Science.gov

Sample records for des sediments marins

  1. Immunotoxicity in plaice exposed to marine sediments in Baie des Anglais on the St. Lawrence Estuary

    SciTech Connect

    Lacroix, A.; Nagler, J.; Lee, K.; Lebeuf, M.; Cyr, D.; Fournier, M. |

    1995-12-31

    The sediments of Baie des Anglais on the St. Lawrence Estuary have a history of environmental contamination. The purpose of the present study was to determine whether or not the immune system of American Plaice (Hippoglossoides Platessoides) could be affected following in-situ exposure at three different sites in and near Baie des Anglais. These sites vary with their proximity to local industry, Sites 1 and 2 (within the bay) being the closest and Site 3 (outside the bay) the furthest away. Fishes placed in cages at each site for three weeks, displayed head kidney cell immune responses (i.e., phagocytosis) modifications indicating that Site 1 was most immunotoxic and site 3 the least. Sediment chemical analysis show a gradient in contaminant concentrations with the highest levels recorded at Site 1, about 10-fold less at Site 2 and 100-fold less at Site 3. Organics predominated (PAHs, PCBs, PCDFs) with heavy metal concentrations low and representative of background levels for the St. Lawrence Estuary. The results obtained indicate that contaminants present in the sediments are bioavailable to fish and significantly affect their immune system.

  2. Sulfur diagenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Goldhaber, M.

    1985-01-01

    Bacterial sulfate reduction occurs in all marine sediments that contain organic matter. Aqueous sulfide (HS-, H2S), one of the initial products of bacterial sulfide reduction, is extremely reactive with iron bearing minerals: sulfur is fixed into sediments as iron sulfide (first FeS and then Fe2S2). A working definition is given of sulfur diagenesis in marine sediments. Controls and consequences of sulfate reduction rates in marine sediments are examined.

  3. Sediment impacts on marine sponges.

    PubMed

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages.

  4. Glacial marine sedimentation: Paleoclimatic significance

    SciTech Connect

    Anderson, J.B.; Ashley, G.M.

    1991-01-01

    This publication resulted from a symposium held during the 1988 Annual Meeting of the Geological Society of America. Many, but not all, contributors to the symposium have papers in this volume. This Special Paper consists of 14 chapters and a Subject/Geographic index. Each chapter has is own list of references. The papers cover a wide range of modem climate/ ocean environments, including papers on glacial marine sediments from Antarctica, the fiords of Alaska, and sediments from the Canadian High Arctic. In addition, three papers discuss [open quote]old[close quotes] glacial marine records (i.e., pre-Tertiary), and one paper discusses the Yakataga Formation of the Gulf of Alaska which is a Miocene-to-late-Pleistocene sequence. The last chapter in the book includes a survey and summary of the evidence for the paleoclimatic significance of glacial marine sediments by the two editors, John Anderson and Gail Ashley. It is worth noting that Anderson and Domack state in the Foreword that there is a considerable variation in terminology; hence they employ a series of definitions which they urge the other authors to employ. They define and explain what they mean by [open quotes]polar ice cap,[close quotes] [open quote]polar tundra (subpolar),[close quotes] and [open quotes]temperate oceanic and boreal[close quotes] in terms of the dominant glacial and glacial marine processes. Although one might quarrel with the terminology, the broad differences between these three glaciological regimes are indeed fundamental and need to be sought in the geological record. The flavor of the volume can be judged by some of the chapter titles. Contributions on Antarctica include a paper by Anderson and other entitled [open quote]Sedimentary facies associated with Antarctica's floating ice masses[close quotes] and a companion paper by Anderson and Domack which deals with the extremely complex glacial marine facies (13 facies are delimited) in McMurdo Sound, Antarctica.

  5. [Bacterial diversity in Lianyungang marine sediment and Qinghai Lake sediment].

    PubMed

    Hou, Mei-Feng; He, Shi-Long; Li, Dong; Zhang, Jie; Zhao, Yun

    2011-09-01

    The 16S rRNA clone libraries of two different saline environments the Lianyungang marine sediment and the Qinghai Lake sediment were constructed. The Shannon diversity index, Chao and ACE richness index and Simpson dominance index of the bacterial communities in the two samples was compared, and the analysis for the bacterial community structures of this two samples was conducted. The results showed that the Shannon diversity index of Lianyungang marine sediment achieved 3.53, and that of Qinghai Lake sediment achieved 3.05, it was concluded that the bacterial communities in the two samples were diverse. The main bacterial communities in Lianyungang marine sediment included Proteobacteria (49.2%) and Bacteroidetes (29.2%), and Bacteroidetes (60.0%) and Firmicutes (26.0%) were the main bacterial communities in Qinghai Lake sediment. Some halotolerant and halophilic bacteria were found, which were important for industrial production and high saline wastewater treatment.

  6. Isolation of cellulolytic actinomycetes from marine sediments

    SciTech Connect

    Veiga, M.; Esparis, A.; Fabregas, J.

    1983-07-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity. 13 references.

  7. Magnesium Isotopic Composition of Subducting Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Teng, F. Z.; Plank, T. A.; Huang, K. J.

    2015-12-01

    Subducted marine sediments have recently been called upon to explain the heterogeneous Mg isotopic composition (δ26Mg, ‰) found in mantle wehrlites (-0.39 to +0.09 [1]) in the context of a homogeneous mantle (-0.25 ± 0.07 [2]). However, no systematic measurements of δ26Mg on marine sediments are currently available to provide direct support to this model. To characterize the Mg inputs to global subduction zones, we measured δ26Mg data for a total of 90 marine sediments collected from 12 drill sites outboard of the world's major subduction zones. These sediments span a 1.73‰ range in δ26Mg. The detritus-dominated sediments have δ26Mg (-0.59 to +0.53) comparable to those of weathered materials on continents (e.g. -0.52 to +0.92 [3]), while the calcareous oozes yield δ26Mg (as light as -1.20) more similar to the seawater value (-0.83 [4]). The negative correlation between δ26Mg and CaO/Al2O3 in these sediments indicates the primary control of mineralogy over the Mg isotopic distribution among different sediment types, as carbonates are enriched in light Mg isotopes (-5.10 to -0.40 [5]) whereas clay-rich weathering residues generally have heavier δ26Mg (e.g. up to +0.65 in saprolite [6]). In addition, chemical weathering and grain-size sorting drive sediments to a heavier δ26Mg, as indicated by the broad positive trends between δ26Mg with CIA (Chemical Index of Alteration [7]) and Al2O3/SiO2, respectively. Collectively, the arc systems sampled in this study represent ~30% of global arc length and the extrapolated global Mg flux of subducting marine sediments accounts for ~9% of the yearly Mg riverine input with a flux-weighted average δ26Mg at -0.26. Subduction of these heterogeneous sediments may not cause significant mantle heterogeneity on a global scale, but the highly variable Mg fluxes and δ26Mg of sediments delivered to different trenches are capable of producing local mantle variations. Volcanic rocks sourced from these mantle domains are thus

  8. Nonlinear compressional waves in marine sediments

    NASA Astrophysics Data System (ADS)

    McDonald, B. Edward

    2005-09-01

    A theory for nonlinear waves in marine sediments must account for the presence of a granular frame filled with water and possibly gas bubbles. When grains are in full contact, the stress-strain relation for the sediment contains a contribution varying as strain to the power 3/2, referred to as the Hertz force. The quadratic nonlinearity parameter derived from the second pressure derivative with respect to density thus diverges in the limit of small strain. We present a simple nonlinear wave equation model (a variant of the NPE) for compressional waves in marine sediments that avoids Taylor expansion and the problem of diverging nonlinearity parameter. An equation of state for partially consolidated sediments is derived from consolidation test results. Pressure is found to increase with overdensity to the power 5/2, indicating an increase in the number of contacts per grain as density increases. Numerical results for nonlinear compressional waves show agreement with analytic self-similar profiles derived from the nonlinear wave equation. [Work supported by the ONR.

  9. Carotenoid diagenesis in a marine sediment

    NASA Technical Reports Server (NTRS)

    Watts, C. D.; Maxwell, J. R.

    1977-01-01

    The major carotenoids at three levels (3, 40, and 175 m below the sediment-water interface) in a core from a marine sediment (Cariaco Trench, off Venezuela) have been examined. Mass and electronic spectral data have provided evidence for the onset of a progressive reduction of carotenoids in the geological column. The time scale of the process appears to depend on the particular carotenoid. Reduction of up to two double bonds is observed for the diol, zeaxanthin, in the oldest sediment (about 340,000 years old) but no reduction is observed in the younger samples (about 5000 and 56,000 years old). The diketone, canthaxanthin, shows evidence of reduction of up to two double bonds in the 56,000-yr sample and up to five double bonds in the oldest sample. No reduction of beta-carotene was observed in any of the samples.

  10. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  11. Metabarcoding Marine Sediments: Preparation of Amplicon Libraries.

    PubMed

    Fonseca, Vera G; Lallias, Delphine

    2016-01-01

    The accurate assessment of community composition and ultimately species identification is of utmost importance in any ecological and evolutionary study. Advances in sequencing technologies have allowed the unraveling of levels of biodiversity never imagined before when applied to large-scale environmental DNA studies (also termed metabarcoding/metagenetics/metasystematics/environmental barcoding). Here, we describe a detailed protocol to assess eukaryotic biodiversity in marine sediments, identifying key steps that should not be neglected when preparing Next-Generation Sequencing (NGS) amplicon libraries: DNA extraction, multiple PCR amplification of DNA barcode markers with index/ tag-primers, and final Illumina MiSeq sequencing library preparation. PMID:27460378

  12. Sediment Burial Intolerance of Marine Macroinvertebrates.

    PubMed

    Hendrick, Vicki J; Hutchison, Zoë L; Last, Kim S

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  13. Sediment Burial Intolerance of Marine Macroinvertebrates

    PubMed Central

    Hendrick, Vicki J.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  14. Sediment Burial Intolerance of Marine Macroinvertebrates.

    PubMed

    Hendrick, Vicki J; Hutchison, Zoë L; Last, Kim S

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  15. Analysis of marine bivalves and sediments

    SciTech Connect

    Zeisler, R.; Stone, S.F.

    1986-01-01

    Recently, environmental monitoring has been complemented by programs for systematic and controlled long-term storage of environmental samples; i.e., environmental specimen banking (ESB). In the US a pilot ESB program is currently expanding to become past of several environmental and human health monitoring projects. The National Status and Trends (NS and T) program on the marine environment, administrated by the National Oceanic and Atmospheric Administration (NOAA), is one of these projects and has initialized new investigations within the ESB research program. This research includes all steps of the ESB operation, with special emphasis on quality assurance in the selection, collection, preparation, storage, and analysis of marine samples according to validated procedures. A unique sequence of instrumental analytical methods involving x-ray fluorescence and neutron activation analysis procedures has been employed for the determination of 44 elements in marine bivalves. The individual procedures are an x-ray fluorescence method based on backscatter with fundamental parameter corrections, prompt gamma activation analysis, and neutron activation analysis with instrumental and radiochemical procedures. This analytical approach has been expanded to include the analysis of sediments and fish tissues.

  16. Metaproteomic analysis of bacterial communities in marine mudflat aquaculture sediment.

    PubMed

    Lin, Rui; Lin, Xiangmin; Guo, Tingting; Wu, Linkun; Zhang, Wenjing; Lin, Wenxiong

    2015-09-01

    Bacteria living in marine sediment play crucial roles in the benthic-pelagic interface coupling process. However, the complexity of the marine environment and the abundance of interfering materials hamper metaproteomic research of the marine mudflat environment. In this study, a modified sequential protein extraction method was used for marine mudflat sediment metaproteomic investigation. For marine sediment samples in cultured clam mudflat, more than 1000 protein spots were visualized in a two-dimensional gel electrophoresis map and 78 % of 194 randomly selected spots were successfully identified by mass spectrometry. We further applied this method to compare long-term clam aquaculture and natural mudflat sediment and identified 53 altered proteins from different microbe resources, which belonged to different functional categories or metabolic pathways. We found that proteins involved in stress/defense response process, ATP regeneration and protein folding more inclined to increase abundance while arginine biosynthesis and signal transduction process related proteins preferred to decrease in clam cultured mudflat sediment. Meanwhile, proteins were abundant in pathogens of bivalves, such as Vibrio and Photobacterium, and decreased in Acinetobacter, after about 8 months clam cultured. Furthermore, the terminal restriction fragment length polymorphism assay was performed to compare microbial community composition between sediments mentioned above. Results showed that the top three enrich genera in natural sediment were Cytophaga, Butyrivibrio and Spirochaeta, while Cytophaga, Spirochaeta and Azoarcus were found enrichment in long-term mudflat aquaculture sediment.

  17. Dissolution and analysis of amorphous silica in marine sediments.

    USGS Publications Warehouse

    Eggimann, D.W.; Manheim, F. T.; Betzer, P.R.

    1980-01-01

    The analytical estimation of amorphous silica in selected Atlantic and Antarctic Ocean sediments, the U.S.G.S. standard marine mud (MAG-1), A.A.P.G. clays, and samples from cultures of a marine diatom, Hemidiscus, has been examined. Our values for amorphous silica-rich circum-Antarctic sediments are equal to or greater than literature values, whereas our values for a set of amorphous silica-poor sediments from a transect of the N. Atlantic at 11oN, after appropriate correction for silica released from clays, are significantly lower than previous estimates from the same region. -from Authors

  18. Bioavailability of sediment-bound contaminants to marine organisms

    SciTech Connect

    Brown, B. |

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  19. Sulfate reduction and methanogenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  20. A thiosulfate shunt in the sulfur cycle of marine sediments.

    PubMed

    Jørgensen, B B

    1990-07-13

    The oxidation of sulfide, generated by bacterial sulfate reduction, is a key process in the biogeochemistry of marine sediments, yet the pathways and oxidants are poorly known. By the use of (35)S-tracer studies of the S cycle in marine and freshwater sediments, a novel shunt function of thiosulfate (S(2)O(3)(2-)) was identified. The S(2)O(3)(2-) constituted 68 to 78 percent of the immediate HS(-)-oxidation products and was concurrently (i) reduced back to HS(-), (ii) oxidized to SO(4)(2-), and (iii) disproportionated to HS(-) + SO(4)(2-). The small thiosulfate pool is thus involved in a dynamic HS(-) - S(2)O(3)(2-) cycle in anoxic sediments. The disproportionation of thiosulfate may help account for the large difference in isotopic composition ((34)S/(32)S) of sulfate and sulfides in sediments and sedimentary rocks.

  1. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin.

    PubMed

    Langenheder, Silke; Comte, Jérôme; Zha, Yinghua; Samad, Md Sainur; Sinclair, Lucas; Eiler, Alexander; Lindström, Eva S

    2016-08-01

    Some bacteria can be preserved over time in deep sediments where they persist either in dormant or slow-growing vegetative stages. Here, we hypothesized that such cells can be revived when exposed to environmental conditions similar to those before they were buried in the sediments. To test this hypothesis, we collected bacteria from sediment samples of different ages (140-8500 calibrated years before present, cal BP) from three lakes that differed in the timing of their physical isolation from the Baltic Sea following postglacial uplift. After these bacterial communities were grown in sterile water from the Baltic Sea, we determined the proportion of 16S rRNA sequence reads associated with marine habitats by extracting the environment descriptive terms of homologous sequences retrieved from public databases. We found that the proportion of reads associated with marine descriptive term was significantly higher in cultures inoculated with sediment layers formed under Baltic conditions and where salinities were expected to be similar to current levels. Moreover, a similar pattern was found in the original sediment layers. Our study, therefore, suggests that remnants of marine bacterial communities can be preserved in sediments over thousands of years and can be revived from deep sediments in lakes of marine origin.

  2. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin.

    PubMed

    Langenheder, Silke; Comte, Jérôme; Zha, Yinghua; Samad, Md Sainur; Sinclair, Lucas; Eiler, Alexander; Lindström, Eva S

    2016-08-01

    Some bacteria can be preserved over time in deep sediments where they persist either in dormant or slow-growing vegetative stages. Here, we hypothesized that such cells can be revived when exposed to environmental conditions similar to those before they were buried in the sediments. To test this hypothesis, we collected bacteria from sediment samples of different ages (140-8500 calibrated years before present, cal BP) from three lakes that differed in the timing of their physical isolation from the Baltic Sea following postglacial uplift. After these bacterial communities were grown in sterile water from the Baltic Sea, we determined the proportion of 16S rRNA sequence reads associated with marine habitats by extracting the environment descriptive terms of homologous sequences retrieved from public databases. We found that the proportion of reads associated with marine descriptive term was significantly higher in cultures inoculated with sediment layers formed under Baltic conditions and where salinities were expected to be similar to current levels. Moreover, a similar pattern was found in the original sediment layers. Our study, therefore, suggests that remnants of marine bacterial communities can be preserved in sediments over thousands of years and can be revived from deep sediments in lakes of marine origin. PMID:26929161

  3. INTERACTION OF METALS AND ORGAINIC CARBON COLLOIDS IN ANOXIC INTERSTITIAL WATERS OF MARINE SEDIMENTS

    EPA Science Inventory

    Marine colloids are an important component of natural water geochemistry critical to the cycling, speciation and bioavailability of metals in marine sediments. In sediment, metals exist in three phases: particulate, colloidal and dissolved. Dissolved metal concentrations have bee...

  4. Marine clathrate mining and sediment separation

    DOEpatents

    Borns, David J.; Hinkebein, Thomas E.; Lynch, Richard W.; Northrop, David A.

    2001-01-01

    A method and apparatus for mining of hydrocarbons from a hydrocarbon-containing clathrate such as is found on the ocean floor. The hydrocarbon containing clathrate is disaggregated from sediment by first disrupting clathrate-containing strata using continuous mining means such as a rotary tilling drum, a fluid injector, or a drill. The clathrate-rich portion of sediment thus disrupted from the sea floor strata are carried through the apparatus to regions of relative lower pressure and/or relative higher temperature where the clathrate further dissociates into component hydrocarbons and water. The hydrocarbon is recovered with the assistance of a gas that is injected and buoys the hydrocarbon containing clathrate helping it to rise to regions of lower pressure and temperature where hydrocarbon is released. The sediment separated from the hydrocarbon returns to the ocean floor.

  5. Meiofauna increases bacterial denitrification in marine sediments

    PubMed Central

    Bonaglia, S.; Nascimento, F. J. A; Bartoli, M.; Klawonn, I.; Brüchert, V.

    2014-01-01

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems. PMID:25318852

  6. Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths

    PubMed Central

    Tenzer, R.; Gladkikh, V.

    2014-01-01

    We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686

  7. The lipid geochemistry of interstitial waters of recent marine sediments

    SciTech Connect

    Saliot, A.; Brault, M.; Boussuge, C. )

    1988-04-01

    To elucidate the nature of biogeochemical processes occurring at the water-sediment interface, the authors have analyzed fatty acids, n-alkanes and sterols contained in interstitial waters collected from oxic and anoxic marine sediments in the eastern and western intertropical Atlantic Ocean and in the Arabian Sea. Lipid concentrations in interstitial waters vary widely and are generally much higher than concentrations encountered in the overlying sea water. Higher concentrations in interstitial water are observed in environments favorable for organic input and preservation of the organic matter in the water column and in the surficial sediment. The analysis of biogeochemical markers in the various media of occurrence of the organic matter such as sea water, suspended particles, settling particles and sediment is discussed in terms of differences existing between these media and bio-transformations of the organic matter at the water-sediment interface.

  8. Ocean currents shape the microbiome of Arctic marine sediments.

    PubMed

    Hamdan, Leila J; Coffin, Richard B; Sikaroodi, Masoumeh; Greinert, Jens; Treude, Tina; Gillevet, Patrick M

    2013-04-01

    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane.

  9. Reburial of fossil organic carbon in marine sediments.

    PubMed

    Dickens, Angela F; Gélinas, Yves; Masiello, Caroline A; Wakeham, Stuart; Hedges, John I

    2004-01-22

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.

  10. Influence of biochar amendments on marine sediment trace metal bioavailability

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  11. Plutonium and americium in anoxic marine sediments: Evidence against remobitization

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Beasley, T. M.

    1981-10-01

    239 + 240Pu activities of 100-450dpm/kg are found down to 15-18 cm in anoxic Saanich Inlet sediments, with a subsurface maximum in undisturbed deposits. Integrated 239 + 240Pu inventories which overlap delivery estimates are present both in two cores of anoxic sediments from Saanich Inlet and in one core of oxic sediments 65 km away in Dabob Bay, Washington. 241Am /239 + 240Pu ratios in Saanich Inlet sediments overlap ratios in unfractionated midnorthern latitude fallout, in oxic sediments from the Washington continental shelf, and in anoxic sediments from two basins off southern California and Mexico. The 239 + 240Pu /137Cs ratios in three intervals of Saanich Inlet sediments are also in agreement with ratios previously reported for oxic coastal marine sediments. The Pu inventories, the Am/Pu and Pu/Cs ratios, and the Saanich Inlet Dabob Bay comparison all argue that Pu is not rapidly remobilized in anoxic sediments. The subsurface 239 + 240Pu activity maximum is not in agreement with the historical record of peak Pu fallout in 1963-1964 unless our 210Pb-derived sedimentation rates are incorrectly high. However, they are in good agreement with previous 210Pb and varve chronologies in Saanich Inlet, and also give reasonable dates for times when 239 + 240Pu and SNAP-9A supplied 238Pu first appear in the sediments. We conclude they properly date the maximum in sedimentary 239 + 240Pu activity at 1970-1973, and seek explanations for the 7-10yr time lag after peak fallout. 239 + 240Pu inventories in one core from the eastern basin of the Cariaco Trench and in two cores from Golfo Dulce. an anoxic basin off the Pacific coast of Costa Rica, are also in reasonable agreement with fallout delivery to these latitudes when excess 210Pb inventories and fluxes are used to verify recovery of at least a major fraction of the most recently deposited sediments.

  12. Evaluating Sediment Stability at Offshore Marine Hydrokinetic Energy Facilities

    NASA Astrophysics Data System (ADS)

    Jones, C. A.; Magalen, J.; Roberts, J.; Chang, G.

    2014-12-01

    Development of offshore alternative energy production methods through the deployment of Marine Hydrokinetic (MHK) devices (e.g. wave, tidal, and wind generators) in the United States continues at a rapid pace, with significant public and private investment in recent years. The installation of offshore MHK systems includes cabling to the shoreline and some combination of bottom foundation (e.g., piles, gravity bases, suction buckets) or anchored floating structure. Installation of any of this infrastructure at the seabed may affect coastal sediment dynamics. It is, therefore, necessary to evaluate the interrelationships between hydrodynamics and seabed dynamics and the effects of MHK foundations and cables on sediment transport. If sufficient information is known about the physical processes and sediment characteristics of a region, hydrodynamic and sediment transport models may be developed to evaluate near and far-field sediment transport. The ultimate goal of these models and methods is to quantitatively evaluate changes to the baseline seabed stability due to the installation of MHK farms in the water. The objective of the present study is to evaluate and validate wave, current, and sediment transport models (i.e., a site analysis) that may be used to estimate risk of sediment mobilization and transport. While the methodology and examples have been presented in a draft guidance document (Roberts et al., 2013), the current report presents an overall strategy for model validation, specifically for a case study in the Santa Cruz Bight, Monterey Bay, CA. Innovative techniques to quantify the risk of sediment mobility has been developed to support these investigations. Public domain numerical models are utilized to estimate the near-shore wave climate (SWAN: Simulating Waves Near-shore) and circulation and sediment transport (EFDC: Environmental Fluid Dynamics Code) regimes. The models were validated with field hydrodynamic data. Sediment size information was

  13. Glacial-marine and glacial-lacustrine sedimentation in Sebago Lake, Maine: Locating the marine limit

    SciTech Connect

    Johnston, R.A.; Kelley, J.T. ); Belknap, D. . Dept. of Geological Sciences)

    1993-03-01

    The marine limit in Maine marks a sea-level highstand at approximately 13 ka. It was inferred to cross Sebago Lake near Frye Island by Thompson and Borns (1985) on the Surficial Geological Map of Maine, dividing the lake into a northern glacial-lacustrine basin and a southern glacial-marine basin. This study examined the accuracy of the mapped marine limit in the lake and the nature of glacial-lacustrine and glacial-marine facies in Maine. Recognition of the marine limit is usually based on mapped shorelines, glacial-marine deltas, and contacts with glacial-marine sediments. This study, in Maine's second largest lake, collected 100 kilometers of side-scan sonar images, 100 kilometers of seismic reflection profiles, and one core. Side-scan sonar records show coarse sand and gravel and extensive boulder fields at an inferred grounding-line position near Frye Island, where the marine limit was drawn. ORE Geopulse seismic reflection profiles reveal a basal draping unit similar to glacial-marine units identified offshore. Later channels cut more than 30 m into the basal stratified unit. In addition, till and a possible glacial-tectonic grounding-line feature were identified. Slumps and possible spring disruptions are found in several locations. The top unit is an onlapping ponded Holocene lacustrine unit. Total sediment is much thicker in the southern basin; the northern basin, >97 m deep, north of the marine limit appears to have been occupied by an ice block. Retrieved sediments include 12 meters of rhythmites. Microfossil identifications and dating will resolve the environments and time of deposition in this core.

  14. Ecotoxicological characterization of marine sediment in Kostrena coastal area.

    PubMed

    Linsak, Zeljko; Linsak, Dijana Tomić; Glad, Marin; Cenov, Arijana; Coklo, Mirna; Coklo, Miran; Manestar, Dubravko; Mićović, Vladimir

    2012-12-01

    Samples of marine sediment were taken on 4 selected sites close to the shipyard industry in Kostrena coastal area. Concentration of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (Cu, Pb, Zn, Hg, Fe) were analyzed from chemical-analytical and toxicological aspect. For toxicity detection, the bacterial bioluminescence test (Vibrio fisheri) was used. Concentration of total PAHs varied in the range from 697 to 7807 microg/kg dry weight in marine sediments. The concentration of PCBs in sediment was 1.1 mg/kg dry weight. The highest concentrations of heavy metals were found at the station within the shipyard. PAH toxicity was not correlated with the toxic potential of sediments. The obtained results indicate a high degree of environmental risk, especially at stations within the shipyard, with the 54% possibility of toxic effects. Chemical determination of the concentration of conventional pollutants is not sufficient for assessing the quality of the marine environment and it is necessary to use other approaches in order to evaluate the biological impact.

  15. Preservation potential of ancient plankton DNA in Pleistocene marine sediments.

    PubMed

    Boere, A C; Rijpstra, W I C; De Lange, G J; Sinninghe Damsté, J S; Coolen, M J L

    2011-09-01

    Recent studies have shown that ancient plankton DNA can be recovered from Holocene lacustrine and marine sediments, including from species that do not leave diagnostic microscopic fossils in the sediment record. Therefore, the analysis of this so-called fossil plankton DNA is a promising approach for refining paleoecological and paleoenvironmental information. However, further studies are needed to reveal whether DNA of past plankton is preserved beyond the Holocene. Here, we identified past eukaryotic plankton members based on 18S rRNA gene profiling in eastern Mediterranean Holocene and Pleistocene sapropels S1 (~9 ka), S3 (~80 ka), S4 (~105 ka), and S5 (~125 ka). The majority of preserved ~400- to 500-bp-long 18S rDNA fragments of microalgae that were studied in detail (i.e. from haptophyte algae and dinoflagellates) were found in the youngest sapropel S1, whereas their specific lipid biomarkers (long-chain alkenones and dinosterol) were also abundant in sediments deposited between 80 and 124 ka BP. The late-Pleistocene sediments mainly contained eukaryotic DNA of marine fungi and from terrestrial plants, which could have been introduced via the river Nile at the time of deposition and preserved in pollen grains. A parallel analysis of Branched and Isoprenoid Tetraethers (i.e. BIT index) showed that most of the organic matter in the eastern Mediterranean sediment record was of marine (e.g. pelagic) origin. Therefore, the predominance of terrestrial plant DNA over plankton DNA in older sapropels suggests a preferential degradation of marine plankton DNA.

  16. Detoxification of hazardous dust with marine sediment.

    PubMed

    Wei, Yu-Ling; Lin, Chang-Yuan; Wang, H Paul

    2014-08-30

    Hazardous electric arc furnace dust containing dioxins/furans and heavy metals is blended with harbor sediment, fired at 950-1100 °C to prepare lightweight aggregates. Dust addition can lower the sintering temperature by about 100 °C, as compared to a typical industrial process. After firing at 950 °C and 1050 °C, more than 99.85% of dioxins/furans originally present in the dust have been removed and/or destructed in the mix containing a dust/sediment ratio of 50:100. The heavy metals leached from all fired mixes are far below Taiwan EPA legal limits. The particle density of the lightweight aggregates always decreases with increasing firing temperature. Greater addition of the dust results in a considerably lower particle density (mostly <2.0 g cm(-3)) fired at 1050 °C and 1100 °C. However, firing at temperatures lower than 1050 °C produces no successful bloating, leading to a denser particle density (>2.0 g cm(-3)) that is typical of bricks.

  17. Mycodiversity in marine sediments contaminated by heavy metals: preliminary results

    NASA Astrophysics Data System (ADS)

    Zotti, Mirca; Carbone, Cristina; Cecchi, Grazia; Consani, Sirio; Cutroneo, Laura; Di Piazza, Simone; Gabutto, Giacomo; Greco, Giuseppe; Vagge, Greta; Capello, Marco

    2016-04-01

    Fungi represent the main decomposers of woody and herbaceous substrates in the marine ecosystems. To date there is a gap in the knowledge about the global diversity and distribution of fungi in marine habitats. On the basis of their biological diversity and their role in ecosystem processes, marine fungi may be considered one of the most attractive groups of organisms in modern biotechnology, e.g. ecotoxic metal bioaccumulation. Here we report the data about the first mycological survey in the metal contaminated coastal sediments of the Gromolo Bay. The latter is located in Ligurian Sea (Eastern Liguria, Italy) and is characterized by an enrichment of heavy metals due to pollution of Gromolo Torrent by acidic processes that interest Fe-Cu sulphide mine. 24 samples of marine sediments were collected along a linear plot in front of the shoreline in July 2015. Each sample was separated into three aliquot for mineralogical, chemical analyses and fungal characterization. The sediment samples are characterised by clay fractions (illite and chlorite), minerals of ophiolitic rocks (mainly serpentine, pyroxene and plagioclase) and quartz and are enriched some chemical elements of environmental importance (such as Cu, Zn, Pb, Cd, As). For fungal characterisation the sediment samples were inoculated in Petri dishes on different culture media (Malt Extract Agar and Rose Bengal) prepared with sea water and added with antibiotics. The inoculated dishes were incubated at 20°C in the dark for 28 days. Every week fungal growth was monitored counting the number of colonies. Later, the colonies were isolated in axenic culture for further molecular analysis. The mycodiversity evaluate on the basis of Colony Forming Units (CFU) and microfungal-morphotype characterised by macro-and micro-morphology. Until now on the 72 Petri dishes inoculated 112 CFU of filamentous fungi were counted, among these about 50 morphotypes were characterized. The quantitative results show a mean value of 4

  18. Marine dredged sediments as new materials resource for road construction.

    PubMed

    Siham, Kamali; Fabrice, Bernard; Edine, Abriak Nor; Patrick, Degrugilliers

    2008-01-01

    Large volumes of sediments are dredged each year in Europe in order to maintain harbour activities. With the new European Union directives, harbour managers are encouraged to find environmentally sound solutions for these materials. This paper investigates the potential uses of Dunkirk marine dredged sediment as a new material resource for road building. The mineralogical composition of sediments is evaluated using X-ray diffraction and microscopy analysis. Since sediments contain a high amount of water, a dewatering treatment has been used. Different suitable mixtures, checking specific geotechnical criteria as required in French standards, are identified. The mixtures are then optimized for an economical reuse. The mechanical tests conducted on these mixtures are compaction, bearing capacity, compression and tensile tests. The experimental results show the feasibility of the beneficial use of Dunkirk marine dredged sand and sediments as a new material for the construction of foundation and base layers for roads. Further research is now needed to prove the resistance of this new material to various environmental impacts (e.g., frost damage).

  19. Heterotrophic potential of Atribacteria from deep marine Antarctic sediment

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Orcutt, B.; Mandernack, K. W.; Spear, J. R.

    2015-12-01

    Bacteria belonging to the newly classified candidate phylum "Atribacteria" (formerly referred to as "OP9" and "JS1") are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. This study observed a steady increase of Atribacteria-related sequences with increasing sediment depth throughout the methane-rich zone of the Adélie Basin, Antarctica (according to a 16S rRNA gene survey). To explore the functional potential of Atribacteria in this basin, samples from various depths (14, 25 and 97 meters below seafloor), were subjected to metagenomic sequencing. Additionally, individual cells were separated from frozen, unpreserved sediment for whole genome amplification. The successful isolation and sequencing of a single-amplified Atribacteria genome from these unpreserved sediments demonstrates a future use of single cell techniques with previously collected and frozen sediments. Our resulting single-cell amplified genome, combined with metagenomic interpretations, provides our first insights to the functional potential of Atribacteria in deep subsurface settings. As observed for non-marine Atribacteria, genomic analyses suggest a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments.

  20. In situ tensile fracture toughness of surficial cohesive marine sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce D.; Barry, Mark A.; Boudreau, Bernard P.; Jumars, Peter A.; Dorgan, Kelly M.

    2012-02-01

    This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter's clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23-50 μm) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.

  1. Heterotrophic euglenids from marine sediments of cape tribulation, tropical australia

    NASA Astrophysics Data System (ADS)

    Je Lee, Won

    2006-06-01

    This paper presents new data on free-living heterotrophic euglenids (Euglenozoa, Protista) that occurred in the marine sediments at Cape Tribulation, Queensland, Australia. Twenty-nine species from 9 genera are described with uninterpreted records based on light microscopy, including one new taxon: Notosolenus capetribulationi n. sp. There was little evidence for endemism because the majority of heterotrophic euglenid species encountered here have been reported or were found from other habitats.

  2. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition

  3. Metatranscriptomic insights into polyphosphate metabolism in marine sediments.

    PubMed

    Jones, Daniel S; Flood, Beverly E; Bailey, Jake V

    2016-04-01

    Microorganisms can influence inorganic phosphate (Pi) in pore waters, and thus the saturation state of phosphatic minerals, by accumulating and hydrolyzing intracellular polyphosphate (poly-P). Here we used comparative metatranscriptomics to explore microbial poly-P utilization in marine sediments. Sulfidic marine sediments from methane seeps near Barbados and from the Santa Barbara Basin (SBB) oxygen minimum zone were incubated under oxic and anoxic sulfidic conditions. Pi was sequestered under oxic conditions and liberated under anoxic conditions. Transcripts homologous to poly-P kinase type 2 (ppk2) were 6-22 × more abundant in metatranscriptomes from the anoxic incubations, suggesting that reversible poly-P degradation by Ppk2 may be an important metabolic response to anoxia by marine microorganisms. Overall, diverse taxa differentially expressed homologues of genes for poly-P degradation (ppk2 and exopolyphosphatase) under different incubation conditions. Sulfur-oxidizing microorganisms appeared to preferentially express genes for poly-P degradation under anoxic conditions, which may impact phosphorus cycling in a wide range of oxygen-depleted marine settings.

  4. Modeling signal loss in surficial marine sediments containing occluded gas.

    PubMed

    Gardner, Trevor

    2003-03-01

    The presence of occluded gas in inland lakes, harbor muds, and surficial marine sediments is well documented. Surficial gassy sediments cause underlying beds to be acoustically impenetrable to seismic surveys; therefore, the modeling of signal loss arising from mudline reflection and transmission absorption is of particular interest. The Anderson and Hampton [J. Acoust. Soc. Am. 67, 1890-1903 (1980)] model for attenuation in gassy sediments was evaluated against the physical and acoustical properties of eight laboratory silty clay soils containing different amounts of occluded gas in bubbles of 0.2- to 1.8-mm diameter. The model was shown to give good agreement with measured data over the lower frequencies of bubble resonance and above resonance. It did not agree with measured data at frequencies below resonance, for which the model did not simulate the bulk properties of the gassy soils. The Mackenzie [J. Acoust. Soc. Am. 32, 221-231 (1960)] model for reflection loss was also examined for the gassy soils. The maximum reflection losses of 6 dB, at a grazing angle of 40 degrees, does not wholly support speculation by Levin [Geophysics 27, 35-47 (1962)] of highly reflective pressure-release boundaries arising from substantial reflection and absorption losses in gassy sediments. It was found that mudlines formed from sediments with significant occluded gas may be successfully penetrated, although the substantial absorption loss arising from signal transmission through the sediment prevents penetration of the surficial layers to much beyond a meter in depth.

  5. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    USGS Publications Warehouse

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  6. The chromium isotope composition of reducing and oxic marine sediments

    NASA Astrophysics Data System (ADS)

    Gueguen, Bleuenn; Reinhard, Christopher T.; Algeo, Thomas J.; Peterson, Larry C.; Nielsen, Sune G.; Wang, Xiangli; Rowe, Harry; Planavsky, Noah J.

    2016-07-01

    The chromium (Cr) isotope composition of marine sediments has the potential to provide new insights into the evolution of Earth-surface redox conditions. There are significant but poorly constrained isotope fractionations associated with oxidative subaerial weathering and riverine transport, the major source of seawater Cr, and with partial Cr reduction during burial in marine sediments, the major sink for seawater Cr. A more comprehensive understanding of these processes is needed to establish global Cr isotope mass balance and to gauge the utility of Cr isotopes as a paleoredox proxy. For these purposes, we investigated the Cr isotope composition of reducing sediments from the upwelling zone of the Peru Margin and the deep Cariaco Basin. Chromium is present in marine sediments in both detrital and authigenic phases, and to estimate the isotopic composition of the authigenic fraction, we measured δ53Cr on a weakly acid-leached fraction in addition to the bulk sediment. In an effort to examine potential variability in the Cr isotope composition of the detrital fraction, we also measured δ53Cr on a variety of oxic marine sediments that contain minimal authigenic Cr. The average δ53Cr value of the oxic sediments examined here is -0.05 ± 0.10‰ (2σ, n = 25), which is within the range of δ53Cr values characteristic of the bulk silicate Earth. This implies that uncertainty in estimates of authigenic δ53Cr values based on bulk sediment analyses is mainly linked to estimation of the ratio of Cr in detrital versus authigenic phases, rather than to the Cr-isotopic composition of the detrital pool. Leaches of Cariaco Basin sediments have an average δ53Cr value of +0.38 ± 0.10‰ (2σ, n = 7), which shows no dependency on sample location within the basin and is close to that of Atlantic deepwater Cr (∼+0.5‰). This suggests that authigenic Cr in anoxic sediments may reliably reflect the first-order Cr isotope composition of deepwaters. For Peru Margin samples

  7. Sulfur and carbon cycling in organic-rich marine sediments

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1985-01-01

    Nearshore, continental shelf, and slope sediments are important sites of microbially mediated carbon and sulfur cycling. Marine geochemists investigated the rates and mechanisms of cycling processes in these environments by chemical distribution studies, in situ rate measurements, and steady state kinetic modeling. Pore water chemical distributions, sulfate reduction rates, and sediment water chemical fluxes were used to describe cycling on a ten year time scale in a small, rapidly depositing coastal basin, Cape Lookout Bight, and at general sites on the upper continental slope off North Carolina, U.S.A. In combination with 210 Pb sediment accumulation rates, these data were used to establish quantitative carbon and sulfur budgets as well as the relative importance of sulfate reduction and methanogeneis as the last steps in the degradation of organic matter.

  8. Phylogenetic analysis of the bacterial communities in marine sediments.

    PubMed Central

    Gray, J P; Herwig, R P

    1996-01-01

    For the phylogenetic analysis of microbial communities present in environmental samples microbial DNA can be extracted from the sample, 16S rDNA can be amplified with suitable primers and the PCR, and clonal libraries can be constructed. We report a protocol that can be used for efficient cell lysis and recovery of DNA from marine sediments. Key steps in this procedure include the use of a bead mill homogenizer for matrix disruption and uniform cell lysis and then purification of the released DNA by agarose gel electrophoresis. For sediments collected from two sites in Puget Sound, over 96% of the cells present were lysed. Our method yields high-molecular-weight DNA that is suitable for molecular studies, including amplification of 16S rRNA genes. The DNA yield was 47 micrograms per g (dry weight) for sediments collected from creosote-contaminated Eagle Harbor, Wash. Primers were selected for the PCR amplification of (eu)bacterial 16S rDNA that contained linkers with unique 8-base restriction sites for directional cloning. Examination of 22 16S rDNA clones showed that the surficial sediments in Eagle Harbor contained a phylogenetically diverse population of organisms from the Bacteria domain (G. J. Olsen, C. R. Woese, and R. Overbeek, J. Bacteriol. 176:1-6, 1994) with members of six major lineages represented: alpha, delta, and gamma Proteobacteria; the gram-positive high G+C content subdivision; clostridia and related organisms; and planctomyces and related organisms. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA database. The analysis of clonal representives in the first report using molecular techniques to determine the phylogenetic composition of the (eu)bacterial community present in coastal marine sediments. PMID:8899989

  9. Archaeal Diversity in Marine Sediments in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Wang, P.; Liu, Z.; Zhao, M.; Zhang, C.

    2010-12-01

    Archaea are widespread and play an important role in the global carbon and nitrogen cycles. However, we still have limited knowledge about archaeal diversity and their function in the natural environment. The purpose of this study was to examine the diversity, distribution and abundance of archaea associated with methane-rich sediments in the South China Sea. A gravity core (HQ08-48PC, 714 cm) was collected from the northern South China Sea and aseptically sliced into 20-cm sections. Samples from near the surface (0-20 cm), middle (350-370 cm) and bottom (630-650 cm) of the core were used for the construction of archaeal clone libraries. Chemical analysis indicated that the core was rich in methane (13.6-58.8 ppm) and had low TOC/TN ratios (< 8), which indicated a marine source of the organic matter. Total amino acids ranged between 2.72 µmol/g and 8.75 µmol/g. Phylogenetic analysis revealed that archaeal community structures were dramatically different and Crenarchaeaota dominates over Euryarchaeota among the surface, middle and bottom sediments of the core. The dominant archaeal groups were MGI (40%), MBGB (27%) and MCG (9%) in the surface sediment, MCG (35%), MBGD (20%) and MCG (20%) in the middle sediment, and MCG (52%) and MBGD (33%) in the bottom sediment. MCG and MBGD increased in phytotypes with increasing depth of the core, indicating their potential importance in deeper marine subsurface. The archaeal lipids (GDGTs) showed an increase in abundance with depth. Calculations of TEX86 based on certain types of GDGTs suggested a dramatic change in sea surface temperature (SST) that might correspond to the transition from the last glacial maximum (LGM) to post-glacial period. This study will enhance our understanding of archaeal diversity and function as well as their paleoclimate applications in the South China Sea.

  10. Bacterial activities driving arsenic speciation and solubility in marine sediments

    NASA Astrophysics Data System (ADS)

    Battaglia-Brunet, F.; Seby, F.; Crouzet, C.; Joulian, C.; Mamindy-Pajany, Y.; Guezennec, A. G.; Hurel, C.; Marmier, N.; Bataillard, P.

    2012-04-01

    Harbour and marina sediments represent particular environments, with high concentrations in organic carbon and pollutants. Over 50 million m3 of marine sediments are dredged every year in French maritime and commercial ports, to maintain the water depth suitable for navigation, and the most part of them is discharged in deeper sea zones. The present study aimed to elucidate, using a range of complementary approaches, the influence of bacterial activity on arsenic speciation and mobility in marina sediments. Two sites were considered: L'Estaque, impacted by metallurgical activities and by the commercial port of Marseille, and St-Mandrier, less polluted, affected by classical chemical pollutants associated to professional and recreational boating. Arsenic concentration was noticeably higher in l'Estaque sediment (200-350 mg/kg) than in St-Mandrier sediment (15-50 mg/kg). In the solid phases, As(III) was the dominant species in L'Estaque sediment, whereas As(V) was the main form in St Mandrier sediment. At both sites, arsenic was the major trace element detected in interstitial water. Free sulfide and thio-arsenic complexes were detected in the interstitial water of l'Estaque sediment, suggesting a role of sulfate-reduction bacterial activity on arsenic solubility. Anaerobic microcosm experiments confirmed this hypothesis, as stimulation of sulfate-reduction induced a dramatic increase of arsenic concentration in the liquid phase, linked to the formation of soluble thio-arsenic complexes. Nevertheless, microcosms performed in aerobic conditions showed that bacterial activity globally decreased the transfer of arsenic from the sediment toward the overlying water. A red-brown fine layer developed at the sediment-water interface. Altogether, these results suggest that the sediment-water interface zone and the close transition area between aerobic and anaerobic conditions host intense biogeochemical reactions involving As, Fe and S species. These reactions most probably

  11. Toxicity and photoactivation of PAH mixtures in marine sediment

    SciTech Connect

    Swartz, R.; Ferraro, S.; Lamberson, J.; Cole, F.; Ozretich, R.; Boese, B.; Schults, D.; Behrenfeld, M.; Ankley, G.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10 d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.

  12. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline.

    PubMed

    Ahumada-Rudolph, R; Novoa, V; Sáez, K; Martínez, M; Rudolph, A; Torres-Diaz, C; Becerra, J

    2016-08-01

    Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry. PMID:27418075

  13. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline.

    PubMed

    Ahumada-Rudolph, R; Novoa, V; Sáez, K; Martínez, M; Rudolph, A; Torres-Diaz, C; Becerra, J

    2016-08-01

    Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry.

  14. Centimeter-long electron transport in marine sediments via conductive minerals.

    PubMed

    Malvankar, Nikhil S; King, Gary M; Lovley, Derek R

    2015-02-01

    Centimeter-long electron conduction through marine sediments, in which electrons derived from sulfide in anoxic sediments are transported to oxygen in surficial sediments, may have an important influence on sediment geochemistry. Filamentous bacteria have been proposed to mediate the electron transport, but the filament conductivity could not be verified and other mechanisms are possible. Surprisingly, previous investigations have never actually measured the sediment conductivity or its basic physical properties. Here we report direct measurements that demonstrate centimeter-long electron flow through marine sediments, with conductivities sufficient to account for previously estimated electron fluxes. Conductivity was lost for oxidized sediments, which contrasts with the previously described increase in the conductivity of microbial biofilms upon oxidation. Adding pyrite to the sediments significantly enhanced the conductivity. These results suggest that the role of conductive minerals, which are more commonly found in sediments than centimeter-long microbial filaments, need to be considered when modeling marine sediment biogeochemistry.

  15. MARINE SEDIMENT TOXICITY IDNETIFICATION EVALUATION METHODS FOR THE ANIONIC METALS ARSENIC AND CHROMIUM

    EPA Science Inventory

    Marine sediments accumulate a diversity of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity Identification Evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole sedimen...

  16. IMPORTANCE OF INTERSTITIAL, OVERLYING WATER AND WHOLE SEDIMENT EXPOSURES TO BIOACCUMUALTION BY MARINE BIVALVES

    EPA Science Inventory

    During the performance of contaminated sediment studies using nonpolar pollutants, like polyclorinated biphenyls (PCBs), with marine organisms, the routes of exposure can include whole sediment, overlying waters and interstitial waters (assuming no feeding). These routes can be f...

  17. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  18. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; Schweitzer, K.A.; McKinney, R.A.; Phelps, D.K.

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentrations of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial waters did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  19. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; McKinney, R.A. ); Schweitzer, K.A. ); Phelps, D.K. )

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentration of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial water did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  20. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  1. Trace metal seasonal variations in Texas marine sediments

    USGS Publications Warehouse

    Holmes, C.W.

    1986-01-01

    Trace elements in coastal environments are derived from three major sources: (1) the bordering watershed; (2) the offshore marine environment; and (3) industrial and/or urban effluent. The site of deposition, however, is controlled by physical and chemical processes in the coastal zone. In many cases, these processes are controlled by climate and can vary seasonally. In the harbor at Corpus Christi, Texas, the summer climate creates an oxygen-poor environment in the water column near the sediment-water interface. This causes chalcophilic metals to precipitate from the water, resulting in high concentrations in the sediments near the source. During the winter, turbulence created by strong winds causes the entire water mass to become aerated and oxidizing, and remobilization of some metals results. In addition, this turbulence accelerates circulation which transports the metal-enriched waters from the harbor. On the outer continental shelf of south Texas, the infaunal activity varies seasonally with bottom water temperatures. As this infaunal activity has an effect on the chemical environment within the sediment near the sediment-water interface, the observed trace metal content at the interface also appears to change with the seasons. ?? 1986.

  2. Idealized model of nitrogen recycling in marine sediments

    SciTech Connect

    Billen, G.

    1982-04-01

    A model of the interdependent processes involved in nitrogen mineralization in marine sediments is presented, based on data collected in the sandy sediments of the North Sea. It relates the flux of organic material deposited in the sediments to the release of dissolved nitrogen to the overlying water, given the mixing conditions undergone by the solid and interstitial phases of the sediment under the action of physical or biological processes. Although idealized, the model can be useful in predicting the trends of variation in the relative importance of ammonification, nitrification, and denitrification, as a result of variations in the organic matter input to the bottom. It shows that, at low input of organic matter, most nitrogen release occurs as nitrate, whereas, at higher input, ammonium release prevails. Denitrification reaches a plateau above a certain input of organic material. It can involve an appreciable proportion (more than about 30 percent of the flux) of remineralized nitrogen only at high organic input and when a high nitrate concentration exists in the overlying water.

  3. Distribution of subsurface hydrocarbon seepage in near surface marine sediments

    SciTech Connect

    Abrams, M.A. )

    1993-02-01

    Hydrocarbon seeps in surficial marine sediments are of two types: ACTIVE: Where gas bubbles, pockmarks, or bright spots are visible on seismic records and/or the presence of chemosynthetic communities in conjunction with large concentrations of migrated-hydrocarbons. Generally in areas where generation and migration of hydrocarbons from the source rock is ongoing today (i.e., maximum burial) and/or where significant migration pathways have developed from tectonic activity. PASSIVE: Where concentrations of migrated hydrocarbons are so low that few or no geophysical anomalies are seen. Typically in areas where generation and expulsion is relict (no longer at maximum burial) and/or regional seals prevent significant vertical migration. The type of seep strongly controls the distribution of migrated hydrocarbons in the near surface sediments and should dictate the sampling equipment and approach required to detect seeps. Active seeps or macroseeps, usually can be detected near the water-sediment interface, within the water column, and at relatively large distances from major leak points. Most conventional sediment and water samplers will capture active seeps, Precise location of sampling is typically not critical to detect active seeps. The Gulf of Mexico, Santa Barbara Channel, and parts of the North Sea have active hydrocarbon seeps.

  4. Magnet-Facilitated Selection of Electrogenic Bacteria from Marine Sediment

    PubMed Central

    Kiseleva, Larisa; Briliute, Justina; Khilyas, Irina V.; Simpson, David J. W.; Fedorovich, Viacheslav; Cohen, M.; Goryanin, Igor

    2015-01-01

    Some bacteria can carry out anaerobic respiration by depositing electrons on external materials, such as electrodes, thereby creating an electrical current. Into the anode chamber of microbial fuel cells (MFCs) having abiotic air-cathodes we inoculated microorganisms cultured from a magnetic particle-enriched portion of a marine tidal sediment, reasoning that since some external electron acceptors are ferromagnetic, electrogenic bacteria should be found in their vicinity. Two MFCs, one inoculated with a mixed bacterial culture and the other with an axenic culture of a helical bacterium isolated from the magnetic particle enrichment, termed strain HJ, were operated for 65 d. Both MFCs produced power, with production from the mixed culture MFC exceeding that of strain HJ. Strain HJ was identified as a Thalassospira sp. by transmission electron microscopic analysis and 16S rRNA gene comparisons. An MFC inoculated with strain HJ and operated in open circuit produced 47% and 57% of the maximal power produced from MFCs inoculated with the known electrogen Geobacter daltonii and the magnetotactic bacterium Desulfamplus magnetomortis, respectively. Further investigation will be needed to determine whether bacterial populations associated with magnetic particles within marine sediments are enriched for electrogens. PMID:26504814

  5. Anaerobic propane oxidation in marine hydrocarbon seep sediments

    NASA Astrophysics Data System (ADS)

    Quistad, Steven D.; Valentine, David L.

    2011-04-01

    Propane (C 3H 8) is an abundant hydrocarbon in subsurface reservoirs with significance to atmospheric chemistry and to marine biogeochemistry. The anaerobic oxidation of propane coupled to sulfate reduction may prevent sub-seafloor accumulations of propane from entering the ocean and atmosphere. Anaerobic oxidation of propane has recently been demonstrated in cultures of novel sulfate-reducing bacteria, but has not been directly demonstrated or quantified in nature. In this work we describe a method involving incubation with 13C-propane to quantify rates of anaerobic oxidation of propane in anoxic sediment, and we conclusively demonstrate the oxidation of propane under sulfidic conditions in fresh sediments of a marine hydrocarbon seep. Observed rates of anaerobic oxidation of propane adhere to first-order kinetic behavior, enabling the modification of this method for whole core rate determinations. Whole core rates in nine cores from two hydrocarbon seeps measured 0.04-2100 nmoles C 3H 8 cm -3 day -1 by this method. The seep persistently supplied with more propane displayed substantially higher rates of anaerobic oxidation of propane, by 1-2 orders of magnitude when averaged over the top 10-cm, suggesting the development of the microbial community is strongly modulated by the availability of propane. This work is the first to estimate rates for anaerobic oxidation of propane in any environment, and demonstrates the potential importance of the process as a filter for preventing propane from entering the ocean and atmosphere.

  6. Magnet-Facilitated Selection of Electrogenic Bacteria from Marine Sediment.

    PubMed

    Kiseleva, Larisa; Briliute, Justina; Khilyas, Irina V; Simpson, David J W; Fedorovich, Viacheslav; Cohen, M; Goryanin, Igor

    2015-01-01

    Some bacteria can carry out anaerobic respiration by depositing electrons on external materials, such as electrodes, thereby creating an electrical current. Into the anode chamber of microbial fuel cells (MFCs) having abiotic air-cathodes we inoculated microorganisms cultured from a magnetic particle-enriched portion of a marine tidal sediment, reasoning that since some external electron acceptors are ferromagnetic, electrogenic bacteria should be found in their vicinity. Two MFCs, one inoculated with a mixed bacterial culture and the other with an axenic culture of a helical bacterium isolated from the magnetic particle enrichment, termed strain HJ, were operated for 65 d. Both MFCs produced power, with production from the mixed culture MFC exceeding that of strain HJ. Strain HJ was identified as a Thalassospira sp. by transmission electron microscopic analysis and 16S rRNA gene comparisons. An MFC inoculated with strain HJ and operated in open circuit produced 47% and 57% of the maximal power produced from MFCs inoculated with the known electrogen Geobacter daltonii and the magnetotactic bacterium Desulfamplus magnetomortis, respectively. Further investigation will be needed to determine whether bacterial populations associated with magnetic particles within marine sediments are enriched for electrogens. PMID:26504814

  7. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments.

    PubMed

    Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana

    2015-10-01

    The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.

  8. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments.

    PubMed

    Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana

    2015-10-01

    The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession. PMID:25847440

  9. Sulfonates: A novel class of organic sulfur compounds in marine sediments

    NASA Astrophysics Data System (ADS)

    Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard

    1994-11-01

    X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.

  10. Terrestrial Sediment Delivery to Coastal and Marine Environments: US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Larson, R. A.; Brooks, G. R.; Devine, B.; Wallace, L. E.; Holmes, C. W.; Schwing, P. T.

    2007-05-01

    Understanding terrestrial sediment dynamics in high-relief, tropical island settings, such as St. Thomas and St. John, USVI, has become a critical issue, as sediments are a potential threat to the health of down-slope environments. The primary depositional sinks of terrestrial sediments are 1) coastal buffer zones such as salt ponds, which trap sediments and keep them from being input into the marine environment, and 2) near-shore marine environments (coral reefs, seagrasses, algal flats etc.), many of which are adversely affected by terrestrial sedimentation. Land use change by anthropogenic activities has been shown to alter terrestrial sediment dynamics and greatly increase sediment delivery and accumulation rates in coastal and marine environments. Sediment cores collected in salt ponds and the near-shore marine environment were used to determine the sedimentology (texture and composition) and geochronology (using 14C, and 210Pb) prior to anthropogenic activities to define the "natural signal", or "baseline", as well as recent deviations from the "natural signal", which may be attributed to anthropogenic activities. Salt pond and marine sediments in watersheds without anthropogenic activities exhibit no deviations from the "natural signal" in sedimentology or accumulation rate. Salt pond and marine sediments in watersheds with anthropogenic activities contain a deviation from the "natural signal" manifested as an increase in accumulation rate within the last 100 yrs (most likely within the last 25-50 yrs) ranging from 3 -10 times greater than the "natural" accumulation rate. Sedimentologically, salt ponds reflect no recent change, where as marine sediments do show a recent deviation in sedimentology. This marine deviation is represented by an increase in organic content, a decrease in grain size, and a decrease in carbonate content (marine-derived) compared to the "natural signal". This change reflects an increase in terrestrial (non- carbonate, finer

  11. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution.

  12. Estimating rates of authigenic carbonate precipitation in modern marine sediments

    NASA Astrophysics Data System (ADS)

    Mitnick, E. H.; Lammers, L. N.; DePaolo, D. J.

    2015-12-01

    The formation of authigenic carbonate (AC) in marine sediments provides a plausible explanation for large, long-lasting marine δ13C excursions that does not require extreme swings in atmospheric O2 or CO2. AC precipitation during diagenesis is driven by alkalinity production during anaerobic organic matter oxidation and is coupled to sulfate reduction. To evaluate the extent to which this process contributes to global carbon cycling, we need to relate AC production to the geochemical and geomicrobiological processes and ocean chemical conditions that control it. We present a method to estimate modern rates of AC precipitation using an inversion approach based on the diffusion-advection-reaction equation and sediment pore fluid chemistry profiles as a function of depth. SEM images and semi-quantitative elemental map analyses provide further constraints. Our initial focus is on ODP sites 807 and 1082. We sum the diffusive, advective, and reactive terms that describe changes in pore fluid Ca and Mg concentrations due to precipitation of secondary carbonate. We calculate the advective and diffusive terms from the first and second derivatives of the Ca and Mg pore fluid concentrations using a spline fit to the data. Assuming steady-state behavior we derive net AC precipitation rates of up to 8 x 10-4 mmol m-2 y-1 for Site 807 and 0.6 mmol m-2 y-1 for Site 1082. Site 1082 sediments contain pyrite, which increases in amount down-section towards the estimated peak carbonate precipitation rate, consistent with sulfate-reduction-induced AC precipitation. However, the presence of gypsum and barite throughout the sediment column implies incomplete sulfate reduction and merits further investigation of the biogeochemical reactions controlling authigenesis. Further adjustments to our method could account for the small but non-negligible fraction of groundmass with a CaSO4 signature. Our estimates demonstrate that AC formation may represent a sizeable flux in the modern global

  13. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures.

  14. Relative role of pore water versus ingested sediment in bioavailability of organic contaminants in marine sediments

    SciTech Connect

    Forbes, T.L.; Hansen, R.; Kure, L.K.; Forbes, V.E.; Giessing, A. |

    1998-12-01

    Experimental data for fluoranthene and feeding selectivity in combination with reaction-diffusion modeling suggest that ingestion of contaminated sediment may often be the dominant uptake pathway for deposit-feeding invertebrates in sediments. A dietary absorption efficiency of 56% and accompanying forage ratio of 2.4 were measured using natural sediment that had been dual-labeled ({sup 14}C:{sup 51}Cr) with fluoranthene and fed to the marine deposit-feeding polychaete Capitella species I. Only 3 to 4% of the total absorption could be accounted for by desorption during gut passage. These data were then used as input into a reaction-diffusion model to calculate the importance of uptake from ingested sediment relative to pore-water exposure. The calculations predict a fluoranthene dietary uptake flux that is 20 to 30 times greater than that due to pore water. Factors that act to modify or control the formation of local chemical gradients, boundary layers, or dietary absorption rates including particle selection or burrow construction will be important in determining the relative importance of potential exposure pathways. From a chemical perspective, the kinetics of the adsorption and desorption process are especially important as they will strongly influence the boundary layer immediately surrounding burrowing animals or irrigated tubes. The most important biological factors likely include irrigation behavior and burrow density and size.

  15. Failure of Marine Sediments due to Gas Hydrate Dissociation

    NASA Astrophysics Data System (ADS)

    Germanovich, L.; Xu, W.

    2004-12-01

    Methane gas hydrate (MGH) dissociation in the pore space of marine sediments may be caused by various natural and human-induced processes including sea level decrease, tectonic uplift of continental margins, global warming, and petroleum operations. While these processes generally have different spatial and temporal scales, they result in MGH dissociation, and the released gas and water tend to expand. This may change the pore pressure in the sediments, affecting their mechanical state and failure processes. If the pressure does not change, the hydrate dissociation may still affect the sediment properties by perturbing particle cementation and by introducing phase interfaces (e.g., capillary menisci). In this work, the pressure change has been calculated by coupling the dissociation rate with fluid flow in the sediments based on thermodynamic considerations. The common seafloor failure, submarine landslides, can reach a length of ˜100 km, with a length-to-thickness ratio as large as ˜1000. It is often assumed that the Storegga Slides were caused by earthquakes that instantaneously created a shallow discontinuity ( ˜100 m below the seafloor) along the entire slide length of ˜100 km. Instead, Puzrin and Germanovich [2004] reasoned that the MGH dissociation may have resulted in an initial flaw at the scale of only ˜1 km. They explained the landslide evolution in submarine slopes by the mechanism of catastrophic shear band propagation of this flaw. Our modeling suggests that the sediment de-cementation and the excess pore pressure due to MGH dissociation may indeed have determined the scale of ˜1 km of this initial defect. Our calculations also suggest that dissociation-affected submarine landslides may be common for shallow sea water depths of < 1 km and involve thin sediment layers (usually ˜100 m or less). However, the MGH dissociation may also occur underneath a massive and horizontally extended MGH layer, which could serve as a seal or cap-rock. In this

  16. Assessment of sediment toxicity to marine benthos. (Chapter 9). Book chapter

    SciTech Connect

    Lamberson, J.O.; DeWitt, T.H.; Swartz, R.C.

    1992-01-01

    Most chemical contaminants entering the marine environment eventually accumulate in sediments and, thereby, potentially render the sediments toxic to benthic and demersal organisms. Through deposition, adsorption, diffusion, resuspension, and emigration, sediments serve as both a sink and source for toxic contaminants in the marine environment. The relationship between the concentrations of chemicals in sediments and in the tissues of benthic biota is well established. Although the linkage between bioaccumulation and toxicological responses is poorly documented, logic indicates a strong association. Chemical contaminants in sediments have been implicated as the cause of the abnormal pathology observed in benthic and demersal organisms and the alterations in the structure of benthic invertebrate populations and communities.

  17. Isolation of naphthalene-degrading bacteria from tropical marine sediments.

    PubMed

    Zhuang, W Q; Tay, J H; Maszenan, A M; Tay, S T L

    2003-01-01

    Oil pollution is a major environmental concern in many countries, and this has led to a concerted effort in studying the feasibility of using oil-degrading bacteria for bioremediation. Although many oil-degrading bacteria have been isolated from different environments, environmental conditions can impose a selection pressure on the types of bacteria that can reside in a particular environment. This study reports the successful isolation of two indigenous naphthalene-degrading bacteria from oil-contaminated tropical marine sediments by enrichment culture. Strains MN-005 and MN-006 were characterized using an extensive range of biochemical tests. The 16S ribosomal deoxyribonucleic acid (rDNA) sequence analysis was also performed for the two strains. Their naphthalene degradation capabilities were determined using gas chromatography and DAPI counting of bacterial cells. Strains MN-005 and MN-006 are phenotypically and phylogenetically different from each other, and belong to the genera Staphylococcus and Micrococcus, respectively. Strains MN-005 and MN-006 had maximal specific growth rates (micro(max)) of 0.082 +/- 0.008 and 0.30 +/- 0.02 per hour, respectively, and half-saturation constants (K(s)) of 0.79 +/- 0.10 and 2.52 +/- 0.32 mg per litre, respectively. These physiological and growth studies are useful in assessing the potential of these indigenous isolates for in situ or ex situ naphthalene pollutant bioremediation in tropical marine environments.

  18. Bacterial diversity in oil-polluted marine coastal sediments.

    PubMed

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems. PMID:26773654

  19. Bacterial diversity in oil-polluted marine coastal sediments.

    PubMed

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems.

  20. Succession of cable bacteria and electric currents in marine sediment

    PubMed Central

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these ‘cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm−2. Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4–1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption. PMID:24451206

  1. Succession of cable bacteria and electric currents in marine sediment.

    PubMed

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-06-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these 'cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm(-2). Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4-1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption.

  2. A TOXICITY IDENTIFICATION EVALUATION OF SILTY MARINE HARBOR SEDIMENTS TO CHARACTERIZE PERSISTENT AND NON-PERSISTENT CONSTITUENTS

    EPA Science Inventory

    Sediment toxicity in silty marine harbor sediments is frequently dominated by ammonia or sulfide, leaving the adverse effects of persistent toxic substances unnoticed. To investigate the latter, we subjected interstitial water from three contaminated silty sediments to toxicity i...

  3. Paleomagnetic Studies of Marine Sediments for Evaluation of Sedimentation Rates on the Mendeleev Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Elkina, D.

    2014-12-01

    Nowadays the Arctic Ocean is an area of higher scientific interest. Investigation of composition, genesis, sources and source areas of marine sediments is necessary for a gain of geological knowledge and geo-engineering development of the region. One should note that the dating issue in the Arctic Ocean is a challenge by itself. However, magnetostratigraphy can offer a powerful stratigraphic tool applying to marine sediments here. The 6-meters length core was retrieved from the Mendeleev Ridge in 2012 and subjected to paleomagnetic studies. The examined core was revealed to dominate by normal polarity up to 123 cm below seafloor (cmbsf) and assigned there to the Brunhes polarity chron of the geomagnetic field (0.78 Ma). Then prevalence of reverse polarity persists up to 394-397 cmbsf, assigned to Matuyama age, and short positive intervals are believed to be subchrons of normal polarity. Change from reverse to normal polarity at 394-397 cmbsf is considered as the Matuyama - Gauss (2.58 Ma) boundary and is traced up to 530-531 cmbsf including one short reversal. After this depth a drop back to reverse polarity is ascribed to the beginning of the Gilbert polarity chron (3.58 Ma). The resultant magnetostratigraphy is presented on Figure 1. The stepwise alternating field demagnetization and demagnetization by heating were performed to remove viscous overprints and then to define component magnetization directions. Spikes of natural remanent magnetization intensity and magnetic susceptibility are discovered near almost all assigned chron boundaries, and it may act as an independent factor for determination of polarity boundaries. Anisotropy of magnetic susceptibility is also considered in order to find out additional peculiarities of the sedimentation. The relative abundance of shallow inclinations at least implies the existence of secondary processes, which may have altered the paleomagnetic record. The mean sedimentation rates on the Mendeleev Ridge do not exceed 1

  4. Comparison of test specific sediment effect concentrations with marine sediment quality assessment guidelines

    SciTech Connect

    Carr, R.S.; Biedenbach, J.M.; Long, E.R.; MacDonald, D.D.

    1995-12-31

    As part of NOAA`s National Status and Trends (NS and T) Bioeffects Assessment program and studies conducted by the National Biological Service, numerous sediment quality assessment surveys have recently been conducted along the Atlantic and Gulf coasts of the US using the sea urchin (Arbacia punctulata) fertilization and embryological development tests with pore water. Additional toxicity tests were also conducted in conjunction with most of these studies. The areas that have been sampled include Boston harbor, Massachusetts; Charleston Harbor, Winyah Bay, and Savannah River, South Carolina; St. Simon Sound, Georgia; Biscayne Bay, Tampa Bay, Choctawhatchee Bay, Apalachicola Bay, St. Andrew Bay, and Pensacola Bay, Florida; Galveston Bay, Lavaca Bay, and Sabine Lake, Texas, and 200 stations in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico. Sufficient data are now available from this series of surveys to calculate test specific sediment effect concentrations (SECs). Based on these recent studies, SECs were developed for the sea urchin porewater and amphipod tests and compared with existing marine sediment quality assessment guidelines.

  5. Targeted search for actinomycetes from nearshore and deep-sea marine sediments.

    PubMed

    Prieto-Davó, Alejandra; Villarreal-Gómez, Luis J; Forschner-Dancause, Stephanie; Bull, Alan T; Stach, James E M; Smith, David C; Rowley, Dave C; Jensen, Paul R

    2013-06-01

    Sediment samples collected off the coast of San Diego were analyzed for actinomycete diversity using culture-independent techniques. Eight new operational taxonomic units (OTUs) in the Streptomycetaceae were identified as well as new diversity within previously cultured marine OTUs. Sequences belonging to the marine actinomycete genus Salinispora were also detected, despite the fact that this genus has only been reported from more tropical environments. Independent analyses of marine sediments from the Canary Basin (3814 m) and the South Pacific Gyre (5126 and 5699 m) also revealed Salinispora sequences providing further support for the occurrence of this genus in deep-sea sediments. Efforts to culture Salinispora spp. from these samples have yet to be successful. This is the first report of Salinispora spp. from marine sediments > 1100 m and suggests that the distribution of this genus is broader than previously believed. PMID:23360553

  6. EXTRACTION OF ORGANIC CONTAMINANTS FROM MARINE SEDIMENTS AND TISSUES USING MICROWAVE ENERGY

    EPA Science Inventory

    In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chl...

  7. Microbes of deep marine sediments as viewed by metagenomics

    NASA Astrophysics Data System (ADS)

    Biddle, J.

    2015-12-01

    Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.

  8. Deposition of zinc and cadmium by marine bacteria in estuarine sediments

    USGS Publications Warehouse

    McLerran, C.J.; Holmes, Charles W.

    1974-01-01

    Mixed cultures of marine bacteria isolated from the sediments of Corpus Christi Harbor were examined for their ability to assimilate or precipitate radioactive zinc and cadmium from solution. Test data indicate that during summer, when bacterial activity is at a maximum, the bacteria and their metabolic byproducts play a significant role in the removal of zinc and cadmium from seawater and their subsequent deposition in marine sediments.

  9. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  10. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments

    SciTech Connect

    Geiselbrecht, A.D.; Herwig, R.P.; Deming, J.W.; Staley, J.T.

    1996-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are primarily released into the environment through anthropomorphic sources. PAH degradation has been known to occur in marine sediments. This paper describes the enumeration, isolation, and preliminary characterization of PAH-degrading strains from Puget Sound sediments. 38 refs., 3 figs., 3 tabs.

  11. Thermal alteration of organic matter in recent marine sediments. 2: Isoprenoids. [Tanner Basin off Southern California

    NASA Technical Reports Server (NTRS)

    Ikan, R.; Baedecker, M. J.; Kaplan, I. R.

    1974-01-01

    A series of isoprenoid compounds were isolated from a heat treated marine sediment (from Tanner Basin) which were not present in the original sediment. Among the compounds identified were: phytol, dihydrophytol, c-18-isoprenoid ketone, phytanic and pristanic acids, c-19 and c-20-monoolefines, and the alkanes pristane and phytane. The significance and possible routes leading to these compounds is discussed.

  12. Molecular Approaches to Understanding C & N Dynamics in MArine Sediments

    SciTech Connect

    Arturo Massol; James Tiedje; Jizhong Zhou; Allan Devol

    2007-05-16

    Continental margin sediments constitute only about 10% of the total sediment surface area in the world’s oceans, nevertheless they are the dominant sites of nitrogen (N) cycling. Recent studies suggest that the oceanic nitrogen budget is unbalanced, primarily due to a higher nitrogen removal rate in contrast to the fixation rate, and it has been suggested that denitrification activity contributes significantly to this imbalance. Although denitrification in marine environments has been studied intensively at the process level, little is known about the species abundance, composition, distribution, and functional differences of the denitrifying population. Understanding the diversity of microbial populations in marine environments, their responses to various environmental factors such as NO3-, and how this impact the rate of denitrification is critical to predict global N dynamics. Environmental Microbiology has the prompt to study the influence of each microbial population on a biogeochemical process within a given ecosystem. Culture-dependent and –independent techniques using nucleic acid probes can access the identity and activity of cultured and uncultured microorganisms. Nucleic acid probes can target distintict genes which set phylogenetic relationships, such as rDNA 16S, DNA gyrase (gyrB) and RNA polymerase sigma 70 factor (rpoD). In the other hand, the genetic capabilities and their expression could be tracked using probes that target several functional genes, such as nirS, nirK, nosZ, and nifH, which are genes involved in denitrification. Selective detection of cells actively expressing functional genes within a community using In Situ Reverse Transcription-PCR (ISRT-PCR) could become a powerful culture-independent technique in microbial ecology. Here we describe an approach to study the expression of nirS genes in denitrifying bacteria. Pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans, as well as co-cultures with non

  13. Maribacter lutimaris sp. nov., isolated from marine sediment.

    PubMed

    Kim, Kyung Hyun; Jin, Hyun Mi; Jeong, Hye Im; Jeon, Che Ok

    2016-04-01

    A Gram-staining-negative, moderately halophilic and strictly aerobic bacterium, designated strain KJ4T, was isolated from marine sediment at Gangjin in South Korea. Cells were catalase- and oxidase-positive long rods with gliding motility. Growth of strain KJ4T was observed at 4-37 °C (optimum, 15-25 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.5) and in the presence of 1.0-7.0% (w/v) NaCl (optimum, 2.0-5.0%). Menaquinone 6 (MK-6) was the only isoprenoid quinone detected and iso-C15:0, iso-C17:0 3-OH, iso-C15:1 G and summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c) were the major cellular fatty acids. The polar lipids of strain KJ4T consisted of phosphatidylethanolamine, an unidentified aminophospholipid and five unidentified lipids. The G+C content of the genomic DNA was 38.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KJ4T formed a distinct phylogenetic lineage within the genus Maribacter. Strain KJ4T was most closely related to Maribacter orientalis KMM 3947T with 97.4% 16S rRNA gene sequence similarity. On the basis of phenotypic, chemotaxonomic and molecular features, strain KJ4T clearly represents a novel species of the genus Maribacter, for which the name Maribacter lutimaris sp. nov. is proposed. The type strain is KJ4T (=KACC 16438T=JCM 31154T). PMID:26828017

  14. Tropicimonas sediminicola sp. nov., isolated from marine sediment.

    PubMed

    Shin, Na-Ri; Roh, Seong Woon; Kim, Min-Soo; Yun, Bora; Whon, Tae Woong; Kim, Young-Ok; Bae, Jin-Woo

    2012-10-01

    A novel Gram-negative, obligately aerobic, non-motile, rod-shaped bacterium, strain M97(T), was isolated from marine sediment of a cage-cultured ark clam farm on the south coast of Korea. Strain M97(T) was positive for oxidase and catalase. Optimal growth occurred at 37 °C, with 1-2 % (w/v) NaCl and at pH 7-8. The main cellular fatty acids were C(16 : 0), C(18 : 1)ω7c, C(12 : 0) 3-OH and cyclo-C(19 : 0)ω8c. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unknown aminolipid and three unknown lipids. The predominant respiratory quinone was ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain M97(T) belongs to the genus Tropicimonas, with highest sequence similarity to Tropicimonas aquimaris DPG-21(T) (99.0 %). The DNA G+C content of strain M97(T) was 68.5 mol%. Mean DNA-DNA relatedness between strain M97(T) and T. aquimaris DPG-21(T) was 46 ± 10 %. Based on phylogenetic, phenotypic and genotypic analyses, strain M97(T) is considered to represent a novel species of the genus Tropicimonas, for which the name Tropicimonas sediminicola sp. nov. is proposed. The type strain is M97(T) ( = KACC 15544(T) = JCM 17731(T)). PMID:22140172

  15. Deinococcus enclensis sp. nov., isolated from a marine sediment sample.

    PubMed

    Thorat, Meghana N; Mawlankar, Rahul; Sonalkar, Vidya V; Venkata Ramana, V; Joseph, Neetha; Shouche, Yogesh S; Dastager, Syed G

    2015-01-01

    A novel pale-pink coloured strain, designated NIO-1023(T), was isolated from a marine sediment sample from Chorao Island, Goa, India. The taxonomic position of strain NIO-1023(T) was investigated by using a polyphasic approach. The cells were observed to be Gram-stain positive, coccal shaped and non-spore forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. The strain NIO-1023(T) showed highest 16S rRNA gene sequence similarities with Deinococcus ficus (97.8 %), whereas other Deinococcus species showed less than 95 % sequence similarity. The DNA-DNA relatedness with respect to D. ficus CC-FR2-10(T) was 23.9 %. Chemotaxonomic data revealed that strain NIO-1023(T) contains only menaquinone MK-8 as the respiratory quinone and a complex polar lipid profile consisting of different unidentified glycolipids and polar lipids, two unknown phospholipids and three unknown phosphoglycolipids. As in other deinococci, one of these phosphoglycolipids was predominant in the profile. The predominant fatty acids were identified as C17:1 w8c, C16:1 w6c/w7c, C15:1 w6c and C17:1 w9c. The genomic DNA G + C content of strain NIO-1023(T) was determined to be 67.2 mol%. The biochemical and chemotaxonomic properties demonstrate that strain NIO-1023(T) represents a novel species, for which the name Deinococcus enclensis sp. nov. is proposed. The type strain is NIO-1023(T) (=DSM 25127(T) = NCIM 5456(T)).

  16. Pseudonocardia sediminis sp. nov., isolated from marine sediment.

    PubMed

    Zhang, Dao-Feng; Jiang, Zhao; Li, Li; Liu, Bing-Bing; Zhang, Xiao-Mei; Tian, Xin-Peng; Zhang, Si; Li, Wen-Jun

    2014-03-01

    A Gram-stain-positive, aerobic actinomycete, designated strain YIM M13141(T), was isolated from a marine sediment sample from the South China Sea, and its taxonomic position was determined using a polyphasic approach. The strain produced branched substrate mycelium and aerial hyphae, but no diffusible pigments were produced on the media tested. At maturity, substrate mycelium was fragmented and spore chains were formed on aerial hyphae and substrate mycelium. Optimum growth occurred at 28 °C, 1-3% (w/v) NaCl and pH 7.0. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the genus Pseudonocardia, showing highest levels of similarity with respect to Pseudonocardia sichuanensis KLBMP 1115(T) (97.1%), Pseudonocardia tetrahydrofuranoxydans K1(T) (97.1%) and Pseudonocardia kunmingensis YIM 63158(T) (97.0%). Whole-organism hydrolysates of the strain contained meso-diaminopimelic acid and the sugars galactose, glucose, mannose and arabinose. The predominant menaquinone was MK-8(H4). The polar lipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylethanolamine, two unknown phosphoglycolipids and two glycolipids. The major fatty acid was iso-C16 : 0. The G+C content of the genomic DNA was 73.1 mol%. DNA-DNA relatedness with P. tetrahydrofuranoxydans DSM 44239(T) was 42.8 ± 3.5% (mean±sd). Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia sediminis sp. nov. is proposed. The type strain is YIM M13141(T) ( = DSM 45779(T) = JCM 18540(T)).

  17. Bacillus tianshenii sp. nov., isolated from a marine sediment sample.

    PubMed

    Jiang, Zhao; Zhang, Dao-Feng; Khieu, Thi-Nhan; Son, Chu Ky; Zhang, Xiao-Mei; Cheng, Juan; Tian, Xin-Peng; Zhang, Si; Li, Wen-Jun

    2014-06-01

    A novel Gram-stain-positive, motile, catalase- and oxidase-positive, aerobic, endospore-forming, peritrichous, rod-shaped bacterium, designated YIM M13235(T), was isolated from a marine sediment sample collected from the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM M13235(T) belonged to the genus Bacillus. The strain grew optimally at 30 °C, pH 7.0 and in the presence of 2-4% (w/v) NaCl. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. Strain YIM M13235(T) exhibited a menaquinone system with MK-7, and the major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown glycolipid. The major fatty acids (>5%) were iso-C(15 : 0), anteiso-C(15 : 0), anteiso-C(17 : 0), iso-C(17 : 1)ω10c and summed feature 4 (anteiso-C(17 : 1) and/or iso-C(17 : 1)). The genomic DNA G+C content was 42.1 mol%. The DNA-DNA relatedness values between strain YIM M13235(T) and its close relatives (16S rRNA gene sequence similarities >97%) including Bacillus halmapalus DSM 8723(T), Bacillus horikoshii DSM 8719(T) and Bacillus zhanjiangensis JSM 099021(T) were 41%, 44% and 44%, respectively. On the basis of genotypic, phenotypic and DNA-DNA relatedness data, it is apparent that strain YIM M13235(T) represents a novel species of the genus Bacillus, for which the name Bacillus tianshenii sp. nov. is proposed. The type strain is YIM M13235(T) ( = DSM 25879(T) = KCTC 33044(T)).

  18. Idiomarina maris sp. nov., a marine bacterium isolated from sediment.

    PubMed

    Zhang, Yan-Jiao; Zhang, Xi-Ying; Zhao, Hui-Lin; Zhou, Ming-Yang; Li, Hui-Juan; Gao, Zhao-Ming; Chen, Xiu-Lan; Dang, Hong-Yue; Zhang, Yu-Zhong

    2012-02-01

    A protease-producing marine bacterium, designated CF12-14(T), was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14(T) formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52(T) (94.7 %), Idiomarina seosinensis CL-SP19(T) (94.6 %) and other members of the genus Idiomarina (91.9-94.6 %). Cells were gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthecae. Strain CF12-14(T) grew at 4-42 °C (optimum 30-35 °C) and with 0.1-15 % (w/v) NaCl (optimum 2-3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C(15 : 0) (27.4 %), iso-C(17 : 0) (16.0 %) and iso-C(17 : 1)ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14(T) represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14(T) ( = CCTCC AB 208166(T) = KACC 13974(T)).

  19. IDENTIFICATION OF TOXICANTS IN WHOLE MARINE SEDIMENTS: METHODS AND RESULTS

    EPA Science Inventory

    Identification of stressors in aquatic systems is critical to sound assessment and management of our nation's waterways. Information from stressor identification can be useful in designing effective sediment remediation methods, assessing options for sediment disposal, allowing m...

  20. Studies of the DOM aqueous extracts from coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Sakellariadou, F.

    2012-04-01

    Dissolved organic matter (DOM) represents a major exchangeable organic pool playing an outstanding role in the ocean carbon cycle. It has a complex chemical structure made up of a wide range of organic molecules. The composition of DOM depends on the sources proximity and the exposure to any sort of degradation mechanism. The coloured (or chromophoric) dissolved organic matter (CDOM), representing the optically active fraction of DOM, consists of aromatic rings able to absorb light in the visible and UV regions (Kirk, 1994) and fluorophoric molecules that emit light. The main fluorophoric moieties of CDOM are humic material with a blue fluorescence and protein material with an ultraviolet (UV) fluorescence (Mopper and Schultz, 1993). Dissolved organic matter interacts with pollutants either by enhancing their bioavailability or by influencing their transportation to the soluble phase. In addition, DOM affects the remineralisation of carbon and its preservation in marine sediments. Referring to its origin, it can be terrestrial, freshwater or marine one. Fluorescence spectroscopy is a technique widely applied for the identification and characterization of organic matter, being fast, simple, non-destructive and sensitive. In addition, the fluorescence analysis for the physico-chemical characterization of organic matter requires a small amount of aqueous sample at a low concentration, in comparison with the large sample volumes needed for conventional techniques. At the present study coastal sediment samples were collected from Messiniakos gulf in the south western Peloponnese in South Greece. Messiniakos gulf has a seabed dominated by very abrupt inclinations reaching depths of more than 1000m. All samples, according to their grain size, are classified as fine clayey silt. Dissolved organic matter was extracted under gentle extraction conditions (4 mM CaCl2 solution). The various classes of organic components present at the DOM aqueous extracts were characterised by

  1. Nonlinear Raman-Type Acoustic Scattering in Three-Phase Marine Sediments

    NASA Astrophysics Data System (ADS)

    Pushkina, N. I.

    2001-03-01

    Stimulated Raman-type acoustic scattering by bubble oscillations in three-phase marine sediments, which consist of a solid frame, the pore water, and air bubbles, is considered. A model is developed for the case of the bubbles surrounded by water. The acoustic properties of the sediments are described on the basis of the Biot theory of sound propagation in a fluid-saturated porous medium. Nonlinear wave equations are obtained for marine sediments containing air bubbles. Expressions for the nonlinear scattering coefficient and the threshold intensity of the exciting sound wave are derived. A possibility of an experimental observation of the scattering process is discussed.

  2. The remedial investigation of marine sediment at the United Heckathorn Superfund site

    SciTech Connect

    White, P.J.; Kohn, N.P.; Gardiner, W.W.; Word, J.Q.

    1994-02-01

    The former United Heckathom site in Richmond, California, was used to process and package chlorinated pesticides from the 1940s to the mid-1960s. These activities resulted in the contamination of upland soils and marine sediment in the adjacent waterways. Battelle/Marine Sciences Laboratory (MSL) was requested by USEPA to conduct a remedial investigation and feasibility study (RI/FS). of the marine portion of the site. The objectives of this RI are to determine the extent of pesticide contamination in inner Richmond Harbor, estimate the total volume of contaminated sediment, characterize the subsurface geology; characterize the biological effects of contaminated sediment; and characterize the quality of effluent derived from dewatered sediment through treatability testing. Sediment cores were collected from 53 stations. Vertical subsamples from each sediment core were analyzed for chlorinated pesticides. Sediment from selected cores was also analyzed for other contaminants. Younger Bay Mud (YBM) sediment from multiple stations was mixed to form composite samples representing various segments of the study area. These composites were used for solid-phase toxicity and bioaccumulation tests, and the preparation of liquid-phase samples for treatability testing. The probable quality of effluent produced by dewatering sediment was evaluated by chemical and toxicological testing of suspended-particulate-phase (SPP) and elutriate samples.

  3. Marine ciliates as a widespread source of tetrahymanol and hopan-3. beta. -ol in sediments

    SciTech Connect

    Harvey, H.R.; McManus, G.B. )

    1991-11-01

    The authors observed tetrahymanol (gammaceran-3{beta}-ol) as a principal neutral lipid in eight marine ciliate species, most of which were scuticociliates, a group of ciliates that feeds mainly on bacteria. Tetrahymanol abundance in pure cultures and field samples (sediment traps, water column particulates, and enrichments from coastal and estuarine environments) shows good agreement with ciliate biovolume (R{sup 2} = 0.89), suggesting that tetrahymanol is a specific marker for marine ciliates that feed on bacteria. Hopan-3{beta}-ol was also positively identified in several ciliates, but did not occur in all species examined. Because of their widespread distribution in modern marine systems, these organisms provide a likely source for the common appearance of tetrahymanol in many marine sediments. By analogy, the presumed presence of ciliates in ancient seas may explain the occurrence of its diagenetic product, gammacerane, in more mature sediments and crude oils.

  4. Dissolved and particulate carbohydrates in contrasting marine sediments

    NASA Astrophysics Data System (ADS)

    Burdige, D. J.; Skoog, A.; Gardner, K.

    2000-03-01

    Dissolved and particulate carbohydrates were examined in contrasting Chesapeake Bay (estuarine) and mid-Atlantic shelf/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) represented ˜5-9% of the total sediment particulate organic carbon (POC), and PCHO remineralization appeared to be a similar fraction of total sediment carbon oxidation (or C ox). When these results are compared with results from other coastal sediments and a pelagic turbidite, PCHO remineralization (as a percentage of C ox) did not vary by more than a factor of ˜2-3 over a 3-4 order of magnitude range in C ox values. The causes of this are not well understood, but may be related to specific effects associated with the remineralization of highly altered organic matter mixtures under aerobic conditions. Dissolved carbohydrates (DCHOs) in these sediment pore waters ranged from ˜30 to 400 μM, increased with depth in a manner similar to total DOC, and represented ˜10 to 55% of pore water DOC. In Chesapeake Bay sediments this percentage decreased with sediment depth, while in these continental margin sediments it was constant (upper 30 cm). Of the DCHOs in these pore waters ˜30 to 50% could be identified as individual aldoses (monomeric neutral sugars), and total aldose yields (individual aldoses as a percentage of total DOC) were higher in these continental margin sediment pore waters (>9%) than they were in the estuarine sediment pore waters (<5%). A comparison of DCHO and PCHO concentrations in these sediments indicates that their concentrations are uncoupled, and that pore water DCHO concentrations are primarily controlled by sediment remineralization processes. Pore water DCHOs appeared to be preferentially found in the high molecular weight (HMW) DOC pool, and likely occur as some of the initial HMW intermediates produced and consumed during sediment POC remineralization. These results also support past suggestions about the differing controls on carbon

  5. Endogenous isolation of replicon probes for assessing plasmid ecology of marine sediment microbial communities.

    PubMed

    Cook, M A; Osborn, A M; Bettandorff, J; Sobecky, P A

    2001-08-01

    Six functional replication origins (repGA14, repGA33, repGA70, repSD41, repSD164 and repSD172), obtained from endogenously isolated, broad-host-range (BHR) marine plasmids ranging in size from 5 to 60 kb, were used to determine plasmid occurrence in three coastal marine sediment sites (in California, Georgia and South Carolina, USA). The plasmid-specific replicons were isolated from plasmid-bearing marine sediment bacteria belonging to the alpha and gamma subclasses of the Proteobacteria. The plasmid sources of the endogenous replicons were considered to be cryptic due to a lack of identifiable phenotypic traits. The putative Rep proteins from a number of these replicons showed similarity to replicons of two recognized families: RCR group III (repSD164) and the FIA family of theta group A (repSD41, repSD121, repGA33 and repGA14). Plasmids isolated from marine bacteria belonging to the genera Pseudoalteromonas, Shewanella and Vibrio cultivated from geographically different coastal sites exhibited homology to two of the marine plasmid replicons, repSD41 and repGA70, obtained from a Vibrio sp. The repGA33 plasmid origin, obtained from a Shewanella sp. isolated from coastal Georgia, was detected in 7% of the Georgia marine sediment Shewanella sp. isolates. Microbial community DNA extracted from marine sediments was also screened for the presence of the plasmid replication sequences. Community DNA samples amplified by PCR yielded a positive signal for the repSD172 and repGA14 replication sequences. The replication origin of BHR plasmid RK2 (IncP) was also detected in marine Vibrio sp. and microbial community DNA extracted from the three coastal sites. These findings provide molecular evidence that marine sediment bacteria harbour an untapped population of BHR plasmids.

  6. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)

    1989-01-01

    Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.

  7. EXPLORATORY ANALYSIS OF THE EFFECTS OF PARTICULATE CHARACTERISTICS ON THE VARIATION IN PARTITIONING OF NONPOLAR ORGANIC CONTAMINANTS TO MARINE SEDIMENTS

    EPA Science Inventory

    The partitioning of nonpolar organic contaminants to marine sediments is considered to be controlled by the amount of organic carbon present. However, several studies propose that other characteristics of sediments may affect the partitioning of contaminants. For this exploratory...

  8. Evaluation of the Polyethylene Reverse Sampler as a Dosing System in Marine Phase II Whole Sediment Toxicity Identification Evaluations (TIEs)

    EPA Science Inventory

    Contaminated marine sediments can cause acute and chronic impairments to benthic organisms. Nonionic organic contaminants (NOCs) are often a primary cause of impairment. Toxicity Identification Evaluations (TIEs) are used to identify chemicals causing toxicity in sediments. Ph...

  9. Sediment toxicity to a marine infaunal amphipod: cadmium and its interaction with sewage sludge

    SciTech Connect

    Swartz, R.C.; Ditsworth, G.R.; Schults, D.W.; Lamberson, J.O.

    1985-01-01

    The acute toxicity of cadmium to the marine infaunal amphipod, Rhepoxynius abronius, was determined separately in sediment and seawater. Most cadmium added to test sediment was bound to particles and less than 5% was dissolved in interstitial water. The LC50 based on cadmium concentration in interstitial water was similar to the LC50 based on cadmium concentration in seawater without sediment. Cadmium in interstitial water, rather than that bound to particles, therefore appears responsible for acute sediment toxicity to this species. The addition of small quantities of sewage sludge or an increase in the proportion of the fine fraction of sediment particles significantly reduced the toxicity of cadmium in sediment. Binding of cadmium by sediment particles may explain the presence of phoxocephalid amphipods at sites where sewage and metal pollution occur together.

  10. Germanium isotopic variations in igneous rocks and marine sediments

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Galy, Albert; Elderfield, Henry

    2006-07-01

    A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICPMS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/ 70Ge ratios are expressed as δ74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2‰ for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4‰ in δ74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/ 70Ge, 73Ge/ 70Ge and 72Ge/ 70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of δ74Ge in igneous rocks is only 0.25‰ without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a δ74Ge of 1.3 ± 0.2‰ can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher δ74Ge values between 2.0‰ and 3.0‰. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the δ74Ge of the seawater to +3.0‰.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have δ74Ge values ranging from 0.7‰ to 2.0‰. The variable values of the cherts cannot be explained by binary mixing

  11. Natural Organobromine in Marine Sediments: New Evidence of Biogeochemical Br Cycling

    SciTech Connect

    A Leri; J Hakala; M Marcus; A Lanzirotti; C Reddy; S Myneni

    2011-12-31

    Organobromine (Br{sub org}) compounds, commonly recognized as persistent, toxic anthropogenic pollutants, are also produced naturally in terrestrial and marine systems. Several enzymatic and abiotic bromination mechanisms have been identified, as well as an array of natural Br{sub org} molecules associated with various marine organisms. The fate of the carbon-bromine functionality in the marine environment, however, remains largely unexplored. Oceanographic studies have noted an association between bromine (Br) and organic carbon (C{sub org}) in marine sediments. Even so, there has been no direct chemical evidence that Br in the sediments exists in a stable form apart from inorganic bromide (Br{sub inorg}), which is widely presumed conservative in marine systems. To investigate the scope of natural Br{sub org} production and its fate in the environment, we probed Br distribution and speciation in estuarine and marine sediments using in situ X-ray spectroscopy and spectromicroscopy. We show that Br{sub org} is ubiquitous throughout diverse sedimentary environments, occurring in correlation with C{sub org} and metals such as Fe, Ca, and Zn. Analysis of sinking particulate carbon from the seawater column links the Br{sub org} observed in sediments to biologically produced Br{sub org} compounds that persist through humification of natural organic matter (NOM). Br speciation varies with sediment depth, revealing biogeochemical cycling of Br between organic and inorganic forms as part of the burial and degradation of NOM. These findings illuminate the chemistry behind the association of Br with Corg in marine sediments and cast doubt on the paradigmatic classification of Br as a conservative element in seawater systems.

  12. Ratio of the concentration of anthraquinone to anthracene in coastal marine sediments.

    PubMed

    McKinney, R A; Pruell, R J; Burgess, R M

    1999-04-01

    The ratio of the concentration of the oxidation product anthraquinone to that of its parent polycyclic aromatic hydrocarbon anthracene is reported for several coastal marine sediments. The ratio ranges from 0.317 in a highly contaminated industrialized harbor to 2.81 in a remote, less contaminated site. We hypothesize that differences in this ratio result from the input source of PAHs, with input from atmospheric deposition at remote sites resulting in a predominance of anthraquinone (ratio > 1), and direct discharge to highly contaminated industrialized harbors resulting in a predominance of anthracene (ratio < 1). To support this hypothesis, the fate of anthracene in the marine environment was investigated with respect to conversion to its oxidation product, anthraquinone. Once associated with sediments, anthracene is believed to be relatively persistent; however, it can potentially be subjected to oxidation via biological (microbial degradation) and chemical (chemical oxidation and photooxidation) processes. An assessment of the extent of oxidation of anthracene associated with sediments was conducted both under conditions simulating those found in the marine environment and under rigorous conditions by exposure to UV radiation. Results of this study show that while anthracene associated with marine sediments does not readily undergo oxidation to anthraquinone under conditions normally encountered in the marine environment, under extreme conditions anthracene is photooxidized by exposure to UV radiation. The extent of oxidation is influenced by sediment characteristics such as percent organic carbon, humic acid content and sediment surface area. The relative stability of anthracene under normal conditions may help to validate the use of the anthraquinone to anthracene ratio in marine sediments as an environmental marker of contaminant source.

  13. The use of the Novosol process for the treatment of polluted marine sediment.

    PubMed

    Zoubeir, Lafhaj; Adeline, Saliceto; Laurent, Cohen Solal; Yoann, Coudray; Truc, Huynh Trung; Benoît, Le Guen; Federico, Anguoni

    2007-09-30

    The work presented in this article concerns polluted marine sediments. The article is divided into three parts. The first part discusses existing industrial procedures of treatment. The second part introduces the Novosol((R)) process, which was used for the treatment of polluted marine sediments. This process is based on the stabilization of heavy metals in the solid matrix by phosphatation and the destruction of organic matter by calcination. Finally, after a comparison had been made between environmental results obtained on both polluted marine sediments and inert ones, treated sediments were introduced in the production of clay bricks. The results obtained show that the Novosol process leads to the immobilization of most heavy metals and can be considered as an efficient tool for the stabilisation of polluted marine sediment. Thus, the results of physical and mechanical tests as compressive strength and water absorption indicate that performances obtained were comparable to standard brick values. These results confirm that, once treated, polluted sediments can be recycled.

  14. The use of the Novosol process for the treatment of polluted marine sediment.

    PubMed

    Zoubeir, Lafhaj; Adeline, Saliceto; Laurent, Cohen Solal; Yoann, Coudray; Truc, Huynh Trung; Benoît, Le Guen; Federico, Anguoni

    2007-09-30

    The work presented in this article concerns polluted marine sediments. The article is divided into three parts. The first part discusses existing industrial procedures of treatment. The second part introduces the Novosol((R)) process, which was used for the treatment of polluted marine sediments. This process is based on the stabilization of heavy metals in the solid matrix by phosphatation and the destruction of organic matter by calcination. Finally, after a comparison had been made between environmental results obtained on both polluted marine sediments and inert ones, treated sediments were introduced in the production of clay bricks. The results obtained show that the Novosol process leads to the immobilization of most heavy metals and can be considered as an efficient tool for the stabilisation of polluted marine sediment. Thus, the results of physical and mechanical tests as compressive strength and water absorption indicate that performances obtained were comparable to standard brick values. These results confirm that, once treated, polluted sediments can be recycled. PMID:17459577

  15. Transformation of marine sediment to paddy soil: Primary marine, lacustrine, and land plant lipids

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    More than fifty percent of the world's population feeds on rice. The continuous population increase and urban sprawl leads to an ever-increasing demand for new rice cultivation area, in particular China. For centuries suitable coastal areas in China have been exploited for land reclamation, i.e. conversion of coastal marine and lacustrine marshlands into rice paddy fields. Flooded rice paddies are considered one of the major biogenic sources of methane into the atmospheric. Methane is thought to be about 30 times more efficient as greenhouse gas, when compared to carbon dioxide. Overall, rice fields are assumed to contribute app. 10-25% to global CH4 production. It is thus paramount importance to study the effects of increasing rice cultivation and land reclamation in China. For global carbon cycle investigation, it is crucial whether paddy soils, due to their large extent and higher carbon turnover, serve as carbon (CO2) sinks or sources. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. Two end members of natural sediments subjected to land reclamation, a marine tidal mudflat in the Yangtze delta and a coastal lake, represent the substrate on which the paddy soil evolution started. Dike systems were constructed 2000, 1000, 700, 300, 100, and 50 years before present. We are thus able to follow the evolution of rice paddy soils developed on marine sediments using eight well defined tie-points. This chronosequence is then used for assessing the relative proportion of primary marine or lacustrine organic matter preserved in present day soils and to identify the amount and composition of organic matter added since cultivation started. Paddy soil management introduces rice plants debris and exudates as well as rice-associated microbial biomass (covered in a

  16. Natural thorium isotopes in marine sediment core off Labuan port

    SciTech Connect

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.; Mohamed, C. A. R.

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. The sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.

  17. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments

    PubMed Central

    Scott, Nicole M.; Hess, Matthias; Bouskill, Nick J.; Mason, Olivia U.; Jansson, Janet K.; Gilbert, Jack A.

    2014-01-01

    During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems. PMID:24723913

  18. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  19. Microbial activity in deep marine sediments: does pressure make the difference?

    NASA Astrophysics Data System (ADS)

    Picard, Aude; Ferdelman, Timothy G.

    2012-07-01

    We attempted to evaluate the effects of high hydrostatic pressure on microbial heterotrophic activity in deep marine sediments from the Atlantic Ocean. We investigated the potential respiration rates (acetate/glucose oxidation to CO2) in oxic sediments recovered from up to ~4500 m water depth. Incubations were performed at ambient pressure and at near in situ pressure (~40-45 MPa) with sediments stored at ambient pressure and at in situ pressure. Potential respiration rates in sediments stored at ambient pressure were lower when measured at in situ pressure than when measured at ambient pressure, independently of the substrate used. It appears that the pressure of storage is critical since potential respiration rates of sediments stored at in situ pressure were higher than in the counterpart sediments stored at ambient pressure.

  20. Chronic effects of organochlorine exposure in sediment to the marine polychaete Neanthes arenaceodentata

    SciTech Connect

    Murdoch, M.H.; Chapman, P.M.; Johns, D.M.; Paine, M.D.

    1997-07-01

    Organisms exposed to organochlorinated compounds in sediments are likely to suffer chronic rather than acute effects. Thus, acute toxicity tests are unlikely to truly assess their potential impact. A 120-d toxicity test was designed to assess the impact of polychlorinated biphenyl on the marine polychaete Neanthes arenacedodentata. A two-tiered approach was used: Tier 1 involved reference sediment spiked with a range of concentrations of the organochlorine bracketing the concentrations found in natural sediments, and tier 2 involved field sediments collected from a coastal area contaminated with high concentrations of the same organochlorine. Testing measured a number of endpoints, including survival, growth, and reproduction. Survival and growth were unaffected in either tier by any of the test sediments. Reproductive endpoints, however, were depressed in both tiers relative to the reference sediment.

  1. Isotope fractionation and isotope decoupling during nitrate reduction in marine sediments

    NASA Astrophysics Data System (ADS)

    Dähnke, Kirstin; Thamdrup, Bo

    2015-04-01

    In summer 2010, we sampled marine sediments in the Skagerrak, covering a gradient of reactivity, oxygen consumption, and manganese concentration in the sediment. Along this gradient, we aimed to evaluate links between nitrogen cycling and sediment properties. The focus of the study was the interplay of nitrate and nitrite reduction rates and concomitant nitrate and nitrite isotope changes in sediment incubations. As expected, nitrate reduction was fastest in sediments with highest sediment reactivity and oxygen consumption. At the shallower sampling sites, denitrification was the main removal pathway of nitrate and nitrite, but acetylene inhibition experiments pointed towards significant importance of anammox at the deepest site in the Skagerrak. The N-isotope of denitrification effect varied with depth, with stronger N-isotope fractionation at deeper, and less reactive, sites, and ranged from -12 to -16o. At the deepest site in the Skagerrak, anammox was the dominant N2 production pathway. For this site, we calculated the intrinsic isotope effect of anammox in marine sediments, and found that it is ~-15o, which is in accordance with recent culture studies. The isotope effect of oxygen, however, was not consistent pattern along the gradient of sediment reactivity. The oxygen isotope effect of nitrate reduction was entirely decoupled from the nitrogen isotope effect. Surprisingly, this variability in oxygen isotope fractionation was not linked to the occurrence of anammox, but rather to intermediate nitrite accumulation in the anoxic incubations. Consequently, the ratio of 18ɛ / 15ɛ was highly variable in all sediments we investigated. We presume that such decoupling of oxygen and nitrogen isotopes is due to anoxic nitrite oxidation, which rises in turn with nitrite accumulation in the sediment incubations. These findings suggest that the ratio of 18ɛ / 15ɛ in marine environments is highly flexible, and might, especially in regions with considerable nitrite

  2. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments.

    PubMed

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-08-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments.

  3. Development and application of a marine sediment porewater toxicity test using algal spores

    SciTech Connect

    Hooten, R.; Carr, R.S.

    1995-12-31

    An acute pore water toxicity test protocol using germination and growth of marine macroalgae as endpoints was developed to indicate the presence of toxic compounds in marine/estuarine and sediment porewater samples. Zoospores collected from Ulva fasciata and U. lactuca were used as test organisms. Preliminary results with sodium dodecyl sulfate (SDS, a reference toxicant) indicate that zoospores germination and growth of embryonic gametophytes are as sensitive as the sea urchin fertilization and embryological development toxicity tests. Algal germination and growth data for copper, mercury and other metals will be presented. The results of tests utilizing this algal assay with sediment pore water from contaminated sediments will be compared with more traditional sediment toxicity test methods.

  4. Degradation of PCBs in a marine sediment treated with ionizing and UV radiation.

    PubMed

    Poster, Dianne L; Chaychian, Mahnaz; Neta, Pedatsur; Huie, Robert E; Silverman, Joseph; Al-Sheikhly, Mohamad

    2003-09-01

    Radiolytic (electron beam) and photolytic (ultraviolet, UV) dechlorination of polychlorinated biphenyls (PCBs) in a marine sediment are described. Samples of a PCB-laden marine sediment, Standard Reference Material (SRM) 1944, NewYork/New Jersey Waterway Sediment, have been mixed with aqueous alcohol solutions and irradiated with an electron beam or photolyzed. Additives, such as alcohol, enhance the radiolytic yield and PCB dechlorination. In the electron beam irradiated samples, the concentrations of 29 PCB congeners decrease with irradiation dose. At the highest dose (500 kGy), the total concentration of PCBs is decreased by 83%. Photolysis leads to little dechlorination, but photolysis with added triethylamine leads to dechlorination (about 60%). It is likely that photolysis under optimal conditions (other additives, exposure time) may be as effective as electron beam radiolysis for the dechlorination of PCBs in sediment.

  5. Development of marine sediment toxicity identification evaluation methods using Strongylocentrotus purpuratus, Mytilus edulis, and Eohaustorius estuarius

    SciTech Connect

    Wortham, G.; Cotsifas, J.S.; Taberski, K.; Hansen, S.R.

    1994-12-31

    Widespread sediment toxicity, including ``clean`` reference sites, dictates that the causes of toxicity in sediments be determined. Toxicity Identification Evaluations (TIE) are useful tools in characterizing compounds responsible for toxicity, but were unavailable for sediment samples. TIE methods were developed for sediment porewater and included the following components: determination of an appropriate porewater extraction process; control TIE tests using marine water and porewater evaluating species sensitivities to the fractionation procedures; validation experiments investigating the removal efficiencies of organics using C18 solid phase extraction, and metals chelation using EDTA and STS; spiking experiments to determine the effectiveness of the TIE procedure in identifying multiple toxicants. The authors determined that fractionation procedures could be applied to both marine water and porewater using S. purpuratus, M. edulis and E. estuarius as biological detectors.

  6. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  7. Interaction of marine and fluvial clastic sedimentation, central Italy, Tyrrhenian coast

    SciTech Connect

    Evangelista, S.; Full, W.E.; Tortora, P.

    1989-03-01

    An integrated approach was used to study the interaction of fluvial, beach, and marine processes on sedimentation at the west-central coast of Italy along the Tyrrhenian Sea. The study area, 120 km northwest of Rome, is bounded on the north by Mt. Argentario, on the east by Pleistocene volcanics, on the south by the St. Augustine River, and on the west by the 50-mn bathymetric isopleth. The primary tools used included field work, textural analysis, high-resolution marine seismic, SEM, and Fourier shape analysis. Field work revealed incised streams, potentially relict beach ridges and lagoons, and relatively steep nearshore marine slopes in the northern portions of the study area. The result of the shape analysis performed on 56 samples was the definition of four end members. Each end member reflects a sedimentation process. Three end members were directly associated with fluvial sedimentation, and the fourth reflected marine processes. The seismic data along with the SEM analysis strongly supported the interpretation of four processes that dominate the recent sedimentation history. The sand interpreted to be associated with marine processes was found to represent the smoothest end member. SEM analysis suggests that the smoothing is not due to abrasion but to plastering associated with biologic processes (digestion.) and/or with silica precipitation associated with clay alteration at the freshwater/saltwater interface.

  8. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  9. Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments

    SciTech Connect

    Burgess, R.M.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Cook, H.F.; Kuhn, A.

    2000-04-01

    A multiagency effort is underway to develop whole sediment toxicity identification evaluation (TIE) methods. Whole sediment TIE methods will be critical tools for characterizing toxicity at hazardous waste sites and in the conduct of environmental risk assessments. The research approach is based on the predominance of three classes of toxicants in sediments: ammonia, nonpolar organic chemicals, and metals. Here the authors describe a procedure for characterizing acute toxicity caused by metals in whole marine sediments. The procedure involves adding a chelating resin to sediments, resulting in the sequestration of bioavailable metal while not stressing testing organisms. Within the testing chambers, the presence of resin resulted in statistically significant reductions in the overlying and interstitial water concentrations of five metals (cadmium, copper, nickel, lead, and zinc) generally by factors of 40 and 200. Toxicity to both the amphipod Ampelisca abdita and mysid Americamysis bahia (formerly Mysidopsis bahia) of sediments spiked with the five metals was decreased by approximately a factor of four when resin was present. While very effective at reducing the concentrations and toxicity of metals, the resin has only minor ameliorative effects on the toxicity of ammonia and a representative nonpolar toxicant (Endosulfan). Resin and accumulated metal were easily isolated from the testing system following exposures allowing for the initiation of phase II TIE (identification) procedures. This procedure using the addition of a chelating resin provides an approach for determining the importance of metals to the toxicity of marine sediments. Work is continuing to validate the method with environmentally contaminated sediments.

  10. An improved electroelution method for separation of DNA from humic substances in marine sediment DNA extracts.

    PubMed

    Kallmeyer, Jens; Smith, David C

    2009-07-01

    We present a method for the rapid and simple extraction of DNA from marine sediments using electroelution. It effectively separates DNA from compounds, including humic substances, that interfere with subsequent DNA quantification and amplification. After extraction of the DNA from the sediment into an aqueous solution, the crude sample is encased in 2% agarose gel and exposed to an electrical current, which draws the DNA out of the gel into a centrifugal filter vial. After electroelution, the sample is centrifuged to remove contaminants sediment and is particularly useful for sediments containing low biomass such as deeply buried marine sediments. It works with both organic-rich and -poor sediment, as well as with sediment where calcium carbonate is abundant and sediment where it is limited; consequently, adjustment of protocols is unnecessary for samples with very different organic and mineral contents.

  11. Sulfur reduction in sediments of marine and evaporite environments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.; Boston, P.; Francois, R.; Gyure, R. A.; Javor, B.; Tribble, G.; Vairavamurthy, A.

    1985-01-01

    Transformations of sulfur in sediments of ponds ranging in salinities from that of normal seawater to those of brines saturated with sodium chloride were examined. The chemistry of the sediment and pore waters were focused on with emphasis on the fate of sulfate reduction. The effects of increasing salinity on both forms of sulfur and microbial activity were determined. A unique set of chemical profiles and sulfate-reducing activity was found for the sediments of each of the sites examined. The quantity of organic matter in the salt pond sediments was significantly greater than that occurring in the adjacent intertidal site. The total quantitative and qualitative distribution of volatile fatty acids was also greater in the salt ponds. Volatile fatty acids increased with salinity.

  12. Ecotoxicological sediment evaluations in marine aquaculture areas of Chile.

    PubMed

    Rudolph, Anny; Medina, Paulina; Urrutia, Carolina; Ahumada, Ramón

    2009-08-01

    Given its geographic characteristics, the southern Chilean fjord area is subjected to growing environmental pressure from the development of diverse forms of aquaculture (i.e., fish, algae, shellfish). The sediments accumulate substances as a natural sink, and ecotoxicology assays offer a reliable and robust proxy for sediment quality analyses. This study's objective was to establish a mid-range toxicity base line for the sediments in the region by applying a battery of non-specific ecotoxicological assays. Sediment samples (28) were collected in the channels and fjords studied during the CIMAR-Fiordos 11 cruise (July 2005). The sediments were evaluated using different species endemic to the eastern Pacific as targets: Ampelisca araucana, Tisbe longicornis, Arbacia spatuligera, and Dunaliella tertiolecta. The conditions for each assay were reported previously. Of the four species used as ecotoxicological tools, only D. tertiolecta differed significantly from the control group (negative) in terms of its growth. This difference could be attributed to nutrient enrichment. In general, we concluded that, although local changes occurred in the sediments, the mesoscale magnitude of the ecotoxicological alterations was small. Nonetheless, a surveillance program should be implemented that would allow us to follow-up and analyze the changes that are taking place in the systems on broader scales of time and space. PMID:18633720

  13. Phototoxic evaluation of marine sediments collected from a PAH-contaminated site.

    PubMed

    Boese, B L; Ozretich, R J; Lamberson, J O; Cole, F A; Swartz, R C; Ferraro, S P

    2000-04-01

    The phototoxicity potential of PAH-contaminated field sediment was evaluated and compared to standard sediment toxicity test results. Marine sediments were collected from 30 sites along a presumed PAH sediment pollution gradient in Elliot Bay, WA. Standard 10-day acute and 28-day chronic sediment toxicity tests were conducted with the infaunal amphipods Rhepoxynius abronius and Leptocheirus plumulosus using mortality and the ability to rebury as endpoints. The survivors of these tests were then subjected to 1-h exposures to UV radiation with mortality and reburial again determined. The most highly toxic sediments identified in these experiments were evaluated further for toxicity and phototoxicity by serially diluting them with uncontaminated sediment and repeating the toxicity tests. Standard 10-day toxicity test results indicated that over 70% of the sites sampled in Elliot Bay exhibited measurable toxicity with nine sites being highly toxic to both species of amphipods. Results of standard 28-day chronic sediment toxicity tests were similar. In contrast, almost all of the sites were found to be highly phototoxic. Results indicated that exposure to UV increased toxicity five- to eightfold. This suggests that standard toxicity tests underestimate the potential ecological risk of PAH-contaminated sediments in animals exposed to sunlight. However, only when PAH contamination was between 0.05 and 1.0 toxic units would conducting a phototoxicity evaluation add information to that gained from conducting a standard sediment toxicity test alone.

  14. Concurrent low- and high-affinity sulfate reduction kinetics in marine sediment

    NASA Astrophysics Data System (ADS)

    Harder Tarpgaard, Irene; Røy, Hans; Jørgensen, Bo Barker

    Bacterial sulfate reduction in marine sediments generally occurs in the presence of high millimolar concentrations of sulfate. Published data indicate that low sulfate concentrations may limit sulfate reduction rates below 0.2-2 mM. Yet, high sulfate reduction rates occur in the 1-100 μM range in freshwater sediments and at the sulfate-methane transition in marine sediments. Through a combination of 35S-tracer experiments, including initial velocity experiments and time course experiments, we searched for different sulfate affinities in the mixed community of sulfate reducers in a marine sediment. We supported the radiotracer experiments with a highly sensitive ion chromatographic technique for sulfate with a detection limit of 0.15 μM SO 42- in marine pore water. Our results showed that high and low affinities for sulfate co-occur and that the applied experimental approach may determine the observed apparent half saturation constant, Km. Our experimental and model data both show that sulfate reduction in the studied marine sediment could be explained by two dominating affinities for sulfate: a low affinity with a mean half saturation constant, Km, of 430 μM SO 42- and a high affinity with a mean Km of 2.6 μM SO 42-. The high-affinity sulfate reduction was thermodynamically un-constrained down to <1 μM SO 42-, both in our experiments and under in situ conditions. The reduction of radio-labeled sulfate was partly reversible due to concurrent re-oxidation of sulfide by Fe(III) and possibly due to a reversibility of the enzymatic pathway of sulfate reduction. A literature survey of apparent Km values for sediments and pure cultures is presented and discussed.

  15. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination

    PubMed Central

    Matturro, Bruna; Ubaldi, Carla; Rossetti, Simona

    2016-01-01

    The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site. PMID:27708637

  16. Observations of gas hydrates in marine sediments, offshore northern California

    USGS Publications Warehouse

    Brooks, J.M.; Field, M.E.; Kennicutt, M.C.

    1991-01-01

    Biogenic gas hydrates were recovered in shallow cores (< 6 m deep) from the Eel River basin in offshore northern California between 40??38??? and 40??56???N. The gas hydrates contained primarily methane (??13C = -57.6 to -69.1???) and occurred as dispersed crystals, small (2-20 mm) nodules, and layered bands within the sediment. These hydrates, recovered in sediment at water depths between 510 and 642 m, coincide nearly, but not exactly, with areas showing bottom-simulating reflectors (BSRs) on seismic-reflection records. This study confirms indirect geophysical and geologic observations that gas hydrates are present north of the Mendocino Fracture Zone in sediment of the Eel River basin but probably are absent to the south in the Point Arena basin. This discovery extends the confirmed sites of gas hydrates in the eastern Pacific region beyond the Peruvian and Central American margins to the northern California margin. ?? 1991.

  17. Abiotic racemization kinetics of amino acids in marine sediments.

    PubMed

    Steen, Andrew D; Jørgensen, Bo Barker; Lomstein, Bente Aa

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10(-5)-11×10(-5) yr(-1). These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.

  18. Denitrification, Anammox, and N2 Production in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Devol, Allan H.

    2015-01-01

    Fixed nitrogen limits primary productivity in many parts of the global ocean, and it consequently plays a role in controlling the carbon dioxide content of the atmosphere. The concentration of fixed nitrogen is determined by the balance between two processes: the fixation of nitrogen gas into organic forms by diazotrophs, and the reconversion of fixed nitrogen to nitrogen gas by denitrifying organisms. However, current sedimentary denitrification rates are poorly constrained, especially in permeable sediments, which cover the majority of the continental margin. Also, anammox has recently been shown to be an additional pathway for the loss of fixed nitrogen in sediments. This article briefly reviews sedimentary fixed nitrogen loss by sedimentary denitrification and anammox, including in sediments in contact with oxygen-deficient zones. A simple extrapolation of existing rate measurements to the global sedimentary denitrification rate yields a value smaller than many existing measurement-based estimates but still larger than the rate of water column denitrification.

  19. Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments

    SciTech Connect

    Casas, A.M. . School of Fisheries); Crecelius, E.A. )

    1994-03-01

    It has been proposed that acid volatile sulfide (AVS) is an important sediment phase for determining the toxicity of certain trace metals. By evaluating the ratio of the molar quantities of simultaneously extracted metal (SEM) to AVS, the toxicity of metals to organisms in contact with sediment can be predicted. This study examines the role of AVS in prediction the toxicity of zinc, lead, and copper in marine sediments. Sediment samples were titrated with zinc, lead, and copper and subsequently analyzed for SEM, pore-water (PW) metal, and AVS retention. In most cases, metal was not detected in the pore waters until the AVS was exceeded, suggesting that AVS is an adequate measure of the metal-blinding capacity of a sediment. The [SEM]-to-[AVS] ratios were calculated and toxicities predicted for each spiking concentration where [SEM]/[AVS] > 1. A 10-d, flow-though, acute bioassay using the marine polychaete Capitella capita was conducted to examine the prediction of toxicity from the metal titrations and the bioassay sediment chemistry data. In most cases, mortalities occurred as predicted. AVS and the [SEM]-to-[AVS] ratio proved useful as predictors of toxicity for zinc, lead, and perhaps copper. Another tool for predicting metal toxicity in sediments may be the [PW]/LC50 value; in every case where this ratio was > 1, mortalities occurred.

  20. Origin of a washboard moraine of the Des Moines Lobe inferred from sediment properties

    NASA Astrophysics Data System (ADS)

    Ankerstjerne, Suzanne; Iverson, Neal R.; Lagroix, France

    2015-11-01

    Geometric characteristics of the washboard moraines of the Des Moines Lobe (DML) of the Laurentide ice sheet agree with their proposed origin as crevasse-squeeze ridges, but study of their sediments is required to help further test this hypothesis. A 70-m-long, 3-5 m high section through a moraine ridge in central Iowa revealed till with irregular, isolated lenses of silt, sand, and gravel that dip to varying extents upglacier. The texture and density of the till are like those of the basal till of the DML studied elsewhere in Iowa, and preconsolidation pressures determined from tests on till and silt of the ridge indicate that it developed subglacially rather than at the glacier margin. Preconsolidation pressures additionally demonstrate that pore-water pressures in the bed supported most of the glacier's weight, which would have contributed to till mobility. Fabrics based on the anisotropy of magnetic susceptibility of 3125 intact till specimens collected at 125 locations in the section indicate two end-member states of strain that varied with location in the ridge and caused sediment mounding: simple shear that was directed downglacier along shear planes inclined upglacier, together with pure shear where an overlying crevasse allowed the sediment bed to extend upward and laterally. Meltwater that likely flowed along the crevasse deposited sorted sediments that were incorporated in till, deformed, and rotated. This positive test of the crevasse-squeeze hypothesis indicates that the DML was in longitudinal extension near its margin, reinforcing previous arguments that the lobe surged. The predominance of fabrics caused by simple shear demonstrates that crevasse filling was underway before the surge had fully halted. This study should prompt caution in using similar transverse ridges, such as those geophysically imaged in some submarine glacier forefields, as indicators of retreat rates.

  1. Accumulation of polychlorinated organic contaminants from sediment by three benthic marine species

    SciTech Connect

    Pruell, R.J.; Rubinstein, N.I.; Taplin, B.K.; LiVolsi, J.A.; Bowen, R.D.

    1993-01-01

    A laboratory experiment was conducted to measure the accumulation of selected polychlorinated compounds by marine benthos exposed to environmentally contaminated sediment. Sandworms (Nereis virens), clams (Macoma nasuta), and grass shrimp (Palaemonetes pugio) were exposed to sediment collected from the Passaic River, New Jersey. All three species accumulated 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and polychlorinated biphenyls (PCBs) from the sediment. In addition, a recently identified sulfur containing analog of tetrachlorinated dibenzofurans. The objectives of the study were to determine the relative bioavailability of 2,3,7,8-TCDD, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and selected PCB congeners from bottom sediments as well as to examine the relationship between contaminant concentrations in sediments and biota.

  2. Cathodic protection by zinc sacrificial anodes: impact on marine sediment metallic contamination.

    PubMed

    Rousseau, C; Baraud, F; Leleyter, L; Gil, O

    2009-08-15

    Cathodic protection by sacrificial zinc anodes is often applied to prevent immerged metallic structures from corrosion. But this technique induces the zinc anodes dissolution, which can induce marine sediments and seawater contamination. A large scale experiment, in natural seawater, was conducted during 12 months, in order to evaluate the potential environmental impact of this continuous zinc dissolution, and of some necessary cleaning operations of the anodes surfaces. The heavy metal (Cr, Cu, Pb and Zn) concentration in water and sediment samples was monitored. A sequential extraction procedure was applied on sediment samples to differentiate the zinc mobile fractions from the residual one. A significant increase of zinc concentration was observed in water as well as in the surface sediments under the specific operating conditions. Sediments then become a secondary pollution source, as the sorbed labile zinc can be remobilized to seawater. PMID:19250740

  3. Sorption behaviors of a persistent toxaphene congener on marine sediments under different physicochemical conditions.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Gouteux, Bruno; Nikiforov, Vladimir; Awaleh, Mohamed Osman

    2014-11-01

    Sorptive processes are important parameters affecting the mobility, availability and fate of persistent organic pollutants (POPs), such as toxaphene, in aquatic systems. The sorption and desorption behaviors of the B7-1450, a stable toxaphene congener in environment, on marine sediment was studied under different temperature and salinity conditions to better understand the B-1450 distribution in estuarine systems. The data were fitted to different sorption models to characterize sorption behaviors by evaluating sorption coefficients and sequestrated fraction of B7-1450 on sediments. High carbon-normalized sorption coefficients (Koc) of the B7-1450 were observed with values ranging from 3.2×104 to 6.0×104 mL g(-1) under experimental conditions. The data showed an increase of B7-1450 sorption coefficients with the salinity and a decrease with temperature. These investigations indicate that B7-1450 is three times more sequestred on sediments in cold (2°C, 30 psu) than in warm marine conditions (20°C, 30 psu). These results suggest that the mobility and bioavailable of B7-1450 or other POPs from the sediments could be less important in cold marine comparatively in warm marine and warm freshwater media. As a result of climate changes, the warming of mid and high latitudes coastal waters could enhance the mobility of POPs.

  4. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY TO VISUALIZE AND QUANTIFY BIOGENIC STRUCTURES IN MARINE SEDIMENTS

    EPA Science Inventory

    We used computer-aided tomography (CT) for 3D visualization and 2D analysis of

    marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental

    impact. Biogenic structures such as tubes and burrows were quantified and compared among st...

  5. Molybdenum Accumulation in Marine Sediments as an Indicator of Hypoxic Water Conditions (NACAETAC)

    EPA Science Inventory

    Direct monitoring of hypoxic water column conditions over large spatial and temporal extents is difficult due to the substantial logistical and financial investment required. Recent studies have indicated that concentrations of molybdenum (Mo) in marine sediments may serve as a u...

  6. Sorption behaviors of a persistent toxaphene congener on marine sediments under different physicochemical conditions.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Gouteux, Bruno; Nikiforov, Vladimir; Awaleh, Mohamed Osman

    2014-11-01

    Sorptive processes are important parameters affecting the mobility, availability and fate of persistent organic pollutants (POPs), such as toxaphene, in aquatic systems. The sorption and desorption behaviors of the B7-1450, a stable toxaphene congener in environment, on marine sediment was studied under different temperature and salinity conditions to better understand the B-1450 distribution in estuarine systems. The data were fitted to different sorption models to characterize sorption behaviors by evaluating sorption coefficients and sequestrated fraction of B7-1450 on sediments. High carbon-normalized sorption coefficients (Koc) of the B7-1450 were observed with values ranging from 3.2×104 to 6.0×104 mL g(-1) under experimental conditions. The data showed an increase of B7-1450 sorption coefficients with the salinity and a decrease with temperature. These investigations indicate that B7-1450 is three times more sequestred on sediments in cold (2°C, 30 psu) than in warm marine conditions (20°C, 30 psu). These results suggest that the mobility and bioavailable of B7-1450 or other POPs from the sediments could be less important in cold marine comparatively in warm marine and warm freshwater media. As a result of climate changes, the warming of mid and high latitudes coastal waters could enhance the mobility of POPs. PMID:25113217

  7. Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents†

    PubMed Central

    Teske, A.; Brinkhoff, T.; Muyzer, G.; Moser, D. P.; Rethmeier, J.; Jannasch, H. W.

    2000-01-01

    Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria. PMID:10919760

  8. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  9. Banking of environmental samples for short-term biochemical and chemical monitoring of organic contamination in coastal marine environments: the GICBEM experience (1986-1990). Groupe Interface Chimie Biologie des Ecosystèmes, Marins.

    PubMed

    Garrigues, P; Narbonne, J F; Lafaurie, M; Ribera, D; Lemaire, P; Raoux, C; Michel, X; Salaun, J P; Monod, J L; Romeo, M

    1993-11-01

    The GICBEM (Groupe Interface Chimie Biologie des Ecosystèmes Marins) program consists of an evaluation of the ecosystem health status in the Mediterranean Sea mainly based on chemical and biochemical approaches. Specific chemical contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorobiphenyls (PCB), heavy metals) in waters, sediments, and related biotransformation indicators in target organisms (mussels, fish) have been selected for a complete survey of the coastal waters. In order to provide an appropriate sampling program for standardization for each sampling cruise, various aspects have been studied: (a) parameters for the choice of the sample sites; (b) ways of collection the samples (waters, sediments, marine organisms); and (c) preparation of the samples for a short term storage on board ship and for further analyses in the ground laboratory. Methods of preparation and storage of the samples are described and could be used to initiate an environmental banking program including both possible retrospective analyses of chemical pollutants and biochemical indicators. Moreover, the correlation between chemicals (PAH) and biochemical (mixed function oxygenase activities) parameters has been studied and this demonstrates the capability of the enzyme activities as reliable pollution biomarkers.

  10. Comparative phosphorus sorption by marine sediments and agricultural soils in a tropical environment.

    PubMed

    Fox, Robert L; Fares, Ali; Wan, Y; Evensen, Carl I

    2006-01-01

    The influence of soil phosphorus (P) sources on P sorption characteristics of marine sediments was investigated for Pearl Harbor and off shore Molokai in Hawaii. Estuary sediments were sampled in seven locations; these represented different soils and on-shore activities. The soil samples included nine major soils that contributed sediment to the Harbor and coastal sediments near the island of Molokai. Sediment and soil samples were equilibrated for 6 days in 0.01 M CaCl(2) solution and synthetic seawater containing differing amounts of P. Phosphorus sorption curves were constructed. The equilibrated solution P, with no P added, ranged from 0.01 to 0.2 mg L(-1); P sorption by sediments at standard solution concentration 0.2 mg L(-1), ranged from 0 to 230 mg kg(-1). Sediment P sorption corresponded closely with soil sorption characteristics. Soils contributing sediments to the west reach of Pearl Harbor are highly weathered Oxisols with high standard P sorption values while those in the southeast of the Harbor were Vertisols and Mollisols which sorb little P. The influence of source materials on sediment P sorption was also observed for off-shore sediments near Molokai. Sediments serve as both source and sink for P in Pearl Harbor and in this role can be a stabilizing influence on P concentration in the water column. Phosphorus sorption curves in conjunction with water quality data can help to understand P dynamics between sediments and the water column and help evaluate concerns about P loading to a water body. For Pearl Harbor, solution P in equilibrium with sediments from the Lochs was 0.021 mg L(-1); a value unlikely to produce an algal bloom. (Measured total P in the water columns (mean) was 0.060.).

  11. Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments

    NASA Astrophysics Data System (ADS)

    Rush, Darci; Sinninghe Damsté, Jaap S.; Poulton, Simon W.; Thamdrup, Bo; Garside, A. Leigh; Acuña González, Jenaro; Schouten, Stefan; Jetten, Mike S. M.; Talbot, Helen M.

    2014-09-01

    Bacterially-derived bacteriohopanepolyols (BHPs) are abundant, well preserved lipids in modern and paleo-environments. Bacteriohopanetetrol (BHT) is a ubiquitously produced BHP while its less common stereoisomer (BHT isomer) has previously been associated with anoxic environments; however, its biological source remained unknown. We investigated the occurrence of BHPs in Golfo Dulce, an anoxic marine fjord-like enclosure located in Costa Rica. The distribution of BHT isomer in four sediment cores and a surface sediment transect closely followed the distribution of ladderane fatty acids, unique biomarkers for bacteria performing anaerobic ammonium oxidation (anammox). This suggests that BHT isomer and ladderane lipids likely shared the same biological source in Golfo Dulce. This was supported by examining the BHP lipid compositions of two enrichment cultures of a marine anammox species (‘Candidatus Scalindua profunda’), which were found to contain both BHT and BHT isomer. Remarkably, the BHT isomer was present in higher relative abundance than BHT. However, a non-marine anammox enrichment contained only BHT, which explains the infrequence of BHT isomer observations in terrestrial settings, and indicates that marine anammox bacteria are likely responsible for at least part of the environmentally-observed marine BHT isomer occurrences. Given the substantially greater residence time of BHPs in sediments, compared to ladderanes, BHT isomer is a potential biomarker for past anammox activity.

  12. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

    PubMed

    Massana, Ramon; Gobet, Angélique; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Chambouvet, Aurélie; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Forn, Irene; Forster, Dominik; Guillou, Laure; Jaillon, Olivier; Kooistra, Wiebe H C F; Logares, Ramiro; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Probert, Ian; Romac, Sarah; Richards, Thomas; Santini, Sébastien; Shalchian-Tabrizi, Kamran; Siano, Raffaele; Simon, Nathalie; Stoeck, Thorsten; Vaulot, Daniel; Zingone, Adriana; de Vargas, Colomban

    2015-10-01

    Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date.

  13. The Atmospheric Supply of Terrestrial Authigenic Phosphate Minerals to Open Marine Sediments

    NASA Astrophysics Data System (ADS)

    Flaum, J. A.; Jacobson, A. D.; Sageman, B. B.

    2007-12-01

    Authigenic P-bearing minerals (Pauth), such as carbonate fluorapatite, form within shallow marine sediments as biological processes degrade organic matter and release associated phosphate to the dissolved pool during early diagenesis. Thus, Pauth is commonly used as a proxy for productivity in modern and ancient marine depositional environments. To help refine this proxy and further improve understanding of the marine P cycle, we investigated if dust deposition could supply terrestrially derived Pauth and other P-bearing phases to modern marine sediments. We used the SEDEX sequential extraction procedure to quantify the occurrence of P in ten samples of loess from the Chinese Loess Plateau, a major source of dust to the North Pacific Ocean (NPO). On average, 40% of the total P within Chinese Loess occurs as Pauth, 33% as detrital apatite (Pdet), 17% in organic matter (Porg), and 10% bound to Fe-Al oxides (Pox). Using eolian dust and total P accumulation rates reported for core LL44-GC3 taken from the central NPO, we find that ~86% of the total P accumulation within the central NPO could originate from the atmospheric deposition of Pauth and Pdet. Hence, productivity estimates based upon total P accumulation for this site are likely lower than previously estimated. Our findings suggest that marine productivity studies predicated on the measurement of Pauth need to quantify the fraction of Pauth supplied from terrestrial sources. This may be even more significant along continental margins where rivers can supply sediments with high concentrations of Pauth minerals.

  14. HCH and DDT in sediments from marine and adjacent riverine areas of North Bohai Sea, China.

    PubMed

    Hu, Wenyou; Wang, Tieyu; Khim, Jong Seong; Luo, Wei; Jiao, Wentao; Lu, Yonglong; Naile, Jonathan E; Chen, Chunli; Zhang, Xiang; Giesy, John P

    2010-07-01

    Residues of organochlorine pesticides (OCPs), hexachlorocyclohexanes (HCHs), and dichlorodiphenyltrichloroethanes (DDTs) and their environmental risks in surface sediments collected from marine and adjacent riverine/estuarine areas in the northern Bohai Sea, China, were investigated. Concentrations of SigmaHCH and SigmaDDT in sediments ranged from below detection (marine than riverine sediments. Concentrations of HCH and DDT residues found in the present study were higher than those reported in marine and river/estuary sediments from other areas of the world. The source of HCH in sediments could be explained by the large amount of historical use, while DDT seemed to be a combination of erosion of the weathered soils and long-range atmospheric transport. Concentrations of HCH in sediments from the study areas did not exceed sediment quality guidelines (SQGs), with the exception of gamma-HCH. However, risks posed by concentrations of DDT observed in sediments were found to be moderate to high compared with those posed by consensus-based SQGs. Although the mean sedimentary concentrations of HCH and DDT found in the area of the northern Bohai Sea, China were lower than suggested SQGs in general, their concentrations in some locations were close to or above the SQGs for adverse effects in benthic organisms and, thus, remain a cause for concern.

  15. Kinetics Study of Uranium and Iodine Transport Across The Marine Sediment-water Interface.

    NASA Astrophysics Data System (ADS)

    Simonucci, C.; Viollier, E.; Jézéquel, D.; Sarazin, G.; Metzger, E.; Prévot, F.; Anschutz, P.; Bouran, J. J.

    Even if extensive lab and fieldwork has been done to determine geo- or biogeochemical reactions that precipitate uranium ore, dominant pathways of uranium accumulation in anoxic marine sediments remain to be demonstrated. As well iodine transformation below sediment-water interface lacks of definitive explanation. In this work, we utilize bioreactors for undisturbed sediment to validate possible mechanisms and extract kinetics information that applies to in situ conditions in order to feed diagenetic model. Here, we are presenting our first results in uranium and iodine from our study sites in the Bay of Biscay (France) and in the Thau lagoon (France). We observe that uranium is trapped in anoxic marine sediments (cores from Bay of Biscay) during our bioreactor experiment under anoxic conditions. The concentration of uranium decreases drastically from the injection concentration, to almost zero, in 20 hours. For iodine, it is not as clear as for uranium, because the concentration is still the same from the beginning of circulation of the injection solution, until the end of the experiment (96 hours). In order to decide wether iodine is trapped in marine sediments or transformed in one of its compounds, we also study its speciation at the reactor output.

  16. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N 2 production in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Engström, Pia; Dalsgaard, Tage; Hulth, Stefan; Aller, Robert C.

    2005-04-01

    The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N 2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N 2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH 4+, 14NO 3- and 15NO 3-) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N 2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N 2 production was due to this novel route. The relative importance of anammox for N 2 release was inversely correlated with remineralized solute production, benthic O 2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.

  17. Development and Evaluation of Polychaete Reverse Samplers for Marine Phase II Whole Sediment Toxicitiy Identification Evaluations (TIE)

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to m...

  18. Development and Evaluation of Reverse Polyethylene Samplers for Marine Phase II Whole-Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to mar...

  19. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  20. Optimization of hard clams, polychaetes, physical disturbance and denitrifying bacteria of removing nutrients in marine sediment.

    PubMed

    Shen, Hui; Thrush, Simon F; Wan, Xihe; Li, Hui; Qiao, Yi; Jiang, Ge; Sun, Ruijian; Wang, LiBao; He, Peimin

    2016-09-15

    Marine organisms are known to play important roles in transforming nutrients in sediments, however, guidelines to optimize sediment restoration are not available. We conducted a laboratory mesocosm experiment to investigate the role of hard clams, polychaetes, the degree of physical disturbance and denitrifying bacterial concentrations in removing total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in marine sediments. Response surface methodology was employed to analyze the results of initial experiments and in a subsequent experiment identified optimal combinations of parameters. Balancing the TN, TP, TOC removal efficiency, our model predicted 39% TN removal, 33% TP removal, and 42% TOC removal for a 14-day laboratory bioremediation trial using hard clams biomass of 1.2kgm(-2), physical disturbance depth of 16.4cm, bacterial density of 0.18Lm(-2), and polychaetes biomass of 0.16kgm(-2), respectively. These results emphasize the value of combining different species in field-based bioremediation.

  1. Optimization of hard clams, polychaetes, physical disturbance and denitrifying bacteria of removing nutrients in marine sediment.

    PubMed

    Shen, Hui; Thrush, Simon F; Wan, Xihe; Li, Hui; Qiao, Yi; Jiang, Ge; Sun, Ruijian; Wang, LiBao; He, Peimin

    2016-09-15

    Marine organisms are known to play important roles in transforming nutrients in sediments, however, guidelines to optimize sediment restoration are not available. We conducted a laboratory mesocosm experiment to investigate the role of hard clams, polychaetes, the degree of physical disturbance and denitrifying bacterial concentrations in removing total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in marine sediments. Response surface methodology was employed to analyze the results of initial experiments and in a subsequent experiment identified optimal combinations of parameters. Balancing the TN, TP, TOC removal efficiency, our model predicted 39% TN removal, 33% TP removal, and 42% TOC removal for a 14-day laboratory bioremediation trial using hard clams biomass of 1.2kgm(-2), physical disturbance depth of 16.4cm, bacterial density of 0.18Lm(-2), and polychaetes biomass of 0.16kgm(-2), respectively. These results emphasize the value of combining different species in field-based bioremediation. PMID:27371956

  2. Recent sediment remolding on a deep shelf, Ross Sea: implications for radiocarbon dating of Antarctic marine sediments

    NASA Astrophysics Data System (ADS)

    Domack, Eugene W.; Taviani, Marco; Rodriguez, Anthonio

    1999-11-01

    Coarse, bioclastic rich sands have been widely reported from the banks of the Antarctic continental shelf but their origin is still poorly known. We report on a suite of coarse sediments recovered from the top of the Mawson Bank in the northwestern Ross Sea. Radiocarbon ages of biogenic calcite, for modern and apparently late Pleistocene deposits, range from 1085±45 to 20,895±250 yr B.P.. Discovery of soft tissue (Ascidian) preserved as an incrustation on a pebble at 2 m depth indicates aggregation of the sediment within several months or a year of core recovery. Radiocarbon ages of acid insoluble organic matter (aiom) are less than those of the foraminifera calcite. The aiom ages are also reversed in sequence, indicating reworking of the sediment during deposition. These observations and a review of recently published literature suggest that much of the bank top sediment in Antarctica is presently undergoing remobilization, under the influence of strong currents and/or icebergs even under interglacical (high-stand) sea levels. These observations point out the need for careful, integrated studies on high latitude marine sediment cores before resultant "ages" alone are used as the foundation for paleoglacial reconstructions.

  3. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  4. Sequential Sediment Budgets in an Ungauged Watershed: Redwood Creek, Marin County, California

    NASA Astrophysics Data System (ADS)

    Downs, P. W.; Stallman, J.

    2005-12-01

    Sediment budgets provide an organizing framework in fluvial geomorphology and have enormous potential in environmental management. A sediment budget approach assisted in developing strategies for restoring Big Lagoon, the wetland ecosystem at the terminus of the 22.7 km2 Redwood Creek watershed in Marin County, California. Persistence of a restored lagoon largely depends on the current sediment yield relative to the reference yield prior to European settlement. Process-based, distributed sediment budgets were constructed for several historical time periods to account for accelerated sediment production from contemporary land management practices and legacy factors stemming from past resource exploitation. Sediment production, storage, and transfer were investigated using digital terrain modeling, field reconnaissance to ascertain and validate hillslope processes, mainstem channel surveys and dendrochronology to assess trends in alluvial sediment storage, application of published process rate estimates, use of short-term and prorated stream gauging records, and sediment transport modeling to validate sediment yields into Big Lagoon. Evidence suggests that the Redwood Creek valley bottom aggraded from at least 3,500 B.P., with floodplain wetlands acting as sediment sinks (average annual sediment yield of 34 t km2 yr-1). Channel incision rapidly followed European settlement and intensive hillslope disturbances beginning around 1840 (peak yield 1921-1982 of 324 t km2 yr-1). Mainstem and large tributary valley bottoms became major sediment sources during this time and remain sources despite progressive retirement of most agricultural land use (yield 1981-2000 of 198 t km2 yr-1). Numerous issues related to data availability and resolution limited quantification of some sediment sources and resulted in potential uncertainties in estimates of yield to Big Lagoon. Historical sediment budgets, however, require more than adequate data sources, they require accurate conceptual

  5. Food quality determines sediment community responses to marine vs. terrigenous organic matter in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Jamieson, A.; Huvenne, V. A. I.; Witte, U.

    2012-08-01

    The Whittard canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard canyon testing short term (3-7 day) responses of sediment communities to deposition of nitrogen-rich marine (Thallassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest, in the western branch of the Whittard canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0-1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal-bacterial interactions influence benthic C cycling in the Whittard canyon, resulting in differential fates for marine and terrigenous OM.

  6. Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments.

    PubMed

    Lei, Yan-Li; Stumm, Karen; Wickham, Stephen A; Berninger, Ulrike-G

    2014-01-01

    The quantitative importance of ciliates, foraminifers, and amoebae was investigated in marine, brackish, and freshwater sediments from 15 littoral stations. Total protozoan communities were usually dominated by ciliates in term of abundance, while amoebae often dominated in terms of biomass. Applying the biomass-metabolic rate equation, ciliates, amoebae, and foraminifera were estimated to contribute 66% of the total abundance and 33% of the biomass, but up to 55% of the combined metabolic rate to the micro- and meiobenthos in the 15 sediments. Statistical analyses using ciliate data demonstrated: (1) species composition and community structures represented significant differences between freshwater and marine/brackish sediments, and subsequently between temperate and arctic sampling sites; (2) the occurrence of dominant ciliates and their allocation to feeding types indicated that herbivory was the most common feeding strategy in these sediments; (3) multivariate analyses showed all of the tested environmental factors (temperature, salinity, silt/clay, carbon, nitrogen, and chlorophyll a) to be important to varying degrees, but especially the combination of salinity, temperature, and silt/clay. Multiple factor effects or comprehensive influences might be important in regulating the distribution of protozoa in sediments. The importance of protozoa in sediment systems and the potential ecological significance of cysts are discussed. PMID:24919761

  7. Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments.

    PubMed

    Lei, Yan-Li; Stumm, Karen; Wickham, Stephen A; Berninger, Ulrike-G

    2014-01-01

    The quantitative importance of ciliates, foraminifers, and amoebae was investigated in marine, brackish, and freshwater sediments from 15 littoral stations. Total protozoan communities were usually dominated by ciliates in term of abundance, while amoebae often dominated in terms of biomass. Applying the biomass-metabolic rate equation, ciliates, amoebae, and foraminifera were estimated to contribute 66% of the total abundance and 33% of the biomass, but up to 55% of the combined metabolic rate to the micro- and meiobenthos in the 15 sediments. Statistical analyses using ciliate data demonstrated: (1) species composition and community structures represented significant differences between freshwater and marine/brackish sediments, and subsequently between temperate and arctic sampling sites; (2) the occurrence of dominant ciliates and their allocation to feeding types indicated that herbivory was the most common feeding strategy in these sediments; (3) multivariate analyses showed all of the tested environmental factors (temperature, salinity, silt/clay, carbon, nitrogen, and chlorophyll a) to be important to varying degrees, but especially the combination of salinity, temperature, and silt/clay. Multiple factor effects or comprehensive influences might be important in regulating the distribution of protozoa in sediments. The importance of protozoa in sediment systems and the potential ecological significance of cysts are discussed.

  8. Luminescence Dating of Marine Terrace Sediments Between Trabzon and Rize, Eastern Black Sea Basin: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Softa, Mustafa; Spencer, Joel Q. G.; Emre, Tahir; Sözbilir, Hasan; Turan, Mehmet

    2016-04-01

    Quaternary marine terraces in the coastal region of Pontides in Northeastern Turkey are valuable archives of past sea level change. Until recently, dates of raised marine terraces undeciphered in the coastal region between Trabzon and Rize because of chronologic limitations. In this paper was to determine ages of the terrace deposits by applying optically stimulated luminescence (OSL) dating methods using single aliquot regenerative dose (SAR) techniques on quartz minerals from extracted marine terraces. Several samples were collected from three orders of Quaternary marine terraces which are reproducible at all sampling location in between cities of Trabzon and Rize, Turkey, coastal of Eastern Pontides, at the front of the thrust system. The terrace deposits mainly consist of clays, silts, sands and gravels. The sediments in these deposits are mainly derived from basaltic, andesitic, and limestone geology, and have elipsoid, square and flat shapes. The terrace deposits have heights ranging from 1 to 17 meters and increases in height and thickness from west to east. Initial OSL results from 1 mm and 3 mm quartz aliquots demonstrate good luminescence characteristics. Preliminary equivalent dose analysis results ranging from 17.6 Gy to 79.6 Gy have been calculated using the Central Age Model (CAM) and Minimum Age Model (MAM). According to ages obtained from three separate terrace is ~8 ka, ~42 ka and ~78 ka, respectively. Results of marine terrace sediments indicate this region has three sedimentation periods and coastal region of Pontides has been remarkably tectonically active since latest Pleistocene to earlier Holocene. This study will present preliminary OSL dating results obtained from samples of Quaternary marine terrace formation. Keywords: optically stimulated luminescence (OSL) dating, single grain, marine terraces, Eastern Pontides.

  9. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin

    SciTech Connect

    F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  10. Marine sediment toxicity identification evaluation methods for the anionic metals arsenic and chromium.

    PubMed

    Burgess, Robert M; Perron, Monique M; Cantwell, Mark G; Ho, Kay T; Pelletier, Marguerite C; Serbst, Jonathan R; Ryba, Stephan A

    2007-01-01

    Marine sediments accumulate a variety of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity identification evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole-sediment TIE methods are not available for anionic metals like arsenic and chromium. In the present paper, we describe two new anion-exchange resins used in the development of whole-sediment TIE methods for arsenic and chromium. Resins were shown to reduce whole-sediment toxicity and overlying water concentrations of the anionic metals. Sediment toxicity, expressed as the median lethal concentration, was reduced by a factor of two to a factor of nearly six between amended sediment treatments containing resin and those without resin. Aqueous concentrations of arsenic and chromium in the toxicity exposures decreased to less than the detection limits or to concentrations much lower than those measured in treatments without resin. Interference studies indicated that the anion-exchange resins had no significant effect on concentrations of the representative pesticide endosulfan and minimal effects on concentrations of ammonia. However, the anion-exchange resins did significantly reduce the concentrations of a selection of cationic metals (Cd, Cu, Ni, Pb, and Zn). These data demonstrate the utility of anion-exchange resins for determining the contribution of arsenic and chromium to whole-sediment toxicity. The present results also indicate the importance of using TIE methods in a formal TIE structure to ensure that results are not misinterpreted. These methods should be useful in the performance of marine whole-sediment TIEs.

  11. Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments.

    PubMed

    Ndungu, Kuria; Schaanning, Morten; Braaten, Hans Fredrik Veiteberg

    2016-10-15

    In situ subaqueous capping (ISC) of contaminated marine sediments is frequently proposed as a feasible and effective mitigation option. However, though effective in isolating mercury species migration into overlying water, capping can also alter the location and extent of biogeochemical zones and potentially enhance methylmercury (MeHg) formation in Hg-contaminated marine sediments. We carried out a boxcosm study to investigate whether the addition of organic carbon (OC) to Hg-contaminated marine sediments beneath an in situ cap would initiate and/or enhance MeHg formation of the inorganic Hg present. The study was motivated by ongoing efforts to remediate ca. 30,000 m(2) of Hg-contaminated seabed sediments from a Hg spill from the U864 WWII submarine wreck. By the time of sinking, the submarine is assumed to have been holding a cargo of ca. 65 tons of liquid Hg. Natural organic matter and petroleum hydrocarbons from fuels and lubricants in the wreck are potential sources of organic carbon that could potentially fuel MeHg formation beneath a future cap. The results of our study clearly demonstrated that introduction of algae OC to Hg-contaminated sediments, triggered high rates of MeHg production as long a there was sufficient OC. Thus, MeHg production was limited by the amount of organic carbon available. The study results also confirmed that, within the six-month duration of the study and in the absence of bioturbating fauna, a 3-cm sediment clay cap could effectively reduce fluxes of Hg species to the overlying water and isolate the Hg-contaminated sediments from direct surficial deposition of organic matter that could potentially fuel methylation. PMID:27494695

  12. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  13. Nucleic acid based quantitative microbial community analysis in different marine and terrestrial sediments

    NASA Astrophysics Data System (ADS)

    Schippers, A.; Blazejak, A.; Köweker, G.

    2009-12-01

    Sub-seafloor sediments harbour over half of all prokaryotic cells on Earth. This immense cell number is calculated from numerous microscopic cell counts (AODC) in ODP sediment cores. Since AODC can not differentiate between living or dead cells, the population size of living microorganisms and the abundance of different prokaryotic groups are unknown. Recent molecular nucleic acid and biomarker analyses showed that a high proportion of the cells are alive and that the microbial communities of deep marine sediments harbour members of distinct, uncultured bacterial and archaeal lineages. The main objective of our project is the quantification of living prokaryotes in various sediments. Deep sediment samples from the Pacific and the Atlantic Oceans (ODP Legs 201 and 207, IODP Exp. 307 and 308), sediments from the Indian Ocean (RV Sonne 189-2) and the Black Sea (RV Meteor 51/4) as well as terrestrial Chesapeake Bay Sediments (ICDP) were analyzed using Catalyzed Reporter Deposition - Fluorescence In Situ Hybridisation (CARD - FISH) and quantitative, real-time PCR (Q-PCR), targeting either the 16S rRNA gene or the functional genes dsrA, mcrA and aprA to quantify microorganisms of various phylogenetic or physiological groups (e.g. JS1 cluster and Chloroflexi). At all sediment sites, cell numbers decreased with depth, however, the abundance of particular microbial groups varied at different sites and depths. The results indicate that global estimates of the deep biosphere should be reconsidered.

  14. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

    PubMed

    Sim, Vivian X Y; Dafforn, Katherine A; Simpson, Stuart L; Kelaher, Brendan P; Johnston, Emma L

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management.

  15. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park

    PubMed Central

    Sim, Vivian X. Y.; Dafforn, Katherine A.; Simpson, Stuart L.; Kelaher, Brendan P.; Johnston, Emma L.

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management. PMID:26086427

  16. Analysis of marine sediment and lobster hepatopancreas reference materials by instrumental photon activation

    SciTech Connect

    Landsberger, S.; Davidson, W.F.

    1985-01-01

    By use of instrumental photon activation analysis, twelve trace (As, Ba, Cr, Co, Mn, Ni, Pb, Sb, Sr, U, Zn, and Zr) and eight minor (C, Na, Mg, Co, K, Ca, Tl, and Fe) elements were determined in a certified marine sediment standard reference material as well as eight trace (Mn, Ni, Cu, Zn, As, Sr, Cd, and Pb) and four minor (Na, Mg, Cl, and Ca) elements in a certified marine tissue (lobster hepatopancreas) standard reference material. The precision and accuracy of the present results when compared to the accepted values clearly demonstrate the reliability of this nondestructive technique and its applicability to marine environmental or marine geochemical studies. 24 references, 4 figures, 3 tables.

  17. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review

    NASA Astrophysics Data System (ADS)

    Murray, John M. H.; Meadows, Azra; Meadows, Peter S.

    2002-09-01

    At the foundations of biogeomorphological processes in the sea lie interactions between the activities of marine benthic animals and the geotechnical properties of their sedimentary environments. The potential significance of these interactions, which take place at a microscale level of millimetres to metres, for the large-scale geomorphology of the seabed has rarely been appreciated. In the context of this review, large-scale is defined as greater than 50 m to hundreds of kilometres. The present review addresses this link, drawing examples from a wide range of marine environments, including estuaries, the intertidal zone, continental shelves and slopes, and the deep sea. It firstly considers sediment stabilisation, slope failure, sediment mixing, biodeposition, sediment compaction, and hydrodynamic effects. This is followed by a consideration of two extremes of the ecological pyramid—the effects of marine meiofauna and marine vertebrates. The final section draws attention to the central role of faunal mucus and extracellular polymeric material (ECPM) in many of the microscale interactions that we describe. The implications of these microscale biological processes and features are discussed in terms of their influence on and control of the large-scale geomorphology of the seabed.

  18. Effects of dredged sediment disposal on the coastal marine macrobenthic assemblage in Southern Brazil.

    PubMed

    Angonesi, L G; Bemvenuti, C E; Gandra, M S

    2006-05-01

    The aim of this study was to evaluate the deposition impact of dredged material from Patos lagoon estuary on a benthic macroinvertebrate assemblage structure in an adjacent coastal marine area. Nine sampling stations were chosen at random in the disposal area, and nine others in the same way in an adjacent control area. Samples were collected at a 19 m depth before sediment disposal (11 July 2000), during dredging and disposal operations (25 Oct. 2000), and three months thereafter (24 Aug. 2001). Statistical analysis indicated that sampling periods presented similar characteristics in both the control and disposal sites. Disposal of dredged sediment from Patos lagoon had no detectable detrimental effects upon macrobenthic faunal assemblage at the dumping site. This result is attributed both to adaptation of resident biota to dynamic sedimentary conditions and to the fine estuarine sediment dredged, the dispersion of which in the water column might have minimized sediment deposition and consequent damage to the benthic fauna. PMID:16862294

  19. Evaluation of bioremediation potential of three benthic annelids in organically polluted marine sediment.

    PubMed

    Ito, Mana; Ito, Katsutoshi; Ohta, Kohei; Hano, Takeshi; Onduka, Toshimitsu; Mochida, Kazuhiko; Fujii, Kazunori

    2016-11-01

    This study aimed to evaluate the possible remedial effects of three marine benthic annelids on organically polluted sediments from the waters of Hatsukaichi Marina, Hiroshima, Japan. Two polychaetes, Perinereis nuntia and Capitella cf. teleta, and an oligochaete, Thalassodrilides sp., were incubated in sediments for 50 days. Their effects on physicochemical properties such as organic matter (loss on ignition), redox potential (Eh), acid volatile sulfides (AVS), and degradation of polycyclic aromatic hydrocarbons (PAHs) were assessed. The polychaetes P. nuntia and C. cf. teleta significantly increased Eh level and decreased AVS level compared with the oligochaete Thalassodrilides sp. and control (without benthic organisms). Total PAH concentration significantly decreased from the initial level with all three groups; Thalassodrilides sp. had a marked ability to reduce PAHs in sediment. These results indicate that benthic organisms have species-specific remediation properties and ecological functions in organically polluted sediments. PMID:27565306

  20. Evaluation of bioremediation potential of three benthic annelids in organically polluted marine sediment.

    PubMed

    Ito, Mana; Ito, Katsutoshi; Ohta, Kohei; Hano, Takeshi; Onduka, Toshimitsu; Mochida, Kazuhiko; Fujii, Kazunori

    2016-11-01

    This study aimed to evaluate the possible remedial effects of three marine benthic annelids on organically polluted sediments from the waters of Hatsukaichi Marina, Hiroshima, Japan. Two polychaetes, Perinereis nuntia and Capitella cf. teleta, and an oligochaete, Thalassodrilides sp., were incubated in sediments for 50 days. Their effects on physicochemical properties such as organic matter (loss on ignition), redox potential (Eh), acid volatile sulfides (AVS), and degradation of polycyclic aromatic hydrocarbons (PAHs) were assessed. The polychaetes P. nuntia and C. cf. teleta significantly increased Eh level and decreased AVS level compared with the oligochaete Thalassodrilides sp. and control (without benthic organisms). Total PAH concentration significantly decreased from the initial level with all three groups; Thalassodrilides sp. had a marked ability to reduce PAHs in sediment. These results indicate that benthic organisms have species-specific remediation properties and ecological functions in organically polluted sediments.

  1. Exposure of the marine deposit feeder Hydrobia ulvae to sediment associated LAS.

    PubMed

    Mauffret, A; Rico-Rico, A; Temara, A; Blasco, J

    2010-02-01

    Linear Alkylbenzene Sulfonates (LAS) effects (mortality, egestion rate, behaviour) on the marine deposit feeder Hydrobia ulvae were assessed in whole-sediment and water-only systems. The results were combined with a bioenergetic-based kinetic model of exposure pathways to account for the observed toxicity. The 10-d LC50 value based on the freely dissolved fraction was 9.3 times lower in spiked sediment (0.152 +/- 0.001 (95% CI) mg/L) than in water-only (1.390 +/- 0.020 (95% CI) mg/L). Consequently, the actual 10-d LC50 value (208 mg/kg) was overestimated by the Equilibrium Partitioning calculation (1629 mg/kg). This suggests that the sediment associated LAS fraction was bioavailable to the snails. It could also be due to modifications in physiological parameters in absence of sediment, the organism natural substrate.

  2. Development of a chronic sediment toxicity test for marine benthic amphipods

    SciTech Connect

    DeWitt, T.H.; Redmond, M.S.; Sewall, J.E.; Swartz, R.C.

    1992-12-01

    The results of the research effort culminated in the development of a research method for assessing the chronic toxicity of contaminated marine and estuarine sediments using the benthic amphipod, Leptocheirus plumulosus. The first chapter describes the efforts at collecting, handling, and culturing four estuarine amphipods from Chesapeake Bay, including L. plumulosus. This chapter includes maps of the distribution and abundance of these amphipods within Chesapeake Bay and methodologies for establishing cultures of amphipods which could be readily adopted by other laboratories. The second chapter reports the development of acute and chronic sediment toxicity test methods for L. plumulosus, its sensitivity to non-contaminant environmental variables, cadmium, two polynuclear aromatic hydrocarbons, and contaminated sediment from Baltimore Harbor, MD. The third chapter reports the authors attempts to develop a chronic sediment toxicity test with Ampelisca abdita.

  3. Enhancement of nitrate-induced bioremediation in marine sediments contaminated with petroleum hydrocarbons by using microemulsions.

    PubMed

    Zhang, Zhen; Zheng, Guanyu; Lo, Irene M C

    2015-06-01

    The effect of microemulsion on the biodegradation of total petroleum hydrocarbons (TPH) in nitrate-induced bioremediation of marine sediment was investigated in this study. It was shown that the microemulsion formed with non-ionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), 1-pentanol, linseed oil, and either deionized water or seawater was stable when subjected to dilution by seawater. Desorption tests revealed that microemulsion was more effective than the Tween 80 solution or the solution containing Tween 80 and 1-pentanol to desorb TPH from marine sediment. In 3 weeks of bioremediation treatment, the injection of microemulsion and NO3 (-) seems to have delayed the autotrophic denitrification between NO3 (-) and acid volatile sulfide (AVS) in sediment compared to the control with NO3 (-) injection alone. However, after 6 weeks of treatment, the delaying effect of microemulsion on the autotrophic denitrification process was no longer observed. In the meantime, the four injections of microemulsion and NO3 (-) resulted in as high as 29.73 % of TPH degradation efficiency, higher than that of two injections of microemulsion and NO3 (-) or that of four or two injections of NO3 (-) alone. These results suggest that microemulsion can be potentially applied to enhance TPH degradation in the nitrate-induced bioremediation of marine sediment.

  4. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea.

    PubMed

    Lai, Xintian; Cao, Lixiang; Tan, Hongming; Fang, Shu; Huang, Yali; Zhou, Shining

    2007-12-01

    To elucidate fungal diversity in methane hydrate-bearing deep-sea marine sediments in the South China Sea, internal transcribed spacer (ITS) regions of rRNA genes from five different sediment DNA samples were amplified and phylogenetically analyzed. Total five ITS libraries were constructed and 413 clones selected randomly were grouped into 24 restriction patterns by Amplified Ribosomal DNA Restriction Analysis (ARDRA). ITS sequences of 44 representative clones were determined and compared with the GenBank database using gapped-BLAST. The phylogenetic analysis showed that the ITS sequences (71-97% similarity) were similar to those of Phoma, Lodderomyces, Malassezia, Cryptococcus, Cylindrocarpon, Hortaea, Pichia, Aspergillus and Candida. The remaining sequences were not associated to any known fungi or fungal sequences in the public database. The results suggested that methane hydrate-bearing deep-sea marine sediments harbor diverse fungi. This is the first report on fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea.

  5. Constraining magnesium cycling in marine sediments using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Schrag, D. P.

    2010-09-01

    Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid δ 26Mg values increase with depth by as much as 2‰. Because carbonates preferentially incorporate 24Mg (low δ 26Mg), the increase in pore-fluid δ 26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid δ 26Mg values decrease with depth by up to 2‰. The decline in pore-fluid δ 26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured δ 26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7‰ depleted in δ 26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the

  6. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments

    PubMed Central

    Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, D. Martin; Bowler, Bernard F. J.; Head, Ian M.

    2014-01-01

    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P

  7. Geochemical Screening of Contaminated Marine and Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Kruge, M. A.

    2004-05-01

    Waterways near urban centers have been subject to pollution by human activities for centuries. This process greatly intensified with the advent of the Industrial Revolution and the attendant exponential population increase in coastal areas. The co-occurrence of port facilities for ocean-going vessels, large factories, major power generating stations, dense automotive transportation networks, and massive wastewater outfalls, all in compact geographical areas, has produced severe environmental stress. In recent decades, the growing awareness of the seriousness of coastal urban environmental degradation has inspired intensive efforts at pollution prevention and remediation. To better understand pollution dynamics over time in an aquatic urban setting, a program of intensive sampling and analysis leading to the creation of geographic information systems (GIS) would be desirable. Chemical evaluation of sediments for pollution remains a costly and time-consuming procedure, particularly for organic analysis. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) offers a practical alternative for rapid, inexpensive molecular organic analysis, simply employing milligram quantities of dry, whole sediment. The compounds detected comprise an information-rich mixture of thermally extractable components and the products of the thermal decomposition of (bio)polymers present in the sample. These include PAHs, petroleum-derived hopanes, organonitrogen compounds, and linear alkylbenzenes, as illustrated with examples from Long Island Sound and the Passaic River (USA) and Barcelona harbor (Spain).

  8. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  9. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  10. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  11. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish

    PubMed Central

    Mackey, Benjamin H.; Roering, Joshua J.; Lamb, Michael P.

    2011-01-01

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km3 lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore. PMID:22084068

  12. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish.

    PubMed

    Mackey, Benjamin H; Roering, Joshua J; Lamb, Michael P

    2011-11-22

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km(3) lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore.

  13. Comparison of four chronic sediment toxicity tests using selected marine/estuarine tests species

    SciTech Connect

    Sims, I.; Fleming, R.

    1995-12-31

    Several draft standard guidelines exist for acute marine/estuarine sediment bioassays which measure lethality over a 4 to 14 day exposure period. Although these are very useful tools for certain applications, such tests may not be useful for discriminating between sediments with the low levels of contaminants most likely to be found in UK estuaries. For this application, chronic sediment bioassays are required which allow the measurement of both lethal and sublethal effects (growth, development and reproduction). Some chronic bioassays are currently being developed for estuarine sediments by workers in Europe, America and Canada. The objectives of the study presented here were to compare four bioassays, currently in development, in terms of their sensitivity to sediment-bound lindane and to differences in particle size. The test species selected for the study were Corophium volutator, Arenicola marina, Macoma Balthica and Neanthes arenaceodentata. Three sediment types were used: high, medium and low percentage of fine material, These were achieved using mixtures of silica sand and a fine, natural, estuarine sediment, and spiked with lindane using a spiking protocol developed at WRc. The results of the study will be presented.

  14. Comparison of marine gas hydrates in sediments of an active and passive continental margin

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll-1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ??CO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments. ?? 1984.

  15. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica

    PubMed Central

    Carr, Stephanie A.; Orcutt, Beth N.; Mandernack, Kevin W.; Spear, John R.

    2015-01-01

    Bacteria belonging to the newly classified candidate phylum “Atribacteria” (formerly referred to as “OP9” and “JS1”) are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. In this study of deep sediment from Antarctica’s Adélie Basin, collected during Expedition 318 of the Integrated Ocean Drilling Program (IODP), Atribacteria-related sequences of the 16S rRNA gene were abundant (up to 51% of the sequences) and steadily increased in relative abundance with depth throughout the methane-rich zones. To better understand the metabolic potential of Atribacteria within this environment, and to compare with phylogenetically distinct Atribacteria from non-deep-sea environments, individual cells were sorted for single cell genomics from sediment collected from 97.41 m below the seafloor from IODP Hole U1357C. As observed for non-marine Atribacteria, a partial single cell genome suggests a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol, and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments. This first report of a single cell genome from deep sediment broadens the known diversity within the Atribacteria phylum and highlights the potential role of Atribacteria in carbon cycling in deep sediment. PMID:26379647

  16. Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles.

    PubMed

    Leighton, T G; Robb, G B N

    2008-11-01

    Bubbles of gas (usually methane) in marine sediments affect the load-bearing properties of the seabed and act as a natural reservoir of "greenhouse" gas. This paper describes a simple method which can be applied to historical and future subbottom profiles to infer bubble void fractions and map the vertical and horizontal distributions of gassy sediments, and the associated sound speed perturbations, even with single-frequency insonification. It operates by identifying horizontal features in the geology and interpreting any perceived change of depth in these as a bubble-mediated change in sound speed. PMID:19045684

  17. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.

    PubMed

    Fetters, Kyle J; Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2016-03-01

    Sediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms. Sediment flux exposure chambers were used to resuspend metal-contaminated sediments from 1 site in Lake DePue, Illinois (USA), and 2 sites in Portsmouth Naval Shipyard, Maine (USA). Short-term (4-h) resuspension of sediment at environmentally relevant suspended particulate matter concentrations (<1 g/L) resulted in metal mobilization to water that was sediment and metal specific. Overall, the net release of metals from suspended particles was limited, likely because of scavenging by organic matter and Fe oxides that formed during sediment interaction with oxic water. Minimal toxicity to organisms (survival of Hyalella azteca and Daphnia magna; survival, growth, and tissue metal concentration of Neanthes arenaceodentata; bioluminescence of Pyrocystis lunula) was observed during 4-h exposure to resuspended sediments and during 4-d to 10-d post-exposure recovery periods in uncontaminated water. Redeposited suspended particles exhibited increased metal bioavailability and toxicity to H. azteca, highlighting the potential for adverse ecological impacts because of changes in metal speciation. It is important to consider interactions between organisms' life histories and sediment disturbance regimes when assessing risks to ecosystems.

  18. Polychlorinated biphenyl residues in some marine organisms from the Baie des Anglais (Baie-Comeau, Quebec, Saint-Lawrence Estuary

    SciTech Connect

    Delval, C.; Fournier, S.; Vigneault, Y.

    1986-12-01

    The main source of PCB's in the Baie des Anglais comes from a pseudo lagoon which is located upstream from the Anse au Moulin immediately below an aluminum plant. Organic matter in suspension coming from industrial wastes from baie-Comeau is likely responsible for the binding of PCB's. However due to hydrodynamic factors in the Baie des Anglais, contaminants stay only a short time in the littoral area and are evacuated to the southeast, where they accumulate at 80 m depth. Another source of contamination is the accumulation of dredging spoils at the entrance of the Anse au Moulin above the 40 m isobath. The contaminated sediments are resuspended by storm wave action. The work described in this paper was conducted in order to determine the extent of PCB bioaccumulation in two molluscs species (Mytilus edulis L. and Buccinum undatum L.) and two fish species (Clupea harengus harengus and Anguilla rostrata) from the Baie des Anglais (Baie-Comeau, Quebec).

  19. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis

    NASA Technical Reports Server (NTRS)

    Ishiwatari, R.; Ishiwatari, M.; Rohrback, B. G.; Kaplan, I. R.

    1977-01-01

    Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5-116 hr) and temperatures (150-410 C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid less than 1%. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2-C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.

  20. Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments.

    PubMed

    Mantouka, A; Dogan, H; White, P R; Leighton, T G

    2016-07-01

    A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects. PMID:27475152

  1. A note on the relationships between organic matter and some geotechnical properties of a marine sediment

    USGS Publications Warehouse

    1986-01-01

    Comparing the results of regression analyses from this and several similar studies shows that although there is good qualitative agreement, there are quantitative inconsistencies. In particular there is considerable overall variability in the regression coefficients. Among studies on marine sediments the inconsistencies are less pronounced, yet still evident. The increase in liquid limit as organic carbon increased by 1 % sediment dry weight ranged from 9 to 28% water content; in the plastic limit the range was from 4 to 18%. However, in these marine studies regression coefficients are relatively close in value in some cases, levels of significance of the regressions are high in most cases, and in all cases the relationships appear to be linear over the range of organic carbon percentage studied. Finally, we believe that a relatively clear relationship between plasticity and organic carbon begins to emerge when the latter exceeds a value of 2%.

  2. Lead isotopes in Southern Ocean marine sediments: implications for paleoclimatic provenance and seawater studies

    NASA Astrophysics Data System (ADS)

    Cook, C. P.; Martin, E. E.

    2014-12-01

    Lead (Pb) isotopes in detrital marine sediments and authigenic oxide coatings have proven useful in reconstructing past changes in continental weathering of glaciated continents and ocean circulation. This approach is under-utilised in the Southern Ocean, despite uncertainties about the evolution of Antarctica's ice sheets and oceanographic changes in this region throughout the Cenozoic. Lead isotopes in sediments are controlled by the mineralogy and age of their bedrock sources, making them an ideal tool to trace changes in Southern Ocean sediment provenance associated with onland erosion patterns (and ice sheet variability), and ocean circulation. However, core-top mapping of Pb isotope signatures of detrital marine sediments in this region is non-existent. We present new Pb isotope data for acid-digested <63µm and bulk Late Holocene sediments from 40 cores located in the East Antarctic sector of Southern Ocean. Results demonstrate that, similar to existing Nd and Sr core-top surveys, distinct provenance sectors can be seen in sediments proximal to the continent, due to the geological characteristics of bedrock sources along the margin. A striking N-S trend is also evident, with distal sediments characterised by less radiogenic isotopic signatures, likely associated with a decrease in radiogenic Pb-bearing minerals with increasing distance from the continental margin. This pattern suggests that Pb isotopes in marine sediments may be useful in reconstructing past provenance trends associated with ice sheet change, and migrations of Southern Ocean frontal positions. In addition, we will present new seawater Pb isotope data from reductive leaching of authigenic coatings of these same sediments, permitting for Late Holocene Pb isotope seawater mapping of the Southern Ocean. To ensure we measured the true seawater signal, we adapted established sequential leaching procedures to minimise detrital contamination, and monitored leachate compositions with Nd isotopes, and

  3. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  4. Archaea in Organic-Lean and Organic-Rich Marine Subsurface Sediments: An Environmental Gradient Reflected in Distinct Phylogenetic Lineages

    PubMed Central

    Durbin, Alan M.; Teske, Andreas

    2012-01-01

    Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure. PMID:22666218

  5. METAL-COLLOID PARTITIONING IN ARTIFICIAL INTERSTITIAL WATERS OF MARINE SEDIMENTS: INFLUENCES OF SALINITY, PH AND COLLOIDAL ORGANIC CARBON CONCENTRATION

    EPA Science Inventory

    For decades, heavy metals have been deposited into marine sediments as a result of anthropogenic activities. Depending on their bioavailability, these metals may represent a risk to benthic organisms. Dissolved interstitial water metal concentrations have been shown to be better ...

  6. IMPORTANCE OF BLACK CARBON IN DISTRIBUTION AND BIOACCUMULATION MODELS OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...

  7. Manual for the geochemical analyses of marine sediments and suspended particulate matter

    NASA Astrophysics Data System (ADS)

    Loring, D. H.; Rantala, R. T. T.

    1992-07-01

    Accurate and precise sampling and analytical procedures are essential in environmental geochemical studies. This report provides a detailed description of the techniques and analytical procedures for sampling, grain size determinations, and for precise and accurate AAS determination of the major and trace metals in marine sediments and suspended particulate matter. In addition, it describes the procedures for the chemical partition of the metals, determination of readily oxidizable organic matter, and calcium carbonate. A separate section discusses the normalization of trace metal data.

  8. Stereochemistry of amino acids in surface samples of a marine sediment

    USGS Publications Warehouse

    Pollock, G.E.; Kvenvolden, K.A.

    1978-01-01

    In two surface samples of marine sediment, the percentages of d-alanine and d-aspartic acid are significantly higher than the other d-amino acids and are similar to the range found in soils. The percentage of d-glutamic acid is also higher than the other amino acids but less than d-alanine and d-aspartic acid. These d-amino acids may come mainly from bacteria. ?? 1978.

  9. Stereochemistry of amino acids in surface samples of a marine sediment

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Kvenvolden, K. A.

    1978-01-01

    In two surface samples of marine sediment, the percentages of D-alanine and D-aspartic acid are significantly higher than the other D-amino acids and are similar to the range found in soils. The percentage of D-glutamic acid is also higher than the other amino acids but less than D-alanine and D-aspartic acid. These D-amino acids may come mainly from bacteria.

  10. Seismic peak amplitude as a predictor of TOC content in shallow marine sediments

    NASA Astrophysics Data System (ADS)

    Neto, Arthur Ayres; Mota, Bruno Bourguignon; Belem, André Luiz; Albuquerque, Ana Luiza; Capilla, Ramsés

    2016-10-01

    Acoustic remote sensing is a highly effective tool for exploring the seafloor of both deep and shallow marine settings. Indeed, the acoustic response depends on several physicochemical factors such as sediment grain size, bulk density, water content, and mineralogy. The objective of the present study is to assess the suitability of seismic peak amplitude as a predictor of total organic carbon (TOC) content in shallow marine sediments, based on data collected in the Cabo Frio mud belt in an upwelling zone off southeastern Brazil. These comprise records of P-wave velocity ( V P) along 680 km of high-resolution single-channel seismic surveys, combined with analyses of grain size, wet bulk density, absolute water content and TOC content for four piston-cores. TOC contents of sediments from 13 box-cores served to validate the methodology. The results show well-defined positive correlations between TOC content and mean grain size (phi scale) as well as absolute water content, and negative correlations with V P, wet bulk density, and acoustic impedance. These relationships yield a regression equation by which TOC content can be satisfactorily predicted on the basis of acoustic impedance for this region: y = - 4.84 ln( x) + 40.04. Indeed, the derived TOC contents differ by only 5% from those determined by geochemical analysis. After appropriate calibration, acoustic impedance can thus be conveniently used as a predictor of large-scale spatial distributions of organic carbon enrichment in marine sediments. This not only contributes to optimizing scientific project objectives, but also enhances the cost-effectiveness of marine surveys by greatly reducing the ship time commonly required for grid sampling.

  11. Seismic peak amplitude as a predictor of TOC content in shallow marine sediments

    NASA Astrophysics Data System (ADS)

    Neto, Arthur Ayres; Mota, Bruno Bourguignon; Belem, André Luiz; Albuquerque, Ana Luiza; Capilla, Ramsés

    2016-04-01

    Acoustic remote sensing is a highly effective tool for exploring the seafloor of both deep and shallow marine settings. Indeed, the acoustic response depends on several physicochemical factors such as sediment grain size, bulk density, water content, and mineralogy. The objective of the present study is to assess the suitability of seismic peak amplitude as a predictor of total organic carbon (TOC) content in shallow marine sediments, based on data collected in the Cabo Frio mud belt in an upwelling zone off southeastern Brazil. These comprise records of P-wave velocity (V P) along 680 km of high-resolution single-channel seismic surveys, combined with analyses of grain size, wet bulk density, absolute water content and TOC content for four piston-cores. TOC contents of sediments from 13 box-cores served to validate the methodology. The results show well-defined positive correlations between TOC content and mean grain size (phi scale) as well as absolute water content, and negative correlations with V P, wet bulk density, and acoustic impedance. These relationships yield a regression equation by which TOC content can be satisfactorily predicted on the basis of acoustic impedance for this region: y = - 4.84 ln(x) + 40.04. Indeed, the derived TOC contents differ by only 5% from those determined by geochemical analysis. After appropriate calibration, acoustic impedance can thus be conveniently used as a predictor of large-scale spatial distributions of organic carbon enrichment in marine sediments. This not only contributes to optimizing scientific project objectives, but also enhances the cost-effectiveness of marine surveys by greatly reducing the ship time commonly required for grid sampling.

  12. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes.

    PubMed

    Matturro, B; Presta, E; Rossetti, S

    2016-03-01

    Chlorinated compounds pose environmental concerns due to their toxicity and wide distribution in several matrices. Microorganisms specialized in leading anaerobic reductive dechlorination (RD) processes, including Dehalococcoides mccartyi (Dhc), are able to reduce chlorinated compounds to harmless products or to less toxic forms. Here we report the first detailed study dealing with the RD potential of heavy polluted marine sediment by evaluating the biodegradation kinetics together with the composition, dynamics and activity of indigenous microbial population. A microcosm study was conducted under strictly anaerobic conditions on marine sediment collected near the marine coast of Sarno river mouth, one of the most polluted river in Europe. Tetrachloroethene (PCE), used as model pollutant, was completely converted to ethene within 150 days at reductive dechlorination rate equal to 0.016 meq L(-1) d(-1). Consecutive spikes of PCE allowed increasing the degradation kinetics up to 0.1 meq L(-1)d(-1) within 20 days. Strictly anaerobiosis and repeated spikes of PCE stimulated the growth of indigenous Dhc cells (growth yield of ~7.0 E + 07 Dhc cells per μM Cl(-1) released). Dhc strains carrying the reductive dehalogenase genes tceA and vcrA were detected in the original marine sediment and their number increased during the treatment as demonstrated by the high level of tceA expression at the end of the microcosm study (2.41 E + 05 tceA gene transcripts g(-1)). Notably, the structure of the microbial communities was fully described by Catalysed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) as wells as the dynamics of the dechlorinating bacteria during the microcosms operation. Interestingly, a direct role of Dhc cells was ascertained suggesting the existence of strains adapted at salinity conditions. Additionally, non-Dhc Chloroflexi were retrieved in the original sediment and were kept stable over time suggesting their likely flanking role of the RD

  13. Distinct iron isotopic signatures and supply from marine sediment dissolution.

    PubMed

    Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.

  14. Bacillus oceanisediminis sp. nov., isolated from marine sediment.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Fang, Caiyuan; Song, Fei; Xin, Yuhua; Qu, Lei; Ding, Kai

    2010-12-01

    A Gram-stain-positive, spore-forming, rod-shaped and aerobic bacterium was isolated from a sediment sample from the South Sea in China. The isolate, designated H2(T), grew at 4-45 °C (optimum 37 °C) and pH 6-10 (optimum pH 7.0). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major isoprenoid quinone was MK-7 and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown aminophospholipid. The major fatty acid was iso-C(15 : 0). The genomic DNA G+C content of strain H2(T) was 44.8mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a monophyletic clade with Bacillus firmus IAM 12464(T). DNA-DNA relatedness between the isolate and B. firmus ATCC 14575(T) was low (27.5 %). Strain H2(T) also had a phenotypic profile that readily distinguished it from its closest phylogenetic neighbours. It is evident from the combination of genotypic and phenotypic data that the organism should be classified in a novel species of the genus Bacillus, for which the name Bacillus oceanisediminis sp. nov. is proposed. The type strain is H2(T) (=CGMCC 1.10115(T) =JCM 16506(T)).

  15. Extension of 239+240Pu sediment geochronology to coarse-grained marine sediments

    USGS Publications Warehouse

    Kuehl, Steven A.; Ketterer, Michael E.; Miselis, Jennifer L.

    2012-01-01

    Sediment geochronology of coastal sedimentary environments dominated by sand has been extremely limited because concentrations of natural and bomb-fallout radionuclides are often below the limit of measurement using standard techniques. ICP-MS analyses of 239+240Pu from two sites representative of traditionally challenging (i.e., low concentration) environments provide a "proof of concept" and demonstrate a new application for bomb-fallout radiotracers in the study of sandy shelf-seabed dynamics. A kasten core from the New Zealand shelf in the Southern Hemisphere (low fallout), and a vibracore from the sandy nearshore of North Carolina (low particle surface area) both reveal measurable 239+240Pu activities at depth. In the case of the New Zealand site, independently verified steady-state sedimentation results in a 239+240Pu profile that mimics the expected atmospheric fallout. The depth profile of 239+240Pu in the North Carolina core is more uniform, indicating significant sediment resuspension, which would be expected in this energetic nearshore environment. This study, for the first time, demonstrates the utility of 239+240Pu in the study of sandy environments, significantly extending the application of bomb-fallout isotopes to coarse-grained sediments, which compose the majority of nearshore regions.

  16. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  17. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.

    2013-09-01

    As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (<2 cm) of Mn oxihydroxides. We found strong regional differences in inorganic carbon concentrations, with sites from the Canadian Archipelago and Lancaster Sound displaying elevated values (2-7 wt %) and highly depleted 14C compositions consistent with inputs from bedrock carbonates. Organic carbon:nitrogen ratios, stable carbon isotopes, and terrigenous organic biomarkers (lignin phenols and cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.

  18. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era

    PubMed Central

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition

  19. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Taillefert, Martial

    2014-05-01

    The reduction of Mn(IV) oxides coupled to the anaerobic oxidation of NH4+ has been proposed for more than a decade to contribute to the fixed nitrogen pool in marine sediments, yet the existence of this process is still under debate. In this study, surface sediments from an intertidal salt marsh were incubated with MnO2 in the presence of elevated concentrations of NH4+ to test the hypothesis that the reduction of Mn(IV) oxides catalyzes anaerobic NH4+ oxidation to NO2- or NO3-. Geochemical factors such as the ratio of Mn(IV) to NH4+, the type of Mn(IV) oxides (amorphous or colloidal MnO2), and the redox potential of the sediment significantly affect the activity of anaerobic nitrification. Incubations show that the net production of NO3- is stimulated under anaerobic conditions with external addition of colloidal but not amorphous MnO2 and is facilitated by the presence of high concentrations of NH4+. Mass balance calculations demonstrate that anaerobic NH4+ oxidation contributes to the net consumption of NH4+, providing another piece of evidence for the occurrence of Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Finally, anaerobic nitrification is stimulated by the amendment of small concentrations of NO3- or the absence of sulfate reduction, suggesting that moderately reducing conditions favor anaerobic NH4+ oxidation. Overall, these findings suggest that Mn(IV)-catalyzed anaerobic nitrification in suboxic sediments with high N/Mn concentration ratios and highly reactive manganese oxides may be an important source of NO2- and NO3- for subsequent marine nitrogen loss via denitrification or anammox.

  20. Species Richness and Adaptation of Marine Fungi from Deep-Subseafloor Sediments

    PubMed Central

    Rédou, Vanessa; Navarri, Marion; Meslet-Cladière, Laurence; Barbier, Georges

    2015-01-01

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi. PMID:25769836

  1. Gamma-emitting radionuclides in the shallow marine sediments off the Sindh coast, Arabian Sea.

    PubMed

    Akram, M; Qureshi, Riffat M; Ahmad, Nasir; Solaija, Tariq Jamal

    2006-01-01

    Determination of gamma emitting radionuclides in shallow marine sediments off the Sindh coast has been carried out using a gamma spectrometry technique. The activity concentration measured in various sediment samples off the Sindh coast has been found to vary from 15.93 +/- 5.22 to 30.53 +/- 4.70 Bq kg(-1) for 226Ra, from 11.72 +/- 1.22 to 33.94 +/- 1.86 Bq kg(-1) for 228Ra and from 295.22 +/- 32.83 to 748.47 +/- 28.75 Bq kg(-1) for 40K. The calculated mean values of radium equivalent activity, absorbed dose rate and effective dose are 98 Bq kg(-1), 49 nGy h(-1) and 0.06 mSv y(-1), respectively. No artificial radionuclide was detected in the samples measured from the study area. As no data on radioactivity of the coastal environment of Pakistan are available, the data presented here will serve as baseline information on radionuclide concentration in shallow sea sediments off the Sindh coast. The data will also be useful for tracking pollution inventories from unusual radiological events (if any) in the territorial waters of the study area. Further, the information presented will contribute to modelling of a regional radioactivity database from the perspectives of the International Atomic Energy Agency's Asia-Pacific Marine Radioactivity Database and Global Marine Radioactivity Database.

  2. Species richness and adaptation of marine fungi from deep-subseafloor sediments.

    PubMed

    Rédou, Vanessa; Navarri, Marion; Meslet-Cladière, Laurence; Barbier, Georges; Burgaud, Gaëtan

    2015-05-15

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi.

  3. Marine sediment sample preparation for analysis for low concentrations of fine detrital gold

    USGS Publications Warehouse

    Clifton, H. Edward; Hubert, Arthur; Phillips, R. Lawrence

    1967-01-01

    Analyses by atomic absorption for detrital gold in more than 2,000 beach, offshore, marine-terrace, and alluvial sands from southern Oregon have shown that the values determined from raw or unconcentrated sediment containing small amounts of gold are neither reproducible nor representative of the initial sample. This difficulty results from a 'particle sparsity effect', whereby the analysis for gold in a given sample depends more upon the occurrence of random flakes of gold in the analyzed portion than upon the actual gold content of the sample. The particle sparsity effect can largely be eliminated by preparing a gold concentrate prior to analysis. A combination of sieve, gravimetric, and magnetic separation produces a satisfactory concentrate that yields accurate and reproducible analyses. In concentrates of nearly every marine and beach sand studied, the gold occurs in the nonmagnetic fraction smaller than 0.124 mm and with a specific gravity greater than 3.3. The grain size of gold in stream sediments is somewhat more variable. Analysis of concentrates provides a means of greatly increasing the sensitivity of the analytical technique in relation to the initial sample. Gold rarely exceeds 1 part per million in even the richest black sand analyzed; to establish the distribution of gold (and platinum) in marine sediments and its relationship to source and environmental factors, one commonly needs to know their content to the part per billion range. Analysis of a concentrate and recalculation to the value in the initial sample permits this degree of sensitivity.

  4. Polycyclic aromatic hydrocarbons in surface sediments and marine organisms from the Daya Bay, South China.

    PubMed

    Sun, Run-Xia; Lin, Qin; Ke, Chang-Liang; Du, Fei-Yan; Gu, Yang-Guang; Cao, Kun; Luo, Xiao-Jun; Mai, Bi-Xian

    2016-02-15

    Polycyclic aromatic hydrocarbons (PAHs) were investigated in the marine ecosystem of the Daya Bay, South China. The PAH concentrations ranged from 340 to 710 ng/g dry weight in the sediments and from 110 to 520 ng/g wet weight in marine organisms, respectively. The dominant compounds were three- and four-ring PAHs in the sediments (53%-89%) and two- and three-ring PAHs in the marine species (67%-94%), respectively. PAHs mainly originated from both pyrolytic and petrogenic sources. Comparison with the effects-based sediment quality guideline values suggested that the ecological risk caused by the total PAHs was relatively low (less than 25% incidence of adverse effects) in the sedimentary environment. The median cancer risk level via seafood consumption (1.6 × 10(-5) for urban residents and 1.2 × 10(-5) for rural residents, respectively) was slightly higher than the maximum admissible level (10(-5)) set by US EPA, but lower than the priority risk level (10(-4)).

  5. [Experimental study of vibrio parahaemolyticus (biotype 2) transfer from water and sediments to benthic marine food chain organisms].

    PubMed

    Gauthier, M J; Clement, R

    1979-04-01

    Transfer of Vibrio parahaemolyticus (biotype 2) from sediments to water and from water to benthic marine organisms was studied experimentally using a streptomycin-resistant strain. Transmission by trophic pathways was also studied using reconstituted marine food chains (Mytilus edulis, Nereis diversicolor, Carcinus maenas, Scorpaena porcus, Mus musculus). Water colonization by sediments could be observed only at temperatures above 16 degrees C. Sediments could well constitute a disseminating reservoir for these germs, their cycle in water being dependent of the cycle followed in the sediments. Contamination of animal organisms is essentially effected by a direct mean, either water or sediments; transfer by trophic pathways being negligible. Infection of land consumers (mice) is linked quantitatively to the nature of the last marine organism of the food chain since bacteria can flourish in the digestive tract of certain animals (Carcinus maenas). PMID:487292

  6. Watershed-Marine Linkages: Monitoring how Terrigenous Runoff and Wave-Induced Resuspension Affect Marine Sediment Dynamics in Bays with Coral Reefs, St. John, USVI

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Gray, S. C.; Whinney, J.; Ramos-Scharron, C. E.; Campbell, S.; LaFevor, M. C.

    2015-12-01

    In the USVI, land-based sedimentation in coastal marine environments has increased due to watershed development and is a major cause of coral reef degradation. Watershed runoff and wave/current-induced resuspension of benthic sediment contribute to turbidity/sedimentation. Our objectives are to characterize the spatial and temporal variability of marine sediment dynamics in response to runoff and resuspension in shoreline and reef areas of St. John, USVI, and directly compare the efficacy of time-integrated vs. high-resolution sediment monitoring approaches. To complement a six-year sediment trap study of sedimentation, nephelometers (10-min resolution) were deployed alongside sediment traps (26 day resolution) at four ephemeral stream outfalls and three reefs sites below comparable developed and minimally developed catchments. Watershed runoff was monitored using stream (10-min resolution) and peak crest (2-week resolution) gauges. Mean turbidity/deposition were 4/5 times greater at shore compared to reef sites, 5/6 times greater below developed compared to minimally developed catchments, 2/4 times greater during runoff compared to non-runoff periods, and 100/500 times background levels (time series median) following the largest runoff event of the 5-month time series. Turbidity values due to resuspension during non-runoff periods were primarily controlled by wave height (71% of the variability), tides, and the presence of finer sediment grains. However, the relative contribution to total sedimentation of resuspension vs. watershed runoff varied spatially between sites due to variations in bay geography, benthic sediment grain size, and catchment characteristics. Sediment traps and nephelometers recorded generally consistent temporal patterns of sedimentation at most sites. Though our study confirmed that watershed development increases turbidity and deposition in bays with coral reefs, multiple processes govern sediment dynamics and the distribution of sediments

  7. The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 to 5.5 ka ago. The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. Here we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface. We simulate the mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations. In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the increase in dust accumulation in marine cores is directly linked to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone.

  8. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas. PMID:26821329

  9. Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea.

    PubMed

    Du, Jikun; Xiao, Kai; Huang, Yali; Li, Huixian; Tan, Hongming; Cao, Lixiang; Lu, Yongjun; Zhou, Shining

    2011-10-01

    This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.

  10. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments

    PubMed Central

    Weston, Nathaniel B.; Joye, Samantha B.

    2005-01-01

    The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize organic compounds mediates anaerobic organic matter mineralization in anoxic sediments. Variable temperature regulation of the sequential processes, leading from the breakdown of complex particulate organic carbon to the production and subsequent consumption of labile, low-molecular weight, dissolved intermediates, could play a key role in controlling rates of overall organic carbon mineralization. We examined sediment organic carbon cycling in a sediment slurry and in flow through bioreactor experiments. The data show a variable temperature response of the microbial functional groups mediating organic matter mineralization in anoxic marine sediments, resulting in the temperature-driven decoupling of the production and consumption of organic intermediates. This temperature-driven decoupling leads to the accumulation of labile, low-molecular weight, dissolved organic carbon at low temperatures and low-molecular weight dissolved organic carbon limitation of terminal metabolism at higher temperatures. PMID:16286654

  11. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas.

  12. Winogradskyella sediminis sp. nov., isolated from marine sediment.

    PubMed

    Zhang, De-Chao; Liu, Yan-Xia; Huang, Hai-Jun; Weber, Karin; Margesin, Rosa

    2016-08-01

    A Gram-stain-negative, rod-shaped, yellow-pigmented, gliding bacterial strain, designated S5-23-3T, was isolated from a sediment sample of the Yellow Sea in China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S5-23-3T was related to the genus Winogradskyella and had highest 16S rRNA gene sequence similarities with Winogradskyella arenosi JCM 15527T (97.6 %), Winogradskyella rapida CECT 7392T (97.4 %) and Winogradskyella undariae KCTC 32261T (97.2 %). The predominant cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH. Strain S5-23-3T contained MK-6 as the predominant menaquinone. The polar lipid profile contained phosphatidylethanolamine, two aminolipids, one aminoglycolipid, one aminophospholipid, one unidentified phospholipid and seven unidentified polar lipids. The genomic DNA G+C content of strain S5-23-3T was 36.1 mol%. Combined data from phenotypic, chemotaxonomic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain S5-23-3T is a representative of a novel species of the genus Winogradskyella, for which the name Winogradskyellasediminis sp. nov. (type strain S5-23-3T=LMG 28075T=DSM 28134T) is proposed. PMID:27189204

  13. Leisingera nanhaiensis sp. nov., isolated from marine sediment.

    PubMed

    Sun, Fengqin; Wang, Baojiang; Liu, Xiupian; Lai, Qiliang; Du, Yaping; Li, Guangyu; Luo, Jie; Shao, Zongze

    2010-02-01

    An aerobic, Gram-staining-negative, motile, rod-shaped bacterium, strain NH52F(T), was isolated from a sandy sediment sample taken from the South China Sea. On M2 agar medium (a complex medium), colonies were beige in colour. The isolate showed highest 16S rRNA gene sequence similarities to members of the genera Leisingera (96.7 % similarity), Phaeobacter (95.4-96.0 %) and Marinovum (94.1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NH52F(T) formed a distinct cluster with Leisingera methylohalidivorans MB2(T) and Leisingera aquimarina LMG 24366(T). Optimal growth was observed at pH 7.0-8.5 and 25 degrees C and the new isolate required the presence of 1-4 % (w/v) NaCl. The major fatty acids were C(18 : 1)omega7c, C(16 : 0) 2-OH, C(10 : 0) 3-OH, C(12 : 0) 3-OH, C(16 : 0) and 11-methyl C(18 : 1)omega7c. The DNA G+C content was 60.5 mol%. The phylogenetic and chemotaxonomic characteristics of strain NH52F(T) were similar to those of the genus Leisingera. However, the differences in phenotypic properties and the 16S rRNA gene similarity values demonstrated that the new isolate differed from recognized species of the genus Leisingera. On the basis of phenotypic, chemotaxonomic and phylogenetic data, this organism should be classified as a representative of a novel species in the genus Leisingera, for which the name Leisingera nanhaiensis sp. nov. is proposed. The type strain is NH52F(T) (=LMG 24841(T)=CCTCC AB 208316(T)=MCCC 1A04178(T)).

  14. Rhodococcus nanhaiensis sp. nov., an actinobacterium isolated from marine sediment.

    PubMed

    Li, Jie; Zhao, Guo-Zhen; Long, Li-Juan; Wang, Fa-Zuo; Tian, Xin-Peng; Zhang, Si; Li, Wen-Jun

    2012-10-01

    In this study, two strains (SCSIO 10187(T) and SCSIO 10197) were isolated from a sediment sample collected from the South China Sea and characterized by using a polyphasic approach. Growth was observed at 15-35 °C (optimum 28 °C) and pH 5.0-8.0 (optimum pH 6.0). Based on 16S rRNA gene sequence analysis, the strains were identified as members of the genus Rhodococcus. Phylogenetic analysis showed that the two strains clustered together and the 16S rRNA gene sequence similarities between them and other members of the genus Rhodococcus were 93.2-97.7 %. The menaquinone type was MK-8(H(2)). Major cellular fatty acids were C(16 : 0), C(18 : 1)ω9c, C(17 : 0), 10-methyl C(18 : 0), C(18 : 0), C(19 : 0) and C(17 : 1)ω8c. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The DNA G+C contents of strains SCSIO 10187(T) and SCSIO 10197 were 63.7 and 63.2 mol%, respectively. The combined genotypic and phenotypic data showed that the two strains represent a novel species of the genus Rhodococcus, for which the name Rhodococcus nanhaiensis is proposed; the type strain is SCSIO 10187(T) ( = DSM 45608(T) = CCTCC AB 2011024(T)), with SCSIO 10197 ( = DSM 45609 = CCTCC AB 2011025) as a reference strain.

  15. Sorption and competition of two persistent organic pesticides onto marine sediments: Relevance to their distribution in aquatic system.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Nikiforov, Vladimir; Gouteux, Bruno; Osman, Awaleh Mohamed

    2015-07-01

    Sorption is a key process in the distribution of substances between environmental compartments in marine ecosystems. Two persistent organic pesticides, also known as toxaphene congeners, namely B8-1413 (P26) and B9-1679 (P50), are of special interest because they are not detected in sediments while relatively concentrated in marine mammals. Sorption-desorption, entrapment and competition behaviors of these pesticides onto marine sediments were studied to explain their environmental distribution. Data obtained under marine experimental conditions were fitted to sorption models to evaluate sorption coefficients and to assess the degree of B8-1413/B9-1679 entrapment of the two toxaphene congeners in sediments. Carbon normalized sorption coefficients (Koc) of both congeners were similar under in cold (2°C) marine (30 psu) conditions with high values ranging from 1.53×10(5) to 3.28×10(5) mL g(-1)indicative of a strong affinity to marine sediments However, the sorption-desorption investigations indicate that B8-1413/B9-1679 were on average 2.5 times less entrapped in sediments compared to B7-1450, a toxaphene congener known to accumulate predominantly in sediments. These results suggest that the low entrapment of B8-1413 and B9-1679 favor their availability and transfer to biological matrices.

  16. Sorption and competition of two persistent organic pesticides onto marine sediments: Relevance to their distribution in aquatic system.

    PubMed

    Soubaneh, Youssouf Djibril; Gagné, Jean-Pierre; Lebeuf, Michel; Nikiforov, Vladimir; Gouteux, Bruno; Osman, Awaleh Mohamed

    2015-07-01

    Sorption is a key process in the distribution of substances between environmental compartments in marine ecosystems. Two persistent organic pesticides, also known as toxaphene congeners, namely B8-1413 (P26) and B9-1679 (P50), are of special interest because they are not detected in sediments while relatively concentrated in marine mammals. Sorption-desorption, entrapment and competition behaviors of these pesticides onto marine sediments were studied to explain their environmental distribution. Data obtained under marine experimental conditions were fitted to sorption models to evaluate sorption coefficients and to assess the degree of B8-1413/B9-1679 entrapment of the two toxaphene congeners in sediments. Carbon normalized sorption coefficients (Koc) of both congeners were similar under in cold (2°C) marine (30 psu) conditions with high values ranging from 1.53×10(5) to 3.28×10(5) mL g(-1)indicative of a strong affinity to marine sediments However, the sorption-desorption investigations indicate that B8-1413/B9-1679 were on average 2.5 times less entrapped in sediments compared to B7-1450, a toxaphene congener known to accumulate predominantly in sediments. These results suggest that the low entrapment of B8-1413 and B9-1679 favor their availability and transfer to biological matrices. PMID:25765263

  17. Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon

    PubMed Central

    Kendall, Melissa M.; Boone, David R.

    2006-01-01

    Little is known about the methanogenic degradation of acetate, the fate of molecular hydrogen and formate or the ability of methanogens to grow and produce methane in cold, anoxic marine sediments. The microbes that produce methane were examined in permanently cold, anoxic marine sediments at Hydrate Ridge (44°35' N, 125°10' W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were diluted into enrichment medium with formate, acetate or trimethylamine as catabolic substrate. After 2 years of incubation at 4 °C to 15 °C, enrichment cultures produced methane. PCR amplification and sequencing of the rRNA genes from the highest dilutions with growth suggested that each enrichment culture contained a single strain of methanogen. The level of sequence similarity (91 to 98%) to previously characterized prokaryotes suggested that these methanogens belonged to novel genera or species within the orders Methanomicrobiales and Methanosarcinales. Analysis of the 16S rRNA gene libraries from DNA extracted directly from the sediment samples revealed phylotypes that were either distantly related to cultivated methanogens or possible anaerobic methane oxidizers related to the ANME-1 and ANME-2 groups of the Archaea. However, no methanogenic sequences were detected, suggesting that methanogens represented only a small proportion of the archaeal. PMID:16877319

  18. Physicochemical and geochemical characteristics of raw marine sediment used in fluoride removal.

    PubMed

    El-Said, Ghada F; Draz, Suzanne E O

    2010-10-01

    The study was directed to use raw marine sediment in the removal of fluoride. The sediment was mainly composed of calcite, magnesium-calcite and aragonite. The effect of the initial fluoride concentration, pH and the contact time was studied at room temperature to determine the adsorption capacity of the sediment. The optimum adsorption capacity was observed at pH values of 5 and 6.2. The adsorption process was fast and the equilibrium was reached within 60 min. For fluoride solutions of 10 and 15 mg/L, 100% removal was obtained onto 0.1 g of raw marine sediment. Pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion equations were used to deduce the kinetic data. The adsorption mechanism was rather complex process, and the intra-particle diffusion was not the only rate-controlling step. The equilibrium data were tested using thirteen isotherm models (Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, Erunauer-Emmett-Teller, Flory-Huggins, Non-ideal competitive adsorption, Generalized, Redlich Peterson, Khan, Sips, Koble Corrigan and Toth isotherm equations). Five different error functions were applied. For the sorption of fluoride process, the calculated activation energy and the free energy were of 0.707 and -14.491 kJ /mol, respectively. PMID:20721801

  19. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia.

    PubMed

    Prokopenko, M G; Hirst, M B; De Brabandere, L; Lawrence, D J P; Berelson, W M; Granger, J; Chang, B X; Dawson, S; Crane, E J; Chong, L; Thamdrup, B; Townsend-Small, A; Sigman, D M

    2013-08-01

    Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles. PMID:23925243

  20. Anaerobic degradation of alcohol ethoxylates and polyethylene glycols in marine sediments.

    PubMed

    Traverso-Soto, Juan M; Rojas-Ojeda, Patricia; Sanz, José Luis; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2016-02-15

    This research is focused on alcohol polyethoxylates (AEOs), nonionic surfactants used in a wide variety of products such as household cleaners and detergents. Our main objective in this work was to study the anaerobic degradation of these compounds and their main aerobic degradation products and precursors (polyethylene glycols, PEGs, which are also used for many other applications) in marine sediments, providing the first data available on this topic. First, we observed that average AEO sediment-water partition coefficients (Kd) increased towards those homologs having longer alkyl chains (from 257 L/kg for C12 to 5772 L/kg for C18),which were less susceptible to undergo biodegradation. Overall, AEO and PEG removal percentages reached up to 99.7 and 93%, respectively, after 169 days of incubation using anaerobic conditions in sediments ([O2] = 0 ppm, Eh = -170 to -380 mV and T = 30 °C). Average half-life was estimated to be in a range from 10 to 15 days for AEO homologs (C12AEO8-C18AEO8), and 18 days for PEGEO8.Methanogenic activity proved to be intense during the experiment, confirming the occurrence of anaerobic conditions. This is the first study showing that AEOs and PEGs can be degraded in absence of oxygen in marine sediments, so this new information should be taken into account for future environmental risk assessments on these chemicals. PMID:26657255

  1. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia.

    PubMed

    Prokopenko, M G; Hirst, M B; De Brabandere, L; Lawrence, D J P; Berelson, W M; Granger, J; Chang, B X; Dawson, S; Crane, E J; Chong, L; Thamdrup, B; Townsend-Small, A; Sigman, D M

    2013-08-01

    Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles.

  2. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments

    NASA Astrophysics Data System (ADS)

    ten Haven, H. L.; Rohmer, M.; Rullkötter, J.; Bisseret, P.

    1989-11-01

    Tetrahymanol has been identified in several sediment samples from different depositional environments by gas chromatography-mass spectrometry and by coinjections with an authentic standard. Together with literature data this shows that tetrahymanol is likely to be widespread, which is in accordance with the ubiquitous occurrence of its presumed diagenetic product, gammacerane, in more mature sediments and crude oils. The diagenetic conversion of tetrahymanol to gammacerane most likely proceeds via dehydration and subsequent hydrogenation. The intermediate in this conversion, gammacer-2-ene, has been synthesized, and its presence in one sample confirmed by coinjections. The identification of tetrahymanol in marine sediments indicates either that protozoa of the genus Tetrahymena are widely distributed or that tetrahymanol is also a natural product of organisms other than Tetrahymena.

  3. Sediment characteristics and benthic ecological status in contrasting marine environments of subtropical Hong Kong.

    PubMed

    Chan, Alice K Y; Xu, Wen-Zhe; Liu, Xiao-Shou; Cheung, Siu Gin; Shin, Paul K S

    2016-02-15

    Sediment characteristics and benthic communities on a finer sampling scale in four contrasting environments in subtropical Hong Kong were analyzed in summer and winter 2012. In two harbour habitats which suffered from historic sewage pollution or hypoxic events, organic carbon, nutrient and trace metal content in the sediment were significantly higher than that in an offshore area and a marine reserve. The relatively low organic and nutrient content in the offshore habitat could be resulted from enhanced resuspension of such materials from the seabed owing to intense water mixing and disturbance caused by bottom trawling. The biotic indices AMBI and M-AMBI were shown to be useful in assessing the benthic ecological status of these habitats. Such indices can also be more sensitive than sediment physico-chemical parameters in differentiating the response of macrofauna to seasonal changes in the benthic environment.

  4. The effect of temperature on organic carbon degradation in marine sediments

    PubMed Central

    Malinverno, Alberto; Martinez, Ernesto A.

    2015-01-01

    The degradation of sedimentary particulate organic carbon (POC) is a key carbon cycle process that fuels the deep subseafloor biosphere. The reactivity of POC is expected to decrease with increasing sediment age, severely restricting the energy available to microorganisms. Conversely, increasing temperatures during burial have been proposed to stimulate POC degradation, possibly supplying significant energy to the deep biosphere. To test the importance of temperature, we assembled POC measurements in two global sets of drill sites where sediments underwent either relatively low or high temperatures during burial, which should have resulted in different rates of POC degradation. For ages 5–10 Ma, the decrease of the average POC content with burial is clearly more pronounced in the sites with high temperature histories. Our results support the hypothesis that temperature is one of the fundamental controls on the rate of POC degradation within deeply buried marine sediments. PMID:26640172

  5. Persistence and Stability of Teflubenzuron and Diflubenzuron When Associated to Organic Particles in Marine Sediment.

    PubMed

    Samuelsen, Ole B

    2016-02-01

    The persistence and stability of the oral administered anti salmon-lice drugs teflubenzuron and diflubenzuron were tested when associated to organic material as faecal particles from Atlantic salmon and medicated food pellets. This laboratory study was performed in seawater under aerobic conditions, at 7°C in the dark and showed that both compounds were remarkably persistent and stable since no significant reduction in the concentrations of flubenzurons in sediment were seen after 24 weeks. Therefore neither chemical or microbial degradation nor outwashing seems to be important pathways for these drugs to disappear from sediment under fish farms. Thus, it is more likely that the decrease of flubenzurons from marine sediments described in field investigations is caused by either bioturbation, resuspension of organic particles or a combination of these.

  6. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments.

    PubMed

    Moreno, Beatriz; Cañizares, Rosa; Macci, Cristina; Doni, Serena; Masciandaro, Grazia; Benitez, Emilio

    2015-12-30

    A meso-scale pilot plant was set up to test the efficiency of a bioremediation scheme applied to marine sediments contaminated by heavy metals and hydrocarbons. The experiment was implemented for three years in two stages using two remediation agents: plants (Paspalum vaginatum and Tamarix gallica) and earthworms (Eisenia fetida). DNA and RNA-based methodologies were applied to elucidate the dynamics of the bacterial population and were related to improving biological and chemical conditions of the sediments. Bioremediation strategies were successful in removing pollutants from the contaminated sediments and specialization within the bacterial community related to the type of contamination present was detected in the different stages of the process. The highest response of Gram-positive PAH-degraders to the contamination was detected at the beginning and after the first stage of the experiment, corresponding to the uppermost values of degradation.

  7. Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Atkins, Amy L.; Shaw, Samuel; Peacock, Caroline L.

    2014-11-01

    The phyllomanganate birnessite is the main Mn-bearing phase in oxic marine sediments, and through coupled sorption and redox exerts a strong control on the oceanic concentration of micronutrient trace metals. However, under diagenesis and mild hydrothermal conditions, birnessite undergoes transformation to the tectomanganate todorokite. The mechanistic details of this transformation are important for the speciation and mobility of metals sequestered by birnessite, and are necessary in order to quantify the role of marine sediments in global trace element cycles. Here we transform a synthetic, poorly crystalline, hexagonal birnessite, analogous to marine birnessite, into todorokite under a mild reflux procedure, developed to mimic marine diagenesis and mild hydrothermal conditions. We characterize our birnessite and reflux products as a time series, employing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET surface area analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and extended X-ray absorption fine structure spectroscopy (EXAFS). We provide new insight into the crystallization pathway and mechanism of todorokite formation from birnessite under conditions analogous to those found in marine diagenetic and hydrothermal settings. Specifically we propose a new four-stage process for the transformation of birnessite to todorokite, beginning with todorokite nucleation, then crystal growth from solution to form todorokite primary particles, followed by their self-assembly and oriented growth via oriented attachment to form crystalline todorokite laths, culminating in traditional crystal ripening. We suggest that, contrary to current understanding, trace metals like Ni might retard the transformation of birnessite to todorokite and be released to marine sedimentary pore-waters during this diagenetic process, thus potentially providing a benthic flux of these micronutrients to seawater.

  8. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225)

    PubMed Central

    Lauer, Antje; Sørensen, Ketil Bernt; Teske, Andreas

    2016-01-01

    Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum.

  9. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225)

    PubMed Central

    Lauer, Antje; Sørensen, Ketil Bernt; Teske, Andreas

    2016-01-01

    Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum. PMID:27681926

  10. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225).

    PubMed

    Lauer, Antje; Sørensen, Ketil Bernt; Teske, Andreas

    2016-01-01

    Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum. PMID:27681926

  11. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225).

    PubMed

    Lauer, Antje; Sørensen, Ketil Bernt; Teske, Andreas

    2016-09-06

    Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum.

  12. Geomorphological feedback between watershed erosion and marine sedimentation in the Gulf of Lion margin (SE France).

    NASA Astrophysics Data System (ADS)

    Molliex, S.; Rabineau, M.; Leroux, E.; Aslanian, D.; Chauvet, F.; Bourlès, D.; Révillon, S.; Jouët, G.

    2012-04-01

    Margins are the place of transfer, deposit and accumulation of sediment whose geometry is controlled by sea level fluctuation, subsidence and sedimentary fluxes. Surface processes (sedimentation, erosion), vertical movements and deep dynamic are also intimacy linked. Due to the numerous data acquired over the last 10 years, the Gulf of Lion can be considered as a privileged area to understand the feedback between erosion, sedimentation and associated vertical displacements. We tried to improve the understanding of the temporal and spatial evolution of erosion processes in the sedimentation and therefore in the geodynamic evolution of the Gulf of Lion margin during the Quaternary, using available offshore data and comparing them with data from the continental domain. A compilation of offshore seismic profiles allowed us to determine the spatial and temporal evolution of the sedimentary volumes through the Quaternary. In the continental domain, the quantification of eroded volumes allowed us to estimate the respective part of each structural domain within the sedimentation of the Gulf of Lion. Marine and continental data are consistent and show a strong increase of erosion rates since 900 ka, resulting from global climatic changes. 75% of the quaternary sedimentation come from the alpine domain, where erosion rates are 2 or 3 times higher than other orogenic domains as the Pyrenees or the Massif Central mountain belts. A quantitative geomorphology analysis suggests that erosion processes are more consistent with climatic than tectonic parameters. The relationship between marine subsidence and continental uplift is also studied. Vertical displacements of the margin are mainly controlled by isostasic processes, at least during the last 900 ka.

  13. Assessment of radionuclides and heavy metals in marine sediments along the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Khuntong, S.; Phaophang, C.; Sudprasert, W.

    2015-05-01

    Due to the Fukushima Daiichi nuclear disaster in 2011 and the development of nuclear power plant in neighboring countries such as Vietnam in the near future, radionuclide assessment in marine sediment during 2010 - 2011 may be useful as background levels for radiation protection in Thailand. Marine sediments (10 samples) were collected approximately 1 km away from the coastline along Chonburi to Pattaya, Chonburi Province. The sediments were ground and sieved through 2-mm test sieve after air drying. Radionuclides were measured with a gamma spectrometer equipped with a well-calibrated HPGe detector. The samples were prepared in the same geometry as the reference material. The optimal counting time was 60,000 - 80,000 s for statistical evaluation and uncertainties. No contamination of 137Cs as an artificial radionuclide was found. Naturally-occurring radionuclides including 238U, 232Th and 40K were found. The mean specific activities of 238U, 232Th and 40K were 44 ± 10, 59 ± 17 and 463 ± 94 Bq/kg in the rainy season (2010); 41 ± 6, 50 ± 9 and 484 ± 83 Bq/kg in the winter (2010), and 39 ± 6, 41 ± 7 and 472 ± 81 Bq/kg in the summer (2011), respectively. The mean specific activities were higher than the values in the UNSCEAR report of 35, 30 and 400 Bq/kg for 238U, 232Th and 40K, respectively. From the measured specific activities, the absorbed dose rate, radium equivalent activity, external hazard index and annual external effective dose rate were calculated in order to assess the health risk. No radiation hazards related to the radioactivity in the sediment were expected. The accumulation of radionuclides varied with the particle size and the organic matter content in the sediment. The accumulation of heavy metals showed similar results to that of the radionuclides in the sediment.

  14. Marine sediments and Beryllium-10 record of the geomagnetic moment variations during the Brunhes period.

    NASA Astrophysics Data System (ADS)

    Ménabréaz, Lucie; Thouveny, Nicolas; Bourlès, Didier; Demory, François

    2010-05-01

    Over millennial time scales, the atmospheric production of the cosmonuclid 10Be (half-life 1.387 ± 0.012 Ma [Shmeleff et al., 2009; Korschinek et al., 2009]) is modulated by the geomagnetic field strength, following a negative power law (e.g. Lal, 1988; Masarik and Beer, 2009). With respect to paleomagnetic reconstructions, 10Be-derived paleointensity records can therefore constitute an alternative, global and independent reading of the dipole moment variations. During the last years, efforts have been made to extract a geomagnetic signal from single and stacked 10Be records in natural archives such as ice and marine sediments (e.g. Carcaillet et al., 2004; Christl et al., 2007; Muscheler et al., 2005). In marine sediments, the 10Be concentration results from complex interplay of several processes: cosmogenic production, adsorption on sediment particles, redistribution by fluviatile and oceanic transport, and deposition. Therefore, a correction procedure is required to consider both sediment redistribution and enhanced scavenging, which can alter the primary signatures. To reconstruct the succession of field intensity lows accompanying excursions during the Brunhes chron, we investigated authigenic 10Be/9Be record of marine sequences also studied for paleomagnetism and oxygen isotopes. Mid and low latitude sites were preferred in order to benefit from the most efficient modulation by the magnetospheric shielding. We present a high resolution authigenic 10Be/9Be record of the last 50 ka recovered from the Portuguese Margin, that deciphers the cosmonuclide 10Be overproduction created by the geomagnetic dipole low associated with the Laschamp excursion. This record is compared to other proxy records of the geomagnetic field variations for the same time interval: (1) the relative paleointensity (RPI) reconstructed from the same sediments and the GLOPIS-75 record (Laj et al., 2004), (2) the absolute VDM record based on absolute paleointensities measured on lava flows

  15. Rock magnetic studies on marine volcaniclastic sediments off Martinique, Lesser Antilles volcanic arc, IODP Expedition 340

    NASA Astrophysics Data System (ADS)

    Saito, T.; Kataoka, K.

    2013-12-01

    Large numbers of marine volcaniclastic sediments with various origins were recovered from the sites U1397 and U1398 during IODP Expedition 340. They were most likely derived from volcanoes on Martinique and possibly from Dominica, Lesser Antilles volcanic arc. Some volcaniclastic units were transported and deposited as turbidites, some were as thin tephra fall deposits and others show both characteristics. They contain various amounts of bioclastic component, pumice and lithic fragments and hemipelagic mud clasts. Therefore, these volcaniclastic sediments are suitable for investigating transport and emplacement mechanisms of volcanic materials and the resultant sedimentary and petro-facies in marine settings. In this study, we focused on magnetic minerals in the marine volcaniclastic sediments and carried out rock magnetic measurements. Thermomagnetic measurements showed almost reversible curves and induced magnetization decayed to almost zero below 580 °C, suggesting little contribution of maghemite or hematite. Two Curie temperatures (Tc) with 350-400 °C and 500-550°C indicate that the main magnetic carriers are Ti-rich titanomagnetite and Ti-poor titanomagnetite. The proportion of low-Tc titanomagnetite in central and bottom part of turbidite units was larger than that in hemipelagic sediments and in the topmost part of turbidite units, suggesting Ti-rich titanomagnetite is derived from volcanic events. Magnetic susceptibility and hysteresis measurements showed that heavy and large magnetic minerals in most turbidite units were concentrated at the lower part of the unit. Samples from the topmost and bottom part of turbidites showed higher degrees of anisotropy than those from the central part, indicating strong influence of suspension settling at the topmost part and shearing at the bottom part. However, in some turbidite units such features cannot be observed and hysteresis parameters and susceptibility values were almost concentrated. Probably the units

  16. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments.

    PubMed

    Boschker, Henricus T S; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W C; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, The Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m(-2) d(-1). Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)(-1), which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  17. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments.

    PubMed

    Boschker, Henricus T S; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W C; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, The Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m(-2) d(-1). Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)(-1), which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  18. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  19. Phosphate oxygen isotope ratio proxy for specific microbial activity in marine sediments (Peru Margin)

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2005-12-01

    Oxygen (O) isotope ratios of biogenic apatites have been widely used as paleotemperature and environmental geochemical proxies. With improved knowledge of the phosphate O isotope effects of different P cycling pathways, the δ18O value of inorganic phosphate (δ18OP) has been proposed as a useful proxy and tracer of biological reactions and P cycling in natural environments[1,2,3,4]. Being the only way of removing P from oceanic water, sedimentary P burial is one of the most important processes during biogeochemical cycling of P. The high concentrations of organic matter and pronounced microbial activity at ODP Site 1230 along the Peru Margin result in unusually high interstitial water phosphate concentrations, which provides a unique opportunity to use δ18OP to investigate inorganic phosphate (Pi) regeneration and P cycling pathways in marine sediments. The isotopic measurements of both dissolved inorganic phosphate (DIP) and bulk sediment Pi show that DIP δ18OP values are affected by three different processes, which are all induced by specific microbial activities present in the sediments. In sediments at ~ 65 to 120 mbsf, porewater DIP is derived from dissolved organophosphorus compounds (DOP) through enzymatic degradation pathways, evidenced by both DIP δ18OP values and interstitial water chemistry. Measured porewater DIP δ18OP values also suggest that 4 to 8% of interstitial water DIP reflects regeneration of Pi from Porg by microbially-synthesized enzymes. Throughout the sediment column and especially at ~ 120 to 150 mbsf, DIP is released from the sediments by microbially-induced reductive dissolution of Fe-oxides, which contributes to the overall high DIP concentrations at Site 1230. The third and dominant process controlling measured DIP δ18OP values is microbial turnover of regenerated Pi. The presence of high microbial activities in organic-rich Site 1230 sediments promotes the remobilization of P and affects marine P cycling by potentially enhancing

  20. Hf and Nd isotopes in marine sediments: Constraints on global silicate weathering

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Burton, K. W.; Soulet, G.; Vigier, N.; Dennielou, B.; Etoubleau, J.; Ponzevera, E.; German, C. R.; Nesbitt, R. W.

    2009-01-01

    The combined use of Lu-Hf and Sm-Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf-Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (ɛ Nd ~ - 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by ɛ Hf values (from - 1.1 to + 1.3) far more radiogenic than associated sediments (from - 7.1 to - 12.0) and turbidite sands (from - 27.2 to - 31.6). ɛ Hf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between ɛ Hf of secondary clay minerals and chemical weathering intensity. These results combined with data from the literature have global implications for understanding the Hf-Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the 'seawater array' (i.e. the correlation defined by deep-sea Fe-Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous

  1. Microbial processes and organic priority substances in marine coastal sediments (Adriatic Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Dellisanti, Walter; Lungarini, Silvia; Miserocchi, Stefano; Patrolecco, Luisa; Langone, Leonardo

    2015-04-01

    PERSEUS EU FP7 Project aims to identify the interacting patterns of natural and human-derived pressures to assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive (MSFD) as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. In the frame of this Project (subtask 1.3.3 ADREX: Adriatic and Ionian Seas Experiment), monitoring surveys were conducted in the Adriatic Sea (Italy) in order to study the variation of structural and functional characteristics of native bacterial communities and the occurrence of selected classes of organic priority substances in sediments. The study area represents a good natural laboratory sensitive to climate variability and human pressure, owing to the semi-enclosed nature of the Adriatic Sea and to the increasing trend of human activities in the coastal regions. During the cruise ADRI-13 (November 2013) and ADRI-14 (October 2014) we sampled several coastal sites from the mouth of the Po River to the Otranto strait. Surface sediments were collected in all areas, while sediment cores were sampled in selected sites. Microbes associated with marine sediments play an important role in the C-flux being responsible for the transformation of organic detritus (autochthonous and allochthonous) into biomass. The sediment bacterial abundance was determined by epifluorescence microscopy and the rate of bacterial carbon production by measuring the 3H-leucine uptake rates. The community respiration rate was estimated by the measurement of the electron transport system (ETS) activity. The sediment contamination level was determined by measuring the concentration of contaminants included in the list of organic priority substances: PAHs, bisphenol A (BPA), alkylphenols (APs). The extraction/clean-up of PAHs, BPA and APs was performed by ultrasonic bath with the appropriate solvents, followed by analytical determination with

  2. Spatial, temporal, and source variations of hydrocarbons in marine sediments from Baffin Bay, Eastern Canadian Arctic.

    PubMed

    Foster, Karen L; Stern, Gary A; Carrie, Jesse; Bailey, Joscelyn N-L; Outridge, Peter M; Sanei, Hamed; Macdonald, Robie W

    2015-02-15

    With declining sea ice conditions in Arctic regions owing to changing climate, the large prospective reservoirs of oil and gas in Baffin Bay and Davis Strait are increasingly accessible, and the interest in offshore exploration and shipping through these regions has increased. Both of these activities are associated with the risk of hydrocarbon releases into the marine ecosystem. However, hydrocarbons are also present naturally in marine environments, in some cases deriving from oil seeps. We have analyzed hydrocarbon concentrations in eleven sediment cores collected from northern Baffin Bay during 2008 and 2009 Amundsen expeditions and have examined the hydrocarbon compositions in both pre- and post-industrial periods (i.e., before and after 1900) to assess the sources of hydrocarbons, and their temporal and spatial variabilities. Concentrations of ΣPAHs ranged from 341 to 2693 ng g(-1) dw, with concentrations in cores from sites within the North Water (NOW) Polynya generally higher. Individual PAH concentrations did not exceed concentrations of concern for marine aquatic life, with one exception found in a core collected within the NOW (one of the seven sediment core samples). Hydrocarbon biomarkers, including alkane profiles, OEP (odd-to-even preference), and TAR (terrigenous/aquatic ratios) values indicated that organic carbon at all sites is derived from both terrigenous higher plants and marine algae, the former being of greater significance at coastal sites, and the latter at the deepest sites at the southern boundary of the NOW. Biomarker ratios and chemical profiles indicate that petrogenic sources dominate over combustion sources, and thus long-range atmospheric transport is less significant than inputs from weathering. Present-day and historic pre-1900 hydrocarbon concentrations exhibited less than an order of magnitude difference for most compounds at all sites. The dataset presented here provides a baseline record of hydrocarbon concentrations in

  3. Spatial, temporal, and source variations of hydrocarbons in marine sediments from Baffin Bay, Eastern Canadian Arctic.

    PubMed

    Foster, Karen L; Stern, Gary A; Carrie, Jesse; Bailey, Joscelyn N-L; Outridge, Peter M; Sanei, Hamed; Macdonald, Robie W

    2015-02-15

    With declining sea ice conditions in Arctic regions owing to changing climate, the large prospective reservoirs of oil and gas in Baffin Bay and Davis Strait are increasingly accessible, and the interest in offshore exploration and shipping through these regions has increased. Both of these activities are associated with the risk of hydrocarbon releases into the marine ecosystem. However, hydrocarbons are also present naturally in marine environments, in some cases deriving from oil seeps. We have analyzed hydrocarbon concentrations in eleven sediment cores collected from northern Baffin Bay during 2008 and 2009 Amundsen expeditions and have examined the hydrocarbon compositions in both pre- and post-industrial periods (i.e., before and after 1900) to assess the sources of hydrocarbons, and their temporal and spatial variabilities. Concentrations of ΣPAHs ranged from 341 to 2693 ng g(-1) dw, with concentrations in cores from sites within the North Water (NOW) Polynya generally higher. Individual PAH concentrations did not exceed concentrations of concern for marine aquatic life, with one exception found in a core collected within the NOW (one of the seven sediment core samples). Hydrocarbon biomarkers, including alkane profiles, OEP (odd-to-even preference), and TAR (terrigenous/aquatic ratios) values indicated that organic carbon at all sites is derived from both terrigenous higher plants and marine algae, the former being of greater significance at coastal sites, and the latter at the deepest sites at the southern boundary of the NOW. Biomarker ratios and chemical profiles indicate that petrogenic sources dominate over combustion sources, and thus long-range atmospheric transport is less significant than inputs from weathering. Present-day and historic pre-1900 hydrocarbon concentrations exhibited less than an order of magnitude difference for most compounds at all sites. The dataset presented here provides a baseline record of hydrocarbon concentrations in

  4. Sediment Mediated Marine-derived Nutrient Transfers in Watersheds: the Dirt on Salmon Decay Products

    NASA Astrophysics Data System (ADS)

    Petticrew, Ellen; Albers, Sam

    2014-05-01

    The conveyance of nutrients and contaminants through aquatic systems is typically mediated by inorganic fine sediment. Its influence on the transfer of marine-derived nutrients through watersheds, however, is less well acknowledged. The ecological impact of the annual pulse of marine-derived nutrients (MDN) moved upstream into interior river systems via migrating salmon is thought to be significant as both local spawning reaches and the downstream nursery lakes have evidenced increased productivity following this nutrient pulse. The relationship between the number of upstream spawners and productivity in downstream nursery lakes is poorly defined as the conveyance of MDN between the two points of interest is influenced spatially and temporally by both channel and lake processes. A research project that specifically investigates the association between salmon decay products and sediment mediated transfers of these marine-derived nutrients downstream to the nursery lake is underway in the Horsefly River in British Columbia, an important sockeye river tributary to Quesnel Lake in the Canada's Fraser River watershed. Results from sampling freshet delivery to the lake in 2011 and 2012 will be presented as they represent two end members of the four year spawning cycle - snowmelt flushing following a high and low spawner return year. A continuous flow centrifuge was used to collect bulk suspended sediment 1) at points along the river, downstream of the spawning grounds, 2) along a transect from the river mouth where it enters Horsefly Bay and 3) at several other locations in the river plume during spring freshet. Stable isotopes (13C and 15N) were used to detect the MDN and chlorophyll a was analyzed to represent water column primary production. The relationships between sediment loads, nutrient delivery to the lake and primary productivity during this period will be presented in the context of upstream spawner biomass for both years.

  5. Glacial marine sediments in the precambrian Gowganda formation at Whitefish Falls, Ontario (Canada)

    USGS Publications Warehouse

    Lindsey, D.A.

    1971-01-01

    Study of a well-exposed section of the Gowganda Formation at Whitefish Falls, Ontario, suggests criteria for the recognition of glacial marine sediments. Thickness of hundreds of feet, lateral continuity, faint internal stratification, sorted lenses of sandstone and conglomerate, and dropstones characterize much of the tillite. Thickness of hundreds of feet, lateral continuity, and marked development of irregular and lenticular laminae instead of varve structure characterize much of the argillite. These characteristics, together with evidence for a nearshore, marine-to-deltaic environment for the overlying beds, suggest a glacial marine interpretation even though no fossil evidence is available. Massive tillite, tillite containing faint stratification and lenses of sorted conglomerate and sandstone, and dropstone-bearing argillite, all of which interfinger, suggest a glacial marine environment composed of: (1) a subglacial facies; (2) a periglacial facies; and (3) a facies of marine ice rafting, respectively. Separation of the two tillite-bearing members by as much as 700 ft. of argillite containing no dropstones suggests two distinct ice ages during Gowganda time. ?? 1971.

  6. Determination of metal components in marine sediments using energy-dispersive X-ray fluorescence (ED-XRF) spectrometry.

    PubMed

    Tung, Joanne Wai Ting

    2004-11-01

    A rapid energy-dispersive X-ray fluorescence (ED-XRF) spectrometric method for the analysis of metal components of marine sediments has been presented. Calibrations were made using synthetic matrix. The agreement of the results for sediment standard reference materials with reference values is satisfactory. Major advantages of the non-destructive ED-XRF technique over conventional chemical digestion methods include the applicability to analyzing the major oxide components, as well as to trace metals, and the avoidance of hazardous chemicals. The method has been applied to the routine analysis of Hong Kong marine sediment.

  7. Pleistocene reduction of polar ice caps: Evidence from Cariaco Basin marine sediments

    NASA Astrophysics Data System (ADS)

    Poore, R. Z.; Dowsett, H. J.

    2001-01-01

    Sea level is projected to rise between 13 and 94 cm over the next 100 yr due to continued climate warming. The sea-level projections assume that polar ice sheets will remain stable or even increase on time scales of centuries, but controversial geologic evidence suggests that current polar ice sheets have been eliminated or greatly reduced during previous Pleistocene interglacials indicating that modern polar ice sheets have become unstable within the natural range of interglacial climates. Sea level may have been more than 20 m higher than today during a presumably very warm interglacial about 400 ka during marine isotope stage 11. Because of the implications for future sea level rise, additional study of the conflicting evidence for warmer conditions and higher sea level during marine isotope stage 11 is needed. Here we present microfossil and isotopic data from marine sediments of the Cariaco Basin supporting the interpretation that global sea level was 10 20 m higher than today during marine isotope stage 11. The increased sea level requires reduction in modern polar ice sheets and is consistent with the interpretation that the West Antarctic ice sheet and the Greenland ice sheet were absent or greatly reduced during marine isotope stage 11. Our results show a warm marine isotope stage 11 interglacial climate with sea level as high as or above modern sea level that lasted for 25 to 30 k.y. Variations in Earth's orbit around the sun (Milankovitch cycles) are considered to be a primary external force driving glacial-interglacial cycles. Current and marine isotope stage 11 Milankovitch forcing are very similar, suggesting that the present interglacial (Holocene) that began ca. 10 ka will continue for another 15 to 20 k.y. Therefore any anthropogenic climate warming will accelerate the natural process toward reduction in polar ice sheets. The potential for increased rates of sea level rise related to polar ice sheet decay should be considered as a potential natural

  8. Pleistocene reduction of polar ice caps: Evidence from Cariaco Basin marine sediments

    USGS Publications Warehouse

    Poore, R.Z.; Dowsett, H.J.

    2001-01-01

    Sea level is projected to rise between 13 and 94 cm over the next 100 yr due to continued climate warming. The sea-level projections assume that polar ice sheets will remain stable or even increase on time scales of centuries, but controversial geologic evidence suggests that current polar ice sheets have been eliminated or greatly reduced during previous Pleistocene interglacials indicating that modern polar ice sheets have become unstable within the natural range of interglacial climates. Sea level may have been more than 20 m higher than today during a presumably very warm interglacial about 400 ka during marine isotope stage 11. Because of the implications for future sea level rise, additional study of the conflicting evidence for warmer conditions and higher sea level during marine isotope stage 11 is needed. Here we present microfossil and isotopic data from marine sediments of the Cariaco Basin supporting the interpretation that global sea level was 10-20 m higher than today during marine isotope stage 11. The increased sea level requires reduction in modern polar ice sheets and is consistent with the interpretation that the West Antarctic ice sheet and the Greenland ice sheet were absent or greatly reduced during marine isotope stage 11. Our results show a warm marine isotope stage 11 interglacial climate with sea level as high as or above modern sea level that lasted for 25 to 30 k.y. Variations in Earth's orbit around the sun (Milankovitch cycles) are considered to be a primary external force driving glacial-interglacial cycles. Current and marine isotope stage 11 Milankovitch forcing are very similar, suggesting that the present interglacial (Holocene) that began ca. 10 ka will continue for another 15 to 20 k.y. Therefore any anthropogenic climate warming will accelerate the natural process toward reduction in polar ice sheets. The potential for increased rates of sea level rise related to polar ice sheet decay should be considered as a potential natural

  9. PCB contamination in marine sediments from Golfo Dulce, Pacific coast of Costa Rica.

    PubMed

    Spongberg, Alison L

    2004-12-01

    Twenty-nine marine sediment samples collected from 1996 through 2002 from the Golfo Dulce embayment of Costa Rica were analyzed for PCB concentrations. The Esquinas River and Rincon Bay in the northern and western part of the gulf had relatively low overall concentrations of PCBs, with no samples having greater than 2.1 microg/g dw sediment. The Port of Golfito had the highest overall concentrations, ranging up to 15.7 microg/g dw sediment. These samples were also dominated by higher chlorinated congeners. Samples from the deeper (> 100 m) waters in the northern part of the gulf, as well as within the sediment plume from the Rio Coto Colorado had intermediate values. Within the Rio Coto Colorado sediment plume the concentrations did decrease with increasing depth and the congeners showed a shift towards less chlorinated congeners with depth. However, the deep northern basin had some of the highest PCB concentrations and the shift towards less chlorinated congeners was not apparent or significant. Whether the anoxic conditions that exist in the deep waters are capable of initiating dechlorination is still unknown. Overall, the data from Golfo Dulce show moderate PCB contamination, despite the pristine nature of the gulf and surrounding lands.

  10. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    PubMed

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity. PMID:26496620

  11. Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil.

    PubMed

    Buruaem, Lucas M; Hortellani, Marcos A; Sarkis, Jorge E; Costa-Lotufo, Leticia V; Abessa, Denis M S

    2012-03-01

    Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. PMID:22306311

  12. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    PubMed

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity.

  13. Recognizing magnetostratigraphy in overprinted and altered marine sediments: Challenges and solutions from IODP Site U1437

    NASA Astrophysics Data System (ADS)

    Musgrave, Robert J.; Kars, Myriam

    2016-08-01

    Core disturbance, drilling overprints, postdepositional acquisition of remanence, authigenic growth of magnetic iron sulfides, and alteration all contribute challenges to recognizing the primary magnetostratigraphy in marine sediments. We address these issues in a sequence of tuffaceous muds and volcaniclastics at International Ocean Discovery Program Site U1437 and produce the longest continuous magnetic polarity stratigraphy in the history of scientific ocean drilling. Remanence measurements were filtered to remove intervals affected by fluidization, plastic sediment disturbance, and core biscuiting. Drilling overprints are concentrated in the disturbed annulus surrounding intact core material. Bioturbation was limited to a vertical extent of at most 15 cm. Changes in sediment color, stiffness, and magnetic hysteresis all suggest that remanence was locked in within a few meters of the sediment-water interface. We did not observe any systematic offset between magnetostratigraphic and biostratigraphic datums. Authigenic growth of greigite, in response to both initial sulfate reduction in the upper 50 m of the sediment column and to deeper resupply of sulfate, has led to magnetic overprinting. Anomalous polarity artefacts, extending <5 m and occurring within about 20 m below a real polarity transition, appear to be due to a chemical remanence acquired by greigite produced during early diagenesis. Diagenetic magnetic mineral alteration resulted in the progressive loss of fine-grained magnetite, which enhanced susceptibility to drilling and postdrilling overprints and increased the resistance of these overprints to removal by conventional demagnetization. We recovered the magnetostratigraphic record from many samples with resistant overprints through low-temperature demagnetization through the Verwey transition.

  14. An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment.

    PubMed

    Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S

    2015-10-15

    This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II.

  15. Redox effects on the microbial degradation of refractory organic matter in marine sediments

    NASA Astrophysics Data System (ADS)

    Reimers, Clare E.; Alleau, Yvan; Bauer, James E.; Delaney, Jennifer; Girguis, Peter R.; Schrader, Paul S.; Stecher, Hilmar A.

    2013-11-01

    Microbially mediated reduction-oxidation (redox) reactions are often invoked as being the mechanisms by which redox state influences the degradation of sedimentary organic matter (OM) in the marine environment. To evaluate the effects of elevated, oscillating and reduced redox potentials on the fate of primarily aged, mineral-adsorbed OM contained in continental shelf sediments, we used microbial fuel cells to control redox state within and around marine sediments, without amending the sediments with reducing or oxidizing substances. We subsequently followed electron fluxes in the redox elevated and redox oscillating treatments, and related sediment chemical, isotopic and bacterial community changes to redox conditions over a 748-day experimental period. The electron fluxes of the elevated and oscillating redox cells were consistent with models of organic carbon (OC) oxidation with time-dependent first-order rate constants declining from 0.023 to 0.005 y-1, in agreement with rate constants derived from typical OC profiles and down core ages of offshore sediments, or from sulfate reduction rate measurements in similar sediments. Moreover, although cumulative electron fluxes were higher in the continuously elevated redox treatment, incremental rates of electron harvesting in the two treatments converged over the 2 year experiment. These similar rates were reflected in chemical indicators of OM metabolism such as dissolved OC and ammonia, and particulate OC concentrations, which were not significantly different among all treatments and controls over the experimental time-scale. In contrast, products of carbonate and opal dissolution and metal mobilization showed greater enrichments in sediments with elevated and oscillating redox states. Microbial community composition in anode biofilms and surrounding sediments was assessed via high-throughput 16S rRNA gene sequencing, and these analyses revealed that the elevated and oscillatory redox treatments led to the

  16. Development of marine sediment bioassays and toxicity tests for monitoring and regulation in Europe

    SciTech Connect

    Thain, J.; Matthiessen, P.

    1995-12-31

    There is a need in Europe and elsewhere for a broad suite of whole-sediment bioassays and toxicity tests which can be used for routine monitoring and assessment of the marine environment and for evaluating the toxic effects of chemicals which may find their way into sediments. Until recently, few European species had been incorporated into such tests but the availability of suitable methodologies is now increasing rapidly. Perhaps the most important recent activity in this area consisted of an international ring test of acute sediment toxicity test methods which was organized by the Oslo and Paris Commissions in 1993, using up to 4 offshore chemicals as test materials. It evaluated the performance of 4 acute (5--10 day) tests involving: the sea urchin Echinocardium cordatum, the bivalve mollusc Abra alba, the amphipod crustacean Corophium volutator, and the polychaete worm Arenicola marina. The ring test concluded that the C. volutator test was the most appropriate for evaluating offshore chemicals, but all these methods are now widely used in Europe, both as toxicity tests and as bioassays. For example, the A. marina procedure (which has both lethal and sublethal endpoints), in combination with the C. volutator method, is now routinely used in the UK for monitoring the toxicity of estuarine sediments. Further activities are in progress. Perhaps the most important is the development of chronic marine sediment tests and bioassays which can be used to assess the long-term effects of the many sedimentary contaminants which are able to persist in this type of habitat and possibly cause delayed effects on the growth and reproduction, etc. of benthic fauna.

  17. Control of organic matter on the magnetic properties of surficial marine sediments. A simple kinetic model

    NASA Astrophysics Data System (ADS)

    Mohamed Falcon, K. J.; Andrade, A.; Rey, D.; Rubio, B.

    2014-12-01

    Magnetic properties of marine sediments in the Galician Rias, in NW Spain, have shown that in these shallow marine settings the magnetic mineral assemblage, and its bulk magnetic properties, is controlled by grain size, wave climate, and organic matter content. The grain size effect is explained by concentration of diamagnetic biogenic carbonates in the coarse fraction, which dilutes the concentration-dependent magnetic properties. Furthermore, this effect is enhanced by the hydrodynamic sorting of the heavy minerals, like magnetite, that become concentrated in the finer fractions. Waves on the other hand concentrate the coarser bioclasts in the shallower areas along the coastal margins of the rias, and consequently these areas show the lowest magnetic mineral concentrations. Magnetic minerals are therefore more abundant in the deeper central axis and towards the external, more oceanic, areas of the rias. Another effect of waves is periodic resuspension of fine sediments, which allows them to be reoxigenated preventing the onset of reductive diagenesis. This effect is best seen in sediment cores, where organic matter remineralization promotes dissolution of magnetic iron oxides and oxyhydroxides. Areas where resuspension is frequent and/or deeper areas where sediments stay in the water column for longer have lower degrees of reductive early diagenesis. In addition to its downcore effect, organic matter also controls the magnetic properties of surficial sediments. Our results in the Ria de Muros, at the north of our study area, have shown that a simple kinetic model is enough to quantify the effect of organic matter content on the dissolution of magnetite. We have found that a Total Organic Carbon increase of 0.35% reduces magnetite concentration of surface samples by half. These effects observed in the Ria de Muros have also been confirmed for published results in the southern Rias Baixas previously studied by our research group.

  18. Accumulation and preservation of organic carbon in marine sediments: The roles of anoxia vs. production

    SciTech Connect

    Calvert, S.E.; Pedersen, T.F. )

    1990-05-01

    Organic carbon enrichments in marine sediments and sedimentary rocks commonly are explained by the preferential preservation of the deposited organic matter under anoxic conditions; the role of primary organic (plankton) production is seldom considered. A review of the available information shows that modern marine sediment accumulating in oxic and anoxic basins in similar topographic and sedimentary settings have very similar carbon contents. On continental slopes, carbon maxima are apparently produced by the complex interplay between the supply of carbon to the sea floor, the texture of the sediment, the dilution of carbon by other sediment components, and the decreasing settling flux of carbon in the deeper waters of the open ocean. Contrary to contemporary thought, there is no causal relationship between such maxima and the position of the oxygen minimum. The degradation of sedimentary organic matter by aerobes and by sulfate reducers is very similar where the supply of fresh organic matter to the sea floor is similar. Hence, there is no evidence for the preferential preservation of organic matter under anoxic conditions. Terrestrial organic matter, however, appears to be degraded to a lesser extent by sulfate reducers. The burial of carbon below the surficial, oxygenated horizons of a sediment removes the easily oxidized fractions leaving material that may be less susceptible to attack by sulfate reducers. Sedimentary carbon maxima in Pleistocene glacial horizons are due to the increased settling flux of organic matter brought about by climatically induced increases in upwelling in the equatorial and marginal areas of the ocean. Changes in bottom water oxygen levels during these periods plays a minor role in producing these signals. Previous work that claimed that anoxic bottom waters were prevalent during the accumulation of organic-rich black shales in the geological record should be reevaluated.

  19. Estimation of hydrogen sulfide removal efficiency with granulated coal ash applied to eutrophic marine sediment using a simplified simulation model.

    PubMed

    Asaoka, Satoshi; Yamamoto, Tamiji; Yamamoto, Hironori; Okamura, Hideo; Hino, Kazutoshi; Nakamoto, Kenji; Saito, Tadashi

    2015-05-15

    Hydrogen sulfide generated in eutrophic marine sediment is harmful for living organisms. It is therefore necessary to remove hydrogen sulfide from the sediment to restore benthic ecosystems. Previous studies revealed that granulated coal ash, which is a by-product of coal thermal electric power stations, could remove and oxidize hydrogen sulfide. In this study, we propose a simplified simulation model to estimate the hydrogen sulfide removal efficiency of granulated coal ash. Hydrogen sulfide concentrations in eutrophic marine sediment pore water with and without the application of granulated coal ash were calculated by the proposed model, and the outputs were compared with semi-field or field observation data. The model outputs reproduced the observed data well. Using the proposed model outputs, we suggest an optimum application dosage of granulated coal ash for remediating eutrophic marine sediment.

  20. Carotenoid diagenesis in recent marine sediments: II. Degradation of fucoxanthin to loliolide

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.

    1989-03-01

    The quantitative distributions of loliolide and the major phytoplankton carotenoids: fucoxanthin, diadinochrome, diatoxanthin, and β-carotene in two cores of anoxic marine sediment recovered from the Peru continental shelf are reported. Our results demonstrate that the rapid degradation of carotenoids in sediments is not a result of their high degree of unsaturation as has been previously suggested. Instead, carotenoids exhibit a wide range of degradation rates that are proportional to the ability of specific pigments to form unstable bicyclic furanoxides. Carotenoid furanoxides undergo subsequent fragmentation to loliolide, isololiolide, dihydroactinidiolide and other, as yet undetermined, low molecular weight products. This degradation pathway accounts for the relative rates of removal for specific carotenoids (fucoxanthin = fucoxanthinol > diadinoxanthin > diatoxanthin = carotene), the distribution of carotenoids reported by Wpatts and Maxwell (1977) and C ARDOSOet al. (1978) in ancient sediments, the occurrence of novel carotenoid transformation products in surface sediments reported by r pidout et al. (1984), and the distribution of loliolides in recent sediments recovered from the Namibian shelf reported by k plok et al. (1984a,b). We predict that loliolide and isololiolide will inherit a specific stereochemistry from their carotenoid precursors, but that dihydroactinidiolide will be racemic. For every μmole of fucoxanthin degraded in Peru sediments, 0.7-1.1 μmole of loliolide is produced. Summation of fucoxanthin and loliolide at each subsurface horizon yields an estimate of the total deposition of fucoxanthin at t = 0. Throughout the 0-20 cm depth of our samples, this parameter is remarkably constant to ±16%. Individual horizons exhibit excursions which may reflect changes in surface productivity. Extrapolation of our measurements to deeper sediments may therefore be of some value in deciphering questions on environmental conditions of deposition and

  1. Effects of biogenic silica on acoustic and physical properties of clay-rich marine sediments

    SciTech Connect

    Tribble, J.S.; Mackenzie, F.T.; Urmos, J.; O'Brien, D.K.; Manghnani, M.H. )

    1992-06-01

    The physical properties of marine sediments are influenced by compaction and diagenesis during burial. Changes in mineralogy, chemistry, density, porosity, and microfabric all affect a sediment's acoustic and electrical properties. Sediments from the Japan Trench illustrate the dependence of physical properties on biogenic silica content. Increased opal-A content is correlated with increased porosity and decreased grain density and compressional velocity. Variations with depth in opal-A concentration are therefore reflected in highly variable and, at times, inverse velocity-depth gradients. The diagenetic conversion of opal-A to opal-CT and finally to quartz was investigated at a site in the San Miguel Gap, California. Distinct changes in microfabric, particularly in the porosity distribution, accompany the diagenetic reactions and contribute to a sharp velocity discontinuity at the depth of the opal-A to opal-CT conversion. Evaluation of this reaction at several sites indicates a systematic dependence on temperature and age in clay-rich and moderately siliceous sediments. In ocean margin regions, sediments are buried rapidly, and opal-A may be converted to opal-CT in less than 10 m.y. Temperatures of conversion range from 30{degree} to 50{degree}C. Much longer times (>40 m.y.) are required to complete the conversion in open ocean deposits which are exposed to temperatures less than 15{degree}C. In the absence of silica diagenesis, velocity-depth gradients of most clay-rich and moderately siliceous sediments fall in the narrow range of 0.15 to 0.25 km/s/km which brackets the gradient (0.18 km/s/km) determined for a type pelagic clay section. Relationships such as these can be useful in unraveling the history of a sediment sequence, including the evolution with time of reservoir properties and seismic signatures.

  2. Toxicological and chemical assessment of ordnance compounds in marine sediments and porewaters

    USGS Publications Warehouse

    Nipper, M.; Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.

    2002-01-01

    Toxicological and chemical studies were performed with a silty and a sandy marine sediment spiked with 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrophenylmethylnitramine (tetryl), or 2,4,6-trinitrophenol (picric acid). Whole sediment toxicity was analyzed by the 10-day survival test with the amphipod Ampelisca abdita, and porewater toxicity tests assessed macro-algae (Ulva fasciata) zoospore germination and germling growth, sea urchin (Arbacia punctulata) embryological development, and polychaete (Dinophilus gyrociliatus) survival and reproduction. Whole sediments spiked with 2,6-DNT were not toxic to amphipods. The fine-grained sediment spiked with tetryl was also not acutely toxic. The tetryl and picric acid LC50 values in the sandy sediment were 3.24 and 144 mg/kg dry weight, respectively. The fine-grained sediment spiked with picric acid generated a U-shaped concentration-response curve in the amphipod test, with increased survival both in the lowest and highest concentration. Grain-size distribution and organic carbon content strongly influenced the behavior of ordnance compounds in spiked sediments. Very low concentrations were measured in some of the treatments and irreversible binding and biodegradation are suggested as the processes responsible for the low measurements. Porewater toxicity varied with its sedimentary origin and with ordnance compound. The sea urchin embryological development test tended to be the least sensitive. Tetryl was the most toxic chemical in all porewater tests, and picric acid the least toxic. Samples spiked with 2,6-DNT contained a degradation product identified as 2-methyl-3-nitroaniline (also known as 2-amino-6-nitrotoluene), and unidentified peaks, possibly degradation products, were also seen in some of the picric acid- and tetryl-spiked samples. Degradation products may have played a role in observed toxicity. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. Disentangling the fossil world from the deep biosphere in marine sediment

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. B.; Walsh, E. A.; D'Hondt, S.

    2015-12-01

    DNA in marine sediment contains both detrital sequences and sequences from organisms native to the sediment. The demarcation between these two pools and their rates of respective turnover as sediment ages are generally unknown. Here we address these issues by quantifying the total extractable DNA pool and comparing it to the fraction of sequenced chloroplast DNA (cpDNA) in sediment from two sites in the Bering Sea. Sediment at both of these sites is initially oxic, but transitions to suboxic and anoxic within approximately hundred years. In our samples, cpDNA as a tracer of detrital DNA is dominated by identifiable phylotypes that match specific siliceous microfossil taxa. The fraction of sequences comprised by cpDNA decreases with increasing sediment age over hundreds of thousands of years (kyr) to 1.4 million years (Ma), but does not reach zero at either site. When we take into account the overall shrinkage of the DNA pool, this cpDNA fraction follows a power-law function, suggesting that the residual cpDNA becomes increasingly recalcitrant with age. This increasing recalcitrance can be explained by biological activity decreasing with sediment age and / or by preferential long-term survival of only the most thoroughly protected DNA. In either case, this trend suggests that DNA persisting beyond an initial period (ca. 100 - 200 kyr at our sites) has an increased chance of preservation at depth. The association of sequenced cpDNA reads with specific siliceous microfossil taxa suggests that microfossils may help to preserve DNA; DNA from such taxa may be useful for studies of paleoenvironmental conditions and biological evolution on timescales that approach or exceed one million years.

  4. Geochemical Evidence for Recent Hydrothermal Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Abe, G.; Yamaguchi, K. E.

    2014-12-01

    Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site

  5. A budget of marine and terrigenous sediments, Hanalei Bay, Kauai, Hawaiian Islands

    USGS Publications Warehouse

    Calhoun, R.S.; Fletcher, C.H.; Harney, J.N.

    2002-01-01

    The sediment budget of Hanalei Bay on the north shore of Kauai was calculated using sedimentological and geophysical methods. The calculations of the budget subsequently allowed an interpretation of the Holocene history of the bay. The bay sediments are easily separated into marine (carbonate) and terrigenous (siliciclastic) grains. Surficial sediments are dominated by carbonate grains ( ??? 70%) of coralline algae, coral, and mollusc fragments as well as foraminifera, Halimeda, bryozoa, and echinoderm tests. However, siliciclastic grains (e.g. olivine, plagioclase, volcanic lithics) from the Hanalei River watershed draining shield volcanic highlands are the most common individual grain type ( ??? 27%) and form a zone of high concentration from the mouth of the Hanalei River into the center of the bay. Flooding in the bay by the post-glacial sea-level rise began soon after 11.7 kyears. The resulting marine environment caused the net deposition of 45.5 ?? 1.5 ?? 106 m3 of sediment in the bay and approximately 33.7 ?? 11.2 ?? 106 m3 of sediment on the Hanalei coastal plain. The total volume of carbonate sediment stored in the bay and coastal plain is greater than the volume likely to have been produced exclusively within the bay during the same time. Calculations indicate that approximately 2490 m3 year-1 have been imported into the bay or coastal plain and deposited since 11,700 years ago. The majority of this sediment influx is likely delivered from the east by the strong tradewind-driven littoral currents that characterize Kauai's north shore. Net carbonate sediment deposition in Hanalei Bay peaked at a rate of 15,500 m3 year-1 between 5000 and 3000 years ago (when sea level may have been 2 m above present) diminishing to 3890 m3 year-1 from 1000 years ago to the present. This influx is likely to have played a significant role in the mid to late Holocene progradation of the Hanalei shoreline. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. A budget of marine and terrigenous sediments, Hanalei Bay, Kauai, Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Calhoun, R. Scott; Fletcher, Charles H.; Harney, Jodi N.

    2002-06-01

    The sediment budget of Hanalei Bay on the north shore of Kauai was calculated using sedimentological and geophysical methods. The calculations of the budget subsequently allowed an interpretation of the Holocene history of the bay. The bay sediments are easily separated into marine (carbonate) and terrigenous (siliciclastic) grains. Surficial sediments are dominated by carbonate grains (˜70%) of coralline algae, coral, and mollusc fragments as well as foraminifera, Halimeda, bryozoa, and echinoderm tests. However, siliciclastic grains (e.g. olivine, plagioclase, volcanic lithics) from the Hanalei River watershed draining shield volcanic highlands are the most common individual grain type (˜27%) and form a zone of high concentration from the mouth of the Hanalei River into the center of the bay. Flooding in the bay by the post-glacial sea-level rise began soon after 11.7 kyears. The resulting marine environment caused the net deposition of 45.5±1.5×10 6 m 3 of sediment in the bay and approximately 33.7±11.2×10 6 m 3 of sediment on the Hanalei coastal plain. The total volume of carbonate sediment stored in the bay and coastal plain is greater than the volume likely to have been produced exclusively within the bay during the same time. Calculations indicate that approximately 2490 m 3 year -1 have been imported into the bay or coastal plain and deposited since 11,700 years ago. The majority of this sediment influx is likely delivered from the east by the strong tradewind-driven littoral currents that characterize Kauai's north shore. Net carbonate sediment deposition in Hanalei Bay peaked at a rate of 15,500 m 3 year -1 between 5000 and 3000 years ago (when sea level may have been 2 m above present) diminishing to 3890 m 3 year -1 from 1000 years ago to the present. This influx is likely to have played a significant role in the mid to late Holocene progradation of the Hanalei shoreline.

  7. Marine silicate weathering in the anoxic sediment of the Ulleung Basin: Evidence and consequences

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hoon; Torres, Marta E.; Haley, Brian A.; Ryu, Jong-Sik; Park, Myong-Ho; Hong, Wei-Li; Choi, Jiyoung

    2016-08-01

    Marine silicate weathering (MSiW) in anoxic sediments has been recently shown to be a significant sink for CO2 generated by methanogenesis. Independently, the roles of clay dehydration (illitization) in producing water and driving upward fluid advection have been well established in deep marine sediments, but to date the K+ source required for the reaction has not been established. Here we present chemical and strontium isotope properties of pore fluids from seven cores in the Ulleung Basin, which show radiogenic 87Sr/86Sr values (up to ˜0.71045), very high alkalinity values (maximum ˜130 mM), and enrichment in H4SiO4, Na+, K+, and Mg2+, consistent with MSiW. This reaction consumes CO2, generates alkalinity, and acts as a K+ source for illitization; water released from MSiW-supported illitization drives upward fluid flow. Our results highlight the importance of MSiW along continental margins and its underappreciated role in carbon cycling, silicate diagenesis, and hydrogeology of marine systems.

  8. Effect of salinity on methanogenic propionate degradation by acclimated marine sediment-derived culture.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-12-01

    Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures. The rate of propionate degradation increased eightfold during 10 rounds of cultivation. Microbial community composition was determined through pyrosequencing of 16S rRNA gene amplicons after 10 rounds of cultivation. Taxa analysis was conducted for the reads obtained by pyrosequencing. Known propionate degraders were undetectable in the acclimated culture. Comparison of bacterial taxa in the original sediment with those in the acclimated culture revealed that the populations of four bacterial taxa were significantly increased during acclimation. Methanolobus was the predominant archaea genus in the acclimated culture. The propionate degradation rate of the acclimated culture was not affected by salinity of up to equivalent of 1.9 % NaCl. The rate decreased at higher salinity levels and was more than 50 % of the maximum rate even at equivalent of 4.3 % NaCl.

  9. Thermal alteration experiments on organic matter in recent marine sediments as a model for petroleum genesis

    NASA Technical Reports Server (NTRS)

    Baedecker, M. J.; Ikan, R.; Ishiwatari, R.; Kaplan, I. R.

    1977-01-01

    The fate of naturally occurring lipids and pigments in a marine sediment exposed to elevated temperatures was studied. Samples of a young marine sediment from Tanner Basin, California, were heated to a series of temperatures (65-200 C) for varying periods of time (7-64 days). The sediment was analyzed prior to and after heating for pigments, isoprenoid compounds, alcohols, fatty acids, and hydrocarbons. Structural changes caused by heating unextractable organic material (kerogen) were also studied, and the significance of the results for understanding petroleum genesis is considered. Among other results, fatty acids and hydrocarbons increased in abundance although there appeared to be no obvious precursor-to-product relationship via simple decarboxylation reactions. Chlorins were partially converted into porphyrins. The phytyl side chain of pheophytin was initially preserved intact by reduction of the phytyl double bond, but later converted to a variety of isoprenoid compounds including alkanes. Thermal grafting of components onto kerogen occurred as well as structural changes caused by heat.

  10. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  11. Ecological and isotopic insights to the origin of archaeal tetraethers in marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Hurley, S. J.

    2012-12-01

    Thaumarchaeota, formerly known as Marine Group I Crenarchaeota, are believed to be the primary source of the isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs) found in the environment. Enrichment mesocosms and empirical correlations for marine sediments (TEX86) show a positive relationship between environmental temperature and the number of cyclopentyl or cyclohexyl rings contained within the GDGT structure. The TEX86 paleotemperature proxy has been applied across a large temporal range of geologic events and to sediments of widely varying depositional and diagenetic history. TEX86 assumes a direct correlation between the preserved GDGT ratios and SST. A number of fundamental assumptions underlie this correlation, including that: (1) GDGTs transported to the sediments reflect biomass of surface origin, (2) GDGTs produced by Archaea deeper in the water column should reflect deep temperatures and are not exported, and (3) community variations - including the potential contribution of GDGTs by Group II Euryarchaeota - do not appreciably affect the overall TEX86-SST relationship. Here we discuss evidence that questions all three of these assumptions and propose strategies for further understanding how GDGTs record paleoenvironments. These new approaches include greater application of physiological and culture studies; concurrent measurements of δ13C, Δ14C and D/H ratios of GDGTs; and cross-correlations with other paleotemperature proxies.

  12. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  13. Impact of Irradiation and Polycyclic Aromatic Hydrocarbon Spiking on Microbial Populations in Marine Sediment for Future Aging and Biodegradability Studies

    PubMed Central

    Melcher, Rebecca J.; Apitz, Sabine E.; Hemmingsen, Barbara B.

    2002-01-01

    Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders were present in the unspiked sediments and increased during handling, PAH spiking of nonirradiated sediments led to dramatic increases in their numbers. Phenotypic characterization of isolates able to grow on phenanthrene or chrysene placed them in several genera of marine bacteria: Vibrio, Marinobacter or Cycloclasticus, Pseudoalteromonas, Marinomonas, and Halomonas. This is the first time that marine PAH degraders have been identified as the latter two genera, expanding the diversity of marine bacteria with this ability. Even at the highest irradiation dose (10 megarads), heterotrophs and endospore formers reappeared within weeks. However, while bacteria from the unirradiated sediments had the capacity to both grow on and mineralize 14C-labeled phenanthrene and chrysene, irradiation prevented the reappearance of PAH degraders for up to 4 months, allowing spikes to age onto the sediments, which can be used to model biodegradation in marine sediments. PMID:12039743

  14. The Surface of Venus is Saturated With Ancient Impact Structures, and its Plains are Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2009-05-01

    Conventional interpretations of Venus are forced to fit dubious pre-Magellan conjectures that the planet is as active internally as Earth and preserves no ancient surface features. Plate tectonics obviously does not operate, so it is commonly assumed that the surface must record other endogenic processes, mostly unique to Venus. Imaginative systems of hundreds of tiny to huge rising and sinking plumes and diapirs are invoked. That much of the surface in fact is saturated with overlapping large circular depressions with the morphology of impact structures is obscured by postulating plume origins for selected structures and disregarding the rest. Typical structures are rimmed circular depressions, often multiring, with lobate debris aprons; central peaks are common. Marine-sedimentation features are overlooked because dogma deems the plains to be basalt flows despite their lack of source volcanoes and fissures. The unearthly close correlation between geoid and topography at long to moderate wavelengths requires, in conventional terms, dynamic maintenance of topography by up and down plumes of long-sustained precise shapes and buoyancy. A venusian upper mantle much stronger than that of Earth, because it is cooler or poorer in volatiles, is not considered. (The unearthly large so-called volcanoes and tessera plateaus often are related to rimmed circular depressions and likely are products of impact fluidization and melting.) Plains-saturating impact structures (mostly more obvious in altimetry than backscatter) with diameters of hundreds of km are superimposed as cookie-cutter bites, are variably smoothed and smeared by apparent submarine impact and erosion, and are differentially buried by sediments compacted into them. Marine- sedimentation evidence includes this compaction; long sinuous channels and distributaries with turbidite- channel characteristics and turbidite-like lobate flows (Jones and Pickering, JGSL 2003); radar-smooth surfaces and laminated aspect in

  15. INFLUENCE OF SOOT CARBON ON THE BIOACCULUMATION OF SEDIMENT-BOUND POLYCYCLIC AROMATIC HYDROCARBONS BY MARINE BENTHIC INVERTEBRATES: AN INTERSPECIES COMPARISON

    EPA Science Inventory

    The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens,...

  16. Geographical distribution of shear wave anisotropy within marine sediments in the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Fukao, Yoshio; Fujie, Gou; Takemura, Shunsuke; Takahashi, Tsutomu; Kodaira, Shuichi

    2015-12-01

    In the northwestern Pacific, the elastic properties of marine sediments, including P-wave velocities ( Vp) and S wave velocities ( Vs), have recently been constrained by active seismic surveys. However, information on S anisotropy associated with the alignments of fractures and fabric remains elusive. To obtain such information, we used ambient noise records observed by ocean-bottom seismometers at 254 sites in the northwestern Pacific to calculate the auto-correlation functions for the S reflection retrieval from the top of the basement. For these S reflections, we measured differential travel times and polarized directions to reveal the potential geographical systematic distribution of S anisotropy. As a result, the observed differential times between fast and slow axes were at most 0.05 s. The fast polarization axes tend to align in the trench-parallel direction in the outer rise region. In particular, their directions changed systematically in accordance with the direction of the trench axis, which changes sharply across the junction of the Kuril and Japan trenches. We consider that a contributing factor for the obtained S anisotropy within marine sediments in the outer rise region is primarily aligned fractures due to the tensional stresses associated with the bending of the Pacific Plate. Moreover, numerical simulations conducted by using the three-dimensional (3D) finite difference method for isotropic and anisotropic media indicates that the successful extraction of S anisotropic information from the S reflection observed in this study is obtained from near-vertically propagating S waves due to extremely low Vs within marine sediments. In addition, we conducted an additional numerical simulation with a realistic velocity model to confirm whether S reflections below the basement can be extracted or not. The resultant auto-correlation function shows only S reflections from the top of the basement. It appears that such near-vertically propagating S waves

  17. Constraining the global inventory of methane hydrates in marine sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Wallmann, K. J.; Burwiczi, E.; Rupke, L.; Marquardt, M.; Pinero, E.; Haeckel, M.; Hensen, C.

    2010-12-01

    Recent estimates for the global inventory of methane carbon bound in marine gas hydrates vary over several orders of magnitude from ~500 Gt C to more than 70,000 Gt C. These estimates are based on field observations or diagenetic models simulating the microbial degradation of organic matter within the hydrate stability zone under Holocene boundary conditions. Here, we present new global estimates applying an enhanced transport-reaction model for microbial methane production and hydrate formation in marine sediments. The kinetic model considers the down-core decrease in reactivity of organic matter and the inhibition of methane production via accumulation of metabolites in sediment pore fluids. The model was successfully tested at a significant number of ODP drill sites and model parameters were constrained considering the down-core decrease in dissolved sulfate and the accumulation of dissolved metabolites in pore fluids (ammonium, alkalinity, methane, etc.). The calibrated model was subsequently applied on a global grid considering available data sets on particulate organic carbon (POC) concentrations in surface sediments, Holocene sedimentation rates, and the thickness of the gas hydrate stability zone (GHSZ). This modeling exercise showed that only 0 - 4 Gt of methane carbon would accumulate in gas hydrates via microbial methane formation within the GHSZ. Additional model runs under Holocene boundary conditions showed that significant amounts of gas hydrate are only formed via upward gas and fluid flow. However, the erosion of continental shelf sediments during glacial sea-level low-stands and the re-deposition of sediments at the continental slope and rise may increase the POC input to the GHSZ and the accumulation of gas hydrates during glacial periods. A global inventory of up to ~1000 Gt C was calculated for average Quaternary boundary conditions assuming that the particle load of rivers is ultimately deposited at the continental slope and rise. The model

  18. EVALUATION OF A FIRST-ORDER MODEL FOR THE PREDICTION OF THE BIOACCUMULATION OF PCBS AND DDT FROM SEDIMENT INTO THE MARINE DEPOSIT-FEEDING CLAM MACOMA NASUTA

    EPA Science Inventory

    A first-order model for predicting contaminant bioaccumulation from sediments into benthic invertebrates was validated using a marine deposit-feeding clam, Macoma nasuta, exposed to polychlorobiphenyl (PCB)-spiked and dichlorodiphenyltrichloroethane (DDT)-contaminated sediments. ...

  19. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment.

    PubMed

    Laich, Federico; Vaca, Inmaculada; Chávez, Renato

    2013-10-01

    During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T)  = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica. PMID:23934251

  20. New procedure for recovering extra- and intracellular DNA from marine sediment samples

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Kallmeyer, J.

    2012-12-01

    Extracellular DNA (eDNA) is a ubiquitous biological compound in aquatic sediment and soil. Despite major methodological advances, analysis of DNA from sediment is still technically challenging, not just because of the co-elution of inhibitory substances, but also due to co-elution of extracellular DNA, which potentially leads to an overestimate of the actual diversity. Previous studies suggested that eDNA might play an important role in biogeochemical element cycling, horizontal gene transfer and stabilization of biofilm structures. Several protocols based on the precipitation of eDNA e.g. with CTAB and ethanol have already been published. However, using these methods we did not succeed in quantifying very low amounts of eDNA (e.g. <1μg eDNA/g dry wt) in marine sediment even when using DNA carriers like glycogen. Since the recovery of eDNA by precipitation strongly depends on its concentration, these previously published procedures are not adequate for deep biosphere sediment due to the low eDNA content. We have focused on the question whether eDNA could be a source of nitrogen and phosphorus for microbes in the subseafloor biosphere. Therefore we developed a new method for the (semi)-quantitative extraction of eDNA from sediment. The new extraction procedure is based on sequential washing of the sediment to remove simultaneously eDNA and microbial cells without lysing them. After separation of the cells by centrifugation, the eDNA was extracted from the supernatant and purified by adsorption onto a solid phase, followed by removal of the solids and subsequent elution of the pure eDNA. Intracellular DNA (iDNA) was extracted and purified from the cell pellet using a commercial DNA extraction kit. Additional to a very low detection limit and reproducible quantification, this new method allows separation and purification of both extracellular and intracellular DNA to an extent that inhibitors are removed and downstream applications like PCR can be performed. To

  1. Reactivity and fate of secondary alkane sulfonates (SAS) in marine sediments.

    PubMed

    Baena-Nogueras, Rosa María; Rojas-Ojeda, Patricia; Sanz, José Luis; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2014-06-01

    This research is focused on secondary alkane sulfonates (SAS), anionic surfactants widely used in household applications that access aquatic environments mainly via sewage discharges. We studied their sorption capacity and anaerobic degradation in marine sediments, providing the first data available on this topic. SAS partition coefficients increased towards those homologues having longer alkyl chains (from up to 141 L kg(-1) for C14 to up to 1753 L kg(-1) for C17), which were those less susceptible to undergo biodegradation. Overall, SAS removal percentages reached up to 98% after 166 days of incubation using anoxic sediments. The degradation pathway consisted on the formation of sulfocarboxylic acids after an initial fumarate attack of the alkyl chain and successive β-oxidations. This is the first study showing that SAS can be degraded in absence of oxygen, so this new information should be taken into account for future environmental risk assessments on these chemicals.

  2. Presence and distribution of persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica.

    PubMed

    Curtosi, Antonio; Pelletier, Emilien; Vodopivez, Cristian; St Louis, Richard; Mac Cormack, Walter Patricio

    2010-11-01

    Levels of butyltin compounds, polychlorinated biphenyls, and heavy metals were analyzed in marine sediments and organisms (Notothenia coriiceps, Laternula elliptica, and Nacella concinna), each of which has a different feeding strategy, in Potter Cove, Antarctica. PCBs were lower than detection limits in all samples. Only butyltin compounds were detected in a restricted area near the scientific station. Chromium, copper, magnesium, lead (Pb), and zinc had similar behavior in the cove, probably because they are regulated by similar process and conditions. However, Pb levels in some sites of the cove seem to be related to human activities in the area. Cadmium levels were relatively low, with the highest values found close to the shoreline, which is probably influenced by seasonal streams draining waters from Potter Peninsula. Results showed that despite the fact that Jubany Station has been operating for > 50 years, surface sediment and biota from Potter Cove do not exhibit levels of pollutants representing environmental concern.

  3. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  4. Setting limits for acceptable change in sediment particle size composition following marine aggregate dredging.

    PubMed

    Cooper, Keith M

    2012-08-01

    In the UK, Government policy requires marine aggregate extraction companies to leave the seabed in a similar physical condition after the cessation of dredging. This measure is intended to promote recovery, and the return of a similar faunal community to that which existed before dredging. Whilst the policy is sensible, and in line with the principles of sustainable development, the use of the word 'similar' is open to interpretation. There is, therefore, a need to set quantifiable limits for acceptable change in sediment composition. Using a case study site, it is shown how such limits could be defined by the range of sediment particle size composition naturally found in association with the faunal assemblages in the wider region. Whilst the approach offers a number of advantages over the present system, further testing would be required before it could be recommended for use in the regulatory context. PMID:22721693

  5. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea.

    PubMed

    Park, Soo-Je; Park, Byoung-Joon; Pham, Vinh Hoa; Yoon, Dae-No; Kim, Si-Kwan; Rhee, Sung-Keun

    2008-06-01

    Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.

  6. Reactivity and fate of secondary alkane sulfonates (SAS) in marine sediments.

    PubMed

    Baena-Nogueras, Rosa María; Rojas-Ojeda, Patricia; Sanz, José Luis; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2014-06-01

    This research is focused on secondary alkane sulfonates (SAS), anionic surfactants widely used in household applications that access aquatic environments mainly via sewage discharges. We studied their sorption capacity and anaerobic degradation in marine sediments, providing the first data available on this topic. SAS partition coefficients increased towards those homologues having longer alkyl chains (from up to 141 L kg(-1) for C14 to up to 1753 L kg(-1) for C17), which were those less susceptible to undergo biodegradation. Overall, SAS removal percentages reached up to 98% after 166 days of incubation using anoxic sediments. The degradation pathway consisted on the formation of sulfocarboxylic acids after an initial fumarate attack of the alkyl chain and successive β-oxidations. This is the first study showing that SAS can be degraded in absence of oxygen, so this new information should be taken into account for future environmental risk assessments on these chemicals. PMID:24631971

  7. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters

    SciTech Connect

    Ingall, E.; Jahnki, R.

    1994-06-01

    Phosphorus regeneration and burial fluxes determined from in situ benthic flux chamber and solid phase measurements at sites on the Californian continental margin, Peruvian continental slope, North Carolina continental slope, and from the Santa Monica basin, California are reported. Comparison of these sites indicates that O{sub 2}-depleted bottomwaters enhance P regeneration from sediments, diminishing overall phosphorus burial efficiency. Based on these observations, a positive feedback, linking ocean anoxia, enhanced benthic phosphorus regeneration, and marine productivity is proposed. On shorter timescales, these results also suggest that O{sub 2} depletion in coastal regions caused by eutrophication may enhance P regeneration from sediments, thereby providing additional P necessary for increased biological productivity. 42 refs., 2 figs., 2 tabs.

  8. Unraveling the Numerous Biosynthetic Products of the Marine Sediment-Derived Fungus, Aspergillus insulicola

    PubMed Central

    Wu, Q. X.; Jin, X. J.; Draskovic, M.; Crews, M. S.; Tenney, K.; Valeriote, F. A.; Yao, X. J.; Crews, P.

    2011-01-01

    A new tripeptide, pre-sclerotiotide F (3), was isolated from a marine sediment-derived fungus, Aspergillus insulicola, along with five known compounds, one of which was new at the time of isolation, scerotiotide F (4). The absolute configuration elucidation of the new compound was determined using a combination of NMR, HR-ESI-MS, and optical rotation analyses. Cytotoxicities were measured in vitro against selected cancer cells. The effects of pre-sclerotiotide F (3) and sclerotiotide F (4) on LPS-induced NF-κB and iNOS expression were also measured. PMID:22368725

  9. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    SciTech Connect

    Knoblauch, C.; Joergensen, B.B.; Harder, J.

    1999-09-01

    The numbers of sulfate reducers in two Arctic sediments with in situ temperatures of 2.6 and {minus}1.7C were determined. Most-probable-number counts were higher at 10 C than at 20 C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than their mesophilic counterparts at similarly low temperatures.

  10. Biogeochemical and Molecular Signatures of Anaerobic Methane Oxidation in a Marine Sediment

    PubMed Central

    Thomsen, Trine R.; Finster, Kai; Ramsing, Niels B.

    2001-01-01

    Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802–805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin. PMID:11282617

  11. Late Cretaceous to early Tertiary deltaic to marine sedimentation, North Slope, Alaska

    SciTech Connect

    Phillips, R.L.

    1987-05-01

    Along the lower Colville River near Ocean Point, Alaska, Late Cretaceous to early Tertiary sediments (Colville Group and the Sagavanirktok Formation) record depositional environments from delta plain to prograding delta to shallow marine shelf. The unit hosts the northernmost known dinosaur remains and is less than 100 m thick with numerous tephra deposits in its lower sections. Furthermore, it is characterized by cyclic, relatively fine-grained sediments indicating mostly depositional and few erosional events. The major depositional elements of the delta plain are 3.5 to 5.45-m thick tabular fining-upward cycles that are cut by sand-filled fluvial channels (up to 10 m thick). The cyclic sediments contain abundant roots and grade upward from small-scale cross-beds to laminated and then structureless silt and clay terminating in organic-rich layers. The channel-fill sequences fine upward and change vertically from large to small-scale cross-beds. Over-bank flooding as well as lateral migration of small meandering fluvial channels formed the cyclically interbedded deposits, meandering rivers deposited the thick cross-bedded sands, and soil development or marsh deposits formed the organic-rich horizons that cap each cycle. Plant debris, nonmarine invertebrates, and vertebrate fossils are locally concentrated in the delta plain sediments. Subsidence related to compaction of the deltaic sediments along with possible delta lobe switching resulted in repeated progradation of the delta front over the delta plain. Delta front sediments are 3 to 10-m thick tabular deposits of large and small-scale cross-bedded sands and silt bounded by organic-rich beds. Also, there are abundant roots, rare channels and invertebrate fossils that suggest a transitional environment from sand-flats to estuarine or bay.

  12. Marine Isotope Stage 3 recorded in palaeolake sediments in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Starnberger, Reinhard; Rodnight, Helena; Reitner, Jürgen M.; Reimer, Paula J.; Spötl, Christoph

    2010-05-01

    Greenland ice core data indicate that the last glaciation in the Northern Hemisphere was characterized by relatively short and rapid warmings followed by gradual coolings (Greenland Interstadials or Dansgaard-Oeschger (D/O) cycles). While the Last Glacial Maximum (LGM) and the following Late Glacial are well documented in the Eastern Alps, continuous records of the time period preceding the LGM are only known from stalagmites. Although most of sediment which filled the Alpine valleys before the LGM was eroded and redeposited during the LGM, thick successions have been locally preserved along the sides of margins of longitudinal valley-forming distinct terraces. The Inn valley in Tyrol (Austria) offers the most striking examples of such river terraces which are known to be mostly composed of Upper Pleistocene sediments in the Eastern Alps. During the past 15 years a large number of continuously-cored drill cores was obtained during a tunnelling project in the lower Inn valley, offering the unique possibility to study these sediments in great detail. This study focuses on the Unterangerberg terrace near Wörgl, where drill cores penetrated lacustrine sediments underlying LGM gravel and till. Radiocarbon and infrared stimulated luminescence (IRSL) dating show that these sediments were deposited during Marine Isotope Stage (MIS) 3 and reach back into MIS 4. The sediments show cyclic changes in grain size coinciding with the abundance of biogenic material (charophyta, plant macro-remains, mollusc shells, etc.). In some cores 1-2 m organic-rich (lignite) layers are also present. Ongoing work aims at establishing a reliable internal chronostratigraphy using radiocarbon and luminescence in order to link proxy data series (grain size, loss on ignition, pollen data) to the pattern of D/O events known from Greenland and other regional archives.

  13. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia

    PubMed Central

    Lozada, Mariana; Riva Mercadal, Juan P; Guerrero, Leandro D; Di Marzio, Walter D; Ferrero, Marcela A; Dionisi, Hebe M

    2008-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. Results Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p < 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. Conclusion These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information

  14. Analysis of marine sediment, water and biota for selected organic pollutants

    SciTech Connect

    Murray, H.E.; Ray, L.E.; Giam, C.S.

    1981-12-01

    The concentrations of various organic pollutants (benzo(a)pyrene (BaP), hexachlorobenzene (HCB) and pentachlorophenol (PCP) were determined in samples of water, sediment and biota (flounder, killifish, shrimp, crabs, and squid) from San Luis Pass, Texas. Sediment was also analyzed for polychlorinated biphenyls (PCBs), phthalic acid esters (PAEs) and various pesticides. Only PCP was detectable in water. In sediment, the relative concentrations were PAEs >> BaP > (PCBs approx. HCB) > PCP. In biota, BaP was not detectable in any animal; HCB was highest in crabs and PCP was highest in all others (flounder, killifish, shrimp and squid). The relative concentrations of HCB and PCP were different in the different organisms. The differences between the relative concentrations in the biota and in sediment are discussed. The results of this study are compared to values measured at other sites. This study is part of a larger effort to identify and quantitate pollutants in various Texas estuaries and to serve as a basis for monitoring marine pollution.

  15. Extent of coverage of mineral surfaces by organic matter in marine sediments

    NASA Astrophysics Data System (ADS)

    Mayer, L. M.

    1999-01-01

    Organic matter loading in continental margin sediments frequently occurs at a concentration equivalent to a monolayer coating of mineral grains, raising the question of whether adsorbed organic matter is indeed dispersed over all mineral surfaces. A method was developed to address this configurational issue using the energetics of gas adsorption on oxide surfaces. Enthalpies of gas adsorption were assessed using the C constant of the Brunauer-Emmett-Teller (BET) equation. Physisorption of nitrogen or argon gas involves higher enthalpies onto naked than onto organically coated oxide surfaces. Studies on model adsorbate-adsorbent systems provided an algorithm relating gas adsorption energetics to the fraction of surface coated with organic matter. Application of this algorithm to marine aluminosilicate sediments shows that those with low to moderate loadings of organic matter (<3 mg organic carbon m -2) have generally less than 15% of their surfaces coated. Most minerals in these sediments, which account for most sediments in the ocean, therefore present a largely naked aluminosilicate surface to aqueous solutions.

  16. Simulating the modern δ30Si distribution in the oceans and in marine sediments

    NASA Astrophysics Data System (ADS)

    Gao, S.; Wolf-Gladrow, D. A.; Völker, C.

    2016-02-01

    The δ30Si of biogenic silica (δ30SiBSi) in marine sediments is a promising proxy for the reconstruction of silicic acid utilization by diatoms in the geological past. The application of this proxy, however, requires an understanding of the modern δ30Si distributions and their controlling mechanisms. Here we present results from a modern climate simulation with a coupled ocean-sediment model that includes a prognostic formulation of biogenic silica production with concurrent silicon isotopic fractionation. In agreement with previous studies, biological fractionation combined with physical transport and mixing determines the oceanic distribution of simulated δ30Si. A new finding is a distinct seasonal cycle of δ30Si in the surface ocean, which is inversely related to that of silicic acid concentration and mixed layer depth. We also provide the first simulation results of sedimentary δ30Si, which reveal that (1) the δ30SiBSi distribution in the surface sediment reflects the exported δ30SiBSi signal from the euphotic zone and (2) the dissolution of biogenic silica in the sediment acts as a source of relatively light δ30Si into the bottom waters of the polar oceans, while it is a source of heavier δ30Si to the subtropical South Atlantic and South Pacific.

  17. Diagenesis of marine and lacustrine organic matter during sinking and after sedimentation

    SciTech Connect

    Meyers, P.A. . Dept. of Geological Sciences)

    1992-01-01

    The abundance and composition of organic matter in sediments is part of the geological record of aquatic conditions and biological communities of the present and the past. Sediment trap studies have shown that only a small fraction of the original amount of organic matter produced in the photic zone survives destruction and alteration during sinking to the bottoms of lakes and oceans, however. Susceptibility to degradation varies among the wide spectrum of molecular types comprising organic matter. Selective losses modify the character of the surviving small fraction of organic matter which becomes incorporated in bottom sediments. Drilled cores of marine and freshwater sediments have revealed that continued alterations occur to organic matter to sub-bottom depths of hundreds of meters, corresponding to millions of years. Despite the many potential modifications which could be imposed on bulk organic matter, source and paleoenvironmental information remains preserved in the molecular, elemental, and isotopic compositions of some of its components. Bulk C/N values and [delta]C-13 values, for example, appear to retain source signatures which, after some early diagenetic modifications.

  18. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable. PMID:26490900

  19. Method of estimating the amount of in situ gas hydrates in deep marine sediments

    USGS Publications Warehouse

    Lee, M.W.; Hutchinson, D.R.; Dillon, William P.; Miller, J.J.; Agena, W.F.; Swift, B.A.

    1993-01-01

    The bulk volume of gas hydrates in marine sediments can be estimated by measuring interval velocities and amplitude blanking of hydrated zones from true amplitude processed multichannel seismic reflection data. In general, neither velocity nor amplitude information is adequate to independently estimate hydrate concentration. A method is proposed that uses amplitude blanking calibrated by interval velocity information to quantify hydrate concentrations in the Blake Ridge area of the US Atlantic continental margin. On the Blake Ridge, blanking occurs in conjunction with relatively low interval velocities. The model that best explains this relation linearly mixes two end-member sediments: hydrated and unhydrated sediment. Hydrate concentration in the hydrate end-member can be calculated from a weighted equation that uses velocity estimated from the seismic data, known properties of the pure hydrate, and porosity inferred from a velocity-porosity relationship. Amplitude blanking can be predicted as the proportions of hydrated and unhydrated sediment change across a reflection boundary. Our analysis of a small area near DSDP 533 indicates that the amount of gas hydrates is about 6% in total volume when the interval velocity is used as a criterion and about 9.5% when amplitude information is used. This compares with a calculated value of about 8% derived from the only available measurement in DSDP 533. ?? 1993.

  20. Correction of sound velocity depending on the temperature for unconsolidated marine sediment

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Choul

    2016-04-01

    laboratory sound velocity measurements with systematic temperature change on unconsolidated marine sediment have been performed to establish the precise correction curves between temperature and the sound velocity. Piston and box core samples recovered from the East Sea and the South Sea of Korea were used for the measurement. The core samples were cooled (at temperature of nearly 0℃) and the temperature was gradually increased (from 0℃ to 30℃) to measure sound velocity depending on the changes in temperature. The sediment texture and physical properties (porosity, water content, and bulk density) were measured separately at the same depth. The rate of velocity increase for muddy, silty, and sandy sediment are about 2.63 m/s/℃, 2.74 m/s/℃, and 2.96 m/s/℃, respectively. This is similar to the velocity change rate, 2.97 m/s/℃ presented by Del Grosso (1952). The samples used in this research, however, have relatively higher porosity than those of Del Grosso (1952). Thus, the possibility of discrepancy is differences in water content which affect the sound velocity and measurement system. We used recently developed digital velocity measurement system using PXI based on LabVIEW. We suggest to employ this correction for the accurate in situ geoacoustic property from laboratory data particularly for the deep cold water sample such as the East Sea sediment that has very low bottom water temperature about 0℃. Keywords : in situ geoacoustic property, temperature correction, East Sea Acknowledgements: This research was supported by the Agency for Defense Development (UD14003DD) and by "Marine geological and geophysical mapping of the Korean seas" of the Korea Institute of Geoscience and Mineral Resources (KIGAM).

  1. In-situ Phytoremediation of PAH and PCB Contaminated Marine Sediments with Eelgrass (Zostera marina)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.; Thom, Ronald M.; Cullinan, Valerie I.

    2009-10-01

    In view of the fact that there are presently no cost-effective in-situ treatment technologies for contaminated sediments, a 60 week long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60 week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls

  2. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  3. Potentiel des images satellitaires multibandes a haute resolution spatiale pour la cartographie des componsants de l'eau en milieu cotier marin

    NASA Astrophysics Data System (ADS)

    Lavoie, Andre

    L'objectif principal que que nous poursuivons est de developper un modele de simulation du transfert radiatif eau-atmosphere adapte aux observations faites par le capteur Thematic Mapper (TM) de Landsat. Les informations que nous cherchons ont trait au milieu cotier marin et concernent les elements qui sont en suspension dans l'eau. Les images multibandes du capteur TM dans la partie visible du spectre, sont surtout visees par nos travaux. A la base de la simulation, nous utilisons un programme de simulation atmospherique, le code 6S, auquel nous greffons un modele de simulation du transfert radiatif dans la masse d'eau. Ce dernier estime le signal en fonction de 4 composants: l'eau, les pigments chlorophylliens (chlorophylle et phaeopigments), les matieres minerales et les substances organiques dissoutes. La concentration des differents composants sert de parametre d'entree pour definir le comportement optique de la masse d'eau. Le modele permet egalement de simuler une masse d'eau stratifiee si l'on connai t les concentrations des composants dans les differentes couches. Il inclut aussi la contribution du fond, selon sa nature et sa composition, ainsi que celle du miroitement du soleil et du ciel a la surface de l'eau. Les informations d'un echantillonnage de la masse d' eau synchronise avec le passage du satellite, a la baie des Chaleurs, d'une cartographie du couvert d'algues et d'un modele bathymetrique ont ete utilisees pour fixer les parametres de simulation par le modele. La comparaison montrent que le modele se comporte relativement bien surtout dans la bande TM2. Une erreur systematique de 2 valeurs numeriques en moyenne subsiste dans les trois bandes spectrales. Les resultats nous montrent que la visibilite du fond aux faibles profondeurs est un element tres important a considerer. Par ailleurs, l'analyse de sensibilite montre que les images TM sont plus sensibles aux concentrations en matieres minerales qu'aux pigments chlorophylliens et aux substances

  4. Iron Cycling in Marine Sediments - New Insights from Isotope Analysis on Sequentially Extracted Fe Fractions

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.

    2014-12-01

    Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine

  5. Late Miocene fossils from shallow marine sediments in Brunei Darussalam: systematics, palaeoenvironment and ecology.

    NASA Astrophysics Data System (ADS)

    Roslim, Amajida; Briguglio, Antonino; Kocsis, László; Ćorić, Stjepan; Razak, Hazirah

    2016-04-01

    The geology of Brunei Darussalam is fascinating but difficult to approach: rainforests and heavy precipitation tend to erode and smoothen the landscape limiting rocks exposure, whereas abundant constructions sites and active quarries allow the creation of short time available outcrop, which have to be immediately sampled. The stratigraphy of Brunei Darussalam comprises mainly Neogene sediments deposited in a wave to tide dominated shallow marine environment in a pure siliciclastic system. Thick and heavily bioturbated sandstone layers alternate to claystone beds which occasionally yield an extraordinary abundance and diversity of fossils. The sandstones, when not bioturbated, are commonly characterized by a large variety of sedimentary structures (e.g., ripple marks, planar laminations and cross beddings). In this study, we investigate the sediments and the fossil assemblages to record the palaeoenvironmental evolution of the shallow marine environment during the late Miocene, in terms of sea level change, chemostratigraphy and sedimentation rate. The study area is one of the best in terms of accessibility, extension, abundance and preservation of fossils; it is located in the region -'Bukit Ambug' (Ambug Hill), Tutong District. The fossils fauna collected encompasses mollusks, decapods, otoliths, shark and ray teeth, amber, foraminifera and coccolithophorids. In this investigation, sediment samples were taken along a section which measures 62.5 meters. A thick clay layer of 9 meters was sampled each 30 cm to investigate microfossils occurrences. Each sample was treated in peroxide and then sieved trough 63 μm, 150μm, 250μm, 450μm, 600μm, 1mm and 2mm sieves. Results point on the changes in biodiversity of foraminifera along the different horizons collected reflecting sea level changes and sediment production. The most abundant taxa identified are Pseoudorotalia schroeteriana, Ampistegina lessonii, Elphidium advenum, Quinqueloculina sp., Bolivina sp

  6. Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.

    2015-12-01

    Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.

  7. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.

    PubMed

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2014-08-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed.

  8. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.

    PubMed

    Kleindienst, Sara; Ramette, Alban; Amann, Rudolf; Knittel, Katrin

    2012-10-01

    Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes.

  9. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments.

    PubMed

    Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

    2015-01-01

    The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 μm. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  10. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    PubMed Central

    Jaekel, Ulrike; Zedelius, Johannes; Wilkes, Heinz; Musat, Florin

    2015-01-01

    The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5 × 0.8 μm. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkane n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes. PMID:25806023

  11. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  12. Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments.

    PubMed

    Bongiorni, Lucia

    2012-01-01

    Decomposition of organic matter in marine sediments is a critical step influencing oxygen and carbon fluxes. In addition to heterotrophic bacteria and fungi, osmoheterotrophic protists may contribute to this process, but the extent of their role as decomposers is still unknown. Among saprophytic protists, the thraustochytrids have been isolated from different habitats and substrates. Recently, they have been reported to be particularly abundant in marine sediments characterized by the presence of recalcitrant organic matter such as seagrass and mangrove detritus where they can reach biomass comparable to those of other protists and bacteria. In addition, their capacity to produce a wide spectrum of enzymes suggests a substantial role of thraustochytrids in sedimentary organic decomposition. Moreover, thraustochytrids may represent a food source for several benthic microorganisms and animals and may be involved in the upgrading of nutrient-poor organic detritus. This chapter presents an overview on studies of thraustochytrids in benthic ecosystems and discusses future prospectives and possible methods to quantify their role in benthic food webs.

  13. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    SciTech Connect

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.; Cole, F.A.; Ozretich, R.J.; Boese, B.L.; Schults, D.W.; Behrenfeld, M.; Ankley, G.T.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC), 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.

  14. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons.

    PubMed

    Jonker, Michiel T O; Brils, Jos M; Sinke, Anja J C; Murk, Albertinka J; Koelmans, Albert A

    2006-05-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a seminatural, two-year weathering period on PAH/oil chemistry and toxicity in a marine sediment that had been spiked with three different oils (a gas oil, a lubricating oil, and a crude oil; all tested at five concentrations). Toxicity of bioavailable, pore water-accommodated oil/PAH fractions was quantified using a bacterial (Vibrio fischeri) assay and the in vitro chemical-activated luciferase expression assay (DR-CALUX; using conditions to detect PAHs). Results of chemical analyses pointed to (microbial) degradation of all three oils: Sediment oxygen demand during weathering increased with increasing oil concentration, total oil concentrations decreased to between 17 and 29% of initial levels, and resolved n-alkanes were depleted in weathered oil fractions. Furthermore, a shift in the relative importance of different boiling-point fraction ranges of the oils was observed on weathering. Generally, the lowest fraction range (C10-C16) disappeared, whereas the relative proportion of the highest (C28-C40) fraction range increased considerably. Remarkably, for the gas oil, this fraction shift was dependent on the oil concentration in sediment. Similarly, degradation of PAHs was strongly affected by the sedimentary oil content, indicating that the presence of oil stimulated PAH degradation. This phenomenon applied to both low- and high-molecular-weight PAHs, although the first group (3- and 4-ring PAHs) was degraded most. Results from the V. fischeri and DR-CALUX assay showed that in most cases, pore-water toxicity decreased on weathering. Combining the assay responses with chemical data indicated that the observed toxicity probably was not caused by the analyzed PAHs but, rather, by

  15. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments.

    PubMed

    Cruz Viggi, Carolina; Presta, Enrica; Bellagamba, Marco; Kaciulis, Saulius; Balijepalli, Santosh K; Zanaroli, Giulio; Petrangeli Papini, Marco; Rossetti, Simona; Aulenta, Federico

    2015-01-01

    This study presents the proof-of-concept of the "Oil-Spill Snorkel": a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The "Oil-Spill Snorkel" consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the "Oil-Spill Snorkel" potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable

  16. Coupled LBM-DEM Three-phase Simulation on Gas Flux Seeping from Marine Sediment

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Sato, T.

    2014-12-01

    One of the main issues of the geological storage of CO2 under the seabed is a risk of CO2 leakage. Once CO2seeps into the ocean, it rises in water column dissolving into seawater, which results in the acidification of seawater and/or returning to the air. Its behaviour significantly depends on flow rate and bubble size (Kano et al., 2009; Dewar et al., 2013). As for porous media, bubble size is generally predicted through simple force balance based on flow rate, surface tension and channel size which is estimated by porosity and grain size. However, in shallow marine sediments, grains could be mobilised and displaced by buoyant gas flow, which causes distinctive phenomena such as blow-out or formation of gas flow conduit. As a result, effective gas flux into seawater can be intermissive, and/or concentrated in narrow area (QICS, 2012; Kawada, 2013). Bubble size is also affected by these phenomena. To predict effective gas flux and bubble size into seawater, three-phase behaviour of gas-water-sediment grains should be revealed. In this presentation, we will report the results of gas-liquid-solid three-phase simulations and their comparisons with experimental and observation data. Size of solid particles is based on grain size composing marine sediments at some CCS project sites. Fluid-particle interactions are solved using the lattice Boltzmann method (LBM), while the particle-particle interactions are treated by coupling with the Discrete Element method (DEM). References: Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Small-scale modelling of the physiochemical impacts of CO2leaked from sub-seabed reservoirs or pipelines within the North Sea and surrounding waters. Marine Pollution Bulletin 73(2), 504-515. Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Model prediction on the rise of pCO2 in uniform flows by leakage of CO2purposefully stored under the seabed. Int. J. Greenhouse Gas Control, Vol. 3(5), 617-625. Kawada, R. 2014. A study on the

  17. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.

    PubMed

    Sparrevik, Magnus; Eek, Espen; Grini, Randi Skirstad

    2009-07-01

    Over time, Norwegian fjords and harbour areas have received contaminants from industrial activities and urban run-off, and measures to remediate contaminated marine sediments are therefore needed. Stabilization/solidification (S/S) technology, in which the contaminated marine sediments are mixed with cement and other binding agents, has been shown to be a promising remediation technology. This paper summarizes a study of the environmental effect of stabilization, highlighting the importance of sulphide binding governing the leaching of heavy metals from the S/S of contaminated marine sediments. The study is a part of a research project focusing on developing effective methods for S/S of contaminated seabed sediments for use in new construction areas. Four cementitious binders were tested on sediments from six different locations: Bergen, Gilhus, Grenland, Hammerfest, Sandvika and Trondheim. The sediments differed with respect to properties such as concentration of contaminants, water content, organic content and grain size distribution. Portland cement, Portland cement with fly ash, industry cement, and sulphate resistant cement, were tested as binders. The leaching from the S/S sediments after 28 days of curing was measured by using a standard leaching batch test (EN 12457-2: 2003), with seawater as leaching agent. The eluate was analysed for pH and redox, as well as content of heavy metals and organic contaminants. Available volatile sulphide (AVS) and simultaneously extractable metals (SEM) were also measured in the sediments. This paper focuses on the leaching of lead (Pb) and copper (Cu). A reduced leaching of Pb after stabilization was observed for the mixtures, whereas the leaching of Cu from Hammerfest sediments increased substantially after stabilization for all cementitious additions. Experiments show that Hammerfest samples had lower values of AVS than the other sediments. This was confirmed by the SEM/AVS analysis, highlighting the importance of

  18. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.

    PubMed

    Sparrevik, Magnus; Eek, Espen; Grini, Randi Skirstad

    2009-07-01

    Over time, Norwegian fjords and harbour areas have received contaminants from industrial activities and urban run-off, and measures to remediate contaminated marine sediments are therefore needed. Stabilization/solidification (S/S) technology, in which the contaminated marine sediments are mixed with cement and other binding agents, has been shown to be a promising remediation technology. This paper summarizes a study of the environmental effect of stabilization, highlighting the importance of sulphide binding governing the leaching of heavy metals from the S/S of contaminated marine sediments. The study is a part of a research project focusing on developing effective methods for S/S of contaminated seabed sediments for use in new construction areas. Four cementitious binders were tested on sediments from six different locations: Bergen, Gilhus, Grenland, Hammerfest, Sandvika and Trondheim. The sediments differed with respect to properties such as concentration of contaminants, water content, organic content and grain size distribution. Portland cement, Portland cement with fly ash, industry cement, and sulphate resistant cement, were tested as binders. The leaching from the S/S sediments after 28 days of curing was measured by using a standard leaching batch test (EN 12457-2: 2003), with seawater as leaching agent. The eluate was analysed for pH and redox, as well as content of heavy metals and organic contaminants. Available volatile sulphide (AVS) and simultaneously extractable metals (SEM) were also measured in the sediments. This paper focuses on the leaching of lead (Pb) and copper (Cu). A reduced leaching of Pb after stabilization was observed for the mixtures, whereas the leaching of Cu from Hammerfest sediments increased substantially after stabilization for all cementitious additions. Experiments show that Hammerfest samples had lower values of AVS than the other sediments. This was confirmed by the SEM/AVS analysis, highlighting the importance of

  19. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment.

    PubMed

    Smit, Mathijs G D; Holthaus, Karlijn I E; Trannum, Hilde C; Neff, Jerry M; Kjeilen-Eilertsen, Grete; Jak, Robbert G; Singsaas, Ivar; Huijbregts, Mark A J; Hendriks, A Jan

    2008-04-01

    Assessment of the environmental risk of discharges, containing both chemicals and suspended solids (e.g., drilling discharges to the marine environment), requires an evaluation of the effects of both toxic and nontoxic pollutants. To date, a structured evaluation scheme that can be used for prognostic risk assessments for nontoxic stress is lacking. In the present study we challenge this lack of information by the development of marine species sensitivity distributions (SSDs) for three nontoxic stressors: suspended clays, burial by sediment, and change in sediment grain size. Through a literature study, effect levels were obtained for suspended clays, as well as for burial of biota. Information on the species preference range for median grain size was used to assess the sensitivity of marine species to changes in grain size. The 50% hazardous concentrations (HC50) for suspended barite and bentonite based on 50% effect concentrations (EC50s) were 3,010 and 1,830 mg/L, respectively. For burial the 50% hazardous level (HL50) was 5.4 cm. For change in median grain size, two SSDs were constructed; one for reducing and one for increasing the median grain size. The HL50 for reducing the median grain size was 17.8 mum. For increasing the median grain size this value was 305 mum. The SSDs have been constructed by using information related to offshore oil- and gas-related activities. Nevertheless, the results of the present study may have broader implications. The hypothesis of the present study is that the SSD methodology developed for the evaluation of toxic stress can also be applied to evaluate nontoxic stressors, facilitating the incorporation of nontoxic stressors in prognostic risk assessment tools.

  20. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment.

    PubMed

    Smit, Mathijs G D; Holthaus, Karlijn I E; Trannum, Hilde C; Neff, Jerry M; Kjeilen-Eilertsen, Grete; Jak, Robbert G; Singsaas, Ivar; Huijbregts, Mark A J; Hendriks, A Jan

    2008-04-01

    Assessment of the environmental risk of discharges, containing both chemicals and suspended solids (e.g., drilling discharges to the marine environment), requires an evaluation of the effects of both toxic and nontoxic pollutants. To date, a structured evaluation scheme that can be used for prognostic risk assessments for nontoxic stress is lacking. In the present study we challenge this lack of information by the development of marine species sensitivity distributions (SSDs) for three nontoxic stressors: suspended clays, burial by sediment, and change in sediment grain size. Through a literature study, effect levels were obtained for suspended clays, as well as for burial of biota. Information on the species preference range for median grain size was used to assess the sensitivity of marine species to changes in grain size. The 50% hazardous concentrations (HC50) for suspended barite and bentonite based on 50% effect concentrations (EC50s) were 3,010 and 1,830 mg/L, respectively. For burial the 50% hazardous level (HL50) was 5.4 cm. For change in median grain size, two SSDs were constructed; one for reducing and one for increasing the median grain size. The HL50 for reducing the median grain size was 17.8 mum. For increasing the median grain size this value was 305 mum. The SSDs have been constructed by using information related to offshore oil- and gas-related activities. Nevertheless, the results of the present study may have broader implications. The hypothesis of the present study is that the SSD methodology developed for the evaluation of toxic stress can also be applied to evaluate nontoxic stressors, facilitating the incorporation of nontoxic stressors in prognostic risk assessment tools. PMID:18333685

  1. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments

    PubMed Central

    Gontikaki, Evangelia; Thornton, Barry; Cornulier, Thomas; Witte, Ursula

    2015-01-01

    More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as “priming effect”, but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7) and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14–28). Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited. PMID:26633175

  2. On the sources of PBDEs in coastal marine sediments off Baja California, Mexico.

    PubMed

    Macías-Zamora, J V; Ramírez-Álvarez, N; Hernández-Guzmán, F A; Mejía-Trejo, A

    2016-11-15

    Polybrominated diphenyl ethers (PBDEs) are widely distributed compounds in all types of matrices. In the northern portion of the Southern California Bight (SCB), there were reports of some of the largest PBDE concentrations in marine mammals and mussels. Because of this, we decided to analyze the status of PBDEs in the southern part of the SCB. An analysis of 91 samples of marine surface sediment was carried out. All of the 91 samples contained measurable amounts of PBDEs, which is a manifestation of the widespread distribution of these chemical substances. However, the levels detected are between one and two orders of magnitude smaller than those reported in southern California. Currents appear to control the distribution of PBDEs along the coast and the sedimentation sites with largest concentrations are favored by local bathymetry. Maximum concentrations were located in the middle and deeper platforms ranging from 0.02 to 5.90 (with a median 0.71) ng·g(-1) d.w. Deca-BDE mixture is largely predominant in the sediments followed by the penta-BDE mixture. The mass balance for the latitudinal strata shows the largest concentrations in the north where the largest population centers are present and with a very clear southward gradient. The mass balance calculation values showed about 36kg of PBDEs for the north, 22kg for the center, and 10kg for the south strata. In terms of depth, the PBDEs are mainly located on the middle and deep platforms rather than near point discharges, which is different than that reported by other authors.

  3. On the sources of PBDEs in coastal marine sediments off Baja California, Mexico.

    PubMed

    Macías-Zamora, J V; Ramírez-Álvarez, N; Hernández-Guzmán, F A; Mejía-Trejo, A

    2016-11-15

    Polybrominated diphenyl ethers (PBDEs) are widely distributed compounds in all types of matrices. In the northern portion of the Southern California Bight (SCB), there were reports of some of the largest PBDE concentrations in marine mammals and mussels. Because of this, we decided to analyze the status of PBDEs in the southern part of the SCB. An analysis of 91 samples of marine surface sediment was carried out. All of the 91 samples contained measurable amounts of PBDEs, which is a manifestation of the widespread distribution of these chemical substances. However, the levels detected are between one and two orders of magnitude smaller than those reported in southern California. Currents appear to control the distribution of PBDEs along the coast and the sedimentation sites with largest concentrations are favored by local bathymetry. Maximum concentrations were located in the middle and deeper platforms ranging from 0.02 to 5.90 (with a median 0.71) ng·g(-1) d.w. Deca-BDE mixture is largely predominant in the sediments followed by the penta-BDE mixture. The mass balance for the latitudinal strata shows the largest concentrations in the north where the largest population centers are present and with a very clear southward gradient. The mass balance calculation values showed about 36kg of PBDEs for the north, 22kg for the center, and 10kg for the south strata. In terms of depth, the PBDEs are mainly located on the middle and deep platforms rather than near point discharges, which is different than that reported by other authors. PMID:27459254

  4. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments.

    PubMed

    Gontikaki, Evangelia; Thornton, Barry; Cornulier, Thomas; Witte, Ursula

    2015-01-01

    More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7) and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14-28). Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited. PMID:26633175

  5. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    PubMed

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.

  6. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    PubMed

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA. PMID:24798206

  7. Measurement of oilfield chemical residues in produced water discharges and marine sediments.

    PubMed

    Grigson, S J; Wilkinson, A; Johnson, P; Moffat, C F; McIntosh, A D

    2000-01-01

    During oil production, significant quantities of water are produced with the crude oil which, following treatment on the platform, are discharged to the marine environment. This produced water contains residues of oilfield chemicals added by the platform operators to the topside processing equipment to aid oil-water separation and mitigate operational problems. The levels of oilfield chemicals entering the marine environment via this route were investigated using electrospray ionisation tandem mass spectrometry (ESI-MS/MS) and wet chemical analysis techniques. The generic nature of different chemical types was shown by ESI-MS/MS. Studies of the partitioning behaviour of corrosion inhibitors and demulsifiers between the oil and water phases of the produced fluids suggested corrosion inhibitors partitioned primarily into the aqueous phase and demulsifiers into the oil phase. This was reflected in levels observed in produced water although, in the case of a corrosion inhibitor, lower than expected concentrations were measured. Scale inhibitors were discharged with the produced water at their dosing concentrations. Marine sediments in the proximity of two North Sea oil platforms contained low levels of benzalkonium quaternary ammonium salts (0.74-10.84 ng/g), typical corrosion inhibitor chemicals.

  8. Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments.

    PubMed

    Ettoumi, Besma; Raddadi, Noura; Borin, Sara; Daffonchio, Daniele; Boudabous, Abdellatif; Cherif, Ameur

    2009-09-01

    Members of the genus Bacillus and related genera are ubiquitous in nature. However, Bacillus species isolated from marine sediments have attracted less interest respect to their terrestrial relatives. Here, we report the phylogenetic diversity of a collection of 96 Bacilli, isolated from 17 distinct stations of 5 oceanographic campaigns. The diversity was analysed by phenotypic and molecular approaches based on the amplified rDNA restriction analysis (ARDRA), amplification of the internal transcribed spacers (ITS-PCR) and on 16S rRNA sequencing. Intra-specific polymorphism was efficiently detected by biochemical analysis and ARDRA while results of ITS-PCR were in agreement with 16S rRNA sequencing. The identification results assigned 68% of the isolates to the species B. subtilis, B. licheniformis, B. pumilus and B. cereus. Phylogenetic analysis allowed the separation of 9 isolates in a clade that may represent a group of obligate marine Bacillus since they clustered with B. firmus, B. foraminis and marine isolates with metal oxidation and bioaccumulation capabilities. The remaining isolates showed a close affiliation to the genera Virgibacillus, Gracilibacillus and Paenibacillus. The widespread of Bacilli and their high diversity level observed in this work point out the need of more extensive studies to understand their distribution and ecology in deep-sea environments. PMID:19322832

  9. Use of aliphatic hydrocarbons to infer terrestrial organic matter in coastal marine sediments off China.

    PubMed

    Liu, Liang-Ying; Wang, Ji-Zhong; Guan, Yu-Feng; Zeng, Eddy Y

    2012-09-01

    Sediment samples from the marine systems along the coast of China, covering Yellow Sea, inner shelf of the East China Sea (ECS) and the South China Sea (SCS), were analyzed for n-alkanes and organic carbon. The concentrations of Σn-C(15-35) were 120-1680 ng g(-1) dry weight with an average of 560 ng g(-1). Short-chain n-alkanes (C(21)) were mainly derived from terrestrial higher plants. Organic carbon deposited into Yellow Sea and Southeast Hainan within the SCS was mainly of terrestrial (13-110%; mean: 58%) and marine (48-110%; mean: 86%) sources, respectively. On the other hand, organic carbon accumulated in the SCS adjacent to the Pearl River Estuary was derived from both terrestrial and marine sources.

  10. Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece.

    PubMed

    Pappa, F K; Tsabaris, C; Ioannidou, A; Patiris, D L; Kaberi, H; Pashalidis, I; Eleftheriou, G; Androulakaki, E G; Vlastou, R

    2016-10-01

    Marine sediment samples were collected from Ierissos Gulf, N Aegean Sea, close to the coastal mining facilities. Measurements of radionuclide and metal concentrations, mineral composition and grain size distribution were performed. The concentrations of (226)Ra, (235)U and trace metals showed enhanced values in the port of Stratoni compared with those obtained near to Ierissos port. The dose rates received by marine biota were also calculated by the ERICA Assessment Tool and the results indicated no significant radiological risk. PMID:27474903

  11. Possible origin of n -alkanes with a remarkable even-to-odd predominance in recent marine sediments

    NASA Astrophysics Data System (ADS)

    Nishimura, Mitsugu; Baker, Earl W.

    1986-02-01

    N- alkane distributions with a remarkable even-to-odd predominance (C 16-C 24) were found in marine surface sediments. The previously proposed diagenetic reduction of the corresponding n- fatty acids could not be considered as a source for these N- alkane. Based on a comparison of compositional features of n- alkane, n- fatty acid and n- alcohol distributions, carbon isotope analyses, and other geochemical parameters, the data indicate that the even-predominant n- alkanes were derived directly from marine bacteria.

  12. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic

  13. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided

  14. Volatile fatty acids as substrates for iron and sulfate reduction in Arctic marine sediments, Svalbard

    NASA Astrophysics Data System (ADS)

    Finke, N.; Vandieken, V.; Jorgensen, B. B.

    2006-12-01

    Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of

  15. Reduction of Ferric Iron in Anaerobic, Marine Sediment and Interaction with Reduction of Nitrate and Sulfate

    PubMed Central

    Sørensen, Jan

    1982-01-01

    Studies were carried out to elucidate the nature and importance of Fe3+ reduction in anaerobic slurries of marine surface sediment. A constant accumulation of Fe2+ took place immediately after the endogenous NO3− was depleted. Pasteurized controls showed no activity of Fe3+ reduction. Additions of 0.2 mM NO3− and NO2− to the active slurries arrested the Fe3+ reduction, and the process was resumed only after a depletion of the added compounds. Extended, initial aeration of the sediment did not affect the capacity for reduction of NO3− and Fe3+, but the treatments with NO3− increased the capacity for Fe3+ reduction. Addition of 20 mM MoO42− completely inhibited the SO42− reduction, but did not affect the reduction of Fe3+. The process of Fe3+ reduction was most likely associated with the activity of facultative anaerobic, NO3−-reducing bacteria. In surface sediment, the bulk of the Fe3+ reduction may be microbial, and the process may be important for mineralization in situ if the availability of NO3− is low. PMID:16345937

  16. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Kamari, Halimah Mohamed; Kong, Yap Chee; Hamzah, Mohd Suhaimi; Elias, Md Suhaimi

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. PMID:26405840

  17. Multiple microtektite horizons in upper Eocene marine sediments: No evidence for mass extinctions

    USGS Publications Warehouse

    Keller, G.; D'Hondt, S.; Vallier, T.L.

    1983-01-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  18. Multiple microtektite horizons in upper eocene marine sediments: no evidence for mass extinctions.

    PubMed

    Keller, G; D'Hondt, S; Vallier, T L

    1983-07-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time.

  19. Organic carbon composition of marine sediments: effect of oxygen exposure on oil generation potential.

    PubMed

    Gélinas, Y; Baldock, J A; Hedges, J I

    2001-10-01

    Anaerobic sedimentary conditions have traditionally been linked to the generation of the source rocks for petroleum formation. However, the influence of sedimentary redox conditions on the composition of freshly deposited organic matter (OM) is not clear. We assessed the effect of in situ exposure time to oxic conditions on the composition of OM accumulating in different coastal and deep-sea sediments using solid-state 13C nuclear magnetic resonance (NMR). 13C NMR spectra were resolved into mixtures of model components to distinguish between alkyl carbon present in protein and nonprotein structures. There is an inverse relation between the length of exposure to oxic conditions and the relative abundance of nonprotein alkyl (alkylNP) carbon, whose concentration is two orders of magnitude higher in coastal sediments with short exposure times than in deep-sea sediments with long exposure times. All alkylNP-rich samples contain a physically separate polymethylene component similar in composition to algaenans and kerogens in type I oil shales. The duration of exposure to oxic conditions appears to directly influence the quality and oil generation potential of OM in marine shales.

  20. Steady-state model of biota sediment accumulation factor for metals in two marine bivalves

    SciTech Connect

    Thomann, R.V.; Mahony, J.D.; Mueller, R.

    1995-11-01

    A model of the biota sediment accumulation factor (BSAF) is developed to relate the ratio of metal concentrations in two marine bivalves (Crassostrea virginica and Mytilus edulis) to sediment metal concentration. A generalized metal BSAF can be approximated by a simple relationship that is a function of sediment to water column partitioning, the bioconcentration factor (BCF), the depuration rate, the metal assimilation efficiency from food, the bivalve feeding rate, and the growth rate. Analyses of Mussel Watch data indicate that the medium BSAF across stations varies by about three orders of magnitude from Zn, Cd, and Cu at the highest levels of BSAF = 1 to 10, while Cr has the lowest BSAF at 0.01. Total Hg is about 1.0 and Ni and Pb are approximately 0.1. Calibration of the model indicates that the food route of metal accumulation is significant for all metals but specially for Zn, Cd, Cu, and Hg where virtually all of the observed BSAF is calculated to be due to ingestion of metal from food in the overlying water. These results indicate a potential significance of the metal-binding protein metallothionein, which results in relatively high binding of metal and resulting low depuration rates.

  1. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Kamari, Halimah Mohamed; Kong, Yap Chee; Hamzah, Mohd Suhaimi; Elias, Md Suhaimi

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82.

  2. Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments.

    PubMed

    Fang, Hua; Cai, Lin; Yang, Ying; Ju, Feng; Li, Xiangdong; Yu, Yunlong; Zhang, Tong

    2014-02-01

    The abundance and diversity of biodegradation genes (BDGs) and potential degradation pathways of dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and atrazine (ATZ) in freshwater and marine sediments were investigated by metagenomic analysis using 6 datasets (16Gb in total). The datasets were derived using Illumina high-throughput sequencing and were based on BLAST against self-established databases of BDGs, DDT degradation genes (DDGs), HCH degradation genes (HDGs), and ATZ degradation genes (ADGs). The results showed that the abundance and diversity of BDGs, DDGs, HDGs, and ADGs varied with sample source and locations. The lip and mnp genes, which encode for peroxidase, and the carA gene, which encodes for laccase, were detected as the dominant genes for degradation of organic pollutants. The hdt, hdg, and atzB genes, which encode for hydratase, dehalogenase, and ethylaminohydrolase, were found to be the most abundant genes involved in DDT, HCH, and ATZ degradation, respectively. The identified 69 genera capable of degrading organic pollutants were mostly affiliated with Proteobacteria (49.3%) and Actinobacteria (21.7%). Four genera, including Plesiocystis, Anaerolinea, Jannaschia, and Mycobacterium, were the major biodegradation populations in all sediments. In this study, the nearly complete biodegradation pathways of DDT and ATZ were found, and the partial degradation pathway of HCH was detected in all sediments.

  3. The Empire Knight: Patterns of mercury contamination in sediment and biota at a marine site

    SciTech Connect

    Hoff, R.Z.

    1995-12-31

    The Empire Knight, a merchant ship carrying approximately 7.3 metric tons of elemental mercury in its cargo, sank in a storm off the Maine coast in 1 944. Unique attributes of the site include the deep water marine conditions (80 m) and mercury originally in elemental form. Recent evaluations of the site were undertaken to determine environmental risk of the remaining mercury and possible remedial actions. Data collected in 1993 for this risk evaluation included sediment core samples, and a variety of biota samples. Biota were analyzed for total and methylmercury, and the following patterns examined: percent methylmercury, variability between species groups, and spatial patterns related to sediment contamination. Sediment contamination was largely confined to the immediate area near the wreck, with levels decreasing to background within 60 m. Invertebrates within this area had elevated levels of mercury in tissue. Most contamination was in an inorganic form, with percentages of methyl to total mercury below 20%, except for crab and lobster. Most of the residual mercury appears to be largely unavailable to biota, with local invertebrates comprising the main biological receptors. Evidence of bioaccumulation of mercury in higher trophic level organisms was not found, thus mercury did not appear to be a source of contamination beyond the immediate area the wreck.

  4. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments

    NASA Astrophysics Data System (ADS)

    Knab, Nina J.; Dale, Andrew W.; Lettmann, Karsten; Fossing, Henrik; Jørgensen, Bo B.

    2008-08-01

    The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of Δ G∘ = -33 kJ mol -1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work Δ G for the AOM-SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM-SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than -20 kJ mol -1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.

  5. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment

    PubMed Central

    Van Lancker, Vera; Baeye, Matthias

    2015-01-01

    As human pressure on the marine environment increases, safeguarding healthy and productive seas increasingly necessitates integrated, time- and cost-effective environmental monitoring. Employment of a Wave Glider proved very useful for the study of sediment transport in a shallow sandbank area in the Belgian part of the North Sea. During 22 days, data on surface and water-column currents and turbidity were recorded along 39 loops around an aggregate-extraction site. Correlation with wave and tidal-amplitude data allowed the quantification of current- and wave-induced advection and resuspension, important background information to assess dredging impacts. Important anomalies in suspended particulate matter concentrations in the water column suggested dredging-induced overflow of sediments in the near field (i.e., dynamic plume), and settling of finer-grained material in the far field (i.e., passive plume). Capturing the latter is a successful outcome to this experiment, since the location of dispersion and settling of a passive plume is highly dependent on the ruling hydro-meteorological conditions and thus difficult to predict. Deposition of the observed sediment plumes may cause habitat changes in the long-term. PMID:26070156

  6. Late Quaternary Biosiliceous Laminated Marine Sediments From Antarctica: Seasonality During a Period of Rapid Climate Change

    NASA Astrophysics Data System (ADS)

    Pike, J.; Stickley, C. E.; Maddison, E. J.; Leventer, A.; Brachfeld, S.; Domack, E. W.; Dunbar, R. B.; Manley, P. L.; McClennen, C.

    2004-12-01

    The Antarctic ice sheet plays a key role in global oceanic and atmosphere systems. One of the most dynamic regions of the continent is the Antarctic Peninsula (AP) where ecological and cryospheric systems respond rapidly to climate change, such as the last deglaciation ( ˜12-13 kyr BP). Here, deglacial laminated diatom-rich marine sediments are well known, e.g., Palmer Deep (64° S 64° W; ODP Hole 1098A) comprising a distinctive 3 m thick sequence of deglacial `couplet' laminations. The East Antarctic margin (EAM), however, has received less attention than the West Antarctic margin (WAM) in palaeoceanographic studies yet its role in deep ocean circulation and, therefore, the global ocean system is significant. Recent sediment cores recovered from EAM sites during NSF Polar Programs-funded cruise NBP0101 in February and March 2001 (e.g. Mertz Drift \\{66° S 143° E\\}, Svenner Channel \\{69° S 77° E\\} in Prydz Bay, Nielsen Basin \\{67° S 66° E\\} and Iceberg Alley \\{67° S 63° E\\}), reveal that a similar sedimentary facies was deposited along the EAM, in similar geomorphological settings to Palmer Deep, during the same timeframe. These rich sediment archives reveal clues about circum-Antarctic palaeoceanographic change during the last deglaciation, a time of both high silica flux and rapid climate change. Microfabrics and diatom assemblages from scanning electron microscope backscattered and secondary electron imagery analysis of coeval deglacial varves from Palmer Deep (WAM), Mertz-Ninnis Trough and Iceberg Alley (EAM) are presented and compared. The varves from these localities are characterised by laminae to thin beds of orange-brown diatom ooze up to ˜8cm thick alternating with blue-grey diatom-bearing terrigenous sediments up to ˜4cm thick. The orange-brown oozes are dominated by resting spores and vegetative valves of Hyalochaete Chaetoceros spp., resulting from spring sedimentation associated with stratified surface waters promoting exceptionally

  7. Experimental approaches to marine and meteoric dissolution-to-repreciptiation cycles of fine-grained marine carbonate sediments

    NASA Astrophysics Data System (ADS)

    Immenhauser, Adrian; Buhl, Dieter; Riechelmann, Sylvia; Kwiecien, Ola; Lokier, Stephen; Neuser, Rolf

    2016-04-01

    Fine-grained carbonate (carbonate ooze), or microcrystalline carbonate (micrite), its lithified counterpart, forms a main constituent of limestones throughout much of Earth's history. Fine-grained carbonates are deposited below the permanent fair-weather wave base in neritic lagoonal environments or below the storm-wave base in basinal settings. The origin of components forming these fine-grained carbonates often remains poorly understood and represents a major challenge in carbonate sedimentology, particularly when these materials are used as carbonate archives (bulk micrite geochemistry). Here we present a novel experimental approach exposing natural, fine-grained carbonate sediments to dissolution-reprecipitation cycles under non-sterile conditions that mimick earth-surface conditions. In a first stage, the experiment simulated subaerial exposure of an ooid (aragonite) shoal and leaching and carbonate dissolution under meteoric phreatic conditions. In a second stage, CO2 was added to the experimental fluid (natural rainwater) representing soil-zone activity. In a third stage, partly dissolved (micro-karstified) sediments were exposed to marine phreatic conditions simulating renewed flooding of the shoal carbonates. During the third stage, precipitation was induced by degassing the CO2 in the fluid with N2. Degassing induced nucleation and growth of a diagenetic inorganic aragonite (and subordinate calcite) phase upon the surface of carbonate particles. The outcome of these first experiments is promising. The CO2 concentration of the fluid and the air are low under atmospheric conditions and increase as expected due to adding CO2 to the experiment resulting in a lower pH. Carbonate dissolution increases conductivity, alkalinity, and calcium concentration reaching a plateau at the end of the first experimental phase. Small surficial damages to ooids represent zones of weakness and form the preferred sites of dissolution leading to a deepening and widening of these

  8. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  9. Growth and survival of three marine invertebrate species in sediments from the Hudson-Raritan estuary, New York

    SciTech Connect

    Rice, C.A.; Plesha, P.D.; Casillas, E.; Misitano, D.A.; Meador, J.P.

    1995-11-01

    Sediments in the Hudson-Raritan estuary are known to contain high concentrations of anthropogenic contaminants, and marine organisms from this region exhibit numerous contaminant-related effects. To assess the pattern of sediment toxicity in depositional areas of this region, and to compare lethal and sublethal end points for different bioassay organisms, three benthic marine invertebrate species were exposed to sediments from 17 sites in the Hudson-Raritan estuary. Growth and mortality of the polychaete Armandia brevis and the sand dollar Dendraster excentricus were measured in all 17 sediments, while mortality and reburial ability of the amphipod Rhepoxinius abronius were assessed in nine sediments. Growth of polychaetes was determined by measuring the difference in weight after a 20-d exposure, whereas growth of sand dollars was assessed by measuring the difference in length and weight after a 28-d exposure. Amphipod mortality and reburial tests were conducted using the standard 10-d sediment bioassay. Significant growth reduction of polychaetes and sand dollars occurred in 11 of 17, and 3 of 17 sediments, respectively. Polychaete weight and sand dollar length correlated inversely and significantly with total sediment concentration of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and some selected elements. In contrast, significant mortality of polychaetes and amphipods occurred in 1 of 17 and 2 of 9 sediments, respectively, and impaired reburial ability of amphipods was not observed. Results of this study demonstrate that sediment contamination at depositional sites with the Hudson-Raritan estuary has potential to cause deleterious biological effects in indigenous benthic organisms. In addition, sublethal growth bioassays using polychaetes and sand dollars appear to be more sensitive in measuring the effects of sediment contamination than does the mortality-based bioassay using the amphipod Rhepoxinius abronius.

  10. Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Baldi, Franco; Marchetto, Davide; Pini, Francesco; Fani, Renato; Michaud, Luigi; Lo Giudice, Angelina; Berto, Daniela; Giani, Michele

    2010-09-01

    Shallow marine sediments were collected from seven stations (three of which located at Gerlache Inlet, two at Tethys Bay, one at Adelie Cove and one just beneath the Italian Research Base) along the Terra Nova Bay coast (Ross Sea, Antarctica). Their chemical, biochemical and microbiological properties were studied in order to provide further insights in the knowledge of this Antarctic benthic ecosystem. Overall, the organic carbon (OC) represented the major fraction of total carbon (TC) and displayed concentrations similar to or slightly lower than those previously measured in Antarctic bottom sediments. The biopolymeric carbon within OC ranged from 4.1% to 19.9% and showed a wide trophic range (65-834 μg g -1 d.w.). Proteins (PRT) represented on average the main biochemical class contributing to labile organic carbon, followed by lipids (LIP) and carbohydrates (CHO). The activity of aminopeptidase, β- D-glucosidase, alkaline phosphatase and esterase was checked, giving the highest values at Tethys Bay and at the deepest water sediments. The principal component analysis, which was computed considering physical, chemical (elemental and biochemical sedimentary composition) and microbiological parameters (including bacterial abundance, ectoenzymatic activities, T-RFs richness and diversity indices), allowed to obtain two main clusters ("Tethys Bay" and "other stations"). Based on data obtained, two representative 16S rRNA clone libraries using samples from Tethys Bay and Gerlache Inlet were constructed. The sequences of 171 clones were compared to those available in public databases to determine their approximate phylogenetic affiliations. Both aerobic and anaerobic bacteria were disclosed, with the majority of them affiliated with the Gamma- and Deltaproteobacteria, Bacteroidetes and Acidobacteria. The occurrence of strictly anaerobic bacteria suggests that sediments might also undergo anoxic conditions that, in turn, could favor the accumulation of PRT in respect

  11. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  12. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  13. Dissolved methane profiles in marine sediments observed in situ differ greatly from analyses of recovered cores

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Brewer, P. G.; Hester, K.; Ussler, W.; Walz, P. M.; Peltzer, E. T.; Ripmeester, J.

    2009-12-01

    The flux of dissolved methane through continental margin sediments is of importance in marine geochemistry due to its role in massive hydrate formation with enigmatic climate consequences, and for the huge and complex microbial assemblage it supports. Yet the actual dissolved methane concentration driving this flux is poorly known since strong degassing during sample recovery from depth is commonplace. Thus, pore water analyses from high CH4 environments typically show values clustered around the one-atmosphere equilibrium value of 1-2 mM, erasing the original pore water profile and frustrating model calculations. We show that accurate measurement of pore water profiles of dissolved CH4, SO4, and H2S can be made rapidly in situ using a Raman-based probe. While Raman spectra were formerly believed to yield only qualitative data we show that by using a peak area ratio technique to known H2O bands and a form of Beer’s Law quantitative data may be readily obtained. Results from Hydrate Ridge, Oregon clearly show coherent profiles of all three species in this high flux environment, and while in situ Raman and conventional analyses of SO4 in recovered cores agree well, very large differences in CH4 are found. The in situ CH4 results show up to 35 mM in the upper 30cm of seafloor sediments and are inversely correlated with SO4. This is below the methane hydrate saturation value, yet disturbing the sediments clearly released hydrate fragments suggesting that true saturation values may exist only in the hydrate molecular boundary layer, and that lower values may typically characterize the bulk pore fluid of hydrate-hosting sediments. The in situ Raman measurement protocols developed take only a few minutes. Profiles obtained in situ showed minimal fluorescence while pore water samples from recovered cores quickly developed strong fluorescence making laboratory analyses using Raman spectroscopy challenging and raising questions over the reaction sequence responsible for

  14. Discriminative detection and enumeration of microbial life in marine subsurface sediments.

    PubMed

    Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio

    2009-05-01

    Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology.

  15. Discriminative detection and enumeration of microbial life in marine subsurface sediments.

    PubMed

    Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio

    2009-05-01

    Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology. PMID:19212428

  16. LA-ICP-MS as Tool for Provenance Analyses in Arctic Marine Sediments

    NASA Astrophysics Data System (ADS)

    Wildau, Antje; Garbe-Schönberg, Dieter

    2015-04-01

    The hydraulic transport of sediments is a major geological process in terrestrial and marine systems and is responsible for the loss, redistribution and accumulation of minerals. Provenance analyses are a powerful tool for assessing the origin and dispersion of material in ancient and modern fluvial and marine sediments. Provenance-specific heavy minerals (e.g., zircon, rutile, tourmaline) can therefore be used to provide valuable information on the formation of ore deposits (placer deposits), and the reconstruction of paleogeography, hydrology, climate conditions and developments. The application of provenances analyses for the latter reason is of specific interest, since there is need for research on the progressing climate change, and heavy minerals represent good proxies for the evaluation of recent and past changes in the climate. The study of these fine particles provides information about potential regional or long distance transport paths, glacial / ice drift and current flows, freezing and melting events as well as depositional centers for the released sediments. Classic methods applied for provenance analyses are mapping of the presence / absence of diagnostic minerals, their grain size distribution, modal mineralogy and the analysis of variations in ratio of two or more heavy minerals. Electron microprobe has been established to discover changes in mineral chemistry of individual mineral phases, which can indicate fluctuations or differences in the provenance. All these methods bear the potential of high errors that lower the validity of the provenance analyses. These are for example the misclassification of mineral species due to undistinguishable optical properties or the limitations in the detection / variations of trace elements using the election microprobe. For this case study, marine sediments from the Arctic Ocean have been selected to test if LA-ICP-MS can be established as a key technique for precise and reliable provenance analyses. The Laptev

  17. Interstitial solutions and diagenesis in deeply buried marine sediments: results from the Deep Sea Drilling Project

    USGS Publications Warehouse

    Sayles, F.L.; Manheim, F. T.

    1975-01-01

    Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments. Pelagic clays and slowly deposited (<1 cm/103yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters. In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/103 yr the changes chiefly involve gains of Ca2+ and Sr2+ and losses of Mg2+ which balance the Ca2+ enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr2+ may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg2+ for Ca2+ during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca2+ and Sr2+ enrichment is again characteristic, but Mg2+ losses exceed Ca2+ gains with the excess being balanced by SO4post staggered2- losses. The data indicate that the reactions are similar to those noted above, except that the Ca2+ released is not kept in solution but is precipitated by the HCO3post staggered- produced in SO4post staggered2- reduction. In both these types of pore waters Na+ is usually conservative, but K+ depletions are frequent. In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na+, Si and CO2, and slight enhancement in Cl-. The changes are attributed to exchange of Na+ for Ca2+ in silicate

  18. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  19. Marine sediment and interstitial water: Effects on bioavailability of cadmium to gills of the clam Protothaca staminea

    SciTech Connect

    Hardy, J.T.; Schmidt, R.L.; Apts, C.W.

    1981-12-01

    A study was made to determine first, the kinetics of cadmium sorption on a natural marine sediment and second, the degree to which this sorption as well as interstitial water might effect bioavailability of cadmium to gills of the clam Protothaca staminea. Surface sediment from Sequim Bay, Washington was labelled with Cd 109 and total cadmium concentration determined by radioassay. Gills were added to three types of exposures: 1) control (0.45 um filtered seawater, 2) sediment interstitial water and 3) washed sediment. Prepared samples of gills were counted in a liquid scintillation counter. Results show that addition of a small quantity of washed sediment to the exposure system reduced cadmium accumulation by gills to only 17% of the control. Interstitial water had no significant effect. 1 table, 3 figures (JMT)

  20. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: a case study in Shenzhen, China.

    PubMed

    Chen, Kouping; Jiao, Jiu J

    2008-02-01

    The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.

  1. Draft Genome Sequence of Arenibacter sp. Strain C-21, an Iodine-Accumulating Bacterium Isolated from Surface Marine Sediment

    PubMed Central

    Ito, Kohei; Nakajima, Nobuyoshi; Yamamura, Shigeki; Tomita, Masaru

    2016-01-01

    Arenibacter sp. strain C-21, isolated from surface marine sediment of Japan, accumulates iodine in the presence of glucose and iodide (I-). We report here the draft genome sequence of this strain to provide insight into the molecular mechanism underlying its iodine-accumulating ability. PMID:27738047

  2. Permian marine sedimentation in northern Chile: new paleontological evidence from the Juan de Morales Formation, and regional paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Díaz-Martínez, E.; Mamet, B.; Isaacson, P. E.; Grader, G. W.

    2000-11-01

    Permian marine sedimentary rocks that crop out in northern Chile are closely related to the development of a Late Paleozoic magmatic arc. A study of Upper Paleozoic units east of Iquique (20°S) identified three members within the Juan de Morales Formation, each of which were deposited in a different sedimentary environment. A coarse-grained terrigenous basal member represents alluvial sedimentation from a local volcanic source. A mixed carbonate-terrigenous middle member represents coastal and proximal shallow marine sedimentation during a relative sea-level rise related with a global transgression. Preliminary foraminifer biostratigraphy of this middle member identified a late Early Permian (late Artinskian-Kungurian) highly impoverished nodosarid-geinitzinid assemblage lacking fusulines and algae, which is characteristic of temperate cold waters and/or disphotic zone. The upper fine-grained terrigenous member represents shallow marine siliciclastic sedimentation under storm influence. The Juan de Morales Formation consists of continental, coastal and shallow marine sediments deposited at the active western margin of Gondwana at mid to low latitudes. A revised late Early Permian age and similar paleogeography and sedimentary environments are also proposed for the Huentelauquén Formation and related units of northern and central Chile, Arizaro Formation of northwestern Argentina, and equivalent units of southernmost Peru.

  3. Secondary metabolites from Penicillium pinophilum SD-272, a marine sediment-derived fungus.

    PubMed

    Wang, Ming-Hui; Li, Xiao-Ming; Li, Chun-Shun; Ji, Nai-Yun; Wang, Bin-Gui

    2013-06-01

    Two new secondary metabolites, namely, pinodiketopiperazine A (1) and 6,7-dihydroxy-3-methoxy-3-methylphthalide (2), along with alternariol 2,4-dimethyl ether (3) and L-5-oxoproline methyl ester (4), which were isolated from a natural source for the first time but have been previously synthesized, were characterized from the marine sediment-derived fungus Penicillium pinophilum SD-272. In addition, six known metabolites (5-10) were also identified. Their structures were elucidated by analysis of the NMR and mass spectroscopic data. The absolute configuration of compound 1 was determined by experimental and calculated ECD spectra. Compound 2 displayed potent brine shrimp (Artemia salina) lethality with LD₅₀ 11.2 μM. PMID:23792827

  4. Marine protected areas and resilience to sedimentation in the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Halpern, B. S.; Selkoe, K. A.; White, C.; Albert, S.; Aswani, S.; Lauer, M.

    2013-03-01

    The ability of marine protected areas (MPAs) to provide protection from indirect stressors, via increased resilience afforded by decreased impact from direct stressors, remains an important and unresolved question about the role MPAs can play in broader conservation and resource management goals. Over a five-year period, we evaluated coral and fish community responses inside and outside three MPAs within the Roviana Lagoon system in Solomon Islands, where sedimentation pressure from upland logging is substantial. We found little evidence that MPAs decrease impact or improve conditions and instead found some potential declines in fish abundance. We also documented modest to high levels of poaching during this period. Where compliance with management is poor, and indirect stressors play a dominant role in determining ecosystem condition, as appears to be the case in Roviana Lagoon, MPAs may provide little management benefit.

  5. Two new polyketides from a marine sediment-derived fungus Eutypella scoparia FS26.

    PubMed

    Sun, Li; Li, Dongli; Tao, Meihua; Chen, Yuchan; Zhang, Qingbo; Dan, Feijun; Zhang, Weimin

    2013-01-01

    Two new polyketides, 7,8-dihydroxy-3,5,7-trimethyl-8,8a-dihydro-1H-isochromen-6(7H)-one (1) and 6-(hydroxymethyl)-2,2-dimethyl-3,4-dihydro-2H-chromene-3,4-diol (2), together with a known nitrogen-containing polyketide (cytochalasin-type of metabolites), [12]-cytochalasin (3), have been isolated from the fermentation broth of a marine sediment-derived fungus Eutypella scoparia FS26 obtained from the South China Sea. Their structures were elucidated by spectroscopic methods, mainly 1D and 2D NMR spectroscopic techniques. The absolute configurations of compound 1 were determined by NOESY analysis and the literature data were compared with circular dichroism (CD) spectroscopy. The cytotoxic effects on MCF-7, NCI-H460 and SF-268 cell lines of all compounds were evaluated by the sulforhodamine B method. PMID:23061665

  6. RETRACTED: Impacts of past climate variability on marine ecosystems: Lessons from sediment records

    NASA Astrophysics Data System (ADS)

    Emeis, Kay-Christian; Finney, Bruce P.; Ganeshram, Raja; Gutiérrez, Dimitri; Poulsen, Bo; Struck, Ulrich

    2010-02-01

    This article has been retracted at the request of the Editor-in-Chief and Author. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). Reason: Paragraph 3.3 of this article contains text (verbatim) that had already appeared in a book chapter "Variability from scales in marine sediments and other historical records" by David B. Field, Tim R. Baumgartner, Vicente Ferreira, Dimitri Gutierrez, Hector Lozano-Montes, Renato Salvatteci and Andy Soutar. The book is entitled "Climate Change and Small Pelagic Fish", 2009, edited by Dave Checkley, Claude Roy, Jurgen Alheit, and Yoshioki Oozeki (Cambridge University Press; 2009).The authors would like to apologize for this administrative error on their part.

  7. Two new polyketides from a marine sediment-derived fungus Eutypella scoparia FS26.

    PubMed

    Sun, Li; Li, Dongli; Tao, Meihua; Chen, Yuchan; Zhang, Qingbo; Dan, Feijun; Zhang, Weimin

    2013-01-01

    Two new polyketides, 7,8-dihydroxy-3,5,7-trimethyl-8,8a-dihydro-1H-isochromen-6(7H)-one (1) and 6-(hydroxymethyl)-2,2-dimethyl-3,4-dihydro-2H-chromene-3,4-diol (2), together with a known nitrogen-containing polyketide (cytochalasin-type of metabolites), [12]-cytochalasin (3), have been isolated from the fermentation broth of a marine sediment-derived fungus Eutypella scoparia FS26 obtained from the South China Sea. Their structures were elucidated by spectroscopic methods, mainly 1D and 2D NMR spectroscopic techniques. The absolute configurations of compound 1 were determined by NOESY analysis and the literature data were compared with circular dichroism (CD) spectroscopy. The cytotoxic effects on MCF-7, NCI-H460 and SF-268 cell lines of all compounds were evaluated by the sulforhodamine B method.

  8. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  9. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation

    PubMed Central

    Genovese, Maria; Crisafi, Francesca; Denaro, Renata; Cappello, Simone; Russo, Daniela; Calogero, Rosario; Santisi, Santina; Catalfamo, Maurizio; Modica, Alfonso; Smedile, Francesco; Genovese, Lucrezia; Golyshin, Peter N.; Giuliano, Laura; Yakimov, Michail M.

    2014-01-01

    The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical–chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB. PMID:24782850

  10. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments

    PubMed Central

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A.; Suárez-Suárez, Ana; Head, Ian M.

    2015-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  11. Insights on frictional processes in sheared clastic marine sediments using ultrasonic nondestructive testing

    NASA Astrophysics Data System (ADS)

    Knuth, M. W.; Tobin, H. J.; Marone, C.; Ikari, M.

    2010-12-01

    We investigate changes in the elastic properties of deforming core materials recovered from the Nankai Trough Accretionary Prism along the IODP NanTroSEIZE transect. We shear clastic marine sediments while simultaneously making ultrasonic velocity measurements across the deforming layers. Examining the resulting changes in elastic moduli at the laboratory scale allows us to identify characteristic “fingerprints” of deformation style during direct-shear experiments, which may then be compared with measurements conducted at the field scale to infer how deformation is localized within the accretionary prism. Identifying relationships between hold time and attenuation may also shed light on fault healing mechanisms taking place immediately following a rupture. Together the effects of sliding rate and hold time on elastic moduli provide us with new ways of constraining the mechanical behavior of large plat-boundary settings throughout the seismic cycle. We tested intact core material, remolded layers, and disaggregated granular powders derived from a range of depths from IODP sites C0007 and C0004 penetrating the frontal thrust and a large out-of-sequence thrust in the outer prism, respectively. Samples were deformed in a double-direct shear configuration, varying first the strain rate and then subjecting the gouge layer to a series of slides and holds of increasing duration. Elastic wave propagation depends on micromechanical interactions and gouge layer strength, so as the shear zone evolves changes in elastic wavespeed provide a means to interrogate strain materials non-destructively, providing insight into frictional processes and mechanics as that deformation is taking place. Our results suggest that there are characteristic changes in P and S-wave velocity and attenuation for marine clastic to hemipelagic sediments as a function of sliding rate and hold time. Ultimately, examining variation in elastic moduli during a simulated seismic cycle may provide insight

  12. Modern marine sediments as a natural analog to the chemically stressed environment of a landfill

    USGS Publications Warehouse

    Baedecker, M.J.; Back, W.

    1979-01-01

    Chemical reactions that occur in landfills are analogous to those reactions that occur in marine sediments. Lateral zonation of C, N, S, O, H, Fe and Mn species in landfills is similar to the vertical zonation of these species in marine sediments and results from the following reaction sequence: (1) oxidation of C, N and S species in the presence of dissolved free oxygen to HCO3-, NO3- and SO2-4; (2) after consumption of molecular oxygen, then NO3- is reduced, and Fe and Mn are solubilized; (3) SO2-4 is reduced to sulfide; and (4) organic compounds become the source of oxygen, and CH4 and NH4+ are formed as fermentation products. In a landfill in Delaware the oxidation potential increases downgradient and the redox zones in the reducing plume are characterized by: CH4, NH4+, Fe2+. Mn2+, HCO3- and NO3-. Lack of SO2-4 at that landfill eliminates the sulfide zone. Although it has not been observed at landfills, mineral alteration should result in precipitation of pyrite and/or siderite downgradient. Controls on the pH of leachate are the relative rates of production of HCO3-, NH4+ and CH4. Production of methane by fermentation at landfills results in 13C isotope fractionation and the accumulation of isotopically heavy ??CO2 (+10 to +18??? PDB). Isotope measurements may be useful to determine the extent of CO2 reduction in landfills and extent of dilution downgradient. The boundaries of reaction zones in stressed aquifers are determined by head distribution and flow velocity. Thus, if the groundwater flow is rapid relative to reaction rates, redox zones will develop downgradient. Where groundwater flow velocities are low the zones will overlap to the extent that they may be indeterminate. ?? 1979.

  13. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments.

    PubMed

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A; Suárez-Suárez, Ana; Head, Ian M; Franzetti, Andrea; Rabaey, Korneel

    2015-10-23

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.

  14. Dispersed Ash in Marine Sediment: An Overview Towards Unraveling the 'Missing Volcanic Record'

    NASA Astrophysics Data System (ADS)

    Murray, R. W.; Scudder, R.; Kutterolf, S.; Schindlbeck, J.

    2013-12-01

    Volcanic ash occurs in marine sediment both as discrete layers as well as isolated grains and shards dispersed throughout the bulk sediment, and with highly variable grain sizes. The study of this dispersed component has lagged behind the sophisticated petrographic, sedimentologic, geochemical, and isotopic assessment of the ash layer record. For example, while decades of smear-slide studies of bulk sediment in volcanic-rich regimes have presented visual estimations of the abundance of 'volcanic glass', 'shards', and/or other components, the quantitative importance of the dispersed ash and/or the cryptotephra component remains largely unconstrained on local, regional, and global scales. Chemical and isotopic characterization of this dispersed component has remained elusive. Building on earlier work, research in the 1970s began documenting the importance of dispersed ash and its alteration products. This dispersed ash is the result of the bioturbation of pre-existing discrete layers, the settling of airborne ash, distribution from subaqueous eruptions, and other mechanisms. Compared to the often visually stunning ash layer records, which in certain settings can leave single layers with thicknesses of 10s of cm, the dispersed ash component and cryptotephra layers are unable to be visually differentiated from detrital clay. Furthermore, its extremely fine grain size is an additional hindrance to quantification of its abundance and the identification of source. More completely characterizing the total ash inventory (that is, the dispersed ash in addition to the ash layers) will contribute significantly to studies of marine and terrestrial volcanism at many scales, geochemical mass balances, arc evolution, hydration of marine sediment during alteration, atmospheric circulation, putative relationships between volcanism and climate, and other key components of the earth-ocean-atmosphere system. Beginning with work in the Caribbean Sea and progressing to the northwest

  15. Speciation of butyltin compounds in marine sediments with headspace solid phase microextraction and gas chromatography mass spectrometry.

    PubMed

    Cardellicchio, N; Giandomenico, S; Decataldo, A; Di Leo, A

    2001-03-01

    A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography - mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30-1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown. PMID:11336336

  16. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  17. Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments.

    PubMed

    Rocchetti, Laura; Beolchini, Francesca; Hallberg, Kevin B; Johnson, D Barrie; Dell'Anno, Antonio

    2012-08-01

    We investigated changes of prokaryotic diversity during bioremediation experiments carried out on anoxic marine sediments characterized by high hydrocarbon and metal content. Microcosms containing contaminated sediments were amended with lactose and acetate and incubated in anaerobic conditions up to 60 d at 20 or 35 °C. Microcosms displaying higher degradation efficiency of hydrocarbons were characterized by the dominance of Alphaproteobacteria and Methanosarcinales and the lack of gene sequences belonging to known hydrocarbonoclastic bacteria. Multivariate analyses support the hypothesis that Alphaproteobacteria are important for hydrocarbon degradation and highlight a potential synergistic effect of archaea and bacteria in changes of metal partitioning. Overall, these results point out that the identification of changes in the prokaryotic diversity during bioremediation of contaminated marine sediments is not only important for the improvement of bio-treatment performance towards hydrocarbons, but also for a better comprehension of changes occurring in metal partitioning which affect their mobility and toxicity.

  18. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. PMID:26790603

  19. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.

  20. Radiocarbon ages of sedimentary lipids as tracers of organic carbon input to marine sediments

    SciTech Connect

    Eglinton, T.I.; Nelson, B.; McNichol, A.P.

    1996-10-01

    A novel analytical approach, Preparative Capillary Gas Chromatography (PCGC), has been used to isolate sufficient quantities of individual hydrocarbon lipids from two marine surface sediments (Black Sea, Arabian Sea) for radiocarbon dating by Accelerator Mass Spectrometry (AMS). {Delta}{sup 14}C values for bulk sedimentary organic carbon (OC) from the Black and Arabian Sea samples are -105 and -112{per_thousand} respectively. In the Black Sea, extended [higher plant] n-alkanes (n-C{sub 29}, n-C{sub 31}) are significantly enriched relative to bulk OC (ave -80{per_thousand}), indicating input of {open_quotes}fresh{close_quotes} terrestrial organic matter, while shorter chain homologues (n-C{sub 23}, n-C{sub 25}) exhibit depleted (ca. -160{per_thousand}) values, in keeping with the total hydrocarbon fraction (-150{per_thousand}). Arabian Sea hydrocarbons exhibit a much wider range of {Delta}{sup 14}C values (from -38 to -780{per_thousand}). Markers for diatoms (highly branched isoprenoid alkenes) show the youngest radiocarbon ages while saturated hydrocarbons display the oldest ages. We interpret these variations in terms of uptake of atmospheric CO{sub 2} and contributions from relic carbon sources. These and related data will be discussed in the context of organic carbon input and preservation in these marine systems.

  1. Reciprocal sedimentation and noncorrelative hiatuses in marine-paralic siliciclastics: Miocene outcrop evidence

    NASA Astrophysics Data System (ADS)

    Kidwell, Susan M.

    1988-07-01

    Deepening-upward paralic sequences present within a thicker record of shallowing- upward shelf and nonmarine sequences in Miocene siliciclastics of Maryland provide rare stratigraphic evidence for (1) coastal trapping of sediment during marine transgression, with simultaneous starvation on the open shelf (recorded by condensed skeletal lags), and (2) reciprocal switching of depositional and nondepositional conditions during regression. It follows that the regressive disconformities that define hemicyclic coastal sequences are not laterally continuous with the transgressive disconformities and condensed lags that define open-shelf hemicyclic sequences, although they are commonly depicted or assumed as such. Nor are these disconformities age correlative: marine-to-nonmarine correlations that assume lateral continuity of small-scale sequences (1 to 10 m thick; seismic parasequences) will err by as much as one-half cycle, restricting the applicability of models of punctuated aggradational cycles. The stratigraphic anatomy of parasequences is most comparable to reciprocal patterns inherent in hierarchically larger scale sequences in passive margins, where subaerial unconformities and submarine condensed intervals have recently been biostratigraphically verified as offset in age.

  2. Genome sequence and emended description of Leisingera nanhaiensis strain DSM 24252T isolated from marine sediment

    PubMed Central

    Breider, Sven; Teshima, Hazuki; Petersen, Jörn; Chertkov, Olga; Dalingault, Hajnalka; Chen, Amy; Pati, Amrita; Ivanova, Natalia; Lapidus, Alla; Goodwin, Lynne A.; Chain, Patrick; Detter, John C.; Rohde, Manfred; Tindall, Brian J.; Kyrpides, Nikos C.; Woyke, Tanja; Simon, Meinhard; Göker, Markus; Klenk, Hans-Peter; Brinkhoff, Thorsten

    2014-01-01

    Leisingera nanhaiensis DSM 24252T is a Gram-negative, motile, rod-shaped marine Alphaproteobacterium, isolated from sandy marine sediments. Here we present the non-contiguous genome sequence and annotation together with a summary of the organism's phenotypic features. The 4,948,550 bp long genome with its 4,832 protein-coding and 64 RNA genes consists of one chromosome and six extrachromosomal elements with lengths of 236 kb, 92 kb, 61 kb, 58 kb, 56 kb, and 35 kb, respectively. The analysis of the genome showed that DSM 24252T possesses all genes necessary for dissimilatory nitrite reduction, and the strain was shown to be facultatively anaerobic, a deviation from the original description that calls for an emendation of the species. Also present in the genome are genes coding for a putative prophage, for gene-transfer agents and for the utilization of methylated amines. Phylogenetic analysis and intergenomic distances indicate that L. nanhaiensis might not belong to the genus Leisingera. PMID:25197454

  3. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    SciTech Connect

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH{sub 3}) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH{sub 3} than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH{sub 3} concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH{sub 3} concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH{sub 3} and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH{sub 3}.

  4. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3 than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  5. Dissolution of fluoride complexes following microwave-assisted hydrofluoric acid digestion of marine sediments.

    PubMed

    Muratli, Jesse M; McManus, James; Mix, Alan; Chase, Zanna

    2012-01-30

    Microwave-assisted, hydrofluoric acid digestion is an increasingly common tool for the preparation of marine sediment samples for analysis by a variety of spectrometric techniques. Here we report that analysis of terrigenous-dominated sediment samples occasionally results in anomalously low values for several elements, including Al, Ba, Ca, Mg, and Sr. Measured concentrations of these elements increased with time between sample preparation and sample analysis, reaching stable values after 8-29 days. This lag is explained by the formation and subsequent dissolution of poorly soluble fluoride phases during digestion. Other elements, such as Fe, Mn, and Ti, showed little or no lag and were quickly measurable at a stable value. Full re-dissolution of the least soluble fluorides, which incorporate Al and Mg, requires up to four weeks at room temperature, and this duration can vary among sedimentary matrices. This waiting time can be reduced to 6 days (or shorter) if the samples are heated to ≈ 60°C for 24h.

  6. Relative changes in eelgrass density following the capping of adjacent marine sediments

    SciTech Connect

    Duncan, P.B.; Karna, D.W.

    1994-12-31

    As part of a study to evaluate potential impacts from capping marine sediments in a harbor, eelgrass density was measured during both the early stages of capping and following completion of the cap. Three eelgrass beds were studied, a bed potentially subject to sedimentation from migrating cap materials (HS), a reference bed inside the harbor (HR), and a reference bed in an adjacent cove (CR). Initial mean densities in these beds in October/November were 8, 16, and 30 stalks/0.1 m{sup 2}, respectively, and these declined to 5, 10, and 28 stalks/0.1 M{sup 2} the following March. The declines were greatest within the harbor. Compared with the other two beds, bed HS had an increased incidence of patches devoid of eelgrass following capping. The strength of the association of these changes with capping activity relies on interpretation of ongoing studies to measure the movement of cap materials within the harbor and evaluation of other sources of stress to the harbor eelgrass beds.

  7. 234Th analysis of marine sediments via extraction chromatography and liquid scintillation counting.

    PubMed

    Nour, Svetlana; Burnett, William C; Horwitz, E Philip

    2002-08-01

    234Th is widely used as a natural tracer for study of biological mixing and particle scavenging processes in the ocean. This naturally occurring nuclide serves this purpose due to its convenient half-life (24.1 days), constant rate of production from 238U dissolved in seawater, and its strong tendency to attach to particles in seawater. As a beta/gamma emitter, 234Th may be determined using low-level gas-flow proportional counting, gamma spectrometry, and liquid scintillation counting (LSC). We describe here a technique which combines Cerenkov counting to evaluate 234Th (via 234Pa) with LSC alpha counting of 230Th added to the samples as a yield tracer. Our separation approach is based on a sample preparation procedure for marine sediments using nitric acid leaching in a "hot block", and extraction chromatography (TEVA x Resin) for Th isolation. Samples are counted in plastic LSC vials, using Ultima Gold AB cocktail, in 1 M H3PO4 media. A series of sediment samples spiked with known amounts of 234Th yielded activities within a few percent of the anticipated values. PMID:12150283

  8. Critical body residues in the marine amphipod Ampelisca abdita: Sediment exposures with nonionic organic contaminants

    SciTech Connect

    Fay, A.A.; Brownawell, B.J.; Elskus, A.A.; McElroy, A.E.

    2000-04-01

    Body residues associated with acute toxicity were determined in the marine amphipod Ampelisca abdita exposed to spiked sediments. Nonylphenol and 2,2{prime},4,4{prime}-tetrachlorobiphenyl critical body residues (CBRs, body residue of contaminant at 50% mortality) were 1.1 {micro}mol/g wet tissue and 0.57 {micro}mol/g wet tissue, respectively, values near the low end of the CBR range expected for compounds acting via narcosis. The polycyclic aromatic hydrocarbons tested, benzo[a]pyrene (BaP) and benz[a]anthracene (BaA), were not acutely toxic at exposure concentrations of up to 43 and 1,280 {micro}g/g dry sediment for BaA and BaP respectively, and body burdens up to 1.2 {micro}mol/g wet tissue (for BaP). Neither polycyclic aromatic hydrocarbon (PAH) was significantly metabolized by A. abdita. The microextraction technique employed here allowed residue analysis of samples containing as few as three amphipods (0.33 mg dry wt). The CBR approach avoids confounding factors such as variations in bioavailability and uptake kinetics and could be employed to assess the relative contribution of specific contaminants or contaminant classes in mixtures to effects observed in toxicity tests with Ampelisca and other organisms.

  9. MOSAIC: An organic geochemical and sedimentological database for marine surface sediments

    NASA Astrophysics Data System (ADS)

    Tavagna, Maria Luisa; Usman, Muhammed; De Avelar, Silvania; Eglinton, Timothy

    2015-04-01

    Modern ocean sediments serve as the interface between the biosphere and the geosphere, play a key role in biogeochemical cycles and provide a window on how contemporary processes are written into the sedimentary record. Research over past decades has resulted in a wealth of information on the content and composition of organic matter in marine sediments, with ever-more sophisticated techniques continuing to yield information of greater detail and as an accelerating pace. However, there has been no attempt to synthesize this wealth of information. We are establishing a new database that incorporates information relevant to local, regional and global-scale assessment of the content, source and fate of organic materials accumulating in contemporary marine sediments. In the MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon) database, particular emphasis is placed on molecular and isotopic information, coupled with relevant contextual information (e.g., sedimentological properties) relevant to elucidating factors that influence the efficiency and nature of organic matter burial. The main features of MOSAIC include: (i) Emphasis on continental margin sediments as major loci of carbon burial, and as the interface between terrestrial and oceanic realms; (ii) Bulk to molecular-level organic geochemical properties and parameters, including concentration and isotopic compositions; (iii) Inclusion of extensive contextual data regarding the depositional setting, in particular with respect to sedimentological and redox characteristics. The ultimate goal is to create an open-access instrument, available on the web, to be utilized for research and education by the international community who can both contribute to, and interrogate the database. The submission will be accomplished by means of a pre-configured table available on the MOSAIC webpage. The information on the filled tables will be checked and eventually imported, via the Structural Query Language (SQL), into

  10. An examination of the factors controlling mercury methylation in sulfidic coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Hollweg, T. A.; Schartup, A.; Gilmour, C. C.

    2010-12-01

    The methylation of mercury (Hg) is an important step in the biogeochemical cycling and bioaccumulation of methylmercury in marine organisms. The rate of methylation is controlled by both the chemical bioavailability of Hg to methylating organisms and their activity. It is known that methylation rate decreases in sulfidic environments, especially in marine waters, but the exact mechanisms accounting for this decrease are not well-known. Modeling studies suggest that adsorption and precipitation reactions in the presence of sulfide decrease the fraction that is considered bioavailable Hg but current models predict an increase in porewater concentration at high sulfide levels, which is contrary to field observations. We have therefore focused on ascertaining why the models overestimate dissolved Hg at high sulfide levels. We have developed models that incorporate interactions between Hg, dissolved and particulate sulfide (both FeS and pyrite) and including interactions in the presence of elemental sulfur (i.e the formation of Hg-polysulfide complexes). Additionally, we are incorporating data from our studies examining the interactions between Hg and organic matter extracted from various marine ecosystems. We compare our model results, through correlation and geochemical modeling, with data from studies in the Chesapeake Bay and associated shelf and slope, and test the sensitivity of the model to the various dissolved and solid phase interactions, and the role of solid phase organic carbon and organic sulfur content in influencing the strength of partitioning. A geochemical model will be presented describing how sediment redox status influences the strength of Hg partitioning, the dissolved speciation and we will compare measured Hg methylation rate constants with our predictions of porewater bioavailable Hg concentration.

  11. Genomes of Two New Ammonia-Oxidizing Archaea Enriched from Deep Marine Sediments

    PubMed Central

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L.; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. “Nitrosopumilus koreensis” AR1 and “Nitrosopumilus sediminis” AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA. PMID:24798206

  12. Sinomicrobium oceani gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from marine sediment.

    PubMed

    Xu, Ying; Tian, Xin-Peng; Liu, Yu-Juan; Li, Jie; Kim, Chang-Jin; Yin, Hao; Li, Wen-Jun; Zhang, Si

    2013-03-01

    A marine bacterium, designated SCSIO 03483(T), was isolated from a marine sediment sample collected from the Nansha Islands in the South China Sea. The strain produced roundish colonies with diffusible yellow-coloured pigment on nutrient agar medium or marine agar 2216. Optimal growth occurred in the presence of 0-4 % (w/v) NaCl, at pH 7.0 and a temperature range of 28-37 °C. 16S rRNA gene sequence analysis indicated that the isolate belonged to the family Flavobacteriaceae and showed relatively high sequence similarity with Imtechella halotolerans K1(T) (92.7 %). Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the isolate shared a lineage with members of the genera Imtechella, Joostella and Zhouia. Phospholipids were phosphatidylethanolamine, two unidentified aminolipids and three unknown polar lipids. The major respiratory quinone was MK-6 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c/C16 : 1ω7c). The DNA G+C content of strain SCSIO 03483(T) was 38.4 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, strain SCSIO 03483(T) represents a novel species in a new genus in the family Flavobacteriaceae, for which the name Sinomicrobium oceani gen. nov., sp. nov. is proposed. The type strain of Sinobacterium oceani is SCSIO 03483(T) ( = KCTC 23994(T) = CGMCC 1.12145(T)).

  13. Experimental research on the marine hydrodynamic action on the consolidation process of the sediments in the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Juan; Jia, Yong-Gang; Li, Xiang-Ran; Shan, Hong-Xian

    2011-03-01

    Based on the in-situ measurements, the impact of the marine hydrodynamics, such as wave and tide, in the rapidly deposited sediments consolidation process was studied. In the tide flat of Diaokou delta-lobe, one 2 m×1m×1 m test pit was excavated. The seabed soils were dug and dehydrated, and then the powder of the soil was mixed with seawater to be fluid sediments. And an iron plate covered part of the test pit to cut off the effect of the marine hydrodynamics. By field-testing methods, like static cone penetration test (SPT) and vane shear test (VST), the variation of strength is measured as a function of time, and the marine hydrodynamics impact on the consolidation process of the sediments in the Yellow River estuary was studied. It is shown that the self-consolidated sediments' strength linearly increases with the depth. In the consolidation process, in the initial, marine hydrodynamics play a decisive role, about 1.5 times as much as self-consolidated in raising the strength of the sea-bed soils, and with the extension of the depth the role of the hydrodynamics is reduced. In the continuation of the consolidation process, the trend of the surface sediments increased-strength gradually slows down under the water dynamics, while the sediments below 50 cm are in opposite ways. As a result, the rapidly deposited silt presents a nonuniform consolidation state, and the crust gradually forms. The results have been referenced in studying the role of the hydrodynamics in the soil consolidation process.

  14. Oleananes in oils and sediments: Evidence of marine influence during early diagenesis?

    NASA Astrophysics Data System (ADS)

    Murray, Andrew P.; Sosrowidjojo, Imam B.; Alexander, Robert; Kagi, Robert I.; Norgate, Carolyn M.; Summons, Roger E.

    1997-03-01

    The oleananes, as markers for the angiosperms, provide valuable source and age information when present in an oil. Nevertheless, they are not quantitatively related to the land plant input and indeed their presence reflects only a small leak in diagenetic processes leading primarily to aromatic oleanoids. Because they are minor products, the abundance of oleananes in terrigenous oils and sediments may be highly sensitive to changes in early diagenetic conditions. Here we present evidence that contact of plant matter with seawater during early diagenesis enhances the expression of oleananes in a mature sediment or oil. Oleananes are absent or present at very low concentrations in samples from the base of an Eocene coal seam affected by postdepositional seawater intrusion. However, their abundance increases toward the top of the seam in correlation with % organic sulphur, dibenzothiophene/phenanthrene, and the homohopane index. Similarly, in deltaic sediments from the South Sumatra Basin, oleanane/hopane is strongly correlated with indicators of marine influence such as C 27/C 29 steranes and the homohopane index. In each case, increasing oleanane abundance is accompanied by a reduction in the extent of aromatisation and, for the South Sumatra Basin, the proportion of A-ring contracted oleananes. An angiosperm-derived Miocene coal from the Philippines, deposited under freshwater conditions, shows abundant aromatic oleanoids but no oleananes. These results show that oleananes need to be used with caution as age and source markers in fluvio-deltaic and lacustrine petroleum systems. On the other hand, their sensitivity to early diagenetic conditions may make them useful in locating effective source rocks in such systems.

  15. Lead isotopes in marine surface sediments reveal historical use of leaded fuel.

    PubMed

    Larsen, Martin M; Blusztajn, Jerzy S; Andersen, Ole; Dahllöf, Ingela

    2012-11-01

    Analyses of lead (Pb) isotopes have been performed in terrestrial and fresh water environments to estimate historical uses of leaded fuel, but so far this method has not been employed in studies of world-wide marine surface sediments. We analyzed Pb and its isotopes in 23 surface sediments from four continents collected during the Galathea 3 expedition in 2006-2007. To enhance the anthropogenic signal, a partial digestion using nitric acid was performed. The concentrations of Pb, Th, U and Al were determined with an ICP-Quadrupole MS, and Pb-isotope ratios with an ICP-multi-collector MS. The samples could be divided into three groups: Harbor areas in larger cities with concentrations of 150 to 265 mg kg(-1) dry weight, smaller towns with concentrations between 20 and 40 mg kg(-1) dry weight, and remotely located sites with concentrations below 15 mg kg(-1) dry weight. Pb-isotope ratios were compared to literature values for gasoline and local or geological background values, and the contribution of leaded-gasoline to total concentrations was calculated for contaminated sites using both a one-dimensional and a novel two-dimensional (vector) method. The North American sites had Pb-isotope ratios corresponding to the US leaded gasoline, with 24-88% of the Pb from leaded gasoline. Samples from Oceania showed Pb-isotope ratios corresponding to Australian gasoline, with 60% attributed to leaded gasoline in Sydney and 21% in Christchurch. Outside Cape Town, 15 to 46% of Pb in sediments was from leaded gasoline.

  16. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons

    PubMed Central

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100–2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on

  17. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    PubMed

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on

  18. Biogenic habitat transitions influence facilitation in a marine soft-sediment ecosystem.

    PubMed

    Lohrer, Andrew M; Rodil, Iván F; Townsend, Michael; Chiaroni, Luca D; Hewitt, Judi E; Thrush, Simon F

    2013-01-01

    Habitats are often defined by the presence of key species and biogenic features. However, the ecological consequences of interactions among distinct habitat-forming species in transition zones where their habitats overlap remain poorly understood. We investigated transition zone interactions by conducting experiments at three locations in Mahurangi Harbour, New Zealand, where the abundance of two habitat-forming marine species naturally varied. The two key species differed in form and function: One was a sessile suspension-feeding bivalve that protruded from the sediment (Atrina zelandica; Pinnidae); the other was a mobile infaunal urchin that bioturbated sediment (Echinocardium cordatum; Spatangoida). The experimental treatments established at each site reflected the natural densities of the species across sites (Atrina only, Echinocardium only, Atrina and Echinocardium together, and plots with neither species present). We identified the individual and combined effects of the two key species on sediment characteristics and co-occurring macrofauna. After five months, we documented significant treatment effects, including the highest abundance of co-occurring macrofauna in the Atrina-only treatments. However, the facilitation of macrofauna by Atrina (relative to removal treatments) was entirely negated in the presence of Echinocardium at densities >10 individuals/m2. The transitional areas in Mahurangi Harbour composed of co-occurring Atrina and Echinocardium are currently widespread and are probably more common now than monospecific patches of either individual species, due to the thinning of dense Atrina patches into sparser mixed zones during the last 10-15 years. Thus, although some ecologists avoid ecotones and habitat edges when designing experiments, suspecting that it will skew the extrapolation of results, this study increased our understanding of benthic community dynamics across larger proportions of the seascape and provided insights into temporal

  19. Multiple microtektite horizons in upper eocene marine sediments: no evidence for mass extinctions.

    PubMed

    Keller, G; D'Hondt, S; Vallier, T L

    1983-07-01

    Microtektites have been recovered from three horizons in eight middle Eocene to middle Oligocene marine sediment sequences. Five of these occurrences are coeval and of latest Eocene age (37.5 to 38.0 million years ago); three are coeval and of early late Eocene age (38.5 to 39.5 million years ago); and three are of middle Oligocene age (31 to 32 million years ago). In addition, rare probable microtektites have been found in sediments with ages of about 36.0 to 36.5 million years. The microtektite horizon at 37.5 to 38.0 million years can be correlated with the North American tektite-strewn field, which has a fission track age (minimum) of 34 to 35 million years and a paleomagnetic age of 37.5 to 38.0 million years. There is no evidence for mass faunal extinctions at any of the microtektite horizons. Many of the distinct faunal changes that occurred in the middle Eocene to middle Oligocene can be related to the formation of the Antarctic ice sheet and the associated cooling phenomena and intensification of bottom currents that led to large-scale dissolution of calcium carbonate and erosion, which created areally extensive hiatuses in the deep-sea sediment records. The occurrence of microtektite horizons of several ages and the lack of evidence for faunal extinctions suggest that the effects of extraterrestrial bolide impacts may be unimportant in the biologic realm during middle Eocene to middle Oligocene time. PMID:17769212

  20. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    PubMed

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on

  1. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing

  2. Calcium Isotopes in Marine Sediments and Soils: Paleoceanography, Diagenesis, and Soil Processes

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Fantle, M. S.; Turchyn, A.; Ewing, S.; Yang, W.

    2007-12-01

    Calcium has 6 stable isotopes covering a wide mass range from 40 to 48. Because it is a critical component of the carbon cycle and a major constituent of common minerals like calcite, apatite, and gypsum, there is growing interest in understanding its stable isotope fractionation patterns in nature. The first work on Ca isotopes emphasized fractionation in food chains and in the formation of biogenic mineral matter in vertebrates. More recent studies have emphasized the fractionations observed in marine carbonate deposits, plants, and hydrological systems. Laboratory experiments show that Ca isotopes are fractionated during precipitation of calcite and aragonite from aqueous solution. Comparison with natural carbonate indicates that the fractionations are probably kinetic in origin although the exact mechanisms are not understood. There is little difference between the fractionation observed in inorganic and organic systems; precipitation rate (or solution oversaturation) seems to be the controlling factor, rather than temperature. One promising aspect of Ca isotopes is in their application to marine carbonate diagenesis. Especially when combined with studies of Sr, C, S, U, and O isotopes in deep sea sediments, Ca isotopes can give unique information on calcite dissolution and recrystallization rates. In a pure carbonate section from DSDP site 807A, Ca isotopes in pore fluids are found to differ greatly from seawater values and require that the equilibrium fractionation factor for 44Ca/40Ca between calcite and dissolved carbonate is almost exactly 1.0000. This fractionation corresponds to very slow calcite deposition rates at near-equilibrium conditions, implying that this fractionation factor may be generally applicable to diagenetic calcite precipitation, distinguishing it from biogenic precipitation, for which the factor is about 0.9985. This property can also be used to establish the dissolution rates of young carbonate sediments in the uppermost few meters of

  3. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  4. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin ▿ †

    PubMed Central

    Colwell, F. S.; Boyd, S.; Delwiche, M. E.; Reed, D. W.; Phelps, T. J.; Newby, D. T.

    2008-01-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle. PMID:18344348

  5. Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf

    NASA Astrophysics Data System (ADS)

    Krestenitis, Y. N.; Kombiadou, K. D.; Savvidis, Y. G.

    2007-02-01

    The transport of fine-grained sediments in the marine environment entails risks of pollutant intrusions from substances absorbed onto the cohesive flocks' surface, gradually released to the aquatic field. These substances include nutrients such as nitrate, phosphate and silicate compounds from drainage from fertilization of adjacent cultivated areas that enter the coastal areas through rivers and streams, or trace metals as remainders from urban and industrial activities. As a consequence, knowledge on the motion and distribution of sediment particles coming from a given pollutant source is expected to provide the 'bulk' information on pollutant distribution, necessary for determining the region of influence of the source and to estimate probable trophic levels of the seawater and potential environmental risks. In that aim a numerical model has been developed to predict the fate of the sediments introduced to the marine environment from different pollution sources, such as river outflows, erosion of the seabed, aeolian transported material and drainage systems. The proposed three-dimensional mathematical model is based on the particle tracking method, according to which matter concentration is expressed by particles, each representing a particular amount of sedimentary mass, passively advected and dispersed by the currents. The processes affecting characteristics and propagation of sedimentary material in the marine environment, incorporated in the parameterization, apart from advection and dispersion, include cohesive sediment and near-bed processes. The movement of the particles along with variations in sedimentary characteristics and state, carried by each particle as personal information, are traced with time. Specifically, concerning transport processes, the local seawater velocity and the particle's settling control advection, whereas the random Brownian motion due to turbulence simulates turbulent diffusion. The vertical stratification of the water-column is

  6. Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf

    NASA Astrophysics Data System (ADS)

    Krestenitis, Y. N.; Kombiadou, K. D.; Savvidis, Y. G.

    2006-07-01

    The transport of fine-grained sediments in the marine environment entails risks of pollutant intrusions from substances absorbed onto the cohesive flocks' surface, gradually released to the aquatic field. These substances include nutrients such as nitrate, phosphate and silicate compounds from drainage from fertilization of adjacent cultivated areas that enter the coastal areas through rivers and streams, or trace metals as remainders from urban and industrial activities. As a consequence, knowledge on the motion and distribution of sediment particles coming from a given pollutant source is expected to provide the ''bulk'' information on pollutant distribution, necessary for determining the region of influence of the source and to estimate probable trophic levels of the seawater and potential environmental risks. In that aim a numerical model has been developed to predict the fate of the sediments introduced to the marine environment from different pollution sources, such as river outflows, erosion of the seabed, aeolian transported material and drainage systems. The proposed three-dimensional mathematical model is based on the particle tracking method, according to which matter concentration is expressed by particles, each representing a particular amount of sedimentary mass, passively advected and dispersed by the currents. The processes affecting characteristics and propagation of sedimentary material in the marine environment, incorporated in the parameterization, apart from advection and dispersion, include cohesive sediment and near-bed processes. The movement of the particles along with variations in sedimentary characteristics and state, carried by each particle as personal information, are traced with time. Specifically, concerning transport processes, the local seawater velocity and the particle's settling control advection, whereas the random Brownian motion due to turbulence simulates turbulent diffusion. The vertical stratification of the water

  7. Marine Diagenesis of Shallow Marine Lime-Mud Sediments: Insights from dgrO18 and dgrC13 Data.

    PubMed

    Choquette, P W

    1968-09-13

    Shallow marine lime-mud sediments of the Ste. Genevieve Formation (Mississippian), in part of the Illinois Basin, underwent at least three diagenetic changes: (i) local dolomitization in seawater or a brine, producing dolostone having average deltaC(13) of +2.5 per mille and deltaO(18) of +1.9 per mille (versus PDB-1); (ii) more usually cementation of unreplaced CaCO(3), in intrasediment seawater, yielding isotopically marine lime mudstone mainly composed of calcite, 4-micron or finer, with deltaO(18) of from -1 to +1 per mille; (iii) later partial alteration of CaCO(3), in permeable dolomitic rocks, by isotopically "lighter" waters, to calcite with an estimated deltaO(18) of -10 per mille or less. Isotope data appraised by petrographic analysis thus suggest "submarine" cementation of these carbonates in shallow marine conditions. PMID:17812283

  8. Marine Diagenesis of Shallow Marine Lime-Mud Sediments: Insights from dgrO18 and dgrC13 Data.

    PubMed

    Choquette, P W

    1968-09-13

    Shallow marine lime-mud sediments of the Ste. Genevieve Formation (Mississippian), in part of the Illinois Basin, underwent at least three diagenetic changes: (i) local dolomitization in seawater or a brine, producing dolostone having average deltaC(13) of +2.5 per mille and deltaO(18) of +1.9 per mille (versus PDB-1); (ii) more usually cementation of unreplaced CaCO(3), in intrasediment seawater, yielding isotopically marine lime mudstone mainly composed of calcite, 4-micron or finer, with deltaO(18) of from -1 to +1 per mille; (iii) later partial alteration of CaCO(3), in permeable dolomitic rocks, by isotopically "lighter" waters, to calcite with an estimated deltaO(18) of -10 per mille or less. Isotope data appraised by petrographic analysis thus suggest "submarine" cementation of these carbonates in shallow marine conditions.

  9. Correlation and Analysis of Volcanic Ash in Marine Sediments From the Peru Margin

    NASA Astrophysics Data System (ADS)

    Hart, D.; Miller, J.

    2005-05-01

    While land studies have identified the major volcanic centers of historic eruptions and active to recent volcanism within the Central Volcanic Zone (CVZ) of the Central Andes, the tephrachronologic records are disturbed by the high erosion rates of this arid region. However, volcanic material frequently occurs in marine sediment as discrete ash-fall layers and, or disseminated ash accumulations. Cores from three Peru Margin sites sites(1227, 1228, and 1229) drilled during Ocean Drilling Program (ODP) Leg 201 have been studied to determine the occurrence of volcanic ash layers and ash accumulations within marine sediments along the Peru shelf. The thickness of each ash layer and accumulations has been measured and the volumes calculated in order to decipher the episodicity of explosive volcanic activity in the North-Central Andes recorded in the off shore sediments. The geographic distribution of the sites (over 3 degrees of latitude and from 50 to 300 km offshore) and correlation of ash units between sites form the basis for minimal estimates of explosive volcanic activity in the region (only eruptions large enough to deposit ash in excess of 100 km from source are represented). Pouclet et al., (1990) estimated the minimum explosive activity along the Andean Arc from ash-bearing sediments and ash layers within cores from sites along the Peru margin collected during ODP Leg 112. As a result of better recovery (as much as ten times more core recovery in many intervals) and decreased disturbance in cores recovered during Leg 201, our documentation of ash content in cores from Leg 201 has led to a more complete record of the explosive volcanic activity along the Andean Arc. For example, Pouclet, et al., (1990) reports four ash layers from Sites 684, 680, and 681, whereas forty ash layers have been documented from cores recovered from the same locations (Sites 1227, 1228, and 1229 respectively). Our stratigraphic record agrees with Pouclet, et al., (1990), suggesting

  10. Where Has All the Oil Gone? The use of trace metals as potential indicators of oil contamination in marine sediments and beach sands

    NASA Astrophysics Data System (ADS)

    Roeder, T. K.; Hastings, D. W.; Holzinger, C.; Playle, E.; Brooks, G.; Huettel, M. H.; Kostka, J. E.; Larson, R. A.; Flower, B. P.

    2011-12-01

    We report initial results to determine if select trace metals are effective indicators for the magnitude and spatial extent of Deep Water Horizon (DWH) oil contamination in Gulf of Mexico marine sediments and beach sands. Since crude oil is known to have elevated concentrations of nickel and vanadium, contamination can be detected even after the degradation of oil by measuring enrichment of these metals within marine sediments and beach sands. A sample of crude oil from the Macondo Prospect, source of the Deepwater Horizon (DWH) oil spill, was fully digested and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) at the College of Marine Science, University of South Florida. Results indicate the crude oil is enriched in nickel, vanadium, and cobalt, with concentrations of 0.86 ppm, 2.76 ppm, and 84 ppb, respectively. With this known trace metal enrichment in DWH oil, Gulf of Mexico marine sediments from 400 and 1100m water depth near DeSoto Canyon and beach sands from Pensacola, FL were examined for enrichment of V, Ni, and Co. Both marine sediment and beach sand samples were partially digested with HNO3 before analysis via ICP-MS. With marine sediments, the visually contaminated layer at or near the surface typically exhibited an enrichment in Ni, V, and Co compared to the pristine control sediments. Vanadium and nickel enrichment in marine sediments varied from 10 to 32% and 0 to 22%, respectively. Visible contamination in beach sands was found between 20-60cm beneath the surface and, likewise, showed Ni, V, and Co enrichment up to 33%, 45%, and 100%. This data shows that enrichment of V, Ni, and Co in marine sediments and beach sands may be an effective proxy for contamination even after the degradation of oil. Marine sediments and beach sands will continue to be monitored for trace metal enrichment in an effort to assess the continuing impacts of the DWH spill on the Gulf of Mexico.

  11. Platinum-group elements (PGE) and Rhenium in Marine Sediments across the Cretaceous-Tertiary Boundary: Constraints on Re-PGE Transport in the Marine Environment

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    2003-01-01

    The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of approx. 1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by approx. 95% relative to chondritic Ir proportions. A similar depletion in Os (approx. 90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The approx. 1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over approx. 65 Ma, the effective diffusivities are approx. 10(exp -13)sq cm/s, much smaller than that of soluble cations in pore waters (approx. 10(exp -5) sq cm/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine

  12. Deposition of organic carbon-rich sediments in narrow marine basins and open-marine upwelling environments - New results from the ocean drilling program

    SciTech Connect

    Stein, R. )

    1988-08-01

    Detailed sedimentological and organic geochemical investigations have been performed on Neogene sediments from ODP site 645 (Baffin Bay), ODP site 658 (upwelling area of northwest Africa), and ODP site 679 (upwelling area off Peru). The study is mainly based on (1) data derived from total organic carbon and nitrogen analyses, Rock-Eval pyrolysis, and kerogen microscopy (2) sedimentation rates, and (3) x-ray diffraction analyses. The main objective of this study was to point out the most important factors controlling the accumulation of organic carbon in the different sedimentary environments, such as supply of terrigenous organic matter, productivity of marine organic matter, and preservation of organic matter. These new results from the investigation of ODP sediments are compared with DSDP data from the Mesozoic Atlantic Ocean to characterize the depositional environments of Mesozoic black shales.

  13. Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

    NASA Astrophysics Data System (ADS)

    Miesner, F.; Lechleiter, A.; Müller, C.

    2014-10-01

    Temperature fields in marine sediments are studied for various purposes. Often, the target of research is the steady state heat flow as a (possible) source of energy but there are also studies attempting to reconstruct bottom water temperature variations to understand more about climate history. The bottom water temperature propagates into the sediment to different depths, depending on the amplitude and period of the deviation. The steady state heat flow can only be determined when the bottom water temperature is constant while the bottom water temperature history can only be reconstructed when the deviation has an amplitude large enough or the measurements are taken in great depths. In this work, the aim is to reconstruct recent bottom water temperature history such as the last two years. To this end, measurements to depths of up to 6 m shall be adequate and amplitudes smaller than 1 K should be reconstructable. First, a commonly used forward model is introduced and analyzed: knowing the bottom water temperature deviation in the last years and the thermal properties of the sediments, the forward model gives the sediment temperature field. Next, an inversion operator and two common inversion schemes are introduced. The analysis of the inversion operator and both algorithms is kept short, but sources for further reading are given. The algorithms are then tested for artificial data with different noise levels and for two example data sets, one from the German North Sea and one from the Davis Strait. Both algorithms show good and stable results for artificial data. The achieved results for measured data have low variances and match to the observed oceanographic settings. Lastly, the desired and obtained accuracy are discussed. For artificial data, the presented method yields satisfying results. However, for measured data the interpretation of the results is more difficult as the exact form of the bottom water deviation is not known. Nevertheless, the presented

  14. Spatial and temporal distribution and pollution assessment of trace metals in marine sediments in Oyster Bay, NSW, Australia.

    PubMed

    Alyazichi, Yasir M; Jones, Brian G; McLean, Errol

    2015-01-01

    The disposal of untreated urban and industrial wastewater has a deleterious effect on both the water and sediment quality of Oyster Bay located in south Sydney, Australia. The present investigation was undertaken to evaluate the potential pollution of marine sediments in Oyster Bay. The results of metals were compared with adverse biological effect values effect range low (ERL) and effect range median (ERM). Spatial distribution of trace metals was estimated by applying geographic information system. The results indicated that the sediments were polluted with Cu, Zn, As and Pb, which exceeded ERL levels. However, these metals were still below ERM values, and other metals Cr and Ni were below ERL. Moreover, the highest concentrations of metals were around discharge points and in the inner bay. Further, trace metals could be attributed to human activities within the bay as they declined in concentrations with increasing sediment depth.

  15. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  16. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Kwan, Billy K Y; Ng, Ka-Yan; Yamashita, Nobuyoshi; Taniyasu, Sachi; Lam, Paul K S; Murphy, Margaret B

    2015-07-15

    Organic ultraviolet (UV) filters are used widely in various personal care products and their ubiquitous occurrence in the aquatic environment has been reported in recent years. However, data on their fate and potential impacts in marine sediments is limited. This study reports the occurrence and risk assessment of eleven widely used organic UV filters in marine sediment collected in Hong Kong and Tokyo Bay. Seven of the 11 target UV filters were detected in all sediment samples (median concentrations: marine food web. However, more toxicity data for sediment organisms is necessary for better risk assessment of these compounds in benthic communities. PMID:25804793

  17. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Kwan, Billy K Y; Ng, Ka-Yan; Yamashita, Nobuyoshi; Taniyasu, Sachi; Lam, Paul K S; Murphy, Margaret B

    2015-07-15

    Organic ultraviolet (UV) filters are used widely in various personal care products and their ubiquitous occurrence in the aquatic environment has been reported in recent years. However, data on their fate and potential impacts in marine sediments is limited. This study reports the occurrence and risk assessment of eleven widely used organic UV filters in marine sediment collected in Hong Kong and Tokyo Bay. Seven of the 11 target UV filters were detected in all sediment samples (median concentrations: marine food web. However, more toxicity data for sediment organisms is necessary for better risk assessment of these compounds in benthic communities.

  18. UK‧37 temperature estimates from Eemian marine sediments in the southern coast of Hainan Island, tropical China

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Zheng, Zhuo; Huang, Kangyou; Zong, Yongqiang; Liu, Zhonghui; Peng, Zhuolun; Shi, Suhua

    2016-09-01

    This study concerns high-resolution sea surface temperature (SST) changes for the Eemian interglacial period reconstructed from the southern coast of Hainan Island, China. The lower marine unit in the sediment core is composed of monotonous mud (31 m thick), dated to be from the Eemian interglacial period or lower part of marine isotope stage 5 (MIS 5), determined by optically stimulated luminescence (OSL). The high sedimentation rate and the richness of organic matter and marine fossils provide good opportunity for the study of palaeo-environments in the northern margin of the South China Sea (SCS). Sediment grain-size, foraminifer, sediment color index and long-chain alkenone were used to reveal the near-shore sedimentary environments and temperature at millennial-scale. Specifically, a high-resolution UK‧37-SST record was reconstructed for the Eemian interglacial period. The new evidence in northwestern margin of SCS shows that the maximum value of SST during the Eemian interglacial is approximately 29 °C and the lowest is 26.5 °C. The trend of decreasing SST from 29 °C throughout the marine sequence is consistent with the variations in sediment grain size, reflecting the cooling trend of SST and sea-level lowering tendency during the last interglacial period. This new Eemian SST result agrees with other records in the region of SCS, showing a coherent descending trend, but spatial heterogeneity exists in timing and amplitude. The insolation changes might be the main force for initiating the SST evolution during the penultimate interglacial period.

  19. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community.

    PubMed

    Zhang, Zhen; Lo, Irene M C

    2015-07-01

    This study investigated the effect of acetate and methanol as co-substrates on anaerobic biodegradation of total petroleum hydrocarbons (TPHs, C10-C40) in marine sediment. The findings evidenced that the degradation of TPH can be enhanced by adding acetate or methanol. The addition of acetate was generally more favorable than the addition of methanol for the TPH degradation. Both sulfate reduction and methanogenesis occurred in the acetate-treated sediment. However, the depletion of SO4 (2-) inhibited sulfate reduction over the incubation period. Only methanogenesis was prevalent in the methanol-treated sediment within the whole incubation period. The degradation of TPH fractions with higher carbon number ranges (C31-C40) was speculated to be more favored under sulfate-reducing condition, while TPH fractions with lower carbon number ranges (C10-C20) were preferentially degraded under methanogenic condition. The 16S rRNA clone library-based analysis revealed that the addition of different co-substrates led to distinct structures of the microbial community. Clones related to sulfate-reducing Desulfobacterales were the most abundant in the sediment dosed with acetate. Clones related to Clostridiales predominated in the sediment dosed with methanol. Acetoclastic methanogens were found to be the predominant archaeal species in the sediment dosed with acetate, while both acetoclastic methanogens and hydrogenotrophic methanogens accounted for large proportions in the sediment dosed with methanol. The results obtained in this study will contribute to more comprehensive knowledge on the role of acetate and methanol as co-substrates in biostimulation of petroleum-hydrocarbon-contaminated marine sediment. PMID:25661814

  20. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  1. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community.

    PubMed

    Zhang, Zhen; Lo, Irene M C

    2015-07-01

    This study investigated the effect of acetate and methanol as co-substrates on anaerobic biodegradation of total petroleum hydrocarbons (TPHs, C10-C40) in marine sediment. The findings evidenced that the degradation of TPH can be enhanced by adding acetate or methanol. The addition of acetate was generally more favorable than the addition of methanol for the TPH degradation. Both sulfate reduction and methanogenesis occurred in the acetate-treated sediment. However, the depletion of SO4 (2-) inhibited sulfate reduction over the incubation period. Only methanogenesis was prevalent in the methanol-treated sediment within the whole incubation period. The degradation of TPH fractions with higher carbon number ranges (C31-C40) was speculated to be more favored under sulfate-reducing condition, while TPH fractions with lower carbon number ranges (C10-C20) were preferentially degraded under methanogenic condition. The 16S rRNA clone library-based analysis revealed that the addition of different co-substrates led to distinct structures of the microbial community. Clones related to sulfate-reducing Desulfobacterales were the most abundant in the sediment dosed with acetate. Clones related to Clostridiales predominated in the sediment dosed with methanol. Acetoclastic methanogens were found to be the predominant archaeal species in the sediment dosed with acetate, while both acetoclastic methanogens and hydrogenotrophic methanogens accounted for large proportions in the sediment dosed with methanol. The results obtained in this study will contribute to more comprehensive knowledge on the role of acetate and methanol as co-substrates in biostimulation of petroleum-hydrocarbon-contaminated marine sediment.

  2. Effects of marine-derived organic matter on fine sediment transport: implications for sediment and nutrient storage in gravel beds. (Invited)

    NASA Astrophysics Data System (ADS)

    Petticrew, E. L.; Rex, J. F.; Albers, S. J.

    2010-12-01

    Fine sediment transport from stream headwaters to downstream estuaries is often mediated by the interaction of sediment with organic matter. Particulate organic matter can move independently downstream or alternately combine via flocculation and aggregation with inorganic sediments. The generation of flocs allows an increase in the channel-bed delivery and retention of both the inorganic and organic portions as these larger particles are more likely to settle or be intercepted by the bed along the channel. The quality of organic matter available in stream systems has been identified as an important factor in the ability of flocs to form in situ. Marine-derived nutrients (MDN) are a significant source of high quality organic matter which is delivered from oceanic environments to freshwater streams as a pulse during carcass decay which follows the in-channel die-off of spawners. A study using a 30 m re-circulating flume simulated the mixing of salmon decay products and fine sediment following the active spawning event. Results indicate that MDN is delivered and retained in gravel beds for up to seven days due to settling and capture of flocs implying that the salmon spawning cycle is an important ecological component of these inland aquatic systems. A salmon-floc feedback loop was postulated emphasizing the significance of salmon actively resuspending sediments during redd building and contributing MDN via decay,such that nutrients are retained in the channel bed for continued productivity. In 2009, a regulated sockeye salmon spawning channel in the Horsefly River (B.C, Canada) was used experimentally to quantify both marine derived nutrients (MDN) and fine sediment trapped by benthic biofilms during salmon spawning and die-off. Biofilm abundance was monitored during salmon arrival, spawning activity and die-off to determine the magnitude of MDN uptake and sediment retention by biofilm. A strong correlation between biofilm abundance and sediment retention indicates

  3. Provenance of Marine Sediment in the Gulf of Alaska, IODP Expedition 341: Links Between Sediment Derivation, Glacial Systems, and Exhumation of the Coastal Mountain Belts

    NASA Astrophysics Data System (ADS)

    Allen, W. K.; Dunn, C. A.; Enkelmann, E.; Ridgway, K.; Colliver, L.

    2015-12-01

    Provenance analysis of Neogene sand and diamict beds from marine boreholes drilled by the IODP Expedition 341 provides a marine sedimentary record of the interactions between tectonics, climate and sediment deposition along a glaciated convergent margin. The 341 boreholes represent a cross-margin transect that sampled the continental shelf, slope, and deep sea Surveyor Fan of the Gulf of Alaska. Our dataset currently consists of ~ 650 detrital zircons selected for double dating method utilizing both detrital zircon fission track (FT) and U-Pb analysis from sand and diamict beds, as well as zircon U-Pb geochronology and apatite FT from igneous and gneissic clasts. Detrital zircon U-Pb geochronology of sand records dominant peak ages of 53, 62, 70, and 98 Ma with minor populations of 117, 154, and 170 Ma. Most of these ages can be correlated to primary igneous sources in the Coast Plutonic Complex, the Chugach Metamorphic Complex, the plutonic rocks of Wrangellia, and the Sanak-Baranoff plutonic belt. All samples analyzed to date, covering a 10 Myr range, share nearly identical detrital zircon populations suggesting similar primary sediment sources and reworking of sediment in thrust belts and accretionary prisms along this convergent margin. Plutonic and gneissic clasts collected from the boreholes on the shelf have already been double dated. These clasts have general U-Pb zircon crystallization ages of 52-54 Ma and apatite fission track cooling ages of 10-12 Ma. These results, along with previous published studies, indicate that these clasts were derived from the Chugach Metamorphic Complex and were eroded and transported by the Bagley Ice Field and Bering Glacier. Future results using this approach should allow us to pinpoint which parts of the exhumed onshore ranges and which glacial systems provided sediment to marine environments in the Gulf of Alaska.

  4. Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete neanthes arenaceodentata and response to sorbent amendment

    USGS Publications Warehouse

    Janssen, E.M.-L.; Croteau, M.-N.; Luoma, S.N.; Luthy, R.G.

    2010-01-01

    Bioaccumulation rates of polychlorinated biphenyls (PCBs) for the marine polychaete Neanthes arenaceodentata were characterized, including PCB uptake rates from water and sediment, and the effect of sorbent amendment to the sediment on PCB bioavailability, organism growth, and lipid content. Physiological parameters were incorporated into a biodynamic model to predict contaminant uptake. The results indicate rapid PCB uptake from contaminated sediment and significant organism growth dilution during time-series exposure studies. PCB uptake from the aqueous phase accounted for less than 3% of the total uptake for this deposit-feeder. Proportional increase of gut residence time and assimilation efficiency as a consequence of the organism's growth was assessed by PCB uptake and a reactor theory model of gut architecture. Pulse-chase feeding and multilabeled stable isotope tracing techniques proved high sediment ingestion rates (i.e., 6?10 times of dry body weight per day) indicating that such deposit-feeders are promising biological indicators for sediment risk assessment. Activated carbon amendment reduced PCB uptake by 95% in laboratory experiments with no observed adverse growth effects on the marine polychaete. Biodynamic modeling explained the observed PCB body burdens for N. arenaceodentata, with and without sorbent amendment. ?? 2009 American Chemical Society.

  5. Trace element concentrations in surface estuarine and marine sediments along the Mississippi Gulf Coast following Hurricane Katrina.

    PubMed

    Warren, Crystal; Duzgoren-Aydin, Nurdan S; Weston, James; Willett, Kristine L

    2012-01-01

    Hurricanes are relatively frequent ecological disturbances that may cause potentially long-term impacts to the coastal environment. Hurricane Katrina hit the Mississippi Gulf Coast in August 2005, and caused a storm surge with the potential to change the trace element content of coastal surface sediments. In this study, surface estuarine and marine sediments were collected monthly following the storm from ten sites along the Mississippi Gulf Coast (Mobile Bay, Grand Bay Bayous Heron and Cumbest, Pascagoula, Ocean Springs, Biloxi Gulf, Back Biloxi Bay, Gulfport Gulf, Gulfport Courthouse Rd, and Gulfport Marina). Concentrations of V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb were measured by inductively coupled plasma-mass spectrometry to evaluate their temporal and spatial variations in the year following Hurricane Katrina. Sediments were characterized by pH, particle size distribution and total carbon and nitrogen content. Trace element contents of the sediments were determined in both <2 mm and <63 μm grain size fractions. Results revealed no significant temporal and spatial variability in trace element concentrations, in either size fraction. Potential ecological risk of the sediments was assessed by using NOAA SQuiRTs' guideline values; most concentrations remained below probable adverse effects guidelines to marine organisms suggesting that trace elements redistributed by Hurricane Katrina would not cause an adverse impact on resident organisms. Instead, the concentrations of trace elements were site-dependent, with specific contaminants relating to the use of the area prior to Hurricane Katrina.

  6. The linkage between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 ka to 5.5 ka ago (deMenocal et al., 2000; McGee et al., 2013). The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. We present simulation results from a recent sensitivity study, where we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface during the Holocene. We have simulated timeslices of he mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. We prescribe mid-Holocene vegetation cover based on a vegetation reconstruction from pollen data (Hoelzmann et al., 1998) and mid-Holocene lake surface area is determined using a water routing and storage model (Tegen et al., 2002). In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the variation in dust accumulation in marine cores is likely related to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone. Reference: deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, 19, 347-361, 2000. Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F

  7. Response of marine sedimentation to upper Holocene climate variability in Maxwell Bay, King George Island, West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wittenberg, Nina; Hass, Christian; Kuhn, Gerhard

    2013-04-01

    The Western Antarctic Peninsula experiences a temperature increase that is higher than in other parts of Antarctica. Within the last 50 years the tidewater glaciers in the tributary fjords of Maxwell Bay (King George Island) have retreated landwards with increasing speed. Meltwaters mobilize fine-grained sediments and transport those in plumes out of the coves into Maxwell Bay. Our hypothesis is that meltwater sediments characterize warmer climate periods of the Holocene. Marine sediment cores recovered along a profile of the eastern slope of Maxwell Bay were studied. The cores were taken in high-accumulation areas at the entrances of Collins Harbor, Marian and Potter coves. We measured the grain-size distribution in 1-cm steps in each core with a Laser diffraction particle analyzer (range 0.04-2500 µm) in order to resolve shifts in grain size compositions in very high resolution. We undertook different approaches for reliable age determination of the sediments. Since marine biogenic carbonate suitable for radiocarbon age determination is sparse, radiocarbon dating of the extracted humic acid fraction of the bulk sediment was included. Unfortunately, these age determinations turned out to be not reliable, likely because they are overprinted by an unknown older radiocarbon source. Preliminary results suggest that the cores cover approximately the last 2000 years. The magnetic susceptibility (MS) parameter fluctuates throughout the cores. It is negatively correlated to the amount of total organic carbon (TOC) and biogenic opal, suggesting dilution of the MS signal through higher input of organic material. Together with the bathymetry data, sub-bottom profiles reveal information on the interior of the topography and the geometry of the deposited sediments. The profiles obtained in Potter Cove show almost no sediment penetration suggesting either a very thin sediment cover and/or highly reworked unsorted sediments. The sub-bottom profiles from Maxwell Bay penetrate

  8. A method of measurement of (239)Pu, (240)Pu, (241)Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples.

    PubMed

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tazoe, Hirofumi; Tagami, Keiko; Uchida, Shigeo; Yamada, Masatoshi

    2014-01-01

    An accurate and precise analytical method is highly needed for the determination of Pu isotopes in marine sediments for the long-term marine environment monitoring that is being done since the Fukushima Dai-ichi Nuclear Power Plant accident. The elimination of uranium from the sediment samples needs to be carefully checked. We established an analytical method based on anion-exchange chromatography and SF-ICP-MS in this work. A uranium decontamination factor of 2 × 10(6) was achieved, and the U concentrations in the final sample solutions were typically below 4 pg mL(-1), thus no extra correction of (238)U interferences from the Pu spectra was needed. The method was suitable for the analysis of (241)Pu in marine sediments using large sample amounts (>10 g). We validated the method by measuring marine sediment reference materials and our results agreed well with the certified and the literature values. Surface sediments and one sediment core sample collected after the nuclear accident were analyzed. The characterization of (241)Pu/(239)Pu atom ratios in the surface sediments and the vertical distribution of Pu isotopes showed that there was no detectable Pu contamination from the nuclear accident in the marine sediments collected 30 km off the plant site. PMID:24328266

  9. A method of measurement of (239)Pu, (240)Pu, (241)Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples.

    PubMed

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tazoe, Hirofumi; Tagami, Keiko; Uchida, Shigeo; Yamada, Masatoshi

    2014-01-01

    An accurate and precise analytical method is highly needed for the determination of Pu isotopes in marine sediments for the long-term marine environment monitoring that is being done since the Fukushima Dai-ichi Nuclear Power Plant accident. The elimination of uranium from the sediment samples needs to be carefully checked. We established an analytical method based on anion-exchange chromatography and SF-ICP-MS in this work. A uranium decontamination factor of 2 × 10(6) was achieved, and the U concentrations in the final sample solutions were typically below 4 pg mL(-1), thus no extra correction of (238)U interferences from the Pu spectra was needed. The method was suitable for the analysis of (241)Pu in marine sediments using large sample amounts (>10 g). We validated the method by measuring marine sediment reference materials and our results agreed well with the certified and the literature values. Surface sediments and one sediment core sample collected after the nuclear accident were analyzed. The characterization of (241)Pu/(239)Pu atom ratios in the surface sediments and the vertical distribution of Pu isotopes showed that there was no detectable Pu contamination from the nuclear accident in the marine sediments collected 30 km off the plant site.

  10. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay.

    PubMed

    Algora, Camelia; Vasileiadis, Sotirios; Wasmund, Kenneth; Trevisan, Marco; Krüger, Martin; Puglisi, Edoardo; Adrian, Lorenz

    2015-06-01

    The Arctic Baffin Bay between Canada and Greenland is sea ice-covered during the majority of the year, restricting primary production to the summer months. Sediments receive low amounts of mostly terrestrial- and less marine-derived organic matter. To study microbial communities constrained by physicochemical conditions changing with distance from land and ocean depth, we applied high-throughput 16S rRNA gene sequencing and compared sequence diversity with biogeochemical parameters in 40 different sediment samples. Samples originated from seven cores down to 470 cm below seafloor along a shelf-to-basin transect. Bacterial