fungal septic arthritis should be considered for cases of monoarthritis and may respond to oral itraconazole treatment.
Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi
2015-01-01
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057
Schmalreck, A F; Tränkle, P; Vanca, E; Blaschke-Hellmessen, R
1998-01-01
Due to the Fourier-Transform Infrared Spectroscopy (FT-IR) of strain specific traits demonstrated to be a suitable and efficient method for diagnostic and epidemiological determinations for the yeasts Candida albicans, Exophiala dermatitidis and the chlorophylless algae of the genus Prototheca. FT-IR leads in a rapid and economical way to reproducible results according to the spectral differences of intact cells (IR-fingerprints). Different genera, species and sub-species respectively, different strains can be recognized and grouped into different clusters and subclusters. The FT-IR analysis of Candida albicans isolates (n = 150) of 22 newborns-at-risk of an intensive care unit showed, that 86% of the children were colonised with several (2-4) different strains in the oral cavities and faeces. Stationary cross-infections could definitely be determined. Exophiala dermatitidis isolates (n = 31), mostly isolated repetitively within a period of 3 years from sputa of patients suffering from cystic fibrosis could be characterized and grouped patient-specifically over the total sampling period. Of 6 from 8 patients (75%) their individual strains remain the same and could be tracked over the three years. Cross-infections during the stationary treatment could be clearly identified by FT-IR. The Prototheca isolate (n = 43) from live-stock and farm environment showed clear distinguishable clusters differentiating the species P. wickerhamii, P. zopfii and P. stagnora. In addition, the biotypes of P. zopfii could be distinguished, especially the subclusters of variants II and III. It could be demonstrated, that FT-IR is suitable for the routine identification and differentiation of yeasts and algae. However, in spite of the gain of knowledge by using FT-IR for the characterization of microorganisms, the conventional phenotyping and/or genetic analysis of yeast or algae strains cannot be replaced completely. For a final taxonomic classification a combination of conventional methods on FT-IR together with more sophisticated molecular genetic procedures is necessary.
Murphy, J W; Gregory, J A; Larsh, H W
1974-02-01
This study was undertaken to evaluate the potential of a cryptococcal culture filtrate antigen, cryptococcin C184, for detecting delayed hypersensitivity in Cryptococcus neoformans-injected animals. The antigen was tested on guinea pigs which had received saline or C. neoformans and on animals sensitized to Histoplasma capsulatum, Blastomyces dermatitidis, Candida albicans, or Sporothrix schenckii. A delayed-type hypersensitivity response was elicited by cryptococcin C184 in C. neoformans-injected guinea pigs, whereas no indurations or erythemas were seen at 48 h after skin testing of saline controls or heterologously sensitized guinea pigs. Besides being specific for Cryptococcus, the antigen showed a high degree of sensitivity and was reproducible. Footpad tests were conducted with the antigen on mice which had previously received either 10(5) viable C. neoformans cells or saline. Delayed hypersensitivity was indicated in the C. neoformans-injected mice by the increase in thickness of antigen-injected footpads when compared with the saline-injected footpads. In control mice, antigen- and saline-injected footpads were comparable in thickness 24 h after injection. Mice sensitized to B. dermatitidis were footpad tested with C184, and no cross-reactivity was demonstrated.
Chen, Geng; Rogers, Alicia K.; League, Garrett P.; Nam, Sang-Chul
2011-01-01
Background Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. Methodology/Principal Findings Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). Conclusions/Significance These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor. PMID:21253601
Gripp, Karen W; Adam, Margaret P; Hudgins, Louanne; Carey, John C
2016-07-01
The 36th Annual David W Smith Workshop on Malformations and Morphogenesis was held on August 14-19, 2015 at the Harbourtowne Conference Center in St. Michaels Maryland. The Workshop, which honors the legacy of David W Smith, brought together over 120 clinicians and researchers interested in congenital malformations and their underlying mechanisms of morphogenesis. As is the tradition of the meeting, the Workshop highlighted five themes besides mechanisms of morphogenesis: Rasopathies, Eye Malformations, Therapeutics, Prenatal Diagnosis, and Disorders of Sex Development. This Conference Report includes the abstracts presented at the 2015 Workshop. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ivanovitch, Kenzo; Temiño, Susana
2017-01-01
During vertebrate heart development, two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here, we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development. PMID:29202929
Gallo, Juan E.; Holder, Jason; Sullivan, Thomas D.; Marty, Amber J.; Carmen, John C.; Chen, Zehua; Ding, Li; Gujja, Sharvari; Magrini, Vincent; Misas, Elizabeth; Mitreva, Makedonka; Priest, Margaret; Saif, Sakina; Whiston, Emily A.; Young, Sarah; Zeng, Qiandong; Goldman, William E.; Mardis, Elaine R.; Taylor, John W.; McEwen, Juan G.; Clay, Oliver K.; Klein, Bruce S.; Cuomo, Christina A.
2015-01-01
Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution and of factors contributing to virulence in Blastomyces. PMID:26439490
Polycystin-1 Binds Par3/aPKC and Controls Convergent Extension During Renal Tubular Morphogenesis
Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra
2013-01-01
Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis. PMID:24153433
Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis
NASA Astrophysics Data System (ADS)
Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra
2013-10-01
Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.
Teague, Brian P; Guye, Patrick; Weiss, Ron
2016-09-01
Throughout biology, function is intimately linked with form. Across scales ranging from subcellular to multiorganismal, the identity and organization of a biological structure's subunits dictate its properties. The field of molecular morphogenesis has traditionally been concerned with describing these links, decoding the molecular mechanisms that give rise to the shape and structure of cells, tissues, organs, and organisms. Recent advances in synthetic biology promise unprecedented control over these molecular mechanisms; this opens the path to not just probing morphogenesis but directing it. This review explores several frontiers in the nascent field of synthetic morphogenesis, including programmable tissues and organs, synthetic biomaterials and programmable matter, and engineering complex morphogenic systems de novo. We will discuss each frontier's objectives, current approaches, constraints and challenges, and future potential. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Morphogenesis in Plants: Modeling the Shoot Apical Meristem, and Possible Applications
NASA Technical Reports Server (NTRS)
Mjolsness, Eric; Gor, Victoria; Meyerowitz, Elliot; Mann, Tobias
1998-01-01
A key determinant of overall morphogenesis in flowering plants such as Arabidopsis thaliana is the shoot apical meristem (growing tip of a shoot). Gene regulation networks can be used to model this system. We exhibit a very preliminary two-dimensional model including gene regulation and intercellular signaling, but omitting cell division and dynamical geometry. The model can be trained to have three stable regions of gene expression corresponding to the central zone, peripheral zone, and rib meristem. We also discuss a space-engineering motivation for studying and controlling the morphogenesis of plants using such computational models.
Miles, Lee B; Darido, Charbel; Kaslin, Jan; Heath, Joan K; Jane, Stephen M; Dworkin, Sebastian
2017-12-14
The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.
Embryo mechanics: balancing force production with elastic resistance during morphogenesis.
Davidson, Lance A
2011-01-01
Morphogenesis requires the spatial and temporal control of embryo mechanics, including force production and mechanical resistance to those forces, to coordinate tissue deformation and large-scale movements. Thus, biomechanical processes play a key role in directly shaping the embryo. Additional roles for embryo mechanics during development may include the patterning of positional information and to provide feedback to ensure the success of morphogenetic movements in shaping the larval body and organs. To understand the multiple roles of mechanics during development requires familiarity with engineering principles of the mechanics of structures, the viscoelastic properties of biomaterials, and the integration of force and stress within embryonic structures as morphogenesis progresses. In this chapter, we review the basic engineering principles of biomechanics as they relate to morphogenesis, introduce methods for quantifying embryo mechanics and the limitations of these methods, and outline a formalism for investigating the role of embryo mechanics in birth defects. We encourage the nascent field of embryo mechanics to adopt standard engineering terms and test methods so that studies of diverse organisms can be compared and universal biomechanical principles can be revealed. Copyright © 2011 Elsevier Inc. All rights reserved.
Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.
Piotrowski-Daspit, Alexandra S; Nelson, Celeste M
2016-07-10
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
Mechanics and morphogenesis of fission yeast cells.
Davì, Valeria; Minc, Nicolas
2015-12-01
The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
A global sensitivity analysis approach for morphogenesis models.
Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G
2015-11-21
Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.
Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K
2016-06-01
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. © 2016. Published by The Company of Biologists Ltd.
Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish
Swartz, Mary E.; McCarthy, Neil; Norrie, Jacqueline L.; Eberhart, Johann K.
2016-01-01
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171
The Ron Receptor Tyrosine Kinase Negatively Regulates Mammary Gland Branching Morphogenesis
Meyer, Sara E.; Zinser, Glendon M.; Stuart, William D.; Pathrose, Peterson; Waltz, Susan E.
2009-01-01
The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK−/−). Mammary glands from RonTK−/− mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK−/− epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK−/− glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development. PMID:19576199
Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
Izumi-Kurotani, Akemi; Kiyomoto, Masato
2003-01-01
Fertilization and subsequent embryogenesis of newts occurred normally under microgravity in two Astronewt flight experiments. By accumulation of the results from the amphibian flight experiments including 'Astronewt', it is considered that gravity has rather small effects on the early development of amphibian eggs. However, some temporary abnormalities, which recover in the course of the further developmental process, have been observed. Some regulations may occur in whole embryos. For a thorough knowledge about the role of gravity in morphogenesis, we need to investigate the gravitational effects on a single cell in a whole embryo. We propose a new experimental system with sea urchin embryos and micromeres for further studies at a cellular level of the effects of gravity on morphogenesis.
Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis
Elsen, Gina E.; Choi, Louis; Millen, Kathleen; Grinblat, Yevgenya; Prince, Victoria E.
2008-01-01
During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain. PMID:18191121
Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi
2018-05-16
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.
Modulation of Morphogenesis in Candida albicans by Various Small Molecules ▿
Shareck, Julie; Belhumeur, Pierre
2011-01-01
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections. PMID:21642508
Embryologic and Fetal Development of the Human Eyelid
Abdulhafez, Mohamed H.; Fouad, Yousef A.; Dutton, Jonathan J.
2016-01-01
Purpose: To review the recent data about eyelid morphogenesis, and outline a timeline for eyelid development from the very early stages during embryonic life till final maturation of the eyelid late in fetal life. Methods: The authors extensively review major studies detailing human embryologic and fetal eyelid morphogenesis. These studies span almost a century and include some more recent cadaver studies. Numerous studies in the murine model have helped to better understand the molecular signals that govern eyelid embryogenesis. The authors summarize the current findings in molecular biology, and highlight the most significant studies in mice regarding the multiple and interacting signaling pathways involved in regulating normal eyelid morphogenesis. Results: Eyelid morphogenesis involves a succession of subtle yet strictly regulated morphogenetic episodes of tissue folding, proliferation, contraction, and even migration, which may occur simultaneously or in succession. Conclusions: Understanding the extraordinary process of building eyelid tissue in embryonic life, and deciphering its underlying signaling machinery has far reaching clinical implications beyond understanding the developmental abnormalities involving the eyelids, and may pave the way for achieving scar-reducing therapies in adult mammalian wounds, or control the spread of malignancies. PMID:27124372
Quantum morphogenesis: A variation on Thom's catastrophe theory
NASA Astrophysics Data System (ADS)
Aerts, Dirk; Czachor, Marek; Gabora, Liane; Kuna, Maciej; Posiewnik, Andrzej; Pykacz, Jarosław; Syty, Monika
2003-05-01
Noncommutative propositions are characteristic of both quantum and nonquantum (sociological, biological, and psychological) situations. In a Hilbert space model, states, understood as correlations between all the possible propositions, are represented by density matrices. If systems in question interact via feedback with environment, their dynamics is nonlinear. Nonlinear evolutions of density matrices lead to the phenomenon of morphogenesis that may occur in noncommutative systems. Several explicit exactly solvable models are presented, including “birth and death of an organism” and “development of complementary properties.”
Morphogenesis by symbiogenesis
NASA Technical Reports Server (NTRS)
Chapman, M. J.; Margulis, L.
1998-01-01
Here we review cases where initiation of morphogenesis, including the differentiation of specialized cells and tissues, has clearly evolved due to cyclical symbiont integration. For reasons of space, our examples are drawn chiefly from the plant, fungal and bacterial kingdoms. Partners live in symbioses and show unique morphological specializations that result when they directly and cyclically interact. We include here brief citations to relevant literature where plant, bacterial or fungal partners alternate independent with entirely integrated living. The independent, or at least physically unassociated stages, are correlated with the appearance of distinctive morphologies that can be traced to the simultaneous presence and strong interaction of the plant with individuals that represent different taxa.
Case Study: Organotypic human in vitro models of embryonic ...
Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell-matrix interactions that drive proliferation, differentiation, and morphogenesis. Chemical low-dose exposures can disrupt morphogenesis across space and time by interfering with key embryonic fusion events. The Morphogenetic Fusion Task uses computer and in vitro models to elucidate consequences of developmental exposures. The Morphogenetic Fusion Task integrates multiple approaches to model responses to chemicals that leaad to birth defects, including integrative mining on ToxCast DB, ToxRefDB, and chemical structures, advanced computer agent-based models, and human cell-based cultures that model disruption of cellular and molecular behaviors including mechanisms predicted from integrative data mining and agent-based models. The purpose of the poster is to indicate progress on the CSS 17.02 Virtual Tissue Models Morphogenesis Task 1 products for the Board of Scientific Counselors meeting on Nov 16-17.
Morphogenesis of the C. elegans vulva
Schindler, Adam J
2012-01-01
Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the C. elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of seven different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviours that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell-cell adhesion, cell migration, cell fusion, extracellular matrix remodelling and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. PMID:23418408
Denker, Elsa; Jiang, Di
2012-05-01
Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Motility and more: the flagellum of Trypanosoma brucei
Langousis, Gerasimos; Hill, Kent L.
2014-01-01
A central feature of trypanosome cell biology and life cycle is the parasite’s single flagellum, which is an essential and multifunctional organelle involved in cell propulsion, morphogenesis and cytokinesis. The flagellar membrane is also a specialized subdomain of the cell surface that harbors multiple parasite virulence factors with roles in signaling and host-parasite interactions. In this review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interaction. PMID:24931043
Expression and Functional Role of Sprouty-2 in Breast Morphogenesis
Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M.; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K.; Gudjonsson, Thorarinn
2013-01-01
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland. PMID:23573284
Expression and functional role of sprouty-2 in breast morphogenesis.
Sigurdsson, Valgardur; Ingthorsson, Saevar; Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K; Gudjonsson, Thorarinn
2013-01-01
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.
Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis
2018-01-01
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non–cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types. PMID:29768404
Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.
2016-01-01
The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294
Di-Poï, Nicolas; Milinkovitch, Michel C.
2016-01-01
Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an “anatomical placode” (that is, a local epidermal thickening characteristic of feathers’ and hairs’ early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)–deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor’s skin appendages already characterized by an anatomical placode and associated signaling molecules. PMID:28439533
Morphogenesis of the caenorhabditis elegans vulva.
Schindler, Adam J; Sherwood, David R
2013-01-01
Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the Caenorhabditis elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of 7 different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviors that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell–cell adhesion, cell migration, cell fusion, extracellular matrix remodeling, and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. © 2012 Wiley Periodicals, Inc.
Di-Poï, Nicolas; Milinkovitch, Michel C
2016-06-01
Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an "anatomical placode" (that is, a local epidermal thickening characteristic of feathers' and hairs' early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)-deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor's skin appendages already characterized by an anatomical placode and associated signaling molecules.
Normal morphogenesis of epithelial tissues and progression of epithelial tumors
Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.
2011-01-01
Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857
2017-01-01
Summary This study characterises the genetic variability of local pomegranate (Punica granatum L.) germplasm from the Slovenian and Croatian areas of Istria. The bioactive components and antioxidant and antimicrobial properties of ethanol and water extracts of different parts of pomegranate fruit were also determined, along with their preliminary nutritional characterisation. Twenty-six different genotypes identified with microsatellite analysis indicate the great diversity of pomegranate in Istria. The pomegranate fruit ethanol extracts represent rich sources of phenolic compounds (mean value of the mass fraction in exocarp and mesocarp expressed as gallic acid is 23 and 16 mg/g, respectively). The ethanol extracts of pomegranate exocarp and mesocarp showed the greatest antimicrobial activity against Candida albicans, Candida parapsilosis, Rhodotorula mucilaginosa, Exophiala dermatitidis and Staphylococcus aureus, and the same water extracts against S. aureus and Escherichia coli. To the best of our knowledge, this study represents the first report of the characterisation of pomegranate genetic resources from Istria at different levels, including the molecular, chemical, antimicrobial and nutritional properties. PMID:28867945
Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi.
Lee, Nancy; D'Souza, Cletus A; Kronstad, James W
2003-01-01
cAMP regulates morphogenesis and virulence in a wide variety of fungi including the plant pathogens. In saprophytic yeasts such as Saccharomyces cerevisiae, cAMP signaling plays an important role in nutrient sensing. In filamentous saprophytes, the cAMP pathway appears to play an integral role in vegetative growth and sporulation, with possible connections to mating. Infection-related morphogenesis includes sporulation (conidia and teliospores), formation of appressoria, infection hyphae, and sclerotia. Here, we review studies of cAMP signaling in a variety of plant fungal pathogens. The primary fungi to be considered include Ustilago maydis, Magnaporthe grisea, Cryphonectria parasitica, Colletotrichum and Fusarium species, and Erisyphe graminis. We also include related information on Trichoderma species that act as mycoparasites and biocontrol agents of phytopathogenic fungi. We point out similarities in infection mechanisms, conservation of signaling components, as well as instances of cross-talk with other signaling pathways.
An Apical MRCK-driven Morphogenetic Pathway Controls Epithelial Polarity
Zihni, Ceniz; Vlassaks, Evi; Terry, Stephen; Carlton, Jeremy; Leung, Thomas King Chor; Olson, Michael; Pichaud, Franck; Balda, Maria Susana; Matter, Karl
2017-01-01
Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates Myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling. PMID:28825699
Review of aragonite and calcite crystal morphogenesis in thermal spring systems
NASA Astrophysics Data System (ADS)
Jones, Brian
2017-06-01
Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.
Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis
Thibaut, Hendrik Jan; Thys, Bert; Canela, María-Dolores; Aguado, Leire; Wimmer, Eckard; Paul, Aniko; Pérez-Pérez, María-Jesús; van Kuppeveld, Frank J. M.; Neyts, Johan
2014-01-01
Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH), thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis. PMID:24722756
Tegument Protein ORF45 Plays an Essential Role in Virion Morphogenesis of Murine Gammaherpesvirus 68
Jia, Xing; Shen, Sheng; Lv, Ying; Zhang, Ziwei; Guo, Haitao
2016-01-01
Tegument proteins play critical roles in herpesvirus morphogenesis. ORF45 is a conserved tegument protein of gammaherpesviruses; however, its role in virion morphogenesis is largely unknown. In this work, we determined the ultrastructural localization of murine gammaherpesvirus 68 (MHV-68) ORF45 and found that this protein was incorporated into virions around the site of host-derived vesicles. Notably, the absence of ORF45 inhibited nucleocapsid egress and blocked cytoplasmic virion maturation, demonstrating that ORF45 is essential for MHV-68 virion morphogenesis. PMID:27226376
Wang, Li; Yokoyama, Koji; Miyaji, Makoto; Nishimura, Kazuko
2001-01-01
We analyzed a 402-bp sequence of the mitochondrial cytochrome b gene of 34 strains of Exophiala jeanselmei and 16 strains representing 12 related species. The strains of E. jeanselmei were classified into 20 DNA types and 17 amino acid types. The differences between these strains were found in 1 to 60 nucleotides and 1 to 17 amino acids. On the basis of the identities and similarities of nucleotide and amino acid sequences, some strains were reidentified: i.e., two strains of E. jeanselmei var. hetermorpha and one strain of E. castellanii as E. dermatitidis (including the type strain), three strains of E. jeanselmei as E. jeanselmei var. lecanii-corni (including the type strain), three strains of E. jeanselmei as E. bergeri (including the type strain), seven strains of E. jeanselmei as E. pisciphila (including the type strain), seven strains of E. jeanselmei as E. jeanselmei var. jeanselmei (including the type strain), one strain of E. jeanselmei as Fonsecaea pedrosoi (including the type strain), and one strain of E. jeanselmei as E. spinifera (including the type strain). Some E. jeanselmei strains showed distinct nucleotide and amino acid sequences. The amino-acid-based UPGMA (unweighted pair group method with the arithmetic mean) tree exhibited nearly the same topology as those of the DNA-based trees obtained by neighbor joining, maximum parsimony, and maximum likelihood methods. PMID:11724862
Li, Xin; Young, Nathan M.; Tropp, Stephen; Hu, Diane; Xu, Yanhua; Hallgrímsson, Benedikt; Marcucio, Ralph S.
2013-01-01
Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with replication-competent avian sarcoma virus expressing either FgfR2C278F, a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis. PMID:23906837
Veri, Amanda O; Miao, Zhengqiang; Shapiro, Rebecca S; Tebbji, Faiza; O'Meara, Teresa R; Kim, Sang Hu; Colazo, Juan; Tan, Kaeling; Vyas, Valmik K; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E
2018-03-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.
Miao, Zhengqiang; Tan, Kaeling; Vyas, Valmik K.; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E.
2018-01-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. PMID:29590106
Cui, Dayong; Zhao, Jingbo; Jing, Yanjun; Fan, Mingzhu; Liu, Jing; Wang, Zhicai; Xin, Wei; Hu, Yuxin
2013-01-01
The plant hormone auxin plays a critical role in regulating various aspects of plant growth and development, and the spatial accumulation of auxin within organs, which is primarily attributable to local auxin biosynthesis and polar transport, is largely responsible for lateral organ morphogenesis and the establishment of plant architecture. Here, we show that three Arabidopsis INDETERMINATE DOMAIN (IDD) transcription factors, IDD14, IDD15, and IDD16, cooperatively regulate auxin biosynthesis and transport and thus aerial organ morphogenesis and gravitropic responses. Gain-of-function of each IDD gene in Arabidopsis results in small and transversally down-curled leaves, whereas loss-of-function of these IDD genes causes pleiotropic phenotypes in aerial organs and defects in gravitropic responses, including altered leaf shape, flower development, fertility, and plant architecture. Further analyses indicate that these IDD genes regulate spatial auxin accumulation by directly targeting YUCCA5 (YUC5), TRYPTOPHAN AMINOTRANSFERASE of ARABIDOPSIS1 (TAA1), and PIN-FORMED1 (PIN1) to promote auxin biosynthesis and transport. Moreover, mutation or ectopic expression of YUC suppresses the organ morphogenic phenotype and partially restores the gravitropic responses in gain- or loss-of-function idd mutants, respectively. Taken together, our results reveal that a subfamily of IDD transcription factors plays a critical role in the regulation of spatial auxin accumulation, thereby controlling organ morphogenesis and gravitropic responses in plants.
Goodson, Michael S; Crookes-Goodson, Wendy J; Kimbell, Jennifer R; McFall-Ngai, Margaret J
2006-08-01
Within hours of hatching, the squid Euprymna scolopes forms a specific light organ symbiosis with the marine luminous bacterium Vibrio fischeri. Interactions with the symbiont result in the loss of a complex ciliated epithelium dedicated to promoting colonization of host tissue, and some or all of this loss is due to widespread, symbiont-induced apoptosis. Members of the p53 family, including p53, p63, and p73, are conserved across broad phyletic lines and p63 is thought to be the ancestral gene. These proteins have been shown to induce apoptosis and developmental morphogenesis. In this study, we characterized p63-like transcripts from mRNA isolated from the symbiotic tissues of E. scolopes and described their role in symbiont-induced morphogenesis. Using degenerate RT-PCR and RACE PCR, we identified two p63-like transcripts encoding proteins of 431 and 567 amino acids. These transcripts shared identical nucleotides where they overlapped, suggesting that they are splice variants of the same gene. Immunocytochemistry and Western blots using an antibody specific for E. scolopes suggested that the p53 family members are activated in cells of the symbiont-harvesting structures of the symbiotic light organ. We propose that once the symbiosis is initiated, a symbiont-induced signal activates p53 family members, inducing apoptosis and developmental morphogenesis of the light organ.
The Pea Seedling as a Model of Normal and Abnormal Morphogenesis
ERIC Educational Resources Information Center
Kurkdjian, Armen; And Others
1974-01-01
Describes several simple and inexpensive experiments designed to facilitate the study of normal and abnormal morphogenesis in the biology laboratory. Seedlings of the common garden pea are used in the experiments, and abnormal morphogenesis (tumors) are induced by a virulent strain of the crown-gall organism, Agrobacterium tumefaciens. (JR)
Rebustini, Ivan T; Myers, Christopher; Lassiter, Keyonica S; Surmak, Andrew; Szabova, Ludmila; Holmbeck, Kenn; Pedchenko, Vadim; Hudson, Billy G; Hoffman, Matthew P
2009-10-01
Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here, we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Specifically, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains. Importantly, we demonstrate the presence of collagen IV NC1 domains in developing tissue. Furthermore, recombinant collagen IV NC1 domains rescue branching morphogenesis after MT2-siRNA treatment, increasing MT-MMP and proproliferative gene expression via beta1 integrin and PI3K-AKT signaling. Additionally, HBEGF also rescues MT2-siRNA treatment, increasing NC1 domain release, proliferation, and MT2-MMP and Hbegf expression. Our studies provide mechanistic insight into how MT2-MMP-dependent release of bioactive NC1 domains from collagen IV is critical for integrating collagen IV synthesis and proteolysis with epithelial proliferation during branching morphogenesis.
Gunter, Helen M; Degnan, Bernard M
2007-08-01
Heat shock proteins (Hsps) have dual functions, participating in both the stress response and a broad range of developmental processes. At physiological temperatures, it has been demonstrated in deuterostomes (vertebrates) and ecdysozoans (insects) that Hsps are expressed in tissues that are undergoing differentiation and morphogenesis. Here we investigate the developmental expression of Hsp70, Hsp90 and their regulatory transcription factor heat shock transcription factor (HSF) in the marine gastropod Haliotis asinina, a representative of the 3rd major lineage of bilaterian animals, the Lophotrochozoa. HasHsp70, HasHsp90 and HasHSF are maternally expressed in H. asinina and are progressively restricted to the micromere lineage during cleavage. During larval morphogenesis, they are expressed in unique and overlapping patterns in the prototroch, foot, and mantle. Hsp expression peaked in these tissues during periods of cell differentiation and morphogenesis, returning to lower levels after morphogenesis was complete. These patterns of Hsp and HSF expression in H. asinina are akin to those observed in ecdysozoans and deuterostomes, with Hsps being activated in cells and tissues undergoing morphogenesis.
The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
Marti-Figueroa, Carlos R; Ashton, Randolph S
2017-05-01
Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis to generate organoids with biomimicry at all scales. Such advancements would enable the use of organoids as a basis for 'next-generation' tissue engineering of functional, anatomically mimetic human tissues and potentially novel organ transplants. Here, we discuss critical aspects of organoid morphogenesis where application of innovative tissue engineering methodologies would yield significant advancement towards this goal. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija
2006-05-01
Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposuremore » impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling.« less
Apical constriction: themes and variations on a cellular mechanism driving morphogenesis
Martin, Adam C.; Goldstein, Bob
2014-01-01
Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis. PMID:24803648
Un(MaSC)ing Stem Cell Dynamics in Mammary Branching Morphogenesis.
Greenwood, Erin; Wrenn, Emma D; Cheung, Kevin J
2017-02-27
The properties of stem cells that participate in mammary gland branching morphogenesis remain contested. Reporting in Nature, Scheele et al. (2017) establish a model for post-pubertal mammary branching morphogenesis in which position-dependent, lineage-restricted stem cells undergo cell mixing in order to contribute to long-term growth. Copyright © 2017 Elsevier Inc. All rights reserved.
Rebustini, Ivan T.; Myers, Christopher; Lassiter, Keyonica S.; Surmak, Andrew; Szabova, Ludmila; Holmbeck, Kenn; Pedchenko, Vadim; Hudson, Billy G.; Hoffman, Matthew P.
2009-01-01
Summary Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Importantly, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains. Importantly, we demonstrate the presence of collagen IV NC1 domains in developing tissue. Furthermore, recombinant collagen IV NC1 domains rescue branching morphogenesis after MT2-siRNA-treatment, increasing MT-MMP and pro-proliferative gene expression via β1 integrin and PI3K-AKT signaling. Additionally, HBEGF also rescues MT2-siRNA-treatment, increasing NC1 domain release, proliferation, and MT2-MMP and Hbegf expression. Our studies provide mechanistic insight into how MT2-MMP-dependent release of bioactive NC1 domains from collagen IV is critical for integrating collagen IV synthesis and proteolysis with epithelial proliferation during branching morphogenesis. PMID:19853562
Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes
Ouellette, Marie-Hélène
2016-01-01
The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell–cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis. PMID:27821782
TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease.
Busch, Tilman; Köttgen, Michael; Hofherr, Alexis
2017-09-01
Ion channels control the membrane potential and mediate transport of ions across membranes. Archetypical physiological functions of ion channels include processes such as regulation of neuronal excitability, muscle contraction, or transepithelial ion transport. In that regard, transient receptor potential ion channel polycystin 2 (TRPP2) is remarkable, because it controls complex morphogenetic processes such as the establishment of properly shaped epithelial tubules and left-right-asymmetry of organs. The fascinating question of how an ion channel regulates morphogenesis has since captivated the attention of scientists in different disciplines. Four loosely connected key insights on different levels of biological complexity ranging from protein to whole organism have framed our understanding of TRPP2 physiology: 1) TRPP2 is a non-selective cation channel; 2) TRPP2 is part of a receptor-ion channel complex; 3) TRPP2 localizes to primary cilia; and 4) TRPP2 is required for organ morphogenesis. In this review, we will discuss the current knowledge in these key areas and highlight some of the challenges ahead. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cherezov, Roman O.; Vorontsova, Julia E.; Slezinger, Mikhail S.; Zatsepina, Olga G.; Simonova, Olga B.; Enikolopov, Grigori N.; Savvateeva-Popova, Elena V.
2014-01-01
Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans. PMID:24736732
Kuzin, Boris A; Nikitina, Ekaterina A; Cherezov, Roman O; Vorontsova, Julia E; Slezinger, Mikhail S; Zatsepina, Olga G; Simonova, Olga B; Enikolopov, Grigori N; Savvateeva-Popova, Elena V
2014-01-01
Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.
Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model.
Osterfield, Miriam; Berg, Celeste A; Shvartsman, Stanislav Y
2017-05-22
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Extracellular matrix motion and early morphogenesis
Loganathan, Rajprasad; Rongish, Brenda J.; Smith, Christopher M.; Filla, Michael B.; Czirok, Andras; Bénazéraf, Bertrand
2016-01-01
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale ‘total’ cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396
Laboratory and clinical assessment of ketoconazole in deep-seated mycoses.
Drouhet, E; Dupont, B
1983-01-24
Forty-eight cases of deep mycoses were studied and treated with ketoconazole, each with in vitro evaluation of the minimum inhibitory concentrations (MIC) of the causative fungi, in vivo pharmacokinetic, clinical, and mycologic evaluations, several months to two years after the treatment was stopped. Excellent results were obtained in six cases of chronic mucocutaneous candidiasis, with restoration of immunologic disturbances; 23 cases of systemic candidiasis, including new aspects of heroin addicts with cutaneous, ocular, or osteoarticular manifestations; eight cases of histoplasmosis, five due to Histoplasma capsulatum and three to Histoplasma duboisii, with cure in seven and remission in one; one case of African blastomycosis (Blastomyces dermatitidis); three cases of mycetoma, two due to Monosporium apiospermum, one due to a dematiacious fungus; three cases of entomophthoromycosis with cure; one case of fungal arthritis, due to new hyphomycete similar to M. apiospermum, pathogenic for laboratory animals; one case of Drechslera longirostrata causing vertebral arthritis, following a fungal endocarditis and cured by combination of ketoconazole with amphotericin B, each agent alone being ineffective; and other deep mycoses.
Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia
2015-08-01
Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.
Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng
2012-01-01
Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation. PMID:23139812
Extracellular matrix motion and early morphogenesis.
Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D
2016-06-15
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. © 2016. Published by The Company of Biologists Ltd.
Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal
2018-01-01
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Gresik, Edward W; Koyama, Noriko; Hayashi, Toru; Kashimata, Masanori
2009-01-01
Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).
Youngchim, Sirida; Nosanchuk, Joshua D; Chongkae, Siriporn; Vanittanokom, Nongnuch
2017-01-01
Malassezia furfur, a constituent of the normal human skin flora, is an etiological agent of pityriasis versicolor, which represents one of the most common human skin diseases. Under certain conditions, both exogenous and endogenous, the fungus can transition from a yeast form to a pathogenic mycelial form. To develop a standardized medium for reproducible production of the mycelial form of M. furfur to develop and optimize susceptibility testing for this pathogen, we examined and characterized variables, including kojic acid and glycine concentration, agar percentage, and pH, to generate a chemically defined minimal medium on which specific inoculums of M. furfur generated the most robust filamentation. Next, we examined the capacity of ketoconazole to inhibit the formation of M. furfur mycelial form. Both low and high, 0.01, 0.05 and 0.1 µg/ml concentrations of ketoconazole significantly inhibited filamentation at 11.9, 54.5 and 86.7%, respectively. Although ketoconazole can have a direct antifungal effect on both M. furfur yeast and mycelial cells, ketoconazole also has a dramatic impact on suppressing morphogenesis. Since mycelia typified the pathogenic form of Malassezia infection, the capacity of ketoconazole to block morphogenesis may represent an additional important effect of the antifungal.
Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Kwon, Young-Guen
2015-01-01
Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels. PMID:26147525
Doino, J A; McFall-Ngai, M J
1995-12-01
Recent studies of the symbiotic association between the Hawaiian sepiolid squid Euprymna scolopes and the luminous bacterium Vibrio fischeri have shown that colonization of juvenile squid with symbiosis-competent bacteria induces morphogenetic changes of the light organ. These changes occur over a 4-day period and include cell death and tissue regression of the external ciliated epithelium. In the absence of bacterial colonization, morphogenesis does not occur. To determine whether the bacteria must be present throughout the morphogenetic process, we used the antibiotic chloramphenicol to clear the light organ of bacteria at various times during the initial colonization. We provide evidence in this study that a transient, 12-hour exposure to symbiosis-competent bacteria is necessary and sufficient to induce tissue regression in the light organ over the next several days. Further, we show that successful entrance into the light organ is necessary to induce morphogenesis, suggesting that induction results from bacterial interaction with internal crypt cells and not with the external ciliated epithelium. Finally, no difference in development was observed when the light organ was colonized by a mutant strain of V. fischeri that did not produce autoinducer, a potential light organ morphogen.
Proinsulin in development: New roles for an ancient prohormone.
Hernández-Sánchez, C; Mansilla, A; de la Rosa, E J; de Pablo, F
2006-06-01
In postnatal organisms, insulin is well known as an essential anabolic hormone responsible for maintaining glucose homeostasis. Its biosynthesis by the pancreatic beta cell has been considered a model of tissue-specific gene expression. However, proinsulin mRNA and protein have been found in embryonic stages before the formation of the pancreatic primordium, and later, in extrapancreatic tissues including the nervous system. Phylogenetic studies have also confirmed that production of insulin-like peptides antecedes the morphogenesis of a pancreas, and that these peptides contribute to normal development. In recent years, other roles for insulin distinct from its metabolic function have emerged also in vertebrates. During embryonic development, insulin acts as a survival factor and is involved in early morphogenesis. These findings are consistent with the observation that, at these stages, the proinsulin gene product remains as the precursor form, proinsulin. Independent of its low metabolic activity, proinsulin stimulates proliferation in developing neuroretina, as well as cell survival and cardiogenesis in early embryos. Insulin/proinsulin levels are finely regulated during development, since an excess of the protein interferes with correct morphogenesis and is deleterious for the embryo. This fine-tuned regulation is achieved by the expression of alternative embryonic proinsulin transcripts that have diminished translational activity.
Extracellular matrix and growth factors in branching morphogenesis
NASA Technical Reports Server (NTRS)
Hardman, P.; Spooner, B. S.
1993-01-01
The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.
Rodríguez-Fraticelli, Alejo E.; Auzan, Muriel; Alonso, Miguel A.; Bornens, Michel
2012-01-01
Epithelial organ morphogenesis involves sequential acquisition of apicobasal polarity by epithelial cells and development of a functional lumen. In vivo, cells perceive signals from components of the extracellular matrix (ECM), such as laminin and collagens, as well as sense physical conditions, such as matrix stiffness and cell confinement. Alteration of the mechanical properties of the ECM has been shown to promote cell migration and invasion in cancer cells, but the effects on epithelial morphogenesis have not been characterized. We analyzed the effects of cell confinement on lumen morphogenesis using a novel, micropatterned, three-dimensional (3D) Madin-Darby canine kidney cell culture method. We show that cell confinement, by controlling cell spreading, limits peripheral actin contractility and promotes centrosome positioning and lumen initiation after the first cell division. In addition, peripheral actin contractility is mediated by master kinase Par-4/LKB1 via the RhoA–Rho kinase–myosin II pathway, and inhibition of this pathway restores lumen initiation in minimally confined cells. We conclude that cell confinement controls nuclear–centrosomal orientation and lumen initiation during 3D epithelial morphogenesis. PMID:22965908
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells
2011-01-01
Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.
Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B
2011-02-01
The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.
Pham, Kieu Thi Minh; Inoue, Yoshihiro; Vu, Ba Van; Nguyen, Hanh Hieu; Nakayashiki, Toru; Ikeda, Ken-ichi; Nakayashiki, Hitoshi
2015-01-01
Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more likely indirectly. 4) Among the 4,077 differentially expressed genes (DEGs) between mycelia and germination tubes, 1,201 and 882 genes were up- and down-regulated, respectively, in a Moset1-dependent manner. 5) The Moset1-dependent DEGs were enriched in several gene categories such as signal transduction, transport, RNA processing, and translation. PMID:26230995
Reactive oxygen species in the presence of high glucose alter ureteric bud morphogenesis.
Zhang, Shao-Ling; Chen, Yun-Wen; Tran, Stella; Chenier, Isabelle; Hébert, Marie-Josée; Ingelfinger, Julie R
2007-07-01
Renal malformations are a major cause of childhood renal failure. During the development of the kidney, ureteric bud (UB) branching morphogenesis is critical for normal nephrogenesis. These studies investigated whether renal UB branching morphogenesis is altered by a high ambient glucose environment and studied underlying mechanism(s). Kidney explants that were isolated from different periods of gestation (embryonic days 12 to 18) from Hoxb7-green fluorescence protein mice were cultured for 24 h in either normal d-glucose (5 mM) or high d-glucose (25 mM) medium with or without various inhibitors. Alterations in renal morphogenesis were assessed by fluorescence microscopy. Paired-homeobox 2 (Pax-2) gene expression was determined by real-time quantitative PCR, Western blotting, and immunohistology. The results revealed that high d-glucose (25 mM) specifically stimulates UB branching morphogenesis via Pax-2 gene expression, whereas other glucose analogs, such as d-mannitol, l-glucose, and 2-deoxy-d-glucose, had no effect. The stimulatory effect of high glucose on UB branching was blocked in the presence of catalase and inhibitors of NADPH oxidase, mitochondrial electron transport chain complex I, and Akt signaling. Moreover, in in vivo studies, it seems that high glucose induces, via Pax-2 (mainly localized in UB), acceleration of UB branching but not nephron formation. Taken together, these data demonstrate that high glucose alters UB branching morphogenesis. This occurs, at least in part, via reactive oxygen species generation, activation of Akt signaling, and upregulation of Pax-2 gene expression.
A System for Modelling Cell–Cell Interactions during Plant Morphogenesis
Dupuy, Lionel; Mackenzie, Jonathan; Rudge, Tim; Haseloff, Jim
2008-01-01
Background and aims During the development of multicellular organisms, cells are capable of interacting with each other through a range of biological and physical mechanisms. A description of these networks of cell–cell interactions is essential for an understanding of how cellular activity is co-ordinated in regionalized functional entities such as tissues or organs. The difficulty of experimenting on living tissues has been a major limitation to describing such systems, and computer modelling appears particularly helpful to characterize the behaviour of multicellular systems. The experimental difficulties inherent to the multitude of parallel interactions that underlie cellular morphogenesis have led to the need for computer models. Methods A new generic model of plant cellular morphogenesis is described that expresses interactions amongst cellular entities explicitly: the plant is described as a multi-scale structure, and interactions between distinct entities is established through a topological neighbourhood. Tissues are represented as 2D biphasic systems where the cell wall responds to turgor pressure through a viscous yielding of the cell wall. Key Results This principle was used in the development of the CellModeller software, a generic tool dedicated to the analysis and modelling of plant morphogenesis. The system was applied to three contrasting study cases illustrating genetic, hormonal and mechanical factors involved in plant morphogenesis. Conclusions Plant morphogenesis is fundamentally a cellular process and the CellModeller software, through its underlying generic model, provides an advanced research tool to analyse coupled physical and biological morphogenetic mechanisms. PMID:17921524
Kijima, Misako; Oaki, Yuya; Munekawa, Yurika; Imai, Hiroaki
2013-02-11
We have studied the simultaneous synthesis and morphogenesis of polymer materials with hierarchical structures from nanoscopic to macroscopic scales. The morphologies of the original materials can be replicated to the polymer materials. In general, it is not easy to achieve the simultaneous synthesis and morphogenesis of polymer material even using host materials. In the present work, four biominerals and three biomimetic mesocrystal structures are used as the host materials or templates and polypyrrole, poly(3-hexylthiopehene), and silica were used as the precursors for the simultaneous syntheses and morphogenesis of polymer materials. The host materials with the hierarchical structure possess the nanospace for the incorporation of the monomers. After the incorporation of the monomers, the polymerization reaction proceeds in the nanospace with addition of the initiator agents. Then, the dissolution of the host materials leads to the formation and morphogenesis of the polymer materials. The scheme of the replication can be classified into the three types based on the structures of the host materials (types I-III). The type I template facilitates the hierarchical replication of the whole host material, type II mediates the hierarchical surface replication, and type III induces the formation of the two-dimensional nanosheets. Based on these results, the approach for the coupled synthesis and morphogenesis can be applied to a variety of combinations of the templates and polymer materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wichard, Thomas
2015-01-01
Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings. Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory. A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination restoring the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds are still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication. This review combines literature detailing evidences of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of the chemosphere. PMID:25784916
NFIB regulates embryonic development of submandibular glands.
Mellas, R E; Kim, H; Osinski, J; Sadibasic, S; Gronostajski, R M; Cho, M; Baker, O J
2015-02-01
NFIB (nuclear factor I B) is a NFI transcription factor family member, which is essential for the development of a variety of organ systems. Salivary gland development occurs through several stages, including prebud, bud, pseudoglandular, canalicular, and terminal. Although many studies have been done to understand mouse submandibular gland (SMG) branching morphogenesis, little is known about SMG cell differentiation during the terminal stages. The goal of this study was to determine the role of NFIB during SMG development. We analyzed SMGs from wild-type and Nfib-deficient mice (Nfib (-/-)). At embryonic (E) day 18.5, SMGs from wild-type mice showed duct branching morphogenesis and differentiation of tubule ductal cells into tubule secretory cells. In contrast, SMGs from Nfib (-/-) mice at E18.5 failed to differentiate into tubule secretory cells while branching morphogenesis was unaffected. SMGs from wild-type mice at E16.5 displayed well-organized cuboidal inner terminal tubule cells. However, SMGs from Nfib (-/-) at E16.5 displayed disorganized inner terminal tubule cells. SMGs from wild-type mice at E18.5 became fully differentiated, as indicated by a high degree of apicobasal polarization (i.e., presence of apical ZO-1 and basolateral E-cadherin) and columnar shape. Furthermore, SMGs from wild-type mice at E18.5 expressed the protein SMGC, a marker for tubule secretory cells. However, SMGs from Nfib (-/-) mice at E18.5 showed apicobasal polarity, but they were disorganized and lost the ability to secrete SMGC. These findings indicate that the transcription factor NFIB is not required for branching morphogenesis but plays a key role in tubule cell differentiation during mouse SMG development. © International & American Associations for Dental Research 2014.
Koledova, Zuzana; Lu, Pengfei
2017-01-01
The mammary gland consists of numerous tissue compartments, including mammary epithelium, an array of stromal cells, and the extracellular matrix (ECM). Bidirectional interactions between the epithelium and its surrounding stroma are essential for proper mammary gland development and homeostasis, whereas their deregulation leads to developmental abnormalities and cancer. To study the relationships between the epithelium and the stroma, development of models that could recapitulate essential aspects of these interacting systems in vitro has become necessary. Here we describe a three-dimensional (3D) co-culture assay and show that the addition of fibroblasts to mammary organoid cultures promotes the epithelium to undergo branching morphogenesis, thus allowing the role of the stromal microenvironment to be examined in this essential developmental process.
Cavodeassi, Florencia; Ivanovitch, Kenzo; Wilson, Stephen W.
2013-01-01
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis. PMID:24026122
The control of branching morphogenesis
Iber, Dagmar; Menshykau, Denis
2013-01-01
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663
Programming Morphogenesis through Systems and Synthetic Biology.
Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R
2018-04-01
Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Remodeling a tissue: subtraction adds insight.
Axelrod, Jeffrey D
2012-11-27
Sculpting a body plan requires both patterning of gene expression and translating that pattern into morphogenesis. Developmental biologists have made remarkable strides in understanding gene expression patterning, but despite a long history of fascination with the mechanics of morphogenesis, knowledge of how patterned gene expression drives the emergence of even simple shapes and forms has grown at a slower pace. The successful merging of approaches from cell biology, developmental biology, imaging, engineering, and mathematical and computational sciences is now accelerating progress toward a fuller and better integrated understanding of the forces shaping morphogenesis.
Perithecium morphogenesis in Sordaria macrospora.
Lord, Kathryn M; Read, Nick D
2011-04-01
The perithecium of the self-fertile ascomycete Sordaria macrospora provides an excellent model in which to analyse fungal multicellular development. This study provides a detailed analysis of perithecium morphogenesis in the wild type and eight developmental mutants of S. macrospora, using a range of correlative microscopical techniques. Fundamentally, perithecia and other complex multicellular structures produced by fungi arise by hyphal aggregation and adhesion, and these processes are followed by specialization and septation of hyphal compartments within the aggregates. Perithecial morphogenesis can be divided into the ascogonial, protoperithecial, and perithecial stages of development. At least 13 specialized, morphologically distinct cell-types are involved in perithecium morphogenesis, and these fall into three basic classes: hyphae, conglutinate cells and spores. Conglutinate cells arise from hyphal adhesion and certain perithecial hyphae develop from conglutinate cells. Various hypha-conglutinate cell transitions play important roles during the development of the perithecial wall and neck. Copyright © 2010. Published by Elsevier Inc.
The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.
Nagalakshmi, Vidya K; Yu, Jing
2015-03-01
The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.
Conjoined twins: morphogenesis of the heart and a review.
Gilbert-Barness, Enid; Debich-Spicer, Diane; Opitz, John M
2003-08-01
Five cases of conjoined twins have been studied. These included three thoracopagus twins, one monocephalus diprosopus (prosop = face), and one dicephalus dipus dibrachus. The thoracopagus twins were conjoined only from the upper thorax to the umbilicus with a normal foregut. These three cases shared a single complex multiventricular heart, one with a four chambered heart with one atrium and one ventricle belonging to each twin with complex venous and arterial connection; two had a seven chambered heart with four atria and three ventricles. The mono-cephalus diprosopus twins had a single heart with tetralogy of Fallot. The dicephalus twins had two separate axial skeletons to the sacrum, two separate hearts were connected between the right atria with a shared inferior vena cava. Thoracopagus twinning is associated with complex cardiac malformations. The cardiac anlagen in cephalopagus or diprosopus are diverted and divided along with the entire rostral end of the embryonic disc and result in two relatively normal shared hearts. However, in thoracopagus twins the single heart is multiventricular and suggests very early union with fusion of the cardiac anlagen before significant differentiation. Cardiac morphogenesis in conjoined twins therefore appears to depend on the site of the conjoined fusion and the temporal and spatial influence that determines morphogenesis as well as abnormally oriented embryonic axes. Copyright 2003 Wiley-Liss, Inc.
Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St Arnaud, René; Dedhar, Shoukat; D'Souza, Sudhir J A; Dagnino, Lina
2008-04-01
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.
Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St. Arnaud, René; Dedhar, Shoukat
2008-01-01
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function. PMID:18234842
NASA Technical Reports Server (NTRS)
Muday, Gloria K.
2003-01-01
The overarching goal of this proposal was to examine the mechanisms for the cellular asymmetry in auxin transport proteins. As auxin transport polarity changes in response to reorientation of algal and plant cells relative to the gravity vector, it was critical to ask how auxin transport polarity is established and how this transport polarity may change in response to gravity stimulation. The experiments conducted with this NASA grant fell into two categories. The first area of experimentation was to explore the biochemical interactions between an auxin transport protein and the actin cytoskeleton. These experiments used biochemical techniques, including actin affinity chromatography, to demonstrate that one auxin transport protein interacts with the actin cytoskeleton. The second line of experiments examined whether in the initially symmetrical single celled embryos of Fucus distichus, whether auxin regulates development and whether gravity is a cue to control the morphogenesis of these embryos and whether gravi-morphogenesis is auxin dependent. Results in these two areas are summarized separately below. As a result of this funding, in combination with results from other investigators, we have strong evidence for an important role for the actin cytoskeleton in both establishing and change auxin transport polarity. It is also clear that Fucus distichus embryos are auxin responsive and gravity controls their morphogenesis.
Evolutionary stasis in pollen morphogenesis due to natural selection.
Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri
2016-01-01
The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Abashev, Timur M.; Metzler, Melissa A.; Wright, Diana M.; Sandell, Lisa L.
2017-01-01
Background Retinoic Acid (RA), the active metabolite of Vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. Results Here we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and non-neuronal mesenchyme. By culturing epithelium explants in isolation from other tissues we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. Conclusions RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. PMID:27884045
Extensive Use of RNA-Binding Proteins in Drosophila Sensory Neuron Dendrite Morphogenesis
Olesnicky, Eugenia C.; Killian, Darrell J.; Garcia, Evelyn; Morton, Mary C.; Rathjen, Alan R.; Sola, Ismail E.; Gavis, Elizabeth R.
2013-01-01
The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo. PMID:24347626
Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi
2013-01-01
A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for studying and manipulating pancreatic epithelial cell growth and morphogenesis in 3D. PMID:23602364
NASA Astrophysics Data System (ADS)
Shepard, R.
2008-12-01
Microbial communities are architects of incredibly complex and diverse morphological structures. Each morphology is a snapshot that reflects the complex interactions within the microbial community and between the community and its environment. Characterizing morphology as an emergent property of microbial communities is thus relevant to understanding the evolution of multicellularity and complexity in developmental systems, to the identification of biosignatures, and to furthering our understanding of modern and ancient microbial ecology. Recently discovered cyanobacterial mats in Pavilion Lake, British Columbia construct unusual complex architecture on the scale of decimeters that incorporates significant void space. Fundamental mesoscale morphological elements include terraces, arches, bridges, depressions, domes, and pillars. The mats themselves also exhibit several microscale morphologies, with reticulate structures being the dominant example. The reticulate structures exhibit a diverse spectrum of morphologies with endmembers characterized by either angular or curvilinear ridges. In laboratory studies, aggregation into reticulate structures occurs as a result of the random gliding and colliding among motile cyanobacterial filaments. Likewise, when Pavilion reticulate mats were sampled and brought to the surface, cyanobacteria invariably migrated out of the mat onto surrounding surfaces. Filaments were observed to move rapidly in clumps, preferentially following paths of previous filaments. The migrating filaments organized into new angular and ropey reticulate biofilms within hours of sampling, demonstrating that cell motility is responsible for the reticulate patterns. Because the morphogenesis of reticulate structures can be linked to motility behaviors of filamentous cyanobacteria, the Willow Point mats provide a unique natural laboratory in which to elucidate the connections between a specific microbial behavior and the construction of complex microbial community morphology. To this end, we identified and characterized fundamental building blocks of the mesoscale morphologies, including bridges, anchors, and curved edges. These morphological building blocks were compared with the suite of motility behaviors and patterns observed in reticulate morphogenesis. Results of this comparison suggest that cyanobacterial motility plays a significant and often dominant role in the morphogenesis of the entire suite of morphologies observed in the microbial mats of Pavilion Lake.
Human Development VI: Supracellular Morphogenesis. The Origin of Biological and Cellular Order
Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav
2006-01-01
Uninterrupted morphogenesis shows the informational potentials of biological organisms. Experimentally disturbed morphogenesis shows the compensational dynamics of the biological informational system, which is the rich informational redundancy. In this paper, we use these data to describe morphogenesis in terms of the development of supracellular levels of the organism, and we define complex epigenesis and supracellular differentiation. We review the phenomena of regeneration and induction of Hydra and amphibians, and the higher animals informational needs for developing their complex nervous systems. We argue, also building on the NO-GO theorem for ontogenesis as chemistry, that the traditional chemical explanations of high-level informational events in ontogenesis, such as transmutation, regeneration, and induction, are insufficient. We analyze the informational dynamics of three embryonic compensatory reactions to different types of disturbances: (1) transmutations of the imaginal discs of insects, (2) regeneration after removal of embryonic tissue, and (3) embryonic induction, where two tissues that normally are separated experimentally are made to influence each other. We describe morphogenesis as a complex bifurcation, and the resulting morphological levels of the organism as organized in a fractal manner and supported by positional information. We suggest that some kind of real nonchemical phenomenon must be taking form in living organisms as an information-carrying dynamic fractal field, causing morhogenesis and supporting the organisms morphology through time. We argue that only such a phenomenon that provides information-directed self-organization to the organism is able to explain the observed dynamic distribution of biological information through morphogenesis and the organism's ability to rejuvenate and heal. PMID:17115082
Chung, Mei-I; Nascone-Yoder, Nanette M.; Grover, Stephanie A.; Drysdale, Thomas A.; Wallingford, John B.
2010-01-01
Individual cell shape changes are essential for epithelial morphogenesis. A transcriptional network for epithelial cell shape change is emerging in Drosophila, but this area remains largely unexplored in vertebrates. The distinction is important as so far, key downstream effectors of cell shape change in Drosophila appear not to be conserved. Rather, Shroom3 has emerged as a central effector of epithelial morphogenesis in vertebrates, driving both actin- and microtubule-based cell shape changes. To date, the morphogenetic role of Shroom3 has been explored only in the neural epithelium, so the broad expression of this gene raises two important questions: what are the requirements for Shroom3 in non-neural tissues and what factors control Shroom3 transcription? Here, we show in Xenopus that Shroom3 is essential for cell shape changes and morphogenesis in the developing vertebrate gut and that Shroom3 transcription in the gut requires the Pitx1 transcription factor. Moreover, we show that Pitx proteins directly activate Shroom3 transcription, and we identify Pitx-responsive regulatory elements in the genomic DNA upstream of Shroom3. Finally, we show that ectopic expression of Pitx proteins is sufficient to induce Shroom3-dependent cytoskeletal reorganization and epithelial cell shape change. These data demonstrate new breadth to the requirements for Shroom3 in morphogenesis, and they also provide a cell-biological basis for the role of Pitx transcription factors in morphogenesis. More generally, these results provide a foundation for deciphering the transcriptional network that underlies epithelial cell shape change in developing vertebrates. PMID:20332151
Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis
Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon
2016-01-01
The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931
Multicellular Models of Morphogenesis
EPA’s Virtual Embryo project (v-Embryo™), in collaboration with developers of CompuCell3D, aims to create computer models of morphogenesis that can be used to address the effects of chemical perturbation on embryo development at the cellular level. Such computational (in silico) ...
During embryonic development, fusion events are critical to morphogenesis of organs and tissues, including the iris, urethra, heart, neural tube, and secondary palate. Modeling this process in vitro is challenging as the interactions of mesenchymal and epithelial cells can be cr...
Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.
Young, Li-Sen; Harrison, Benjamin R; Narayana Murthy, U M; Moffatt, Barbara A; Gilroy, Simon; Masson, Patrick H
2006-10-01
Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.
Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis1[W][OA
Young, Li-Sen; Harrison, Benjamin R.; U.M., Narayana Murthy; Moffatt, Barbara A.; Gilroy, Simon; Masson, Patrick H.
2006-01-01
Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-l-methionine pathway in the control of root gravitropism and cap morphogenesis. PMID:16891550
de Bessa Garcia, Simone A; Pereira, Michelly C; Nagai, Maria A
2010-12-21
The histological organization of the mammary gland involves a spatial interaction of epithelial and myoepithelial cells with the specialized basement membrane (BM), composed of extra-cellular matrix (ECM) proteins, which is disrupted during the tumorigenic process. The interactions between mammary epithelial cells and ECM components play a major role in mammary gland branching morphogenesis. Critical signals for mammary epithelial cell proliferation, differentiation, and survival are provided by the ECM proteins. Three-dimensional (3D) cell culture was developed to establish a system that simulates several features of the breast epithelium in vivo; 3D cell culture of the spontaneously immortalized cell line, MCF10A, is a well-established model system to study breast epithelial cell biology and morphogenesis. Mammary epithelial cells grown in 3D form spheroids, acquire apicobasal polarization, and form lumens that resemble acini structures, processes that involve cell death. Using this system, we evaluated the expression of the pro-apoptotic gene PAWR (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) by immunofluorescence and quantitative real time PCR (qPCR). A time-dependent increase in PAR-4 mRNA expression was found during the process of MCF10A acinar morphogenesis. Confocal microscopy analysis also showed that PAR-4 protein was highly expressed in the MCF10A cells inside the acini structure. During the morphogenesis of MCF10A cells in 3D cell culture, the cells within the lumen showed caspase-3 activation, indicating apoptotic activity. PAR-4 was only partially co-expressed with activated caspase-3 on these cells. Our results provide evidence, for the first time, that PAR-4 is differentially expressed during the process of MCF10A acinar morphogenesis.
Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids.
Linch, Mark; Sanz-Garcia, Marta; Rosse, Carine; Riou, Philippe; Peel, Nick; Madsen, Chris D; Sahai, Erik; Downward, Julian; Khwaja, Asim; Dillon, Christian; Roffey, Jon; Cameron, Angus J M; Parker, Peter J
2014-02-01
Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.
klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis
Steed, Emily; Faggianelli, Nathalie; Roth, Stéphane; Ramspacher, Caroline; Concordet, Jean-Paul; Vermot, Julien
2016-01-01
The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis. PMID:27221222
Altered tooth morphogenesis after silencing the planar cell polarity core component, Vangl2.
Wu, Zhaoming; Epasinghe, Don Jeevanie; He, Jinquan; Li, Liwen; Green, David W; Lee, Min-Jung; Jung, Han-Sung
2016-12-01
Vangl2, one of the core components of the planar cell polarity (PCP) pathway, has an important role in the regulation of morphogenesis in several tissues. Although the expression of Vangl2 has been detected in the developing tooth, its role in tooth morphogenesis is not known. In this study, we show that Vangl2 is expressed in the inner dental epithelium (IDE) and in the secondary enamel knots (SEKs) of bell stage tooth germs. Inhibition of Vangl2 expression by siRNA treatment in in vitro-cultured tooth germs resulted in retarded tooth germ growth with deregulated cell proliferation and apoptosis. After kidney transplantation of Vangl2 siRNA-treated tooth germs, teeth were observed to be small and malformed. We also show that Vangl2 is required to maintain the proper pattern of cell alignment in SEKs, which maybe important for the function of SEKs as signaling centers. These results suggest that Vangl2 plays an important role in the morphogenesis of teeth.
Burki, Mubarik
2018-01-01
ABSTRACT In Drosophila epithelial cells, apical exclusion of Bazooka (the Drosophila Par3 protein) defines the position of the zonula adherens (ZA), which demarcates the apical and lateral membrane and allows cells to assemble into sheets. Here, we show that the small GTPase Rap1, its effector Canoe (Cno) and the Cdc42 effector kinase Mushroom bodies tiny (Mbt), converge in regulating epithelial morphogenesis by coupling stabilization of the adherens junction (AJ) protein E-Cadherin and Bazooka retention at the ZA. Furthermore, our results show that the localization of Rap1, Cno and Mbt at the ZA is interdependent, indicating that their functions during ZA morphogenesis are interlinked. In this context, we find the Rap1-GEF Dizzy is enriched at the ZA and our results suggest that it promotes Rap1 activity during ZA morphogenesis. Altogether, we propose the Dizzy, Rap1 and Cno pathway and Mbt converge in regulating the interface between Bazooka and AJ material to promote ZA morphogenesis. PMID:29507112
Morphogenesis in bat wings: linking development, evolution and ecology.
Adams, Rick A
2008-01-01
The evolution of powered flight in mammals required specific developmental shifts from an ancestral limb morphology to one adapted for flight. Through studies of comparative morphogenesis, investigators have quantified points and rates of divergence providing important insights into how wings evolved in mammals. Herein I compare growth,development and skeletogenesis of forelimbs between bats and the more ancestral state provided by the rat (Rattus norvegicus)and quantify growth trajectories that illustrate morphological divergence both developmentally and evolutionarily. In addition, I discuss how wing shape is controlled during morphogenesis by applying multivariate analyses of wing bones and wing membranes and discuss how flight dynamics are stabilized during flight ontogeny. Further, I discuss the development of flight in bats in relation to the ontogenetic niche and how juveniles effect populational foraging patterns. In addition, I provide a hypothetical ontogenetic landscape model that predicts how and when selection is most intense during juvenile morphogenesis and test this model with data from a population of the little brown bat, Myotis lucifugus. (c) 2007 S. Karger AG, Basel
Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium
Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval
2013-01-01
Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903
Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.
Merchant-Larios, H; Díaz-Hernández, V; Marmolejo-Valencia, A
2010-01-01
In reptiles with temperature-dependent sexual determination, the thermosensitive period (TSP) is the interval in which the sex is defined during gonadal morphogenesis. One-shift experiments in a group of eggs define the onset and the end of the TSP as all and none responses, respectively. Timing for sex-undetermined (UG) and -determined gonads (DG) differs at male- (MPT) or female-producing temperatures (FPT). During the TSP a decreasing number of embryos respond to temperature shifts indicating that in this period embryos with both UG and DG exist. Although most UG correspond to undifferentiated gonads, some embryos extend UG after the onset of histological differentiation. Thus, temperature affects gonadal cells during the process of morphogenesis, but timing of commitment depends on individual embryos. A correlation between gonadal morphogenesis, TSP, and gene expression suggests that determination of the molecular pathways modulated by temperature in epithelial cells (surface epithelium and medullary cords) holds the key for a unifying hypothesis on temperature-dependent sex determination. (c) 2010 S. Karger AG, Basel.
Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.
Hoson, Takayuki
2014-05-16
The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.
Ioannides, Adonis S.; Massa, Valentina; Ferraro, Elisabetta; Cecconi, Francesco; Spitz, Lewis; Henderson, Deborah J.; Copp, Andrew J.
2010-01-01
Foregut division—the separation of dorsal (oesophageal) from ventral (tracheal) foregut components—is a crucial event in gastro-respiratory development, and frequently disturbed in clinical birth defects. Here, we examined three outstanding questions of foregut morphogenesis. The origin of the trachea is suggested to result either from respiratory outgrowth or progressive septation of the foregut tube. We found normal foregut lengthening despite failure of tracheo-oesophageal separation in Adriamycin-treated embryos, whereas active septation was observed only in normal foregut morphogenesis, indicating a primary role for septation. Dorso-ventral patterning of Nkx2.1 (ventral) and Sox2 (dorsal) expression is proposed to be critical for tracheo-oesophageal separation. However, normal dorso-ventral patterning of Nkx2.1 and Sox2 expression occurred in Adriamycin-treated embryos with defective foregut separation. In contrast, Shh expression shifts dynamically, ventral-to-dorsal, solely during normal morphogenesis, particularly implicating Shh in foregut morphogenesis. Dying cells localise to the fusing foregut epithelial ridges, with disturbance of this apoptotic pattern in Adriamycin, Shh and Nkx2.1 models. Strikingly, however, genetic suppression of apoptosis in the Apaf1 mutant did not prevent foregut separation, indicating that apoptosis is not required for tracheo-oesophageal morphogenesis. Epithelial remodelling during septation may cause loss of cell-cell or cell-matrix interactions, resulting in apoptosis (anoikis) as a secondary consequence. PMID:19913007
WNTLESS IS REQUIRED FOR PERIPHERAL LUNG DIFFERENTIATION AND PULMONARY VASCULAR DEVELOPMENT
Cornett, Bridget; Snowball, John; Varisco, Brian M.; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora
2013-01-01
Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. PMID:23523683
Wntless is required for peripheral lung differentiation and pulmonary vascular development.
Cornett, Bridget; Snowball, John; Varisco, Brian M; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora
2013-07-01
Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun
2016-06-01
G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Davidson, Lance
2005-03-01
Morphogenesis is the process of constucting form and shape. Morphogenesis during early development of the embryo involves orchestrated movements of cells and tissues. These morphogenetic movements establish the body plan and organs of the early embryo. The rates and trajectories of these movements depend on three physical features of the early embryo: 1) the forces generated by cells, 2) the mechanical properties of the tissues, and 3) the architecture of the tissues. These three mechanical features of the embryo are some of the earliest phenotypic features generated by the genome. We are taking an interdisciplinary approach combining biophysical, cell biological, and classical embryological techniques to understand the mechanics of morphogenesis. Using nanoNewton-sensitive force transducers we can apply forces and measure time dependent elastic modulii of tissue fragments 100 micrometers across. Using traction-force microscopy we can measure forces generated by cells on their environment. We use drugs and chimeric proteins to investigate the localization and function of molecular complexes responsible for force generation and the modulus. We use microsurgery to take-apart and construct novel tissues to investigate the role of geometry and architecture in the mechanics of morphogenesis. Together with simulation techniques these quantitative approaches will provide us with a practical nuts-and-bolts understanding of how the genome encodes the shapes and forms of life.
Mulinari, Shai; Barmchi, Mojgan Padash
2008-01-01
Morphogenesis of the Drosophila embryo is associated with dynamic rearrangement of the actin cytoskeleton mediated by small GTPases of the Rho family. These GTPases act as molecular switches that are activated by guanine nucleotide exchange factors. One of these factors, DRhoGEF2, plays an important role in the constriction of actin filaments during pole cell formation, blastoderm cellularization, and invagination of the germ layers. Here, we show that DRhoGEF2 is equally important during morphogenesis of segmental grooves, which become apparent as tissue infoldings during mid-embryogenesis. Examination of DRhoGEF2-mutant embryos indicates a role for DRhoGEF2 in the control of cell shape changes during segmental groove morphogenesis. Overexpression of DRhoGEF2 in the ectoderm recruits myosin II to the cell cortex and induces cell contraction. At groove regression, DRhoGEF2 is enriched in cells posterior to the groove that undergo apical constriction, indicating that groove regression is an active process. We further show that the Formin Diaphanous is required for groove formation and strengthens cell junctions in the epidermis. Morphological analysis suggests that Dia regulates cell shape in a way distinct from DRhoGEF2. We propose that DRhoGEF2 acts through Rho1 to regulate acto-myosin constriction but not Diaphanous-mediated F-actin nucleation during segmental groove morphogenesis. PMID:18287521
Trubiroha, A; Gillotay, P; Giusti, N; Gacquer, D; Libert, F; Lefort, A; Haerlingen, B; De Deken, X; Opitz, R; Costagliola, S
2018-04-04
The foregut endoderm gives rise to several organs including liver, pancreas, lung and thyroid with important roles in human physiology. Understanding which genes and signalling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to develop a rapid and scalable CRISPR/Cas-based mutagenesis strategy aiming at the identification of genes involved in morphogenesis and function of the thyroid. Core elements of the mutagenesis assay comprise bi-allelic gene invalidation in somatic mutants, a non-invasive monitoring of thyroid development in live transgenic fish, complementary analyses of thyroid function in fixed specimens and quantitative analyses of mutagenesis efficiency by Illumina sequencing of individual fish. We successfully validated our mutagenesis-phenotyping strategy in experiments targeting genes with known functions in early thyroid morphogenesis (pax2a, nkx2.4b) and thyroid functional differentiation (duox, duoxa, tshr). We also demonstrate that duox and duoxa crispants phenocopy thyroid phenotypes previously observed in human patients with bi-allelic DUOX2 and DUOXA2 mutations. The proposed combination of efficient mutagenesis protocols, rapid non-invasive phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger candidate gene panels during thyroid development and is applicable to other organs and tissues.
Characterization and classification of zebrafish brain morphology mutants
Lowery, Laura Anne; De Rienzo, Gianluca; Gutzman, Jennifer H.; Sive, Hazel
2010-01-01
The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain morphology defects. We report the phenotypic characterization of these mutants at several time-points, using brain ventricle dye injection, imaging, and immunohistochemistry with neuronal markers. Most of these mutants display early phenotypes, affecting initial brain shaping, while others show later phenotypes, affecting brain ventricle expansion. In the early phenotype group, we further define four phenotypic classes and corresponding functions required for brain morphogenesis. Although we did not use known genotypes for this classification, basing it solely on phenotypes, many mutants with defects in functionally related genes clustered in a single class. In particular, class 1 mutants show midline separation defects, corresponding to epithelial junction defects; class 2 mutants show reduced brain ventricle size; class 3 mutants show midbrain-hindbrain abnormalities, corresponding to basement membrane defects; and class 4 mutants show absence of ventricle lumen inflation, corresponding to defective ion pumping. Later brain ventricle expansion requires the extracellular matrix, cardiovascular circulation, and transcription/splicing-dependent events. We suggest that these mutants define processes likely to be used during brain morphogenesis throughout the vertebrates. PMID:19051268
Matsumoto, Ken; Miki, Rika; Nakayama, Mizuho; Tatsumi, Norifumi; Yokouchi, Yuji
2008-07-15
Hepatic epithelial morphogenesis, including hepatoblast migration and proliferation in the septum transversum, requires the interaction of hepatic epithelium with the embryonic sinusoidal wall. No factors that mediate this interaction have yet been identified. As the beta-catenin pathway is active in hepatoblast proliferation, then Wnt ligands might activate the canonical Wnt pathway during liver development. Here, we investigated the role of Wnts in mediating epithelial vessel interactions in the developing chick liver. We found that Wnt9a was specifically expressed in both endothelial and stellate cells of the embryonic sinusoidal wall. Induced overexpression of Wnt9a resulted in hepatomegaly with hyperplasia of the hepatocellular cords, and in hyperproliferation of hepatocytes. Knockdown of Wnt9a caused a reduction in liver size, with hypoplasia of hepatocellular cord branching, and hypoproliferation of hepatoblasts, and also inhibited glycogen accumulation at later developmental stages. Wnt9a promoted in vivo stabilization of beta-catenin through binding with Frizzled 4, 7, and 9, and activated TOPflash reporter expression in vitro via Frizzled 7 and 9. Our results demonstrate that Wnt9a from the embryonic sinusoidal wall is required for the proper morphogenesis of chick hepatocellular cords, proliferation of hepatoblasts/hepatocytes, and glycogen accumulation in hepatocytes. Wnt9a signaling appears to be mediated by an Fzd7/9-beta-catenin pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallon, Mario, E-mail: m.vallon@arcor.de; Rohde, Franziska; Janssen, Klaus-Peter
2010-02-01
Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile,more » an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.« less
Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron
Yu, Hung-Hsiang
2016-01-01
In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry. PMID:27163287
Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron.
Shen, Hung-Chang; Wei, Jia-Yi; Chu, Sao-Yu; Chung, Pei-Chi; Hsu, Tsai-Chi; Yu, Hung-Hsiang
2016-01-01
In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry.
Abashev, Timur M; Metzler, Melissa A; Wright, Diana M; Sandell, Lisa L
2017-02-01
Retinoic acid (RA), the active metabolite of vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. Here, we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and nonneuronal mesenchyme. By culturing epithelium explants in isolation from other tissues, we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. Developmental Dynamics 246:135-147, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lymphocyte transformation in presumed ocular histoplasmosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganley, J.P.; Nemo, G.J.; Comstock, G.W.
Lymphocytes from individuals with inactive macular disciform lesions of presumed ocular histoplasmosis challenged with three histoplasmin antigens incorporated tritiated thymidine at a significantly higher rate than histoplasmin-stimulated lymphocytes of matched control and peripheral scar groups. This finding is consistent with the etiologic association of the disciform ocular syndrome and previous systemic infection with Histoplasma capsulatum. The disciform group had a higher mean response than the other two groups to pokeweed mitogen but not to phytohemagglutinin and had higher mean counts per minute to the specific antigens Toxoplasma gondii, Blastomyces dermatitidis, Cryptococcus neoformans, Mycobacterium tuberculosis, M battery, and M gaus, butmore » not to Candida albicans. These data would suggest that individuals with the disciform lesion of presumed ocular histoplasmosis have a hyperreactive cellular immune response; this response may play an important role in the development of the disciform.« less
NASA Astrophysics Data System (ADS)
Radugina, Elena A.; Almeida, Eduardo; Grigoryan, Eleonora
Gravity alterations are widely recognized to influence living systems. They may cause temporary or permanent effects on physiology and development at different levels, from gene expression to morphogenesis. However, the molecular mechanisms underlying these effects are often unclear, and adequate model systems to study them are required. To address this problem we developed a new experimental model of how gravity affects morphogenesis during tail regeneration in the newt Pleurodeles waltl. The effects of increased gravity on newt tail morphogenesis were first documented in two joint Russian-US NASA spaceflight experiments in the Russian Foton-M2 (2005) and Foton-M3 (2007) missions. In these experiments the shape of newt tail regenerate was found to depend on the gravity level, being dorso-ventrally symmetrical in microgravity and in neutrally-buoyant aquarium controls, versus hook-like and bent downward in 1g controls. These 1g controls were conducted in spaceflight habitats using a water-saturated PVA sponge mat. These results were reproducible in multiple spaceflight, and ground laboratory studies, both in the US at NASA ARC and in Russia at IDB RAS, and were characterized in detail using morphometry and histology approaches. The role of hypergravity in shaping morphogenesis was confirmed at NASA ARC with an experiment in the ISS Testbed 8-foot diameter centrifuge operating at 2g. Animals that experienced two-week centrifugation (the period of time used in the Foton flights) developed the same hook-like regenerates as 1g controls, and morphometric analysis revealed no significant difference between 1g and 2g groups, however both were significantly different from aquarium controls. We hypothesize that exposure to 1g or 2g during tail morphogenesis constitutes excessive loading for newts that are adapted to microgravity-like conditions in their aquatic habitat. Because Heat Shock Proteins (HSPs) are stress-induced molecules that respond to a broad variety of factors and are expressed during development, we hypothesized they may play a role newt tail regenerative morphogenesis under altered g-levels. Specifically there is increasing evidence for HSPs expression changes as a result of hyper-and microgravity. HSPs are also expressed throughout regeneration, rather than just after surgery. To test this hypothesis we performed heat shock on intact and regenerating newts and collected tail tissues. In these experiments we observed that some tails had uplifted tips while others mimicked hook-like regenerates at 1g or 2g. These findings suggest that heat shock, and HSPs induction, may be involved in the mechanism responsible for gravity effects on morphogenesis, or at least interact with them. Current work underway is focused on analyzing the expression of mRNA and localization of proteins for two members of the group, Hsp70 and Hsp90. In summary, we developed and characterized a new practical animal model in which gravity mechanostimulation at 1g, versus unloading in aquaria, causes prominent effects on newt tail regenerative morphogenesis. This model can be achieved without the use of a centrifuge, significantly simplifying its research applications. Initial results using this model suggest that induction of HSPs may be involved in gravity regulation of newt tail regenerative morphogenesis. Further research based on this simple model may help to unravel mechanisms of gravity influence relevant not only to newt tail regeneration, but also to a broad range of other biological processes in amphibian models.
Vertex Models of Epithelial Morphogenesis
Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.
2014-01-01
The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108
Sox17 drives functional engraftment of endothelium converted from non-vascular cells.
Schachterle, William; Badwe, Chaitanya R; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M; Rafii, Shahin
2017-01-16
Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.
Zhang, Nan; Khan, Liakot A; Membreno, Edward; Jafari, Gholamali; Yan, Siyang; Zhang, Hongjie; Gobel, Verena
2017-10-03
Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and maintained during organ morphogenesis is still an unresolved question of cell biology. This protocol describes the C. elegans intestine as a model for the analysis of polarized membrane biogenesis during tube morphogenesis, with emphasis on apical membrane and lumen biogenesis. The C. elegans twenty-cell single-layered intestinal epithelium is arranged into a simple bilaterally symmetrical tube, permitting analysis on a single-cell level. Membrane polarization occurs concomitantly with polarized cell division and migration during early embryogenesis, but de novo polarized membrane biogenesis continues throughout larval growth, when cells no longer proliferate and move. The latter setting allows one to separate subcellular changes that simultaneously mediate these different polarizing processes, difficult to distinguish in most polarity models. Apical-, basolateral membrane-, junctional-, cytoskeletal- and endomembrane components can be labeled and tracked throughout development by GFP fusion proteins, or assessed by in situ antibody staining. Together with the organism's genetic versatility, the C. elegans intestine thus provides a unique in vivo model for the visual, developmental, and molecular genetic analysis of polarized membrane and tube biogenesis. The specific methods (all standard) described here include how to: label intestinal subcellular components by antibody staining; analyze genes involved in polarized membrane biogenesis by loss-of-function studies adapted to the typically essential tubulogenesis genes; assess polarity defects during different developmental stages; interpret phenotypes by epifluorescence, differential interference contrast (DIC) and confocal microscopy; quantify visual defects. This protocol can be adapted to analyze any of the often highly conserved molecules involved in epithelial polarity, membrane biogenesis, tube and lumen morphogenesis.
Up-regulation of Wnt5a gene expression in the nitrofen-induced hypoplastic lung.
Doi, Takashi; Puri, Prem
2009-12-01
The pathogenesis of pulmonary hypoplasia in nitrofen-induced congenital diaphragmatic hernia (CDH) still remains unclear. Wnt signaling pathways play a critical role in lung development. Whereas canonical Wnt signaling regulates branching morphogenesis during early lung development, the noncanonical Wnt5a controls late lung morphogenesis, including patterning of distal airway and vascular tubulogenesis (alveolarization). Overexpression of Wnt5a in transgenic mice and in the chick has been reported to result in severe pulmonary hypoplasia. We designed this study to test the hypothesis that the pulmonary Wnt5a gene expression is up-regulated in late stages of lung morphogenesis in CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into 3 groups: control; nitrofen without CDH, CDH(-); and nitrofen with CDH, CDH(+) (n = 8 at each time-point, respectively). Wnt5a pulmonary gene expression was analyzed by real-time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to evaluate Wnt5a protein expression at each time-point. Pulmonary relative mRNA expression levels of Wnt5a were significantly increased in CDH(-) and CDH(+) at D18 (1.61 +/- 0.92 and 1.81 +/- 1.20, respectively) and D21 (2.40 +/- 0.74* and 2.65 +/- 0.35*, respectively) compared to controls at D18 and D21 (0.90 +/- 0.17* and 1.69 +/- 0.53**, respectively) (*P < .05, **P < .001 vs control ). Strong Wnt5a immunoreactivity was seen in the distal epithelium at D18 and D21 in nitrofen-induced hypoplastic lung compared to controls. Up-regulation of pulmonary Wnt5a gene expression in the late lung morphogenesis may interfere with patterning of alveolarization, causing pulmonary hypoplasia in the nitrofen-induced CDH.
To grow or not to grow: Hair morphogenesis and human genetic hair disorders
Duverger, Olivier; Morasso, Maria I.
2014-01-01
Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. PMID:24361867
The ERM protein Moesin is essential for neuronal morphogenesis and long-term memory in Drosophila.
Freymuth, Patrick S; Fitzsimons, Helen L
2017-08-29
Moesin is a cytoskeletal adaptor protein that plays an important role in modification of the actin cytoskeleton. Rearrangement of the actin cytoskeleton drives both neuronal morphogenesis and the structural changes in neurons that are required for long-term memory formation. Moesin has been identified as a candidate memory gene in Drosophila, however, whether it is required for memory formation has not been evaluated. Here, we investigate the role of Moesin in neuronal morphogenesis and in short- and long-term memory formation in the courtship suppression assay, a model of associative memory. We found that both knockdown and overexpression of Moesin led to defects in axon growth and guidance as well as dendritic arborization. Moreover, reduction of Moesin expression or expression of a constitutively active phosphomimetic in the adult Drosophila brain had no effect on short term memory, but prevented long-term memory formation, an effect that was independent of its role in development. These results indicate a critical role for Moesin in both neuronal morphogenesis and long-term memory formation.
NASA Technical Reports Server (NTRS)
Hardman, P.; Klement, B. J.; Spooner, B. S.
1993-01-01
Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.
Elias, Salah; McGuire, John Russel; Yu, Hua; Humbert, Sandrine
2015-01-01
The establishment of apical-basolateral polarity is important for both normal development and disease, for example, during tumorigenesis and metastasis. During this process, polarity complexes are targeted to the apical surface by a RAB11A-dependent mechanism. Huntingtin (HTT), the protein that is mutated in Huntington disease, acts as a scaffold for molecular motors and promotes microtubule-based dynamics. Here, we investigated the role of HTT in apical polarity during the morphogenesis of the mouse mammary epithelium. We found that the depletion of HTT from luminal cells in vivo alters mouse ductal morphogenesis and lumen formation. HTT is required for the apical localization of PAR3-aPKC during epithelial morphogenesis in virgin, pregnant, and lactating mice. We show that HTT forms a complex with PAR3, aPKC, and RAB11A and ensures the microtubule-dependent apical vesicular translocation of PAR3-aPKC through RAB11A. We thus propose that HTT regulates polarized vesicular transport, lumen formation and mammary epithelial morphogenesis. PMID:25942483
Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A
1998-05-01
During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.
Lamorte, Louie; Rodrigues, Sonia; Naujokas, Monica; Park, Morag
2002-10-04
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.
Martin, Stephen W.; Douglas, Lois M.; Konopka, James B.
2005-01-01
The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis. PMID:16002645
MicroRNA miR-328 Regulates Zonation Morphogenesis by Targeting CD44 Expression
Wang, Chia-Hui; Lee, Daniel Y.; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B.
2008-01-01
Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion. PMID:18560585
MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.
Wang, Chia-Hui; Lee, Daniel Y; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B
2008-06-18
Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.
Flight feather development: its early specialization during embryogenesis.
Kondo, Mao; Sekine, Tomoe; Miyakoshi, Taku; Kitajima, Keiichi; Egawa, Shiro; Seki, Ryohei; Abe, Gembu; Tamura, Koji
2018-01-01
Flight feathers, a type of feather that is unique to extant/extinct birds and some non-avian dinosaurs, are the most evolutionally advanced type of feather. In general, feather types are formed in the second or later generation of feathers at the first and following molting, and the first molting begins at around two weeks post hatching in chicken. However, it has been stated in some previous reports that the first molting from the natal down feathers to the flight feathers is much earlier than that for other feather types, suggesting that flight feather formation starts as an embryonic event. The aim of this study was to determine the inception of flight feather morphogenesis and to identify embryological processes specific to flight feathers in contrast to those of down feathers. We found that the second generation of feather that shows a flight feather-type arrangement has already started developing by chick embryonic day 18, deep in the skin of the flight feather-forming region. This was confirmed by shh gene expression that shows barb pattern, and the expression pattern revealed that the second generation of feather development in the flight feather-forming region seems to start by embryonic day 14. The first stage at which we detected a specific morphology of the feather bud in the flight feather-forming region was embryonic day 11, when internal invagination of the feather bud starts, while the external morphology of the feather bud is radial down-type. The morphogenesis for the flight feather, the most advanced type of feather, has been drastically modified from the beginning of feather morphogenesis, suggesting that early modification of the embryonic morphogenetic process may have played a crucial role in the morphological evolution of this key innovation. Co-optation of molecular cues for axial morphogenesis in limb skeletal development may be able to modify morphogenesis of the feather bud, giving rise to flight feather-specific morphogenesis of traits.
Morphologic Differentiation of Viruses beyond the Family Level
Goldsmith, Cynthia S.
2014-01-01
Electron microscopy has been instrumental in the identification of viruses by being able to characterize a virus to the family level. There are a few cases where morphologic or morphogenesis factors can be used to differentiate further, to the genus level. These include viruses in the families Poxviridae, Reoviridae, Retroviridae, Herpesviridae, Filoviridae, and Bunyaviridae. PMID:25502324
Vetchinkina, Elena; Kupryashina, Maria; Gorshkov, Vladimir; Ageeva, Marina; Gogolev, Yuri; Nikitina, Valentina
2017-04-01
The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.
Computational models of airway branching morphogenesis.
Varner, Victor D; Nelson, Celeste M
2017-07-01
The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polarized protein transport and lumen formation during epithelial tissue morphogenesis.
Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis
2015-01-01
One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.
To grow or not to grow: hair morphogenesis and human genetic hair disorders.
Duverger, Olivier; Morasso, Maria I
2014-01-01
Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. Published by Elsevier Ltd.
A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis.
Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C
2017-05-02
The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.
From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice
NASA Astrophysics Data System (ADS)
Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.
2004-04-01
The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.
Sugio, Akiko; MacLean, Allyson M; Hogenhout, Saskia A
2014-05-01
Phytoplasmas are insect-transmitted bacterial phytopathogens that secrete virulence effectors and induce changes in the architecture and defense response of their plant hosts. We previously demonstrated that the small (± 10 kDa) virulence effector SAP11 of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) binds and destabilizes Arabidopsis CIN (CINCINNATA) TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 AND 2) transcription factors, resulting in dramatic changes in leaf morphogenesis and increased susceptibility to phytoplasma insect vectors. SAP11 contains a bipartite nuclear localization signal (NLS) that targets this effector to plant cell nuclei. To further understand how SAP11 functions, we assessed the involvement of SAP11 regions in TCP binding and destabilization using a series of mutants. SAP11 mutants lacking the entire N-terminal domain, including the NLS, interacted with TCPs but did not destabilize them. SAP11 mutants lacking the C-terminal domain were impaired in both binding and destabilization of TCPs. These SAP11 mutants did not alter leaf morphogenesis. A SAP11 mutant that did not accumulate in plant nuclei (SAP11ΔNLS-NES) was able to bind and destabilize TCP transcription factors, but instigated weaker changes in leaf morphogenesis than wild-type SAP11. Overall the results suggest that phytoplasma effector SAP11 has a modular organization in which at least three domains are required for efficient CIN-TCP destabilization in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Misra, Ashish; Feng, Zhonghui; Zhang, Jiasheng; Lou, Zhi-Yin; Greif, Daniel M
2017-09-12
The aorta is the largest artery in the body. The aortic wall is composed of an inner layer of endothelial cells, a middle layer of alternating elastic lamellae and smooth muscle cells (SMCs), and an outer layer of fibroblasts and extracellular matrix. In contrast to the widespread study of pathological models (e.g., atherosclerosis) in the adult aorta, much less is known about the embryonic and perinatal aorta. Here, we focus on SMCs and provide protocols for the analysis of the morphogenesis and pathogenesis of embryonic and perinatal aortic SMCs in normal development and disease. Specifically, the four protocols included are: i) in vivo embryonic fate mapping and clonal analysis; ii) explant embryonic aorta culture; iii) SMC isolation from the perinatal aorta; and iv) subcutaneous osmotic mini-pump placement in pregnant (or non-pregnant) mice. Thus, these approaches facilitate the investigation of the origin(s), fate, and clonal architecture of SMCs in the aorta in vivo. They allow for modulating embryonic aorta morphogenesis in utero by continuous exposure to pharmacological agents. In addition, isolated aortic tissue explants or aortic SMCs can be used to gain insights into the role of specific gene targets during fundamental processes such as muscularization, proliferation, and migration. These hypothesis-generating experiments on isolated SMCs and the explanted aorta can then be assessed in the in vivo context through pharmacological and genetic approaches.
Meza-Joya, Fabio Leonardo; Ramos-Pallares, Eliana Patricia; Ramírez-Pinilla, Martha Patricia
2013-07-01
Over the last century, the morphogenesis of the vertebral column has been considered as a highly conserved process among anurans. This statement is based on the study of few metamorphic taxa, ignoring the role of developmental mechanisms underlying the evolution of specialized life-histories. Direct development in anurans has been regarded as evolutionarily derived and involves developmental recapitulation and repatterning at different levels in all amphibian taxa studied so far. Herein, we analyze the vertebral column morphogenesis of the direct-developing frog Eleutherodactylus johnstonei, describing the sequence of chondrification and ossification, based on cleared and double-stained specimens from early stage embryos to adults. In general, our results show that the morphogenesis of the vertebral column in E. johnstonei recapitulates the ancestral tadpole-like pattern of development. However, the analysis of the sequence of events using heterochrony plots shows important heterocronies relative to metamorphic species, such as a delay in the chondrification of the vertebral centra and in osteogenesis. These ontogenetic peculiarities may represent derived traits in direct-developing frogs and are possibly correlated with its unusual life history. In addition, several features of the vertebral column of E. johnstonei are highly variable from its typical morphology. We report some malformations and small deviations, which do not seem to affect the survival of individuals. These anomalies have also been found in other frogs, and include many vertebral defects, such as vertebral fusion, and vertebral preclusion and/or induction. Copyright © 2013 Wiley Periodicals, Inc.
Douglas, Lois M; Wang, Hong X; Konopka, James B
2013-11-26
Invasive growth of the fungal pathogen Candida albicans into tissues promotes disseminated infections in humans. The plasma membrane is essential for pathogenesis because this important barrier mediates morphogenesis and invasive growth, as well as secretion of virulence factors, cell wall synthesis, nutrient import, and other processes. Previous studies showed that the Sur7 tetraspan protein that localizes to MCC (membrane compartment occupied by Can1)/eisosome subdomains of the plasma membrane regulates a broad range of key functions, including cell wall synthesis, morphogenesis, and resistance to copper. Therefore, a distinct tetraspan protein found in MCC/eisosomes, Nce102, was investigated. Nce102 belongs to the MARVEL domain protein family, which is implicated in regulating membrane structure and function. Deletion of NCE102 did not cause the broad defects seen in sur7Δ cells. Instead, the nce102Δ mutant displayed a unique phenotype in that it was defective in forming hyphae and invading low concentrations of agar but could invade well in higher agar concentrations. This phenotype was likely due to a defect in actin organization that was observed by phalloidin staining. In support of this, the invasive growth defect of a bni1Δ mutant that mislocalizes actin due to lack of the Bni1 formin was also reversed at high agar concentrations. This suggests that a denser matrix provides a signal that compensates for the actin defects. The nce102Δ mutant displayed decreased virulence and formed abnormal hyphae in mice. These studies identify novel ways that Nce102 and the physical environment surrounding C. albicans regulate morphogenesis and pathogenesis. The plasma membrane promotes virulence of the human fungal pathogen Candida albicans by acting as a protective barrier around the cell and mediating dynamic activities, such as morphogenesis, cell wall synthesis, secretion of virulence factors, and nutrient uptake. To better understand how the plasma membrane contributes to virulence, we analyzed a set of eight genes encoding MARVEL family proteins that are predicted to function in membrane organization. Interestingly, deletion of one gene, NCE102, caused a strong defect in formation of invasive hyphal growth in vitro and decreased virulence in mice. The nce102Δ mutant cells showed defects in actin organization that underlie the morphogenesis defect, since mutation of a known regulator of actin organization caused a similar defect. These studies identify a novel way in which the plasma membrane regulates the actin cytoskeleton and contributes to pathogenesis.
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.
Barriga, Elias H; Franze, Kristian; Charras, Guillaume; Mayor, Roberto
2018-02-22
Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis.
Bal, Jyotiranjan; Lee, Hye-Jeong; Cheon, Seon Ah; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Jeong-Yoon
2013-01-01
Sphingolipids are involved in cell differentiation and morphogenesis in eukaryotic cells. In this study, YlLac1p, a ceramide synthase required for glucosylceramide (GlcCer) synthesis, was found to be essential for hyphal growth in Yarrowia lipolytica. Y. lipolytica GlcCer was shown to be composed of a C16:0 fatty acid, which is hydroxylated at C2, and a C18:2 long chain base, which is unsaturated at both C4 and C8 and methylated at C9. Domain swapping analysis revealed that the entire TRAM/Lag1/CLN8 (TLC) domain, not the Lag1 motif, is crucial for the function of YlLac1p. YlDes1p, the C4 desaturase of the ceramide synthesized by YlLac1p, was also required for Y. lipolytica morphogenesis. Both Yllac1Δ and Yldes1Δ mutants neither polarize lipid rafts nor form normal vacuoles. Interestingly, mutation in YlPEX5, which encode a peroxisomal targeting signal receptor, partially suppressed the defective hyphal growth of Yllac1Δ. The Yllac1ΔYlpex5Δ mutant restored the ability to polarize lipid rafts and to form normal vacuoles, although it could not synthesize GlcCer. Taken together, our results suggest that GlcCer or GlcCer derivatives may be involved in hyphal morphogenesis in Y. lipolytica, at least in part, by affecting polarization of lipid rafts and vacuole morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Development of the cardiac pacemaker
Liang, Xingqun; Evans, Sylvia M.
2017-01-01
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development. PMID:27770149
ERIC Educational Resources Information Center
Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.
2012-01-01
Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…
Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.
Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J
2012-02-01
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.
Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion
Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.
2012-01-01
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354
Dynamics of vascular branching morphogenesis: The effect of blood and tissue flow
NASA Astrophysics Data System (ADS)
Nguyen, Thi-Hanh; Eichmann, Anne; Le Noble, Ferdinand; Fleury, Vincent
2006-06-01
Vascularization of embryonic organs or tumors starts from a primitive lattice of capillaries. Upon perfusion, this lattice is remodeled into branched arteries and veins. Adaptation to mechanical forces is implied to play a major role in arterial patterning. However, numerical simulations of vessel adaptation to haemodynamics has so far failed to predict any realistic vascular pattern. We present in this article a theoretical modeling of vascular development in the yolk sac based on three features of vascular morphogenesis: the disconnection of side branches from main branches, the reconnection of dangling sprouts (“dead ends”), and the plastic extension of interstitial tissue, which we have observed in vascular morphogenesis. We show that the effect of Poiseuille flow in the vessels can be modeled by aggregation of random walkers. Solid tissue expansion can be modeled by a Poiseuille (parabolic) deformation, hence by deformation under hits of random walkers. Incorporation of these features, which are of a mechanical nature, leads to realistic modeling of vessels, with important biological consequences. The model also predicts the outcome of simple mechanical actions, such as clamping of vessels or deformation of tissue by the presence of obstacles. This study offers an explanation for flow-driven control of vascular branching morphogenesis.
Domínguez-Cuevas, Patricia; Porcelli, Ida; Daniel, Richard A; Errington, Jeff
2013-09-01
Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Multiple Phosphatidylinositol 3-Kinases Regulate Vaccinia Virus Morphogenesis
McNulty, Shannon; Bornmann, William; Schriewer, Jill; Werner, Chas; Smith, Scott K.; Olson, Victoria A.; Damon, Inger K.; Buller, R. Mark; Heuser, John; Kalman, Daniel
2010-01-01
Poxvirus morphogenesis is a complex process that involves the successive wrapping of the virus in host cell membranes. We screened by plaque assay a focused library of kinase inhibitors for those that caused a reduction in viral growth and identified several compounds that selectively inhibit phosphatidylinositol 3-kinase (PI3K). Previous studies demonstrated that PI3Ks mediate poxviral entry. Using growth curves and electron microscopy in conjunction with inhibitors, we show that that PI3Ks additionally regulate morphogenesis at two distinct steps: immature to mature virion (IMV) transition, and IMV envelopment to form intracellular enveloped virions (IEV). Cells derived from animals lacking the p85 regulatory subunit of Type I PI3Ks (p85α−/−β−/−) presented phenotypes similar to those observed with PI3K inhibitors. In addition, VV appear to redundantly use PI3Ks, as PI3K inhibitors further reduce plaque size and number in p85α−/−β−/− cells. Together, these data provide evidence for a novel regulatory mechanism for virion morphogenesis involving phosphatidylinositol dynamics and may represent a new therapeutic target to contain poxviruses. PMID:20526370
The ciliopathy gene Rpgrip1l is essential for hair follicle development.
Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A
2015-03-01
The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.
Altered development of the brain after focal herpesvirus infection of the central nervous system.
Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J
2008-02-18
Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis.
Altered development of the brain after focal herpesvirus infection of the central nervous system
Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J.
2008-01-01
Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis. PMID:18268036
Dudas, Marek; Kim, Jieun; Li, Wai-Yee; Nagy, Andre; Larsson, Jonas; Karlsson, Stefan; Chai, Yang; Kaartinen, Vesa
2006-01-01
Transforming growth factor beta (TGF-β) proteins play important roles in morphogenesis of many craniofacial tissues; however, detailed biological mechanisms of TGF-β action, particularly in vivo, are still poorly understood. Here, we deleted the TGF-β type I receptor gene Alk5 specifically in the embryonic ectodermal and neural crest cell lineages. Failure in signaling via this receptor, either in the epithelium or in the mesenchyme, caused severe craniofacial defects including cleft palate. Moreover, the facial phenotypes of neural crest-specific Alk5 mutants included devastating facial cleft and appeared significantly more severe than the defects seen in corresponding mutants lacking the TGF-β type II receptor (TGFβRII), a prototypical binding partner of ALK5. Our data indicate that ALK5 plays unique, non-redundant cell-autonomous roles during facial development. Remarkable divergence between Tgfbr2 and Alk5 phenotypes, together with our biochemical in vitro data, imply that (1) ALK5 mediates signaling of a diverse set of ligands not limited to the three isoforms of TGF-β, and (2) ALK5 acts also in conjunction with type II receptors other than TGFβRII. PMID:16806156
Multi-scale mechanics from molecules to morphogenesis
Davidson, Lance; von Dassow, Michelangelo; Zhou, Jian
2009-01-01
Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis. PMID:19394436
NASA Technical Reports Server (NTRS)
Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr
1993-01-01
The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.
Modulation of WNT signaling activity is key to the formation of the embryonic head.
Fossat, Nicolas; Jones, Vanessa; Garcia-Garcia, Maria J; Tam, Patrick P L
2012-01-01
The formation of the embryonic head begins with the assembly of the progenitor tissues of the brain, the head and face primordia and the foregut that are derived from the primary germ layers during gastrulation. Specification of the anterior-posterior polarity of major body parts and the morphogenesis of the head and brain specifically is driven by inductive signals including those mediated by BMP, Nodal, FGF and WNT. A critical role of β-catenin dependent WNT signalling activity for head morphogenesis has been revealed through the analysis of the phenotypic impact of loss of function mutation of an antagonist: DKK1, a transcriptional repressor: GSC; and the outcome of interaction of Dkk1 with genes coding three components of the canonical signalling pathway: the ligand WNT3, the co-receptor LRP6 and the transcriptional co-factor, β-catenin. The findings highlight the requirement of a stringent control of the timing, domain and level of canonical WNT signalling activity for the formation of the embryonic head.
Balic, Anamaria; Adams, Douglas; Mina, Mina
2009-01-01
Mice lacking both Prx1 and Prx2 display severe abnormalities in the mandible. Our analysis showed that complete loss of Prx gene products leads to growth abnormalities in the mandibular processes evident as early as E10.5 associated with changes in the survival of the mesenchyme in the medial region. Changes in the gene expression in the medial and lateral regions were related to gradual loss of a subpopulation of mesenchyme in the medial region expressing eHand. Our analysis also showed that Prx gene products are required for the initiation and maintenance of chondrogenesis and terminal differentiation of the chondrocytes in the caudal and rostral ends of Meckel’s cartilage. The fusion of the mandibular processes in the Prx1/Prx2 double mutants is caused by accelerated ossification. These observations together show that during mandibular morphogenesis Prx gene products play multiple roles including the cell survival, the region-specific terminal differentiation of Meckelian chondrocytes and osteogenesis. PMID:19777594
Spletter, Maria L; Barz, Christiane; Yeroslaviz, Assa; Zhang, Xu; Lemke, Sandra B; Bonnard, Adrien; Brunner, Erich; Cardone, Giovanni; Basler, Konrad; Habermann, Bianca H; Schnorrer, Frank
2018-05-30
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development. © 2018, Spletter et al.
NASA Astrophysics Data System (ADS)
Lazzarano, Stefano; Lulli, Matteo; Fibbi, Gabriella; Margheri, Francesca; Papucci, Laura; Serrati, Simona; Witort, Ewa; Chilla, Anastasia; Lapucci, Andrea; Donnini, Martino; Quaglierini, Paolo; Romiti, Alice; Specogna, Rebecca; Del Rosso, Mario; Capaccioli, Sergio
2008-06-01
Angiogenesis underlies a variety of physiological processes and its possible deregulation during long term space exploration needs to be investigated. Angiogenesis is a multistep process of new blood capillary formation, where degradation of the extracellular matrix (ECM) by proteolytic enzymes, including uPA (urokinase plasminogen activator) and opening the way to migration of endothelial cells (EC), is critical. Plasminogen activation system regulates angiogenesis by both uPA-driven ECM degradation and uPA receptor (uPAR). Microgravity and low dose irradiations promote tissue neoangiogeenesis and neovascularization is often common occurence in ophthalmologic pathologies. We have designed and patented the uPAR antisense oligonucleotide (aODN) and evaluated its antiangiogenetic activity by EC cellular migration and capillary morphogenesis assays. The uPAR aODN treatment caused a 75% inhibition of human microvascular EC migration and a complete inhibition of capillary morphogenesis, suggesting its therapeutic application to prevent neoangiogenesis-related ophthalmologic pathologies during space exploration.
Sox17 drives functional engraftment of endothelium converted from non-vascular cells
Schachterle, William; Badwe, Chaitanya R.; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M.; Rafii, Shahin
2017-01-01
Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function. PMID:28091527
MorphoGraphX: A platform for quantifying morphogenesis in 4D.
Barbier de Reuille, Pierre; Routier-Kierzkowska, Anne-Lise; Kierzkowski, Daniel; Bassel, George W; Schüpbach, Thierry; Tauriello, Gerardo; Bajpai, Namrata; Strauss, Sören; Weber, Alain; Kiss, Annamaria; Burian, Agata; Hofhuis, Hugo; Sapala, Aleksandra; Lipowczan, Marcin; Heimlicher, Maria B; Robinson, Sarah; Bayer, Emmanuelle M; Basler, Konrad; Koumoutsakos, Petros; Roeder, Adrienne H K; Aegerter-Wilmsen, Tinri; Nakayama, Naomi; Tsiantis, Miltos; Hay, Angela; Kwiatkowska, Dorota; Xenarios, Ioannis; Kuhlemeier, Cris; Smith, Richard S
2015-05-06
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.
SEPT9_v1 Functions in Breast Cancer Cell Division
2012-01-01
the regulation and function of septin filaments, and define new mechanisms regulating important cellular functions. BODY: 1). Study the effects...ciliogenesis. However, mechanisms for retaining these proteins and lipids in the primary cilia are not clear. We directly tested the presence of a diffusion...polarity and morphogenesis; Defined mechanisms involving the roles of septins and microtubules in vesicle trafficking and epithelial morphogenesis
Kutasy, Balazs; Gosemann, Jan H; Doi, Takashi; Fujiwara, Naho; Friedmacher, Florian; Puri, Prem
2012-02-01
Retinoids play a key role in lung development. Retinoid signaling pathway has been shown to be disrupted in the nitrofen model of congenital diaphragmatic hernia (CDH) but the exact mechanism is not clearly understood. Retinol-binding protein (RBP) and transthyretin (TTR) are transport proteins for delivery of retinol to the tissues via circulation. Previous studies have shown that pulmonary retinol levels are decreased during lung morphogenesis in the nitrofen CDH model. In human newborns with CDH, both retinol and RBP levels are decreased. It has been reported that maternal RBP does not cross the placenta and the fetus produces its own RBP by trophoblast. RBP and TTR synthesized in the fetus are essential for retinol transport to the developing organs including lung morphogenesis. We hypothesized that nitrofen interferes with the trophoblastic expression of RBP and TTR during lung morphogenesis and designed this study to examine the trophoblastic expression of RBP and TTR, and the total level of RBP and TTR in the lung in the nitrofen model of CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs and placenta harvested on D21 and divided into two groups: control (n = 8) and nitrofen with CDH (n = 8). Total lung RBP and TTR levels using protein extraction were compared with enzyme linked immunoassay (ELISA). Immunohistochemistry was performed to evaluate trophoblastic RBP and TTR expression. Total protein levels of lung RBP and TTR were significantly lower in CDH (0.26 ± 0.003 and 6.4 ± 0.5 μg/mL) compared with controls (0.4 ± 0.001 and 9.9 ± 1.6 μg/mL, p < 0.05). In the control group, immunohistochemical staining showed strong immunoreactivity of RBP and TTR in the trophoblast compared to CDH group. Decreased trophoblast expression of retinol transport proteins suggest that nitrofen may interfere with the fetal retinol transport resulting in reduced pulmonary RBP and TTR levels and causing pulmonary hypoplasia in CDH.
E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.
Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R
1999-08-01
The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.
Hamidi, Kordiyeh; Darvish, Jamshid; Matin, Maryam M; Javanmard, Athar Sadat; Kilpatrick, C William
2017-12-01
To date, no studies have examined the tooth formation during developmental stages of brush-tailed mice (Calomyscidae) and true hamsters (Cricetidae). Herein, we compared the timing of tooth morphogenesis and FGF4 expression pattern during development of the first lower molar in Goodwin's brush-tailed mouse, Calomyscus elburzensis with two other muroid rodents; the house mouse, Mus musculus (Muridae), model organism for tooth morphogenesis, and the golden hamster, Mesocricetus auratus which shares great similarities in cusp pattern with brush-tailed mice. All three species were bred in captivity and developing embryos were isolated at different embryonic days (E). Histological evaluation of lower molars was performed and spatiotemporal pattern of FGF4 expression was determined by immunohistochemistry. Results indicated that morphogenesis of the tooth cusps starts at the beginning of the cap stage of the first lower molar (E14 in house mouse, about E11.5 in golden hamster and E22 in Goodwin's brush-tailed mouse). During the cap to bell stage (E15 in house mouse, E12 in golden hamster and at about E24 in Goodwin's brush-tailed mouse), a decrease in the expression of FGF4 was observed in the mesenchyme, except for the cusp tips. According to our observations, the developmental process of the first lower molar formation in Goodwin's brush-tailed mouse began much later as compared with the other two species. Despite the differences in the temporal pattern of molar development between these three members of the same superfamily (Muroidea), the correlation in the expression of FGF4 with specific stages of tooth morphogenesis supported its regulatory function. Anat Rec, 300:2138-2149, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Friedmacher, Florian; Gosemann, Jan-Hendrik; Fujiwara, Naho; Takahashi, Hiromizu; Hofmann, Alejandro; Puri, Prem
2013-11-01
Pulmonary hypoplasia (PH) is a life-threatening condition associated with congenital diaphragmatic hernia (CDH), characterized by defective lung development. Sproutys and Sprouty-related proteins (SPREDs) play a key role in lung branching morphogenesis through modification of epithelial-mesenchymal interactions. During the pseudoglandular stage, Sproutys are highly expressed in distal airway epithelium, while SPREDs within the surrounding mesenchyme. Sprouty2/4 knockouts show severe defects in branching morphogenesis with reduced number of distal airways. SPRED-1 and SPRED-2 are strongly expressed in regions of new airway formation, highlighting their important function in branching pattern. We hypothesized that expression of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 is decreased during lung branching morphogenesis in nitrofen-induced PH. Timed-pregnant rats received either nitrofen or vehicle on E9.5. On E15.5 (n = 16), fetal lungs were micro-dissected and divided into controls and PH, while on E18.5 (n = 24) groups were: control, PH without CDH [CDH(-)], and PH with CDH [CDH(+)]. Pulmonary gene expression levels of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 were analyzed by qRT-PCR. Immunohistochemistry was performed to evaluate protein expression/distribution. On E18.5, relative mRNA expression levels of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 were significantly decreased in CDH(-) and CDH(+) groups compared to controls (P < 0.05). Immunoreactivity of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 was markedly diminished on E18.5 in nitrofen-induced PH. Decreased expression of Sproutys and SPREDs during the terminal pseudoglandular stage may disrupt lung branching morphogenesis by interfering with epithelial-mesenchymal interactions contributing to PH.
An integrated miRNA functional screening and target validation method for organ morphogenesis.
Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L
2016-03-16
The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.
JunB is required for endothelial cell morphogenesis by regulating core-binding factor β
Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina
2006-01-01
The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955
Feedback, Lineages and Self-Organizing Morphogenesis
Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.
2016-01-01
Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903
Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids
Doubrovinski, Konstantin; Swan, Michael; Polyakov, Oleg; Wieschaus, Eric F.
2017-01-01
Many models of morphogenesis are forced to assume specific mechanical properties of cells, because the actual mechanical properties of living tissues are largely unknown. Here, we measure the rheology of epithelial cells in the cellularizing Drosophila embryo by injecting magnetic particles and studying their response to external actuation. We establish that, on timescales relevant to epithelial morphogenesis, the cytoplasm is predominantly viscous, whereas the cellular cortex is elastic. The timescale of elastic stress relaxation has a lower bound of 4 min, which is comparable to the time required for internalization of the ventral furrow during gastrulation. The cytoplasm was measured to be ∼103-fold as viscous as water. We show that elasticity depends on the actin cytoskeleton and conclude by discussing how these results relate to existing mechanical models of morphogenesis. PMID:28096360
Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.
Lu, Kai; Gordon, Richard; Cao, Tong
2015-03-01
The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.
MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus
Vacca, Barbara; Sanchez-Heras, Elena; Steed, Emily; Balda, Maria S.; Ohnuma, Shin-Ichi; Sasai, Noriaki; Mayor, Roberto
2016-01-01
ABSTRACT Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus. MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis. PMID:27870636
A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis
Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C
2017-01-01
The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways. DOI: http://dx.doi.org/10.7554/eLife.25453.001 PMID:28463112
Świderski, Zdzisław; Poddubnaya, Larisa G; Gibson, David I; Młocicki, Daniel
2012-06-01
Ultrastructural aspects of the advanced embryonic development and cotylocidial morphogenesis of the aspidogastrean Aspidogaster limacoides are described. The posterior or distal regions of the uterus are filled with eggs containing larvae at advanced stages of morphogenesis and fully-formed cotylocidia. Various stages and organs of this larva are described in detail, including the aspects of the developing and fully-differentiated cotylocidium, the body wall (tegument and musculature), glandular regions and the protonephridial excretory system. Blastomere multiplication by means of mitotic divisions takes place simultaneously with the degeneration or apoptosis of some micromeres; this frequently observed characteristic is compared and discussed in relation to corresponding reports for other neodermatans. During the advanced stages of the embryonic development of A. limacoides, the vitelline syncytium disappears and the size of the embryo increases rapidly. Evident polarization of the differentiating larva was observed; towards one pole of the egg, cytodifferentiation of the mouth, surrounded by the oral sucker and cephalic glands, takes place, whereas, towards the opposite pole, differentiation of the posterior sucker (incipient ventral disc) occurs. The oral and posterior suckers are formed from numerous embryonic cells which have differentiated into myocytes. The central part of the oral sucker undergoes invagination and forms the future pharynx and intestine. Fully-developed cotylocidia of A. limacoides have a neodermatan type of tegument, flame cells and two types of glandular structures. These results suggest a sister relationship between the Aspidogastrea and the Digenea, although the systematic position of aspidogastreans in relation to other platyhelminth taxa remains somewhat equivocal.
Stennard, Fiona A; Costa, Mauro W; Lai, Donna; Biben, Christine; Furtado, Milena B; Solloway, Mark J; McCulley, David J; Leimena, Christiana; Preis, Jost I; Dunwoodie, Sally L; Elliott, David E; Prall, Owen W J; Black, Brian L; Fatkin, Diane; Harvey, Richard P
2005-05-01
The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.
Foxi3 deficiency compromises hair follicle stem cell specification and activation
Shirokova, Vera; Biggs, Leah C.; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K.; Mikkola, Marja L.
2017-01-01
The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ. Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary hair germ marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary hair germ activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. PMID:26992132
[Morphogenesis in formative process in vitro from Rehmannia glutinosa].
Xue, Jian-ping; Zhang, Ai-min; Liu, Jun; Xu, Xue-feng
2004-01-01
To study the morphogenesis in formative process of tuberous root in vitro from Rehmannia glutinosa and compare the anatomical shape of tuberous root with nature term R. glutinosa. Tuberous roots of different vegetal phase were cut and dyed, then made into paraffin cuts and observed microscope. In anatomical shape, nature R. glutinosa and tuberous root were the same, which showed that no structural variation occurred in tuberous root induced process.
Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-01
Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis. PMID:26374384
Carlactone-independent seedling morphogenesis in Arabidopsis.
Scaffidi, Adrian; Waters, Mark T; Ghisalberti, Emilio L; Dixon, Kingsley W; Flematti, Gavin R; Smith, Steven M
2013-10-01
Strigolactone hormones are derived from carotenoids via carlactone, and act through the α/β-hydrolase D14 and the F-box protein D3/MAX2 to repress plant shoot branching. While MAX2 is also necessary for normal seedling development, D14 and the known strigolactone biosynthesis genes are not, raising the question of whether endogenous, canonical strigolactones derived from carlactone have a role in seedling morphogenesis. Here, we report the chemical synthesis of the strigolactone precursor carlactone, and show that it represses Arabidopsis shoot branching and influences leaf morphogenesis via a mechanism that is dependent on the cytochrome P450 MAX1. In contrast, both physiologically active Z-carlactone and the non-physiological E isomer exhibit similar weak activity in seedlings, and predominantly signal through D14 rather than its paralogue KAI2, in a MAX2-dependent but MAX1-independent manner. KAI2 is essential for seedling morphogenesis, and hence this early-stage development employs carlactone-independent morphogens for which karrikins from wildfire smoke are specific surrogates. While the commonly employed synthetic strigolactone GR24 acts non-specifically through both D14 and KAI2, carlactone is a specific effector of strigolactone signalling that acts through MAX1 and D14. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Liu, Kuimei; Dong, Yanmei; Wang, Fangzhong; Jiang, Baojie; Wang, Mingyu; Fang, Xu
2016-01-01
Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.
Handrigan, Gregory R; Richman, Joy M
2010-01-01
Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.
Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof
2018-01-17
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.
Bischoff, Marcus
2012-01-01
Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis. PMID:22230614
Spatial mapping and quantification of developmental branching morphogenesis.
Short, Kieran; Hodson, Mark; Smyth, Ian
2013-01-15
Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it. As a consequence, although many developmentally important genes are proposed to influence branching morphogenesis, we have no way of objectively assessing their individual contributions to this process. We report the development of a method for accurately quantifying many aspects of branching morphogenesis and we demonstrate its application to the study of organ development. As proof of principle we have employed this approach to analyse the developing mouse lung and kidney, describing the spatial characteristics of the branching ureteric bud and pulmonary epithelia. To demonstrate further its capacity to profile unrecognised genetic contributions to organ development, we examine Tgfb2 mutant kidneys, identifying elements of both developmental delay and specific spatial dysmorphology caused by haplo-insufficiency for this gene. This technical advance provides a crucial resource that will enable rigorous characterisation of the genetic and environmental factors that regulate this essential and evolutionarily conserved developmental mechanism.
Ascidian notochord morphogenesis
Jiang, Di; Smith, William C.
2010-01-01
The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate models systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pre-gastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidian species produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord, while others appear to make intercellular vacuoles. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes. PMID:17497687
Ascidian notochord morphogenesis.
Jiang, Di; Smith, William C
2007-07-01
The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate model systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pregastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidians produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord; whereas others do not. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes. Copyright 2007 Wiley-Liss, Inc.
Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-09-16
Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis.
Signaling through protein kinases and transcriptional regulators in Candida albicans.
Dhillon, Navneet K; Sharma, Sadhna; Khuller, G K
2003-01-01
The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. Several signaling pathways that regulate morphogenesis have been identified, including various transcription factors that either activate or repress hypha-specific genes. Two well-characterized pathways include the MAP kinase cascade and cAMP-dependent protein kinase pathway that regulate the transcription factors Cph1p and Efg1p, respectively. cAMP also appears to interplay with other second messengers: Ca2+, inositol tri-phosphates in regulating yeast-hyphal transition. Other, less-characterized pathways include two component histidine kinases, cyclin-dependent kinase pathway, and condition specific pathways such as pH and embedded growth conditions. Nrg1 and Rfg1 function as transcriptional repressors of hyphal genes via recruitment of Tup1 co-repressor complex. Different upstream signals converge into a common downstream output during hyphal switch. The levels of expression of several genes have been shown to be associated with hyphal morphogenesis rather than with a specific hypha-inducing condition. Hyphal development is also linked to the expression of a range of other virulence factors. This review explains the relative contribution of multiple pathways that could be used by Candida albican cells to sense subtle differences in the growth conditions of its native host environment.
Mechanical Control of Tissue Morphogenesis
Patwari, Parth; Lee, Richard T.
2008-01-01
Mechanical forces participate in morphogenesis from the level of individual cells to whole organism patterning. This manuscript reviews recent research that has identified specific roles for mechanical forces in important developmental events. One well-defined example is that dynein-driven cilia create fluid flow that determines left-right patterning in the early mammalian embryo. Fluid flow is also important for vasculogenesis, and evidence suggests that fluid shear stress rather than fluid transport is primarily required for remodeling the early vasculature. Contraction of the actin cytoskeleton, driven by nonmuscle myosins and regulated by the Rho family GTPases, is a recurring mechanism for controlling morphogenesis throughout development, from gastrulation to cardiogenesis. Finally, novel experimental approaches suggest critical roles for the actin cytoskeleton and the mechanical environment in determining differentiation of mesenchymal stem cells. Insights into the mechanisms linking mechanical forces to cell and tissue differentiation pathways are important for understanding many congenital diseases and for developing regenerative medicine strategies. PMID:18669930
Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain
de la Torre-Ubieta, Luis; Bonni, Azad
2012-01-01
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems. PMID:21982366
MicroRNAs and the Evolution of Insect Metamorphosis.
Belles, Xavier
2017-01-31
MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.
Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis.
Gansner, John M; Madsen, Erik C; Mecham, Robert P; Gitlin, Jonathan D
2008-10-01
Recent studies demonstrate that lysyl oxidase cuproenzymes are critical for zebrafish notochord formation, but the molecular mechanisms of copper-dependent notochord morphogenesis are incompletely understood. We, therefore, conducted a forward genetic screen for zebrafish mutants that exhibit notochord sensitivity to lysyl oxidase inhibition, yielding a mutant with defects in notochord and vascular morphogenesis, puff daddygw1 (pfdgw1). Meiotic mapping and cloning reveal that the pfdgw1 phenotype results from disruption of the gene encoding the extracellular matrix protein fibrillin-2, and the spatiotemporal expression of fibrillin-2 is consistent with the pfdgw1 phenotype. Furthermore, each aspect of the pfdgw1 phenotype is recapitulated by morpholino knockdown of fibrillin-2. Taken together, the data reveal a genetic interaction between fibrillin-2 and the lysyl oxidases in notochord formation and demonstrate the importance of fibrillin-2 in specific early developmental processes in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Sugime, Yasuhiro; Ogawa, Kota; Watanabe, Dai; Shimoji, Hiroyuki; Koshikawa, Shigeyuki; Miura, Toru
2015-12-01
In termites, the soldier caste possesses morphological features suitable for colony defence, despite some exceptions. Soldiers are differentiated via two moultings through a presoldier stage with dramatic morphogenesis. While a number of morphological modifications are known to occur during the presoldier moult, growth and morphogenesis seem to continue even after the moult. The present study, using the damp-wood termite Hodotermopsis sjostedti, carried out morphological and histological investigations on the developmental processes during the presoldier stage that is artificially induced by the application of a juvenile hormone analogue. Measurements of five body parameters indicated that head length significantly increased during the 14-day period after the presoldier moult, while it did not increase subsequently to the stationary moult (pseudergate moult as control). Histological observations also showed that the cuticular development played a role in the presoldier head elongation, suggesting that the soft and flexible presoldier cuticle contributed to the soldier morphogenesis in termites.
Walther, Rhian F.; Nunes de Almeida, Francisca; Vlassaks, Evi; Burden, Jemima J.; Pichaud, Franck
2016-01-01
Summary The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. PMID:27052178
Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.
Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena
2017-04-14
Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.
Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State
Okegbe, Chinweike; Price-Whelan, Alexa; Sakhtah, Hassan; Hunter, Ryan C.; Newman, Dianne K.
2013-01-01
Many microbial species form multicellular structures comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans. PMID:23292774
Thinking about Bacillus subtilis as a multicellular organism.
Aguilar, Claudio; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2007-12-01
Initial attempts to use colony morphogenesis as a tool to investigate bacterial multicellularity were limited by the fact that laboratory strains often have lost many of their developmental properties. Recent advances in elucidating the molecular mechanisms underlying colony morphogenesis have been made possible through the use of undomesticated strains. In particular, Bacillus subtilis has proven to be a remarkable model system to study colony morphogenesis because of its well-characterized developmental features. Genetic screens that analyze mutants defective in colony morphology have led to the discovery of an intricate regulatory network that controls the production of an extracellular matrix. This matrix is essential for the development of complex colony architecture characterized by aerial projections that serve as preferential sites for sporulation. While much progress has been made, the challenge for future studies will be to determine the underlying mechanisms that regulate development such that differentiation occurs in a spatially and temporally organized manner.
Sarmah, Swapnalee; Marrs, James A.
2014-01-01
BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875
Telerman, Stephanie B; Rognoni, Emanuel; Sequeira, Inês; Pisco, Angela Oliveira; Lichtenberger, Beate M; Culley, Oliver J; Viswanathan, Priyalakshmi; Driskell, Ryan R; Watt, Fiona M
2017-11-01
B-lymphocyte-induced maturation protein 1 (Blimp1) is a transcriptional repressor that regulates cell growth and differentiation in multiple tissues, including skin. Although in the epidermis Blimp1 is important for keratinocyte and sebocyte differentiation, its role in dermal fibroblasts is unclear. Here we show that Blimp1 is dynamically regulated in dermal papilla cells during hair follicle (HF) morphogenesis and the postnatal hair cycle, preceding dermal Wnt/β-catenin activation. Blimp1 ablation in E12.5 mouse dermal fibroblasts delayed HF morphogenesis and growth and prevented new HF formation after wounding. By combining targeted quantitative PCR screens with bioinformatic analysis and experimental validation we demonstrated that Blimp1 is both a target and a mediator of key dermal papilla inductive signaling pathways including transforming growth factor-β and Wnt/β-catenin. Epidermal overexpression of stabilized β-catenin was able to override the HF defects in Blimp1 mutant mice, underlining the close reciprocal relationship between the dermal papilla and adjacent HF epithelial cells. Overall, our study reveals the functional role of Blimp1 in promoting the dermal papilla inductive signaling cascade that initiates HF growth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Parmar, Malvinder S
2005-01-01
Background Visiting lakes and cottages is a common leisure activity during summer among most Canadians and paradise for some. Various leisure activities are involved during these visits, including cleaning and 'airing' the cottage after long-winters, activities at the lakes and dock building etc, exposing the Canadians to moist soil and decaying woods – a source of white or tan mould – Blastomyces dermatitidis that may cause a flu-like illness to severe pneumonia that often remains a diagnostic challenge and results in delay in diagnosis and appropriate treatment thereby increasing associated morbidity and mortality. Case Presentations Five cases of overwhelming acute blastomycosis pneumonia are presented. Four of the five patients presented within few weeks of their visit to the cottages and surrounding lakes and all were initially treated as "community acquired pneumonia" that resulted in delay in diagnosis and poor outcome in the first patient. The first case, however, taught an important lesson that led to high-index of suspicion in the others with early diagnosis and improved outcomes. Interestingly, all patients were obese and had a shorter incubation period and severe clinical course. The possible mechanism for early and severe disease in association with obesity is speculated and literature is reviewed. Conclusion High-index of suspicion is important in the early diagnosis and appropriate management acute blastomycosis pneumonia to improve associated morbidity and mortality. PMID:15871735
Morphogenesis of Dengue Virus: Molecular Biology and Molecular Organization of Proteins.
1981-02-01
envelope and near the virion surface. The divalent cations probably act to stabilize viral envelope proteins, as recently found for feline leukemia ... Virus Sindbis virus (SV) and Semliki Forest Virus (SFV) are arthopod-borne alDhaviruses of the toqavirus family. Both viruses contain a nucleocaosid...AU-AIZ9 b"J MORPHOGENESIS OF DENGUE VIRUS : MOLECULAR BIO0OGY AND MOLECULAR ORGANIZATION OFPROENS(U CALIORNIAUNIV DAVIS DEPT 0F BACTERIOLO0Y J S
Mechanical models for the self-organization of tubular patterns.
Guo, Chin-Lin
2013-01-01
Organogenesis, such as long tubule self-organization, requires long-range coordination of cell mechanics to arrange cell positions and to remodel the extracellular matrix. While the current mainstream in the field of tissue morphogenesis focuses primarily on genetics and chemical signaling, the influence of cell mechanics on the programming of patterning cues in tissue morphogenesis has not been adequately addressed. Here, we review experimental evidence and propose quantitative mechanical models by which cells can create tubular patterns.
Yin, Xiaojuan; Xu, Xinqiang; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhang, Buchang
2013-12-01
Saccharopolyspora erythraea, a mycelium-forming actinomycete, produces a clinically important antibiotic erythromycin. Extensive investigations have provided insights into erythromycin biosynthesis in S. erythraea, but knowledge of its morphogenesis remains limited. By gene inactivation and complementation strategies, the TetR-family transcriptional regulator SACE_0012 was identified to be a negative regulator of mycelium formation of S. erythraea A226. Detected by quantitative real-time PCR, the relative transcription of SACE_7115, the amfC homolog for an aerial mycelium formation protein, was dramatically increased in SACE_0012 mutant, whereas erythromycin biosynthetic gene eryA, a pleiotropic regulatory gene bldD, and the genes SACE_2141, SACE_6464, SACE_6040, that are the homologs to the sporulation regulators WhiA, WhiB, WhiG, were not differentially expressed. SACE_0012 disruption could not restore its defect of aerial development in bldD mutant, and also did not further accelerate the mycelium formation in the mutant of SACE_7040 gene, that was previously identified to be a morphogenesis repressor. Furthermore, the transcriptional level of SACE_0012 had not markedly changed in bldD and SACE_7040 mutant over A226. Taken together, these results suggest that SACE_0012 is a negative regulator of S. erythraea morphogenesis by mainly increasing the transcription of amfC gene, independently of the BldD regulatory system.
Punctuated evolution and robustness in morphogenesis
Grigoriev, D.; Reinitz, J.; Vakulenko, S.; Weber, A.
2014-01-01
This paper presents an analytic approach to the pattern stability and evolution problem in morphogenesis. The approach used here is based on the ideas from the gene and neural network theory. We assume that gene networks contain a number of small groups of genes (called hubs) controlling morphogenesis process. Hub genes represent an important element of gene network architecture and their existence is empirically confirmed. We show that hubs can stabilize morphogenetic pattern and accelerate the morphogenesis. The hub activity exhibits an abrupt change depending on the mutation frequency. When the mutation frequency is small, these hubs suppress all mutations and gene product concentrations do not change, thus, the pattern is stable. When the environmental pressure increases and the population needs new genotypes, the genetic drift and other effects increase the mutation frequency. For the frequencies that are larger than a critical amount the hubs turn off; and as a result, many mutations can affect phenotype. This effect can serve as an engine for evolution. We show that this engine is very effective: the evolution acceleration is an exponential function of gene redundancy. Finally, we show that the Eldredge-Gould concept of punctuated evolution results from the network architecture, which provides fast evolution, control of evolvability, and pattern robustness. To describe analytically the effect of exponential acceleration, we use mathematical methods developed recently for hard combinatorial problems, in particular, for so-called k-SAT problem, and numerical simulations. PMID:24996115
Bar-Yosef, Hagit; Gildor, Tsvia; Ramírez-Zavala, Bernardo; Schmauch, Christian; Weissman, Ziva; Pinsky, Mariel; Naddaf, Rawi; Morschhäuser, Joachim; Arkowitz, Robert A.; Kornitzer, Daniel
2018-01-01
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation. PMID:29473018
Bar-Yosef, Hagit; Gildor, Tsvia; Ramírez-Zavala, Bernardo; Schmauch, Christian; Weissman, Ziva; Pinsky, Mariel; Naddaf, Rawi; Morschhäuser, Joachim; Arkowitz, Robert A; Kornitzer, Daniel
2018-01-01
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.
Küppers, Gabriela Cristina; Paiva, Thiago da Silva; Borges, Bárbara do Nascimento; Harada, Maria Lúcia; Garraza, Gabriela González; Mataloni, Gabriela
2011-05-01
The ciliate Parasterkiella thompsoni (Foissner, 1996) nov. gen., nov. comb. was originally described from Antarctica. In the present study, we report the morphology, morphogenesis during cell division, and molecular phylogeny inferred from the 18S-rDNA sequence of a population isolated from the Rancho Hambre peat bog, Tierra del Fuego Province (Argentina). The study is based on live and protargol-impregnated specimens. Molecular phylogeny was inferred from trees constructed by means of the maximum parsimony, neighbor joining, and Bayesian analyses. The interphase morphology matches the original description of the species. During the cell division, stomatogenesis begins with the de novo proliferation of two fields of basal bodies, each one left of the postoral ventral cirri and of transverse cirri, which later unify. Primordia IV-VI of the proter develop from disaggregation of cirrus IV/3, while primordium IV of the opisthe develops from cirrus IV/2 and primordia V and VI from cirrus V/4. Dorsal morphogenesis occurs in the Urosomoida pattern-that is, the fragmentation of kinety 3 is lacking. Three macronuclear nodules are generated before cytokinesis. Phylogenetic analyses consistently placed P. thompsoni within the stylonychines. New data on the morphogenesis of the dorsal ciliature justifies the transference of Sterkiella thompsoni to a new genus Parasterkiella. Copyright © 2011 Elsevier GmbH. All rights reserved.
Functional Role of the microRNA-200 Family in Breast Morphogenesis and Neoplasia
Hilmarsdottir, Bylgja; Briem, Eirikur; Bergthorsson, Jon Thor; Magnusson, Magnus Karl; Gudjonsson, Thorarinn
2014-01-01
Branching epithelial morphogenesis is closely linked to epithelial-to-mesenchymal transition (EMT), a process important in normal development and cancer progression. The miR-200 family regulates epithelial morphogenesis and EMT through a negative feedback loop with the ZEB1 and ZEB2 transcription factors. miR-200 inhibits expression of ZEB1/2 mRNA, which in turn can down-regulate the miR-200 family that further results in down-regulation of E-cadherin and induction of a mesenchymal phenotype. Recent studies show that the expression of miR-200 genes is high during late pregnancy and lactation, thereby indicating that these miRs are important for breast epithelial morphogenesis and differentiation. miR-200 genes have been studied intensively in relation to breast cancer progression and metastasis, where it has been shown that miR-200 members are down-regulated in basal-like breast cancer where the EMT phenotype is prominent. There is growing evidence that the miR-200 family is up-regulated in distal breast metastasis indicating that these miRs are important for colonization of metastatic breast cancer cells through induction of mesenchymal to epithelial transition. The dual role of miR-200 in primary and metastatic breast cancer is of interest for future therapeutic interventions, making it important to understand its role and interacting partners in more detail. PMID:25216122
Zhu, Changqi C; Boone, Jason Q; Jensen, Philip A; Hanna, Scott; Podemski, Lynn; Locke, John; Doe, Chris Q; O'Connor, Michael B
2008-02-01
The Drosophila Activin-like ligands Activin-beta and Dawdle control several aspects of neuronal morphogenesis, including mushroom body remodeling, dorsal neuron morphogenesis and motoneuron axon guidance. Here we show that the same two ligands act redundantly through the Activin receptor Babo and its transcriptional mediator Smad2 (Smox), to regulate neuroblast numbers and proliferation rates in the developing larval brain. Blocking this pathway results in the development of larvae with small brains and aberrant photoreceptor axon targeting, and restoring babo function in neuroblasts rescued these mutant phenotypes. These results suggest that the Activin signaling pathway is required for producing the proper number of neurons to enable normal connection of incoming photoreceptor axons to their targets. Furthermore, as the Activin pathway plays a key role in regulating propagation of mouse and human embryonic stem cells, our observation that it also regulates neuroblast numbers and proliferation in Drosophila suggests that involvement of Activins in controlling stem cell propagation may be a common regulatory feature of this family of TGF-beta-type ligands.
Roat, Thaisa Cristina; da Cruz Landim, Carminda
2010-06-01
Apis mellifera is an interesting model to neurobiological studies. It has a relatively small brain that commands the complex learning and memory tasks demanded by the social organization. An A. mellifera colony is made up of a queen, thousands of workers and a varying number of drones. The latter are males, whereas the former are the two female castes. These three phenotypes differ in morphology, physiology and behavior, correlated with their respective functions in the society. Such differences include the morphology and architecture of their brains. To understand the processes generating such polymorphic brains we characterized the cell division and cell death dynamics which underlie the morphogenesis of the mushroom bodies, through several methods suitable for evidence the time and place of occurrence. Cell death was detected in mushroom bodies of last larval instar and mainly in black-eyed pupae. Cell division was observed in mushroom bodies, primarily at the start of metamorphosis, exhibiting temporal differences among workers, queens and males. Copyright 2010 Elsevier Ltd. All rights reserved.
Sox17 is required for normal pulmonary vascular morphogenesis
Lange, Alexander W.; Haitchi, Hans Michael; LeCras, Timothy D.; Sridharan, Anusha; Xu, Yan; Wert, Susan E.; James, Jeanne; Udell, Nicholas; Thurner, Philipp J.; Whitsett, Jeffrey A.
2015-01-01
The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis. PMID:24418654
Li, Jingjing; Chatzeli, Lemonia; Panousopoulou, Eleni; Tucker, Abigail S.; Green, Jeremy B. A.
2016-01-01
Ectodermal organs, which include teeth, hair follicles, mammary ducts, and glands such as sweat, mucous and sebaceous glands, are initiated in development as placodes, which are epithelial thickenings that invaginate and bud into the underlying mesenchyme. These placodes are stratified into a basal and several suprabasal layers of cells. The mechanisms driving stratification and invagination are poorly understood. Using the mouse molar tooth as a model for ectodermal organ morphogenesis, we show here that vertical, stratifying cell divisions are enriched in the forming placode and that stratification is cell division dependent. Using inhibitor and gain-of-function experiments, we show that FGF signalling is necessary and sufficient for stratification but not invagination as such. We show that, instead, Shh signalling is necessary for, and promotes, invagination once suprabasal tissue is generated. Shh-dependent suprabasal cell shape suggests convergent migration and intercalation, potentially accounting for post-stratification placode invagination to bud stage. We present a model in which FGF generates suprabasal tissue by asymmetric cell division, while Shh triggers cell rearrangement in this tissue to drive invagination all the way to bud formation. PMID:26755699
Singh, Jasbir; Kamra, Komal
2013-11-01
Paraurosomoida indiensis gen. nov., sp. nov. was isolated from a soil sample collected from Kyongnosla Alpine Sanctuary in the Eastern Himalayas. The present study reports the morphology, morphogenesis, and molecular phylogeny inferred from 18S rDNA sequence. The study is based on live and protargol-impregnated specimens. Paraurosomoida indiensis is very flexible, measures about 90 × 25 μm in life and possesses citrine cortical granules randomly distributed singly and in small linear groups. Paraurosomoida indiensis has undulating membranes nearly in Oxytricha pattern; only 11 frontal-ventral cirri due to lack of all pretransverse ventral and transverse cirri; one dorsomarginal row and three bipolar dorsal kineties. Divisional morphogenesis resembles oxytrichids involving six parental cirri in primordia formation. Anlagen V and VI for both proter and opisthe are formed from two primary primordia originating from disaggregated cirri V/4 and V/3 respectively. Three dorsal kineties develop from within row anlagen without a kinety 3 fragmentation. Molecular analyses consistently place P. indiensis with soft bodied oxytrichids. Copyright © 2013 Elsevier GmbH. All rights reserved.
CNS Macrophages Control Neurovascular Development via CD95L.
Chen, Si; Tisch, Nathalie; Kegel, Marcel; Yerbes, Rosario; Hermann, Robert; Hudalla, Hannes; Zuliani, Cecilia; Gülcüler, Gülce Sila; Zwadlo, Klara; von Engelhardt, Jakob; Ruiz de Almodóvar, Carmen; Martin-Villalba, Ana
2017-05-16
The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Stamataki, Evangelia; Harich, Benjamin; Guignard, Léo; Preibisch, Stephan; Shorte, Spencer; Keller, Philipp J
2018-01-01
During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. PMID:29595475
BAF200 is required for heart morphogenesis and coronary artery development.
He, Lingjuan; Tian, Xueying; Zhang, Hui; Hu, Tianyuan; Huang, Xiuzhen; Zhang, Libo; Wang, Zhong; Zhou, Bin
2014-01-01
ATP-dependent SWI/SNF chromatin remodeling complexes utilize ATP hydrolysis to non-covalently change nucleosome-DNA interactions and are essential in stem cell development, organogenesis, and tumorigenesis. Biochemical studies show that SWI/SNF in mammalian cells can be divided into two subcomplexes BAF and PBAF based on the subunit composition. ARID2 or BAF200 has been defined as an intrinsic subunit of PBAF complex. However, the function of BAF200 in vivo is not clear. To dissect the possible role of BAF200 in regulating embryogenesis and organ development, we generated BAF200 mutant mice and found they were embryonic lethal. BAF200 mutant embryos exhibited multiple cardiac defects including thin myocardium, ventricular septum defect, common atrioventricular valve, and double outlet right ventricle around E14.5. Moreover, we also detected reduced intramyocardial coronary arteries in BAF200 mutants, suggesting that BAF200 is required for proper migration and differentiation of subepicardial venous cells into arterial endothelial cells. Our work revealed that PBAF complex plays a critical role in heart morphogenesis and coronary artery angiogenesis.
MorphoGraphX: A platform for quantifying morphogenesis in 4D
Barbier de Reuille, Pierre; Routier-Kierzkowska, Anne-Lise; Kierzkowski, Daniel; Bassel, George W; Schüpbach, Thierry; Tauriello, Gerardo; Bajpai, Namrata; Strauss, Sören; Weber, Alain; Kiss, Annamaria; Burian, Agata; Hofhuis, Hugo; Sapala, Aleksandra; Lipowczan, Marcin; Heimlicher, Maria B; Robinson, Sarah; Bayer, Emmanuelle M; Basler, Konrad; Koumoutsakos, Petros; Roeder, Adrienne HK; Aegerter-Wilmsen, Tinri; Nakayama, Naomi; Tsiantis, Miltos; Hay, Angela; Kwiatkowska, Dorota; Xenarios, Ioannis; Kuhlemeier, Cris; Smith, Richard S
2015-01-01
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX (www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth. DOI: http://dx.doi.org/10.7554/eLife.05864.001 PMID:25946108
The mechanics behind plant development.
Hamant, Olivier; Traas, Jan
2010-01-01
Morphogenesis in living organisms relies on the integration of both biochemical and mechanical signals. During the last decade, attention has been mainly focused on the role of biochemical signals in patterning and morphogenesis, leaving the contribution of mechanics largely unexplored. Fortunately, the development of new tools and approaches has made it possible to re-examine these processes. In plants, shape is defined by two local variables: growth rate and growth direction. At the level of the cell, these variables depend on both the cell wall and turgor pressure. Multidisciplinary approaches have been used to understand how these cellular processes are integrated in the growing tissues. These include quantitative live imaging to measure growth rate and direction in tissues with cellular resolution. In parallel, stress patterns have been artificially modified and their impact on strain and cell behavior been analysed. Importantly, computational models based on analogies with continuum mechanics systems have been useful in interpreting the results. In this review, we will discuss these issues focusing on the shoot apical meristem, a population of stem cells that is responsible for the initiation of the aerial organs of the plant.
Kubota, Kenta; Seno, Takeshi; Konishi, Yoshiyuki
2013-11-20
Cerebellar granule neuronal cultures have been used to study the molecular mechanisms underlying neuronal functions, including neuronal morphogenesis. However, a limitation of this system is the difficulty to analyze isolated neurons because these are required to be maintained at a high density. Therefore, in the present study, we aimed to develop a simple and cost-effective method for culturing low-density cerebellar granule neurons. Cerebellar granule cells at two different densities (low- and high-density) were co-cultivated in order for the low-density culture to be supported by the paracrine signals from the high-density culture. This method enabled morphology analysis of isolated cerebellar granule neurons without astrocytic feeder cultures or supplements such as B27. Using this method, we investigated the function of a polarity factor. Studies using hippocampal neurons suggested that glycogen synthase kinase-3 (GSK-3) is an essential regulator of neuronal polarity, and inhibition of GSK-3 results in the formation of multiple axons. Pharmacological inhibitors for GSK-3 (6-bromoindirubin-3'-oxime and lithium chloride) did not cause the formation of multiple axons of cerebellar granule neurons but significantly reduced their length. Consistent results were obtained by introducing kinase-dead form of GSK-3 beta (K85A). These results indicated that GSK-3 is not directly involved in the control of neuronal polarity in cerebellar granule neurons. Overall, this study provides a simple method for culturing low-density cerebellar granule neurons and insights in to the neuronal-type dependent function of GSK-3 in neuronal morphogenesis. © 2013 Elsevier B.V. All rights reserved.
Pulver, Rebecca; Heisel, Timothy; Gonia, Sara; Robins, Robert; Norton, Jennifer; Haynes, Paula
2013-01-01
The extremely elongated morphology of fungal hyphae is dependent on the cell's ability to assemble and maintain polarized growth machinery over multiple cell cycles. The different morphologies of the fungus Candida albicans make it an excellent model organism in which to study the spatiotemporal requirements for constitutive polarized growth and the generation of different cell shapes. In C. albicans, deletion of the landmark protein Rsr1 causes defects in morphogenesis that are not predicted from study of the orthologous protein in the related yeast Saccharomyces cerevisiae, thus suggesting that Rsr1 has expanded functions during polarized growth in C. albicans. Here, we show that Rsr1 activity localizes to hyphal tips by the differential localization of the Rsr1 GTPase-activating protein (GAP), Bud2, and guanine nucleotide exchange factor (GEF), Bud5. In addition, we find that Rsr1 is needed to maintain the focused localization of hyphal polarity structures and proteins, including Bem1, a marker of the active GTP-bound form of the Rho GTPase, Cdc42. Further, our results indicate that tip-localized Cdc42 clusters are associated with the cell's ability to express a hyphal transcriptional program and that the ability to generate a focused Cdc42 cluster in early hyphae (germ tubes) is needed to maintain hyphal morphogenesis over time. We propose that in C. albicans, Rsr1 “fine-tunes” the distribution of Cdc42 activity and that self-organizing (Rsr1-independent) mechanisms of polarized growth are not sufficient to generate narrow cell shapes or to provide feedback to the transcriptional program during hyphal morphogenesis. PMID:23223038
The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently
Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck
2012-01-01
Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852
Burchard, R P; Dworkin, M
1966-03-01
Burchard, Robert P. (University of Minnesota, Minneapolis), and M. Dworkin. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91:1305-1313. 1966.-A bacteriophage (MX-1) infecting Myxococcus xanthus FB(t) has been isolated from cow dung. The bacteriophage particle is approximately 175 mmu long. A tail about 100 mmu in length is encased in a contractile sheath and terminates in a tail plate. The head is polyhedral with a width of about 75 mmu. The nucleic acid of the bacteriophage is deoxyribonucleic acid and has a guanine plus cytosine content of 55.5%. The bacteriophage requires 10(-3)m Ca(++) and 10(-2)m monovalent cation for optimal adsorption. Grown on vegetative cells of M. xanthus FB(t) at 30 C in 2% Casitone medium, the bacteriophage has a latent period of 120 min and a burst size of approximately 100. Host range studies indicate that three strains of M. xanthus including a morphogenetic mutant are sensitive to the bacteriophage, whereas M. fulvus, Cytophaga, Sporocytophaga myxococcoides, and a fourth strain of M. xanthus are not. Of the two cellular forms characteristic of the Myxococcus life cycle, the bacteriophage infect only the vegetative cells; they do not adsorb to microcysts. Ability to adsorb bacteriophage is lost between 65 and 75 min after initiation of the relatively synchronous conversion of vegetative cells to microcysts. The bacteriophage does not adsorb to spheroplasts. After the appearance of visible morphogenesis and before the loss of bacteriophage receptor sites, addition of bacteriophage results in the formation of microcysts which give rise to infective centers only upon germination. The possibility that the infected microcysts are harboring intact bacteriophages has been eliminated.
Rooster feathering, androgenic alopecia, and hormone dependent tumor growth: What is in common?
Mayer, Julie Ann; Chuong, Cheng-Ming; Widelitz, Randall
2015-01-01
Different epithelial organs form as a result of epithelial - mesenchymal interactions and share a common theme modulated by variations (Chuong edit. In Molecular Basis of Epithelial Appendage Morphogenesis, 1998). One of the major modulators is the sex hormone pathway that acts on the prototype signaling pathway to alter organ phenotypes. Here we focus on how the sex hormone pathway interfaces with epithelia morphogenesis related signaling pathways. We first survey these sex hormone regulated morphogenetic processes in various epithelial organs. Sexual dimorphism of hairs and feathers has implications in sexual selection. Diseases of these pathways result in androgenic alopecia, hirsutism, henny feathering, etc. The growth and development of mammary glands, prostate glands and external genitalia essential for reproductive function are also dependent on sex hormones. Diseases affecting these organs include congenital anomalies and hormone dependent type of breast and prostate cancers. To study the role of sex hormones in new growth in the context of system biology / pathology, an in vivo model in which organ formation starts from stem cells is essential. With recent developments (Yu et al., The morphogenesis of feathers. Nature 420:308–312, 2002), the growth of tail feathers in roosters and hens has become a testable model in which experimental manipulations are possible. We show exemplary data of differences in their growth rate, proliferative cell population and signaling molecule expression. Working hypotheses are proposed on how the sex hormone pathways may interact with growth pathways. It is now possible to test these hypotheses using the chicken model to learn fundamental mechanisms on how sex hormones affect organogenesis, epithelial organ cycling, and growth related tumorigenesis. PMID:15617560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong
Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less
Reynaga-Peña, Cristina G.; Gierz, Gerhard; Bartnicki-Garcia, Salomon
1997-01-01
High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model. PMID:9256441
Development and morphogenesis of human wrist joint during embryonic and early fetal period
Hita-Contreras, Fidel; Martínez-Amat, Antonio; Ortiz, Raúl; Caba, Octavio; Álvarez, Pablo; Prados, José C; Lomas-Vega, Rafael; Aránega, Antonia; Sánchez-Montesinos, Indalecio; Mérida-Velasco, Juan A
2012-01-01
The development of the human wrist joint has been studied widely, with the main focus on carpal chondrogenesis, ligaments and triangular fibrocartilage. However, there are some discrepancies concerning the origin and morphogenetic time-table of these structures, including nerves, muscles and vascular elements. For this study we used serial sections of 57 human embryonic (n = 30) and fetal (n = 27) specimens from O’Rahilly stages 17–23 and 9–14 weeks, respectively. The following phases in carpal morphogenesis have been established: undifferentiated mesenchyme (stage 17), condensated mesenchyme (stages 18 and 19), pre-chondrogenic (stages 19 and 20) and chondrogenic (stages 21 and over). Carpal chondrification and osteogenic processes are similar, starting with capitate and hamate (stage 19) and ending with pisiform (stage 22). In week 14, a vascular bud penetrates into the lunate cartilaginous mold, early sign of the osteogenic process that will be completed after birth. In stage 18, median, ulnar and radial nerves and thenar eminence appear in the hand plate. In stage 21, there are indications of the interosseous muscles, and in stage 22 flexor digitorum superficialis, flexor digitorum profundus and lumbrical muscles, transverse carpal ligament and collateral ligaments emerge. In stage 23, the articular disc, radiocarpal and ulnocarpal ligaments and deep palmar arterial arch become visible. Radiate carpal and interosseous ligaments appear in week 9, and in week 10, dorsal radiocarpal ligament and articular capsule are evident. Finally, synovial membrane is observed in week 13. We have performed a complete analysis of the morphogenesis of the structures of the human wrist joint. Our results present new data on nervous and arterial elements and provide the basis for further investigations on anatomical pathology, comparative morphology and evolutionary anthropology. PMID:22428933
Xerochrysium gen. nov. and Bettsia, genera encompassing xerophilic species of Chrysosporium.
Pitt, John I; Lantz, Henrik; Pettersson, Olga Vinnere; Leong, Su-Lin L
2013-12-01
On the basis of a study of ITS sequences, Vidal et al. (Rev. Iber. Micol. 17: 22, 2000) recommended that the genus Chrysosporium be restricted to species belonging to Onygenales. Using nrLSU genes, we studied the majority of clades examined by Vidal et al. and showed that currently accepted species in Chrysosporium phylogenetically belong in six clades in three orders. Surprisingly, the xerophilic species of Chrysosporium, long thought to be a single grouping away from the majority of Chrysosporium species, occupy two clades, one in Leotiales, the other in Eurotiales. Species accepted in Leotiales are related to the sexual genus Bettsia. One is the type species B. alvei, and related asexual strains classified as C. farinicola, the second is C. fastidium transferred to Bettsia as B. fastidia. Species in the Eurotiales are transferred to Xerochrysium gen. nov., where the accepted species are X. xerophilum and X. dermatitidis, the correct name for C. inops on transfer to Xerochrysium. All accepted species are extreme xerophiles, found in dried and concentrated foods.
Reilly, Thomas J; Calcutt, Michael J; Wennerdahl, Laura A; Williams, Fred; Evans, Tim J; Ganjam, Irene K; Bowman, Jesse W; Fales, William H
2014-11-01
Microbiological and histological analysis of a sample from a swollen testicle of a 2-year-old Border Collie dog revealed a mixed infection of the fungus Blastomyces dermatitidis and the Gram-negative bacterium Aureimonas altamirensis. When subjected to an automated microbial identification system, the latter isolate was provisionally identified as Psychrobacter phenylpyruvicus, but the organism shared several biochemical features with Brucella canis and exhibited agglutination, albeit weakly, with anti-B. canis antiserum. Unequivocal identification of the organism was only achieved by 16S ribosomal RNA gene sequencing, ultimately establishing the identity as A. altamirensis. Since its first description in 2006, this organism has been isolated infrequently from human clinical samples, but, to the authors' knowledge, has not been reported from a veterinary clinical sample. While of unknown clinical significance with respect to the pathology observed for the polymicrobial infection described herein, it highlights the critical importance to unambiguously identify the microbe for diagnostic, epidemiological, infection control, and public health purposes. © 2014 The Author(s).
Blastomycosis in northwestern Ontario, 2004 to 2014
Dalcin, Daniel; Ahmed, Syed Zaki
2015-01-01
Blastomycosis is an invasive fungal disease caused by Blastomyces dermatitidis and the recently discovered Blastomyces gilchristii. The medical charts of 64 patients with confirmed cases of blastomycosis in northwestern Ontario during a 10-year period (2004 to 2014) were retrospectively reviewed. The number of patients diagnosed with blastomycosis in Ontario was observed to have increased substantially compared with before 1990, when blastomycosis was removed from the list of reportable diseases. Aboriginals were observed to be disproportionately represented in the patient population. Of the patients whose smoking status was known, 71.4% had a history of smoking. 59.4% of patients had underlying comorbidities and a higher comorbidity rate was observed among Aboriginal patients. The case-fatality rate from direct complications of blastomycosis disease was calculated to be 20.3%; this case-fatality rate is the highest ever to be reported in Canada and more than double that of previously published Canadian studies. The clinical characteristics of 64 patients diagnosed with blastomycosis are summarized. PMID:26600814
Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity.
Sterkel, Alana K; Lorenzini, Jenna L; Fites, J Scott; Subramanian Vignesh, Kavitha; Sullivan, Thomas D; Wuthrich, Marcel; Brandhorst, Tristan; Hernandez-Santos, Nydiaris; Deepe, George S; Klein, Bruce S
2016-03-09
Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
The Central Role of the Matrix Protein in Nipah Virus Assembly and Morphogenesis
2007-03-23
as determined by sucrose density gradient flotation and immunoprecipitation analysis. However, co-expression of F and G along with M revealed a...total protein detected (total lysate + supernatant). Experiments described in Chapter 4 did not 35 include a flotation step. Rather, following...culture supernatant were prepared as described above except the top 1.4 ml of the flotation gradient was mixed with 3 ml of PBS and centrifuged for an
Intestinal development and differentiation
Noah, Taeko K.; Donahue, Bridgitte; Shroyer, Noah F.
2011-01-01
In this review, we present an overview of intestinal development and cellular differentiation of the intestinal epithelium. The review is separated into two sections: Section one summarizes organogenesis of the small and large intestines, including endoderm and gut tube formation in early embryogenesis, villus morphogenesis, and crypt formation. Section two reviews cell fate specification and differentiation of each cell type within the intestinal epithelium. Growth factor and transcriptional networks that regulate these developmental processes are summarized. PMID:21978911
A Julia set model of field-directed morphogenesis: developmental biology and artificial life.
Levin, M
1994-04-01
One paradigm used in understanding the control of morphogenetic events is the concept of positional information, where sub-organismic components (such as cells) act in response to positional cues. It is important to determine what kinds of spatiotemporal patterns may be obtained by such a method, and what the characteristics of such a morphogenetic process might be. This paper presents a computer model of morphogenesis based on gene activity driven by interpreting a positional information field. In this model, the interactions of mutually regulating developmental genes are viewed as a map from R2 to R2, and are modeled by the complex number algebra. Functions in complex variables are used to simulate genetic interactions resulting in position-dependent differentiation. This is shown to be equivalent to computing modified Julia sets, and is seen to be sufficient to produce a very rich set of morphologies which are similar in appearance and several important characteristics to those of real organisms. The properties of this model can be used to study the potential role of fields and positional information as guiding factors in morphogenesis, as the model facilitates the study of static images, time-series (movies) and experimental alterations of the developmental process. It is thus shown that gene interactions can be modeled as a multi-dimensional algebra, and that only two interacting genes are sufficient for (i) complex pattern formation, (ii) chaotic differentiation behavior, and (iii) production of sharp edges from a continuous positional information field. This model is meant to elucidate the properties of the process of positional information-guided biomorphogenesis, not to serve as a simulation of any particular organism's development. Good quantitative data are not currently available on the interplay of gene products in morphogenesis. Thus, no attempt is made to link the images produced with actual pictures of any particular real organism. A brief introduction to top-down models and positional information is followed by the formal definition of the model. Then, the implications of the resulting morphologies to biological development are discussed, in terms of static shapes, parametrization studies, time series (movies made from individual frames), and behavior of the model in light of experimental perturbations. All figures (in grayscale), formulas and parameter values needed to re-create the figures and movies are included.
Mitchell, Timothy; MacDonald, James W; Srinouanpranchanh, Sengkeo; Bammler, Theodor K; Merillat, Sean; Boldenow, Erica; Coleman, Michelle; Agnew, Kathy; Baldessari, Audrey; Stencel-Baerenwald, Jennifer E; Tisoncik-Go, Jennifer; Green, Richard R; Gale, Michael J; Rajagopal, Lakshmi; Adams Waldorf, Kristina M
2018-04-01
Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P<.05). A total of 609 probe sets were expressed differentially (>1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis, angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function. Copyright © 2018 Elsevier Inc. All rights reserved.
Chiral cell sliding drives left-right asymmetric organ twisting
Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru
2018-01-01
Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified ‘cell sliding,’ a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. PMID:29891026
Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development.
Nelson, Celeste M; Gleghorn, Jason P; Pang, Mei-Fong; Jaslove, Jacob M; Goodwin, Katharine; Varner, Victor D; Miller, Erin; Radisky, Derek C; Stone, Howard A
2017-12-01
Mechanical forces are increasingly recognized to regulate morphogenesis, but how this is accomplished in the context of the multiple tissue types present within a developing organ remains unclear. Here, we use bioengineered 'microfluidic chest cavities' to precisely control the mechanical environment of the fetal lung. We show that transmural pressure controls airway branching morphogenesis, the frequency of airway smooth muscle contraction, and the rate of developmental maturation of the lungs, as assessed by transcriptional analyses. Time-lapse imaging reveals that branching events are synchronized across distant locations within the lung, and are preceded by long-duration waves of airway smooth muscle contraction. Higher transmural pressure decreases the interval between systemic smooth muscle contractions and increases the rate of morphogenesis of the airway epithelium. These data reveal that the mechanical properties of the microenvironment instruct crosstalk between different tissues to control the development of the embryonic lung. © 2017. Published by The Company of Biologists Ltd.
Neurofibromin interacts with CRMP-2 and CRMP-4 in rat brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y.-L.; Hsueh, Y.-P., E-mail: yph@gate.sinica.edu.tw
Neurofibromin, encoded by the neurofibromatosis type 1 (NF1) gene, regulates the Ras and cAMP pathways and plays a role in proliferation and neuronal morphogenesis. The details of the molecular mechanism of neurofibromin action in these processes are still unclear. In this study, immunoprecipitation and proteomics were used to identify novel proteins from rat brain that interact with neurofibromin. Mass spectrometry analysis showed that two proteins, the collapsin response mediator protein-2 (CRMP-2) and propionyl-CoA carboxylase alpha chain (PCCA), associated with neurofibromin. Immunoprecipitation-immunoblotting analysis confirmed the interactions between neurofibromin and CRMP-2 and CRMP-4, but not CRMP-1, in rat brain. CDK5, a kinasemore » that regulates CRMP-2 in axonal outgrowth, was required for the interaction between neurofibromin and CRMP-2. Since both neurofibromin and CRMP proteins are involved in proliferation and axonal morphogenesis, these results suggest that the interaction with CRMPs contributes to the function of neurofibromin in tumorigenesis and neuronal morphogenesis.« less
Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T
2015-01-01
Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.
Context clues: the importance of stem cell-material interactions
Murphy, William L.
2014-01-01
Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691
Unified quantitative characterization of epithelial tissue development
Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru
2015-01-01
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285
Walther, Rhian F; Nunes de Almeida, Francisca; Vlassaks, Evi; Burden, Jemima J; Pichaud, Franck
2016-04-05
The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish
Reig, Germán; Cerda, Mauricio; Sepúlveda, Néstor; Flores, Daniela; Castañeda, Victor; Tada, Masazumi; Härtel, Steffen; Concha, Miguel L.
2017-01-01
The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo. PMID:28580937
Chiral cell sliding drives left-right asymmetric organ twisting.
Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru; Matsuno, Kenji; Honda, Hisao
2018-06-12
Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified 'cell sliding,' a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. © 2018, Inaki et al.
Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud
Packard, Adam; Georgas, Kylie; Michos, Odyssé; Riccio, Paul; Cebrian, Cristina; Combes, Alexander N.; Ju, Adler; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina; Zong, Hui; Little, Melissa H.; Costantini, Frank
2013-01-01
Summary The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Though development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term “mitosis-associated cell dispersal”. Pre-mitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; while one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis. PMID:24183650
Chen, Lingyun; Wu, Weining; El-Serehy, Hamed A; Hu, Xiaozhong; Clamp, John C
2018-04-30
A distinct population of Anteholosticha intermedia was isolated from soil in the Great Smoky Mountains of North Carolina, USA, and its morphology, morphogenesis and molecular phylogeny investigated by microscopic observations of live and protargol-prepared specimens and analyses of the sequence of small subunit (SSU) rDNA. Our population closely resembles the populations from Austria and Korea. Members of the genus Anteholosticha have been regarded as ontogenetically diverse, which is confirmed by the present work. The most noteworthy ontogenetic feature of the American population of A. intermedia is that the oral primordium in the proter appears apokinetally at the posterior end of the undulating membranes anlage at the beginning of division and then dedifferentiates midway through morphogenesis. Molecular phylogenetic analyses demonstrate, with high support, that the American population of A. intermedia is clearly distinct from congeners and branches as part of a sister lineage to the Bakuella-Urostyla clade that belongs to the major clade comprising the order Urostylida. Copyright © 2018 Elsevier GmbH. All rights reserved.
Kuo, Calvin J.; LaMontagne, Kenneth R.; Garcia-Cardeña, Guillermo; Ackley, Brian D.; Kalman, Daniel; Park, Susan; Christofferson, Rolf; Kamihara, Junne; Ding, Yuan-Hua; Lo, Kin-Ming; Gillies, Stephen; Folkman, Judah; Mulligan, Richard C.; Javaherian, Kashi
2001-01-01
Collagen XVIII (c18) is a triple helical endothelial/epithelial basement membrane protein whose noncollagenous (NC)1 region trimerizes a COOH-terminal endostatin (ES) domain conserved in vertebrates, Caenorhabditis elegans and Drosophila. Here, the c18 NC1 domain functioned as a motility-inducing factor regulating the extracellular matrix (ECM)-dependent morphogenesis of endothelial and other cell types. This motogenic activity required ES domain oligomerization, was dependent on rac, cdc42, and mitogen-activated protein kinase, and exhibited functional distinction from the archetypal motogenic scatter factors hepatocyte growth factor and macrophage stimulatory protein. The motility-inducing and mitogen-activated protein kinase–stimulating activities of c18 NC1 were blocked by its physiologic cleavage product ES monomer, consistent with a proteolysis-dependent negative feedback mechanism. These data indicate that the collagen XVIII NC1 region encodes a motogen strictly requiring ES domain oligomerization and suggest a previously unsuspected mechanism for ECM regulation of motility and morphogenesis. PMID:11257123
Livshits, Anton; Shani-Zerbib, Lital; Maroudas-Sacks, Yonit; Braun, Erez; Keren, Kinneret
2017-02-07
Understanding how mechanics complement bio-signaling in defining patterns during morphogenesis is an outstanding challenge. Here, we utilize the multicellular polyp Hydra to investigate the role of the actomyosin cytoskeleton in morphogenesis. We find that the supra-cellular actin fiber organization is inherited from the parent Hydra and determines the body axis in regenerating tissue segments. This form of structural inheritance is non-trivial because of the tissue folding and dynamic actin reorganization involved. We further show that the emergence of multiple body axes can be traced to discrepancies in actin fiber alignment at early stages of the regeneration process. Mechanical constraints induced by anchoring regenerating Hydra on stiff wires suppressed the emergence of multiple body axes, highlighting the importance of mechanical feedbacks in defining and stabilizing the body axis. Together, these results constitute an important step toward the development of an integrated view of morphogenesis that incorporates mechanics. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark
2014-01-01
The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739
Distinct Recruitment and Function of Gab1 and Gab2 in Met Receptor-mediated Epithelial Morphogenesis
Lock, Lisa S.; Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag
2002-01-01
The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis. PMID:12058075
Villeneuve, Laure A N; Gisbert, Enric; Moriceau, Jacques; Cahu, Chantal L; Zambonino Infante, José L
2006-04-01
The effect of the feeding period on larval development was investigated in European sea bass larvae by considering the expression level of some genes involved in morphogenesis. Larvae were fed a control diet except during three different periods (period A: from 8 to 13 d post-hatching (dph); period B: from 13 to 18 dph; period C: from 18 to 23 dph) with two compound diets containing high levels of vitamin A or PUFA. European sea bass morphogenesis was affected by these two dietary nutrients during the early stages of development. The genes involved in morphogenesis could be modulated between 8 and 13 dph, and our results indicated that retinoids and fatty acids influenced two different molecular pathways that in turn implicated two different gene cascades, resulting in two different kinds of malformation. Hypervitaminosis A delayed development, reducing the number of vertebral segments and disturbing bone formation in the cephalic region. These malformations were correlated to an upregulation of retinoic acid receptor gamma, retinoid X receptor (RXR) alpha and bone morphogenetic protein (BMP)4. An excess of PUFA accelerated the osteoblast differentiation process through the upregulation of RXRalpha and BMP4, leading to a supernumerary vertebra. These results suggest that the composition of diets devoted to marine fish larvae has a particularly determining effect before 13 dph on the subsequent development of larvae and juvenile fish.
Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis
Maddala, Rupalatha; Nagendran, Tharkika; Lang, Richard A.; Morozov, Alexei; Rao, Ponugoti V.
2015-01-01
Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis. PMID:26212757
Morphological plasticity of bacteria—Open questions
Shen, Jie-Pan
2016-01-01
Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812
Regeneration, morphogenesis and self-organization.
Goldman, Daniel
2014-07-01
The RIKEN Center for Developmental Biology in Kobe, Japan, hosted a meeting entitled 'Regeneration of Organs: Programming and Self-Organization' in March, 2014. Scientists from across the globe met to discuss current research on regeneration, organ morphogenesis and self-organization - and the links between these fields. A diverse range of experimental models and organ systems was presented, and the speakers aptly illustrated the unique power of each. This Meeting Review describes the major advances reported and themes emerging from this exciting meeting. © 2014. Published by The Company of Biologists Ltd.
Chhabra, Rahul; Moralez, Jesus G; Raez, Jose; Yamazaki, Takeshi; Cho, Jae-Young; Myles, Andrew J; Kovalenko, Andriy; Fenniri, Hicham
2010-01-13
A one-pot strategy for the nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles (NPs) on self-assembled rosette nanotubes (RNTs) is described. Tapping-mode atomic force microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and selected-area electron diffraction were used to establish the structure and organization of this hybrid material. Notably, we found that the Au NPs formed were nearly monodisperse clusters of Au(55) (1.4-1.5 nm) nestled in pockets on the RNT surface.
NASA Technical Reports Server (NTRS)
Fermin, C. D.; Igarashi, M.
1985-01-01
The morphogenesis of the statoconia in the chick, Gallus domesticus, injected with a carbon anhydrase inhibitor is studied. The preparation of the embryo specimens for analysis is described. The early, middle, and late stages of embryonic development are examined. The data reveal that acetozolamide inhibits statoconia formation in the middle stage of development and the calcification process follows statoconia formation. The spatial relationship between the development of type 1 and type 2 hair cells and the appearance and maturation of the statoconia is investigated.
CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling.
Chen, Qian; Zhu, Yong-Chuan; Yu, Jing; Miao, Sheng; Zheng, Jing; Xu, Li; Zhou, Yang; Li, Dan; Zhang, Chi; Tao, Jiong; Xiong, Zhi-Qi
2010-09-22
Mutations in cyclin-dependent kinase-like 5 (CDKL5), also known as serine/threonine kinase 9 (STK9), have been identified in patients with Rett syndrome (RTT) and X-linked infantile spasm. However, the function of CDKL5 in the brain remains unknown. Here, we report that CDKL5 is a critical regulator of neuronal morphogenesis. We identified a neuron-specific splicing variant of CDKL5 whose expression was markedly induced during postnatal development of the rat brain. Downregulating CDKL5 by RNA interference (RNAi) in cultured cortical neurons inhibited neurite growth and dendritic arborization, whereas overexpressing CDKL5 had opposite effects. Furthermore, knocking down CDKL5 in the rat brain by in utero electroporation resulted in delayed neuronal migration, and severely impaired dendritic arborization. In contrast to its proposed function in the nucleus, we found that CDKL5 regulated dendrite development through a cytoplasmic mechanism. In fibroblasts and in neurons, CDKL5 colocalized and formed a protein complex with Rac1, a critical regulator of actin remodeling and neuronal morphogenesis. Overexpression of Rac1 prevented the inhibition of dendrite growth caused by CDKL5 knockdown, and the growth-promoting effect of ectopically expressed CDKL5 on dendrites was abolished by coexpressing a dominant-negative form of Rac1. Moreover, CDKL5 was required for brain-derived neurotrophic factor (BDNF)-induced activation of Rac1. Together, these results demonstrate a critical role of CDKL5 in neuronal morphogenesis and identify a Rho GTPase signaling pathway which may contribute to CDKL5-related disorders.
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-01-01
Background Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. Results We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Conclusion Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation. PMID:18028534
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2.
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-11-20
Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation.
Tooth-bone morphogenesis during postnatal stages of mouse first molar development
Lungová, Vlasta; Radlanski, Ralf J; Tucker, Abigail S; Renz, Herbert; Míšek, Ivan; Matalová, Eva
2011-01-01
The first mouse molar (M1) is the most common model for odontogenesis, with research particularly focused on prenatal development. However, the functional dentition forms postnatally, when the histogenesis and morphogenesis of the tooth is completed, the roots form and the tooth physically anchors into the jaw. In this work, M1 was studied from birth to eruption, assessing morphogenesis, proliferation and apoptosis, and correlating these with remodeling of the surrounding bony tissue. The M1 completed crown formation between postnatal (P) days 0–2, and the development of the tooth root was initiated at P4. From P2 until P12, cell proliferation in the dental epithelium reduced and shifted downward to the apical region of the forming root. In contrast, proliferation was maintained or increased in the mesenchymal cells of the dental follicle. At later stages, before tooth eruption (P20), cell proliferation suddenly ceased. This withdrawal from the cell cycle correlated with tooth mineralization and mesenchymal differentiation. Apoptosis was observed during all stages of M1 postnatal morphogenesis, playing a role in the removal of cells such as osteoblasts in the mandibular region and working together with osteoclasts to remodel the bone around the developing tooth. At more advanced developmental stages, apoptotic cells and bodies accumulated in the cell layers above the tooth cusps, in the path of eruption. Three-dimensional reconstruction of the developing postnatal tooth and bone indicates that the alveolar crypts form by resorption underneath the primordia, whereas the ridges form by active bone growth between the teeth and roots to form a functional complex. PMID:21418206
Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula
2011-01-01
Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908
Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.
Jaskoll, T; Luo, W; Snead, M L
1998-01-01
It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.
Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.
Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J
1994-06-01
The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)
Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred
2012-01-01
Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263
Park, Sunghee; Zhao, Yuechao; Yoon, Sangyeon; Xu, Jianming; Liao, Lan; Lydon, John; DeMayo, Franco; O'Malley, Bert W.
2011-01-01
Estrogen receptor (ER) is a key regulator of mammary gland development and is also implicated in breast tumorigenesis. Because ER-mediated activities depend critically on coregulator partner proteins, we have investigated the consequences of reduction or loss of function of the coregulator repressor of ER activity (REA) by conditionally deleting one allele or both alleles of the REA gene at different stages of mammary gland development. Notably, we find that heterozygosity and nullizygosity for REA result in very different mammary phenotypes and that REA has essential roles in the distinct morphogenesis and functions of the mammary gland at different stages of development, pregnancy, and lactation. During puberty, mice homozygous null for REA in the mammary gland (REAf/f PRcre/+) showed severely impaired mammary ductal elongation and morphogenesis, whereas mice heterozygous for REA (REAf/+ PRcre/+) displayed accelerated mammary ductal elongation, increased numbers of terminal end buds, and up-regulation of amphiregulin, the major paracrine mediator of estrogen-induced ductal morphogenesis. During pregnancy and lactation, mice with homozygous REA gene deletion in mammary epithelium (REAf/f whey acidic protein-Cre) showed a loss of lobuloalveolar structures and increased apoptosis of mammary alveolar epithelium, leading to impaired milk production and significant reduction in growth of their offspring, whereas body weights of the offspring nursed by females heterozygous for REA were slightly greater than those of control mice. Our findings reveal that REA is essential for mammary gland development and has a gene dosage-dependent role in the regulation of stage-specific physiological functions of the mammary gland. PMID:21862609
The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus.
Soukup, Vladimir; Kozmik, Zbynek
2018-02-01
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus. Copyright © 2017 Elsevier Inc. All rights reserved.
Betson, Martha; Settleman, Jeffrey
2007-08-01
The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.
RhoA GTPase inhibition organizes contraction during epithelial morphogenesis
Mason, Frank M.; Xie, Shicong; Vasquez, Claudia G.; Tworoger, Michael
2016-01-01
During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058
Engineering stromal-epithelial interactions in vitro for ...
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to
Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA
Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.
2012-01-01
Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572
Giurumescu, Claudiu A; Kang, Sukryool; Planchon, Thomas A; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D
2012-11-01
A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking.
Harada, Kohei; Negishi, Manabu; Katoh, Hironori
2015-05-15
Expression of EphA2 is upregulated in various cancers that are derived from epithelial cells and correlates with the ability of a cancer cell to undergo migration and invasion. Here we have investigated the role of EphA2 in the epithelial morphogenesis of Madin-Darby canine kidney (MDCK) cells in three-dimensional culture. We show that EphA2 is phosphorylated on serine residue 897 through hepatocyte growth factor (HGF) stimulation using a phosphatidylinositol 3-kinase (PI3K)-Akt-dependent mechanism and that this phosphorylation is required for the formation of extensions, the first step of tubulogenesis, in MDCK cysts. By contrast, stimulation using the ligand ephrinA1 dephosphorylates EphA2 on serine residue 897 and suppresses the HGF-induced morphological change. Furthermore, activation of the small GTPase RhoG is involved in the HGF-induced formation of extensions downstream of EphA2. These observations suggest that a ligand-independent activity of EphA2 contributes to epithelial morphogenesis. © 2015. Published by The Company of Biologists Ltd.
Challa, Krishna Reddy; Aggarwal, Pooja; Nath, Utpal
2016-09-05
Cell expansion is an essential process in plant morphogenesis and is regulated by the coordinated action of environmental stimuli and endogenous factors, such as the phytohormones auxin and brassinosteroid. Although the biosynthetic pathways that generate these hormones and their downstream signaling mechanisms have been extensively studied, the upstream transcriptional network that modulates their levels and connects their action to cell morphogenesis is less clear. Here we show that the miR319-regulated TCP (TEOSINTE BRANCHED 1, CYCLODEA, PROLIFERATING CELL FACTORS) transcription factors, notably TCP4, directly activate YUCCA5 transcription and integrate the auxin response to a brassinosteroid-dependent molecular circuit that promotes cell elongation in Arabidopsis hypocotyls. Further, TCP4 modulates the common transcriptional network downstream to auxin-BR signaling, which is also triggered by environmental cues, such as light, to promote cell expansion. Our study links TCP function with the hormone response during cell morphogenesis and shows that developmental and environmental signals converge on a common transcriptional network to promote cell elongation. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.
Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland
Hewit, Kay D.; Pallas, Kenneth J.; Cairney, Claire J.; Lee, Kit M.; Hansell, Christopher A.; Stein, Torsten
2017-01-01
Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes. PMID:27888192
Importance of MAP Kinases during Protoperithecial Morphogenesis in Neurospora crassa
Jeffree, Chris E.; Oborny, Radek; Boonyarungsrit, Patid; Read, Nick D.
2012-01-01
In order to produce multicellular structures filamentous fungi combine various morphogenetic programs that are fundamentally different from those used by plants and animals. The perithecium, the female sexual fruitbody of Neurospora crassa, differentiates from the vegetative mycelium in distinct morphological stages, and represents one of the more complex multicellular structures produced by fungi. In this study we defined the stages of protoperithecial morphogenesis in the N. crassa wild type in greater detail than has previously been described; compared protoperithecial morphogenesis in gene-deletion mutants of all nine mitogen-activated protein (MAP) kinases conserved in N. crassa; confirmed that all three MAP kinase cascades are required for sexual development; and showed that the three different cascades each have distinctly different functions during this process. However, only MAP kinases equivalent to the budding yeast pheromone response and cell wall integrity pathways, but not the osmoregulatory pathway, were essential for vegetative cell fusion. Evidence was obtained for MAP kinase signaling cascades performing roles in extracellular matrix deposition, hyphal adhesion, and envelopment during the construction of fertilizable protoperithecia. PMID:22900028
In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps.
Aufschnaiter, Roland; Zamir, Evan A; Little, Charles D; Özbek, Suat; Münder, Sandra; David, Charles N; Li, Li; Sarras, Michael P; Zhang, Xiaoming
2011-12-01
Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra 'tissue movements' are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues.
Gao, Qian; Zhang, Junfeng; Wang, Xiumei; Liu, Ying; He, Rongqiao; Liu, Xingfeng; Wang, Fei; Feng, Jing; Yang, Dongling; Wang, Zhaoqing; Meng, Anming; Yan, Xiyun
2017-01-01
The apical–basal (AB) polarity and planar cell polarity (PCP) provide an animal cell population with different phenotypes during morphogenesis. However, how cells couple these two patterning systems remains unclear. Here we provide in vivo evidence that melanoma cell adhesion molecule (MCAM) coordinates AB polarity-driven lumenogenesis and c-Jun N-terminal kinase (JNK)/PCP-dependent ciliogenesis. We identify that MCAM is an independent receptor of fibroblast growth factor 4 (FGF4), a membrane anchor of phospholipase C-γ (PLC-γ), an immediate upstream receptor of nuclear factor of activated T-cells (NFAT) and a constitutive activator of JNK. We find that MCAM-mediated vesicular trafficking towards FGF4, while generating a priority-grade transcriptional response of NFAT determines lumenogenesis. We demonstrate that MCAM plays indispensable roles in ciliogenesis through activating JNK independently of FGF signals. Furthermore, mcam-deficient zebrafish and Xenopus exhibit a global defect in left-right (LR) asymmetric establishment as a result of morphogenetic failure of their LR organizers. Therefore, MCAM coordination of AB polarity and PCP provides insight into the general mechanisms of morphogenesis. PMID:28589943
Mechanical influences in bacterial morphogenesis and cell division
NASA Astrophysics Data System (ADS)
Sun, Sean
2010-03-01
Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.
Chen, Yi- Ping Phoebe; Hanan, Jim
2002-01-01
Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly.
NASA Technical Reports Server (NTRS)
Hardman, P.; Spooner, B. S.
1992-01-01
It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.
NASA Astrophysics Data System (ADS)
Beauvais, Anicet; Ruffet, Gilles; HéNocque, Olivier; Colin, Fabrice
2008-12-01
Chemical weathering and mechanical erosion are first-order processes of long-term tropical morphogenesis, which is still poorly deciphered for lack of time constraints. We address this issue by laser probe 39Ar-40Ar dating of generations of cryptomelane [K1-2Mn8O16, nH2O] from the manganese ore deposit of Tambao in northern Burkina Faso. This Mn deposit results from the supergene weathering of carbonate and silicate Mn protores underneath lateritic palaeolandsurfaces. It consists of an upper cryptomelane-rich domain and a lower domain where pyrolusite (β-MnO2) is the dominant Mn oxide. The oldest 39Ar-40Ar ages (59-45 Ma) are obtained on surface outcrops while the youngest ones characterize deep oxidation fronts (3.4-2.9 Ma). Apparent correlations of 39Ar-40Ar age groups with δ18O and eustatic curves allow definition of the different stages of morphogenesis. Paleocene-Eocene ages (59-45 Ma) bracket a greenhouse period propitious to bauxitic weathering. The lack of significant ages between ˜45 and 29 Ma characterizes a period dominated by mechanical erosion, during which detrital sediments, including lateritic materials, were accumulated in intracratonic basins allowing the exhumation of a new lateritic landsurface. Two major weathering periods separated by a second erosion episode (24-18 Ma) are also depicted at the end of Oligocene (29-24 Ma) and lower to mid-Miocene (18-11.5 Ma) in the upper domain, during which newly shaped land surfaces conspicuously weathered. The shorter-weathering and erosion episodes recorded in the lower domain from ˜18 to ˜2.9 Ma led to the final geomorphic changes that were conducive to the formation of glacis. The preservation of old cryptomelane (59-45 Ma) in the upper part of the ore deposit indicates a Cenozoic denudation limited to the erosion of previous bauxites, and partly, of ferricretes.
Kotak, Jenna; Saisana, Marina; Gegas, Vasilis; Pechlivani, Nikoletta; Kaldis, Athanasios; Papoutsoglou, Panagiotis; Makris, Athanasios; Burns, Julia; Kendig, Ashley L; Sheikh, Minnah; Kuschner, Cyrus E; Whitney, Gabrielle; Caiola, Hanna; Doonan, John H; Vlachonasios, Konstantinos E; McCain, Elizabeth R; Hark, Amy T
2018-05-30
The histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b are required to couple endoreduplication and trichome branching. Mutation of ADA2b also disrupts the relationship between ploidy and leaf cell size. Dynamic chromatin structure has been established as a general mechanism by which gene function is temporally and spatially regulated, but specific chromatin modifier function is less well understood. To address this question, we have investigated the role of the histone acetyltransferase GCN5 and the associated coactivator ADA2b in developmental events in Arabidopsis thaliana. Arabidopsis plants with T-DNA insertions in GCN5 (also known as HAG1) or ADA2b (also known as PROPORZ1) display pleiotropic phenotypes including dwarfism and floral defects affecting fertility. We undertook a detailed characterization of gcn5 and ada2b phenotypic effects in rosette leaves and trichomes to establish a role for epigenetic control in these developmental processes. ADA2b and GCN5 play specific roles in leaf tissue, affecting cell growth and division in rosette leaves often in complex and even opposite directions. Leaves of gcn5 plants display overall reduced ploidy levels, while ada2b-1 leaves show increased ploidy. Endoreduplication leading to increased ploidy is also known to contribute to normal trichome morphogenesis. We demonstrate that gcn5 and ada2b mutants display alterations in the number and patterning of trichome branches, with ada2b-1 and gcn5-1 trichomes being significantly less branched, while gcn5-6 trichomes show increased branching. Elongation of the trichome stalk and branches also vary in different mutant backgrounds, with stalk length having an inverse relationship with branch number. Taken together, our data indicate that, in Arabidopsis, leaves and trichomes ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.
Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B
2013-10-01
The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.
From cells to tissue: A continuum model of epithelial mechanics
NASA Astrophysics Data System (ADS)
Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru
2017-08-01
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Deng, S.; Pan, W.; Liao, W.; de Hoog, G. S.; Gerrits van den Ende, A. H. G.; Vitale, R. G.; Rafati, H.; Ilkit, M.; Van der Lee, A. H.; Rijs, A. J. M. M.; Verweij, P. E.
2016-01-01
Primary central nervous system phaeohyphomycosis is a fatal fungal infection due mainly to the neurotropic melanized fungi Cladophialophora bantiana, Rhinocladiella mackenziei, and Exophiala dermatitidis. Despite the combination of surgery with antifungal treatment, the prognosis continues to be poor, with mortality rates ranging from 50 to 70%. Therefore, a search for a more-appropriate therapeutic approach is urgently needed. Our in vitro studies showed that with the combination of amphotericin B and flucytosine against these species, the median fractional inhibitory concentration (FIC) indices for strains ranged from 0.25 to 0.38, indicating synergy. By use of Bliss independence analysis, a significant degree of synergy was confirmed for all strains, with the sum ΔE ranging from 90.2 to 698.61%. No antagonism was observed. These results indicate that amphotericin B, in combination with flucytosine, may have a role in the treatment of primary cerebral infections caused by melanized fungi belonging to the order Chaetothyriales. Further in vivo studies and clinical investigations to elucidate and confirm these observations are warranted. PMID:26833164
Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y
2017-01-01
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.
Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi
2016-01-01
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. PMID:26565022
Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.
2010-01-01
Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368
Morphogenesis underlying the development of the everted teleost telencephalon.
Folgueira, Mónica; Bayley, Philippa; Navratilova, Pavla; Becker, Thomas S; Wilson, Stephen W; Clarke, Jonathan D W
2012-09-18
Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood. Here we study the morphogenesis of the zebrafish telencephalon from 12 hours post fertilization (hpf) to 5 days post fertilization (dpf) by analyzing forebrain ventricle formation, evolving patterns of gene and transgene expression, neuronal organization, and fate mapping. Our results highlight two key events in telencephalon morphogenesis. First, the formation of a deep ventricular recess between telencephalon and diencephalon, the anterior intraencephalic sulcus (AIS), effectively creates a posterior ventricular wall to the telencephalic lobes. This process displaces the most posterior neuroepithelial territory of the telencephalon laterally. Second, as telencephalic growth and neurogenesis proceed between days 2 and 5 of development, the pallial region of the posterior ventricular wall of the telencephalon bulges into the dorsal aspect of the AIS. This brings the ventricular zone (VZ) into close apposition with the roof of the AIS to generate a narrow ventricular space and the thin tela choroidea (tc). As the pallial VZ expands, the tc also expands over the upper surface of the telencephalon. During this period, the major axis of growth and extension of the pallial VZ is along the anteroposterior axis. This second step effectively generates an everted telencephalon by 5 dpf. Our description of telencephalic morphogenesis challenges the conventional model that eversion is simply due to a laterally directed outfolding of the telencephalic neuroepithelium. This may have significant bearing on understanding the eventual organization of the adult fish telencephalon.
Morphogenesis underlying the development of the everted teleost telencephalon
2012-01-01
Background Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood. Results Here we study the morphogenesis of the zebrafish telencephalon from 12 hours post fertilization (hpf) to 5 days post fertilization (dpf) by analyzing forebrain ventricle formation, evolving patterns of gene and transgene expression, neuronal organization, and fate mapping. Our results highlight two key events in telencephalon morphogenesis. First, the formation of a deep ventricular recess between telencephalon and diencephalon, the anterior intraencephalic sulcus (AIS), effectively creates a posterior ventricular wall to the telencephalic lobes. This process displaces the most posterior neuroepithelial territory of the telencephalon laterally. Second, as telencephalic growth and neurogenesis proceed between days 2 and 5 of development, the pallial region of the posterior ventricular wall of the telencephalon bulges into the dorsal aspect of the AIS. This brings the ventricular zone (VZ) into close apposition with the roof of the AIS to generate a narrow ventricular space and the thin tela choroidea (tc). As the pallial VZ expands, the tc also expands over the upper surface of the telencephalon. During this period, the major axis of growth and extension of the pallial VZ is along the anteroposterior axis. This second step effectively generates an everted telencephalon by 5 dpf. Conclusion Our description of telencephalic morphogenesis challenges the conventional model that eversion is simply due to a laterally directed outfolding of the telencephalic neuroepithelium. This may have significant bearing on understanding the eventual organization of the adult fish telencephalon. PMID:22989074
Zhang, Nan; Membreno, Edward; Raj, Susan; Zhang, Hongjie; Khan, Liakot A; Gobel, Verena
2017-10-03
The four C. elegans excretory canals are narrow tubes extended through the length of the animal from a single cell, with almost equally far extended intracellular endotubes that build and stabilize the lumen with a membrane and submembraneous cytoskeleton of apical character. The excretory cell expands its length approximately 2,000 times to generate these canals, making this model unique for the in vivo assessment of de novo polarized membrane biogenesis, intracellular lumen morphogenesis and unicellular tubulogenesis. The protocol presented here shows how to combine standard labeling, gain- and loss-of-function genetic or RNA interference (RNAi)-, and microscopic approaches to use this model to visually dissect and functionally analyze these processes on a molecular level. As an example of a labeling approach, the protocol outlines the generation of transgenic animals with fluorescent fusion proteins for live analysis of tubulogenesis. As an example of a genetic approach, it highlights key points of a visual RNAi-based interaction screen designed to modify a gain-of-function cystic canal phenotype. The specific methods described are how to: label and visualize the canals by expressing fluorescent proteins; construct a targeted RNAi library and strategize RNAi screening for the molecular analysis of canal morphogenesis; visually assess modifications of canal phenotypes; score them by dissecting fluorescence microscopy; characterize subcellular canal components at higher resolution by confocal microscopy; and quantify visual parameters. The approach is useful for the investigator who is interested in taking advantage of the C. elegans excretory canal for identifying and characterizing genes involved in the phylogenetically conserved processes of intracellular lumen and unicellular tube morphogenesis.
hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.
Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin
2017-10-01
Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
McClay, David R
2016-01-01
In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future discoveries. © 2016 Elsevier Inc. All rights reserved.
The mechanics of development: models and methods for tissue morphogenesis
Gjorevski, Nikolce; Nelson, Celeste M.
2011-01-01
Embryonic development is a physical process during which masses of cells are sculpted into functional organs. The mechanical properties of tissues and the forces exerted on them serve as epigenetic regulators of morphogenesis. Understanding these mechanobiological effects in the embryo requires new experimental approaches. Here we focus on branching of the lung airways and bending of the heart tube to describe examples of mechanical and physical cues that guide cell fate decisions and organogenesis. We highlight recent technological advances to measure tissue elasticity and endogenous mechanical stresses in real time during organ development. We also discuss recent progress in manipulating forces in intact embryos. PMID:20860059
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2013-01-01
Problem of a diagnostic of Chernobyl factor influences on different organs and systems of Chernobyl accident liquidators are remain actually until now. Though morbidly background which development at unfavorable work conditions in underground coalminers prevents from objective identification features of Chernobyl factor influences. The qualitative and quantitative histological and immunohistochemical law of morphogenesis changes in testis of Donbas's coalminer - non-liquidators Chernobyl accident in comparison with the group of Donbas's coalminers-liquidators Chernobyl accident, which we were stationed non determined problem. This reason stipulates to development and practical use of mathematical model of morphogenesis of a testis changes.
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2013-12-01
Problem of a diagnostic of Chernobyl factor influences on different organs and systems of Chernobyl accident liquidators are remain actually until now. Though morbidly background which development at unfavorable work conditions in underground coalminers prevents from objective identification features of Chernobyl factor influences. The qualitative and quantitative histological and immunohistochemical law of morphogenesis changes in prostate of Donbas's coalminer-non-liquidators Chernobyl accident in comparison with the group of Donbas's coalminers-liquidators Chernobyl accident which we were stationed non determined problem. This reason stipulates to development and practical use of mathematical model of morphogenesis of a prostatic gland changes.
FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis
Bernardo, Gina M.; Lozada, Kristen L.; Miedler, John D.; Harburg, Gwyndolen; Hewitt, Sylvia C.; Mosley, Jonathan D.; Godwin, Andrew K.; Korach, Kenneth S.; Visvader, Jane E.; Kaestner, Klaus H.; Abdul-Karim, Fadi W.; Montano, Monica M.; Keri, Ruth A.
2010-01-01
FOXA1, estrogen receptor α (ERα) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERα and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERα expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERα and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERα expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERα-positive breast cancers, at least in part, through its control of ERα expression. PMID:20501593
Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos
Giurumescu, Claudiu A.; Kang, Sukryool; Planchon, Thomas A.; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D.
2012-01-01
A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking. PMID:23052905
Felici, Angelina; Giubellino, Alessio; Bottaro, Donald P.
2012-01-01
Hepatocyte growth factor (HGF)-stimulated mitogenesis, motogenesis and morphogenesis in various cell types begins with activation of the Met receptor tyrosine kinase and the recruitment of intracellular adaptors and kinase substrates. The adapter protein Gab1 is a critical effector and substrate of activated Met, mediating morphogenesis, among other activities, in epithelial cells. To define its role downstream of Met in hematopoietic cells, Gab1 was expressed in the HGF-responsive, Gab1-negative murine myeloid cell line 32D. Interestingly, the adhesion and motility of Gab1-expressing cells were significantly greater than parental cells, independent of growth factor treatment. Downstream of activated Met, Gab1 expression was specifically associated with rapid Shp-2 recruitment and activation, increased mitogenic potency, suppression of GATA-1 expression and concomitant upregulation of GATA-2 transcription. In addition to enhanced proliferation, continuous culture of Gab1-expressing 32D cells in HGF resulted in cell attachment, filopodia extension and phenotypic changes suggestive of monocytic differentiation. Our results suggest that in myeloid cells, Gab1 is likely to enhance HGF mitogenicity by coupling Met to Shp-2 and GATA-2 expression, thereby potentially contributing to normal myeloid differentiation as well as oncogenic transformation. PMID:20506405
Shavenbaby Couples Patterning to Epidermal Cell Shape Control
Fernandes, Isabelle; Roch, Fernando; Payre, François
2006-01-01
It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes). It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms. PMID:16933974
Engineering epithelial-stromal interactions in vitro for toxicology assessment.
Belair, David G; Abbott, Barbara D
2017-05-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Belair, David G.; Abbott, Barbara D.
2018-01-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100
Zihni, Ceniz; Munro, Peter M.G.; Elbediwy, Ahmed; Keep, Nicholas H.; Terry, Stephen J.; Harris, John
2014-01-01
Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical–lateral border. Cdc42 and its effector complex Par6–atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from junction formation to apical differentiation are poorly understood. Using a small interfering RNA screen, we identify Dbl3 as a guanine nucleotide exchange factor that is recruited by ezrin to the apical membrane, that is enriched at a marginal zone apical to tight junctions, and that drives spatially restricted Cdc42 activation, promoting apical differentiation. Dbl3 depletion did not affect junction formation but did affect epithelial morphogenesis and brush border formation. Conversely, expression of active Dbl3 drove process-specific activation of the Par6–aPKC pathway, stimulating the transition from junction formation to apical differentiation and domain expansion, as well as the positioning of tight junctions. Thus, Dbl3 drives Cdc42 signaling at the apical margin to regulate morphogenesis, apical–lateral border positioning, and apical differentiation. PMID:24379416
Functional studies on the role of Notch signaling in Hydractinia development.
Gahan, James M; Schnitzler, Christine E; DuBuc, Timothy Q; Doonan, Liam B; Kanska, Justyna; Gornik, Sebastian G; Barreira, Sofia; Thompson, Kerry; Schiffer, Philipp; Baxevanis, Andreas D; Frank, Uri
2017-08-01
The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of integrin α8β1 in fetal lung morphogenesis and injury
Benjamin, John T.; Gaston, David C.; Halloran, Brian A.; Schnapp, Lynn M.; Zent, Roy; Prince, Lawrence S.
2009-01-01
Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin α8β1, is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin α8β1 in lung development using integrin α8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and vitro that α8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin α8β1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggests that disruption of the interactions between extracellular matrix and integrin α8β1 may contribute to the pathogenesis of BPD. PMID:19769957
Notochord Morphogenesis in Mice: Current Understanding & Open Questions
Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina
2016-01-01
The notochord is the structure which defines chordates. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Interestingly, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. PMID:26845388
Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex
Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter
2012-01-01
Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260
In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps
Aufschnaiter, Roland; Zamir, Evan A.; Little, Charles D.; Özbek, Suat; Münder, Sandra; David, Charles N.; Li, Li; Sarras, Michael P.; Zhang, Xiaoming
2011-01-01
Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra ‘tissue movements’ are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues. PMID:22194305
Snow, Chelsi J.; Henry, Clarissa A.
2009-01-01
Muscle development involves the specification and morphogenesis of muscle fibers that attach to tendons. After attachment, muscles and tendons then function as an integrated unit to transduce force to the skeletal system and stabilize joints. The attachment site is the myotendinous junction, or MTJ, and is the primary site of force transmission. We find that attachment of fast-twitch myofibers to the MTJ correlates with the formation of novel microenvironments within the MTJ. The expression or activation of two proteins involved in anchoring the intracellular cytoskeleton to the extracellular matrix, Focal adhesion kinase (Fak) and β-dystroglycan is up-regulated. Conversely, the extracellular matrix protein Fibronectin (Fn) is down-regulated. This degradation of Fn as fast-twitch fibers attach to the MTJ results in Fn protein defining a novel microenvironment within the MTJ adjacent to slow-twitch, but not fast-twitch, muscle. Interestingly, however, Fak, laminin, Fn and β-dystroglycan concentrate at the MTJ in mutants that do not have slow-twitch fibers. Taken together, these data elucidate novel and dynamic microenvironments within the MTJ and indicate that MTJ morphogenesis is spatially and temporally complex. PMID:18783736
Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.
2015-01-01
The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398
A model for neurite growth and neuronal morphogenesis.
Li, G H; Qin, C D
1996-02-01
A model is presented for tensile regulation of neuritic growth. It is proposed that the neurite tension can be determined by Hooke's law and determines the growth rate of neurites. The growth of a neurite is defined as the change in its unstretched length. Neuritic growth rate is assumed to increase in proportion to tension magnitude over a certain threshold [Dennerll et al., J. Cell Biol. 107: 665-674 (1988)]. The movement of branch nodes also contributes to the neuronal morphogenesis. It is supposed that the rate of a branch-node displacement is in proportion to the resultant neuritic tension exerted on this node. To deal with the growth-cone movement, it is further supposed that the environment exerts a traction force on the growth cone and the rate of growth-cone displacement is determined by the vector sum of the neuritic tension and the traction force. A group of differential equations are used to describe the model. The key point of the model is that the traction force and the neuritic tension are in opposition to generate a temporal contrast-enhancing mechanism. Results of a simulation study suggest that the model can explain some phenomena related to neuronal morphogenesis.
Ramsubramaniam, Nikhil; Harris, Steven D; Marten, Mark R
2014-11-01
We describe the first phosphoproteome of the model filamentous fungus Aspergillus nidulans. Phosphopeptides were enriched using titanium dioxide, separated using a convenient ultra-long reverse phase gradient, and identified using a "high-high" strategy (high mass accuracy on the parent and fragment ions) with higher-energy collisional dissociation. Using this approach 1801 phosphosites, from 1637 unique phosphopeptides, were identified. Functional classification revealed phosphoproteins were overrepresented under GO categories related to fungal morphogenesis: "sites of polar growth," "vesicle mediated transport," and "cytoskeleton organization." In these same GO categories, kinase-substrate analysis of phosphoproteins revealed the majority were target substrates of CDK and CK2 kinase families, indicating these kinase families play a prominent role in fungal morphogenesis. Kinase-substrate analysis also identified 57 substrates for kinases known to regulate secretion of hydrolytic enzymes (e.g. PkaA, SchA, and An-Snf1). Altogether this data will serve as a benchmark that can be used to elucidate regulatory networks functionally associated with fungal morphogenesis and secretion. All MS data have been deposited in the ProteomeXchange with identifier PXD000715 (http://proteomecentral.proteomexchange.org/dataset/PXD000715). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hyun, Seong-In; Weisberg, Andrea
2017-01-01
ABSTRACT The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry. PMID:28490596
Casillas, Rosario; Tabernero, David; Gregori, Josep; Belmonte, Irene; Cortese, Maria Francesca; González, Carolina; Riveiro-Barciela, Mar; López, Rosa Maria; Quer, Josep; Esteban, Rafael; Buti, Maria; Rodríguez-Frías, Francisco
2018-01-01
AIM To determine the variability/conservation of the domain of hepatitis B virus (HBV) preS1 region that interacts with sodium-taurocholate cotransporting polypeptide (hereafter, NTCP-interacting domain) and the prevalence of the rs2296651 polymorphism (S267F, NTCP variant) in a Spanish population. METHODS Serum samples from 246 individuals were included and divided into 3 groups: patients with chronic HBV infection (CHB) (n = 41, 73% Caucasians), patients with resolved HBV infection (n = 100, 100% Caucasians) and an HBV-uninfected control group (n = 105, 100% Caucasians). Variability/conservation of the amino acid (aa) sequences of the NTCP-interacting domain, (aa 2-48 in viral genotype D) and a highly conserved preS1 domain associated with virion morphogenesis (aa 92-103 in viral genotype D) were analyzed by next-generation sequencing and compared in 18 CHB patients with viremia > 4 log IU/mL. The rs2296651 polymorphism was determined in all individuals in all 3 groups using an in-house real-time PCR melting curve analysis. RESULTS The HBV preS1 NTCP-interacting domain showed a high degree of conservation among the examined viral genomes especially between aa 9 and 21 (in the genotype D consensus sequence). As compared with the virion morphogenesis domain, the NTCP-interacting domain had a smaller proportion of HBV genotype-unrelated changes comprising > 1% of the quasispecies (25.5% vs 31.8%), but a larger proportion of genotype-associated viral polymorphisms (34% vs 27.3%), according to consensus sequences from GenBank patterns of HBV genotypes A to H. Variation/conservation in both domains depended on viral genotype, with genotype C being the most highly conserved and genotype E the most variable (limited finding, only 2 genotype E included). Of note, proline residues were highly conserved in both domains, and serine residues showed changes only to threonine or tyrosine in the virion morphogenesis domain. The rs2296651 polymorphism was not detected in any participant. CONCLUSION In our CHB population, the NTCP-interacting domain was highly conserved, particularly the proline residues and essential amino acids related with the NTCP interaction, and the prevalence of rs2296651 was low/null. PMID:29456407
Intracellular transport and stability of varicella-zoster virus glycoprotein K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Susan L.; Govero, Jennifer L.; Heineman, Thomas C.
2007-02-20
VZV gK, an essential glycoprotein that is conserved among the alphaherpesviruses, is believed to participate in membrane fusion and cytoplasmic virion morphogenesis based on analogy to its HSV-1 homolog. However, the production of VZV gK-specific antibodies has proven difficult presumably due to its highly hydrophobic nature and, therefore, VZV gK has received limited study. To overcome this obstacle, we inserted a FLAG epitope into gK near its amino terminus and produced VZV recombinants expressing epitope-tagged gK (VZV gK-F). These recombinants grew indistinguishably from native VZV, and FLAG-tagged gK could be readily detected in VZV gK-F-infected cells. FACS analysis established thatmore » gK is transported to the plasma membrane of infected cells, while indirect immunofluorescence demonstrated that gK accumulates predominately in the Golgi. Using VZV gK-F-infected cells we demonstrated that VZV gK, like several other herpesvirus glycoproteins, is efficiently endocytosed from the plasma membrane. However, pulse-labeling experiments revealed that the half-life of gK is considerably shorter than that of other VZV glycoproteins including gB, gE and gH. This finding suggests that gK may be required in lower abundance than other viral glycoproteins during virion morphogenesis or viral entry.« less
NASA Technical Reports Server (NTRS)
Wakahara, M.; Neff, A. W.; Malacinski, G. M.
1984-01-01
Several media were tested for the extent to which they promoted high fertilization efficiencies in ovulated, stripped Xenopus eggs. One medium was selected for maintaining eggs in a 'delayed fertilization' (DelF) condition. DelF eggs displayed several unusual characteristics, including shift of the center of gravity, prominent sperm entrance site, and occasional polyspermy. The frequency of normal pattern formation varied according to the length of time eggs were maintained in the DelF condition. Various developmental abnormalities were observed during gastrulation, neurulation, and organogenesis. Most abnormalities appeared, however, to be related to morphogenesis of the endoderm. Primordial germ cell (PGC) development was examined in DelF eggs which displayed normal external morphological features at the swimming tadpole stage. PGC counts were usually normal in short-duration (eg, 5 hr) DelF eggs, but frequently substantially reduced or completely diminished in longer-duration (eg, 25h) tadpoles. Six spawnings were compared and shown to exhibit considerable variability in fertility, morphogenesis, and PGC development. Yolk platelet shifts and developmental parameters were examined in two additional spawnings. The subcortical cytoplasm in which the germ plasm is normally localized appeared to be disrupted in longer duration DelF eggs. That observation may account for low PGC counts in DelF tadpoles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.
The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observedmore » increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.« less
Valades Cruz, Cesar Augusto; Shaban, Haitham Ahmed; Kress, Alla; Bertaux, Nicolas; Monneret, Serge; Mavrakis, Manos; Savatier, Julien; Brasselet, Sophie
2016-01-01
Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells. PMID:26831082
Three-dimensional analysis of the early development of the dentition
Peterkova, R; Hovorakova, M; Peterka, M; Lesot, H
2014-01-01
Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration. PMID:24495023
Crumbs3 Is Essential for Proper Epithelial Development and Viability
Whiteman, Eileen L.; Fan, Shuling; Harder, Jennifer L.; Walton, Katherine D.; Liu, Chia-Jen; Soofi, Abdul; Fogg, Vanessa C.; Hershenson, Marc B.; Dressler, Gregory R.; Deutsch, Gail H.; Gumucio, Deborah L.
2014-01-01
First identified in Drosophila, the Crumbs (Crb) proteins are important in epithelial polarity, apical membrane formation, and tight junction (TJ) assembly. The conserved Crb intracellular region includes a FERM (band 4.1/ezrin/radixin/moesin) binding domain (FBD) whose mammalian binding partners are not well understood and a PDZ binding motif that interacts with mammalian Pals1 (protein associated with lin seven) (also known as MPP5). Pals1 binds Patj (Pals1-associated tight-junction protein), a multi-PDZ-domain protein that associates with many tight junction proteins. The Crb complex also binds the conserved Par3/Par6/atypical protein kinase C (aPKC) polarity cassette that restricts migration of basolateral proteins through phosphorylation. Here, we describe a Crb3 knockout mouse that demonstrates extensive defects in epithelial morphogenesis. The mice die shortly after birth, with cystic kidneys and proteinaceous debris throughout the lungs. The intestines display villus fusion, apical membrane blebs, and disrupted microvilli. These intestinal defects phenocopy those of Ezrin knockout mice, and we demonstrate an interaction between Crumbs3 and ezrin. Taken together, our data indicate that Crumbs3 is crucial for epithelial morphogenesis and plays a role in linking the apical membrane to the underlying ezrin-containing cytoskeleton. PMID:24164893
Morphological evidences in circumvallate papilla and von Ebners' gland development in mice
Sohn, Wern-Joo; Gwon, Gi-Jeong; An, Chang-Hyeon; Moon, Cheil; Bae, Yong-Chul; Yamamoto, Hitoshi; Lee, Sanggyu
2011-01-01
In rodents, the circumvallate papilla (CVP), with its underlying minor salivary gland, the von Ebners' gland (VEG), is located on the dorsal surface of the posterior tongue. Detailed morphological processes to form the proper structure of CVP and VEG have not been properly elucidated. In particular, the specific localization patterns of taste buds in CVP and the branching formation of VEG have not yet been elucidated. To understand the developmental mechanisms underlying CVP and VEG formation, detailed histological observations of CVP and VEG were examined using a three-dimensional computer-aided reconstruction method with serial histological sections and pan-Cytokeratins immunostainings. In addition, to define the developmental processes in CVP and VEG formation, we examined nerve innervations and cell proliferation using microinjections of AM1-43 and immunostainings with various markers, including phosphoinositide 3-kinase, Ki-67, PGP9.5, and Ulex europaeus agglutinin 1 (UEA1). Results revealed specific morphogenesis of CVP and VEG with nerve innervations patterns, evaluated by the coincided localization patterns of AM1-43 and UEA1. Based on these morphological and immunohistochemical results, we suggest that nerve innervations and cell proliferations play important roles in the positioning of taste buds in CVP and branching morphogenesis of VEG in tongue development. PMID:22254156
Expression patterns of protein C inhibitor in mouse development.
Wagenaar, Gerry T M; Uhrin, Pavel; Weipoltshammer, Klara; Almeder, Marlene; Hiemstra, Pieter S; Geiger, Margarethe; Meijers, Joost C M; Schöfer, Christian
2010-02-01
Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis.
Gymnemic Acids Inhibit Hyphal Growth and Virulence in Candida albicans
Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d’Enfert, Christophe
2013-01-01
Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201
Hughes, Louise; Towers, Katie; Starborg, Tobias; Gull, Keith; Vaughan, Sue
2013-12-15
Flagella are highly conserved organelles present in a wide variety of species. In Trypanosoma brucei the single flagellum is necessary for morphogenesis, cell motility and pathogenesis, and is attached along the cell body. A new flagellum is formed alongside the old during the cell division cycle. In the (insect) procyclic form, the flagella connector (FC) attaches the tip of the new flagellum to the side of the old flagellum, ensuring faithful replication of cell architecture. The FC is not present in the bloodstream form of the parasite. We show here, using new imaging techniques including serial block-face scanning electron microscopy (SBF-SEM), that the distal tip of the new flagellum in the bloodstream form is embedded within an invagination in the cell body plasma membrane, named the groove. We suggest that the groove has a similar function to the flagella connector. The groove is a mobile junction located alongside the microtubule quartet (MtQ) and occurred within a gap in the subpellicular microtubule corset, causing significant modification of microtubules during elongation of the new flagellum. It appears likely that this novel form of morphogenetic structure has evolved to withstand the hostile immune response in the mammalian blood.
Fan, Yan; He, Hong; Dong, Yan; Pan, Hengbiao
2013-12-01
Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.
Detection of hyphomycetes in the upper respiratory tract of patients with cystic fibrosis.
Horré, R; Marklein, G; Siekmeier, R; Reiffert, S-M
2011-11-01
The respiratory tract of cystic fibrosis patients is colonised by bacteria and fungi. Although colonisation by slow growing fungi such as Pseudallescheria, Scedosporium and Exophiala species has been studied previously, the colonisation rate differs from study to study. Infections caused by these fungi have been recognised, especially after lung transplants. Monitoring of respiratory tract colonisation in cystic fibrosis patients includes the use of several semi-selective culture media to detect bacteria such as Pseudomonas aeruginosa and Burkholderia cepacia as well as Candida albicans. It is relevant to study whether conventional methods are sufficient for the detection of slow growing hyphomycetes or if additional semi-selective culture media should be used. In total, 589 respiratory specimens from cystic fibrosis patients were examined for the presence of slow growing hyphomycetes. For 439 samples from 81 patients, in addition to conventional methods, erythritol-chloramphenicol agar was used for the selective isolation of Exophiala dermatitidis and paraffin-covered liquid Sabouraud media for the detection of phaeohyphomycetes. For 150 subsequent samples from 42 patients, SceSel+ agar was used for selective isolation of Pseudallescheria and Scedosporium species,and brain-heart infusion bouillon containing a wooden stick for hyphomycete detection. Selective isolation techniques were superior in detecting non-Aspergillus hyphomycetes compared with conventional methods. Although liquid media detected fewer strains of Exophiala, Pseudallescheria and Scedosporium species, additional hyphomycete species not detected by other methods were isolated. Current conventional methods are insufficient to detect non-Aspergillus hyphomycetes, especially Exophiala, Pseudallescheria and Scedosporium species, in sputum samples of cystic fibrosis patients. © 2010 Blackwell Verlag GmbH.
Cellular and molecular mechanisms coordinating pancreas development.
Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa
2017-08-15
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.
Laser capture microdissection to study flower morphogenesis
NASA Astrophysics Data System (ADS)
Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Kowalczuk, Cezary; PlÄ der, Wojciech; Przybecki, Zbigniew
2017-08-01
Laser Capture Microdissection (LCM) is a sample preparation microscopic method that enables isolation of an interesting cell or cells population from human, animal or plant tissue. This technique allows for obtaining pure sample from heterogeneous mixture. From isolated cells, it is possible to obtain the appropriate quality material used for genomic research in transcriptomics, proteomics and metabolomics. We used LCM method to study flower morphogenesis and specific bud's organ organization and development. The genes expression level in developing flower buds of male (B10) and female (2gg) lines were analyzed with qPCR. The expression was checked for stamen and carpel primordia obtained with LCM and for whole flower buds at successive stages of growth.
Involvement of actin filaments in rhizoid morphogenesis of Spirogyra.
Yoshida, Katsuhisa; Shimmen, Teruo
2009-01-01
The role of actin filaments in rhizoid morphogenesis was studied in Spirogyra. When the algal filaments were severed, new terminal cells started tip growth and finally formed rhizoids. Actin inhibitors, latrunculin B and cytochalasin D, reversibly inhibited the process. A mesh-like structure of actin filaments (AFs) was formed at the tip region. Gd(3+) inhibited tip growth and decreased AFs in the tip region. Either a decrease in turgor pressure or lowering of the external Ca(2+) concentration also induced similar results. It was suggested that the mesh-like AF structure is indispensable for the elongation of rhizoids. A possible organization mechanism of the mesh-like AF structure was discussed.
Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis.
Wilt, F H
1997-08-01
The transparent sea urchin embryo provides a laboratory for study of morphogenesis. The calcareous endoskeleton is formed by a syncytium of mesenchyme cells in the blastocoel. The locations of mesenchyme in the blastocoel, the size of the skeleton, and even the branching pattern of the skeletal rods, are governed by interactions with the blastula wall. Now Guss and Ettensohn show that the rate of deposition of CaCO3 in the skeleton is locally controlled in the mesenchymal syncytium, as is the pattern of expression of three genes involved in skeleton formation. They propose that short range signals emanating from the blastula wall regulate many aspects of the biomineralization process.
Cell death and morphogenesis during early mouse development: Are they interconnected?
Bedzhov, Ivan; Zernicka-Goetz, Magdalena
2015-01-01
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. PMID:25640415
Devaux, Sara; Poulain, Fabienne E; Devignot, Véronique; Lachkar, Sylvie; Irinopoulou, Theano; Sobel, André
2012-06-22
During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.
SULFUR COMPOUNDS IN MORPHOGENESIS.
CHICKENS, GROWTH(PHYSIOLOGY), MITOSIS, BACTERIA, ALGAE, LIPOIC ACID , THIOLS, BELGIUM...ORGANIC SULFUR COMPOUNDS, METABOLISM), (*MORPHOLOGY(BIOLOGY), ORGANIC SULFUR COMPOUNDS), (*NUCLEIC ACIDS , BIOSYNTHESIS), EGGS, EMBRYOS, AMPHIBIANS
Keddie, J S; Carroll, B; Jones, J D; Gruissem, W
1996-08-15
The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.
Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis
Chen, Yu; Doughman, Yong-qiu; Gu, Shi; Jarrell, Andrew; Aota, Shin-ichi; Cvekl, Ales; Watanabe, Michiko; Dunwoodie, Sally L.; Johnson, Randall S.; van Heyningen, Veronica; Kleinjan, Dirk A.; Beebe, David C.; Yang, Yu-Chung
2009-01-01
Cited2 is a transcriptional modulator with pivotal roles in different biological processes. Cited2-deficient mouse embryos manifested two major defects in the developing eye. An abnormal corneal-lenticular stalk was characteristic of Cited2−/− developing eyes, a feature reminiscent of Peters’ anomaly, which can be rescued by increased Pax6 gene dosage in Cited2−/− embryonic eyes. In addition, the hyaloid vascular system showed hyaloid hypercellularity consisting of aberrant vasculature, which might be correlated with increased VEGF expression in the lens. Deletion of Hif1a (which encodes HIF-1α) in Cited2−/− lens specifically eliminated the excessive accumulation of cellular mass and aberrant vasculature in the developing vitreous without affecting the corneal-lenticular stalk phenotype. These in vivo data demonstrate for the first time dual functions for Cited2: one upstream of, or together with, Pax6 in lens morphogenesis; and another in the normal formation of the hyaloid vasculature through its negative modulation of HIF-1 signaling. Taken together, our study provides novel mechanistic revelation for lens morphogenesis and hyaloid vasculature formation and hence might offer new insights into the etiology of Peters’ anomaly and ocular hypervascularity. PMID:18653562
Controlled molecular self-assembly of complex three-dimensional structures in soft materials
Huang, Changjin; Quinn, David; Suresh, Subra
2018-01-01
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. PMID:29255037
The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.
Han, Ting-Li; Cannon, Richard D; Villas-Bôas, Silas G
2012-12-01
Farnesol is a quorum-sensing molecule (QSM) produced, and sensed, by the polymorphic fungus, Candida albicans. This cell-to-cell communication molecule is known to suppress the hyphal formation of C. albicans at high cell density. Despite many studies investigating the signalling mechanisms by which QSMs influence the morphogenesis of C. albicans, the downstream metabolic effect of these signalling pathways in response to farnesol-mediated morphogenesis remains obscure. Here, we have used metabolomics to investigate the metabolic response of C. albicans upon exposure to farnesol under hyphae-inducing conditions. We have found a general up-regulation of central carbon metabolic pathways when hyphal formation was suppressed by farnesol evidenced by a considerably larger number of central carbon metabolic intermediates detected under this condition at an overall lower intracellular level. By combining the metabolic profiles from farnesol-exposed cells with previous metabolomics data for C. albicans undergoing morphogenesis, we have identified several metabolic pathways that are likely to be associated with the morphogenetic process of C. albicans, as well as metabolic pathways such as those involved in lipid metabolism that appeared to be specifically affected by farnesol. Therefore, our results provide important new insights into the metabolic role of farnesol in C. albicans metabolism. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis.
Sedykh, Irina; Yoon, Baul; Roberson, Laura; Moskvin, Oleg; Dewey, Colin N; Grinblat, Yevgenya
2017-09-01
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development. Copyright © 2017 Elsevier Inc. All rights reserved.
Hsu, Ying; Kim, Gunhee; Zhang, Qihong; Datta, Poppy; Seo, Seongjin
2017-01-01
Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degeneration in BBS, we developed a congenital knockout mouse of Bbs8, as well as conditional mouse models in which function of the BBSome (a protein complex that mediates ciliary trafficking) can be temporally inactivated or restored. We demonstrate that BBS mutant mice have defects in retinal outer segment morphogenesis. We further demonstrate that removal of Bbs8 in adult mice affects photoreceptor function and disrupts the structural integrity of the outer segment. Notably, using a mouse model in which a gene trap inhibiting Bbs8 gene expression can be removed by an inducible FLP recombinase, we show that when BBS8 is restored in immature retinas with malformed outer segments, outer segment extension can resume normally and malformed outer segment discs are displaced distally by normal outer segment structures. Over time, the retinas of the rescued mice become morphologically and functionally normal, indicating that there is a window of plasticity when initial retinal outer segment morphogenesis defects can be ameliorated. PMID:29049287
Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth
Zheng, Xin-De; Lee, Raymond Teck Ho; Wang, Yan-Ming; Lin, Qi-Shan; Wang, Yue
2007-01-01
Cyclin-dependent kinases (CDKs) control yeast morphogenesis, although how they regulate the polarity machinery remains unclear. The dimorphic fungus Candida albicans uses Cdc28/Hgc1, a CDK/cyclin complex, to promote persistent actin polarization for hyphal growth. Here, we report that Rga2, a GTPase-activating protein (GAP) of the central polarity regulator Cdc42, undergoes Hgc1-dependent hyperphosphorylation. Using the analog-sensitive Cdc28as mutant, we confirmed that Cdc28 controls Rga2 phosphorylation in vitro and in vivo. Deleting RGA2 produced elongated yeast cells without apparent effect on hyphal morphogenesis. However, deleting it or inactivating its GAP activity restored hyphal growth in hgc1Δ mutants, suggesting that Rga2 represses hyphal development and Cdc28/Hgc1 inactivates it upon hyphal induction. We provide evidence that Cdc28/Hgc1 may act to prevent Rga2 from localizing to hyphal tips, leading to localized Cdc42 activation for hyphal extension. Rga2 also undergoes transient Cdc28-dependent hyperphosphorylation at bud emergence, suggesting that regulating a GAP(s) of Cdc42 by CDKs may play an important role in governing different forms of polarized morphogenesis in yeast. This study reveals a direct molecular link between CDKs and the polarity machinery. PMID:17673907
Wang, Lixin; Brugge, Joan S; Janes, Kevin A
2011-10-04
Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.
Bone Marrow Stromal Cells Stimulate an Angiogenic Program that Requires Endothelial MT1-MMP
Kachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J.
2012-01-01
Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis. PMID:22262018
Notochord morphogenesis in mice: Current understanding & open questions.
Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina
2016-05-01
The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Emerging pulmonary vasculature lacks fate specification.
Schwarz, Margaret A; Caldwell, Lauren; Cafasso, Danielle; Zheng, Haihua
2009-01-01
Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.
Ben Shoham, Adi; Rot, Chagai; Stern, Tomer; Krief, Sharon; Akiva, Anat; Dadosh, Tali; Sabany, Helena; Lu, Yinhui; Kadler, Karl E.
2016-01-01
Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix. PMID:27621060
Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke
2018-01-11
Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.
Cooper, Mark S; Szeto, Daniel P; Sommers-Herivel, Greg; Topczewski, Jacek; Solnica-Krezel, Lila; Kang, Hee-Chol; Johnson, Iain; Kimelman, David
2005-02-01
Green fluorescent protein (GFP) technology is rapidly advancing the study of morphogenesis, by allowing researchers to specifically focus on a subset of labeled cells within the living embryo. However, when imaging GFP-labeled cells using confocal microscopy, it is often essential to simultaneously visualize all of the cells in the embryo using dual-channel fluorescence to provide an embryological context for the cells expressing GFP. Although various counterstains are available, part of their fluorescence overlaps with the GFP emission spectra, making it difficult to clearly identify the cells expressing GFP. In this study, we report that a new fluorophore, BODIPY TR methyl ester dye, serves as a versatile vital counterstain for visualizing the cellular dynamics of morphogenesis within living GFP transgenic zebrafish embryos. The fluorescence of this photostable synthetic dye is spectrally separate from GFP fluorescence, allowing dual-channel, three-dimensional (3D) and four-dimensional (4D) confocal image data sets of living specimens to be easily acquired. These image data sets can be rendered subsequently into uniquely informative 3D and 4D visualizations using computer-assisted visualization software. We discuss a variety of immediate and potential applications of BODIPY TR methyl ester dye as a vital visualization counterstain for GFP in transgenic zebrafish embryos. Copyright 2004 Wiley-Liss, Inc.
Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D.
2014-01-01
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between C. remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane’s rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin’s corollary to Haldane’s rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. PMID:25196892
Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D
2014-01-01
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. © 2014 Wiley Periodicals, Inc.
Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie
2014-01-01
Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040
Shwartz, Yulia; Farkas, Zsuzsanna; Stern, Tomer; Aszódi, Attila; Zelzer, Elazar
2012-10-01
Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models. Copyright © 2012 Elsevier Inc. All rights reserved.
Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke
2015-09-04
The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.
Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry
2016-01-01
Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568
Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi
2017-01-01
In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.
The Bio-Logic and machinery of plant morphogenesis.
Niklas, Karl J
2003-04-01
Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.
The Role of Heparan Sulfate Proteoglycans in Optic Disc and Stalk Morphogenesis
Cai, Zhigang; Grobe, Kay; Zhang, Xin
2014-01-01
Background Heparan sulfate proteoglycans (HSPG) are important for embryonic development via the regulation of gradient formation and signaling of multiple growth factors and morphogens. Previous studies have shown that Bmp/Shh/Fgf signaling are required for the regionalization of the optic vesicle (OV) and for the closure of the optic fissure (OF), the disturbance of which underlie ocular anomalies such as microphthalmia, coloboma and optic nerve hypoplasia. Results To study HSPG-dependent coordination of these signaling pathways during mammalian visual system development, we have generated a series of OV-specific mutations in the heparan sulfate (HS) N-sulfotransferase genes (Ndst1 and Ndst2) and HS O-sulfotransferase genes (Hs2st, Hs6st1 and Hs6st2) in mice. Interestingly, the resulting HS undersulfation still allowed for normal retinal neurogenesis and optic fissure closure, but led to defective optic disc and stalk development. The adult mutant animals further developed optic nerve aplasia/hypoplasia and displayed retinal degeneration. We observed that MAPK/ERK signaling was down-regulated in Ndst mutants, and consistent with this, HS-related optic nerve morphogenesis defects in mutant mice could partially be rescued by constitutive Kras activation. Conclusions These results suggest that HSPGs, depending on their HS sulfation pattern, regulate multiple signaling pathways in optic disc and stalk morphogenesis. PMID:24753163
Role of p21-activated kinases in cardiovascular development and function.
Kelly, Mollie L; Astsaturov, Artyom; Chernoff, Jonathan
2013-11-01
p21-activated kinases (Paks) are a group of six serine/threonine kinases (Pak1-6) that are involved in a variety of biological processes. Recently, Paks, more specifically Pak1, -2, and -4, have been shown to play important roles in cardiovascular development and function in a range of model organisms including zebrafish and mice. These functions include proper morphogenesis and conductance of the heart, cardiac contractility, and development and integrity of the vasculature. The mechanisms underlying these effects are not fully known, but they likely differ among the various Pak isoforms and include both kinase-dependent and -independent functions. In this review, we discuss aspects of Pak function relevant to cardiovascular biology as well as potential therapeutic implications of small-molecule Pak inhibitors in cardiovascular disease.
Deconstructing Pancreas Developmental Biology
Benitez, Cecil M.; Goodyer, William R.
2012-01-01
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development. PMID:22587935
Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi
2016-01-08
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43(-/-) salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43(-/-) samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43(-/-) phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Voronov, Dmitry; Gromova, Anastasia; Liu, Daren; Zoukhri, Driss; Medvinsky, Alexander; Meech, Robyn; Makarenkova, Helen P.
2013-01-01
Purpose. Lacrimal gland (LG) morphogenesis and repair are regulated by a complex interplay of intrinsic factors (e.g., transcription factors) and extrinsic signals (e.g., soluble growth/signaling factors). Many of these interconnections remain poorly characterized. Runt-related (Runx) factors belong to a small family of heterodimeric transcription factors known to regulate lineage-specific proliferation and differentiation of stem cells. The purpose of this study was to define the expression pattern and the role of Runx proteins in LG development and regeneration. Methods. Expression of epithelial-restricted transcription factors in murine LG was examined using immunostaining, qRT-PCR, and RT2Profiler PCR microarrays. The role of Runx transcription factors in LG morphogenesis was studied using siRNA and ex vivo LG cultures. Expression of Runx transcription factors during LG regeneration was assessed using in vivo model of LG regeneration. Results. We found that Runx factors are expressed in the epithelial compartment of the LG; in particular, Runx1 was restricted to the epithelium with highest level of expression in ductal and centroacinar cells. Downregulation of Runx1 to 3 expression using Runx-specific siRNAs abolished LG growth and branching and our data suggest that Runx1, 2, and 3 are partially redundant in LG development. In siRNA-treated LG, reduction of branching correlated with reduction of epithelial proliferation, as well as expression of cyclin D1 and the putative epithelial progenitor cell marker cytokeratin-5. Runx1, Runx3, and cytokeratin-5 expression increased significantly in regenerating LG and there was modest increase in Runx2 expression during LG differentiation. Conclusions. Runx1 and 2 are new markers of the LG epithelial lineage and Runx factors are important for normal LG morphogenesis and regeneration. PMID:23532528
Model of Tooth Morphogenesis Predicts Carabelli Cusp Expression, Size, and Symmetry in Humans
Hunter, John P.; Guatelli-Steinberg, Debbie; Weston, Theresia C.; Durner, Ryan; Betsinger, Tracy K.
2010-01-01
Background The patterning cascade model of tooth morphogenesis accounts for shape development through the interaction of a small number of genes. In the model, gene expression both directs development and is controlled by the shape of developing teeth. Enamel knots (zones of nonproliferating epithelium) mark the future sites of cusps. In order to form, a new enamel knot must escape the inhibitory fields surrounding other enamel knots before crown components become spatially fixed as morphogenesis ceases. Because cusp location on a fully formed tooth reflects enamel knot placement and tooth size is limited by the cessation of morphogenesis, the model predicts that cusp expression varies with intercusp spacing relative to tooth size. Although previous studies in humans have supported the model's implications, here we directly test the model's predictions for the expression, size, and symmetry of Carabelli cusp, a variation present in many human populations. Methodology/Principal Findings In a dental cast sample of upper first molars (M1s) (187 rights, 189 lefts, and 185 antimeric pairs), we measured tooth area and intercusp distances with a Hirox digital microscope. We assessed Carabelli expression quantitatively as an area in a subsample and qualitatively using two typological schemes in the full sample. As predicted, low relative intercusp distance is associated with Carabelli expression in both right and left samples using either qualitative or quantitative measures. Furthermore, asymmetry in Carabelli area is associated with asymmetry in relative intercusp spacing. Conclusions/Significance These findings support the model's predictions for Carabelli cusp expression both across and within individuals. By comparing right-left pairs of the same individual, our data show that small variations in developmental timing or spacing of enamel knots can influence cusp pattern independently of genotype. Our findings suggest that during evolution new cusps may first appear as a result of small changes in the spacing of enamel knots relative to crown size. PMID:20689576
Computer simulation analysis of normal and abnormal development of the mammalian diaphragm
Fisher, Jason C; Bodenstein, Lawrence
2006-01-01
Background Congenital diaphragmatic hernia (CDH) is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF), esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++™) to study diaphragm morphogenesis. Methods and results Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++™ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1) cell mitoses are restricted to the edge of growing tissue; (2) cells near the chest wall remain mitotically active; (3) mitotically active non-edge cells migrate toward the chest wall; and (4) movement direction depends on clonal differentiation between anterior and posterior PPF cells. Conclusion With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to recreate a CDH defect using a combination of experimental data and testable hypotheses gives impetus to simulation modeling as an adjunct to experimental analysis of diaphragm morphogenesis. PMID:16483386
Morici, Paola; Fais, Roberta; Rizzato, Cosmeri
2016-01-01
The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans. PMID:27902776
Computer simulation analysis of normal and abnormal development of the mammalian diaphragm.
Fisher, Jason C; Bodenstein, Lawrence
2006-02-17
Congenital diaphragmatic hernia (CDH) is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF), esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++) to study diaphragm morphogenesis. Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1) cell mitoses are restricted to the edge of growing tissue; (2) cells near the chest wall remain mitotically active; (3) mitotically active non-edge cells migrate toward the chest wall; and (4) movement direction depends on clonal differentiation between anterior and posterior PPF cells. With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to recreate a CDH defect using a combination of experimental data and testable hypotheses gives impetus to simulation modeling as an adjunct to experimental analysis of diaphragm morphogenesis.
Morici, Paola; Fais, Roberta; Rizzato, Cosmeri; Tavanti, Arianna; Lupetti, Antonella
2016-01-01
The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.
Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard
2017-08-01
The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry. Copyright © 2017 American Society for Microbiology.
Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry
2015-02-01
We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka's close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans.
1981-01-01
Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777
Using cell deformation and motion to predict forces and collective behavior in morphogenesis.
Merkel, Matthias; Manning, M Lisa
2017-07-01
In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis.
Ellis, Kathryn; Bagwell, Jennifer; Bagnat, Michel
2013-03-04
The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H(+)-ATPase-dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development.
Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis
Ellis, Kathryn; Bagwell, Jennifer
2013-01-01
The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H+-ATPase–dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development. PMID:23460678
Cell death and morphogenesis during early mouse development: are they interconnected?
Bedzhov, Ivan; Zernicka-Goetz, Magdalena
2015-04-01
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.
de Almeida, João N; Sztajnbok, Jaques; da Silva, Afonso Rafael; Vieira, Vinicius Adriano; Galastri, Anne Layze; Bissoli, Leandro; Litvinov, Nadia; Del Negro, Gilda Maria Barbaro; Motta, Adriana Lopes; Rossi, Flávia; Benard, Gil
2016-11-01
Moulds and arthroconidial yeasts are potential life-threatening agents of fungemia in immunocompromised patients. Fast and accurate identification (ID) of these pathogens hastens initiation of targeted antifungal therapy, thereby improving the patients' prognosis. We describe a new strategy that enabled the identification of moulds and arthroconidial yeasts directly from positive blood cultures by MALDI-TOF mass spectrometry (MS). Positive blood cultures (BCs) with Gram staining showing hyphae and/or arthroconidia were prospectively selected and submitted to an in-house protein extraction protocol. Mass spectra were obtained by Vitek MS™ system, and identifications were carried out with in the research use only (RUO) mode with an extended database (SARAMIS™ [v.4.12] plus in-house database). Fusarium solani, Fusarium verticillioides, Exophiala dermatitidis, Saprochaete clavata, and Trichosporon asahii had correct species ID by MALDI-TOF MS analysis of positive BCs. All cases were related to critically ill patients with high mortality fungemia and direct ID from positive BCs was helpful for rapid administration of targeted antifungal therapy. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection.
Hernández-Santos, Nydiaris; Wiesner, Darin L; Fites, J Scott; McDermott, Andrew J; Warner, Thomas; Wüthrich, Marcel; Klein, Bruce S
2018-04-11
Lung epithelial cells (LECs) are strategically positioned in the airway mucosa to provide barrier defense. LECs also express pattern recognition receptors and a myriad of immune genes, but their role in immunity is often concealed by the activities of "professional" immune cells, particularly in the context of fungal infection. Here, we demonstrate that NF-κB signaling in LECs is essential for immunity against the pulmonary fungal pathogen Blastomyces dermatitidis. LECs orchestrate innate antifungal immunity by augmenting the numbers of interleukin-17A (IL-17A)- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing innate lymphocytes, specifically "natural" Th17 (nTh17) cells. Innate lymphocyte-derived IL-17A and GM-CSF in turn enable phagocyte-driven fungal killing. LECs regulate the numbers of nTh17 cells via the production of chemokines such as CCL20, a process dependent on IL-1α-IL-1 receptor (IL-1R) signaling on LECs. Therefore, LECs orchestrate IL-17A- and GM-CSF-mediated immunity in an IL-1R-dependent manner and represent an essential component of innate immunity to pulmonary fungal pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.
Could Histoplasma capsulatum Be Related to Healthcare-Associated Infections?
Carreto-Binaghi, Laura Elena; Damasceno, Lisandra Serra; Mendes-Giannini, Maria José Soares; Zancopé-Oliveira, Rosely Maria; Taylor, Maria Lucia
2015-01-01
Healthcare-associated infections (HAI) are described in diverse settings. The main etiologic agents of HAI are bacteria (85%) and fungi (13%). Some factors increase the risk for HAI, particularly the use of medical devices; patients with severe cuts, wounds, and burns; stays in the intensive care unit, surgery, and hospital reconstruction works. Several fungal HAI are caused by Candida spp., usually from an endogenous source; however, cross-transmission via the hands of healthcare workers or contaminated devices can occur. Although other medically important fungi, such as Blastomyces dermatitidis, Paracoccidioides brasiliensis, and Histoplasma capsulatum, have never been considered nosocomial pathogens, there are some factors that point out the pros and cons for this possibility. Among these fungi, H. capsulatum infection has been linked to different medical devices and surgery implants. The filamentous form of H. capsulatum may be present in hospital settings, as this fungus adapts to different types of climates and has great dispersion ability. Although conventional pathogen identification techniques have never identified H. capsulatum in the hospital environment, molecular biology procedures could be useful in this setting. More research on H. capsulatum as a HAI etiologic agent is needed, since it causes a severe and often fatal disease in immunocompromised patients. PMID:26106622
Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans
Song, Yinggai; Laureijssen-van de Sande, Wendy W. J.; Moreno, Leandro F.; Gerrits van den Ende, Bert; Li, Ruoyu; de Hoog, Sybren
2017-01-01
Exophiala spinifera and Exophiala dermatitidis (Fungi: Chaetothyriales) are black yeast agents potentially causing disseminated infection in apparently healthy humans. They are the only Exophiala species producing extracellular polysaccharides around yeast cells. In order to gain understanding of eventual differences in intrinsic virulence of the species, their clinical profiles were compared and found to be different, suggesting pathogenic strategies rather than coincidental opportunism. Ecologically relevant factors were compared in a model set of strains of both species, and significant differences were found in clinical and environmental preferences, but virulence, tested in Galleria mellonella larvae, yielded nearly identical results. Virulence factors, i.e., melanin, capsule and muriform cells responded in opposite direction under hydrogen peroxide and temperature stress and thus were inconsistent with their hypothesized role in survival of phagocytosis. On the basis of physiological profiles, possible natural habitats of both species were extrapolated, which proved to be environmental rather than animal-associated. Using comparative genomic analyses we found differences in gene content related to lipid metabolism, cell wall modification and polysaccharide capsule production. Despite the fact that both species cause disseminated infections in apparently healthy humans, it is concluded that they are opportunists rather than pathogens. PMID:29312215
Zanotelli, Matthew R.; Ardalani, Hamisha; Zhang, Jue; Hou, Zhonggang; Nguyen, Eric H.; Swanson, Scott; Nguyen, Bao Kim; Bolin, Jennifer; Elwell, Angela; Bischel, Lauren L.; Xie, Angela W.; Stewart, Ron; Beebe, David J.; Thomson, James A.; Schwartz, Michael P.; Murphy, William L.
2016-01-01
Here, we describe an in vitro strategy to model vascular morphogenesis where human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are encapsulated in peptide-functionalized poly(ethylene glycol) (PEG) hydrogels, either on standard well plates or within a passive pumping polydimethylsiloxane (PDMS) tri-channel microfluidic device. PEG hydrogels permissive towards cellular remodeling were fabricated using thiol-ene photopolymerization to incorporate matrix metalloproteinase (MMP)-degradable crosslinks and CRGDS cell adhesion peptide. Time lapse microscopy, immunofluorescence imaging, and RNA sequencing (RNA-Seq) demonstrated that iPSC-ECs formed vascular networks through mechanisms that were consistent with in vivo vasculogenesis and angiogenesis when cultured in PEG hydrogels. Migrating iPSC-ECs condensed into clusters, elongated into tubules, and formed polygonal networks through sprouting. Genes upregulated for iPSC-ECs cultured in PEG hydrogels relative to control cells on tissue culture polystyrene (TCP) surfaces included adhesion, matrix remodeling, and Notch signaling pathway genes relevant to in vivo vascular development. Vascular networks with lumens were stable for at least 14 days when iPSC-ECs were encapsulated in PEG hydrogels that were polymerized within the central channel of the microfluidic device. Therefore, iPSC-ECs cultured in peptide-functionalized PEG hydrogels offer a defined platform for investigating vascular morphogenesis in vitro using both standard and microfluidic formats. PMID:26945632
The Role of Zic Genes in Inner Ear Development in the Mouse: Exploring Mutant Mouse Phenotypes
Chervenak, Andrew P.; Bank, Lisa M.; Thomsen, Nicole; Glanville-Jones, Hannah C; Skibo, Jonathan; Millen, Kathleen J.; Arkell, Ruth M.; Barald, Kate F.
2014-01-01
Background Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected Results Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2kd/kd and Zic2Ku/Ku mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2Ku/Ku mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. Conclusions The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss. PMID:25178196
Bazzi, Hisham; Soroka, Ekaterina; Alcorn, Heather L; Anderson, Kathryn V
2017-12-19
Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 ( Strip1 ) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1 -null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo. Copyright © 2017 the Author(s). Published by PNAS.
2012-01-01
Background Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT)-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP) II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII→ATI trans-differentiation has not been explored. Method In a controlled nonvascular environment, an in vitro model of ATII→ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation. Results Here, we show that EMAP II significantly blocked ATII→ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA. Conclusion Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia. PMID:22214516
Zepeda Gurrola, Reyna Cristina; Fu, Yajuan; Rodríguez Luna, Isabel Cristina; Benítez Cardoza, Claudia Guadalupe; López López, María de Jesús; López Vidal, Yolanda; Gutíerrez, Germán Rubén Aguilar; Rodríguez Pérez, Mario A; Guo, Xianwu
2017-08-01
The bacterium Helicobacter pylori infects more than 50% of the world population and causes several gastroduodenal diseases, including gastric cancer. Nevertheless, we still need to explore some protein interactions that may be involved in pathogenesis. MreB, an actin homolog, showed some special characteristics in previous studies, indicating that it could have different functions. Protein functions could be realized via protein-protein interactions. In the present study, the MreB protein from H. pylori 26695 fused with two tags 10×His and GST in tandem was overexpressed and purified from Escherchia coli. The purified recombinant protein was used to perform a pull-down assay with H. pylori 26695 cell lysate. The pulled-down proteins were identified by mass spectrometry (MALDI-TOF), in which the known important proteins related to morphogenesis were absent but several proteins related to pathogenesis process were observed. The bacterial two-hybrid system was further used to evaluate the protein interactions and showed that new interactions of MreB respectively with VacA, UreB, HydB, HylB and AddA were confirmed but the interaction MreB-MreC was not validated. These results indicated that the protein MreB in H. pylori has a distinct interactome, does not participate in cell morphogenesis via MreB-MreC but could be related to pathogenesis. Copyright © 2017 Elsevier GmbH. All rights reserved.
Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.
2016-01-01
During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575
Interaction of the receptor FGFRL1 with the negative regulator Spred1.
Zhuang, Lei; Villiger, Peter; Trueb, Beat
2011-09-01
FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs. Copyright © 2011 Elsevier Inc. All rights reserved.
Compensatory branching morphogenesis of stalk cells in the Drosophila trachea.
Francis, Deanne; Ghabrial, Amin S
2015-06-01
Tubes are essential for nutrient transport and gas exchange in multicellular eukaryotes, but how connections between different tube types are maintained over time is unknown. In the Drosophila tracheal system, mutations in oak gall (okg) and conjoined (cnj) confer identical defects, including late onset blockage near the terminal cell-stalk cell junction and the ectopic extension of autocellular, seamed tubes into the terminal cell. We determined that okg and cnj encode the E and G subunits of the vacuolar ATPase (vATPase) and showed that both the V0 and V1 domains are required for terminal cell morphogenesis. Remarkably, the ectopic seamed tubes running along vATPase-deficient terminal cells belonged to the neighboring stalk cells. All vATPase-deficient tracheal cells had reduced apical domains and terminal cells displayed mislocalized apical proteins. Consistent with recent reports that the mTOR and vATPase pathways intersect, we found that mTOR pathway mutants phenocopied okg and cnj. Furthermore, terminal cells depleted for the apical determinants Par6 or aPKC had identical ectopic seamed tube defects. We thus identify a novel mechanism of compensatory branching in which stalk cells extend autocellular tubes into neighboring terminal cells with undersized apical domains. This compensatory branching also occurs in response to injury, with damaged terminal cells being rapidly invaded by their stalk cell neighbor. © 2015. Published by The Company of Biologists Ltd.
Geisinger, Edward; Mortman, Nadav J; Vargas-Cuebas, Germán; Tai, Albert K; Isberg, Ralph R
2018-05-01
The nosocomial pathogen Acinetobacter baumannii is a significant threat due to its ability to cause infections refractory to a broad range of antibiotic treatments. We show here that a highly conserved sensory-transduction system, BfmRS, mediates the coordinate development of both enhanced virulence and resistance in this microorganism. Hyperactive alleles of BfmRS conferred increased protection from serum complement killing and allowed lethal systemic disease in mice. BfmRS also augmented resistance and tolerance against an expansive set of antibiotics, including dramatic protection from β-lactam toxicity. Through transcriptome profiling, we showed that BfmRS governs these phenotypes through global transcriptional regulation of a post-exponential-phase-like program of gene expression, a key feature of which is modulation of envelope biogenesis and defense pathways. BfmRS activity defended against cell-wall lesions through both β-lactamase-dependent and -independent mechanisms, with the latter being connected to control of lytic transglycosylase production and proper coordination of morphogenesis and division. In addition, hypersensitivity of bfmRS knockouts could be suppressed by unlinked mutations restoring a short, rod cell morphology, indicating that regulation of drug resistance, pathogenicity, and envelope morphogenesis are intimately linked by this central regulatory system in A. baumannii. This work demonstrates that BfmRS controls a global regulatory network coupling cellular physiology to the ability to cause invasive, drug-resistant infections.
Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi
Johnson, Aaron N.; Mokalled, Mayssa H.; Valera, Juliana M.; Poss, Kenneth D.; Olson, Eric N.
2013-01-01
Striated muscle development requires the coordinated expression of genes involved in sarcomere formation and contractility, as well as genes that determine muscle morphology. However, relatively little is known about the molecular mechanisms that control the early stages of muscle morphogenesis. To explore this facet of myogenesis, we performed a genetic screen for regulators of somatic muscle morphology in Drosophila, and identified the putative RNA-binding protein (RBP) Hoi Polloi (Hoip). Hoip is expressed in striated muscle precursors within the muscle lineage and controls two genetically separable events: myotube elongation and sarcomeric protein expression. Myotubes fail to elongate in hoip mutant embryos, even though the known regulators of somatic muscle elongation, target recognition and muscle attachment are expressed normally. In addition, a majority of sarcomeric proteins, including Myosin Heavy Chain (MHC) and Tropomyosin, require Hoip for their expression. A transgenic MHC construct that contains the endogenous MHC promoter and a spliced open reading frame rescues MHC protein expression in hoip embryos, demonstrating the involvement of Hoip in pre-mRNA splicing, but not in transcription, of muscle structural genes. In addition, the human Hoip ortholog NHP2L1 rescues muscle defects in hoip embryos, and knockdown of endogenous nhp2l1 in zebrafish disrupts skeletal muscle development. We conclude that Hoip is a conserved, post-transcriptional regulator of muscle morphogenesis and structural gene expression. PMID:23942517
Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta
2016-12-27
A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.
Atabey, N; Gao, Y; Yao, Z J; Breckenridge, D; Soon, L; Soriano, J V; Burke, T R; Bottaro, D P
2001-04-27
Hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of cellular targets during development, homeostasis and tissue regeneration. Inappropriate HGF signaling occurs in several human cancers, and the ability of HGF to initiate a program of protease production, cell dissociation, and motility has been shown to promote cellular invasion and is strongly linked to tumor metastasis. Upon HGF binding, several tyrosines within the intracellular domain of its receptor, c-Met, become phosphorylated and mediate the binding of effector proteins, such as Grb2. Grb2 binding through its SH2 domain is thought to link c-Met with downstream mediators of cell proliferation, shape change, and motility. We analyzed the effects of Grb2 SH2 domain antagonists on HGF signaling and observed potent blockade of cell motility, matrix invasion, and branching morphogenesis, with ED(50) values of 30 nm or less, but only modest inhibition of mitogenesis. These compounds are 1000-10,000-fold more potent anti-motility agents than any previously characterized Grb2 SH2 domain antagonists. Our results suggest that SH2 domain-mediated c-Met-Grb2 interaction contributes primarily to the motogenic and morphogenic responses to HGF, and that these compounds may have therapeutic application as anti-metastatic agents for tumors where the HGF signaling pathway is active.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials.
Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy
2018-01-02
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.
Jackson, Abigail; Kasah, Sahrunizam; Mansour, Suzanne L.; Morrow, Bernice; Basson, M. Albert
2015-01-01
Background The T-box transcription factor Tbx1, is essential for the normal development of multiple organ systems in the embryo. One of the most striking phenotypes in Tbx1−/− embryos is the failure of the caudal pharyngeal pouches to evaginate from the foregut endoderm. Despite considerable interest in the role of Tbx1 in development, the mechanisms whereby Tbx1 controls caudal pouch formation have remained elusive. In particular, the question as to how Tbx1 expression in the pharyngeal endoderm regulates pharyngeal pouch morphogenesis in the mouse embryo is not known. Results To address this question, we produced mouse embryos in which Tbx1 was specifically deleted from the pharyngeal endoderm and as expected, embryos failed to form caudal pharyngeal pouches. To determine the molecular mechanism, we examined expression of Fgf3 and Fgf8 ligands and downstream effectors. Although Fgf8 expression is greatly reduced in Tbx1-deficient endoderm, FGF signaling levels are unaffected. Furthermore, pouch morphogenesis is only partially perturbed by the loss of both Fgf3 and Fgf8 from the endoderm, indicating that neither are required for pouch formation. Conclusions Tbx1 deletion from the pharyngeal endoderm is sufficient to cause caudal pharyngeal arch segmentation defects by FGF-independent effectors that remain to be identified. PMID:24812002
Divakaruni, Arun V; Baida, Cyril; White, Courtney L; Gober, James W
2007-10-01
MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.
Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum sanctum
Nangia-Makker, Pratima; Tait, Larry; Hogan, Victor; Shekhar, Malathy P.V.; Funasaka, Tatsuyoshi; Raz, Avraham
2013-01-01
Ocimum sanctum (OS) is a traditionally used medicinal herb, which shows anti-oxidant, anti-carcinogenic, radio-protective and free radical scavenging properties. So far no detailed studies have been reported on its effects on human cancers. Thus, we analyzed its effects on human breast cancer utilizing in vitro and in vivo methodologies. Aqueous extracts were prepared from the mature leaves of Ocimum sanctum cultivated devoid of pesticides. Tumor progression and angiogenesis related processes like chemotaxis, proliferation, apoptosis, 3-dimensional growth and morphogenesis, angiogenesis, and tumor growth were studied in the presence or absence of the extract and in some experiments a comparison was made with purified commercially available eugenol, apigenin and ursolic acid. Aqueous OS leaf extract inhibits proliferation, migration, anchorage independent growth, three dimensional growth and morphogenesis, and induction of COX-2 protein in breast cancer cells. A comparative analysis with eugenol, apigenin and ursolic acid showed that the inhibitory effects on chemotaxis and three dimensional morphogenesis of breast cancer cells were specific to OS extract. In addition, OS extracts also reduced tumor size and neoangiogenesis in a MCF10 DCIS.com xenograft model of human DCIS. This is the first detailed report showing that OS leaf extract may be of value as a breast cancer preventive and therapeutic agent and might be considered as additional additive in the arsenal of components aiming at combating breast cancer progression and metastasis. PMID:17437270
Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing
2016-10-03
3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm-printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro.
Role of Wnt5a-Ror2 Signaling in Morphogenesis of the Metanephric Mesenchyme during Ureteric Budding
Qiao, Sen; Miyamoto, Mari; Okinaka, Yuka; Yamada, Makiko; Hashimoto, Ryuju; Iijima, Kazumoto; Otani, Hiroki; Hartmann, Christine; Nishinakamura, Ryuichi
2014-01-01
Development of the metanephric kidney begins with the induction of a single ureteric bud (UB) on the caudal Wolffian duct (WD) in response to GDNF (glial cell line-derived neurotrophic factor) produced by the adjacent metanephric mesenchyme (MM). Mutual interaction between the UB and MM maintains expression of GDNF in the MM, thereby supporting further outgrowth and branching morphogenesis of the UB, while the MM also grows and aggregates around the branched tips of the UB. Ror2, a member of the Ror family of receptor tyrosine kinases, has been shown to act as a receptor for Wnt5a to mediate noncanonical Wnt signaling. We show that Ror2 is predominantly expressed in the MM during UB induction and that Ror2- and Wnt5a-deficient mice exhibit duplicated ureters and kidneys due to ectopic UB induction. During initial UB formation, these mutant embryos show dysregulated positioning of the MM, resulting in spatiotemporally aberrant interaction between the MM and WD, which provides the WD with inappropriate GDNF signaling. Furthermore, the numbers of proliferating cells in the mutant MM are markedly reduced compared to the wild-type MM. These results indicate an important role of Wnt5a-Ror2 signaling in morphogenesis of the MM to ensure proper epithelial tubular formation of the UB required for kidney development. PMID:24891614
A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis.
Tameshige, Toshiaki; Okamoto, Satoshi; Lee, Jin Suk; Aida, Mitsuhiro; Tasaka, Masao; Torii, Keiko U; Uchida, Naoyuki
2016-09-26
Secreted peptides mediate intercellular communication [1, 2]. Several secreted peptides in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family regulate morphogenesis of tissues, such as stomata and inflorescences in plants [3-15]. The biological functions of other EPFL family members remain unknown. Here, we show that the EPFL2 gene is required for growth of leaf teeth. EPFL2 peptide physically interacts with ERECTA (ER) family receptor-kinases and, accordingly, the attenuation of ER family activities leads to formation of toothless leaves. During the tooth growth process, responses to the phytohormone auxin are maintained at tips of the teeth to promote their growth [16-19]. In the growing tooth tip of epfl2 and multiple er family mutants, the auxin response becomes broader. Conversely, overexpression of EPFL2 diminishes the auxin response, indicating that the EPFL2 signal restricts the auxin response to the tooth tip. Interestingly, the tip-specific auxin response in turn organizes characteristic expression patterns of ER family and EPFL2 by enhancing ER family expression at the tip while eliminating the EPFL2 expression from the tip. Our findings identify the novel ligand-receptor pairs promoting the tooth growth, and further reveal a feedback circuit between the peptide-receptor system and auxin response as a mechanism for maintaining proper auxin maxima during leaf margin morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Calcium signals act through histone deacetylase to mediate pronephric kidney morphogenesis.
Rothschild, Sarah C; Lee, Hunter J; Ingram, Sarah R; Mohammadi, Daniel K; Walsh, Gregory S; Tombes, Robert M
2018-06-01
Autosomal dominant polycystic kidney disease is the most common monogenetic kidney disorder and is linked to mutations in PKD1 and PKD2. PKD2, a Ca 2+ -conducting TRP channel enriched in ciliated cells and gated by extracellular signals, is necessary to activate the multifunctional Ca 2+/ calmodulin-dependent protein kinase type 2 (CaMK-II), enabling kidney morphogenesis and cilia stability. In this study, antisense morpholino oligonucleotides and pharmacological compounds were employed to investigate the roles of class II HDAC family members (HDAC 4, 5, and 6) in Zebrafish kidney development. While all three class II HDAC genes were expressed throughout the embryo during early development, HDAC5-morphant embryos exhibited anterior cysts and destabilized cloacal cilia, similar to PKD2 and CaMK-II morphants. In contrast, HDAC4-morphant embryos exhibited elongated cloacal cilia and lacked anterior kidney defects. Suppression of HDAC4 partially reversed the cilia shortening and anterior convolution defects caused by CaMK-II deficiency, whereas HDAC5 loss exacerbated these defects. EGFP-HDAC4, but not EGFP-HDAC5, translocated into the nucleus upon CaMK-II suppression in pronephric kidney cells. These results support a model by which activated CaMK-II sequesters HDAC4 in the cytosol to enable primary cilia formation and kidney morphogenesis. Developmental Dynamics 247:807-817, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O
2015-01-01
We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486
Ogasawara, Shun; Shimada, Nao; Kawata, Takefumi
2009-02-01
Expansins are proteins involved in plant morphogenesis, exerting their effects on cellulose to extend cell walls. Dictyostelium is an organism that possesses expansin-like molecules, but their functions are not known. In this study, we analyzed the expL7 (expansin-like 7) gene, which has been identified as a putative target of Dd-STATa, a Dictyostelium homolog of the metazoan signal transducer and activator of transcription (STAT) proteins. Promoter fragments of the expL7 were fused to a lacZ reporter and the expression patterns determined. As expected from the behavior of the endogenous expL7 gene, the expL7/lacZ fusion gene was downregulated in Dd-STATa null slugs. In the parental strain, the expL7 promoter was activated in the anterior tip region. Mutational analysis of the promoter identified a sequence that was necessary for expression in tip cells. In addition, an activator sequence for pstAB cells was identified. These sequences act in combination with the repressor region to prevent ectopic expL7 expression in the prespore and prestalk regions of the slug and culminant. Although the expL7 null mutant showed no phenotypic change, the expL7 overexpressor showed aberrant stalk formation. These results indicate that the expansin-like molecule is important for morphogenesis in Dictyostelium.
Nash, Evelyn E.; Peters, Brian M.; Palmer, Glen E.; Fidel, Paul L.
2014-01-01
Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An established experimental mouse model of Staphylococcus aureus-Candida albicans intra-abdominal infection results in ∼60% mortality within 48 h postinoculation, concomitant with amplified local inflammatory responses, while monomicrobial infections are avirulent. The purpose of this study was to characterize early local and systemic innate responses during coinfection and determine the role of C. albicans morphogenesis in lethality, a trait involved in virulence and physical interaction with S. aureus. Local and systemic proinflammatory cytokines were significantly elevated during coinfection at early time points (4 to 12 h) compared to those in monoinfection. In contrast, microbial burdens in the organs and peritoneal lavage fluid were similar between mono- and coinfected animals through 24 h, as was peritoneal neutrophil infiltration. After optimizing the model for 100% mortality within 48 h, using 3.5 × 107 C. albicans (5× increase), coinfection with C. albicans yeast-locked or hypha-locked mutants showed similar mortality, dissemination, and local and systemic inflammation to the isogenic control. However, coinfection with the yeast-locked C. albicans mutant given intravenously (i.v.) and S. aureus given intraperitoneally (i.p.) failed to induce mortality. These results suggest a unique intra-abdominal interaction between the host and C. albicans-S. aureus that results in strong inflammatory responses, dissemination, and lethal sepsis, independent of C. albicans morphogenesis. PMID:24891104
Bellaire, Anke; Ischebeck, Till; Staedler, Yannick; Weinhaeuser, Isabell; Mair, Andrea; Parameswaran, Sriram; Ito, Toshiro; Schönenberger, Jürg; Weckwerth, Wolfram
2014-01-01
The interrelationship of morphogenesis and metabolism is a poorly studied phenomenon. The main paradigm is that development is controlled by gene expression. The aim of the present study was to correlate metabolism to early and late stages of flower and fruit development in order to provide the basis for the identification of metabolic adjustment and limitations. A highly detailed picture of morphogenesis is achieved using nondestructive micro computed tomography. This technique was used to quantify morphometric parameters of early and late flower development in an Arabidopsis thaliana mutant with synchronized flower initiation. The synchronized flower phenotype made it possible to sample enough early floral tissue otherwise not accessible for metabolomic analysis. The integration of metabolomic and morphometric data enabled the correlation of metabolic signatures with the process of flower morphogenesis. These signatures changed significantly during development, indicating a pronounced metabolic reprogramming in the tissue. Distinct sets of metabolites involved in these processes were identified and were linked to the findings of previous gene expression studies of flower development. High correlations with basic leucine zipper (bZIP) transcription factors and nitrogen metabolism genes involved in the control of metabolic carbon : nitrogen partitioning were revealed. Based on these observations a model for metabolic adjustment during flower development is proposed. PMID:24350948
Koropatnick, Tanya; Goodson, Michael S.; Heath-Heckman, Elizabeth A. C.; McFall-Ngai, Margaret
2014-01-01
The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function and biochemistry of the cells as part of the morphogenic program. PMID:24648207
Zanivan, Sara; Maione, Federica; Hein, Marco Y; Hernández-Fernaud, Juan Ramon; Ostasiewicz, Pawel; Giraudo, Enrico; Mann, Matthias
2013-12-01
Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.
Kuony, Alison; Michon, Frederic
2017-01-01
As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14 + population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion.
Aymone, A C B; Valente, V L S; de Araújo, A M
2013-09-01
Usually the literature on Heliconius show three types of scales, classified based on the correlation between color and ultrastructure: type I - white and yellow, type II - black, and type III - orange and red. The ultrastructure of the scales located at the silvery/brownish surfaces of males/females is for the first time described in this paper. Besides, we describe the ontogeny of pigmentation, the scale morphogenesis and the maturation timing of scales fated to different colors in Heliconius erato phyllis. The silvery/brownish surfaces showed ultrastructurally similar scales to the type I, II and III. The ontogeny of pigmentation follows the sequence red, black, silvery/brownish and yellow. The maturation of yellow-fated scales, however, occurred simultaneously with the red-fated scales, before the pigmentation becomes visible. In spite of the scales at the silvery/brownish surfaces being ultrastructurally similar to the yellow, red and black scales, they mature after them; this suggests that the maturation timing does not show a relationship with the scale ultrastructure, with the deposition timing of the yellow pigment. The analysis of H. erato phyllis scale morphogenesis, as well as the scales ultrastructure and maturation timing, provided new findings into the developmental architecture of color pattern in Heliconius. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.
2010-01-01
Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162
Kuony, Alison; Michon, Frederic
2017-01-01
As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14+ population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion. PMID:29033846
Beckers, Anja; Alten, Leonie; Viebahn, Christoph; Andre, Philipp; Gossler, Achim
2007-01-01
The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and the establishment of laterality, whereas organizer functions in anterior–posterior patterning are apparently not compromised. In mutant embryos, left–right asymmetry of internal organs and expression of laterality markers was randomized. Mutant posterior notochord regions were variable in size and shape, cilia were shortened with highly irregular axonemal microtubuli, and basal bodies were, in part, located abnormally deep in the cytoplasm. The transcription factor Foxj1, which regulates the dynein gene Dnahc11 and is required for the correct anchoring of basal bodies in lung epithelial cells, was down-regulated in mutant nodes. Likewise, the transcription factor Rfx3, which regulates cilia growth, was not expressed in Noto mutants, and various other genes important for cilia function or assembly such as Dnahc5 and Nphp3 were down-regulated. Our results establish Noto as an essential regulator of node morphogenesis and ciliogenesis in the posterior notochord, and suggest Noto acts upstream of Foxj1 and Rfx3. PMID:17884984
Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret
2014-02-01
The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.
Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.
2015-01-01
In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792
Raffel, Glen D; Chu, Gerald C; Jesneck, Jonathan L; Cullen, Dana E; Bronson, Roderick T; Bernard, Olivier A; Gilliland, D Gary
2009-01-01
The infant leukemia-associated gene Ott1 (Rbm15) has broad regulatory effects within murine hematopoiesis. However, germ line Ott1 deletion results in fetal demise prior to embryonic day 10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs and has a significant role in the development of the head and thorax in Drosophila melanogaster. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. The rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This outcome showed that the process of vascular branching morphogenesis in Ott1-deficient animals was regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts showed an enrichment of hypoxia-related genes and a significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways, in addition to being implicated in leukemogenesis, may also be important for the pathogenesis of placental insufficiency and cardiac malformations.
Neuroinfections caused by fungi.
Góralska, Katarzyna; Blaszkowska, Joanna; Dzikowiec, Magdalena
2018-05-21
Fungal infections of the central nervous system (FIs-CNS) have become significantly more common over the past 2 decades. Invasion of the CNS largely depends on the immune status of the host and the virulence of the fungal strain. Infections with fungi cause a significant morbidity in immunocompromised hosts, and the involvement of the CNS may lead to fatal consequences. One hundred and thirty-five articles on fungal neuroinfection in PubMed, Google Scholar, and Cochrane databases were selected for review using the following search words: "fungi and CNS mycoses", CNS fungal infections", "fungal brain infections", " fungal cerebritis", fungal meningitis", "diagnostics of fungal infections", and "treatment of CNS fungal infections". All were published in English with the majority in the period 2000-2018. This review focuses on the current knowledge of the epidemiology, clinical presentations, diagnosis, and treatment of selected FIs-CNS. The FIs-CNS can have various clinical presentations, mainly meningitis, encephalitis, hydrocephalus, cerebral abscesses, and stroke syndromes. The etiologic factors of neuroinfections are yeasts (Cryptococcus neoformans, Candida spp., Trichosporon spp.), moniliaceous moulds (Aspergillus spp., Fusarium spp.), Mucoromycetes (Mucor spp., Rhizopus spp.), dimorphic fungi (Blastomyces dermatitidis, Coccidioides spp., Histoplasma capsulatum), and dematiaceous fungi (Cladophialophora bantiana, Exophiala dermatitidis). Their common route of transmission is inhalation or inoculation from trauma or surgery, with subsequent hematogenous or contiguous spread. As the manifestations of FIs-CNS are often non-specific, their diagnosis is very difficult. A fast identification of the etiological factor of neuroinfection and the application of appropriate therapy are crucial in preventing an often fatal outcome. The choice of effective drug depends on its extent of CNS penetration and spectrum of activity. Pharmaceutical formulations of amphotericin B (AmB) (among others, deoxycholate-AmBd and liposomal L-AmB) have relatively limited distribution in the cerebrospinal fluid (CSF); however, their detectable therapeutic concentrations in the CNS makes them recommended drugs for the treatment of cryptococcal meningoencephalitis (AmBd with flucytosine) and CNS candidiasis (L-AmB) and mucormycosis (L-AmB). Voriconazole, a moderately lipophilic molecule with good CNS penetration, is recommended in the first-line therapy of CNS aspergillosis. Other triazoles, such as posaconazole and itraconazole, with negligible concentrations in the CSF are not considered effective drugs for therapy of CNS fungal neuroinfections. In contrast, clinical data have shown that a novel triazole, isavuconazole, achieved considerable efficacy for the treatment of some fungal neuroinfections. Echinocandins with relatively low or undetectable concentrations in the CSF do not play meaningful role in the treatment of FIs-CNS. Although the number of fungal species causing CNS mycosis is increasing, only some possess well-defined treatment standards (e.g., cryptococcal meningitis and CNS aspergillosis). The early diagnosis of fungal infection, accompanied by identification of the etiological factor, is needed to allow the selection of effective therapy in patients with FIs-CNS and limit their high mortality.
Fgf10 is required for specification of non-sensory regions of the cochlear epithelium
Urness, Lisa D.; Wang, Xiaofen; Shibata, Shumei; Ohyama, Takahiro; Mansour, Suzanne L.
2015-01-01
The vertebrate inner ear is a morphologically complex sensory organ comprised of two compartments, the dorsal vestibular apparatus and the ventral cochlear duct, required for motion and sound detection, respectively. Fgf10, in addition to Fgf3, is necessary for the earliest stage of otic placode induction, but continued expression of Fgf10 in the developing otic epithelium, including the prosensory domain and later in Kolliker’s organ, suggests additional roles for this gene during morphogenesis of the labyrinth. While loss of Fgf10 was implicated previously in semicircular canal agenesis, we show that Fgf10−/+ embryos also exhibit a reduction or absence of the posterior semicircular canal, revealing a dosage-sensitive requirement for FGF10 in vestibular development. In addition, we show that Fgf10−/− embryos have previously unappreciated defects of cochlear morphogenesis, including a somewhat shortened duct, and, surprisingly, a substantially narrower duct. The mutant cochlear epithelium lacks Reissner’s membrane and a large portion of the outer sulcus--two non-contiguous, non-sensory domains. Marker gene analyses revealed effects on Reissner’s membrane as early as E12.5–E13.5 and on the outer sulcus by E15.5, stages when Fgf10 is expressed in close proximity to Fgfr2b, but these effects were not accompanied by changes in epithelial cell proliferation or death. These data indicate a dual role for Fgf10 in cochlear development: to regulate outgrowth of the duct and subsequently as a bidirectional signal that sequentially specifies Reissner’s membrane and outer sulcus non-sensory domains. These findings may help to explain the hearing loss sometimes observed in LADD syndrome subjects with FGF10 mutations. PMID:25624266
Melville, Jane; Hunjan, Sumitha; McLean, Felicity; Mantziou, Georgia; Boysen, Katja; Parry, Laura J
2016-10-01
With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression-a hindlimb-determining gene-in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis-a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology. © 2016 The Authors.
Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S.; Cao, Zhuanqin; Beighley, Donn H.; Yang, Jianchang; Gu, Xing-You
2015-01-01
Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662
Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You
2015-11-01
Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. © 2015 American Society of Plant Biologists. All Rights Reserved.
Lanternier, Fanny; Mahdaviani, Seyed Alireza; Barbati, Elisa; Chaussade, Hélène; Koumar, Yatrika; Levy, Romain; Denis, Blandine; Brunel, Anne-Sophie; Martin, Sophie; Loop, Michèle; Peeters, Julie; de Selys, Ariel; Vanclaire, Jean; Vermylen, Christiane; Nassogne, Marie-Cécile; Chatzis, Olga; Liu, Luyan; Migaud, Mélanie; Pedergnana, Vincent; Desoubeaux, Guillaume; Jouvion, Gregory; Chretien, Fabrice; Darazam, Ilad Alavi; Schäffer, Alejandro A.; Netea, Mihai G.; De Bruycker, Jean-Jacques; Bernard, Louis; Reynes, Jacques; Amazrine, Noureddine; Abel, Laurent; Van der Linden, Dimitri; Harrison, Tom; Picard, Capucine; Lortholary, Olivier; Mansouri, Davood; Casanova, Jean-Laurent; Puel, Anne
2016-01-01
Invasive infections of the central nervous system or digestive tract caused by commensal fungi of the genus Candida are rare and life-threatening. The known risk factors include acquired and inherited immunodeficiencies, with patients often displaying a history of multiple infections. Cases of meningo-encephalitis and/or colitis caused by Candida remain unexplained. We studied five previously healthy children and adults with unexplained invasive disease of the central nervous system, or the digestive tract, or both, caused by Candida spp. The patients were aged 39, 7, 17 37, and 26 years at the time of infection and were unrelated but each born to consanguineous parents of Turkish (two patients), Iranian, Moroccan or Pakistani origin. Meningo-encephalitis was isolated in three patients, associated with colitis in a fourth patient, and the fifth patient suffered from isolated colitis. Inherited CARD9 deficiency was recently reported in otherwise healthy patients with other forms of severe disease caused by Candida, Trichophyton, Phialophora, and Exophiala, including meningo-encephalitis, but not colitis, caused by Candida and Exophiala. We therefore sequenced CARD9 in the five patients. All were found to be homozygous for rare and deleterious mutant CARD9 alleles: R70W and Q289* for the three patients with isolated C. albicans meningo-encephalitis, R35Q for the patient with meningo-encephalitis and colitis caused by C. glabrata, and Q295* for the patient with C. albicans colitis. Regardless of their levels of mutant CARD9 protein, the patients’ monocyte-derived dendritic cells responded poorly to CARD9-dependent fungal agonists (curdlan, heat-killed C. albicans, Saccharomyces cerevisiae and Exophiala dermatitidis). Invasive infections of the CNS or digestive tract caused by Candida in previously healthy children and even adults may be caused by inherited CARD9 deficiency. PMID:25702837
Influence of clinostat rotation on fertilized amphibian egg pattern specification
NASA Technical Reports Server (NTRS)
Neff, A. W.; Smith, R. C.; Malacinski, G. M.; Chung, H.-M.
1984-01-01
Pattern specification in fertile Xenopus eggs rotated on horizontal clinostats was monitored with respect to primary embryonic axis formation, subsequent morphogenesis, and compartmentalization of the cytoplasm. At the speeds of 1 to 24 rpm (which are believed to simulate microgravity) a large percentage of eggs developed normal axial structures. Eggs clinostated at 12 rpm showed a randomization of dorsal/ventral polarity. The cytoplasmic compartments showed some clinostat effects but no abnormal mixing, disruption or dislocation of compartments. It is predicted that Xenopus eggs fertilized and allowed to develop in space will retain normal cytoplasmic density compartments, establish primary axes and undergo normal morphogenesis in space. Their dorsal/ventral polarity may not, however, be determined by the sperm entrance site (as is the case for 1 g eggs).
Brenman, J E; Gao, F B; Jan, L Y; Jan, Y N
2001-11-01
Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.
Measuring the multi-scale integration of mechanical forces during morphogenesis.
Blanchard, Guy B; Adams, Richard J
2011-10-01
The elaborate changes in morphology of an organism during development are the result of mechanical contributions that are a mixture of those generated locally and those that influence from a distance. We would like to know how chemical and mechanical information is transmitted and transduced, how work is done to achieve robust morphogenesis and why it sometimes fails. We introduce a scheme for separating the influence of two classes of forces. Active intrinsic forces integrate up levels of scale to shape tissues. Counter-currently, extrinsic forces exert influence from higher levels downwards and feed back directly and indirectly upon the intrinsic behaviours. We identify the measurable signatures of different kinds of forces and identify the frontiers where work is most needed. Copyright © 2011 Elsevier Ltd. All rights reserved.
The solid state environment orchestrates embryonic development and tissue remodeling
NASA Technical Reports Server (NTRS)
Damsky, C. H.; Moursi, A.; Zhou, Y.; Fisher, S. J.; Globus, R. K.
1997-01-01
Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.
Tissue morphodynamics shaping the early mouse embryo.
Sutherland, Ann E
2016-07-01
Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.
The morpho-mechanical basis of ammonite form.
Moulton, D E; Goriely, A; Chirat, R
2015-01-07
Ammonites are a group of extinct cephalopods that garner tremendous interest over a range of scientific fields and have been a paradigm for biochronology, palaeobiology, and evolutionary theories. Their defining feature is the spiral geometry and ribbing pattern through which palaeontologists infer phylogenetic relationships and evolutionary trends. Here, we develop a morpho-mechanical model for ammonite morphogenesis. While a wealth of observations have been compiled on ammonite form, and several functional interpretations may be found, this study presents the first quantitative model to explain rib formation. Our approach, based on fundamental principles of growth and mechanics, gives a natural explanation for the morphogenesis and diversity of ribs, uncovers intrinsic laws linking ribbing and shell geometry, and provides new opportunities to interpret ammonites' and other mollusks' evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tomato Spotted Wilt Virus Particle Morphogenesis in Plant Cells
Kikkert, Marjolein; Van Lent, Jan; Storms, Marc; Bodegom, Pentcho; Kormelink, Richard; Goldbach, Rob
1999-01-01
A model for the maturation of tomato spotted wilt virus (TSWV) particles is proposed, mainly based on results with a protoplast infection system, in which the chronology of different maturation events could be determined. By using specific monoclonal and polyclonal antisera in immunofluorescence and electron microscopy, the site of TSWV particle morphogenesis was determined to be the Golgi system. The viral glycoproteins G1 and G2 accumulate in the Golgi prior to a process of wrapping, by which the viral nucleocapsids obtain a double membrane. In a later stage of the maturation, these doubly enveloped particles fuse to each other and to the endoplasmic reticulum to form singly enveloped particles clustered in membranes. Similarities and differences between the maturation of animal-infecting (bunya)viruses and plant-infecting tospoviruses are discussed. PMID:9971812
Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling
Sennett, Rachel; Rendl, Michael
2012-01-01
Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356
Msx-1 and Msx-2 in mammary gland development.
Satoh, Kennichi; Ginsburg, Erika; Vonderhaar, Barbara K
2004-04-01
Homeobox genes do not generally function alone to determine cell fate and morphogenesis. Rather it is the distinct combination of various members of the homeobox family of genes and their spatiotemporal patterns of expression that determine cell identity and function. Functional redundancy often makes it difficult to clearly discern the role of any one given homeobox gene. The roles that Msx1 and Msx2 play in branching morphogenesis of the mammary gland are only now becoming more evident. Many signaling pathways and transcription factors are implicated in how these homeobox genes correctly determine the morphological development of the gland. Overexpression of Msx1 and Msx2 may also be involved in tumorigenesis. Additional studies are needed to elucidate the roles of these genes in both breast development and cancer.
Cellular growth in plants requires regulation of cell wall biochemistry.
Chebli, Youssef; Geitmann, Anja
2017-02-01
Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computer modeling in developmental biology: growing today, essential tomorrow.
Sharpe, James
2017-12-01
D'Arcy Thompson was a true pioneer, applying mathematical concepts and analyses to the question of morphogenesis over 100 years ago. The centenary of his famous book, On Growth and Form , is therefore a great occasion on which to review the types of computer modeling now being pursued to understand the development of organs and organisms. Here, I present some of the latest modeling projects in the field, covering a wide range of developmental biology concepts, from molecular patterning to tissue morphogenesis. Rather than classifying them according to scientific question, or scale of problem, I focus instead on the different ways that modeling contributes to the scientific process and discuss the likely future of modeling in developmental biology. © 2017. Published by The Company of Biologists Ltd.
Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves.
Qian, Pingping; Hou, Suiwen; Guo, Guangqin
2009-08-01
Pavement cells have an interlocking jigsaw puzzle-shaped leaf surface pattern. Twenty-three genes involved in the pavement cell morphogenesis were discovered until now. The mutations of these genes through various means lead to pavement cell shape defects, such as loss or lack of interdigitation, the reduction of lobing, gaps between lobe and neck regions in pavement cells, and distorted trichomes. These phenotypes are affected by the organization of microtubules and microfilaments. Microtubule bands are considered corresponding with the neck regions of the cell, while lobe formation depends on patches of microfilaments. The pathway of Rho of plant (ROP) GTPase signaling cascades regulates overall activity of the cytoskeleton in pavement cells. Some other proteins, in addition to the ROPs, SCAR/WAVE, and ARP2/3 complexes, are also involved in the pavement cell morphogenesis.
Hong, Gina; Miller, Heather B; Allgood, Sarah; Lee, Richard; Lechtzin, Noah; Zhang, Sean X
2017-04-01
The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus , Scedosporium , and Trichosporon species and Exophiala dermatitidis , in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions. Copyright © 2017 American Society for Microbiology.
Hong, Gina; Miller, Heather B.; Allgood, Sarah; Lee, Richard; Lechtzin, Noah
2017-01-01
ABSTRACT The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus, Scedosporium, and Trichosporon species and Exophiala dermatitidis, in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions. PMID:28100601
Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert
2017-02-01
The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.
Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.
2013-01-01
During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion. PMID:23195221
Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry
2015-01-01
We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka’s close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans. PMID:25780725
New Insights of Epithelial-Mesenchymal Transition in Cancer Metastasis
Wu, Yadi; Zhou, Binhua P.
2009-01-01
Epithelial-mesenchymal transition (EMT) is a key step during embryonic morphogenesis, heart development, chronic degenerative fibrosis, and cancer metastasis. Several distinct traits have been conveyed by EMT, including cell motility, invasiveness, resistance to apoptosis, and some properties of stem cells. Many signal pathways have contributed to the induction of EMT, such as transforming growth factor-β, Wnt, Hedgehog, Notch, and nuclear factor κB. Over the last few years, increasing evidence has shown that EMT plays an essential role in tumor progression and metastasis. Understanding the molecular mechanism of EMT has a great effect in unraveling the metastatic cascade and may lead to novel interventions for metastatic disease. PMID:18604456
Genetics of Congenital Heart Disease: Past and Present.
Muntean, Iolanda; Togănel, Rodica; Benedek, Theodora
2017-04-01
Congenital heart disease is the most common congenital anomaly, representing an important cause of infant morbidity and mortality. Congenital heart disease represents a group of heart anomalies that include septal defects, valve defects, and outflow tract anomalies. The exact genetic, epigenetic, or environmental basis of congenital heart disease remains poorly understood, although the exact mechanism is likely multifactorial. However, the development of new technologies including copy number variants, single-nucleotide polymorphism, next-generation sequencing are accelerating the detection of genetic causes of heart anomalies. Recent studies suggest a role of small non-coding RNAs, micro RNA, in congenital heart disease. The recently described epigenetic factors have also been found to contribute to cardiac morphogenesis. In this review, we present past and recent genetic discoveries in congenital heart disease.
Computational Modeling of Morphogenesis Regulated by Mechanical Feedback
Ramasubramanian, Ashok; Taber, Larry A.
2008-01-01
Mechanical forces cause changes in form during embryogenesis and likely play a role in regulating these changes. This paper explores the idea that changes in homeostatic tissue stress (target stress), possibly modulated by genes, drive some morphogenetic processes. Computational models are presented to illustrate how regional variations in target stress can cause a range of complex behaviors involving the bending of epithelia. These models include growth and cytoskeletal contraction regulated by stress-based mechanical feedback. All simulations were carried out using the commercial finite element code ABAQUS, with growth and contraction included by modifying the zero-stress state in the material constitutive relations. Results presented for bending of bilayered beams and invagination of cylindrical and spherical shells provide insight into some of the mechanical aspects that must be considered in studying morphogenetic mechanisms. PMID:17318485
Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis
2013-03-01
Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall.
Takacs, Constantin N; Poggio, Sebastian; Charbon, Godefroid; Pucheault, Mathieu; Vollmer, Waldemar; Jacobs-Wagner, Christine
2010-03-01
MreB, the bacterial actin-like cytoskeleton, is required for the rod morphology of many bacterial species. Disruption of MreB function results in loss of rod morphology and cell rounding. Here, we show that the widely used MreB inhibitor A22 causes MreB-independent growth inhibition that varies with the drug concentration, culture medium conditions, and bacterial species tested. MP265, an A22 structural analog, is less toxic than A22 for growth yet equally efficient for disrupting the MreB cytoskeleton. The action of A22 and MP265 is enhanced by basic pH of the culture medium. Using this knowledge and the rapid reversibility of drug action, we examined the restoration of rod shape in lemon-shaped Caulobacter crescentus cells pretreated with MP265 or A22 under nontoxic conditions. We found that reversible restoration of MreB function after drug removal causes extensive morphological changes including a remarkable cell thinning accompanied with elongation, cell branching, and shedding of outer membrane vesicles. We also thoroughly characterized the composition of C. crescentus peptidoglycan by high-performance liquid chromatography and mass spectrometry and showed that MreB disruption and recovery of rod shape following restoration of MreB function are accompanied by considerable changes in composition. Our results provide insight into MreB function in peptidoglycan remodeling and rod shape morphogenesis and suggest that MreB promotes the transglycosylase activity of penicillin-binding proteins.
Nanjo, T; Kobayashi, M; Yoshiba, Y; Sanada, Y; Wada, K; Tsukaya, H; Kakubari, Y; Yamaguchi-Shinozaki, K; Shinozaki, K
1999-04-01
Many organisms, including higher plants, accumulate free proline (Pro) in response to osmotic stress. Although various studies have focused on the ability of Pro as a compatible osmolyte involved in osmotolerance, its specific role throughout plant growth is still unclear. It has been reported that Pro is synthesized from Glu catalyzed by a key enzyme, delta 1-pyrroline-5-carboxylate synthetase (P5CS), in plants. To elucidate essential roles of Pro, we generated antisense transgenic Arabidopsis plants with a P5CS cDNA. Several transgenics accumulated Pro at a significantly lower level than wild-type plants, providing direct evidence for a key role of P5CS in Pro production in Arabidopsis. These antisense transgenics showed morphological alterations in leaves and a defect in elongation of inflorescences. Furthermore, transgenic leaves were hypersensitive to osmotic stress. Microscopic analysis of transgenic leaves, in which the mutated phenotype clearly occurred, showed morphological abnormalities of epidermal and parenchymatous cells and retardation of differentiation of vascular systems. These phenotypes were suppressed by exogenous L-Pro but not by D-Pro or other Pro analogues. In addition, Pro deficiency did not broadly affect all proteins but specifically affected structural proteins of cell walls in the antisense transgenic plants. These results indicate that Pro is not just an osmoregulator in stressed plants but has a unique function involved in osmotolerance as well as in morphogenesis as a major constituent of cell wall structural proteins in plants.
Kruppel-like factor 5 is Required for Formation and Differentiation of the Bladder Urothelium
Bell, Sheila. M.; Zhang, Liqian; Mendell, Angela; Xu, Yan; Haitchi, Hans Michael; Lessard, James L.; Whitsett, Jeffrey A.
2011-01-01
SUMMARY Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The ShhGfpCre transgene was used to delete the Klf5floxed alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra were unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth. PMID:21803035
Nanoscale morphogenesis of nylon-sputtered plasma polymer particles
NASA Astrophysics Data System (ADS)
Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan
2018-05-01
Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α = 0.78, the growth exponent β = 0.35, and the dynamic exponent 1/z = 0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.
Trisomy 21 and Facial Developmental Instability
Starbuck, John M.; Cole, Theodore M.; Reeves, Roger H.; Richtsmeier, Joan T.
2013-01-01
The most common live-born human aneuploidy is trisomy 21, which causes Down syndrome (DS). Dosage imbalance of genes on chromosome 21 (Hsa21) affects complex gene-regulatory interactions and alters development to produce a wide range of phenotypes, including characteristic facial dysmorphology. Little is known about how trisomy 21 alters craniofacial morphogenesis to create this characteristic appearance. Proponents of the “amplified developmental instability” hypothesis argue that trisomy 21 causes a generalized genetic imbalance that disrupts evolutionarily conserved developmental pathways by decreasing developmental homeostasis and precision throughout development. Based on this model, we test the hypothesis that DS faces exhibit increased developmental instability relative to euploid individuals. Developmental instability was assessed by a statistical analysis of fluctuating asymmetry. We compared the magnitude and patterns of fluctuating asymmetry among siblings using three-dimensional coordinate locations of 20 anatomic landmarks collected from facial surface reconstructions in four age-matched samples ranging from 4 to 12 years: 1) DS individuals (n=55); 2) biological siblings of DS individuals (n=55); 3) and 4) two samples of typically developing individuals (n=55 for each sample), who are euploid siblings and age-matched to the DS individuals and their euploid siblings (samples 1 and 2). Identification in the DS sample of facial prominences exhibiting increased fluctuating asymmetry during facial morphogenesis provides evidence for increased developmental instability in DS faces. We found the highest developmental instability in facial structures derived from the mandibular prominence and lowest in facial regions derived from the frontal prominence. PMID:23505010
Trisomy 21 and facial developmental instability.
Starbuck, John M; Cole, Theodore M; Reeves, Roger H; Richtsmeier, Joan T
2013-05-01
The most common live-born human aneuploidy is trisomy 21, which causes Down syndrome (DS). Dosage imbalance of genes on chromosome 21 (Hsa21) affects complex gene-regulatory interactions and alters development to produce a wide range of phenotypes, including characteristic facial dysmorphology. Little is known about how trisomy 21 alters craniofacial morphogenesis to create this characteristic appearance. Proponents of the "amplified developmental instability" hypothesis argue that trisomy 21 causes a generalized genetic imbalance that disrupts evolutionarily conserved developmental pathways by decreasing developmental homeostasis and precision throughout development. Based on this model, we test the hypothesis that DS faces exhibit increased developmental instability relative to euploid individuals. Developmental instability was assessed by a statistical analysis of fluctuating asymmetry. We compared the magnitude and patterns of fluctuating asymmetry among siblings using three-dimensional coordinate locations of 20 anatomic landmarks collected from facial surface reconstructions in four age-matched samples ranging from 4 to 12 years: (1) DS individuals (n = 55); (2) biological siblings of DS individuals (n = 55); 3) and 4) two samples of typically developing individuals (n = 55 for each sample), who are euploid siblings and age-matched to the DS individuals and their euploid siblings (samples 1 and 2). Identification in the DS sample of facial prominences exhibiting increased fluctuating asymmetry during facial morphogenesis provides evidence for increased developmental instability in DS faces. We found the highest developmental instability in facial structures derived from the mandibular prominence and lowest in facial regions derived from the frontal prominence. Copyright © 2013 Wiley Periodicals, Inc.
Chitayat, David; Keating, Sarah; Zand, Dina J; Costa, Teresa; Zackai, Elaine H; Silverman, Earl; Tiller, George; Unger, Sheila; Miller, Stephen; Kingdom, John; Toi, Ants; Curry, Cynthia J R
2008-12-01
Chondrodysplasia punctata (CDP) is etiologically a heterogeneous condition and has been associated with single gene disorders, chromosome abnormalities and teratogenic exposures. The first publication of the association between CDP and maternal autoimmune connective tissue disorder was by Curry et al. 1993]. Chondrodysplasia punctata associated with maternal collagen vascular disease. A new etiology? Presented at the David W. Smith Workshop on Morphogenesis and Malformations, Mont Tremblant, Quebec, August 1993] and subsequently, other cases have been reported. We report on eight cases of maternal collagen vascular disease associated with fetal CDP and included the cases reported by Curry et al. 1993. Chondrodysplasia punctata associated with maternal collagen vascular disease. A new etiology? Presented at the David W. Smith Workshop on Morphogenesis and Malformations, Mont Tremblant, Quebec, August 1993] and Costa et al. [1993]. Maternal systemic lupus erythematosis (SLE) and chondrodysplasia punctata in two infants. Coincidence or association? 1st Meeting of Bone Dysplasia Society, Chicago, June 1993] which were reported in an abstract form. We suggest that maternal autoimmune diseases should be part of the differential diagnosis and investigation in newborns/fetuses with CDP. Thus, in addition to cardiac evaluation, fetuses/newborn to mothers with autoimmune diseases should have fetal ultrasound/newborn examination and if indicated, X-rays, looking for absent/hypoplastic nasal bone, brachydactyly, shortened long bones and epiphyseal stippling. Copyright (c) 2008 Wiley-Liss, Inc.
Alsufyani, Taghreed; Weiss, Anne; Wichard, Thomas
2017-01-01
The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in particular, Roseovarius sp. strain MS2 and Maribacter sp. strain MS6 (formerly identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6). Without this accompanying microbial flora, U. mutabilis forms only callus-like colonies. However, upon addition of the two bacteria species, in effect forming a tripartite community, morphogenesis can be completely restored. Under this strictly standardized condition, bioactive and eco-physiologically-relevant marine natural products can be discovered. Solid phase extracted waterborne metabolites were analyzed using a metabolomics platform, facilitating gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis, combined with the necessary acquisition of biological metadata. Multivariate statistics of the GC-MS and LC-MS data revealed strong differences between Ulva’s growth phases, as well as between the axenic Ulva cultures and the tripartite community. Waterborne biomarkers, including glycerol, were identified as potential indicators for algal carbon source and bacterial-algal interactions. Furthermore, it was demonstrated that U. mutabilis releases glycerol that can be utilized for growth by Roseovarius sp. MS2. PMID:28075408
The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/β-catenin asymmetry pathway
King, Ryan S.; Maiden, Stephanie L.; Hawkins, Nancy C.; Kidd, Ambrose R.; Kimble, Judith; Hardin, Jeff; Walston, Timothy D.
2015-01-01
Dishevelleds are modular proteins that lie at the crossroads of divergent Wnt signaling pathways. The DIX domain of dishevelleds modulates a β-catenin destruction complex, and thereby mediates cell fate decisions through differential activation of Tcf transcription factors. The DEP domain of dishevelleds mediates planar polarity of cells within a sheet through regulation of actin modulators. In Caenorhabditis elegans asymmetric cell fate decisions are regulated by asymmetric localization of signaling components in a pathway termed the Wnt/β-catenin asymmetry pathway. Which domain(s) of Disheveled regulate this pathway is unknown. We show that C. elegans embryos from dsh-2(or302) mutant mothers fail to successfully undergo morphogenesis, but transgenes containing either the DIX or the DEP domain of DSH-2 are sufficient to rescue the mutant phenotype. Embryos lacking zygotic function of SYS-1/β-catenin, WRM-1/β-catenin, or POP-1/Tcf show defects similar to dsh-2 mutants, including a loss of asymmetry in some cell fate decisions. Removal of two dishevelleds (dsh-2 and mig-5) leads to a global loss of POP-1 asymmetry, which can be rescued by addition of transgenes containing either the DIX or DEP domain of DSH-2. These results indicate that either the DIX or DEP domain of DSH-2 is capable of activating the Wnt/β-catenin asymmetry pathway and regulating anterior–posterior fate decisions required for proper morphogenesis. PMID:19298786