Science.gov

Sample records for desiccant dehumidification system

  1. Desiccant-based dehumidification system and method

    DOEpatents

    Fischer, John C.

    2004-06-22

    The present invention provides an apparatus for dehumidifying air supplied to an enclosed space by an air conditioning unit. The apparatus includes a partition separating the interior of the housing into a supply portion and a regeneration portion. The supply portion has an inlet for receiving supply air from the air conditioning unit and an outlet for supplying air to the enclosed space. A regeneration fan creates the regeneration air stream. The apparatus includes an active desiccant wheel positioned such that a portion of the wheel extends into the supply portion and a portion of the wheel extends into the regeneration portion, so that the wheel can rotate through the supply air stream and the regeneration air stream to dehumidify the supply air stream. A heater warms the regeneration air stream as necessary to regenerate the desiccant wheel. The invention also comprises a hybrid system that combines air conditioning and dehumidifying components into a single integrated unit.

  2. Desiccant dehumidification and cooling systems assessment and analysis

    SciTech Connect

    Collier, R.K. Jr.

    1997-09-01

    The objective of this report is to provide a preliminary analysis of the principles, sensitivities, and potential for national energy savings of desiccant cooling and dehumidification systems. The report is divided into four sections. Section I deals with the maximum theoretical performance of ideal desiccant cooling systems. Section II looks at the performance effects of non-ideal behavior of system components. Section III examines the effects of outdoor air properties on desiccant cooling system performance. Section IV analyzes the applicability of desiccant cooling systems to reduce primary energy requirements for providing space conditioning in buildings. A basic desiccation process performs no useful work (cooling). That is, a desiccant material drying air is close to an isenthalpic process. Latent energy is merely converted to sensible energy. Only when heat exchange is applied to the desiccated air is any cooling accomplished. This characteristic is generic to all desiccant cycles and critical to understanding their operation. The analyses of Section I show that desiccant cooling cycles can theoretically achieve extremely high thermal CoP`s (>2). The general conclusion from Section II is that ventilation air processing is the most viable application for the solid desiccant equipment analyzed. The results from the seasonal simulations performed in Section III indicate that, generally, the seasonal performance of the desiccant system does not change significantly from that predicted for outdoor conditions. Results from Section IV show that all of the candidate desiccant systems can save energy relative to standard vapor-compression systems. The largest energy savings are achieved by the enthalpy exchange devise.

  3. Review of Desiccant Dehumidification Technology

    SciTech Connect

    Pesaran, A. A.

    1994-10-01

    This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the I990s.

  4. Successive dehumidification/regeneration cycles by LiCL desiccant for air-conditioning system

    NASA Astrophysics Data System (ADS)

    Bouzenada, S.; Kaabi, A. N.; Fraikin, L.; Léonard, A.

    2017-02-01

    Dehumidification by desiccant is a new application in air-conditioning system. This technology is providing important advantages in solving many problems and brings environmentally friendly products. Desiccants are natural substances that are capable of showing a strong attraction for water vapour and can be regenerated. They can undergo continuous cycles. An experimental study is carried out on successive phases of absorption/regeneration, during 7 days by using LiCl desiccant and on separate phases. The effect of climatic parameters on moisture removal rate and salt concentration on absorption and regeneration processes is discussed. The results show that higher air humidity gives a higher mass transfer potential then a higher moisture rate absorbed dm/dt. The decrease of salt concentration affects the dm/dt and vapour pressure. Also, these results show that at regeneration temperature, the amount of water desorbed is nearly equal to the amount of water absorbed (equilibrium condition) for a complete cycle. The amount of 7.87 mg of water vapor can be absorbed in the first hour of absorption cycle for 12.6144 mg at 50% of relative humidity, and 7.004mg for 36.31 mg of initial mass subjected at 70% RH. The LiCl desiccant is able to return to almost its original concentration 31.39% during regeneration phase. Also, LiCl desiccant is able to be regenerated at low temperature 40°C which can be easily obtained by using solar energy. Then, the LiCl is a good hygroscopic material for using in liquid desiccant air-conditioning system.

  5. A review of desiccant dehumidification technology

    SciTech Connect

    Pesaran, A.A.

    1994-10-01

    This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the 1990s. After briefly reviewing the principle of operation, the authors present three case studies-for supermarkets, a hotel, and an office building. The authors also discuss recent advances and ongoing research and development activities.

  6. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong

    SciTech Connect

    Li, Yutong; Lu, Lin; Yang, Hongxing

    2010-12-15

    In this article, a transient simulation model and the EnergyPlus were used to study the energy performance and economical feasibility for integrating a solar liquid desiccant dehumidification system with a conventional vapor compression air-conditioning system for the weather condition of Hong Kong. The vapor compression system capacity in the solar assisted air-conditioning system can be reduced to 19 kW from original 28 kW of a conventional air-conditioning system as a case study due to the solar desiccant cooling. The economical performance of the solar desiccant dehumidification system is compared with that of the conventional air-conditioning system. The results show that the energy saving potentials due to incorporation of the solar desiccant dehumidification system in a traditional air-conditioning system is significant for the hot wet weather in Hong Kong due to higher COP resulted from higher supply chilled water temperature from chiller plants. The annual operation energy savings for the hybrid system is 6760 kWh and the payback period of the hybrid system is around 7 years. The study shows that the solar assisted air-conditioning is a viable technology for utilizations in subtropical areas. (author)

  7. An assessment of desiccant cooling and dehumidification technology

    SciTech Connect

    Mei, V.C.; Chen, F.C. ); Lavan, Z. ); Collier, R.K. Jr. ); Meckler, G. )

    1992-07-01

    Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

  8. Gas Engine-Driven Heat Pump with Desiccant Dehumidification

    SciTech Connect

    Shen, Bo; Abu-Heiba, Ahmad

    2017-01-01

    About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating the desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.

  9. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  10. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  11. Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC

    SciTech Connect

    Fischer, J

    2002-04-17

    This report summarizes a research and development program that produced a stand-alone active desiccant module (ADM) that can be easily integrated with new or existing packaged cooling equipment. The program also produced a fully integrated hybrid system, combining the active desiccant section with a conventional direct expansion air-conditioning unit, that resulted in a compact, low-cost, energy-efficient end product. Based upon the results of this investigation, both systems were determined to be highly viable products for commercialization. Major challenges--including wheel development, compact packaging, regeneration burner development, control optimization, and low-cost design--were all successfully addressed by the final prototypes produced and tested as part of this program. Extensive laboratory testing was completed in the SEMCO laboratory for each of the two ADM system approaches. This testing confirmed the performance of the ADM systems to be attractive compared with that of alternate approaches currently used to precondition outdoor air, where a return air path is not readily available for passive desiccant recovery or where first cost is the primary design criterion. Photographs, schematics, and performance maps are provided for the ADM systems that were developed; and many of the control advantages are discussed. Based upon the positive results of this research and development program, field tests are under way for fully instrumented pilot installations of ADM systems in both a hotel/motel and a restaurant.

  12. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  13. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    SciTech Connect

    Kozubal, Eric Joseph

    2016-12-13

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  14. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    DOEpatents

    Kozubal, Eric Joseph; Slayzak, Steven Joseph

    2014-07-08

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  15. Residential Dehumidification Systems Research for Hot-Humid Climates

    SciTech Connect

    2005-02-01

    Twenty homes were tested and monitored in the hot-humid climate of Houston, Texas, to evaluate the humidity control performance and operating cost of six integrated dehumidification and ventilation systems.

  16. Application of chemical dehumidification system to a roof fan house at Michoud Assembly Facility at New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of a chemical dehumidification system to reduce the energy consumption associated with dehumidification of the chilled air is assessed. A comparative energy consumption and cost analysis of the chemical dehumidification and existing systems and the savings offered by the proposed chemical dehumidification system over the existing air washer-reheat system are presented.

  17. Commercial high efficiency dehumidification systems using heat pipes

    SciTech Connect

    Not Available

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  18. Dehumidification Performance of Humidity Control System with Double Ventilation Sorbent Rotor

    NASA Astrophysics Data System (ADS)

    Takaki, Sadao; Horibe, Akihiko; Haruki, Naoto; Nishina, Yuki; Inaba, Hideo

    The desiccant air-conditioning will be suitable for effective use of the exhaust heat. We have reported high dehumidification efficiency of the proposed system that is composed of a sorbent rotor and a refrigerating cycle. In this study, to improve the sorption efficiency of the rotor, the double ventilation rotor is proposed. After the processing air is dehumidified at the sorption area 1 of the rotor, the air is cooled and has higher relative humidity. And then, the air is blew into the sorption area 2 from the rotor opposite. The double ventilation characteristics on the influence of the division area of the rotor, the flow rate, the recovery temperature, and the temperature of the air cooler were investigated. As a result, the behavior of the double ventilation rotor is clarified and it is found that the quantity of dehumidification of the rotor is greater in the case of 1:1:2 (sorption(1): sorption(2): desorption ) division rate of the rotor than that of 1:1:1.

  19. Desiccant degradation in desiccant cooling systems: An experimental study

    SciTech Connect

    Pesaran, A.A.

    1993-11-01

    The authors conducted experiments to quantify the effects of thermal cycling and exposure to contamination on solid desiccant materials that may be used in desiccant cooling systems. The source of contamination was cigarette smoke, which is considered one of the worst pollutants in building cooling applications. The authors exposed five different solid desiccants to ``ambient`` and ``contaminated`` humid air: silica gel, activated alumina, activated carbon, molecular sieves, and lithium chloride. They obtained the moisture capacity of samples as a function of exposure time. Compared to virgin desiccant samples, the capacity loss caused by thermal cycling with humid ambient air was 10 percent to 30 percent for all desiccants. The capacity loss because of combined effect of thermal cycling with ``smoke-filled`` humid air was between 30 percent to 70 percent. The higher losses occurred after four months of experiment time, which is equivalent to four to eight years of field operation. Using a system model and smoke degradation data on silica gel, the authors predicted that, for low-temperature regeneration, the loss in performance of a ventilation-cycle desiccant cooling system would be between 10 percent to 35 percent, in about eight years, with higher value under worst conditions.

  20. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  1. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  2. Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Bue, Grant

    2013-01-01

    This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.

  3. Desiccant humidity control system

    NASA Technical Reports Server (NTRS)

    Amazeen, J. (Editor)

    1973-01-01

    A regenerable sorbent system was investigated for controlling the humidity and carbon dioxide concentration of the space shuttle cabin atmosphere. The sorbents considered for water and carbon dioxide removal were silica gel and molecular sieves. Bed optimization and preliminary system design are discussed along with system optimization studies and weight penalites.

  4. Desiccant Humidity Control System Using Waste Heat of Water Source Heat Pump

    NASA Astrophysics Data System (ADS)

    Wada, Kazuki; Mashimo, Kouichi; Takahashi, Mikio; Tanaka, Kitoshi; Toya, Saburo; Tateyama, Ryotaro; Miyamoto, Kazuhiro; Yamaguchi, Masahiro

    The authors hope to develop an air-conditioning system that processes the latent heat load and the sensible heat load separately. This would enable the efficiency of the chilling unit to be improved because the temperature of the chilled water used for cooling would be higher than normal. However, if lukewarm water is used, there is insufficient cooling and dehumidification. Therefore, a dehumidifier such as a desiccant air-conditioning system is needed. Using the waste heat generated when the desiccant air-conditioning system is in operation increases efficiency. The authors are developing a prototype desiccant humidity control system that makes use of the waste heat generated by a water source heat pump. This paper describes the results of an experiment that was conducted for this prototype based on the assumption that it would be installed in an office building. The dehumidification performance achieved was sufficient to process the indoor latent heat load. The prototype was able to adjust the indoor relative humidity from 40% to 60% under conditions in which the indoor latent heat load varied. Humidification without the use of water was possible even in the absence of an indoor latent heat load when the outdoor absolute humidity was 3.5 g/kg' or more.

  5. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3

    SciTech Connect

    Fischer, J.

    2001-07-09

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations--a college dormitory and a research laboratory--during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systems were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pilot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air.

  6. A low-cost-solar liquid desiccant system for residential cooling

    NASA Astrophysics Data System (ADS)

    Ware, Joel D., III

    The use of liquid desiccants for dehumidification of heating, ventilation, and air conditioning (HVAC) process air is becoming a more promising concept as the drive for energy conservation continues to grow. Recently, liquid desiccant systems have been implemented on the commercial level in conjunction with evaporative coolers and have recorded energy savings upwards of 50%. The aim of this research is to test the potential liquid desiccant systems have on the residential level when paired with a conventional vapor compression cycle and to construct a system that would overcome some of its barriers to the residential market. A complete low-cost-solar liquid desiccant system was designed, constructed, and tested in the Off-Grid Zero Emissions Building (OGZEB) at the Florida State University. Key design characteristics include turbulent process air flow through the conditioner and airside heating in the regenerator. The system was tested in the two following ways: (1) for the energy savings while maintaining a constant temperature over a twenty four hour period and (2) for the energy savings over a single cooling cycle. The liquid desiccant system achieved a maximum energy savings of 38% over a complete day and 52% over a single cooling cycle. It was projected that the system has the potential to save 1064 kWh over the course of a year. When combined with a renewable source of heat for regeneration, liquid desiccant systems become very cost effective. The levelized cost of energy for the combination of the liquid desiccant system and solar thermal collectors was calculated to be 7.06 C/kWh with a payback period of 4.4 years. This research provides evidence of the technology's potential on the residential sector and suggests ways for it to become competitive in the market.

  7. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  8. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  9. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    SciTech Connect

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to

  10. Composite desiccant structure

    DOEpatents

    Fraioli, Anthony V.; Schertz, William W.

    1987-01-01

    A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  11. Composite desiccant structure

    DOEpatents

    Fraioli, A.V.; Schertz, W.W.

    1984-06-06

    This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  12. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  13. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  14. Solar desalination system of combined solar still and humidification-dehumidification unit

    NASA Astrophysics Data System (ADS)

    Ghazy, Ahmed; Fath, Hassan E. S.

    2016-11-01

    Solar stills, as a simple technology, have many advantages such as simple design; unsophisticated fabrication; low capital and operation costs and easily maintained. However, their low daily production has put constraints on their usage. A radical improvement in the performance of solar stills can be achieved by the partial recovery of the energy losses from the glass cover of the still. This paper simulates a direct solar distillation system of combined solar still with an air heating humidification-dehumidification (HDH) sub-system. The main objective of the Still-HDH system is to improve the productivity and thermal efficiency of the conventional solar still by partially recovering the still energy losses to the ambient for additional water production. Various procedures have been employed to improve the thermal performance of the integrated system by recovering heat losses from one component in another component of the system. Simulations have been carried out for the performance of the Still-HDH system under different weather conditions. A comparison has been held between the Still-HDH system and a conventional solar still of the same size and under the same operating conditions.

  15. Active Desiccant-Based Preconditioning Market Analysis and Product Development

    SciTech Connect

    Fischer, J.

    2001-01-11

    The Phase 1 report (ORNL/Sub/94-SVO44/1), completed earlier in this program, involved a comprehensive field survey and market analysis comparing various specialized outdoor air handling units. This initial investigation included conventional cooling and reheat, conventional cooling with sensible recovery, total energy recovery systems (passive desiccant technology) and various active desiccant systems. The report concluded that several markets do promise a significant sales opportunity for a Climate Changer-based active desiccant system offering. (Climate Changer is a registered trademark of Trane Company.) This initial market analysis defined the wants and needs of the end customers (design engineers and building owners), which, along with subsequent information included in this report, have been used to guide the determination of the most promising active desiccant system configurations. This Phase 2 report begins with a summary of a more thorough investigation of those specific markets identified as most promising for active desiccant systems. Table 1 estimates the annual sales potential for a cost-effective product line of active desiccant systems, such as that built from Climate Changer modules. The Product Development Strategy section describes the active desiccant system configurations chosen to best fit the needs of the marketplace while minimizing system options. Key design objectives based on market research are listed in this report for these active desiccant systems. Corresponding performance goals for the dehumidification wheel required to meet the overall system design objectives are also defined. The Performance Modeling section describes the strategy used by SEMCO to design the dehumidification wheels integrated into the prototype systems currently being tested as part of the U.S. Department of Energy's Advanced Desiccant Technology Program. Actual performance data from wheel testing was used to revise the system performance and energy analysis

  16. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the

  17. Desiccant-Based Dehumidification for Army Facilities

    DTIC Science & Technology

    1992-11-01

    Temperatures (°F) City Dry Bulb Wet Bulb Atlanta. GA 92 77 Chicago, IL 94 79 Houston. TX 97 80 New York, NY 89 76 San Diego , CA 83 71 Washington. DC 93...78 17 0- •Chi H oIL > h, Wahnton DC-- AtlontoAi New York NY E "San Diego CA 0 40 50 60 70 80 90 100 110 120 Temperature - Figure 7. Psychrometric Chart...1310 Chicago 74,200 55 700 Houston 151,300 62 2460 New York 72,000 51 660 San Diego 72,700 41 610 Washington 84,100 59 960 *Quantities are differences

  18. Effect on air quality and flow rate of fresh water production in humidification and dehumidification system

    NASA Astrophysics Data System (ADS)

    Rajasekar, K.; Pugazhenthi, R.; Selvaraju, A.; Manikandan, T.; Saravanan, R.

    2017-03-01

    Water is the vital need of any living organisms of the world when water fails, functions of nature cease the world. The water scarcity is one of the major problems to be faced by the developing world, which indicates a critical need to develop inexpensive small-scale desalination technologies. The cost of the desalination process takes more, so the world expecting the desalination plants with minimum operating cost, so the utilization of renewable energy source is a preferable one. This research article provides a glimpse of an overview of the humidification-dehumidification (HDH) based desalination method which uses the solar energy. The HDH based desalination method monitored and evaluated the performance parameters, i.e. mass flow rates of water and air.

  19. Desiccant outdoor air preconditioners maximize heat recovery ventilation potentials

    SciTech Connect

    Meckler, M.

    1995-12-31

    Microorganisms are well protected indoors by the moisture surrounding them if the relative humidity is above 70%. They can cause many acute diseases, infections, and allergies. Humidity also has an effect on air cleanliness and causes the building structure and its contents to deteriorate. Therefore, controlling humidity is a very important factor to human health and comfort and the structural longevity of a building. To date, a great deal of research has been done, and is continuing, in the use of both solid and liquid desiccants. This paper introduces a desiccant-assisted system that combines dehumidification and mechanical refrigeration by means of a desiccant preconditioning module that can serve two or more conventional air-conditioning units. It will be demonstrated that the proposed system, also having indirect evaporative cooling within the preconditioning module, can reduce energy consumption and provide significant cost savings, independent humidity and temperature control, and, therefore, improved indoor air quality and enhanced occupant comfort.

  20. Desiccant cooling using unglazed transpired solar collectors

    SciTech Connect

    Pesaran, A.A. ); Wipke, K. )

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

  1. Desiccant cooling using unglazed transpired solar collectors

    NASA Astrophysics Data System (ADS)

    Pesaran, A. A.; Wipke, K.

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69 percent more than that required for the glazed collector, the cost of the unglazed collector array was 44 percent less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration.

  2. Solar-powered saline sorbent-solution heat pump/storage system

    NASA Astrophysics Data System (ADS)

    Robison, H.; Houston, S.

    Coastal Energy Laboratory Chemical Heat Pump (CEL-CHEAP) is a redesigned open-cycle liquid desiccant air conditioner. Heat is discharged to shallow-well water by dehumidification-humidification for cooling and extracted by humidification-dehumidification for heating. Direct solar radiation concentrates the desiccant. For continuous operation, a small uninsulated tank stores concentrated solution. This chemical heat pump needs no mechanical compressor, condenser, vacuum system, or pressure system. The collector-regenerators are inexpensive. The refrigerant is water and the desiccant is calcium chloride. First cost and operating expenses are very low.

  3. Characterization of a starch based desiccant wheel dehumidifier

    NASA Astrophysics Data System (ADS)

    Beery, Kyle Edward

    Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.

  4. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  5. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    SciTech Connect

    Fischer, J

    2003-01-23

    were operated in a recirculation mode. (3) Almost all major medical, university, and research facilities face the dilemma that the air exhausted from a building exits near the intake of another building. As a result, contaminants exhausted outdoors are pulled back into the same or an adjacent building. The removal of contaminants from outdoor air that an active desiccant system offers would be attractive to applications in such cases. The primary objective of this research project was to quantify the ability of the SEMCO composite desiccant dehumidification wheel to purify outdoor and recirculated air streams by removing gaseous contaminants commonly encountered in actual applications. This contaminant removal is provided simultaneously with dehumidification (removing the latent load) of these air streams at conditions encountered in HVAC applications. This research builds upon initial seed work completed by the Georgia Tech Research Institute (GTRI) during 1993 (Bayer and Downing 1993).

  6. Gas-fired desiccant system for retail super center

    SciTech Connect

    Spears, J.W.; Judge, J.

    1997-10-01

    Concerns about indoor air quality have led to increasing outside air requirements that have prompted HVAC system designers to rethink how to handle outside air. The resulting increase in latent load can cause a variety of problems such as uncomfortably high humidity, mold and mildew, sweating ducts and higher energy cost. These problems occur not only in very humid climates but also in moderate climates during the swing season when the sensible load is low and the outside humidity is high. This combined with increasing concern for occupant comfort has led engineers to look for HVAC designs that provide good temperature and humidity control while still providing adequate quantities of outside air ventilation. This article describes the results of a one-year monitored evaluation of a gas-fired desiccant makeup air system used in a Wal-Mart super center. The system provides continuous fresh-air ventilation and independent temperature and humidity control. It also demonstrates the potential for energy savings and reduced first cost of the HVAC system. This approach, investigated by the owners` design team and independently monitored and verified in this Gas Research Institute-funded field study, has proven to be a cost-effective solution to meeting the new ventilation standard.

  7. Study of parameters affecting the performance of solar desiccant cooling systems

    SciTech Connect

    Pesaran, A A; Hoo, E A

    1993-01-01

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65{degree}C to 160{degree}C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  8. Study of parameters affecting the performance of solar desiccant cooling systems

    SciTech Connect

    Pesaran, A.A.; Hoo, E.A.

    1993-01-01

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65[degree]C to 160[degree]C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  9. Mathematical Modeling of Dual Layer Shell Type Recuperation System for Biogas Dehumidification

    NASA Astrophysics Data System (ADS)

    Gendelis, S.; Timuhins, A.; Laizans, A.; Bandeniece, L.

    2015-12-01

    The main aim of the current paper is to create a mathematical model for dual layer shell type recuperation system, which allows reducing the heat losses from the biomass digester and water amount in the biogas without any additional mechanical or chemical components. The idea of this system is to reduce the temperature of the outflowing gas by creating two-layered counter-flow heat exchanger around the walls of biogas digester, thus increasing a thermal resistance and the gas temperature, resulting in a condensation on a colder surface. Complex mathematical model, including surface condensation, is developed for this type of biogas dehumidifier and the parameter study is carried out for a wide range of parameters. The model is reduced to 1D case to make numerical calculations faster. It is shown that latent heat of condensation is very important for the total heat balance and the condensation rate is highly dependent on insulation between layers and outside temperature. Modelling results allow finding optimal geometrical parameters for the known gas flow and predicting the condensation rate for different system setups and seasons.

  10. Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine

    SciTech Connect

    Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

    2005-04-01

    Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

  11. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    PubMed Central

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  12. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    PubMed

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  13. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    NASA Astrophysics Data System (ADS)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  14. Performance assessment and transient optimization of multi-stage solid desiccant air conditioning systems with building PV/T integration

    NASA Astrophysics Data System (ADS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-09-01

    One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, single stage desiccant air conditioning systems' coefficient of performance (COP) are relatively low. Therefore, multi-stage solid desiccant air conditioning systems are recommended. In this paper, an integrated double-stage desiccant air conditioning systems and PV/T collector is suggested for hot and humid climates such as the UAE. The results for the PV/T implementation in the double-stage desiccant cooling system are assessed against the PV/T results for a single-stage desiccant air conditioning system. In order to provide a valid comparative evaluation between the single and double stage desiccant air conditioning systems, an identical PV/T module, in terms of dimensions, is incorporated into these systems. The overall required auxiliary air heating is abated by 46.0% from 386.8 MWh to 209.0 MWh by replacing the single stage desiccant air conditioning system with the proposed double stage configuration during June to October. Moreover, the overall averaged solar share during the investigated months for the single and double stage systems are 36.5% and 43.3%.

  15. Dehumidification via membrane separation for space-based applications

    NASA Technical Reports Server (NTRS)

    Gienger, Jane Kucera; Ray, Roderick J.; Chullen, Cinda

    1988-01-01

    The paper describes the development of a membrane-based dehumidification process for space-based applications, such as spacecraft cabins and EVA space suits. Results presented are from: (1) screening tests conducted to determine the efficacy of various membranes to separate water vapor from air, and (2) parametric and long-term tests of membranes operated at conditions that simulate the range of environmental conditions (e.g., temperature and relative humidity) expected in the planned Space Station. Also included in this paper is a discussion of preliminary designs of membrane-based dehumidification processes for the Space Station and EVA space suits. These designs result in compact and energy-efficient systems that offer significant advantages over conventional dehumidification processes.

  16. Vapor pressures of the aqueous desiccants

    SciTech Connect

    Chung, T.W.; Luo, C.M.

    1999-09-01

    The vapor pressures of the aqueous desiccants lithium chloride, lithium bromide, calcium chloride, ethylene glycol, propylene glycol, and their mixtures were measured at their typical operating concentrations and at temperatures from 298 K to 313 K. The experimental data were fitted to an Antoine type of equation, ln[P(kPa)] = A {minus} B/[T(K) + C], where A, B, and C are constants and are concentration dependent. Vapor pressure data were further used to predict the effectiveness of dehumidification in liquid desiccant dehumidifiers.

  17. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  18. Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system.

    PubMed

    Mitra, Jayeeta; Xu, Guanghui; Wang, Bo; Li, Meijing; Deng, Xin

    2013-01-01

    Vegetative tissues of Boea hygrometrica, a member of the Gesneriaceae family, can tolerate severe water loss to desiccated state and fully recover upon rehydration. Unlike many other so called "resurrection plants," the detached leaves of B. hygrometrica also possess the same level of capacity for desiccation tolerance (DT) as that of whole plant. B. hygrometrica is distributed widely from the tropics to northern temperate regions in East Asia and grows vigorously in areas around limestone rocks, where dehydration occurs frequently, rapidly, and profoundly. The properties of detached B. hygrometrica leaves and relative ease of culture have made it a useful system to study the adaptive mechanisms of DT. Extensive studies have been conducted to identify the physiological, cellular, and molecular mechanisms underlying DT in the last decade, including specific responses to water stress, such as cell wall folding and pigment-protein complex stabilizing in desiccated leaves. In this review, the insight into the structural, physiological, and biochemical, and molecular alterations that accompany the acquisition of DT in B. hygrometrica is described. Finally a future perspective is proposed, with an emphasis on the emerging regulatory roles of retroelements and histone modifications in the acquisition of DT, and the need of establishment of genome sequence database and high throughput techniques to identify novel regulators for fully understanding of the matrix of DT.

  19. Application of Heat Pump Dehumidification : A Case Study : Drying Lumber at Diamond Wood Products.

    SciTech Connect

    Wilson, James B.

    1990-09-01

    A case study was conducted of a new dehumidification kiln used for drying four-quarter red alder. To determine the energy and drying costs, the study included the measurement of all process parameters such as electricity and natural gas use, water extraction, wet- and dry-bulb temperatures, venting, and total drying. For comparative purposes wood from the same source was dried in a conventional kiln and similar measurements were taken. Dehumidification equipment is essentially a heat recovery system based on a refrigeration unit that condenses the water vapor in the kiln onto a cold coil where the heat of condensation is transferred to the refrigerant. The heat in the refrigerant is then pumped back into the kiln to maintain drying. The potential exists to reduce dehumidification drying costs by following recommended changes to equipment and operation. There were a number of reasons why the dehumidification kiln did not function as expected, some of which can be corrected to improve both energy efficiency and drying cost. Although the dehumidification kiln studied did not provide the drying cost and energy savings expected, dehumidification drying of wood should not be excluded as an alternative drying method when considering new equipment for most lumber species. A properly designed and installed system can offer significant energy and cost savings over conventional kilns. 10 figs., 11 tabs.

  20. Dehumidification for coating and lining projects

    SciTech Connect

    Wyatt, C.H.

    1995-12-31

    When owners make the decision to refurbish tanks or vessels, quality workmanship that insures the long life of the coating or lining, and quick turnaround become paramount issues. However, if the tank is empty merely because the painting/lining contractor can not complete the project due to adverse weather conditions, something can be done to remedy the problem. Namely, include the use of dehumidification in the project specifications. Such a specification will enable an owner to receive his tank on a timely basis--the contractor will be able to optimize his personnel--and the material supplier will have his material applied in a more ideal condition. All components of the painting project will benefit and should be accomplished with little or no increase in cost of the lining project. However, if the intangible cost factor of not receiving the tank back for operation as per the contract is included in the cost analysis the incorporation of dehumidification actually becomes a cost savings. This environmental control can be realized, and utilized, even when the substrate is typically considered to be an external surface. For example, should the contractor have to enclose the work area--a bridge, a high rise tower, or even a ground storage tank to comply with external environmental regulations (dust from blasting operations, lead based paint removal, or even normal paint overspray), this created enclosure can be considered a tank. A closed loop system can be employed here and will be discussed in more detail in the formal paper. Therefore, the author will use the term enclosure throughout the paper with the definition of enclosure being the actual interior of the tank or any volume of air that exists between a tank and a plastic (or canvas) shroud that is used to enclose a blast area.

  1. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Watson, David W.; Wingard, Charles D.; West, Phillip W.; Cmarik, Gregory E.; Miller, Lee A.

    2016-01-01

    Advanced Exploration Systems are integral to crewed missions beyond low earth orbit and beyond the moon. The long-term goal is to reach Mars and return to Earth, but current air revitalization systems are not capable of extended operation within the mass, power, and volume requirements of such a mission. Two primary points are the mechanical stability of sorbent pellets and recovery of sorbent productivity after moisture exposure in the event of a leak. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds.

  2. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  3. Free Breathing Static Dehumidification Systems.

    DTIC Science & Technology

    1987-01-01

    1?336 FREE NNERTHIN STATIC DMIDIFICATIOU SYS*kNS(U) RJR In__ FORME PRCKRGING EVJRTIN ROENCY WIIT-RTTERMO WD ON S A M~Y Jfh 97 DST -7-R-1 LOL lSSFFI...0 . LiW- M -. ’*5 iq - a . L O 37 Figure 12. Field Layout at SM-ALC/ DST , McClellan AFB CA .tr 4j w, I , D 4.- 4, 4J 4) :3 4j CCD ko LL o. 0.U UU -4 4...USAeLE11 I Wash DC 20330 HQ Ar’SC/LG’ I O)C-ALC/ DST Tinker Ar’B OK 73145 U0-ALC/ OST 1 Hill AFB UT 84406 SA-ALC/ DST i I. Kelly AeBN TIX 78241 SM-ALC

  4. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  5. Solar-powered saline sorbent-solution heat pump/storage system. [Coastal Energy Laboratory-Chemical Heat Pump (CEL-CHEAP)

    SciTech Connect

    Robison, H.; Houston, S.

    1981-01-01

    Coastal Energy Laboratory Chemical Heat Pump (CEL-CHEAP) is a redesigned open-cycle liquid desiccant air conditioner. Heat is discharged to shallow-well water by dehumidification-humidification for cooling and extracted by humidification-dehumidification for heating. Direct solar radiation concentrates the desiccant. For continuous operation, a small uninsulated tank stores concentrated solution. 6 refs.

  6. Procedures for Calculating Residential Dehumidification Loads

    SciTech Connect

    Winkler, Jon; Booten, Chuck

    2016-06-01

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.

  7. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  8. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  9. Research and development needs for desiccant cooling technology 1992--1997. (Supplement to the NREL report, Desiccant Cooling: State-of-the-Art Assessment)

    SciTech Connect

    Pesaran, A A

    1992-12-01

    This report is a supplement to Desiccant Cooling: State-of-the-Art Assessment (NREL/TP-254-4147, DE93000013). In this supplement document we have described a detailed program assuming sufficient funding to implement the R&D activities needed. Desiccant dehumidification is a mature technology for industrial applications, and in recent years the technology has been used for air conditioning a number of institutional and commercial buildings. Our proposal is based on argumentative discussions at various national meetings with leaders of the technology. The goal is the penetration of the broad air conditioning market. This work is funded by the Buildings technology Office of the US Department of Energy.

  10. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect

    Sand, J. R.; Grossman, T.; Rice, C. K.; Fairchild, P. D.; Gross, I. L.

    2004-12-30

    Desiccant dehumidification technology is emerging as a technically viable alternative for comfort conditioning in many commercial and institutional buildings. Attempts to improve the indoor air quality of buildings has resulted in increasingly stringent guidelines for occupant outdoor air ventilation rates. Additionally, revised building heating, ventilating, and air-conditioning (HVAC) design criteria based on regional peak dew point data highlight the important of the latent (moisture removal) building load relative to the sensible (temperature) building load.

  11. Research and development needs for desiccant cooling technology 1992--1997

    SciTech Connect

    Pesaran, A.A.

    1992-12-01

    This report is a supplement to Desiccant Cooling: State-of-the-Art Assessment (NREL/TP-254-4147, DE93000013). In this supplement document we have described a detailed program assuming sufficient funding to implement the R D activities needed. Desiccant dehumidification is a mature technology for industrial applications, and in recent years the technology has been used for air conditioning a number of institutional and commercial buildings. Our proposal is based on argumentative discussions at various national meetings with leaders of the technology. The goal is the penetration of the broad air conditioning market. This work is funded by the Buildings technology Office of the US Department of Energy.

  12. Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation.

    PubMed

    Boothby, Thomas C; Tapia, Hugo; Brozena, Alexandra H; Piszkiewicz, Samantha; Smith, Austin E; Giovannini, Ilaria; Rebecchi, Lorena; Pielak, Gary J; Koshland, Doug; Goldstein, Bob

    2017-03-16

    Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that tardigrades possess potentially novel mechanisms for surviving desiccation. Here we show that tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation tolerance. TDP genes are constitutively expressed at high levels or induced during desiccation in multiple tardigrade species. TDPs are required for tardigrade desiccation tolerance, and these genes are sufficient to increase desiccation tolerance when expressed in heterologous systems. TDPs form non-crystalline amorphous solids (vitrify) upon desiccation, and this vitrified state mirrors their protective capabilities. Our study identifies TDPs as functional mediators of tardigrade desiccation tolerance, expanding our knowledge of the roles and diversity of disordered proteins involved in stress tolerance.

  13. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    NASA Astrophysics Data System (ADS)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  14. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, A.

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  15. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, Armin

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  16. Desiccant contamination research: Report on the desiccant contamination test facility

    SciTech Connect

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  17. Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation.

    PubMed

    Raanan, Hagai; Oren, Nadav; Treves, Haim; Berkowicz, Simon M; Hagemann, Martin; Pade, Nadin; Keren, Nir; Kaplan, Aaron

    2016-02-01

    Environmental research often faces two major hurdles: (i) fluctuating spatial and temporal conditions and consequently large variability in the organisms' abundance and performance, and (ii) complex, costly logistics involved in field experiments. Measurements of physiological parameters or molecular analyses often represent single shot experiments. To study desiccation acclimation of filamentous cyanobacteria, the founders and main primary producers in desert biological soil crusts (BSC), we constructed an environmental chamber that can reproducibly and accurately simulate ambient conditions and measure microorganism performance. We show that recovery from desiccation of BSC cyanobacteria and Leptolyngbya ohadii isolated thereof are strongly affected by dehydration rate following morning dew. This effect is most pronounced in cells exposed to high light and temperature in the dry phase. Simultaneous measurements of water content, gas exchange and fluorescence were performed during dehydration. Photosynthetic performance measured by fluorescence begins declining when light intensity reaches values above 100 μmol photons m(-2) s(-1), even in fully hydrated cells. In contrast, photosynthetic rates measured using O2 evolution and CO2 uptake increased during rising irradiance to the point where the water content declined below ∼ 50%. Thus, fluorescence cannot serve as a reliable measure of photosynthesis in desert cyanobacteria. The effects of drying on gas exchange are discussed.

  18. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    SciTech Connect

    Fischer, J

    2005-12-21

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system

  19. Analysis of the adsorption process and of desiccant cooling systems: a pseudo- steady-state model for coupled heat and mass transfer. [DESSIM, DESSIM2, DESSIM4

    SciTech Connect

    Barlow, R.S.

    1982-12-01

    A computer model to simulate the adiabatic adsorption/desorption process is documented. Developed to predict the performance of desiccant cooling systems, the model has been validated through comparison with experimental data for single-blow adsorption and desorption. A literature review on adsorption analysis, detailed discussions of the adsorption process, and an initial assessment of the potential for performance improvement through advanced component development are included.

  20. Desiccant cooling: State-of-the-art assessment

    SciTech Connect

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  1. Desiccant cooling: State-of-the-art assessment

    SciTech Connect

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  2. Dehumidification of Iberia by enhanced summer upwelling

    NASA Astrophysics Data System (ADS)

    Miranda, P. M.; Costa, V.; Nogueira, M.; Semedo, A.

    2015-12-01

    Dehumidification of Iberia by enhanced summer upwelling Miranda PMA, Costa V, Semedo AIDL, Faculdade de Ciências, University of LisbonA 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. Aknowledgements: Study supported by FCT Grant RECI/GEO-MET/0380/2012Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http://dx.doi.org/10.3402/tellusa.v65i0.19245.Bakun et al (2010) Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, doi: 10.1111/j.1365-2486.2009.02094.xHoinka KP, Castro M (2003) The Iberian Peninsula thermal low. QJRMS, 129, 1491- 1511, doi: 10.1256/qj.01.189.Miranda et al (2013) Climate change and upwelling: response of Iberian upwelling to atmospheric

  3. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    SciTech Connect

    Kerrigan, P.

    2014-10-01

    This report describes a research study that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance homes in a hot-humid climate. The purpose of this research project was to observe and compare the humidity control performance. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses; homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family, new construction homes in New Orleans, LA.

  4. Alterations in the sugar metabolism and in the vacuolar system of mesophyll cells contribute to the desiccation tolerance of Haberlea rhodopensis ecotypes.

    PubMed

    Georgieva, K; Rapparini, F; Bertazza, G; Mihailova, G; Sárvári, É; Solti, Á; Keresztes, Á

    2017-01-01

    Haberlea rhodopensis belongs to the small group of resurrection plants having the unique ability to survive desiccation to air dry state retaining most of its chlorophyll content and then resume normal function upon rehydration. It prefers the shady valleys and northward facing slopes of limestone ridges in mountain zones with high average humidity. Nevertheless, it can be found rarely on rocks directly exposed to the sunlight, without the coverage of the canopy. In the present study, we follow the alterations in the subcellular organization of mesophyll cells and sugar metabolism upon desiccation of shade and sun H. rhodopensis plants. Composition and content of soluble carbohydrates during desiccation and rehydration were different in plants grown below the trees or on the sunny rocks. Sucrose, however, was dominating in both ecotypes. The amount of starch grains in chloroplasts was inversely related to that of sugars. Concomitantly with these changes, the number of vacuoles was multiplied in the cells. This can be explained by the development of small (secondary) vacuoles peripherally in the cytoplasm, rather than by the fragmentation of the single vacuole, proposed earlier in the literature. Accordingly, the centripetal movement of chloroplasts and other organelles may be a result of the dynamic changes in the vacuolar system. Upon rehydration, the inner vacuoles enlarged and the organelles returned to their normal position.

  5. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Cmarik, Gregory E.; Knox, Jim

    2016-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for human space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and reuse of onboard atmosphere components is required. Current systems utilize space vacuum to fully regenerate adsorbent beds, but this is not sustainable thus necessitating a closed-loop system. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods for use in future systems.

  6. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    SciTech Connect

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  7. The performance of a solar-regenerated open-cycle desiccant bed grain cooling system

    SciTech Connect

    Ismail, M.Z.; Angus, D.E. ); Thorpe, G.R. )

    1991-01-01

    The cooling of stored food grains suppresses the growth of populations of insect pests, inhibits spoilage by fungi and helps to preserve grain quality. In temperate and subtropical climates, grains may be effectively cooled by ventilating them with ambient air. In tropical climates, the enthalpy of the air must be reduced before it can be used for cooling grain. One method of achieving this is to isothermally reduce the humidity of the air. This paper describes experiments carried out on a simple-to-build solar-regenerated open-cycle grain cooling system. The device consists of a 5.85 m{sup 2} collector coupled with two beds of silica gel. Results from a series of experiments suggest that the device may be used to cool up to 200 tons of grain. The electrical power consumption of the device is of the order of 0.3 watt per ton of grain cooled, and the total electrical energy consumption is of the order of 0.7 kWh per ton of grain stored for a six-month period. The effectiveness of the device is a function of air flow rate and the enthalpy of ambient air, and results presented in this paper suggest that the solar cooling device is particularly effective in tropical climates.

  8. Fan cycling strategies and heat pipe heat exchangers provide energy efficient dehumidification

    SciTech Connect

    Shirey, D.B. III

    1995-03-01

    This article describes two methods to reduce energy consumption and peak demand in buildings that require humidity control that were demonstrated at the Salvador Dali Museum in St. Petersburg, Florida. The first method centered on alternative indoor fan cycling strategies and the second method involved the use of heat pipe heat exchangers. Both approaches increased the dehumidification performance of the existing air-conditioning systems and provided substantial savings. Simple, low cost alternative fan cycling strategies were used. When possible, auto fan control replaced constant fan operation to avoid excess fan energy consumption, ventilation load and compressor operation. The alternative fan control strategies reduced indoor humidity fluctuations in all zones, and significantly reduced overall humidity levels in the museum lobby and storage area. An HPHX was installed within one of the two gallery RTUs to improve the unit`s dehumidification performance. The passive HPHX significantly reduced electric reheat and compressor operation while maintaining the precise temperature and humidity requirements within the gallery. The second gallery RTU now operates primarily as a back-up unit to the heat pipe-assisted air-conditioning unit.

  9. Using EnergyPlus to Perform Dehumidification Analysis on Building America Homes: Preprint

    SciTech Connect

    Fang, X.; Winkler, J.; Christensen, D.

    2011-03-01

    A parametric study was conducted using EnergyPlus version 6.0 to investigate humidity issues on a typical mid-1990s reference home, a 2006 International Energy Conservation Code home, and a high-performance home in a hot-humid climate. The impacts of various dehumidification equipment and controls are analyzed on the high performance home. The study examined the combined effects of infiltration and mechanical ventilation with balanced and unbalanced mechanical ventilation systems. Indoor relative humidity excursions were examined; specifically, the number of excursions, average excursion length, and maximum excursion length. Space relative humidity, thermal comfort, and whole-house source energy consumption were analyzed for indoor relative humidity set points of 50%, 55%, and 60%. The study showed and explained why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in high-performance homes. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification should be provided to maintain space relative humidity below 60% in a hot-humid climate.

  10. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  11. Evidence of El Niño driven desiccation cycles in a shallow estuarine lake: The evolution and fate of Africa's largest estuarine system, Lake St Lucia

    NASA Astrophysics Data System (ADS)

    Humphries, M. S.; Green, A. N.; Finch, J. M.

    2016-12-01

    Projections of an increase in drought frequency and intensity over the next century are expected to have severe implications for a number of globally important coastal ecosystems. In this paper, we present geochemical data from three sediment cores extracted from the main depositional basins of Lake St Lucia, Africa's largest estuarine system. Lake St Lucia is subject to extreme natural variations in salinity. The sedimentary record documents the evolution of the system from a relatively deep-water, open lagoon to a confined, shallow estuarine lake that today is highly sensitive to changes in freshwater supply. This is particularly evident in the northern portions of the system, where the presence of distinct halite-enriched horizons document episodes of prolonged drought. The lateral persistence of these halite layers, as revealed by seismic profiling, point to a system-wide onset of desiccation associated with a major shift in the regional hydroclimate. The most severe drought events identified, which may have lasted several years, occur at 1100 and 1750 cal year BP, and are associated with known peaks in El Niño frequency and intensity. Our analyses suggest that past cycles of desiccation and hyper-salinity have been controlled by climatic changes related to ENSO intensification. This study provides a valuable new record from a key ENSO-sensitive region of the Southern Hemisphere. Our findings have important relevance for understanding ENSO variability across the Indo-Pacific region and the influence exerted on systems sensitive to changes in moisture balance.

  12. Desiccation tolerance of prokaryotes.

    PubMed Central

    Potts, M

    1994-01-01

    The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One

  13. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect

    Sand, J R; Grossman, G; Rice, C K; Fairchild, P D; Gross, I L

    1994-01-01

    Desiccant air-conditioning systems can be used as alternatives for conventional air-conditioning equipment in any commercial or residential building. Recent breakthroughs in desiccant materials technology and the creation of new markets by Indoor Air Quality issues make desiccant-based air-conditioning equipment practical for many space-conditioning applications.

  14. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOEpatents

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  15. Degradation of desiccants upon contamination: An experimental study

    SciTech Connect

    Pesaran, A A

    1990-11-01

    Experiments were conducted to quantify the effects of thermal cycling and exposure to contamination on solid desiccant materials that may be used in desiccant cooling systems. A test apparatus was used to thermally cycle several desiccant samples and expose them to ambient or contaminated humid air. The source of contamination was cigarette smoke. Six different solid desiccants were tested: two types of silica gel, activated alumina, activated carbon, molecular sieves, and lithium chloride. The exposed desiccant samples were removed after 0.5, 1, 2, 4, or 11 months of exposure and their moisture capacities were measured. Other tests were conducted to characterize pollutants deposited on the exposed samples or to evaluate impact of exposure on internal structure of the samples. Compared to fresh samples, the capacity loss due to thermal cycling with ambient air was generally 10% to 30%. The capacity loss due to only cigarette smoke was generally between 20% to 50%. 7 refs., 8 figs., 3 tabs.

  16. Low-Cost "Vacuum Desiccator"

    NASA Astrophysics Data System (ADS)

    Sweet, Frederick

    2004-10-01

    Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. The device can be used for enclosing small vials or bottles and also jars that are too large to be placed in conventional glass or plastic desiccators. This shrink-wrapping device is proposed for producing "vacuum desiccators" in large undergraduate chemistry laboratories or in graduate and research laboratories.

  17. Tolerance to environmental desiccation in moss sperm.

    PubMed

    Shortlidge, Erin E; Rosenstiel, Todd N; Eppley, Sarah M

    2012-05-01

    • Sexual reproduction in mosses requires that sperm be released freely into the environment before finding and fertilizing a receptive female. After release from the male plant, moss sperm may experience a range of abiotic stresses; however, few data are available examining stress tolerance of moss sperm and whether there is genetic variation for stress tolerance in this important life stage. • Here, we investigated the effects of environmental desiccation and recovery on the sperm cells of three moss species (Bryum argenteum, Campylopus introflexus, and Ceratodon purpureus). • We found that a fraction of sperm cells were tolerant to environmental desiccation for extended periods (d) and that tolerance did not vary among species. We found that this tolerance occurs irrespective of ambient dehydration conditions, and that the addition of sucrose during dry-down improved cell recovery. Although we observed no interspecific variation, significant variation among individuals within species in sperm cell tolerance to environmental desiccation was observed, suggesting selection could potentially act on this basic reproductive trait. • The observation of desiccation-tolerant sperm in multiple moss species has important implications for understanding bryophyte reproduction, suggesting the presence of a significant, uncharacterized complexity in the ecology of moss mating systems.

  18. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    SciTech Connect

    Kerrigan, P.; Norton, P.

    2014-10-01

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA.Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  19. Distinguishing biogeochemical processes influencing phosphorus dynamics in oxidizing and desiccating mud deposits from a freshwater wetland system

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Wassen, Martin J.; Griffioen, Jasper

    2015-04-01

    Focus and aim: Currently, lake Markermeer (680 km2) provides poor environmental conditions for the development of flora and fauna due to a thick fluffy layer that prevails at the lake's bed. To improve the conditions in the lake, large wetlands will be built from this fluffy layer, possibly mixed with sand or with the underlying Southern Sea deposit. The aim of this study is to distinguish biogeochemical processes influencing phosphorus dynamics in porewater during oxidation and desiccation of mud deposits from this lake. We focus on three important aspects that potentially influence these processes: granulometry, sediment type and modification by plants. Material and methods: A greenhouse experiment was conducted with three types of sediment that potentially will function as building material for the islands: fluffy mud (FM), sandy mud (SM) and Southern Sea deposit (SSD). Reed (Phragmites australis) was planted in half of the pots to distinguish influence by plants. For six months, the porewater-, soil- and plant quality was monitored to determine important biogeochemical processes. Variables measured from the porewater include: Cl-, NO2-, NO3-, PO43- and SO42- (IC); Ca, Fe, K, Mn, Na, P, Si, Sr (ICP-OES); as well as Fe2+, pH, alkalinity and EC. A phosphorus fractionation was carried out on the sediment to determine the phosphorus pools and the major elements of the sediments were determined following an aqua regia destruction using ICP-OES. Plant tissue was analysed for N, P, K and C content as well as the above- and belowground biomass. Results and discussion: It was found that sulfate production was the most important process influencing phosphorus availability in these soils. Due to oxidation processes in the mud, sulfate (SO42-) concentrations rose drastically in porewater from 100 ppm at the beginning of the experiment to well over 2000 ppm at the end of the experiment. This effect was strongest in SSD soils, likely due to higher presence of pyrite that gets

  20. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  1. The Analysis of A Hybrid Cooling System - Phase 2,

    NASA Astrophysics Data System (ADS)

    Yang, Kuan-Hsiung

    During the first phase of study, the mathematical modelling and the performance of the hybrid cooling system using solid desiccants were analyzed numerically. During this phase of study, the experimental investigation was conducted which yielded successful results with 5 % deviation as compared with the operational data of available commerical dehumidifiers. Furthmore, a prototype hybrid cooling system was actually constructed in the Refrigeration & Air-Conditioning Lab of National Sun Yat-Sen University (NSYSU), which generated good correlations with 7% deviation only, as compared with the analytical results. In other words, the good correlations obtained among the math modeling, the commercial unit operational data, and the NSYSU prototype system warrant the potential applications of this system for many industrial dehumidification and drying processes.

  2. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  3. Insect capa neuropeptides impact desiccation and cold tolerance.

    PubMed

    Terhzaz, Selim; Teets, Nicholas M; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G; Nachman, Ronald J; Dow, Julian A T; Denlinger, David L; Davies, Shireen-A

    2015-03-03

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.

  4. Measurement uncertainty of adsorption testing of desiccant materials

    SciTech Connect

    Bingham, C E; Pesaran, A A

    1988-12-01

    The technique of measurement uncertainty analysis as described in the current ANSI/ASME standard is applied to the testing of desiccant materials in SERI`s Sorption Test Facility. This paper estimates the elemental precision and systematic errors in these tests and propagates them separately to obtain the resulting uncertainty of the test parameters, including relative humidity ({plus_minus}.03) and sorption capacity ({plus_minus}.002 g/g). Errors generated by instrument calibration, data acquisition, and data reduction are considered. Measurement parameters that would improve the uncertainty of the results are identified. Using the uncertainty in the moisture capacity of a desiccant, the design engineer can estimate the uncertainty in performance of a dehumidifier for desiccant cooling systems with confidence. 6 refs., 2 figs., 8 tabs.

  5. Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi.

    PubMed

    Rizzo, Angela M; Negroni, Manuela; Altiero, Tiziana; Montorfano, Gigliola; Corsetto, Paola; Berselli, Patrizia; Berra, Bruno; Guidetti, Roberto; Rebecchi, Lorena

    2010-06-01

    Reactive oxygen species (ROS) are formed in all aerobic organisms, potentially leading to oxidative damage of all biological molecules. A number of defence mechanisms have developed to protect the organism from attack by ROS. Desiccation tolerance is correlated with an increase in the antioxidant potential in several organisms, but the regulation of the antioxidant defence system is complex and its role in desiccation-tolerant organisms is not yet firmly established. To determine if anhydrobiotic tardigrades have an antioxidant defence system, capable of counteracting ROS, we compared the activity of several antioxidant enzymes, the fatty acid composition and Heat shock protein expression in two physiological states (desiccated vs. hydrated) of the tardigrade Paramacrobiotus richtersi. In hydrated tardigrades, superoxide dismutase and catalase show comparable activities, while in desiccated specimens the activity of superoxide dismutase increases. Both glutathione peroxidase and glutathione were induced by desiccation. The percentage of fatty acid composition of polyunsaturated fatty acids and the amount of thiobarbituric acid reactive substances are higher in desiccated animals than in hydrated ones. Lastly, desiccated tardigrades did not differ significantly from the hydrated ones in the relative levels of Hsp70 and Hsp90. These results indicate that the possession of antioxidant metabolism could represent a crucial strategy to avoid damages during desiccation in anhydrobiotic tardigrades.

  6. Using EnergyPlus to Perform Dehumidification Analysis on Building America Homes

    SciTech Connect

    Fang, Xia; Winkler, Jon; Christensen, Dane

    2011-03-01

    This study used EnergyPlus to investigate humidity issues on a typical mid-1990s reference home, a 2006 International Energy Conservation Code home, and a high-performance home in a hot-humid climate; the study confirmed that supplemental dehumidification should be provided to maintain space relative humidity below 60% in a hot-humid climate.

  7. Advanced Dehumidification Analysis on Building America Homes Using EnergyPlus: Preprint

    SciTech Connect

    Fang, X.; Winkler, J.; Christensen, D.

    2010-08-01

    A parametric study was conducted using EnergyPlus version 4.0 to analyze the impact of various dehumidification equipment and control strategies on a typical mid-1990's reference home, a 2006 IECC home, and a high-performance home in a hot humid climate.

  8. Building America Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  9. Desiccant-Based Preconditioning Market Analysis

    SciTech Connect

    Fischer, J.

    2001-01-11

    A number of important conclusions can be drawn as a result of this broad, first-phase market evaluation. The more important conclusions include the following: (1) A very significant market opportunity will exist for specialized outdoor air-handling units (SOAHUs) as more construction and renovation projects are designed to incorporate the recommendations made by the ASHRAE 62-1989 standard. Based on this investigation, the total potential market is currently $725,000,000 annually (see Table 6, Sect. 3). Based on the market evaluations completed, it is estimated that approximately $398,000,000 (55%) of this total market could be served by DBC systems if they were made cost-effective through mass production. Approximately $306,000,000 (42%) of the total can be served by a non-regenerated, desiccant-based total recovery approach, based on the information provided by this investigation. Approximately $92,000,000 (13%) can be served by a regenerated desiccant-based cooling approach (see Table 7, Sect. 3). (2) A projection of the market selling price of various desiccant-based SOAHU systems was prepared using prices provided by Trane for central-station, air-handling modules currently manufactured. The wheel-component pricing was added to these components by SEMCO. This resulted in projected pricing for these systems that is significantly less than that currently offered by custom suppliers (see Table 4, Sect. 2). Estimated payback periods for all SOAHU approaches were quite short when compared with conventional over-cooling and reheat systems. Actual paybacks may vary significantly depending on site-specific considerations. (3) In comparing cost vs benefit of each SOAHU approach, it is critical that the total system design be evaluated. For example, the cost premium of a DBC system is very significant when compared to a conventional air handling system, yet the reduced chiller, boiler, cooling tower, and other expense often equals or exceeds this premium, resulting in a

  10. Antioxidant defense during desiccation of the resurrection plant Haberlea rhodopensis.

    PubMed

    Georgieva, Katya; Dagnon, Soleya; Gesheva, Emiliya; Bojilov, Dimitar; Mihailova, Gergana; Doncheva, Snezhana

    2017-05-01

    Maintaining a strong antioxidant system is essential for preventing drought-induced oxidative stress. Thus, in the present study we investigated the role of some non-enzymic and enzymic antioxidants in desiccation tolerance of Haberlea rhodopensis. The effects of high light upon desiccation on antioxidant capacity was estimated by comparing the response of shade and sun plants. The significant enhancement of the antioxidant capacity at 8% RWC corresponded to an enormous increase in flavonoid content. The important role of ascorbate-glutathione cycle in overcoming oxidative stress during drying of H. rhodopensis was established. The antioxidant capacity increased upon dehydration of both shade and sun plants but some differences in non-enzymatic and enzymatic antioxidants were observed. Investigations on the role of polyphenols in desiccation tolerance are scarce. In the present study the polyphenol profiles (fingerprints) of the resurrection plant Haberlea rhodopensis, including all components of the complex are obtained for the first time. It was clarified that the polyphenol complex of H. rhodopensis includes only two types of glycosides - phenylethanoid glucosides and hispidulin 8-C-glucosides. Upon desiccation the polyphenol content increase and the main role of phenylethanoid glucosides in the protection of H. rhodopensis was revealed.

  11. Monitoring Vadose Zone Desiccation with Geophysical Methods

    SciTech Connect

    Truex, Michael J.; Johnson, Timothy C.; Strickland, Christopher E.; Peterson, John E.; Hubbard, Susan S.

    2013-05-01

    Soil desiccation was recently field tested as a potential vadose zone remediation technology. Desiccation removes water from the vadose zone and significantly decreases the aqueous-phase permeability of the desiccated zone, thereby decreasing movement of moisture and contaminants. The 2-D and 3-D distribution of moisture content reduction over time provides valuable information for desiccation operations and for determining when treatment goals have been reached. This type of information can be obtained through use of geophysical methods. Neutron moisture logging, cross-hole electrical resistivity tomography, and cross-hole ground penetrating radar approaches were evaluated with respect to their ability to provide effective spatial and temporal monitoring of desiccation during a treatability study conducted in the vadose zone of the DOE Hanford Site in WA.

  12. Flow structure of natural dehumidification over a horizontal finned-tube

    NASA Astrophysics Data System (ADS)

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2016-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  13. Breathing air purification; Desiccant vs. refrigerated

    SciTech Connect

    McKay, K.L.; Swanson, A.L. )

    1986-07-01

    Carbon monoxide (CO) is a common contaminant of ambient air - levels as high as 200 ppm are not uncommon in urban, industrial, or high automotive-traffic areas. Carbon monoxide may also be produced by the oxidation of lubricating oil in overheated compressors. Air from an oil-lubricated compressor, even when an aftercooler is used, often contains significant quantities of oil mist and vapor. Even where a breathing air (non-oil-lubricated) compressor is used , oil. levels in the air taken into the compressor can still exceed Grade D standards, especially in industrial environments. Other contaminants (gaseous hydrocarbons, particulate matter, and odors), while not addressed by the Grade D criteria, are also present in harmful or objectionable levels in industrial environments; therefore, they must be taken into account in the design of the air purification systems. This paper discusses two basic types of breathing air purifiers: desiccant and refrigerated purifiers.

  14. Relaxation nuclear magnetic resonance imaging (R-NMRI) of desiccation in M9787 silicone pads.

    SciTech Connect

    Alam, Todd M; Cherry, Brian Ray; Alam, Mary Kathleen

    2004-06-01

    The production and aging of silicone materials remains an important issue in the weapons stockpile due to their utilization in a wide variety of components and systems within the stockpile. Changes in the physical characteristics of silicone materials due to long term desiccation has been identified as one of the major aging effects observed in silicone pad components. Here we report relaxation nuclear magnetic resonance imaging (R-NMRI) spectroscopy characterization of the silica-filled and unfilled polydimethylsiloxane (PDMS) and polydiphenylsiloxane (PDPS) copolymer (M9787) silicone pads within desiccating environments. These studies were directed at providing additional details about the heterogeneity of the desiccation process. Uniform NMR spin-spin relaxation time (T2) images were observed across the pad thickness indicating that the drying process is approximately uniform, and that the desiccation of the M9787 silicone pad is not a H2O diffusion limited process. In a P2O5 desiccation environment, significant reduction of T2 was observed for the silica-filled and unfilled M9787 silicone pad for desiccation up to 225 days. A very small reduction in T2 was observed for the unfilled copolymer between 225 and 487 days. The increase in relative stiffness with desiccation was found to be higher for the unfilled copolymer. These R-NMRI results are correlated to local changes in the modulus of the material

  15. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Bilton, David T.; Arribas, Paula

    2016-01-01

    Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin. PMID:27635346

  16. Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria.

    PubMed

    Fleming, Erich D; Castenholz, Richard W

    2007-06-01

    Scytonemin is an ultraviolet radiation (UVR)-screening compound synthesized by some sheathed cyanobacteria exposed to high solar and sky radiation. It is primarily produced in response to UVA radiation, but certain environmental stresses can enhance synthesis. This study focuses on the effects of periodic desiccation on scytonemin synthesis in three desiccation-tolerant cyanobacterial strains, Nostoc punctiforme PCC 73102, Chroococcidiopsis CCMEE 5056 and Chroococcidiopsis CCMEE 246. Nostoc punctiforme and Chroococcidiopsis CCMEE 5056 exposed to UVA radiation produced more concentrated scytonemin screens when experiencing periodic desiccation (i.e. 1 day desiccated for every 2 days hydrated) than when continuously hydrated. A more concentrated scytonemin screen would reduce the amount of UVR damage accrued when cells are desiccated and metabolically inactive. This might allow the cyanobacteria to allocate more energy to systems other than UVR damage repair during rehydration, which would facilitate recovery. The scytonemin screen is extremely stable, remaining largely intact in the sheaths of desiccated N. punctiforme even when continuously exposed to UVA radiation for about 2 months. In contrast to the above findings, scytonemin synthesis in Chroococcidiopsis CCMEE 246, a strain that produces scytonemin constitutively under low visible light (no UVA), was partially inhibited by periodic desiccation.

  17. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  18. [Desiccation cracking of soil body: a review].

    PubMed

    Pei, Yin-Ge; Xu, Ze-Min; Zhang, Jia-Ming

    2012-04-01

    Desiccation cracking of soil body is a complex physical process, which can affect the strength, stability, and permeability of soil body, and involve in several disciplines such as soil science, agricultural science, engineering geology, and environmental science. This paper introduced the significances of the study on the desiccation cracking of soil body, reviewed the related theoretical and applied researches and the quantitative analysis of crack morphology, and discussed the deficiencies in the research fields, research contents, and research methods. The future research directions about the desiccation cracking of soil body were pointed out.

  19. Solute Leakage Resulting from Leaf Desiccation

    PubMed Central

    Leopold, A. Carl; Musgrave, Mary E.; Williams, Kathleen M.

    1981-01-01

    The leakage of solutes from foliar tissue is utilized as a dynamic measure of apparent changes in membrane integrity in response to desiccation. It is found that rehydrating leaf discs of cowpea (Vigna sinensis [L.] Endl.) show increasing leakiness in proportion to the extent of prior desiccation, whereas Selaginella lepidophylla Spring., a resurrection plant, does not. The elevated leakage rate of cowpea after desiccation recovers with time, and the passage of time in the stressed condition results in reduced subsequent leakiness. These characteristics are interpreted as suggesting that the leakage of solute reflects the condition of cellular membranes, and that desiccation stress leads to lesions in the membranes. The kinetics of solute leakage is suggested as a simple means of following changes in membrane lesions and associated features of membrane repair and hardening. PMID:16662082

  20. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    SciTech Connect

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  1. Desiccation Tolerance in the Moss Polytrichum formosum: Physiological and Fine-structural Changes during Desiccation and Recovery

    PubMed Central

    Proctor, Michael C. F.; Ligrone, Roberto; Duckett, Jeffrey G.

    2007-01-01

    similar to those seen in published data from the pteridophyte Selaginella lepidophylla. Conclusions Initial recovery of respiration and photosynthesis (as of protein synthesis) is very rapid, and independent of protein synthesis, suggesting physical reactivation of systems conserved intact through desiccation and rehydration, but full recovery takes approx. 24 h. This is consistent with the cytological evidence, which shows the thylakoids and cristae remaining intact through the whole course of dehydration and rehydration. Substantial and co-ordinated changes in other cell components, which must affect spatial relationships of organelles and metabolic systems, return to normal on a time span similar to full recovery of photosynthesis. Comparison of the present data with recently published results suggests a significant role for the cytoskeleton in desiccation responses. PMID:17158142

  2. Clay with Desiccation Cracks is an Advection Dominated Environment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  3. Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer.

    PubMed

    Jönsson, K Ingemar; Schill, Ralph O

    2007-04-01

    The physiology and biochemistry behind the extreme tolerance to desiccation shown by the so-called anhydrobiotic animals represents an exciting challenge to biology. The current knowledge suggests that both carbohydrates and proteins are often involved in protecting the dry cell from damage, or in the repair of induced damage. Tardigrades belong to the most desiccation-tolerant multicellular organisms, but very little research has been reported on the biochemistry behind desiccation tolerance in this group. We quantified the induction of the heat-shock protein Hsp70, a very wide-spread stress protein, in response to desiccation, ionising radiation, and heating, in the anhydrobiotic tardigrade Richtersius coronifer using an immuno-westernblot method. Elevated levels of Hsp70 were recorded after treatment of both heat and ionising radiation, and also in rehydrated tardigrades after a period of desiccation. In contrast, tardigrades in the desiccated (dry) state had reduced Hsp70 levels compared to the non-treated control group. Our results suggest that Hsp70 may be involved in the physiological and biochemical system underlying desiccation (and radiation) tolerance in tardigrades, and that its role may be connected to repair processes after desiccation rather than to biochemical stabilization in the dry state.

  4. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  5. The Effects of Desiccation and Climatic Change on the Hydrology of the Aral Sea.

    NASA Astrophysics Data System (ADS)

    Small, Eric E.; Giorgi, Filippo; Cirbus Sloan, Lisa; Hostetler, Steven

    2001-02-01

    Anthropogenic desiccation of the Aral Sea between 1960 and the mid-1990s resulted in a substantial modification of the land surface that changed air temperature in the surrounding region. During the desiccation interval, the net annual rate of precipitation minus evaporation (P E) over the Aral Sea's surface became more negative by 15%, with the greatest changes occurring during the summer months. In addition, Aral Sea surface temperatures (SST) increased by up to 5°C in the spring and summer and decreased by up to 4°C in the fall and winter. A series of coupled regional climate-lake model experiments were completed to evaluate if the observed hydrologic changes are caused by desiccation or instead reflect larger-scale climatic variability or change, or some combination of both. If the P E changes are the result of desiccation, then a positive feedback exists that has amplified the anthropogenic perturbation to the hydrologic system.The effects of desiccation are examined by varying the simulated area, depth, and salinity of the Aral Sea in different model experiments. The simulated changes in SST resulting from desiccation are similar to the observed changes-both simulated and observed SSTs have increased during the spring and summer and have decreased during the fall and winter. The simulated changes in the annual cycle of P E resulting from desiccation are also similar to observed changes, but the simulated net annual decrease in P E is only 30% of the observed decrease. Warming has been observed across central Asia during the desiccation interval. The hydrologic response to this large-scale climatic variability or change was assessed by perturbing the meteorological boundary conditions (1.5°C cooling with constant relative humidity) but leaving the Aral Sea characteristics unchanged. The simulated effects of warming do not closely match the observed changes on the monthly timescale-SST changes are positive and the P E changes are negative in all months

  6. Desiccation tolerance in Bryophytes: relevance to the evolution of desiccation tolerance in Land Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 120-130 species that exhibit some degree of vegetative desiccation tolerance. ...

  7. Molecular Strategies of the Caenorhabditis elegans Dauer Larva to Survive Extreme Desiccation

    PubMed Central

    Erkut, Cihan; Vasilj, Andrej; Boland, Sebastian; Habermann, Bianca; Shevchenko, Andrej; Kurzchalia, Teymuras V.

    2013-01-01

    Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals. PMID:24324795

  8. Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation.

    PubMed

    Erkut, Cihan; Vasilj, Andrej; Boland, Sebastian; Habermann, Bianca; Shevchenko, Andrej; Kurzchalia, Teymuras V

    2013-01-01

    Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.

  9. Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery.

    PubMed

    Moyankova, Daniela; Mladenov, Petko; Berkov, Strahil; Peshev, Darin; Georgieva, Desislava; Djilianov, Dimitar

    2014-12-01

    Desiccation tolerance is among the most important parameters for crop improvement under changing environments. Resurrection plants are useful models for both theoretical and practical studies. We performed metabolite profiling via gas chromatography coupled with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) and analyzed the antioxidant capacity of the endemic resurrection plant Haberlea rhodopensis at desiccation and recovery. More than 100 compounds were evaluated. Stress response included changes in both primary and secondary metabolic pathways. The high amounts of the specific glycoside myconoside and some phenolic acids - e.g. syringic and dihydrocaffeic acid under normal conditions tend to show their importance for the priming of H. rhodopensis to withstand severe desiccation and oxidative stress. The accumulation of sucrose (resulting from starch breakdown), total phenols, β-aminoisobutyric acid, β-sitosterol and α-tocopherol increased up to several times at later stages of desiccation. Extracts of H. rhodopensis showed high antioxidant capacity at stress and normal conditions. Myconoside was with the highest antioxidant properties among tested phenolic compounds. Probably, the evolution of resurrection plants under various local environments has resulted in unique desiccation tolerance with specific metabolic background. In our case, it includes the accumulation of a relatively rare compound (myconoside) that contributes alone and together with other common metabolites. Further systems biology studies on the involvement of carbohydrates, phenolic acids and glycosides in the desiccation tolerance and antioxidant capacity of H. rhodopensis will definitely help in achieving the final goal - improving crop drought tolerance.

  10. Transcriptomic analysis of Salmonella desiccation resistance.

    PubMed

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  11. Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress

    PubMed Central

    2014-01-01

    valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress. PMID:24383424

  12. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis.

    PubMed

    Wang, Xiaonan; Chen, Sixue; Zhang, Heng; Shi, Lei; Cao, Fenglin; Guo, Lihai; Xie, Yongming; Wang, Tai; Yan, Xiufeng; Dai, Shaojun

    2010-12-03

    Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive a desiccated state and recover when water becomes available. To better understand the mechanism of desiccation tolerance, we have applied physiological and proteomic analysis. Samples of S. tamariscina were water-deprived for up to seven days followed by 12 h of rewatering. Our results showed that endogenous abscisic acid (ABA) increased to regulate dehydration-responsive genes/proteins and physiological processes. In the course of dehydration, the contents of osmolytes represented by soluble sugars and proline were increased to maintain cell structure integrity. The activities of four antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR)) also increased. In contrast, both the rate of photosynthesis and the chlorophyll content decreased, and plasma membrane integrity was lost. We identified 138 desiccation-responsive two-dimensional electrophoresis (2-DE) spots, representing 103 unique proteins. Hierarchical clustering analysis revealed that 83% of the proteins were down-regulated upon dehydration. They were mainly involved in photosynthesis, carbohydrate and energy metabolism, stress and defense, protein metabolism, signaling, membrane/transport, cell structure, and cell division. The dynamic expression changes of the desiccation-responsive proteins provide strong evidence that cell structure modification, photosynthesis reduction, antioxidant system activation, and protein post-transcriptional/translational modifications are essential to the poikilochlorophyllous fern-ally S. tamariscina in response to dehydration. In addition, our comparative analysis of dehydration-responsive proteins in vegetative tissues

  13. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spike-mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved or revolved desiccation tolerance (DT). A sister group comparison was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, S. ...

  14. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    PubMed Central

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A. A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors. PMID:26733996

  15. Do subtoxic levels of chlorate influence the desiccation tolerance of Egeria densa?

    PubMed

    Palma, Alvaro T; Schwarz, Alex; Henríquez, Luís A; Alvarez, Ximena; Fariña, José M; Lu, Qimiao

    2013-02-01

    Among the different factors hypothesized to be responsible for the virtual disappearance of Egeria densa, once a dominant aquatic macrophyte in a southern Chile wetland ecosystem, are the negative effects of certain chemical compounds (mainly chlorate) and harsh environmental conditions (desiccation caused by prolonged atmospheric exposure). The authors performed an integrated experiment in which E. densa plants were first exposed for four weeks inside a mesocosm system to levels of chlorate that existed in the wetland at the time of the plant's demise and then exposed to desiccation conditions that also resembled those that the system had experienced. Hence, the authors tested the hypothesis that E. densa plants exposed to sublethal levels of chlorate are more susceptible to the deleterious effect of desiccation compared with plants that had not been exposed to chlorate. This hypothesis was tested by means of quantifying physiologically related parameters in plants right after the four weeks under water and then after the desiccation period of 6 h. Their results rejected this hypothesis, because all plants, regardless of their history, are equally affected by desiccation.

  16. Desiccation Tolerance Studied in the Resurrection Plant Craterostigma plantagineum.

    PubMed

    Bartels, Dorothea

    2005-11-01

    This review will focus on the acquisition of desiccation tolerance in the resurrection plant Craterostigma plantagineum. Molecular aspects of desiccation tolerance in this plant will be compared with the response of non-tolerant plants to dehydration. Unique features of C. plantagineum are described like the CDT-1 (Craterostigma desiccation tolerance gene-1) gene and the carbohydrate metabolism. Abundant proteins which are associated with the desiccation tolerance phenomenon are the late embryogenesis abundant (=LEA) proteins. These proteins are very hydrophilic and occur in several other species which have acquired desiccation tolerance.

  17. Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process

    SciTech Connect

    Gao, Zhiming; Abdelaziz, Omar; Qu, Ming

    2017-01-01

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. The model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.

  18. Graphene oxide membranes with high permeability and selectivity for dehumidification of air

    SciTech Connect

    Shin, Yongsoon; Liu, Wei; Schwenzer, Birgit; Manandhar, Sandeep; Chase-Woods, Dylan; Engelhard, Mark H.; Devanathan, Ram; Fifield, Leonard S.; Bennett, Wendy D.; Ginovska, Bojana; Gotthold, David W.

    2016-09-01

    Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of free-standing GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 105 Barrer and a water vapor permeance of 1.01 x 10-5 mol/m2sPa, while the nitrogen permeability was below the system’s detection limit, yielding a selectivity >104 in 80% relative humidity (RH) air at 30.8 °C. The results show great potential for a range of energy conversion and environmental applications

  19. Effects of temperature on desiccant catalysis of refrigerant and lubricant decomposition. Final report

    SciTech Connect

    Rohatgi, N.D.T.

    1998-06-01

    Accelerated aging at high temperatures (149 C) for short aging times (28 days) is effective in screening the compatibility of different materials in refrigeration systems. However, in actual applications temperatures are usually lower and operating times much longer. Therefore plots to allow for interpolation or extrapolation of experimental data to actual operating conditions are needed. In the current study, aging of refrigerant/lubricant/desiccant/metal systems was conducted at five different temperatures, and for each temperature at four different aging times. The data collected from this study provided plots relating refrigerant or lubricant decomposition to aging time, aging temperature, and type of desiccant, which can be used for interpolation or extrapolation.

  20. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  1. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  2. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    PubMed Central

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  3. The structure of the desiccated Richtersius coronifer (Richters, 1903).

    PubMed

    Czerneková, Michaela; Jönsson, K Ingemar; Chajec, Lukasz; Student, Sebastian; Poprawa, Izabela

    2017-05-01

    Tun formation is an essential morphological adaptation for entering the anhydrobiotic state in tardigrades, but its internal structure has rarely been investigated. We present the structure and ultrastructure of organs and cells in desiccated Richtersius coronifer by transmission and scanning electron microscopy, confocal microscopy, and histochemical methods. A 3D reconstruction of the body organization of the tun stage is also presented. The tun formation during anhydrobiosis of tardigrades is a process of anterior-posterior body contraction, which relocates some organs such as the pharyngeal bulb. The cuticle is composed of epicuticle, intracuticle and procuticle; flocculent coat; and trilaminate layer. Moulting does not seem to restrict the tun formation, as evidenced from tardigrade tuns that were in the process of moulting. The storage cells of desiccated specimens filled up the free inner space and surrounded internal organs, such as the ovary and digestive system, which were contracted. All cells (epidermal cells, storage cells, ovary cells, cells of the digestive system) underwent shrinkage, and their cytoplasm was electron dense. Lipids and polysaccharides dominated among reserve material of storage cells, while the amount of protein was small. The basic morphology of specific cell types and organelles did not differ between active and anhydrobiotic R. coronifer.

  4. Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms.

    PubMed

    Garcés Cea, Marcelo; Claverol, Stephan; Alvear Castillo, Carla; Rabert Pinilla, Claudia; Bravo Ramírez, León

    2014-04-01

    desiccation takes place therefore precludes the induction of protective systems, suggesting a constitutive mechanism of cellular protection.

  5. Development of Membrane-Based Desiccant Fiber for Vacuum Desiccant Cooling.

    PubMed

    Yang, Yifan; Rana, Dipak; Lan, Christopher Q; Matsuura, Takeshi

    2016-06-22

    A novel hydrophobic membrane-based desiccant fiber (MDF) was developed by loading lithium chloride into hydrophobic hollow fiber membranes. The MDF thus made was then tested for vapor absorption under controlled conditions. Furthermore, an MDF pad, which was made by weaving MDF into a piece of garment, was built into a laboratory vacuum desiccant cooling (VDC) setup, which included the MDF pad as the desiccant layer and a cooling towel saturated with water as the water reservoir, to test the cooling effects at atmospheric pressure and vacuum of 25 in. of Hg. Results indicate that MDF is suitable for applications such as in VDC. Mass and heat transfer of vapor absorption by MDF were also analyzed.

  6. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of desiccation tolerance of lichens, and of their photobionts in particular, has frequently focused on the antioxidant system that protects the cell against photo-oxidative stress during dehydration/rehydration cycles. Thus, in this work we carried out proteomic and transcript analyses of ...

  7. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds.

    PubMed

    Buitink, J; Leprince, O; Hoekstra, F A

    2000-11-01

    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumber (Cucumis sativa) seeds. Survival following drying and a membrane integrity assay indicated that desiccation tolerance was present during early imbibition and lost in germinated radicles. In germinated cucumber radicles, desiccation tolerance could be re-induced by an incubation in polyethylene glycol (PEG) before drying. In desiccation-intolerant radicles, partitioning of spin probes into lipids during dehydration occurred at higher water contents compared with tolerant and PEG-induced tolerant radicles. The difference in partitioning behavior between desiccation-tolerant and -intolerant tissues could not be explained by the loss of water. Consequently, using a two-phase model system composed of sunflower or cucumber oil and water, physical properties of the aqueous solvent that may affect the partitioning of amphiphilic spin probes were investigated. A significant relationship was found between the partitioning of spin probes and the viscosity of the aqueous solvent. Moreover, in desiccation-sensitive radicles, the rise in cellular microviscosity during drying commenced at higher water contents compared with tolerant or PEG-induced tolerant radicles, suggesting that the microviscosity of the cytoplasm may control the partitioning behavior in dehydrating seeds.

  8. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds.

    PubMed

    Pukacka, Stanisława; Ratajczak, Ewelina

    2006-12-01

    Ascorbate-glutathione systems were studied during desiccation of recalcitrant seeds of the silver maple (Acer saccharinum L.). The desiccated seeds gradually lost their germination capacity and this was strongly correlated with an increase in electrolyte leakage from seeds. Simultaneously the increase of reactive oxygen species (ROS) (superoxide radical - O(2)(-*) and hydrogen peroxide - H(2)O(2)) production was observed. The results indicate that remarkable changes in the concentrations and redox status of ascorbate and glutathione occur in embryo axes and cotyledons. After shedding, concentrations of ascorbic acid (ASA) and the reduced form of glutathione (GSH) are higher in embryo axes than in cotyledons and their redox status is high in both embryo parts. Cotyledons in freshly shed seeds are devoid of GSH. At the first stages of desiccation, up to a level of 43% of moisture content, ASA content in embryo axes and GSH content in cotyledons increased. Below this level of moisture content, the antioxidant contents as well as their redox status rapidly decreased. The enzymes of the ascorbate-glutathione pathway: ascorbate peroxidase (APX) (EC 1.11.1.11), monodehydroascorbate reductase (MR) (EC 1.6.5.4), dehydroascorbate reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) increased their activity during desiccation, but mainly in embryonic axes. The changes are probably required for counteracting the production of ROS during desiccation. The relationship between ascorbate and glutathione metabolism and their relevance during desiccation of recalcitrant Acer saccharinum seeds is discussed.

  9. Energy-efficient regenerative liquid desiccant drying process

    DOEpatents

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  10. Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field study.

    PubMed

    Weaver, L; Webber, J B; Hickson, A C; Abraham, P M; Close, M E

    2015-05-01

    Groundwater is used as a precious resource for drinking water worldwide. Increasing anthropogenic activity is putting increasing pressure on groundwater resources. One impact of increased groundwater abstraction coupled with increasing dry weather events is the lowering of groundwater levels within aquifers. Biofilms within groundwater aquifers offer protection to the groundwater by removing contaminants entering the aquifer systems from land use activities. The study presented investigated the impact of desiccation events on the biofilms present in groundwater aquifers using field and laboratory experiments. In both field and laboratory experiments a reduction in enzyme activity (glucosidase, esterase and phosphatase) was seen during desiccation compared to wet controls. However, comparing all the data together no significant differences were seen between either wet or desiccated samples or between the start and end of the experiments. In both field and laboratory experiments enzyme activity recovered to start levels after return to wet conditions. The study shows that biofilms within groundwater systems are resilient and can withstand periods of desiccation (4 months).

  11. Proteome analysis of leaves of the desiccation-tolerant grass, sporobolus stapfianus, in response to desiccation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sporobolus stapfianus is a resurrection grass native to South Africa which can tolerate the complete drying of its vegetative tissue structure; i.e., desiccation, and recover fully within hours of rewetting. Gene expression studies have demonstrated that the grass employs a strategy of gene inductio...

  12. The precipitation response to the desiccation of Lake Chad

    SciTech Connect

    Lauwaet D.; VanWeverberg K.; vanLipzig, N. P. M., Weverberg, K. V., Ridderb, K. D., and Goyens, C.

    2012-04-01

    Located in the semi-arid African Sahel, Lake Chad has shrunk from a surface area of 25000 km2 in 1960 to about 1350 km2 due to a series of droughts and anthropogenic influences. The disappearance of such a large open-water body can be expected to have a noticeable effect on the meteorology in the surroundings of the lake. The impact could extend even further to the west as westward propagating convective systems pass Lake Chad in the rainfall season. This study examines the sensitivity of the regional hydrology and convective processes to the desiccation of the lake using a regional atmospheric model. Three Lake Chad scenarios are applied reflecting the situation in 1960, the current situation and a potential future scenario in which the lake and the surrounding wetlands have disappeared. The model simulations span the months July-September in 2006, which includes the rainfall season in the Lake Chad area. Total precipitation amounts and the components of the hydrological cycle are found to be hardly affected by the existence of the lake. A filled Lake Chad does, however, increase the precipitation at the east side of the lake. The model results indicate that the boundary layer moisture and temperature are significantly altered downwind of the lake. By investigating a mesoscale convective system (MCS) case, this is found to affect the development and progress of the system. At first, the MCS is intensified by the more unstable boundary layer air but the persistence of the system is altered as the cold pool propagation becomes less effective. The proposed mechanism is able to explain the differences in the rainfall patterns nearby Lake Chad between the scenarios. This highlights the local sensitivity to the desiccation of Lake Chad whereas the large-scale atmospheric processes are not affected.

  13. Molecular mechanisms of desiccation tolerance in resurrection plants.

    PubMed

    Gechev, Tsanko S; Dinakar, Challabathula; Benina, Maria; Toneva, Valentina; Bartels, Dorothea

    2012-10-01

    Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.

  14. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge

    PubMed Central

    Gusev, Oleg; Suetsugu, Yoshitaka; Cornette, Richard; Kawashima, Takeshi; Logacheva, Maria D.; Kondrashov, Alexey S.; Penin, Aleksey A.; Hatanaka, Rie; Kikuta, Shingo; Shimura, Sachiko; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Shagimardanova, Elena; Alexeev, Dmitry; Govorun, Vadim; Wisecaver, Jennifer; Mikheyev, Alexander; Koyanagi, Ryo; Fujie, Manabu; Nishiyama, Tomoaki; Shigenobu, Shuji; Shibata, Tomoko F.; Golygina, Veronika; Hasebe, Mitsuyasu; Okuda, Takashi; Satoh, Nori; Kikawada, Takahiro

    2014-01-01

    Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki. PMID:25216354

  15. Technology Solutions Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana

    SciTech Connect

    2014-11-01

    The purpose of this project by Building Science Corporation was to evaluate the humidity control performance of new single family high performance homes, and compare the interior conditions and mechanical systems operation between two distinct groups of houses: homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012, and interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space; however, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  16. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    NASA Astrophysics Data System (ADS)

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2012-06-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  17. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia.

    PubMed

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia.

  18. Desiccation tolerance of Sphagnum revisited: a puzzle resolved.

    PubMed

    Hájek, T; Vicherová, E

    2014-07-01

    As ecosystem engineers, Sphagnum mosses control their surroundings through water retention, acidification and peat accumulation. Because water retention avoids desiccation, sphagna are generally intolerant to drought; however, the literature on Sphagnum desiccation tolerance (DT) provides puzzling results, indicating the inducible nature of their DT. To test this, various Sphagnum species and other mesic bryophytes were hardened to drought by (i) slow drying; (ii) ABA application and (iii) chilling or frost. DT tolerance was assessed as recovery of chlorophyll fluorescence parameters after severe desiccation. We monitored the seasonal course of DT in bog bryophytes. Under laboratory conditions, following initial de-hardening, untreated Sphagnum shoots lacked DT; however, DT was induced by all hardening treatments except chilling, notably by slow drying, and in Sphagnum species of the section Cuspidata. In the field, sphagna in hollows and lawns developed DT several times during the growing season, responding to reduced precipitation and a lowered water table. Hummock and aquatic species developed DT only in late autumn, probably as a response to frost. Sphagnum protonemata failed to develop DT; hence, desiccation may limit Sphagnum establishment in drier habitats with suitable substrate chemistry. Desiccation avoiders among sphagna form compact hummocks or live submerged; thus, they do not develop DT in the field, lacking the initial desiccation experience, which is frequent in hollow and lawn habitats. We confirmed the morpho-physiological trade-off: in contrast to typical hollow sphagna, hummock species invest more resources in water retention (desiccation avoidance), while they have a lower ability to develop physiological DT.

  19. Desiccation of the resurrection plant Haberlea rhodopensis at high temperature.

    PubMed

    Mihailova, Gergana; Petkova, Snejana; Büchel, Claudia; Georgieva, Katya

    2011-05-01

    Haberlea rhodopensis plants, growing under low irradiance in their natural habitat, were desiccated to air-dry state at a similar light intensity (about 30 μmol m(-2) s(-1)) under optimal (23/20°C, day/night) or high (38/30°C) temperature. Dehydration of plants at high temperature increased the rate of water loss threefold and had a more detrimental effect than either drought or high temperature alone. Water deficit decreased the photochemical activity of PSII and PSI and the rate of photosynthetic oxygen evolution, and these effects were stronger when desiccation was carried out at 38°C. Some reduction in the amount of the main PSI and PSII proteins was observed especially in severely desiccated Haberlea leaves. The results clearly showed that desiccation of the homoiochlorophyllous poikilohydric plant Haberlea rhodopensis at high temperature had more damaging effects than desiccation at optimal temperature and in addition recovery was slower. Increased thermal energy dissipation together with higher proline and carotenoid content in the course of desiccation at 38°C compared to desiccation at 23°C probably helped in overcoming the stress.

  20. Frost Growth CFD Model of an Integrated Active Desiccant Rooftop Unit

    SciTech Connect

    Geoghegan, Patrick J; Petrov, Andrei Y; Vineyard, Edward Allan; Zaltash, Abdolreza; Linkous, Randall Lee

    2008-01-01

    A frost growth model is incorporated into a Computational Fluid Dynamics (CFD) simulation of a heat pump by means of a user-defined function in FLUENT, a commercial CFD code. The transient model is applied to the outdoor section of an Integrated Active Desiccant Rooftop (IADR) unit in heating mode. IADR is a hybrid vapor compression and active desiccant unit capable of handling 100% outdoor air (dedicated outdoor air system) or as a total conditioning system, handling both outdoor air and space cooling or heating loads. The predicted increase in flow resistance and loss in heat transfer capacity due to frost build-up are compared to experimental pressure drop readings and thermal imaging. The purpose of this work is to develop a CFD model that is capable of predicting frost growth, an invaluable tool in evaluating the effectiveness of defrost-on-demand cycles.

  1. Effect of desiccation of marine environment on beam structure

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Na; Hou, Li-jun; Liao, Ying-di

    2013-03-01

    This paper presents the study on the effect of desiccation for different part of offshore structure corresponding to the water level. A coupled elastoplastic damage model is proposed to describe the mechanical behavior of cement-based materials under external loading and desiccation, in which both the plastic and damage behaviors under multi-axial stress are considered in composition with the desiccation effect. The comparison between numerical simulation and experimental data indicates that the proposed model can well predict the mechanical characteristics of cement-based materials with different saturations. In addition, a series of small beams subjected to desiccation are further analyzed to reveal the response of structure in the drying process.

  2. Composite desiccant material "CaCl2/Vermiculite/Saw wood": a new material for fresh water production from atmospheric air

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Yadav, Avadhesh

    2016-04-01

    In this study a novel composite desiccant material "CaCl2/Vermiculite/Saw wood" have been synthesized and tested for the water generation from atmospheric air. The vermiculite- saw wood used as a host matrix and CaCl2 as a hygroscopic salt. A solar glass desiccant box type system with a collector area of 0.36 m2 has been used. Design parameters for water generation are height of glass from the desiccant material bed as 0.22 m, inclination in angle as 30º, the effective thickness of glass as 3 mm and number of glazing as single. It has been found that the concentration of calcium chloride is the most influencing factor for fresh water generation from atmospheric air. The maximum amount of water produced by using novel composite desiccant material is 195 ml/kg/day.

  3. Genetic Analysis of Desiccation Tolerance in Saccharomyces cerevisiae

    PubMed Central

    Calahan, Dean; Dunham, Maitreya; DeSevo, Chris; Koshland, Douglas E.

    2011-01-01

    Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. Although the budding yeast Saccharomyces cerevisiae exhibits extreme desiccation tolerance, its usefulness has been hampered by an inability to reduce tolerance more than a few fold by physiological or genetic perturbations. Here we report that fewer than one in a million yeast cells from low-density logarithmic cultures survive desiccation, while 20–40% of cells from saturated cultures survive. Using this greatly expanded metric, we show that mutants defective in trehalose biosynthesis, hydrophilins, responses to hyperosmolarity, and hypersalinity, reactive oxygen species (ROS) scavenging and DNA damage repair nevertheless retain wild-type levels of desiccation tolerance, suggesting that this trait involves a unique constellation of stress factors. A genome-wide screen for mutants that render stationary cells as sensitive as log phase cells identifies only mutations that block respiration. Respiration as a prerequisite for acquiring desiccation tolerance is corroborated by respiration inhibition and by growth on nonfermentable carbon sources. Suppressors bypassing the respiration requirement for desiccation tolerance reveal at least two pathways, one of which, involving the Mediator transcription complex, is associated with the shift from fermentative to respiratory metabolism. Further study of these regulators and their targets should provide important clues to the sensors and effectors of desiccation tolerance. PMID:21840858

  4. Desiccation of the Aral Sea and climate change in Central Asia: Interplay and mutual feedbacks

    NASA Astrophysics Data System (ADS)

    Zavialov, Peter; Huang, Huei-Ping

    2013-04-01

    In this presentation, we report results of a research project supported by US Civil Research and Development Foundation aimed at investigating the interplays between the Aral Sea desiccation, anthropogenic impacts, and climate change in Central Asia, and quantify principal feedbacks in the climatic system of the Aral Sea region by means of numerical model experiments as well as analyses of historical and newly obtained observational data. Aral Sea desiccation has been recognized as one of the worst anthropogenic ecological disasters ever. However, it is believed that a part of the desiccation may have been due to the natural climate variability manifested in larger scale warming trends across the Central Asia. The interaction between the lake and the climate change is a "two-way street": the shrinking of the Aral Sea leads to reduction in evaporation and precipitation, thus affecting regional moisture and temperature regimes, and atmospheric circulation. The altered meteorological condition may, in turn, induce further changes in the Aral Sea. In this study, we attempted to quantify the relative contribution from the alterations in the lake's hydrology and surface area to the regional climate change, and, reciprocally, from the large-scale and regional climate trends to the desiccation of the Aral Sea. We show, in particular, that the Aral Sea desiccation has led to significant changes in the regional precipitation, snow cover, and air temperature regimes. On the other hand, the large-scale variability of climate across Central Asia has modulated the hydrology of the lake and caused at least a part of the water level drop. We assessed the long-term trends of air temperature at different isobaric surfaces in the Aral Sea region basing on reanalysis and historical data. Temperature and rainfall daily measurements from 223 meteorological stations of the former USSR in period from 1936 to 1990 were used, as well as the NCAR/NCEP reanalysis data. The differences between

  5. Heterogeneity in Desiccated Solutions: Implications for Biostabilization

    PubMed Central

    Ragoonanan, Vishard; Aksan, Alptekin

    2008-01-01

    Biopreservation processes such as freezing and drying inherently introduce heterogeneity. We focused on exploring the mechanisms responsible for heterogeneity in isothermal, diffusively dried biopreservation solutions that contain a model protein. The biopreservation solutions used contained trehalose (a sugar known for its stabilization effect) and salts (LiCl, NaCl, MgCl2, and CaCl2). Performing Fourier transform infrared spectroscopy analysis on the desiccated droplets, spatial distributions of the components within the dried droplet, as well as their specific interactions, were investigated. It was established that the formation of multiple thermodynamic states was induced by the spatial variations in the cosolute concentration gradients, directly affecting the final structure of the preserved protein. The spatial distribution gradients were formed by two competing flows that formed within the drying droplet: a dominant peripheral flow, induced by contact line pinning, and the Marangoni flow, induced by surface tension gradients. It was found that the changes in cosolute concentrations and drying conditions affected the spatial heterogeneity and stability of the product. It was also found that trehalose and salts had a synergistic stabilizing effect on the protein structure, which originated from destructuring of the vicinal water, which in turn mediated the interactions of trehalose with the protein. This interaction was observed by the change in the glycosidic CO, and the CH stretch vibrations of the trehalose molecule. PMID:18055531

  6. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation.

    PubMed

    Bar-Eyal, Leeat; Eisenberg, Ido; Faust, Adam; Raanan, Hagai; Nevo, Reinat; Rappaport, Fabrice; Krieger-Liszkay, Anja; Sétif, Pierre; Thurotte, Adrien; Reich, Ziv; Kaplan, Aaron; Ohad, Itzhak; Paltiel, Yossi; Keren, Nir

    2015-10-01

    Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.

  7. Effects of Porous Medium Heterogeneity on Vadose Zone Desiccation: Intermediate-scale Laboratory Experiments and Simulations

    SciTech Connect

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Dane, Jacob H.; Truex, Michael J.

    2012-11-01

    Soil desiccation (drying), involving water evaporation induced by dry gas injection, is a potentially robust vadose zone remediation process to limit contaminant transport through the vadose zone. A series of four intermediate-scale flow cell experiments was conducted in homogeneous and simple layered heterogeneous porous medium systems to investigate the effects of heterogeneity on desiccation of unsaturated porous media. The permeability ratios of porous medium layers ranged from about five to almost two orders of magnitude. The insulated flow cell was equipped with twenty humidity and temperature sensors and a dual-energy gamma system was used to determine water saturations at various times. The multiphase code STOMP was used to simulate the desiccation process. Results show that injected dry gas flowed predominantly in the higher permeability layer and delayed water removal from the lower permeability material. For the configurations tested, water vapor diffusion from the lower to the higher permeability zone was considerable over the duration of the experiments, resulting in much larger relative humidity values of the outgoing air than based on permeability ratios alone. Acceptable numerical matches with the experimental data were obtained when an extension of the saturation-capillary pressure relation below the residual water saturation was used. The agreements between numerical and experimental results suggest that the correct physics are implemented in the simulator and that the thermal and hydraulic properties of the porous media, flow cell wall and insulation materials were properly represented.

  8. Polypropylene Fiber Amendments to Alleviate Initiation and Evolution of Desiccation Cracks in Bentonite Liners

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Gebrenegus, T. B.

    2009-12-01

    Sodium saturated bentonite is a major constituent of compacted and geosynthetic liners and covers for hydraulic isolation of hazardous waste, playing a crucial role in protecting groundwater and other environmental resources from harmful landfill leachates. Due to favorable hydraulic properties (i.e., low permeability), large surface area and associated adsorption capacity for particular contaminants, and relative abundance and low cost, bentonite is the material of choice in many modern waste containment systems. However, long-term interactions between bentonite and waste leachate and exposure of bentonite to desiccative conditions may significantly deteriorate liner or cover performance and ultimately lead to failure of containment systems. In the presented study, the potential usefulness of polypropylene fiber amendments for preventing initiation and evolution of desiccation cracks, while maintaining acceptably low permeability under saturated conditions was investigated. Well-controlled desiccation experiments were conducted using initially saturated bentonite-sand mixtures that contained varying amounts of polypropylene fibers. Initiation and evolution of surface cracks were observed by means of X-Ray Computed Tomography (CT). Advanced image analysis techniques were employed to characterize and quantify 2-D and 3-D features of the evolving crack networks. Potential negative effects of employed additives on saturated hydraulic conductivity were determined with fully-automated Flexible Wall Permeametry (FWP).

  9. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.

    PubMed

    Huang, Hui; Song, Songquan

    2013-07-01

    Desiccation tolerance is one of the most important traits determining seed survival during storage and under stress conditions. However, the mechanism of seed desiccation tolerance is still unclear in detail. In the present study, we used a combined model system, desiccation-tolerant and -sensitive maize embryos with identical genetic background, to investigate the changes in desiccation tolerance, malonyldialdehyde (MDA) level, hydrogen peroxide (H₂O₂) content and antioxidant enzyme activity during seed development and germination in 0, -0.6 and -1.2 MPa polyethylene glycol (PEG)-6000 solutions. Our results indicated that maize embryos gradually acquired and lost desiccation tolerance during development and germination, respectively. The acquirement and loss of desiccation tolerance of embryos during development and germination were related to the ability of antioxidant enzymes including superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) to scavenge reactive oxygen species (ROS) and to control MDA content. Compared with treatment in water, PEG-6000 treatment could markedly delay the loss of desiccation tolerance of germinating embryos by delaying water uptake and time course of germination, increasing GR activity and decreasing MDA content. Our data showed the combination of antioxidant enzyme activity and MDA content is a good parameter for assessing the desiccation tolerance of maize embryos. In addition, H₂O₂ accumulated in mature embryos and PEG-treated embryos after drying, which was at least partially related to a longer embryo/seedling length in rehydration and the physiological mechanisms of priming.

  10. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  11. Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness

    PubMed Central

    Stark, Lloyd R.; Brinda, John C.

    2015-01-01

    Background and Aims Two ecological strategies of desiccation tolerance exist in plants, constitutive and inducible. Because of difficulties in culturing sporophytes, very little is known about desiccation tolerance in this generation and how desiccation affects sexual fitness. Methods Cultured sporophytes and vegetative shoots from a single genotype of the moss Aloina ambigua raised in the laboratory were tested for their strategy of desiccation tolerance by desiccating the shoot–sporophyte complex and vegetative shoots at different intensities, and comparing outcomes with those of undried shoot–sporophyte complexes and vegetative shoots. By using a dehardened clonal line, the effects of field, age and genetic variance among plants were removed. Key Results The gametophyte and embryonic sporophyte were found to employ a predominantly inducible strategy of desiccation tolerance, while the post-embryonic sporophyte was found to employ a moderately constitutive strategy of desiccation tolerance. Further, desiccation reduced sporophyte fitness, as measured by sporophyte mass, seta length and capsule size. However, the effects of desiccation on sporophyte fitness were reduced if the stress occurred during embryonic development as opposed to postembryonic desiccation. Conclusions The effects of desiccation on dehardened sporophytes of a bryophyte are shown for the first time. The transition from one desiccation tolerance strategy to the other in a single structure or generation is shown for only the second time in plants and for the first time in bryophytes. Finding degrees of inducible strategies of desiccation tolerance in different life phases prompts the formulation of a continuum hypothesis of ecological desiccation tolerance in mosses, where desiccation tolerance is not an either/or phenomenon, but varies in degree along a gradient of ecological inducibility. PMID:25578378

  12. Microbial biosynthesis of wax esters during desiccation: an adaptation for colonization of the earliest terrestrial environments?

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Brassell, S. C.; Pratt, L. M.

    2008-12-01

    Biosynthesis of wax esters (WE) by prokaryotes in natural systems, notably bacteria from hot springs and marine phytoplankton, is poorly documented, primarily because saponification is a routine step in the analysis of microbial mat lipids. Use of this preparative procedure, critical for characterization of the diagnostic distributions of carboxylic acids in phospholipids, precludes recovery of intact WE. Examination of non-saponified lipids in emergent and desiccated mats with comparable microbial communities from the Warner Lake region, Oregon, reveals increases in the relative abundance (18.6 to 59.9μg/g Corg) and average chain length (C38 to C46) of WE in the latter, combined with assimilation of phytol and tocopherol moieties. Prokaryotes can accumulate WE as storage lipids in vitro, notably at elevated temperature or under nitrogen limiting conditions, but we propose that biosynthesis of long-chain WE that have a low solubility and are resistant to degradation/oxidation may represent an evolutionary strategy to survive desiccation in evaporative environments. Moreover, aeolian transport of desiccated mat-rip-ups between lake flats allows for migration of microbial communities within and between lake flats and basins during arid conditions. Subsequent rehydration within an alkaline environment would naturally saponify WE, and thereby regenerate alcohol and acid moieties that could serve as membrane lipids for the next viable microbial generation. The evolutionary cradle of WE was likely abiotic generation under hydrothermal conditions, which is consistent with the antiquity of the ester linkage necessitated by its integral role in the membranes of Eubacteria (though not Archaea) and in bacteriochlorophyll. The subsequent capability of microbes to biosynthesize WE may have facilitated their survival when nutrients were limiting, and production of long-chain WE (>C40) may represent a further critical evolutionary threshold that enabled their persistence through

  13. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis.

    PubMed

    Gechev, Tsanko S; Benina, Maria; Obata, Toshihiro; Tohge, Takayuki; Sujeeth, Neerakkal; Minkov, Ivan; Hille, Jacques; Temanni, Mohamed-Ramzi; Marriott, Andrew S; Bergström, Ed; Thomas-Oates, Jane; Antonio, Carla; Mueller-Roeber, Bernd; Schippers, Jos H M; Fernie, Alisdair R; Toneva, Valentina

    2013-02-01

    well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.

  14. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana

    PubMed Central

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A.; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y.; de Folter, Stefan; Herrera-Estrella, Luis

    2016-01-01

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  15. Development of switchable hygroscopic materials. Final technical report FY 1980-1981

    SciTech Connect

    1982-01-01

    The following are covered: current considerations in desiccant dehumidification materials, switchable desiccant theory, candidate materials, test methods, test results, product design considerations, and future research.

  16. Wheat seedlings as a model to understand desiccation tolerance and sensitivity.

    PubMed

    Farrant, Jill M.; Bailly, Christophe; Leymarie, Juliette; Hamman, Brigitte; Côme, Daniel; Corbineau, Françoise

    2004-04-01

    The coleoptiles of wheat (Triticum aestivum L.) seedlings of cultivar Trémie are desiccation tolerant when 3 days old, although the roots are not. Cutting some of the coleoptiles open prior to dehydration rapidly increased the drying rate. This rendered the coleoptiles sensitive to desiccation, providing a useful model with which to study desiccation tolerance. Both sensitive and tolerant seedlings were dehydrated to 0.3 g H(2)O g(-1) dry mass (g.g) and thereafter rehydrated. Sensitive tissues accr- ued the lipid peroxidation products H(2)O(2)and MDA, and substantial subcellular damage was evident in dry tissues. H(2)O(2) and MDA accumulated slightly only in dry tolerant coleoptiles and no subcellular damage was evident. The activity of antioxidant enzymes glutathione reductase (EC1.6.2.4), superoxide dismutase (EC 1.14.1.1) and catalase (EC 1.11.1.6) increased on drying in both tolerant and sensitive tissues, but were sustained on rehydration in only the tolerant tissues. It is proposed that free radical damage sustained during rapid drying exceeded the ameliorating capacity of antioxidant systems, allowed accrual of lethal subcellular damage. Slow drying enabled sufficient detoxification by antioxidants to minimize damage and allow tolerance to drying. Three LEA- (p11 and Asp 52) and dehydrin- (XV8) like proteins were detected by western blots in tolerant coleoptiles dried to 3.0 g.g and below. Only one (Asp 52) was induced at low water content in rapidly dried sensitive coleoptiles. None were present in root tissues. XV8 RNA (northern analyses) was induced on drying only in tolerant coleoptiles and correlated with protein expression. These stress-putative protein protectants (and XV8 transcripts) appear to be down-regulated during germination but wheat seedlings temporarily retain the ability to reproduce them if drying is slow. Sucrose accumulation during dehydration was similar for both sensitive and tolerant tissues, suggesting that this sugar has little

  17. Bacterial survival responses to extreme desiccation and high humidity

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shinichi; Yamagishi, Akihiko

    The presence of water is thought to be essential for life and strongly considered in life searching operation on extraterrestrial planets. In this study we show different survival responses of bacterial species to water availability and temperatures (25, 4 and - 70 o C). At these temperatures, E.coli lost viability much faster under extreme desiccation than under high humidity. Deinococcus radiodurans exhibited much higher survival rate under desiccation than under high humidity at 25 o C, while its survivals under desiccation and high humidity increased to the same level at 4 and - 70 o C. Bacillus pumilus spores generally survived well under all tested conditions. Water is favorable for the survival of most microorganisms but not a "safeguard" for all microorganisms. Microbial survival at low temperatures may not be affected by water availability. Water absence should not preclude us from seeking life on other planets.

  18. Function of desiccate in gustatory sensilla of drosophila melanogaster

    PubMed Central

    Kawano, Takeshi; Ryuda, Masasuke; Matsumoto, Hitoshi; Ochiai, Masanori; Oda, Yasunori; Tanimura, Teiichi; Csikos, Gyorge; Moriya, Megumi; Hayakawa, Yoichi

    2015-01-01

    Desiccate (Desi), initially discovered as a gene expressing in the epidermis of Drosophila larvae for protection from desiccation stress, was recently found to be robustly expressed in the adult labellum; however, the function, as well as precise expression sites, was unknown. Here, we found that Desi is expressed in two different types of non-neuronal cells of the labellum, the epidermis and thecogen accessory cells. Labellar Desi expression was significantly elevated under arid conditions, accompanied by an increase in water ingestion by adults. Desi overexpression also promoted water ingestion. In contrast, a knockdown of Desi expression reduced feeding as well as water ingestion due to a drastic decrease in the gustatory sensillar sensitivity for all tested tastants. These results indicate that Desi helps protect insects from desiccation damage by not only preventing dehydration through the integument but also accelerating water ingestion via elevated taste sensitivities of the sensilla. PMID:26610608

  19. Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods.

    PubMed

    Dias, André T C; Krab, Eveline J; Mariën, Janine; Zimmer, Martin; Cornelissen, Johannes H C; Ellers, Jacintha; Wardle, David A; Berg, Matty P

    2013-07-01

    Predicted changes in soil water availability regimes with climate and land-use change will impact the community of functionally important soil organisms, such as macro-detritivores. Identifying and quantifying the functional traits that underlie interspecific differences in desiccation resistance will enhance our ability to predict both macro-detritivore community responses to changing water regimes and the consequences of the associated species shifts for organic matter turnover. Using path analysis, we tested (1) how interspecific differences in desiccation resistance among 22 northwestern European terrestrial isopod species could be explained by three underlying traits measured under standard laboratory conditions, namely, body ventral surface area, water loss rate and fatal water loss; (2) whether these relationships were robust to contrasting experimental conditions and to the phylogenetic relatedness effects being excluded; (3) whether desiccation resistance and hypothesized underlying traits could explain species distribution patterns in relation to site water availability. Water loss rate and (secondarily) fatal water loss together explained 90% of the interspecific variation in desiccation resistance. Our path model indicated that body surface area affects desiccation resistance only indirectly via changes in water loss rate. Our results also show that soil moisture determines isopod species distributions by filtering them according to traits underpinning desiccation resistance. These findings reveal that it is possible to use functional traits measured under standard conditions to predict soil biota responses to water availability in the field over broad spatial scales. Taken together, our results demonstrate an increasing need to generate mechanistic models to predict the effect of global changes on functionally important organisms.

  20. Value of Desiccated Swabs for Streptococcal Epidemiology in the Field

    PubMed Central

    Taplin, David; Lansdell, Lyle

    1973-01-01

    Streptococcal surveys in foreign countries or remote areas may be greatly enhanced by the use of calcium alginate swabs desiccated in sterile silica gel. Delays of up to 4 weeks before return to a base laboratory are feasible, and the need for fresh media or laboratory facilities in the field may be eliminated. Comparison of direct plating on crystal violet blood agar versus delayed silica gel preservation during surveys in Uganda, Haiti, Colombia, and Miami, Fla., showed no significant loss of positive cultures from skin lesions and suggests that desiccated swabs increase the recovery of bacitracin-sensitive Streptococcus pyogenes (presumptive group A) from throats. PMID:4346975

  1. Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance

    NASA Astrophysics Data System (ADS)

    Baxter, Bonnie K.; Eddington, Breanne; Riddle, Misty R.; Webster, Tabitha N.; Avery, Brian J.

    2007-09-01

    Great Salt Lake (GSL) is home to halophiles, salt-tolerant Bacteria and Archaea, which live at 2-5M NaCl. In addition to salt tolerance, GSL halophiles exhibit resistance to both ultraviolet (UV) irradiation and desiccation. First, to understand desiccation resistance, we sought to determine the diversity of GSL halophiles capable of surviving desiccation in either recently formed GSL halite crystals or GSL Artemia (brine shrimp) cysts. From these desiccated environments, surviving microorganisms were cultured and isolated, and genomic DNA was extracted from the individual species for identification by 16S rRNA gene homology. From the surface-sterilized cysts we also extracted DNA of the whole microbial population for non-cultivation techniques. We amplified the archaeal or bacterial 16S rRNA gene from all genomic DNA, cloned the cyst population amplicons, and sequenced. These sequences were compared to gene databases for determination of closest matched species. Interestingly, the isolates from the crystal dissolution are distinct from those previously isolated from GSL brine. The cyst population results reveal species not found in crystals or brine, and may indicate microorganisms that live as endosymbionts of this hypersaline arthropod. Second, we explored UV resistance in a GSL haloarchaea species, "H. salsolis." This strain resists UV irradiation an order of magnitude better than control species, all of which have intact repair systems. To test the hypothesis that halophiles have a photoprotection system, which prevents DNA damage from occurring, we designed an immunoassay to detect thymine dimers following UV irradiation. "H. salsolis" showed remarkable resistance to dimer formation. Evidence for both UV and desiccation resistance in these salt-tolerant GSL halophiles makes them well-suited as models for Astrobiological studies in pursuit of questions about life beyond earth.

  2. Inheritance of seed desiccation sensitivity in a coffee interspecific cross: evidence for polygenic determinism.

    PubMed

    Dussert, Stéphane; Engelmann, Florent; Louarn, Jacques; Noirot, Michel

    2004-07-01

    The genetic determinism of seed desiccation sensitivity was studied using a cross between two coffee species exhibiting a large difference for this trait, Coffea pseudozanguebariae (tolerant) and C. liberica (sensitive). Throughout the whole study, seed desiccation tolerance was quantified both in terms of water content and water activity. Whatever the parameter used, the level of seed desiccation tolerance in F1 hybrids corresponded to that of the mid-parent, thus indicating an additive inheritance of seed desiccation tolerance at the F1 level. A broad variation was observed among hybrids backcrossed to C. liberica (BCs) for seed desiccation tolerance, independent of the parameter used to quantify it. This variation was continuous and BCs showed transgression in the direction of the most desiccation sensitive parent, indicating (i) that desiccation tolerance is a polygenic trait in coffee species, and (ii) that C. pseudozanguebariae does not present the most favourable alleles for all the genes involved in seed desiccation tolerance. No significant difference was observed between the two reciprocal backcrosses, F1xC. liberica and C. libericaxF1, for the level of desiccation tolerance of their seeds, showing the absence of a maternal effect on this trait. There was no significant effect of the number of seeds harvested from each BC on the level of desiccation tolerance of its seeds. Moreover, there was no significant correlation within BCs between seed size, seed viability, and water content before desiccation and desiccation tolerance.

  3. Effect of Desiccating Stress on Mouse Meibomian Gland Function

    PubMed Central

    Suhalim, Jeffrey L.; Parfitt, Geraint J.; Xie, Yilu; De Pavia, Cintia S.; Pflugfelder, Stephen C.; Shah, Tejas N.; Potma, Eric O.; Brown, Donald J.; Jester, James V.

    2013-01-01

    Purpose Mice exposed to standardized desiccating environmental stress to induce dry eye-like symptoms have been used as a model to study the underlying mechanisms of evaporative dry eye. While studies have shown marked inflammatory and immune changes, the effect of such stress on meibomian gland function remains largely unknown. We sought to evaluate the effects of desiccating stress on meibocyte proliferation and meibum quality. Methods Ten mice were treated with scopolamine and subjected to a drafty low humidity environment (30–35%). Five and ten days after treatment, eyelids were harvested and cryosections stained with Ki67 antibody to identify cycling cells. Sections were also imaged using stimulated Raman scattering (SRS) microscopy to characterize the gland compositional changes by detecting the vibrational signatures of methylene (lipid) and amide-I (protein). Results Desiccating stress caused a 3-fold increase in basal acinar cell proliferation from 18.3 ± 11.1% in untreated mice to 64.4 ± 19.9% and 66.6 ± 13.4% after 5 and 10 days exposure, respectively (P < .001). In addition, SRS analysis showed a wider variation in the protein-to-lipid ratio throughout the gland, suggesting alterations in meibocyte differentiation and lipid synthesis. Conclusions These data are consistent with a model that a desiccating environment may have a direct effect on meibomian gland function, leading to a significant increase in basal acinar cell proliferation, abnormal meibocyte differentiation, and altered lipid production. PMID:24439047

  4. Survival of Methanogens During Desiccation: Implications for Life on Mars

    NASA Astrophysics Data System (ADS)

    Kendrick, Michael G.; Kral, Timothy A.

    2006-08-01

    The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days.

  5. Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration.

    PubMed

    Singh, Jatinder; Kumar, Deept; Ramakrishnan, Naren; Singhal, Vibha; Jervis, Jody; Garst, James F; Slaughter, Stephen M; DeSantis, Andrea M; Potts, Malcolm; Helm, Richard F

    2005-12-01

    A transcriptional analysis of the response of Saccharomyces cerevisiae strain BY4743 to controlled air-drying (desiccation) and subsequent rehydration under minimal glucose conditions was performed. Expression of genes involved in fatty acid oxidation and the glyoxylate cycle was observed to increase during drying and remained in this state during the rehydration phase. When the BY4743 expression profile for the dried sample was compared to that of a commercially prepared dry active yeast, strikingly similar expression changes were observed. The fact that these two samples, dried by different means, possessed very similar transcriptional profiles supports the hypothesis that the response to desiccation is a coordinated event independent of the particular conditions involved in water removal. Similarities between "stationary-phase-essential genes" and those upregulated during desiccation were also noted, suggesting commonalities in different routes to reduced metabolic states. Trends in extracellular and intracellular glucose and trehalose levels suggested that the cells were in a "holding pattern" during the rehydration phase, a concept that was reinforced by cell cycle analyses. Application of a "redescription mining" algorithm suggested that sulfur metabolism is important for cell survival during desiccation and rehydration.

  6. Survival of methanogens during desiccation: implications for life on Mars.

    PubMed

    Kendrick, Michael G; Kral, Timothy A

    2006-08-01

    The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days.

  7. [Desiccation tolerance in seeds of Prosopisferox and Pterogyne nitens (Fabaceae)].

    PubMed

    Morandini, Marcelo Nahuel; Giamminola, Eugenia Mabel; de Viana, Marta Leonor

    2013-03-01

    The high number of endemisms and species diversity together with the accelerated biodiversity loss by deforestation, especially in North Western Argentina, points out the need to work on species conservation combining ex situ and in situ strategies. The aim of this work was to study the desiccation tolerance in seeds of P ferox and P nitens for long term ex situ conservation at the Germplasm Bank of Native Species (BGEN) of the National University of Salta (Argentina). The fruits were collected from ten individuals in P ferox at the National Park Los Cardones and from two sites (Orán and Rivadavia) for P nitens. Desiccation tolerance was assessed following previous established methodologies. The moisture content (MC) of the seeds was determined by keeping them in oven at 103 degreeC and weighting the samples at different intervals till constant weight. Germination essays were carried out with two treatments (control and scarification), with different seed MC (fresh, 10-12%, 3-5%) and in desiccated seeds (3-5% MC) stored six months at -20 degreeC. The MC in P ferox seeds was 14.2% and 10% in P nitens, for both populations studied. Percentage germination in P ferox was higher in the scarification treatments (<82%). The difference between treatments increased with the reduction in MC and the storage for six months at -20 degreeC. Fresh seeds of P nitens do not need scarification treatment, but it is required with the reduction in MC and storage. Mean germination percentage of desiccated seeds stored six months at -20 degreeC was similar in both populations and greater than 82%.We concluded that both species are probably orthodox because seeds tolerated desiccation to 3-5% and storage for six months at -20 degree C.

  8. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  9. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    SciTech Connect

    Truex, Michael J.; Strickland, Christopher E.; Oostrom, Martinus; Johnson, Christian D.; Tartakovsky, Guzel D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  10. Characterization of Membrane Properties in Desiccation-Tolerant and -Intolerant Carrot Somatic Embryos.

    PubMed Central

    Tetteroo, FAA.; De Bruijn, A. Y.; Henselmans, RNM.; Wolkers, W. F.; Van Aelst, A. C.; Hoekstra, F. A.

    1996-01-01

    In previous studies, we have shown that carrot (Daucus carota L.) somatic embryos acquire complete desiccation tolerance when they are treated with abscisic acid during culture and subsequently dried slowly. With this manipulable system at hand, we have assessed damage associated with desiccation intolerance. Fast drying caused loss of viability, and all K+ and carbohydrates leached from the somatic embryos within 5 min of imbibition. The phospholipid content decreased by about 20%, and the free fatty acid content increased, which was not observed after slow drying. However, the extent of acyl chain unsaturation was unaltered, irrespective of the drying rate. These results indicate that, during rapid drying, irreversible changes occur in the membranes that are associated with extensive leakage and loss of germinability. The status of membranes after 2 h of imbibition was analyzed in a freeze-fracture study and by Fourier transform infrared spectroscopy. Rapidly dried somatic embryos had clusters of intramembraneous particles in their plasma membranes, and the transition temperature of isolated membranes was above room temperature. Membrane proteins were irreversibly aggregated in an extended [beta]-sheet conformation and had a reduced proportion of [alpha]-helical structures. In contrast, the slowly dried somatic embryos had irregularly distributed, but non-clustered, intramembraneous particles, the transition temperature was below room temperature, and the membrane proteins were not aggregated in a [beta]-sheet conformation. We suggest that desiccation sensitivity of rapidly dried carrot somatic embryos is indirectly caused by an irreversible phase separation in the membranes due to de-esterification of phospholipids and accumulation of free fatty acids. PMID:12226295

  11. The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    PubMed Central

    Maia, Julio; Dekkers, Bas J. W.; Provart, Nicholas J.; Ligterink, Wilco; Hilhorst, Henk W. M.

    2011-01-01

    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants. PMID:22195004

  12. Biomass production, nutritional and mineral content of desiccation-sensitive and desiccation-tolerant species of sporobolus under multiple irrigation regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of low-water-input forages of high quality would be useful for expanding or improving the water use efficiency of livestock production in semi-arid and arid regions. In this study, three Sporobolus species, the desiccation tolerant (DT) species, S. stapfianus Gandoger, and two desicc...

  13. Late Pleistocene desiccation of Lake Tana, source of the Blue Nile

    NASA Astrophysics Data System (ADS)

    Lamb, Henry F.; Bates, C. Richard; Coombes, Paul V.; Marshall, Michael H.; Umer, Mohammed; Davies, Sarah J.; Dejen, Eshete

    2007-02-01

    High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late

  14. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect

    BENECKE MW

    2010-09-08

    This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is

  15. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum.

    PubMed

    Rodriguez, Maria C Suarez; Edsgärd, Daniel; Hussain, Syed S; Alquezar, David; Rasmussen, Morten; Gilbert, Thomas; Nielsen, Bjørn H; Bartels, Dorothea; Mundy, John

    2010-07-01

    Studies of the resurrection plant Craterostigma plantagineum have revealed some of the mechanisms which these desiccation-tolerant plants use to survive environments with extreme dehydration and restricted seasonal water. Most resurrection plants are polyploid with large genomes, which has hindered efforts to obtain whole genome sequences and perform mutational analysis. However, the application of deep sequencing technologies to transcriptomics now permits large-scale analyses of gene expression patterns despite the lack of a reference genome. Here we use pyro-sequencing to characterize the transcriptomes of C. plantagineum leaves at four stages of dehydration and rehydration. This reveals that genes involved in several pathways, such as those required for vitamin K and thiamin biosynthesis, are tightly regulated at the level of gene expression. Our analysis also provides a comprehensive picture of the array of cellular responses controlled by gene expression that allow resurrection plants to survive desiccation.

  16. X-ray crystal structures of a severely desiccated protein.

    PubMed Central

    Bell, J. A.

    1999-01-01

    Unlike most protein crystals, form IX of bovine pancreatic ribonuclease A diffracts well when severely dehydrated. Crystal structures have been solved after 2.5 and 4 days of desiccation with CaSO4, at 1.9 and 2.0 A resolution, respectively. The two desiccated structures are very similar. An RMS displacement of 1.6 A is observed for main-chain atoms in each structure when compared to the hydrated crystal structure with some large rearrangements observed in loop regions. The structural changes are the result of intermolecular contacts formed by strong electrostatic interactions in the absence of a high dielectric medium. The electron density is very diffuse for some surface loops, consistent with a very disordered structure. This disorder is related to the conformational changes. These results help explain conformational changes during the lyophilization of protein and the associated phenomena of denaturation and molecular memory. PMID:10548049

  17. Reversible Inactivation and Desiccation Tolerance of Silicified Viruses

    SciTech Connect

    Laidler, James J.; Shugart, Jessica A.; Cady, Sherry L.; Bahjat, Keith S.; Stedman, Kenneth M.

    2013-11-19

    Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus SSV-K and Vaccinia are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. By contrast, bacteriophage PRD1 is not silicified. Moreover silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.

  18. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  19. Triiodothyronine and thyroxine content of desiccated thyroid tablets.

    PubMed

    Rees-Jones, R W; Larsen, P R

    1977-11-01

    Triiodothyronine (T3) and thyroxine (T4) were measured by radioimmunoassay in Pronase hydrolysates of four lots each of 1- and 2-grain tablets of desiccated thyroid (Thyroid, Armour) and thyroglobulin (Proloid, Warner-Chilcott). The methodology used was verified by studies of tablets containing known quantities of T4 and T3. One grain of desiccated thyroid contained 12 +/- 1 and 64 +/- 3 microgram (mean +/- SD) of T3 and T4 per tablet, respectively (T4/T3 molar ratio, 4.3). A 1-grain tablet of thyroglobulin contained 16 +/- 2 and 55 +/- 5 microgram of T3 and T4, respectively with a T4/T3 ratio of 2.9. Two-grain tablets generally contained twice the quantity of T3 and T4 in the 1-grain preparations. The variation in T3 and T4 content between the four lots of each tablet strength for each product was 10% or less. These estimates of T3 and T4 content are 1.5- to 2-fold greater than those previously published. This difference probably results from the more sophisticated methodology now available which does not require chromatographic separation of T3 and T4 or iodometry. Using calculations based on published estimates of T4 and T3 absorption and of the T3/T4 potency ratio, it would appear that the T3 content of desiccated thyroid and thyroglobulin provide approximately 39% and 51%, respectively, of the thyromimetic activity of these two medications.

  20. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait.

    PubMed

    Yobi, Abou; Wone, Bernard W M; Xu, Wenxin; Alexander, Danny C; Guo, Lining; Ryals, John A; Oliver, Melvin J; Cushman, John C

    2012-12-01

    Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S.  lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.

  1. An Experimental Evolution Test of the Relationship between Melanism and Desiccation Survival in Insects

    PubMed Central

    Rajpurohit, Subhash; Peterson, Lisa Marie; Orr, Andrew J.; Marlon, Anthony J.; Gibbs, Allen G.

    2016-01-01

    We used experimental evolution to test the ‘melanism-desiccation’ hypothesis, which proposes that dark cuticle in several Drosophila species is an adaptation for increased desiccation tolerance. We selected for dark and light body pigmentation in replicated populations of D. melanogaster and assayed several traits related to water balance. We also scored pigmentation and desiccation tolerance in populations selected for desiccation survival. Populations in both selection regimes showed large differences in the traits directly under selection. However, after over 40 generations of pigmentation selection, dark-selected populations were not more desiccation-tolerant than light-selected and control populations, nor did we find significant changes in mass or carbohydrate amounts that could affect desiccation resistance. Body pigmentation of desiccation-selected populations did not differ from control populations after over 140 generations of selection, although selected populations lost water less rapidly. Our results do not support an important role for melanization in Drosophila water balance. PMID:27658246

  2. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense.

    PubMed

    Dinakar, Challabathula; Djilianov, Dimitar; Bartels, Dorothea

    2012-01-01

    Resurrection plants are regarded as excellent models to study the mechanisms associated with desiccation tolerance. During the past years tremendous progress has been made in understanding the phenomenon of desiccation tolerance in resurrection plants, but many questions are open concerning the mechanisms enabling these plants to survive desiccation. The photosynthetic apparatus is very sensitive to reactive oxygen species mediated injury during desiccation and must be maintained or quickly repaired upon rehydration. The photosynthetic apparatus is a primary source of generating reactive oxygen species. The unique ability of plants to withstand the oxidative stress imposed by reactive oxygen species during desiccation depends on the production of antioxidants. The present review considers the overall strategies and the mechanisms involved in the desiccation tolerance in the first part and will focus on the effects on photosynthesis, energy metabolism and antioxidative stress defenses in the second part.

  3. Salinity effects on the dynamics and patterns of desiccation cracks

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to

  4. Desiccation resistance and contamination as mechanisms of gaia.

    PubMed

    Brown, S; Margulis, L; Ibarra, S; Siqueiros, D

    1985-01-01

    The gaia hypothesis, formulated by J.E. Lovelock, asserts the composition of the reactive gases, the oxidation-reduction state and the temperature of the lower atmosphere of the planet Earth are actively regulated by the biota. Lovelock and Watson, using highly simplified mathematical models, have shown that the modulation of atmospheric temperature can be achieved by exponentially growing populations of differently colored organisms ("dark and light daisies"). It is more likely that the modulation of atmospheric gas composition is based on the colligative properties of exponentially growing mixed populations of microorganisms rather than on "daisies". Exponential growth of one population of microorganisms leads to gaseous and other metabolic products released to the environment, which favor the exponential growth of different populations, each with their own unique emissions. Extremely high densities of mixed populations of microorganisms ensue. These populations form structured microbial communities composed of members in varying states of activity. Growth potential of metabolically diverse populations most likely provides the basis for the responsiveness of the biota to changing environments. We have attempted to measure an aspect of the growth potential and diversity of one microbial community, that from a flat laminated microbial mat dominated by the cyanobacterium, Microcoleus. Microbial mat samples collected at yearly intervals between 1977 and 1982 were allowed to dry. Subsamples were revived under laboratory conditions by rewetting, and the resulting complex microbial populations were analyzed. Greater than 10(4) viable organisms per ml were estimated to be present in the desiccated samples. Only a portion of the diverse community could be characterized. There were at least 115 different types of desiccation resistant microorganisms present in these samples, primarily bacteria. However, more than a dozen types of rather uncommon fungi and protoctists were

  5. Mechanisms associated with cellular desiccation tolerance of Artemia encysted embryos from locations around the world.

    PubMed

    Hengherr, Steffen; Schill, Ralph O; Clegg, J S

    2011-10-01

    Using differential scanning calorimetry we demonstrated the presence of biological glasses and measured the glass transition temperatures (Tg) in dry encysted gastrula embryos (cysts) of the brine shrimp, Artemia, from eleven different locations, two of which provided cysts from parthenogenetic animals. Values for Tg were highest, by far, in Artemia franciscana cysts from the Mekong Delta, Vietnam (VN), these cysts having been produced from previous sequential inoculations into growth ponds of cysts from the San Francisco Bay, California, USA. Tg values for three groups of A. franciscana cysts were significantly higher than those of other cysts (except those of Artemia persimilis) studied here, as well as all other desiccation-tolerant animal systems studied to date. We also measured three stress proteins (hsc70, artemin and p26) in all these cysts as well as the total alcohol soluble carbohydrates (ASC), about 90% of which is the disaccharide trehalose, a known component of biological glasses. We interpret the results in terms of mechanisms involved with desiccation tolerance and, to some extent, with thermal conditions at the sites of cyst collection.

  6. Need for desiccant in containers exposed to atmospheric conditions for long periods of time

    SciTech Connect

    Mead, K.E.

    1981-11-01

    Current component and system designs are required to perform satisfactorily up to 25 years. A maximum leak rate of 1 x 10/sup -6/ cc(STP) helium/sec-atm is a frequent requirement for component containers. Calculations show that undesiccated component containers continuously exposed to 50% relative humidity at 20/sup 0/C and having an internal free volume of less than 300 cc and the above leak rate will allow the internal dew point to rise enough for potential liquid condensation in less than four years. For the same vapor pressure differential, the moisture permeation rate through one linear inch of silicone o-ring is 750 times as fast as moisture enters a welded container whose leak rate is 1 x 10/sup -6/ cc(STP) helium/sec-atm. For ethylene propylene o-ring material this ratio is about 13. These values correspond to the ratios of the quantities of desiccant required to maintain an acceptable dew point temperature when the moisture capacity of the free volume is not included. Charts are provided for estimating the amount of desiccant required for helium leak tested containers and for containers sealed with elastomeric o-rings.

  7. Physiological and biochemical changes during the loss of desiccation tolerance in germinating Adenanthera pavonina L. seeds.

    PubMed

    Soares, Giuliana C M; Dias, Denise C F S; Faria, José M R; Borges, Eduardo E L

    2015-01-01

    We investigated the loss of desiccation tolerance (DT) in Adenanthera pavonina seeds during germination. Seeds were subjected to imbibition for 0, 24, 36, 48, 60 and 81 h, then dried to their initial moisture content (13%), rehydrated and evaluated for survival (resumption of growth and development of normal seedlings) and membrane system integrity (electrolyte leakage). Embryonic axes of seeds subjected only to imbibition during the same early time periods were used to investigate the electrophoretic patterns of heat-stable proteins and the relative nuclear DNA content. In A. pavonina seeds, DT remained unchanged until 36 h of imbibition (resulting in germination and 82% normal seedlings), after which it was progressively lost, and seeds with a protruded radicle length of 1 mm did not withstand dehydration. The loss of desiccation tolerance could not be related to either membrane damage caused by drying or the resumption of the cell cycle during germination. However, the decrease in heat-stable protein contents observed throughout germination may be related to the loss of DT in A. pavonina seeds.

  8. Method and composition for molding low density desiccant syntactic foam articles

    DOEpatents

    Lula, James W.; Schicker, James R.

    1984-01-01

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  9. Effect of nitrogen starvation on desiccation tolerance of Arctic Microcoleus strains (cyanobacteria)

    PubMed Central

    Tashyreva, Daria; Elster, Josef

    2015-01-01

    Although desiccation tolerance of Microcoleus species is a well-known phenomenon, there is very little information about their limits of desiccation tolerance in terms of cellular water content, the survival rate of their cells, and the environmental factors inducing their resistance to drying. We have discovered that three Microcoleus strains, isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to 0.23 g water g-1 dry mass), but did not tolerate complete desiccation (to 0.03 g water g-1 dry mass) regardless of pre-desiccation treatments. However, these treatments were critical for the survival of incomplete desiccation: cultures grown under optimal conditions failed to survive even incomplete desiccation; a low temperature enabled only 0–15% of cells to survive, while 39.8–65.9% of cells remained alive and intact after nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in periodically dry habitats involves avoidance of complete desiccation, but tolerance to milder desiccation stress, which is induced by suboptimal conditions (e.g., nitrogen starvation). PMID:25904909

  10. Desiccation-induced physiological and biochemical changes in resurrection plant, Selaginella bryopteris.

    PubMed

    Pandey, Vivek; Ranjan, Sanjay; Deeba, Farah; Pandey, Ashutosh K; Singh, Ruchi; Shirke, Pramod A; Pathre, Uday V

    2010-11-01

    Selaginella bryopteris is a lycophyte resurrection plant, which incurves during desiccation and recovers on availability of moisture. The aim of the study was to test and understand the various physiological and biochemical changes the fronds undergo during desiccation and rehydration, to get an insight as to how this plant adapts and survives through the dry phase. Upon desiccation, S. bryopteris fronds showed drastic inhibition in net photosynthesis (A) and maximal photochemical efficiency of PSII (F(v)/F(m)) however, chlorophyll content did not show much variation. Dark respiration (R(d)) continued even at 10% relative water content (RWC), and showed a burst after rehydration, which is proposed to be crucial to establish protection mechanisms. Desiccation caused an enhanced production of reactive oxygen species (ROS) and increased lipid peroxidation. Proline accumulation increased substantially by 11-fold. Sucrose and starch contents decreased upon desiccation as compared to control. The antioxidative enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) along with soluble acid invertase increased during desiccation. S. bryopteris shows mechanical as well as physiological mechanisms for tolerance to extreme levels of desiccation stress. The rapid and almost complete recovery of F(v)/F(m) after rehydration clearly indicates the absence of marked photoinhibitory or thermal injury to PSII during desiccation. This along with the homoiochlorophyllous characteristics enables S. bryopteris to recover its A. The antioxidant metabolism further plays an important role in the desiccation tolerance of S. bryopteris.

  11. The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and re-hydration.

    PubMed

    Gao, Shan; Niu, Jianfeng; Chen, Weizhou; Wang, Guangce; Xie, Xiujun; Pan, Guanghua; Gu, Wenhui; Zhu, Daling

    2013-09-01

    Photosynthetic electron flow changed considerably during desiccation and re-hydration of the intertidal macroalgae Porphyra haitanensis. Activities of both photosystem (PSI) and photosystem (PSII) increased significantly at moderate desiccation levels. Whereas PSII activity was abolished at an absolute water content (AWC) <24 %, PSI remained active with progressive decreases in AWC to values as low as 16 %. This result suggested that cyclic electron flow around PSI was still active after inactivation of linear electron flow following severe desiccation. Moreover, the PSI activity was restored more rapidly than that of PSII upon re-hydration. Pretreatment of the blades with 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) suppressed PSII activity following desiccation to an AWC of ~16 % AWC. Cyclic electron flow around PSI decreased markedly in blades pretreated with DCMU than in blades without pretreatment of DCMU during re-hydration in seawater containing DCMU. All results suggested that the activity of PSII under desiccation conditions plays an important role in the operation of cyclic electron flow during desiccation and its recovery during re-hydration. Therefore, we proposed the PSII activity during desiccation could eventually lead to the accumulation of NADPH, which could serve as electron donor for P700(+) and promote its recovery during re-hydration, thereby favoring the operation of cyclic electron flow.

  12. Effect of supply/regeneration section area ratio on the performance of desiccant wheels in hot and humid climates: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Zendehboudi, Alireza; Esmaeili, Hossein

    2016-06-01

    Desiccant cooling system is a suitable alternative option for conventional cooling system in humid climates. It is an environmental protection technique for cooling buildings. This study has investigated the effect of supply/regeneration section area ratio on the performance of desiccant wheels in hot and humid climates, using Silica Gel (WSG) and Molecular Sieve (LT3) desiccants. To this end, some parameters such as outlet air humidity ratio, process removed moisture, process outlet temperature, reactivation outlet temperature and reactivation outlet moisture have been examined as a function of rotational speed and inlet air humidity ratio in 1:3, 1:2 and 1:1 split. In this study, desiccant materials are regenerated using a constant regeneration temperature of 80 °C, wheel rotation speed range of 4-12 RPH (revolutions per hour) and variable humidity. The results show that a rise in area ratio causes an increase in process removed moisture, process outlet temperature, reactivation outlet temperature and a drop in reactivation outlet moisture and outlet humidity ratio of process air.

  13. Desiccation tolerance of iron bacteria biofilms on Mars regolith simulants

    NASA Astrophysics Data System (ADS)

    Feyh, Nina; Szewzyk, Ulrich

    2010-05-01

    Iron oxidizing bacteria play an important role in the geological redox cycling of iron on earth. The redox change between Fe(II) and Fe(III) can be used for biological energy production [1]. Therefore iron oxidation in the iron rich martian soils may be or may have been microbially mediated. The microbial conversion of iron is considered to be an ancient form of metabolism [2], so it might have evolved on Mars as well. However, to exist in recent martian soils, bacteria must be able to endure dry and cold conditions. Neutrophilic iron oxidizers can be found in various iron rich aquatic environments, where they lead to the precipitation of insoluble ferric hydroxides. Some of these environments fall temporarily dry, what could have led to an adaptation to desiccation by bacteria, existing there. One strategy of iron bacteria to endure drought stress might be the formation of biofilms by excreting Extracellular Polymeric Substances (EPS). The deposition of iron hydroxides could enable them to endure dry conditions as well. For our experiments, neutrophilic iron oxidizing bacteria have been isolated from a creek in Bad Salzhausen/Hesse and temporarily drying out pools in Tierra del Fuego. Strains from aquatic environments in the national park "Unteres Odertal" and from water wells in Berlin/Brandenburg are included in the tests as well. In desiccation experiments, the capability of iron bacteria to tolerate dry conditions are investigated. The aim of our first experiment is the adaptation to dry conditions. Biofilms of 15 strains are grown on ceramic beads in liquid medium containing complexed Fe(II), established biofilms contain Fe(III) precipitates. The cultures are desiccated in a sterile airflow until the weight of the cultures remained constant. After a desiccation period of 9 h up to 7 d, the beads are transferred to fresh liquid medium. Adapted strains are used in further desiccation experiments, where biofilms are grown on two martian regolith simulants. These

  14. Salinity Effects on Cracking Morphology and Dynamics in Desiccating Clays

    NASA Astrophysics Data System (ADS)

    DeCarlo, K.; Shokri, N.

    2013-12-01

    Saline conditions induce not only chemical but physical changes in swelling clays, and have a significant influence on the crack dynamics in desiccating clays. In this study, we used X-ray computerized tomography (CT) to experimentally investigate the effects of sodium chloride on the morphology and dynamics of desiccation cracks in three-dimensional mixtures of sand-bentonite slurry under varying rheological conditions. Rectangular glass containers (40.5x40.5x56 mm^3) were packed with sand-bentonite slurries of different salt concentrations, with the top boundary exposed to air for evaporation. The growth and propagation of the cracking network that subsequently formed was visualized in 3D at multiple intervals. 3D characterization of cracking dynamics shows a high extent of localized superficial crack networks at low salinity, with a transition to less extensive but deeper, more centralized crack networks with increased salinity. The observed behavior was described in the context of rheological and colloidal properties of the clay, which suggest the transition from a voluminous and poorly-sorted stacked clay structure to a more compact and highly cohesive entangled clay structure as salt concentration increases in the evaporating samples. This is further corroborated by vertical profiles of sample water distribution, which shows localized uniform drying at the higher salt concentrations. Our results provide new insights regarding the formation, patterns, dynamics and characteristics of desiccation cracks formed during evaporation from 3D saline clay structures, which will be useful in various hydrological applications including water management, land surface evaporation, and subsurface contaminant transport.

  15. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants.

    PubMed

    Zhang, Qingwei; Song, Xiaomin; Bartels, Dorothea

    2016-12-15

    Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed.

  16. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants

    PubMed Central

    Zhang, Qingwei; Song, Xiaomin; Bartels, Dorothea

    2016-01-01

    Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed. PMID:28248249

  17. The competence to acquire cellular desiccation tolerance is independent of seed morphological development.

    PubMed

    Golovina, E A; Hoekstra, F A; Van Aelst, A C

    2001-05-01

    Acquisition of desiccation tolerance and the related changes at the cellular level in wheat (Triticum aestivum cv. Priokskaya) kernels during normal development and premature drying on the ear were studied using a spin probe technique and low temperature scanning electron microscopy. During normal development, the ability of embryos to germinate after rapid drying and rehydration was acquired after completion of morphological development, which is a few days before mass maturity. The acquisition of desiccation tolerance, as assessed by germination, was associated with an upsurge in cytoplasmic viscosity, the onset of accumulation of protein and oil bodies, and the retention of membrane integrity upon dehydration/rehydration. These features were also used to assess cellular desiccation tolerance in the cases when germination could not occur. Slow premature drying was used to decouple the acquisition of cellular desiccation tolerance from morphogenesis. Upon premature drying of kernels on the ears of plants cut at 5 d after anthesis, desiccation-tolerant dwarf embryos were formed that were able to germinate. When plants were cut at earlier stages poorly developed embryos were formed that were unable to germinate, but cellular desiccation tolerance was nevertheless acquired. In such prematurely dried kernels, peripheral meristematic endosperm cells had already passed through similar physiological and ultrastructural changes associated with the acquisition of cellular desiccation tolerance. It is concluded that despite the apparent strong integration in seed development, desiccation tolerance can be acquired by the meristematic cells in the developing embryo and cambial layer of endosperm, independently of morphological development.

  18. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster.

    PubMed

    Stinziano, Joseph R; Sové, Richard J; Rundle, Howard D; Sinclair, Brent J

    2015-02-01

    The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster.

  19. A sister group metabolomic contrast delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding how plant cells tolerate dehydration is a vital prerequisite for developing strategies for improving drought tolerance. The desiccation tolerant grass Sporobolus stapfianus and the desiccation sensitive S. pyramidalis were used to form a sister-group contrast to reveal adaptive metabo...

  20. Key genes involved in desiccation tolerance and dormancy across life forms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to survive desiccation is widespread in seeds, whereas it is rare in vegetative tissues of adult flowering plants. Some genetic traits conserved among desiccation-tolerant seeds and resurrection plants have been detected but more molecular aspects need to be revealed to formulate hypothe...

  1. Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation.

    PubMed

    Chen, Qi; Yang, Liming; Ahmad, Parvaiz; Wan, Xiaochun; Hu, Xiangyang

    2011-03-01

    Tea seed is believed to be recalcitrant based on its sensitivity to chilling or drying stress. Reactive oxygen species (ROS) and alterations in cytosolic redox status have been implicated in intolerance to desiccation by recalcitrant seed, but there is little information available regarding how ROS are regulated in seeds susceptible to drying stress. We investigated changes in protein expression and activity in tea embryo in response to desiccation using physiological and proteomic methods. Results showed that desiccation treatment dramatically induced the accumulation of H(2)O(2) in tea embryos, accompanied by increased activities of antioxidant enzymes like ascorbate peroxidase (APX) and superoxide dismutase (SOD). Proteomic analyses also demonstrated that 23 proteins associated with defense response, metabolism and redox status were up-regulated following desiccation. Increase in antioxidants, ascorbic acid (AsA) and catalase (CAT) (H(2)O(2) scavengers) partially assuaged desiccation damage to tea seed, resulting in improved germination rates. Higher accumulation of H(2)O(2) aggravated desiccation damage to seeds leading to lower germination activity. We propose that desiccation causes an over-accumulation of ROS that are not efficiently scavenged by increased levels of antioxidant enzymes. High levels of ROS alter the redox status and are detrimental to seed viability. Reducing ROS to appropriate concentrations is an efficient way to reduce desiccation damage and improve germination rates of recalcitrant seeds.

  2. The respiratory pattern in Drosophila melanogaster selected for desiccation resistance is not associated with the observed evolution of decreased locomotory activity.

    PubMed

    Williams, Adrienne E; Rose, Michael R; Bradley, Timothy J

    2004-01-01

    We examined spontaneous locomotory behavior and respiratory pattern in replicate outbred populations of Drosophila melanogaster selected for desiccation resistance or starvation resistance, as well as their control and ancestral populations. Use of these populations allows us to compare evolved behavioral changes in response to different stress selections. We also reasoned that previously observed changes in respiratory patterns following selection for increased desiccation resistance might be associated with or even caused by changes in locomotory behavior. We measured spontaneous locomotory behavior using video recordings and a computer-based tracking system while simultaneously measuring patterns of CO(2) release from single fruit flies. Statistically significant differences in behavior were observed to be correlated with selection regime. Reduced levels of spontaneous locomotory activity were observed in moist air in both desiccation- and starvation-selected populations compared with their controls. Interestingly, in dry air, only the desiccation-selected flies continue to show reduced spontaneous locomotory activity. No correlation was found between the level of locomotory activity of individual flies and the respiratory patterns of those flies, indicating that the reduced activity levels that have evolved in these flies did not directly cause the documented changes in their respiratory pattern.

  3. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.

    PubMed

    Roach, Thomas; Kranner, Ilse

    2011-10-15

    The seedling stage is arguably the most vulnerable phase in the plant life cycle, where the young establishing plant is extremely sensitive to environmental stresses such as drought. Here, the production of superoxide (O(2)(-)), a molecule involved in stress signaling, was measured in response to desiccation of Pisum sativum L. seedlings. Following desiccation that was sufficient to kill the radicle meristem, viability could be retained by seedlings that grew secondary roots. Upon rehydration, secondary roots formed in a region that had displayed intense extracellular O(2)(-)production on desiccation. Treating partially desiccated seedlings with hydrogen peroxide (H(2)O(2)) prevented viability loss. In summary, reactive oxygen species (ROS) appear to participate in the signaling required for secondary root formation following desiccation stress of P. sativum seedlings.

  4. Extended periods of hydration do not elicit dehardening to desiccation tolerance in regeneration trials of the moss Syntrichia caninervis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dehardening (deacclimation) to water stress is seldom studied in plants, and yet is an integral phase of desiccation tolerance. Most bryophytes are desiccation tolerant (DT), and yet even fully DT species lose a significant portion of their ability to withstand desiccation if dehardened. Shoots of t...

  5. Listeria monocytogenes ability to survive desiccation: Influence of serotype, origin, virulence, and genotype.

    PubMed

    Zoz, Fiona; Grandvalet, Cosette; Lang, Emilie; Iaconelli, Cyril; Gervais, Patrick; Firmesse, Olivier; Guyot, Stéphane; Beney, Laurent

    2017-02-21

    Listeria monocytogenes, a bacterium that is responsible for listeriosis, is a very diverse species. Desiccation resistance has been rarely studied in L. monocytogenes, although it is a stress that is largely encountered by this microorganism in food-processing environments and that could be managed to prevent its presence. The objective of this study was to evaluate the resistance of 30 L. monocytogenes strains to moderate desiccation (75% relative humidity) and evaluate the correlation of such resistance with the strains' virulence, serotype and genotype. The results showed a great heterogeneity of strains regarding their ability to survive (loss of cultivability between 0.4 and 2.0 log). Strains were classified into three groups according to desiccation resistance (sensitive, intermediate, or resistant), and the strain repartition was analyzed relative to serotype, virulence level and environmental origin of the strains. No correlation was found between isolate origin and desiccation resistance. All serotype 1/2b strains were classified into the group of resistant strains. Virulent and hypovirulent strains were distributed among the three groups of desiccation resistance. Finally, a genomic comparison was performed based on 31 genes that were previously identified as being involved in desiccation resistance. The presence of those genes was localized among the genomes of some strains and compared regarding strain-resistance levels. High nucleotide conservation was identified between resistant and desiccation-sensitive strains. In conclusion, the findings regarding the strains of serotype 1/2b indicate potential serotype-specific resistance to desiccation, and thus, to relative humidity fluctuations potentially encountered in food-related environments. The genomic comparison of 31 genes associated to desiccation tolerance did not reveal differences among four strains which have different level of resistance to desiccation.

  6. Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability.

    PubMed

    Bazinet, Aimee L; Marshall, Katie E; MacMillan, Heath A; Williams, Caroline M; Sinclair, Brent J

    2010-12-01

    Insects can improve their desiccation resistance by one or more of (1) increasing their water content; (2) decreasing water loss rate; or (3) increasing the amount of water able to be lost before death. Female Drosophila melanogaster have previously been reported to increase their resistance to desiccation after a desiccation pre-treatment and recovery, but the mechanism of this increased desiccation resistance has not been explored. We show that female, but not male adult D. melanogaster increased their resistance to desiccation after 1h of recovery from a 3 to 4.5h pre-treatment that depletes them of 10% of their water content. The pre-treatment did not result in an increase in water content after recovery, and there is a slight increase in water content at death in pre-treated females (but no change in males), suggesting that the amount of water loss tolerated is not improved. Metabolic rate, measured on individual flies with flow-through respirometry, did not change with pre-treatment. However, a desiccation pre-treatment did result in a reduction in water loss rate, and further investigation indicated that a change in cuticular water loss rate accounted for this decrease. Thus, the observed increase in desiccation resistance appears to be based on a change in cuticular permeability. However, physiological changes in response to the desiccation pre-treatment were similar in male and female, which therefore does not account for the difference in rapid desiccation hardening between the sexes. We speculate that sex differences in fuel use during desiccation may account for the discrepancy.

  7. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons

    PubMed Central

    Arcaz, Arthur C.; Huestis, Diana L.; Dao, Adama; Yaro, Alpha S.; Diallo, Moussa; Andersen, John; Blomquist, Gary J.; Lehmann, Tovi

    2016-01-01

    ABSTRACT The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii. Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism. PMID:27207644

  8. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times.

    PubMed

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-07-28

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival-halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages-remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival.

  9. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times

    PubMed Central

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-01-01

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival—halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages—remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival. PMID:26226005

  10. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum

    PubMed Central

    Hay, F. R.; Smith, R. D.; Ellis, R. H.; Butler, L. H.

    2010-01-01

    Background and Aims Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors. PMID:20228084

  11. Dehumidification Grain Dryer

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1998-05-13

    A new technique developed during this project dries grain with mildly heated, dehumidified air in a closed-loop process. This proposed technique uses about one-tenth the energy and dries grain at a lower temperature, producing less damage to the kernels.Approximately 250 million automotive and truck tires are discarded each year in the U.S. The very properties that ensure a safe ride and long service life make the disposal of these scrap tires difficult. In spite of this, scrap tire recycling/reuse has rapidly grown from 10% in 1985 to over 90% today. The majority of scrap tires that are recycled/reused are burned for fuel in power plants and cement kilns. Since tires have somewhat higher heating value than coal, this would at first seem to be an acceptable option. But burning scrap tires recovers only 25% of the energy originally used to manufacture the rubber. An alternative is to use the scrap tires in the form of crumb rubber, by which 98% of the original energy is recovered. This project sought to explore potential formulations of crumb rubber with various thermoplastic binders, with one goal being developing a material for a low-cost, high-performance roofing composition. What was the state-of-the-art of the product/process prior to initiation of the project? Why was the project needed (e.g., performance, quality, cost, time to market)? Describe the strengths and interests of each party and how they are complementary with respect to the project. What KCP expertise was needed and how did it complement the partner's capabilities?

  12. The desiccation tolerant secrets of Selaginella lepidophylla: what we have learned so far?

    PubMed

    Pampurova, Suzana; Van Dijck, Patrick

    2014-07-01

    Selaginella lepidophylla is a desiccation tolerant plant able to survive complete vegetative tissue dehydration and revive ('resurrect') in water conditions. Vegetative desiccation tolerance is an adaptive feature acquired by S. lepidophylla to withstand the long dry periods in its natural habitat, the Chihuahuan desert. Understanding the molecular basis of its drought stress tolerance may be of great benefit to help in developing novel strategies for improvement of drought stress tolerance in crops. Cell biological (e.g. gene discovery, comparative EST analysis, proteomics, metabolite profiling), ultrastructural and physiological studies have brought modest but already important insights in the desiccation tolerance mechanisms adapted by S. lepidophylla. Until recently, the desiccation tolerant mechanism of S. lepidophylla was related to its high trehalose levels. However, large-scale comparative metabolic analysis between S. lepidophylla and its desiccation susceptible relative Selaginella moellendorffii, unexpectedly revealed that S. moellendorffii contains higher trehalose levels than S. lepidophylla. Interestingly, polyols, such as sorbitol and xylitol are 100× more abundant in S. lepidophylla compared to S. moellendorffii. Whether this is linked to the higher stress tolerance remains to be established. Apart from these metabolites, we will also discuss the ultrastructural features that seem to play an important role in the desiccation tolerance of S. lepidophylla. Finally we discuss desiccation tolerance mechanism in other plant species.

  13. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis.

    PubMed

    Dinakar, Challabathula; Bartels, Dorothea

    2013-01-01

    Most higher plants are unable to survive desiccation to an air-dried state. An exception is a small group of vascular angiosperm plants, termed resurrection plants. They have evolved unique mechanisms of desiccation tolerance and thus can tolerate severe water loss, and mostly adjust their water content with the relative humidity in the environment. Desiccation tolerance is a complex phenomenon and depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Most of the resurrection plants have a large genome and are difficult to transform which makes them unsuitable for genetic approaches. However, technical advances have made it possible to analyze changes in gene expression on a large-scale. These approaches together with comparative studies with non-desiccation tolerant plants provide novel insights into the molecular processes required for desiccation tolerance and will shed light on identification of orphan genes with unknown functions. Here, we review large-scale recent transcriptomic, proteomic, and metabolomic studies that have been performed in desiccation tolerant plants and discuss how these studies contribute to understanding the molecular basis of desiccation tolerance.

  14. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones.

  15. Method and apparatus for extracting water from air using a desiccant

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  16. Generational Differences in Response to Desiccation Stress in the Desert Moss Tortula inermis

    PubMed Central

    Stark, Lloyd R.; Oliver, Melvin J.; Mishler, Brent D.; McLetchie, D. Nicholas

    2007-01-01

    Background and Aims Active growth in post-embryonic sporophytes of desert mosses is restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due, in part, to a reduced desiccation tolerance for sporophytes relative to gametophytes. Methods Gametophytes with attached post-embryonic sporophytes of Tortula inermis (early seta elongation phenophase) were exposed to two levels of desiccation stress, one rapid-dry cycle and two rapid-dry cycles, then moistened and allowed to recover, resume development, and/or regenerate for 35 d in a growth chamber. Key Results Gametophytes tolerated the desiccation treatments well, with 93 % survival through regenerated shoot buds and/or protonemata. At the high stress treatment, a significantly higher frequency of burned leaves and browned shoots occurred. Sporophytes were far more sensitive to desiccation stress, with only 23 % surviving after the low desiccation stress treatment, and 3 % surviving after the high desiccation stress treatment. While the timing of protonemal production and sporophytic phenophases was relatively unaffected by desiccation stress, shoots exposed to one rapid-dry cycle produced shoots more rapidly than shoots exposed to two rapid-dry cycles. Conclusions It is concluded that sporophytes of Tortula inermis are more sensitive to rapid drying than are maternal gametophytes, and that sporophyte abortion in response to desiccation results from either reduced desiccation tolerance of sporophytes relative to gametophytes, or from a termination of the sporophyte on the part of the gametophyte in response to stress. PMID:17098752

  17. Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis.

    PubMed

    Georgieva, Katya; Röding, Anja; Büchel, Claudia

    2009-09-15

    The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the

  18. Water Content, Raffinose, and Dehydrins in the Induction of Desiccation Tolerance in Immature Wheat Embryos

    PubMed Central

    Black, Michael; Corbineau, Françoise; Gee, Harry; Côme, Daniel

    1999-01-01

    Desiccation tolerance is initiated in wheat (Triticum aestivum L.) embryos in planta at 22 to 24 d after anthesis, at the time that the embryo water content has decreased from about 73% fresh weight (2.7 g water/g dry weight) to about 65% fresh weight (1.8 g water/g dry weight). To determine if desiccation tolerance is fully induced by the loss of a relatively small amount of water, detached wheat grains were treated to reduce the embryo water content by just a small amount to approximately 69% (2.2 g water/g dry weight). After 24 h of such incipient water loss, subsequently excised embryos were able to withstand severe desiccation, whereas those embryos that had not previously lost water could not. Therefore, a relatively small decrease in water content for only 24 h acts as the signal for the development of desiccation tolerance. Embryos that were induced into tolerance by a 24-h water loss had no detectable raffinose. The oligosaccharide accumulated at later times even in embryos of detached grains that had not become desiccation tolerant, although tolerant embryos (i.e. those that previously had lost some water) contained larger amounts of the carbohydrate. It is concluded that desiccation tolerance and the occurrence of raffinose are not correlated. Immunodetected dehydrins accumulated in embryos in planta as desiccation tolerance developed. Detachment of grains induced the appearance of dehydrins at an earlier age, even in embryos that had not been made desiccation tolerant by incipient drying. It is concluded that a small reduction in water content induces desiccation tolerance by initiating changes in which dehydrins might participate but not by their interaction with raffinose. PMID:10364397

  19. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  20. Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta)

    PubMed Central

    Contreras-Porcia, Loretto; Thomas, Daniela; Flores, Verónica; Correa, Juan A.

    2011-01-01

    Unravelling the mechanisms underlying desiccation tolerance is crucial in order to understand the position of algal species in the intertidal zone. The alga Porphyra columbina lives in the uppermost part of the rocky intertidal zones around the world and was selected as a model for this study. Naturally desiccated plants were collected during low tide and studied for morphological changes, oxidative burst induction, biomolecule oxidation, antioxidant responses, and photosynthetic status. Naturally hydrated plants collected during high tides were used for comparative purposes. In addition, changes induced by desiccation were assessed in vitro and the capacity to recover from desiccation was determined by rehydrating the fronds in seawater. The global results show that desiccation induces morphological and cellular alterations accompanied by a loss of ∼96% of the water content. Overproduction of reactive oxygen species (ROS) was induced by desiccation and two peaks of H2O2 were detected at 1 and 3 h of desiccation. However, during in vitro rehydration post-desiccation, the ROS quickly returned to the basal levels. At the biomolecular level, only a low production of oxidized proteins was recorded during desiccation, whereas the activity of diverse antioxidant enzymes increased. However, this activity diminished to near basal levels during rehydration. The photosynthetic efficiency (Fv/Fm) during desiccation declined by 94–96% of the values recorded in hydrated plants. This reduction was generated by the low levels of trapped energy flux per cross-section (TRo/CS), electron transport flux per CS (ETo/CS), and density of reaction centres (RC/SCo) as well as the chlorophyll content. The inverse pattern was observed for the levels of phycocyanin and phycoerythrin content. Fv/Fm and the photosynthetic indicators were restored to normal levels after only 5 min of rehydration. The results indicate that desiccation in P. columbina causes overproduction of ROS that is

  1. Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta).

    PubMed

    Contreras-Porcia, Loretto; Thomas, Daniela; Flores, Verónica; Correa, Juan A

    2011-03-01

    Unravelling the mechanisms underlying desiccation tolerance is crucial in order to understand the position of algal species in the intertidal zone. The alga Porphyra columbina lives in the uppermost part of the rocky intertidal zones around the world and was selected as a model for this study. Naturally desiccated plants were collected during low tide and studied for morphological changes, oxidative burst induction, biomolecule oxidation, antioxidant responses, and photosynthetic status. Naturally hydrated plants collected during high tides were used for comparative purposes. In addition, changes induced by desiccation were assessed in vitro and the capacity to recover from desiccation was determined by rehydrating the fronds in seawater. The global results show that desiccation induces morphological and cellular alterations accompanied by a loss of ∼96% of the water content. Overproduction of reactive oxygen species (ROS) was induced by desiccation and two peaks of H(2)O(2) were detected at 1 and 3 h of desiccation. However, during in vitro rehydration post-desiccation, the ROS quickly returned to the basal levels. At the biomolecular level, only a low production of oxidized proteins was recorded during desiccation, whereas the activity of diverse antioxidant enzymes increased. However, this activity diminished to near basal levels during rehydration. The photosynthetic efficiency (F(v)/F(m)) during desiccation declined by 94-96% of the values recorded in hydrated plants. This reduction was generated by the low levels of trapped energy flux per cross-section (TRo/CS), electron transport flux per CS (ETo/CS), and density of reaction centres (RC/SCo) as well as the chlorophyll content. The inverse pattern was observed for the levels of phycocyanin and phycoerythrin content. F(v)/F(m) and the photosynthetic indicators were restored to normal levels after only 5 min of rehydration. The results indicate that desiccation in P. columbina causes overproduction of ROS

  2. The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues.

    PubMed

    Illing, Nicola; Denby, Katherine J; Collett, Helen; Shen, Arthur; Farrant, Jill M

    2005-11-01

    Desiccation-tolerance in vegetative tissues of angiosperms has a polyphyletic origin and could be due to 1) appropriation of the seed-specific program of gene expression that protects orthodox seeds against desiccation, and/or 2) a sustainable version of the abiotic stress response. We tested these hypotheses by comparing molecular and physiological data from the development of orthodox seeds, the response of desiccation-sensitive plants to abiotic stress, and the response of desiccation-tolerant plants to extreme water loss. Analysis of publicly-available gene expression data of 35 LEA proteins and 68 anti-oxidant enzymes in the desiccation-sensitive Arabidopsis thaliana identified 13 LEAs and 4 anti-oxidants exclusively expressed in seeds. Two (a LEA6 and 1-cys-peroxiredoxin) are not expressed in vegetative tissues in A. thaliana, but have orthologues that are specifically activated in desiccating leaves of Xerophyta humilis. A comparison of antioxidant enzyme activity in two desiccation-sensitive species of Eragrostis with the desiccation-tolerant E. nindensis showed equivalent responses upon initial dehydration, but activity was retained at low water content in E. nindensis only. We propose that these antioxidants are housekeeping enzymes and that they are protected from damage in the desiccation-tolerant species. Sucrose is considered an important protectant against desiccation in orthodox seeds, and we show that sucrose accumulates in drying leaves of E. nindensis, but not in the desiccation-sensitive Eragrostis species. The activation of "seed-specific" desiccation protection mechanisms (sucrose accumulation and expression of LEA6 and 1-cys-peroxiredoxin genes) in the vegetative tissues of desiccation-tolerant plants points towards acquisition of desiccation tolerance from seeds.

  3. Solar Powered Liquid Desiccant Air Conditioner for Low-Electricity Humidity Control

    DTIC Science & Technology

    2012-07-01

    thermal comfort conditions. Liquid-desiccants are solutions that are hygroscopic but are easily able to be pumped and applied within heating, ventilating, and air conditioning (HVAC) equipment as necessary.

  4. Responses of the Lichen Photobiont Trebouxia erici to Desiccation and Rehydration (II) Proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lichen desiccation tolerance is associated with cellular protection mechanisms directed against the oxidative stress produced during dehydration and/or rehydration, however, these mechanisms are not well understood. In other poikilohydric organisms, changes in the synthesis of proteins have bee...

  5. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast

    PubMed Central

    Erkut, Cihan; Gade, Vamshidhar R; Laxman, Sunil; Kurzchalia, Teymuras V

    2016-01-01

    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast. DOI: http://dx.doi.org/10.7554/eLife.13614.001 PMID:27090086

  6. cis-3-Chloroacrylic Acid: A New Cotton Defoliant and Crop Desiccant.

    PubMed

    Herrett, R A; Kurtz, A N

    1963-09-20

    cis-3-Chloroacrylic acid is a potent cotton defoliant and a crop desiccant. Relationships between structure and activity indicate a relatively high degree of specificity, since minor modifications in structure result in loss of activity.

  7. Development of desiccant based air conditioning for hotels and motels. Final report, phase 1

    SciTech Connect

    Banks, N.J.

    1994-10-01

    This report contains final reports from two phases of field tests: Phase I at the Marriott Courtyard in West Palm Beach, completed in October 1991, and Phase II at the Walt Disney World Swan Hotel in Orlando, completed in August 1993. The goal was to measure the performance and reliability of the desiccant units. The successfull program proved the value of the gas-fired desiccant technology to the hospitality industry. The desiccant units reduced moisture by 15 to 20% relative humidity. Measurements of temperature, humidity, and wallboard moisture content showed a dramatic reduction in the humidity levels experienced prior to installation of the units and in the control areas without desiccants. Moisture damage was kept in check and remodelling due to it was eliminated.

  8. High-frequency zone of river desiccation disasters in China and influencing factors.

    PubMed

    Jiongxin, X

    2001-07-01

    In recent years, the desiccation of the lower Yellow River has raised concerns in the government, public, and scientific community in China. Long-term and widespread desiccation of rivers is a disaster with many adverse environmental implications. It has been found in this study that there exists a high-frequency zone of river desiccation disasters at 34 degrees -42 degrees N in the North China Plain. The hazardous environment is characterized by semiarid climate, widely distributed thick loess in the basin and a "hanging river bed" in the plain as well as unfavorable man-water-land coupling relationships. In this setting, the sharply increased water diversion by man since the late 1950s led to the occurrence of river desiccation disasters in the lower reaches of the river in this area.

  9. Sugar sweet springtails: on the transcriptional response of Folsomia candida (Collembola) to desiccation stress.

    PubMed

    Timmermans, M J T N; Roelofs, D; Nota, B; Ylstra, B; Holmstrup, M

    2009-11-01

    Several species of Collembola survive stressful desiccating conditions by absorbing water vapour from the environment. To obtain insight into the transcriptomic responses underlying this 'water vapour absorption' mechanism we subjected Folsomia candida (Collembola) to transcriptome profiling. We show that ecologically relevant desiccation stress leads to strong time-dependent transcriptomic changes. Exposure of F. candida to 98.2% relative humidity over an interval of 174 h resulted in a high number of gene transcripts being differentially expressed (up to 41%; P-value < 0.05). Additional Gene Ontology analyses suggest that carbohydrate transport, sugar catabolism and cuticle maintenance are biological processes involved in combating desiccation. However, many additional pathways seem to be affected; additional experiments are needed to elucidate which responses are primarily linked to desiccation resistance.

  10. Thermal Inactivation of Desiccation-Adapted Salmonella spp. in Aged Chicken Litter

    PubMed Central

    Chen, Zhao; Diao, Junshu; Dharmasena, Muthu; Ionita, Claudia; Rieck, James

    2013-01-01

    Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination. PMID:24014540

  11. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    SciTech Connect

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  12. Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage.

    PubMed

    Michalak, Marcin; Barciszewska, Mirosława Z; Barciszewski, Jan; Plitta, Beata P; Chmielarz, Paweł

    2013-01-01

    The effects of storage and deep desiccation on structural changes of DNA in orthodox seeds are poorly characterized. In this study we analyzed the 5-methylcytosine (m(5)C) global content of DNA isolated from seeds of common pear (Pyrus communis L.) that had been subjected to extreme desiccation, and the seedlings derived from these seeds. Germination and seedling emergence tests were applied to determine seed viability after their desiccation. In parallel, analysis of the global content of m(5)C in dried seeds and DNA of seedlings obtained from such seeds was performed with a 2D TLC method. Desiccation of fresh seeds to 5.3% moisture content (mc) resulted in a slight reduction of DNA methylation, whereas severe desiccation down to 2-3% mc increased DNA methylation. Strong desiccation of seeds resulted in the subsequent generation of seedlings of shorter height. A 1-year period of seed storage induced a significant increase in the level of DNA methylation in seeds. It is possible that alterations in the m(5)C content of DNA in strongly desiccated pear seeds reflect a reaction of desiccation-tolerant (orthodox) seeds to severe desiccation. Epigenetic changes were observed not only in severely desiccated seeds but also in 3-month old seedlings obtained from these seeds. With regard to seed storage practices, epigenetic assessment could be used by gene banks for early detection of structural changes in the DNA of stored seeds.

  13. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought.

    PubMed

    Nardini, Andrea; Battistuzzo, Marta; Savi, Tadeja

    2013-10-01

    Plant water status and hydraulics were measured in six woody angiosperms growing in a karstic woodland, during an extreme summer drought. Our aim was to take advantage of an unusual climatic event to identify key traits related to species-specific drought damage. The damage suffered by different species was assessed in terms of percentage of individuals showing extensive crown desiccation. Stem water potential (Ψstem ) and percent loss of hydraulic conductivity (PLC) were measured in healthy and desiccated individuals. Vulnerability to cavitation was assessed in terms of stem water potential inducing 50% PLC (Ψ50 ). Stem density (ρstem ) was also measured. Species-specific percentage of desiccated individuals was correlated to Ψ50 and ρstem . Crown desiccation was more widespread in species with less negative Ψ50 and lower ρstem . Desiccated individuals had lower Ψstem and higher PLC than healthy ones, suggesting that hydraulic failure was an important mechanism driving shoot dieback. Drought-vulnerable species showed lower safety margins (Ψstem  - Ψ50 ) than resistant ones. The Ψ50 , safety margins and ρstem values emerge as convenient traits to be used for tentative predictions of differential species-specific impact of extreme drought events on a local scale. The possibility that carbohydrate depletion was also involved in induction of desiccation symptoms is discussed.

  14. Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration.

    PubMed

    Li, Aiqing; Benoit, Joshua B; Lopez-Martinez, Giancarlo; Elnitsky, Michael A; Lee, Richard E; Denlinger, David L

    2009-05-01

    Desiccation presents a major challenge for the Antarctic midge, Belgica antarctica. In this study, we use proteomic profiling to evaluate protein changes in the larvae elicited by dehydration and rehydration. Larvae were desiccated at 75% relative humidity (RH) for 12 h to achieve a body water loss of 35%, approximately half of the water that can be lost before the larvae succumb to dehydration. To evaluate the rehydration response, larvae were first desiccated, then rehydrated for 6 h at 100% RH and then in water for 6 h. Controls were held continuously at 100% RH. Protein analysis was performed using 2-DE and nanoscale capillary LC/MS/MS. Twenty-four identified proteins changed in abundance in response to desiccation: 16 were more abundant and 8 were less abundant; 84% of these proteins were contractile or cytoskeletal proteins. Thirteen rehydration-regulated proteins were identified: 8 were more abundant and 5 were less abundant, and 69% of these proteins were also contractile or cytoskeletal proteins. Additional proteins responsive to desiccation and rehydration were involved in functions including stress responses, energy metabolism, protein synthesis, glucogenesis and membrane transport. We conclude that the major protein responses elicited by both desiccation and rehydration are linked to body contraction and cytoskeleton rearrangements.

  15. Radical formation and accumulation in vivo, in desiccation tolerant and intolerant mosses.

    PubMed

    Seel, W; Hendry, G; Atherton, N; Lee, J

    1991-01-01

    Water loss in a desiccation-sensitive moss resulted in destruction of chlorophyll, loss of carotenoids and increased lipid peroxidation, indicating the presence of damaging forms of activated oxygen. These effects were exaggerated when the plants were desiccated at high light intensities. During water-deprivation there was a build up of a free radical, detected in vivo, with a close correlation between molecular damage and radical accumulation. In contrast, in a desiccation-tolerant moss there was almost no indication of molecular (oxidative) damage. However a stable radical similar in type and concentration to that found in the desiccation-sensitive species accumulated, particularly under high irradiances. The stable radical appears to be one of the end-products of a process initiated by environmental stress, desiccation and high irradiance: its association with molecular damage depending on the degree to which the species is tolerant of desiccation. Identification of the radical in intact tissue from EPR and ENDOR studies, suggests that this is not a short-lived peroxy-radical but instead is relatively stable and carbon-centred.

  16. Method and composition for molding low-density desiccant syntactic-foam articles

    DOEpatents

    Not Available

    1981-12-07

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  17. Campomanesia adamantium (Cambess.) O. Berg seed desiccation: influence on vigor and nucleic acids.

    PubMed

    Dresch, Daiane M; Masetto, Tathiana E; Scalon, Silvana P Q

    2015-01-01

    The aim of this study was to evaluate the sensitivity of Campomanesia adamantium seeds to desiccation by drying in activated silica gel (fast) and under laboratory conditions (slow). To assess the sensitivity of the seeds to desiccation, we used drying with silica gel and drying under laboratory conditions (25 °C), in order to obtain seeds with moisture content of 45, 35, 30, 25, 20, 15, 10 and 5%. The physiological potential of the seeds after desiccation was evaluated by measuring primary root protrusion, percentage of normal seedlings, germination seed index, seedling length, total seedling dry mass, electrical conductivity and DNA and RNA integrities. The C. adamantium seeds were sensitive to desiccation and to a reduction in moisture content to 21.1% or less by desiccation using silica gel, and to 17.2% or less by desiccation under laboratory conditions; impairment of the physiological potential of the seeds was observed at these low moisture content levels. The integrity of the seed genomic DNA was not affected after drying seeds in the two methods. However, drying in silica gel to 4.5% moisture content and drying under laboratory conditions to 5.4% moisture content resulted in the loss of seed RNA integrity.

  18. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect.

    PubMed

    Murik, Omer; Oren, Nadav; Shotland, Yoram; Raanan, Hagai; Treves, Haim; Kedem, Isaac; Keren, Nir; Hagemann, Martin; Pade, Nadin; Kaplan, Aaron

    2017-02-01

    Filamentous cyanobacteria are the main founders and primary producers in biological desert soil crusts (BSCs) and are likely equipped to cope with one of the harshest environmental conditions on earth including daily hydration/dehydration cycles, high irradiance and extreme temperatures. Here, we resolved and report on the genome sequence of Leptolyngbya ohadii, an important constituent of the BSC. Comparative genomics identified a set of genes present in desiccation-tolerant but not in dehydration-sensitive cyanobacteria. RT qPCR analyses showed that the transcript abundance of many of them is upregulated during desiccation in L. ohadii. In addition, we identified genes where the orthologs detected in desiccation-tolerant cyanobacteria differs substantially from that found in desiccation-sensitive cells. We present two examples, treS and fbpA (encoding trehalose synthase and fructose 1,6-bisphosphate aldolase respectively) where, in addition to the orthologs present in the desiccation-sensitive strains, the resistant cyanobacteria also possess genes with different predicted structures. We show that in both cases the two orthologs are transcribed during controlled dehydration of L. ohadii and discuss the genetic basis for the acclimation of cyanobacteria to the desiccation conditions in desert BSC.

  19. Calorimetric Properties of Dehydrating Pollen (Analysis of a Desiccation-Tolerant and an Intolerant Species).

    PubMed Central

    Buitink, J.; Walters-Vertucci, C.; Hoekstra, F. A.; Leprince, O.

    1996-01-01

    The physical state of water in the desiccation-tolerant pollen of Typha latifolia L. and the desiccation-sensitive pollen of Zea mays L. was studied using differential scanning calorimetry in an attempt to further unravel the complex mechanisms of desiccation tolerance. Melting transitions of water were not observed at water content (wc) values less than 0.21 (T. latifolia) and 0.26 (Z. mays) g H2O/g dry weight. At moisture levels at which melting transitions were not observable, water properties could be characterized by changes in heat capacity. Three hydration regions could be distinguished with the defining wc values changing as a function of temperature. Shifts in baseline power resembling second-order transitions were observed in both species and were interpreted as glass-to-liquid transitions, the glass-transition temperatures being dependent on wc. Irrespective of the extent of desiccation tolerance, both pollens exhibited similar state diagrams. The viability of maize pollen at room temperature decreased gradually with the removal of the unfrozen water fraction. In maize, viability was completely lost before grains were sufficiently dried to enter into a glassy state. Apparently, the glassy state per se cannot provide desiccation tolerance. From the existing data, we conclude that, although no major differences in the physical behavior of water could be distinguished between desiccation-tolerant and -intolerant pollens, the physiological response to the loss of water varies between the two pollen types. PMID:12226289

  20. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.

    PubMed

    Roach, Thomas; Beckett, Richard P; Minibayeva, Farida V; Colville, Louise; Whitaker, Claire; Chen, Hongying; Bailly, Christophe; Kranner, Ilse

    2010-01-01

    Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.

  1. Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives.

    PubMed

    Gray, Dennis W; Lewis, Louise A; Cardon, Zoe G

    2007-10-01

    Recent molecular data suggest that desert green algae have evolved from freshwater ancestors at least 14 times in three major classes (Chlorophyceae, Trebouxiophyceae and Charophyceae), offering a unique opportunity to study the adaptation of photosynthetic organisms to life on land in a comparative phylogenetic framework. We examined the photorecovery of phylogenetically matched desert and aquatic algae after desiccation in darkness and under illumination. Desert algae survived desiccation for at least 4 weeks when dried in darkness, and recovered high levels of photosynthetic quantum yield within 1 h of rehydration in darkness. However, when 4 weeks of desiccation was accompanied by illumination, three of six desert taxa lost their ability to recover quantum yield during rehydration in the dark. Aquatic algae, in contrast, recovered very little during dark rehydration following even just 24 h of desiccation. Re-illuminating rehydrated algae produced a nearly complete recovery of quantum yield in all desert and two of five aquatic taxa. These contrasts provide physiological evidence that desert green algae possess mechanisms for photosynthetic recovery after desiccation distinct from those in aquatic relatives, corroborating molecular evidence that they are not happenstance, short-term visitors from aquatic environments. Photosensitivity during desiccation among desert algae further suggests that they may reside in protected microsites within crusts, and species specificity of photosensitivity suggests that disturbances physically disrupting crusts could lead to shifts or losses of taxonomic diversity within these habitats.

  2. Field Demonstration of Active Desiccant Modules Designed to Integrate with Standard Unitary Rooftop Package Equipment - Final Report: Phase 3

    SciTech Connect

    Fischer, J

    2004-03-15

    This report summarizes the investigation of two active desiccant module (ADM) pilot site installations initiated in 2001. Both pilot installations were retrofits at existing facilities served by conventional heating, ventilating, and air-conditioning (HVAC) systems that had encountered frequent humidity control, indoor air quality (IAQ), and other operational problems. Each installation involved combining a SEMCO, Inc., ADM (as described in Fischer and Sand 2002) with a standard packaged rooftop unit built by the Trane Company. A direct digital control (DDC) system integral to the ADM performed the dual function of controlling the ADM/rooftop combination and facilitating data collection, trending, and remote performance monitoring. The first installation involved providing preconditioned outdoor air to replace air exhausted from the large kitchen hood and bathrooms of a Hooters restaurant located in Rome, Georgia. This facility had previously added an additional rooftop unit in an attempt to achieve occupant comfort without success. The second involved conditioning the outdoor air delivered to each room of a wing of the Mountain Creek Inn at the Callaway Gardens resort. This hotel, designed in the ''motor lodge'' format with each room opening to the outdoors, is located in southwest Georgia. Controlling the space humidity always presented a serious challenge. Uncomfortable conditions and musty odors had caused many guests to request to move to other areas within the resort. This is the first field demonstration performed by Oak Ridge National Laboratory where significant energy savings, operating cost savings, and dramatically improved indoor environmental conditions can all be claimed as the results of a retrofit desiccant equipment field installation. The ADM/rooftop combination installed at the restaurant resulted in a reduction of about 34% in the electricity used by the building's air-conditioning system. This represents a reduction of approximately 15% in

  3. The extraembryonic serosa protects the insect egg against desiccation

    PubMed Central

    Jacobs, Chris G. C.; Rezende, Gustavo L.; Lamers, Gerda E. M.; van der Zee, Maurijn

    2013-01-01

    Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates. PMID:23782888

  4. Proteomics of seed development, desiccation tolerance, germination and vigor.

    PubMed

    Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan; Møller, Ian Max

    2015-01-01

    Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.

  5. [Prevention of peritoneal desiccation in acute adhesive intestinal obstruction].

    PubMed

    2014-01-01

    The research study was carried out on 30 white Wistar rats, which were divided into three groups. In the first group the effect of carboxyperitoneum on visceral peritoneum during a two hour period at a pressure of 9-10 mm Hg and after 20 minutes its further fractional replacement during 10 seconds was examined. In the second group, the study was carried out after modeling 12-hours acute adhesive intestinal obstruction. To the third group at the beginning was given a single injection of four component mixture (carboxyperitoneum gel carboxymetiltcellulose novocaine and antibiotic) into the abdominal cavity. In the first group under the condition of tension carboxyperitoneum after a day of use there were signs of desiccations of visceral peritoneum. The increase of lipid peroxidation products and decrease of antioxidant enzymes were also observed. In the second group of animals these processes were exacerbated by acute adhesive intestinal obstruction. In the third group intraabdominal use of four component disperse mixture reduced the negative organic and functional changes in visceral peritoneum and improved its protective properties.

  6. Pluvial Drainage Patterns and Holocene Desiccation Influenced the Genetic Architecture of Relict Dace, Relictus solitarius (Teleostei: Cyprinidae)

    PubMed Central

    Houston, Derek D.; Evans, R. Paul; Shiozawa, Dennis K.

    2015-01-01

    Changing drainage patterns have played a significant role in the evolution of western North American aquatic taxa. Relict dace, Relictus solitarius, is a Great Basin endemic cyprinid with a native range that is restricted to four valleys in eastern Nevada. Relictus solitarius now occupies spring systems that are the remnants of Pleistocene-era pluvial lakes, although it may have occurred in the area for much longer. Here we use mitochondrial DNA sequence data to assess range-wide genetic diversity of R. solitarius, and to estimate divergence times to determine whether pluvial drainages played an important role in shaping intraspecific genetic diversity. Genetic diversification within R. solitarius began during the early to mid-Pleistocene, separating populations within two sets of valleys (Butte/Ruby and Goshute/Steptoe). Additional diversification in each of the two sets of valleys occurred more recently, in the mid- to late-Pleistocene. Holocene desiccation has further isolated populations, and each population sampled contains unique mtDNA haplotypes. Pluvial drainage patterns did contribute to the genetic structure observed within R. solitarius, but most of the intraspecific diversification does not appear to be associated with the Last Glacial Maximum. Holocene desiccation has also contributed to the observed genetic structure. The relict dace populations we sampled are all unique, and we recommend that future management efforts should strive to preserve as much of the genetic diversity as possible. PMID:26394395

  7. Pluvial Drainage Patterns and Holocene Desiccation Influenced the Genetic Architecture of Relict Dace, Relictus solitarius (Teleostei: Cyprinidae).

    PubMed

    Houston, Derek D; Evans, R Paul; Shiozawa, Dennis K

    2015-01-01

    Changing drainage patterns have played a significant role in the evolution of western North American aquatic taxa. Relict dace, Relictus solitarius, is a Great Basin endemic cyprinid with a native range that is restricted to four valleys in eastern Nevada. Relictus solitarius now occupies spring systems that are the remnants of Pleistocene-era pluvial lakes, although it may have occurred in the area for much longer. Here we use mitochondrial DNA sequence data to assess range-wide genetic diversity of R. solitarius, and to estimate divergence times to determine whether pluvial drainages played an important role in shaping intraspecific genetic diversity. Genetic diversification within R. solitarius began during the early to mid-Pleistocene, separating populations within two sets of valleys (Butte/Ruby and Goshute/Steptoe). Additional diversification in each of the two sets of valleys occurred more recently, in the mid- to late-Pleistocene. Holocene desiccation has further isolated populations, and each population sampled contains unique mtDNA haplotypes. Pluvial drainage patterns did contribute to the genetic structure observed within R. solitarius, but most of the intraspecific diversification does not appear to be associated with the Last Glacial Maximum. Holocene desiccation has also contributed to the observed genetic structure. The relict dace populations we sampled are all unique, and we recommend that future management efforts should strive to preserve as much of the genetic diversity as possible.

  8. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms.

    PubMed

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  9. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis.

    PubMed

    Hingston, Patricia A; Piercey, Marta J; Truelstrup Hansen, Lisbeth

    2015-08-15

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses.

  10. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    PubMed Central

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  11. Effect of desiccation on microleakage of five Class 5 restorative materials.

    PubMed

    Bouschlicher, M R; Vargas, M A; Denehy, G E

    1996-01-01

    Resin-modified glass ionomers, combinations of resin and glass-ionomer chemistry, have resulted in materials with longer working times and command set by visible light activation. These materials are easier to use and more resistant to early moisture contamination and fracture. A glass-ionomer or resin-modified glass-ionomer restoration may be inadvertently desiccated by isolation of the same quadrant for subsequent restorative procedures. The present study is an assessment of the effects of desiccation on microleakage of three resin-modified glass-ionomers: Vitremer, Photac-Fil, Fuji II LC; a glass-ionomer, Ketac-Fil; and a microfill resin, Silux Plus. Fifty extracted molars were prepared with class 5 preparations buccal and lingual and randomly assigned to 10 groups (n = 10). Restorations were placed according to the manufacturers' specifications and finished wet after the manufacturers' specified setting interval. All samples were thermocycled 300 cycles between 50 and 500 degrees C. Samples were stored in water at all times until the five groups to be desiccated were air dried and stored dry for 45 minutes. Desiccated groups were then rehydrated for 24 hours prior to AgNO3 staining. Teeth were sectioned mesiodistally and four buccolingual sections (0.6 mm thick) through each class 5 restoration were obtained with a Silverstone-Taylor hard tissue microtome. Each section was scored on a scale of 0-4 for microleakage, and the highest score for dye penetration was used as the score for that restoration. An increase in microleakage was observed in all desiccated groups. Three materials showed a statistically significant increase in microleakage (P < 0.05) following desiccation. Microleakage increases following a brief period of desiccation corresponding to typical treatment times indicate that clinicians need to protect previously placed restorations from undue drying during subsequent dental treatment.

  12. Cellular Biochemical Changes in Selaginella tamariscina (Beauv.) Spring and Sellaginella plana (Desv. ex Poir.) Heiron. as Induced by Desiccation

    PubMed Central

    Agduma, Angelo Rellama; Sese, Maribel Dionisio

    2016-01-01

    The biochemical changes in two Selaginella species namely, S. tamariscina (Beauv.) Spring and S. plana (Desv. ex Poir.) Heiron., as induced by desiccation and subsequent rehydration were explored. Plants were allowed to dehydrate naturally by withholding irrigation until shoot’s relative water content (RWC) reached <10%. After which, dehydrated plants were watered until fully rehydrated states were obtained which was about 90% RWC or more. Desiccation-tolerance characteristics were observed in S. tamariscina while desiccation-sensitivity features were seen in S. plana. Membrane integrity was maintained in S. tamariscina but not in S. plana as evidenced in the relative electrolyte leakage measurements during desiccation phase and the subsequent rehydration stage. Pigment analyses revealed conservation of some chlorophylls and carotenoids during desiccation and reaching control levels following rehydration in S. tamariscina. Very low pigment contents were found in S. plana during desiccation phase and the pigments were not recovered during rehydration attempt. Meanwhile, compatible solute determination showed rise in total sugar and proline contents of desiccated S. tamariscina only, indicating presence of biochemical protection machineries in this species and absence of such in S. plana during dehydrating conditions. These data indicate that one key element for desiccation-tolerance in lower vascular plants is the ability to protect tissues from severe damages caused by intense desiccation. PMID:27688850

  13. Desiccation resistance in pre-diapause, diapause and post-diapause larvae of Choristoneura fumiferana (Lepidoptera: Tortricidae).

    PubMed

    Bauce E; Han, E

    2001-10-01

    Desiccation resistance was examined in pre-diapause, diapause and post-diapause larvae of the spruce budworm, Choristoneura fumiferana (Clemens), in terms of passive water evaporation under three desiccation conditions: freeze-drying, desiccant-drying at 2 degrees C and desiccant-drying at 18 degrees C. Diapausing second instar larvae and post-diapause non-feeding second instar larvae showed strongest desiccation resistance: a significant amount of water was retained after repeated drying under desiccating conditions, while pre-diapause first instar larvae and post-diapause feeding second instar larvae lost almost all their water content after one or two drying cycles. A hibernaculum covering had no effect on water evaporation. While dead larvae tended to lose significantly more water than their living counterparts, particularly among first instar larvae, such an impact was much weaker among diapausing second instar larvae. Desiccation resistance was lost when post-diapause second instar larvae were allowed access to water while the level of desiccation resistance was maintained or enhanced when the larvae did not have access to water. These results are discussed in the context of overwintering ecology of the species and possible mechanisms for the desiccation resistance are also discussed.

  14. Phospholipase Dα1-mediated phosphatidic acid change is a key determinant of desiccation-induced viability loss in seeds.

    PubMed

    Chen, Hongying; Yu, Xiaomei; Zhang, Xudong; Yang, Lan; Huang, Xing; Zhang, Jie; Pritchard, Hugh W; Li, Weiqi

    2017-02-02

    High sensitivity of seeds to water loss is a widespread phenomenon in the world's plant species. The molecular basis of this trait is poorly understood but thought to be associated with critical changes in membrane function. We profiled membrane lipids of seeds in eight species with varying levels of desiccation tolerance and found a close association between reducing seed viability and increasing phosphatidic acid (PA). We applied hydration-dehydration cycles to Arabidopsis seeds, which are normally desiccation tolerant, to mimic the onset of desiccation sensitivity with progression towards germination and examined the role of phospholipase D (PLD) in desiccation stress-induced production of PA. We found that PLDα1 became more abundant and migrated from the cytosol to the membrane during desiccation, whereas PLDδ did not change, and that all desiccation-induced PA was derived from PLDα1 hydrolysis. When PLDα1 was suppressed, the germination level after each hydration-dehydration cycle improved significantly. We further demonstrated that PLDα1-mediated PA formation modulates desiccation sensitivity as applying its inhibitor improved seed desiccation tolerance and its suppression in protoplasts enhanced survival under dehydration. The insights provided by comparative lipidomics enable us to propose a new membrane-based model for seed desiccation stress and survival.

  15. Protein dynamics in thylakoids of the desiccation-tolerant plant Boea hygroscopica during dehydration and rehydration.

    PubMed

    Navari-Izzo, F; Quartacci, M F; Pinzino, C; Rascio, N; Vazzana, C; Sgherri, C L

    2000-11-01

    Plants of Boea hygroscopica F. Muell were dehydrated to 9% relative water content (RWC) by withholding water for 26 d, and afterward the plants were rehydrated. Leaves were taken from control plants after 7, 12, and 26 d from the beginning of dehydration, and after 6 and 48 h from rehydration. The RWC decreased by 80% during dehydration, but the leaves regained RWC with rehydration. Dehydrated plants showed lesser amounts of proteins, lipids, and chlorophyll, all of which increased following rewatering. The lipid-to-protein ratio, which decreased during dehydration, returned to control level after 48 h of rehydration. Thylakoid lipids were more unsaturated when RWC reached the value of 9%. EPR measurements of spin-labeled proteins showed the presence of three different groups of proteins with different mobility in thylakoid membranes. The rotational correlation time of groups 1 and 2 increased with dehydration and decreased upon rehydration, whereas group 3 showed little changes. Desiccation did not cause thylakoid swelling or breakage, but the membrane system assemblage showed changes in thylakoid stacking. After 48 h of rehydration the membrane system recovered completely the organization of the fully hydrated state, showing several well-defined and regularly distributed grana.

  16. Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress.

    PubMed

    Flores-Bavestrello, Alejandra; Król, Marianna; Ivanov, Alexander G; Hüner, Norman P A; García-Plazaola, José Ignacio; Corcuera, Luis J; Bravo, León A

    2016-02-01

    Hymenophyllaceae is a desiccation tolerant family of Pteridophytes which are poikilohydric epiphytes. Their fronds are composed by a single layer of cells and lack true mesophyll cells and stomata. Although they are associated with humid and shady environments, their vertical distribution varies along the trunk of the host plant with some species inhabiting the drier sides with a higher irradiance. The aim of this work was to compare the structure and function of the photosynthetic apparatus during desiccation and rehydration in two species, Hymenophyllum dentatum and Hymenoglossum cruentum, isolated from a contrasting vertical distribution along the trunk of their hosts. Both species were subjected to desiccation and rehydration kinetics to analyze frond phenotypic plasticity, as well as the structure, composition and function of the photosynthetic apparatus. Minimal differences in photosynthetic pigments were observed upon dehydration. Measurements of ϕPSII (effective quantum yield of PSII), ϕNPQ (quantum yield of the regulated energy dissipation of PSII), ϕNO (quantum yield of non-regulated energy dissipation of PSII), and TL (thermoluminescence) indicate that both species convert a functional photochemical apparatus into a structure which exhibits maximum quenching capacity in the dehydrated state with minimal changes in photosynthetic pigments and polypeptide compositions. This dehydration-induced conversion in the photosynthetic apparatus is completely reversible upon rehydration. We conclude that H. dentatum and H. cruentum are homoiochlorophyllous with respect to desiccation stress and exhibited no correlation between inherent desiccation tolerance and the vertical distribution along the host tree trunk.

  17. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae

    NASA Astrophysics Data System (ADS)

    Leedham Elvidge, E. C.; Phang, S.-M.; Sturges, W. T.; Malin, G.

    2014-07-01

    Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv / Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response.

  18. Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance.

    PubMed

    Komatsu, Kenji; Suzuki, Norihiro; Kuwamura, Mayuri; Nishikawa, Yuri; Nakatani, Mao; Ohtawa, Hitomi; Takezawa, Daisuke; Seki, Motoaki; Tanaka, Maho; Taji, Teruaki; Hayashi, Takahisa; Sakata, Yoichi

    2013-01-01

    Vegetative desiccation tolerance is common in bryophytes, although this character has been lost in most vascular plants. The moss Physcomitrella patens survives complete desiccation if treated with abscisic acid (ABA). Group A protein phosphatases type 2C (PP2C) are negative regulators of abscisic acid signalling. Here we show that the elimination of Group A PP2C is sufficient to ensure P. patens survival to full desiccation, without ABA treatment, although its growth is severely hindered. Microarray analysis shows that the Group A PP2C-regulated genes exclusively overlap with genes exhibiting a high level of ABA induction. Group A PP2C disruption weakly affects ABA-activated kinase activity, indicating Group A PP2C action downstream of these kinases in the moss. We propose that Group A PP2C emerged in land plants to repress desiccation tolerance mechanisms, possibly facilitating plants propagation on land, whereas ABA releases the intrinsic desiccation tolerance from Group A PP2C regulation.

  19. Effects of pre-harvest chemical application on rice desiccation and seed quality*

    PubMed Central

    HE, Yong-qi; CHENG, Jin-ping; LIU, Liang-feng; LI, Xiao-dan; YANG, Bin; ZHANG, Hong-sheng; WANG, Zhou-fei

    2015-01-01

    Pre-harvest desiccation may increase the efficiency of seed production. Field studies were conducted to determine the effects of diquat, paraquat, and ethephon applications on grain moisture, grain weight, and seed germination of hybrid rice Yanliangyou 88 (Oryza sativa ssp. indica) and conventional rice Wuyunjing 7 (Oryza sativa ssp. japonica). In 2013, we tested 12 treatments applied at four weeks (Yanliangyou 88) and six weeks (Wuyunjing 7) after heading. Results showed that reductions in moisture content were significant two and four days after chemical application. Chemical applications had no adverse effects on 1000-grain weight, germination percentage, or germination index, but there were negative effects on the percentage of normal seedlings. Desiccation effects increased with increase in the period after application, while the effect of ethephon combined with diquat or paraquat on desiccation was limited compared with that of diquat or paraquat alone in a short period after application. In 2013, chemical applications reduced the moisture content by from 0.5% to 6.4%, the germination percentage by from 0% to 3.3%, and the percentage of normal seedlings by from 13.3% to 100.0%. Among the treatments, diquat applied at 120 g/ha resulted in effective desiccation with fewer negative effects on grain weight and seed germination in 2013 and 2014. Therefore, diquat may have potential as a pre-harvest chemical desiccation treatment for rice. These results may provide a basis for developing and implementing protocols for large scale field trials. PMID:26465129

  20. Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta).

    PubMed

    Xie, Xiujun; Gao, Shan; Gu, Wenhui; Pan, Guanghua; Wang, Guangce

    2013-01-01

    For plants and algae, exposure to high light levels is deleterious to their photosynthetic machineries. It also can accelerate water evaporation and thus potentially lead to drought stress. Most photosynthetic organisms protect themselves against high light caused photodamages by xanthophyll cycle-dependent thermal energy dissipation. It is generally accepted that high light activates xanthophyll cycle. However, the relationship between xanthophyll cycle and drought stress remains ambiguous. Herein, Ulva pertusa (Chlorophyta), a representative perennial intertidal macro-algae species with high drought-tolerant capabilities and simple structures, was used to investigate the operation of xanthophyll cycle during desiccation in air. The results indicate that desiccation under dim light induced accumulation of antheraxanthin (Ax) and zeaxanthin (Zx) at the expense of violaxanthin (Vx). This accumulation could be arrested by dithiothreitol completely and by uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) partially, implying the participation of Vx de-epoxidase in conversion of Vx to Ax and Zx. Treatment with inhibitors of electron transport along thylakoid membrane, e.g. DCMU, PG and DBMIB, did not significantly arrest desiccation-induced accumulation of Ax and Zx. We propose that for U. pertusa, besides excess light, desiccation itself could also induce accumulation of Ax and Zx. This accumulation could proceed without electron transport along thylakoid membrane, and is possibly resulting from the reduction of thylakoid lumen volume during desiccation. Considering the pleiotropic effects of Ax and Zx, accumulated Ax and Zx may function in protecting thylakoid membrane and enhancing thermal quenching during emersion in air.

  1. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark.

    PubMed

    Lüttge, U; Büdel, B

    2010-05-01

    The rough bark of orchard trees (Malus) around Darmstadt is predominantly covered in red to purple-brown layers (biofilms) of epiphytic terrestrial alga of Trentepohlia umbrina. The smooth bark of forest trees (Fagus sylvatica L. and Acer sp.) in the same area is covered by bright green biofilms composed of the green algae Desmococcus, Apatococcus and Trebouxia, with a few cells of Coccomyxa and 'Chlorella' trebouxioides between them. These algae are desiccation tolerant. After samples of bark with the biofilms were kept in dry air in darkness for various periods of time, potential quantum yield of PSII, F(v)/F(m), recovered during rehydration upon rewetting. The kinetics and degree of recovery depended on the length of time that the algae were kept in dry air in the desiccated state. Recovery was better for green biofilm samples, i.e. quite good even after 80 days of desiccation (F(v)/F(m) = ca. 50% of initial value), than the red samples, where recovery was only adequate up to ca. 30-40 days of desiccation (F(v)/F(m) = ca. 20-55% of initial value). It is concluded that the different bark types constitute different ecophysiological niches that can be occupied by the algae and that can be distinguished by their capacity to recover from desiccation after different times in the dry state.

  2. Desiccation resistance reflects patterns of microhabitat choice in a Central American assemblage of wandering spiders.

    PubMed

    Lapinski, Witold; Tschapka, Marco

    2014-08-01

    The lowland rainforest of northeastern Costa Rica harbours an assemblage of large wandering spider species belonging to three habitat subguilds: (1) semi-aquatic, (2) forest ground dwelling and (3) vegetation dwelling. We hypothesized that desiccation resistance should differ among species preferring different microhabitats and the associated microclimate. Desiccation resistance was assessed by: (1) measuring water loss rates of the spiders under relatively dry experimental conditions, and (2) recording desiccation susceptibility, i.e. the reactions of the spiders to a relatively dry environment. High water loss rates and desiccation susceptibility of the semi-aquatic and forest-ground-dwelling subguilds clearly mirrored the relatively humid microclimate of the understory. Significantly lower water loss rates and desiccation susceptibility of the vegetation-dwelling species reflected the highly variable, often dry and hot conditions of the rainforest canopy and forest edge habitats. Vegetation-dwelling wandering spiders are therefore physiologically better adapted to dry conditions than the semi-aquatic and forest-ground-dwelling species. The results illustrate the significance of physiological characteristics for explaining both species-specific habitat use and, in a larger context, niche partitioning within a community.

  3. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants.

    PubMed

    Challabathula, Dinakar; Puthur, Jos T; Bartels, Dorothea

    2016-02-01

    Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration.

  4. Sealed tube comparisons of the compatibility of desiccants with refrigerants and lubricants

    NASA Astrophysics Data System (ADS)

    Field, J. E.

    Continuing environmental concerns mandate replacement of CFC's with alternate refrigeration fluids. At this time relatively little testing has been reported in the literature for compatibility of desiccants in these new working fluids. Work has begun, and some results are reported, on a project that will determine the compatibility of virtually all of the currently used desiccant types--both bead and molded core--with thirteen refrigerant/lubricant combinations. The desiccants are tested by exposure to refrigerant and lubricant in sealed, glass tubes in accordance with ASHRAE/ANSI Standard 97-1989. After aging the lubricants are evaluated for change in color and acid formation. The refrigerants are analyzed for charges by gas chromatography and halide ion formation using ion chromatography. The desiccants are evaluated for changes in crush strength and for retention of acids and halide ions. Metal catalysts, also present in the sealed tubes, are visually examined for corrosion, copper plating, and appearance change. Results are reported for 4 A and 3 A molecular sieve desiccants aged in R-12, R-134a, and R-32.

  5. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae

    NASA Astrophysics Data System (ADS)

    Leedham Elvidge, E. C.; Phang, S.-M.; Sturges, W. T.; Malin, G.

    2015-01-01

    Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv/Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response.

  6. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2015-12-01

    Aedes aegypti (L.) mosquitoes preferentially oviposit in natural and artificial receptacles where their eggs are able to withstand drying as water levels fluctuate. Desiccation-resistant eggs also increase the potential for establishment in non-native habitats while providing logistical impediments to control programs. Viability and mean survival times of eggs stored under three dryness conditions for up to 367 days were investigated among three field-derived colonies of Australian Ae. aegypti to understand variation in desiccation survival. Further investigations compared egg survival between an established colony and its wild counterpart. Our results confirmed that Ae. aegypti eggs can withstand desiccation for extended periods of time with approximately 2-15% egg viability recorded after one year and viability remaining above 88% under all conditions through 56 days. Intraspecific variations in egg survival times were recorded, suggesting local adaptation while each of the colonies demonstrated a consistent preference for higher humidity. Egg volume varied between the populations, suggesting a relationship between egg volume and survival time, with the marginally larger eggs (Charters Towers and Innisfail) having greater desiccation resistance over the range of conditions. The strong survivorship of Charters Towers eggs in dry, warm conditions demonstrates the adaptive significance of a desiccation-resistant egg.

  7. Water balance and resistance to desiccation in rock-dwelling snails

    NASA Astrophysics Data System (ADS)

    Arad, Zeev; Goldenberg, Shoshana; Heller, Joseph

    1995-06-01

    We have examined the resistance to desiccation among rock-dwelling land snails of various phylogenetic groups: Cristataria genezarethana (Clausiliidae), Rupestrella rhodia (Chondrinidae) and Levantina caesareana (Helicidae), all from the same location in Israel. L. caesareana was the most resistant and R. rhodia the least resistant to desiccation and C. genezarethana was of intermediate resistance. Differences in the rates of water loss during desiccation were determined mainly by rate of water loss during the first 2 days of desiccation. The high rates of water loss in rock-dwelling species exceed those of other snails in the Mediterranean habitat of Israel. However, snails collected in the field at the end of aestivation were in only a mild state of dehydration, suggesting that the rocky habitat protects its occupants against desiccation. We also suggest that among the rock-dwelling species, the protective role of the rock is more important in the more evolutionarily primitive genera (the chondrinid Rupestrella and the clausiliid Cristataria) and that physiological capacities are more effective in the more highly evolved helicid Levantina.

  8. A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria.

    PubMed

    Kuhne, S; Strieth, D; Lakatos, M; Muffler, K; Ulber, R

    2014-12-20

    Cyanobacteria offer great potential for the production of biotechnological products for pharmaceutical applications. However, these organisms can only be cultivated efficiently using photobioreactors (PBR). Under submerged conditions though, terrestrial cyanobacteria mostly grow in a suboptimal way, which makes this cultivation-technique uneconomic and thus terrestrial cyanobacteria unattractive. Therefore, a novel emersed photobioreactor (ePBR) has been developed, which can provide the natural conditions for these organisms. Proof of concept as well as first efficiency tests are conducted using the terrestrial cyanobacteria Trichocoleus sociatus as a model organism. The initial maximum growth rate of T. sociatus (0.014±0.001h(-1)) in submerged systems could be increased by 35%. Furthermore, it is now possible to control desiccation-correlated product formation and related metabolic processes. This is shown for the production of extracellular polymeric substances (EPS). In this case the yield of 0.068±0.006g of EPS/g DW could be increased by more than seven times.

  9. Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb.

    PubMed

    Tóth, Sándor; Kiss, Csaba; Scott, Peter; Kovács, Gabriella; Sorvari, Seppo; Toldi, Ottó

    2006-05-01

    In this paper we describe the first procedure for Agrobacterium tumefaciens-mediated genetic transformation of the desiccation tolerant plant Ramonda myconi (L.) Rchb. Previously, we reported the establishment of a reliable and effective tissue culture system based on the integrated optimisation of antioxidant and growth regulator composition and the stabilisation of the pH of the culture media by means of a potassium phosphate buffer. This efficient plant regeneration via callus phase provided a basis for the optimisation of the genetic transformation in R. myconi. For gene delivery, both a standard (method A) and a modified protocol (method B) have been applied. Since the latter has previously resulted in successful transformation of another resurrection plant, Craterostigma plantagineum, an identical protocol was utilized in transformation of R. myconi, as this method may prove general for dicotyledonous resurrection plants. On this basis, physical and biochemical key variables in transformation were evaluated such as mechanical microwounding of plant explants and in vitro preinduction of vir genes. While the physical enhancement of bacterial penetration was proved to be essential for successful genetic transformation of R. myconi, an additional two-fold increase in the transformation frequency was obtained when the above physical and biochemical treatments were applied in combination. All R0 and R1 transgenic plants were fertile, and no morphological abnormalities were observed on the whole-plant level.

  10. Position control of desiccation cracks by memory effect and Faraday waves.

    PubMed

    Nakayama, Hiroshi; Matsuo, Yousuke; Takeshi, Ooshida; Nakahara, Akio

    2013-01-01

    Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday waves, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node zones of the Faraday waves: in the case of stripe-patterned Faraday waves, the cracks are formed twice more frequently in the node zones than in the anti-node zones, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node zones, the memory of the square lattice pattern of Faraday waves makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday waves.

  11. An Overview of the Biology of the Desiccation-tolerant Resurrection Plant Myrothamnus flabellifolia

    PubMed Central

    Moore, John P.; Lindsey, George G.; Farrant, Jill M.; Brandt, Wolf F.

    2007-01-01

    Background Myrothamnus flabellifolia is unique as the only woody resurrection plant. It is an important plant in southern Africa because of its widespread occurrence and usage in African medicine and traditional culture. Many reports have investigated facets of its biology and the mechanisms associated with its desiccation tolerance. Scope The general biology of the woody resurrection plant Myrothamnus flabellifolia is reviewed. The review focuses on the geography and ecology, systematic placement, evolution, morphology and reproductive ecology of M. flabellifolia as well as the wood anatomy and re-filling mechanism. In addition, the desiccation tolerance, ethnobotanical importance and medicinal properties of the plant are reviewed. Also, future research avenues are suggested, in particular the necessity to research the biogeography and systematics of the species and the role of the polyphenols present, as well as the molecular basis of the plant's desiccation tolerance. PMID:17218343

  12. Cloning and baculovirus expression of a desiccation stress gene from the beetle, Tenebrio molitor.

    PubMed

    Graham, L A; Bendena, W G; Walker, V K

    1996-02-01

    The cDNA sequence encoding a novel desiccation stress protein (dsp28) found in the hemolymph of the common yellow mealworm beetle, Tenebrio molitor, has been determined. The sequence encodes a 225 amino acid protein containing a 20 amino acid signal peptide. Dsp28 shows no significant similarity to any known nucleic acid or protein sequence. Levels of dsp28 mRNA were found to increase approx 5-fold following desiccation. Dsp28 cDNA has been cloned into a baculovirus expression vector and the expressed protein was compared to native dsp28. Both dsp28 expressed by recombinant baculovirus and native dsp28 are glycosylated and N-terminally processed. Although dsp28 is induced by cold in addition to desiccation stress, it does not contribute to the freezing point depression (thermal hysteresis) observed in Tenebrio hemolymph.

  13. Rapid Method for Isolation of Desiccation-Tolerant Strains and Xeroprotectants▿

    PubMed Central

    Narváez-Reinaldo, J. J.; Barba, I.; González-López, J.; Tunnacliffe, A.; Manzanera, M.

    2010-01-01

    A novel biotechnological process has been developed for the isolation of desiccation-tolerant microorganisms and their xeroprotectants, i.e., compatible solutes involved in long-term stability of biomolecules in the dry state. Following exposure of soil samples to chloroform, we isolated a collection of desiccation-tolerant microorganisms. This collection was screened for the production of xeroprotectants by a variation of the bacterial milking (osmotic downshock) procedure and by a novel air-drying/rehydration (“dry milking”) incubation method. The resultant solutes were shown to protect both proteins and living cells against desiccation damage, thereby validating them as xeroprotectants. Nuclear magnetic resonance (NMR) analytical studies were performed to identify the xeroprotectants; synthetic mixtures of these compounds were shown to perform similarly to natural isolates in drying experiments with proteins and cells. This new approach has biotechnological and environmental implications for the identification of new xeroprotectants of commercial and therapeutic value. PMID:20562279

  14. Induction of tolerance to desiccation and cryopreservation in silver maple (Acer saccharinum) embryonic axes.

    PubMed

    Beardmore, T; Whittle, C-A

    2005-08-01

    Twenty percent of of the world's flowering plants produce recalcitrant seeds (i.e., seeds that cannot withstand drying or freezing). We investigated whether the embryonic axis from the normally recalcitrant seeds of silver maple (Acer saccharinum L.) can be made tolerant to desiccation (10% water content) and low temperature (-196 degrees C, cryopreservation) by pretreatment with ABA or the compound tetcyclacis, which enhances endogenous ABA concentrations. Pretreatment of axes with both ABA and tetcyclacis increased germination after desiccation and freezing to 55% from a control value of zero. Pretreatment of axes with ABA and tetcyclacis increased the ABA content of the axes, as measured by enzyme-linked immunoassay, and stimulated the synthesis of storage and dehydrin-like proteins, believed to have a role in the desiccation tolerance of orthodox seeds.

  15. DESICCATION INDEX: A MEASURE OF DAMAGE CAUSED BY ADVERSE AERIAL EXPOSURE ON INTERTIDAL EELGRASS (ZOSTERA MARINA) IN AN OREGON (USA) ESTUARY

    EPA Science Inventory

    Eelgrass (Zostera marina) blade necrosis resulting from intertidal aerial exposure is describe. A desiccation index was developed to quantitatively assess this damage. This index was then used to evaluate the extent of desiccation damage across intertidal bathymetric slopes (st...

  16. Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens.

    PubMed

    Heber, Ulrich

    2008-09-01

    In order to survive sunlight in the absence of water, desiccation-tolerant green plants need to be protected against photooxidation. During drying of the chlorolichen Cladonia rangiformis and the cyanolichen Peltigera neckeri, chlorophyll fluorescence decreased and stable light-dependent charge separation in reaction centers of the photosynthetic apparatus was lost. The presence of light during desiccation increased loss of fluorescence in the chlorolichen more than that in the cyanolichen. Heating of desiccated Cladonia thalli, but not of Peltigera thalli, increased fluorescence emission more after the lichen had been dried in the light than after drying in darkness. Activation of zeaxanthin-dependent energy dissipation by protonation of the PsbS protein of thylakoid membranes was not responsible for the increased loss of chlorophyll fluorescence by the chlorolichen during drying in the light. Glutaraldehyde inhibited loss of chlorophyll fluorescence during drying. Desiccation-induced loss of chlorophyll fluorescence and of light-dependent charge separation are interpreted to indicate activation of a highly effective mechanism of photoprotection in the lichens. Activation is based on desiccation-induced conformational changes of a pigment-protein complex. Absorbed light energy is converted into heat within a picosecond or femtosecond time domain. When present during desiccation, light interacts with the structural changes of the protein providing increased photoprotection. Energy dissipation is inactivated and structural changes are reversed when water becomes available again. Reversibility of ultra-fast thermal dissipation of light energy avoids photo-damage in the absence of water and facilitates the use of light for photosynthesis almost as soon as water becomes available.

  17. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation.

    PubMed

    Pallarés, Susana; Botella-Cruz, María; Arribas, Paula; Millán, Andrés; Velasco, Josefa

    2017-04-01

    Exposing organisms to a particular stressor may enhance tolerance to a subsequent stress, when protective mechanisms against the two stressors are shared. Such cross-tolerance is a common adaptive response in dynamic multivariate environments and often indicates potential co-evolution of stress traits. Many aquatic insects in inland saline waters from Mediterranean-climate regions are sequentially challenged with salinity and desiccation stress. Thus, cross-tolerance to these physiologically similar stressors could have been positively selected in insects of these regions. We used adults of the saline water beetles Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses to desiccation and salinity. In independent laboratory experiments, we evaluated the effects of (i) salinity stress on the subsequent resistance to desiccation and (ii) desiccation stress (rapid and slow dehydration) on the subsequent tolerance to salinity. Survival, water loss and haemolymph osmolality were measured. Exposure to stressful salinity improved water control under subsequent desiccation stress in both species, with a clear cross-tolerance (enhanced performance) in N. baeticus In contrast, general negative effects on performance were found under the inverse stress sequence. The rapid and slow dehydration produced different water loss and haemolymph osmolality dynamics that were reflected in different survival patterns. Our finding of cross-tolerance to salinity and desiccation in ecologically similar species from distant lineages, together with parallel responses between salinity and thermal stress previously found in several aquatic taxa, highlights the central role of adaption to salinity and co-occurring stressors in arid inland waters, having important implications for the species' persistence under climate change.

  18. Addition of alarm pheromone components improves the effectiveness of desiccant dusts against Cimex lectularius.

    PubMed

    Benoit, Joshua B; Phillips, Seth A; Croxall, Travis J; Christensen, Brady S; Yoder, Jay A; Denlinger, David L

    2009-05-01

    We demonstrate that the addition of bed bug, Cimex lectularius, alarm pheromone to desiccant formulations greatly enhances their effectiveness during short-term exposure. Two desiccant formulations, diatomaceous earth (DE) and Dri-die (silica gel), were applied at the label rate with and without bed bug alarm pheromone components, (E)-2-hexenal, (E)-2-octenal, and a (E)-2-hexenal:(E)-2-octenal blend. First-instar nymphs and adult females were subjected to 10-min exposures, and water loss rates were used to evaluate the response. Optimal effectiveness was achieved with a pheromone concentration of 0.01 M. With Dri-die alone, the water loss was 21% higher than in untreated controls, and water loss increased nearly two times with (E)-2-hexenal and (E)-2-octenal and three times with the (E)-2-hexenal: (E)-2-octenal blend. This shortened survival of first-instar nymphs from 4 to 1 d, with a similar reduction noted in adult females. DE was effective only if supplemented with pheromone, resulting in a 50% increase in water loss over controls with the (E)-2-hexenal:(E)-2-octenal blend, and a survival decrease from 4 to 2 d in first-instar nymphs. Consistently, the addition of the pheromone blend to desiccant dust was more effective than adding either component by itself or by using Dri-die or DE alone. Based on observations in a small microhabitat, the addition of alarm pheromone components prompted bed bugs to leave their protective harborages and to move through the desiccant, improving the use of desiccants for control. We concluded that short exposure to Dri-die is a more effective treatment against bed bugs than DE and that the effectiveness of the desiccants can be further enhanced by incorporation of alarm pheromone. Presumably, the addition of alarm pheromone elevates excited crawling activity, thereby promoting cuticular changes that increase water loss.

  19. Maintenance or Collapse: Responses of Extraplastidic Membrane Lipid Composition to Desiccation in the Resurrection Plant Paraisometrum mileense

    PubMed Central

    Yu, Buzhu; Yu, Xiaomei; Li, Weiqi

    2014-01-01

    Resurrection plants usually grow in specific or extreme habitats and have the capacity to survive almost complete water loss. We characterized the physiological and biochemical responses of Paraisometrum mileense to extreme desiccation and found that it is a resurrection plant. We profiled the changes in lipid molecular species during dehydration and rehydration in P. mileense, and compared these with corresponding changes in the desiccation-sensitive plant Arabidopsis thaliana. One day of desiccation was lethal for A. thaliana but not for P. mileense. After desiccation and subsequent rewatering, A. thaliana showed dramatic lipid degradation accompanied by large increases in levels of phosphatidic acid (PA) and diacylglycerol (DAG). In contrast, desiccation and rewatering of P. mileense significantly decreased the level of monogalactosyldiacylglycerol and increased the unsaturation of membrane lipids, without changing the level of extraplastidic lipids. Lethal desiccation in P. mileense caused massive lipid degradation, whereas the PA content remained at a low level similar to that of fresh leaves. Neither damage nor repair processes, nor increases in PA, occurred during non-lethal desiccation in P. mileense. The activity of phospholipase D, the main source of PA, was much lower in P. mileense than in A. thaliana under control conditions, or after either dehydration or rehydration. It was demonstrated that low rates of phospholipase D-mediated PA formation in P. mileense might limit its ability to degrade lipids to PA, thereby maintaining membrane integrity following desiccation. PMID:25068901

  20. Maintenance or collapse: responses of extraplastidic membrane lipid composition to desiccation in the resurrection plant Paraisometrum mileense.

    PubMed

    Li, Aihua; Wang, Dandan; Yu, Buzhu; Yu, Xiaomei; Li, Weiqi

    2014-01-01

    Resurrection plants usually grow in specific or extreme habitats and have the capacity to survive almost complete water loss. We characterized the physiological and biochemical responses of Paraisometrum mileense to extreme desiccation and found that it is a resurrection plant. We profiled the changes in lipid molecular species during dehydration and rehydration in P. mileense, and compared these with corresponding changes in the desiccation-sensitive plant Arabidopsis thaliana. One day of desiccation was lethal for A. thaliana but not for P. mileense. After desiccation and subsequent rewatering, A. thaliana showed dramatic lipid degradation accompanied by large increases in levels of phosphatidic acid (PA) and diacylglycerol (DAG). In contrast, desiccation and rewatering of P. mileense significantly decreased the level of monogalactosyldiacylglycerol and increased the unsaturation of membrane lipids, without changing the level of extraplastidic lipids. Lethal desiccation in P. mileense caused massive lipid degradation, whereas the PA content remained at a low level similar to that of fresh leaves. Neither damage nor repair processes, nor increases in PA, occurred during non-lethal desiccation in P. mileense. The activity of phospholipase D, the main source of PA, was much lower in P. mileense than in A. thaliana under control conditions, or after either dehydration or rehydration. It was demonstrated that low rates of phospholipase D-mediated PA formation in P. mileense might limit its ability to degrade lipids to PA, thereby maintaining membrane integrity following desiccation.

  1. Limits of desiccation tolerance in developing embryos of Pritchardia remota (Arecaceae): the orthodox-recalcitrant seed paradigm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orthodox and recalcitrant seeds are distinguished by the ability of embryos to survive desiccation. Seeds of many palm species do not conform to the dichotomous classification and storage physiology is considered intermediate or ambiguous. We studied the acquisition of desiccation tolerance in embr...

  2. The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta).

    PubMed

    Gao, Shan; Wang, Guangce

    2012-07-01

    Porphyra yezoensis, a representative species of intertidal macro-algae, is able to withstand periodic desiccation at low tide but is submerged in seawater at high tide. In this study, changes in photosynthetic electron flow in P. yezoensis during desiccation and re-hydration were investigated. The results suggested that the cyclic electron flow around photosystem I (PSI) increased significantly during desiccation, continued to operate at times of severe desiccation, and showed greater tolerance to desiccation than the electron flow around PSII. In addition, PSI activity in desiccated blades recovered faster than PSII activity during re-hydration. Even though linear electron flow was suppressed by DCMU [3-(3',4'-dichlorophenyl)-1,1-dimethylurea], cyclic electron flow could still be restored. This process was insensitive to antimycin A and could be suppressed by dibromothymoquinone (DBMIB). The prolonged dark treatment of blades reduced the speed in which the cyclic electron flow around PSI recovered, suggesting that stromal reductants, including NAD(P)H, played an important role in the donation of electrons to PSI and were the main cause of the rapid recovery of cyclic electron flow in desiccated blades during re-hydration. These results suggested that cyclic electron flow in P. yezoensis played a significant physiological role during desiccation and re-hydration and may be one of the most important factors allowing P. yezoensis blades to adapt to intertidal environments.

  3. Desiccation cracks in siliciclastic deposits: Microbial mat-related compared to abiotic sedimentary origin

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Olga; Owttrim, George W.; Konhauser, Kurt O.; Gingras, Murray K.

    2017-01-01

    Siliciclastic sediment colonized by microbial mats yield a set of distinct sedimentary fabrics that are collectively called "mat-related structures (MRS)". In the rock record, versatile cracks are observed in biostabilized strata, but the mechanisms responsible for their formation remain debated. Microbially stabilized sediments produce desiccation cracks that serve as modern analogs for fossil microbial cracks. However, since both microbial mat shrinkage and clay shrinkage may contribute to the formation of these desiccation cracks, it is difficult to isolate the influence of the microbial mat on the resulting crack formation, distribution and morphology. To address this issue, we conducted a series of desiccation experiments that determine differences between microbially influenced desiccation cracks (i.e. biotic) and those formed in identical, but sterilized (i.e. abiotic) siliciclastic sediment. Three sediment mixtures were used: (1) very fine-sized sand, (2) mixed (ungraded) silt/clay, and (3) normally graded silt/clay. In all of the experiments, the water-rich microbial mat contracted substantially while drying, producing isolated pockets of shallow, but wide cracks, the distribution of which was controlled by heterogeneities in the mat structure and thickness variations of the mat. In the clay-poor substratum, the microbial mat was the only crack-forming mechanism, while in the clay-rich substrata (experiments 2 and 3) desiccation cracks were more strongly influenced by clay shrinkage. The abiotic clay-rich sediment produced a polygonal network of deep cracks intersecting at 90-120o junctions. In the biotic clay-rich experiments, the microbial mat modified these desiccation features by withstanding crack propagation or by producing curled-up crack polygon margins. Even though a microbial mat shrinks substantially with desiccation, its cohesive nature and heterogeneous distribution prevents the formation of a regular crack network, but its shallow penetration

  4. Amino acid pattern and glutamate metabolism during dehydration stress in the 'resurrection' plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves.

    PubMed

    Martinelli, Tommaso; Whittaker, Anne; Bochicchio, Adriana; Vazzana, Concetta; Suzuki, Akira; Masclaux-Daubresse, Céline

    2007-01-01

    The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed.

  5. Expression of Xhdsi-1VOC, a novel member of the vicinal oxygen chelate (VOC) metalloenzyme superfamily, is up-regulated in leaves and roots during desiccation in the resurrection plant Xerophyta humilis (Bak) Dur and Schinz.

    PubMed

    Mulako, I; Farrant, J M; Collett, H; Illing, N

    2008-01-01

    The annotation of novel plant genes is frequently based on sequence and structural similarity to known protein motifs. Understanding the biological function of these genes is dependent on identifying conditions under which they are activated, however. The resurrection plant, Xerophyta humilis is a good model system for identifying and characterizing genes which are important for desiccation tolerance. Desiccation induced-1 (dsi-1(VOC)), a previously uncharacterized plant gene, is up-regulated during desiccation in leaves, roots, and seeds in X. humilis. The X. humilis desiccation induced-1 gene, Xhdsi-1(VOC), shares structural homology with the vicinal oxygen chelate (VOC) metalloenzyme superfamily. Proteins in this superfamily share little sequence similarity, but are characterized by a common betaalphabetabetabeta structural fold. A number of plant orthologues of XhDsi-1(VOC) have been identified, including Arabidopsis thaliana At1g07645, which is currently annotated as a glyoxalase I-like gene, and many ESTs derived from seed cDNA libraries. Xhdsi-1(VOC) and its orthologues do not, however, contain the glutathione and zinc binding sites conserved in glyoxalase I genes. Furthermore, expression of Xhdsi-1(VOC) in yeast failed to rescue a yeast glyoxalase I mutant. Messenger RNA transcripts for At1g07645 accumulate during seed maturation, but are not induced by water loss, salt or mannitol stress in vegetative tissue in Arabidopsis. It is concluded that dsi-1(VOC) is a seed-specific gene in desiccation-sensitive plants that is activated by water loss in vegetative tissues in the resurrection plant X. humilis and plays an important role in allowing plant tissues to survive loss of 95% of their relative water content.

  6. The impact of desiccation on the adhesion of barnacles attached to non-stick coatings.

    PubMed

    Wiegemann, Maja; Watermann, Burkard

    2004-06-01

    Fouling-release coatings prevent fouling of ships' hulls through hydrodynamic forces generated as the ship moves through the water. The effectiveness of such coatings may be evaluated by measuring the adhesion strength of settled organisms, e.g. barnacles. The influence of desiccation of the barnacle adhesive on such measurements was investigated. Shear forces required to remove barnacles of the genus Balanus increased during the course of desiccation up to the point when the barnacles suddenly self-detached. The increase was thought to be due to the rising cohesive strength of the adhesive. Growing tensile forces within the weakly cross-linked adhesive, however, are suggested to have led to self-detachment. The shear forces required to remove barnacles of the genus Elminius were generally low and did not differ significantly during the course of desiccation. The different results may be attributed to specific base morphologies. It was concluded that measuring the adhesion strength of members of the Balanidae on non-stick surfaces in air could produce flawed results due to the influence of desiccation of the barnacle adhesive. The investigations have also provided new insights into the characteristics of barnacle adhesive.

  7. Molecular approaches for improving desiccation tolerance: Insights from the brine shrimp Artemia franciscana

    PubMed Central

    Hand, Steven C.; Menze, Michael A.

    2015-01-01

    Organisms inhabiting both aquatic and terrestrial ecosystems frequently are confronted with the problem of water loss for multiple reasons – exposure to hypersalinity, evaporative water loss, and restriction of intracellular water due to freezing of extracellular fluids. Seasonal desiccation can become severe and lead to the production of tolerant propagules and entry into the state of anhydrobiosis at various stages of the life cycle. Such is the case for gastrula-stage embryos of the brine shrimp, Artemia franciscana. Physiological and biochemical responses to desiccation are central for survival and are multifaceted. This review will evaluate the impact of multiple Late Embryogenesis Abundant (LEA) proteins originating from A. franciscana, together with the non-reducing sugar trehalose, on prevention of desiccation damage at multiple levels of biological organization. Survivorship of desiccation-sensitive cells during water stress can be improved by use of the above protective agents, coupled to metabolic preconditioning and rapid cell drying. However, obtaining long-term stability of cells in the dried state at room temperature has not been accomplished and will require continued efforts on both the physicochemical and biological fronts. PMID:25809151

  8. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    USGS Publications Warehouse

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  9. Exploring the role of trehalose metabolism in resistance to oxidative and desiccation stress in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of trehalose, a disaccharide known to be involved in the ability of several organisms to withstand desiccation or drought...

  10. Toward an index of desiccation times to tree mortality under drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in plant hydraulics has provided important insights into plant responses to drought and species absolute drought tolerance. However our ability to predict when plants will die under extreme drought may be limited by a lack of knowledge with regards to the dynamics of plant desiccation from ...

  11. The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation.

    PubMed

    Pukacka, Stanisława; Ratajczak, Ewelina; Kalemba, Ewa

    2011-02-15

    Freshly harvested silver maple (Acer saccharinum L.) seeds were soaked in either sodium selenite (10mg/L) or water for 6h. After washing and air drying, seeds were desiccated at 22°C at a RH of 45-50% to comparable water levels from 50 to 12%. Germination capacity was significantly higher in seeds treated with selenium and desiccated [from 50 to 40, 35 and 30% of water content (WC)] than in water-soaked seeds. At 20% WC, the seeds from both treatments had low viability (approximately 20%). The electrolyte leakage and the MDA content were significantly lower in the embryonic axes of seeds soaked in selenite than in seeds soaked in water. We also found that the activity of glutathione peroxidase (GPX) of embryonic axes from selenium-treated seeds that were not desiccated, or from seeds that were desiccated to 40 and 35% WC, was significantly higher than that of non-treated axes. No difference in GPX activity was detected in cotyledons. This was confirmed by activity staining of GPX after native PAGE of proteins extracted from embryonic axes and cotyledons. An increase in glutathione reductase (GR) activity was also observed in embryonic axes of seeds treated with selenium and dried to 35 and 30% WC compared to non-treated samples. Selenium appeared to have no such effect on cotyledons.

  12. A Realistic Appraisal of Methods to Enhance Desiccation Tolerance of Entomopathogenic Nematodes

    PubMed Central

    Perry, Roland N.; Ehlers, Ralf-Udo; Glazer, Itamar

    2012-01-01

    Understanding the desiccation survival attributes of infective juveniles of entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis, is central to evaluating the reality of enhancing the shelf-life and field persistence of commercial formulations. Early work on the structural and physiological aspects of desiccation survival focused on the role of the molted cuticle in controlling the rate of water loss and the importance of energy reserves, particularly neutral lipids. The accumulation of trehalose was also found to enhance desiccation survival. Isolation of natural populations that can survive harsh environments, such as deserts, indicated that some populations have enhanced abilities to survive desiccation. However, survival abilities of EPN are limited compared with those of some species of plant-parasitic nematodes inhabiting aerial parts of plants. Research on EPN stress tolerance has expanded on two main lines: i) to select strains of species, currently in use commercially, which have increased tolerance to environmental extremes; and ii) to utilize molecular information, including expressed sequence tags and genome sequence data, to determine the underlying genetic factors that control longevity and stress tolerance of EPN. However, given the inherent limitations of EPN survival ability, it is likely that improved formulation will be the major factor to enhance EPN longevity and, perhaps, increase the range of applications. PMID:23482912

  13. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adaptations to low moisture availability are arguably as important as cold resistance for polar terrestrial invertebrates, especially because water, in the form of ice, is biologically inaccessible for much of the year. Desiccation responses under ecologically realistic soil humidity conditions – t...

  14. Characterization of a Functional Role of the Bradyrhizobium japonicum Isocitrate Lyase in Desiccation Tolerance.

    PubMed

    Jeon, Jeong-Min; Lee, Hae-In; Sadowsky, Michael J; Sugawara, Masayuki; Chang, Woo-Suk

    2015-07-22

    Bradyrhizobium japonicum is a nitrogen-fixing symbiont of soybean. In previous studies, transcriptomic profiling of B. japonicum USDA110, grown under various environmental conditions, revealed the highly induced gene aceA, encoding isocitrate lyase (ICL). The ICL catalyzes the conversion of isocitrate to succinate and glyoxylate in the glyoxylate bypass of the TCA cycle. Here, we evaluated the functional role of B. japonicum ICL under desiccation-induced stress conditions. We purified AceA (molecular mass = 65 kDa) from B. japonicum USDA110, using a His-tag and Ni-NTA column approach, and confirmed its ICL enzyme activity. The aceA mutant showed higher sensitivity to desiccation stress (27% relative humidity (RH)), compared to the wild type. ICL activity of the wild type strain increased approximately 2.5-fold upon exposure to 27% RH for 24 h. The aceA mutant also showed an increased susceptibility to salt stress. Gene expression analysis of aceA using qRT-PCR revealed a 148-fold induction by desiccation, while other genes involved in the glyoxylate pathway were not differentially expressed in this condition. Transcriptome analyses revealed that stress-related genes, such as chaperones, were upregulated in the wild-type under desiccating conditions, even though fold induction was not dramatic (ca. 1.5-2.5-fold).

  15. Desiccation sensitivity and tolerance in the moss Physcomitrella patens: assessing limits and damage.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens is becoming the model of choice for functional genomic studies at the cellular level. Studies report that P. patens survives moderate osmotic and salt stress, and that desiccation tolerance can be induced by exogenous ABA. Our goal was to quantify the extent of dehydr...

  16. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland.

    PubMed

    Morgan, Jack A; LeCain, Daniel R; Pendall, Elise; Blumenthal, Dana M; Kimball, Bruce A; Carrillo, Yolima; Williams, David G; Heisler-White, Jana; Dijkstra, Feike A; West, Mark

    2011-08-03

    Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.

  17. Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination.

    PubMed

    Pereira, W V S; Faria, J M R; Tonetti, O A O; Silva, E A A

    2014-05-01

    This study evaluated the loss of desiccation tolerance in C. langsdorffii seeds during the germination process. Seeds were imbibed for 24, 48, 72, 96, 120 and 144 hours and dried to the initial moisture content, kept in this state for 3 days after which they were submitted to pre-humidification and rehydration. Ultraestructural evaluations were done aiming to observe the cell damage caused by the dry process. Desiccation tolerance was evaluated in terms of the percentage of normal seedlings. Seeds not submitted to the drying process presented 61% of normal seedlings, and after 24 hours of imbibition, followed by drying, the seeds presented the same percentage of survival. However, after 48 hours of imbibition, seeds started to lose the desiccation tolerance. There was twenty six percent of normal seedlings formed from seeds imbibed for 96 hours and later dried and rehydrated. Only 5% of seeds imbibed for 144 hours, dried and rehydrated formed normal seedlings. At 144 hours of imbibition followed the dry process, there was damage into the cell structure, indicating that the seeds were unable to keep the cell structure during the drying process. Copaifera langsdorffii seeds loses the desiccation tolerance at the start of Phase 2 of imbibition.

  18. Salinity effects on cracking morphology and dynamics in 3-D desiccating clays

    NASA Astrophysics Data System (ADS)

    DeCarlo, Keita F.; Shokri, Nima

    2014-04-01

    Saline conditions induce not only chemical but physical changes in swelling clays, and have a significant influence on the crack dynamics and morphology of desiccating clays. In this study, we used X-ray microtomography to experimentally investigate the effects of sodium chloride on the morphology and dynamics of desiccation cracks in three-dimensional mixtures of sand-bentonite slurry under varying rheological conditions. Rectangular glass containers were packed with slurries of different salt concentrations, with the top boundary exposed to air for evaporation. The growth and propagation of the cracking network that subsequently formed was visualized in 3-D at multiple intervals. The characterization of cracking and branching behavior shows a high extent of localized surficial crack networks at low salinity, with a transition to less extensive but more centralized crack networks with increased salinity. The observed behavior was described in the context of the physicochemical properties of the montmorillonite clay, where shifts from an "entangled" (large platelet spacing, small pore structure) to a "stacked" (small platelet spacing, open pore structure) network influence fluid distribution and thus extent of cracking and branching behavior. This is further corroborated by vertical profiles of water distribution, which shows localized desiccation fronts that shift to uniform desaturation with increasing salt concentration. Our results provide new insights regarding the formation, dynamics, and patterns of desiccation cracks formed during evaporation from 3-D saline clay structures, which will be useful in hydrological applications including water management, land surface evaporation, and subsurface contaminant transport.

  19. Preharvest herbicide treatments affect black bean desiccation, yield, and canned bean color

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field trial was conducted near Richville, Michigan in 2013 and 2014 to evaluate the effects of preharvest herbicide treatments on desiccation, yield, and canned black bean quality and color. Three Type II black bean varieties, Zorro, Eclipse, and Zenith, were planted on two different dates in each...

  20. Understanding Vegetative Desiccation Tolerance using Integrated Functional Genomics Approaches within a Comparative Evolutionary Framework

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desiccation tolerance (DT) is defined as the equilibration of protoplasmic water potential with that of the surrounding air (generally dry) without loss of viability upon rehydration. Vegetative DT is widespread amongst mosses and lichens, but is relatively rare in vascular plants (0.15%). Recent st...

  1. Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival

    PubMed Central

    Boll, Joseph M.; Tucker, Ashley T.; Klein, Dustin R.; Beltran, Alexander M.; Brodbelt, Jennifer S.; Davies, Bryan W.

    2015-01-01

    ABSTRACT Acinetobacter baumannii is an emerging Gram-negative pathogen found in hospitals and intensive care units. In order to persist in hospital environments, A. baumannii withstands desiccative conditions and can rapidly develop multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the conserved lipid A component of the Gram-negative outer membrane to lyse the bacterial cell. However, many Gram-negative pathogenic bacteria, including A. baumannii, fortify their outer membrane with hepta-acylated lipid A to protect the cell from CAMP-dependent cell lysis. Whereas in Escherichia coli and Salmonella, increased production of the outer membrane acyltransferase PagP results in formation of protective hepta-acylated lipid A, which reinforces the lipopolysaccharide portion of the outer membrane barrier, A. baumannii does not carry a gene that encodes a PagP homolog. Instead, A. baumannii has evolved a PagP-independent mechanism to synthesize protective hepta-acylated lipid A. Taking advantage of a recently adapted A. baumannii genetic recombineering system, we characterized two putative acyltransferases in A. baumannii designated LpxLAb (A. baumannii LpxL) and LpxMAb (A. baumannii LpxM), which transfer one and two lauroyl (C12:0) acyl chains, respectively, during lipid A biosynthesis. Hepta-acylation of A. baumannii lipid A promoted resistance to vertebrate and polymyxin CAMPs, which are prescribed as last-resort treatment options. Intriguingly, our analysis also showed that LpxMAb-dependent acylation of lipid A is essential for A. baumannii desiccation survival, a key resistance mechanism for survival in hospital environments. Compounds that inhibit LpxMAb-dependent hepta-acylation of lipid A could act synergistically with CAMPs to provide innovative transmission prevention strategies and treat multidrug-resistant infections. PMID:25991684

  2. Genetic background of enhanced radioresistance in an anhydrobiotic insect: transcriptional response to ionizing radiations and desiccation.

    PubMed

    Ryabova, Alina; Mukae, Kyosuke; Cherkasov, Alexander; Cornette, Richard; Shagimardanova, Elena; Sakashita, Tetsuya; Okuda, Takashi; Kikawada, Takahiro; Gusev, Oleg

    2017-01-01

    It is assumed that resistance to ionizing radiation, as well as cross-resistance to other abiotic stresses, is a side effect of the evolutionary-based adaptation of anhydrobiotic animals to dehydration stress. Larvae of Polypedilum vanderplanki can withstand prolonged desiccation as well as high doses of ionizing radiation exposure. For a further understanding of the mechanisms of cross-tolerance to both types of stress exposure, we profiled genome-wide mRNA expression patterns using microarray techniques on the chironomid larvae collected at different stages of desiccation and after exposure to two types of ionizing radiation-70 Gy of high-linear energy transfer (LET) ions ((4)He) and the same dose of low-LET radiation (gamma rays). In expression profiles, a wide transcriptional response to desiccation stress that much exceeded the amount of up-regulated transcripts to irradiation exposure was observed. An extensive group of coincidently up-regulated overlapped transcripts in response to desiccation and ionizing radiation was found. Among this, overlapped set of transcripts was indicated anhydrobiosis-related genes: antioxidants, late embryogenesis abundant (LEA) proteins, and heat-shock proteins. The most overexpressed group was that of protein-L-isoaspartate/D-aspartate O-methyltransferase (PIMT), while probes, corresponding to LEA proteins, were the most represented. Performed functional analysis showed strongly enriched gene ontology terms associated with protein methylation. In addition, active processes of DNA repair were detected. We assume that the cross-tolerance of the sleeping chironomid to both desiccation and irradiation exposure comes from a complex mechanism of adaptation to anhydrobiosis.

  3. Characterization of polyphenol oxidase changes induced by desiccation of Ramonda serbica leaves.

    PubMed

    Veljovic-Jovanovic, Sonja; Kukavica, Biljana; Navari-Izzo, Flavia

    2008-04-01

    Resurrection plants are able to dehydrate/rehydrate rapidly without cell damage by a mechanism, the understanding of which may be of ecological importance in the adaptation of crop plants to dry conditions. The o-diphenol oxidase in Ramonda serbica Pan. & Petrov, a rare resurrection plant of the Balkan Peninsula, was characterized in respect to different isoforms, preferable substrates and specific inhibitors. Two anionic isoforms with pI 4.6 and 4.7 were separated from turgid leaves. Three additional anionic isoforms (pI 5.1, 5.3 and 5.6) and three neutral isoforms (pI from 6.8 to 7.4) were induced in desiccated leaves. Based on apparent K(m) values, the affinity for reducing substrates decreased as follows: methyl catechol > chlorogenic acid > 3,4-dihydroxyphenylalanine > caffeic acid > pyrogallol. Polyphenol oxidase (PPO) activity was specifically sensitive to diethyldithiocarbamate and also inhibited by KCN, DTT and salicylic hydroxamic acid but with no inhibitory effect of Na3N. Plants were subjected to drought-to-near complete water loss (approximately 2% relative water content, RWC) and several fold higher PPO activity was detected in desiccated leaves. Ramonda leaves contain high levels of phenolics, which decreased during drought. Rehydration of dry leaves from 2% RWC to 95% RWC led to transient inhibition of PPO in the first few hours. Within a day, the levels completely recovered to those determined in desiccated leaves. The finding of desiccation-induced high activity of PPO and new isoforms, which were also present in rehydrated turgid leaves, indicates a substantial role for PPO in the adaptation mechanism of resurrection plants to desiccation and also to the oxidative stress during rehydration.

  4. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: A potential marker of anhydrobiosis

    SciTech Connect

    Thorat, Leena J.; Gaikwad, Sushama M.; Nath, Bimalendu B.

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer First report confirming anhydrobiosis in Drosophila melanogaster larvae. Black-Right-Pointing-Pointer Trehalose synthesis and accumulation in larvae that hydrolyzed on rehydration. Black-Right-Pointing-Pointer Trehalose synthesis in concert with the enzymes involved in trehalose metabolism. Black-Right-Pointing-Pointer Inhibition of trehalose hydrolysis in presence of a specific trehalase inhibitor. Black-Right-Pointing-Pointer Trehalose proposed as a reliable marker for biomonitoring of climate change studies. -- Abstract: In the current scenario of global climate change, desiccation is considered as one of the major environmental stressors for the biota exposed to altered levels of ambient temperature and humidity. Drosophila melanogaster, a cosmopolitan terrestrial insect has been chosen as a humidity-sensitive bioindicator model for the present study since its habitat undergoes frequent stochastic and/or seasonally aggravated dehydration regimes. We report here for the first time the occurrence of anhydrobiosis in D. melanogaster larvae by subjecting them to desiccation stress under laboratory conditions. Larvae desiccated for ten hours at <5% relative humidity could enter anhydrobiosis and could revive upon rehydration followed by resumption of active metabolism. As revealed by FTIR and HPLC analyzes, our findings strongly indicated the synthesis and accumulation of trehalose in the desiccating larvae. Biochemical measurements pointed out the desiccation-responsive trehalose metabolic pathway that was found to be coordinated in concert with the enzymes trehalose 6-phosphate synthase and trehalase. Further, an inhibitor-based experimental approach using deoxynojirimycin, a specific trehalase inhibitor, demonstrated the pivotal role of trehalose in larval anhydrobiosis of D. melanogaster. We therefore propose trehalose as a potential marker for the assessment of anhydrobiosis in Drosophila. The present findings thus add

  5. Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected Drosophila Lines.

    PubMed

    Griffin, Philippa C; Hangartner, Sandra B; Fournier-Level, Alexandre; Hoffmann, Ary A

    2017-02-01

    Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance-a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52-0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking

  6. The role of recovery of mitochondrial structure and function in desiccation tolerance of pea seeds.

    PubMed

    Wang, Wei-Qing; Cheng, Hong-Yan; Møller, Ian M; Song, Song-Quan

    2012-01-01

    Mitochondrial repair is of fundamental importance for seed germination. When mature orthodox seeds are imbibed and germinated, they lose their desiccation tolerance in parallel. To gain a better understanding of this process, we studied the recovery of mitochondrial structure and function in pea (Pisum sativum cv. Jizhuang) seeds with different tolerance to desiccation. Mitochondria were isolated and purified from the embryo axes of control and imbibed-dehydrated pea seeds after (re-)imbibition for various times. Recovery of mitochondrial structure and function occurred both in control and imbibed-dehydrated seed embryo axes, but at different rates and to different maximum levels. The integrity of the outer mitochondrial membrane reached 96% in all treatments. However, only the seeds imbibed for 12 h and then dehydrated recovered the integrity of the inner mitochondrial membrane (IMM) and State 3 (respiratory state in which substrate and ADP are present) respiration (with NADH and succinate as substrate) to the control level after re-imbibition. With increasing imbibition time, the degree to which each parameter recovered decreased in parallel with the decrease in desiccation tolerance. The tolerance of imbibed seeds to desiccation increased and decreased when imbibed in CaCl(2) and methylviologen solution, respectively, and the recovery of the IMM integrity similarly improved and weakened in these two treatments, respectively. Survival of seeds after imbibition-dehydration linearly increased with the increase in ability to recover the integrity of IMM and State 3 respiration, which indicates that recovery of mitochondrial structure and function during germination has an important role in seed desiccation tolerance.

  7. Genome-Wide Transcriptional Analysis of Genes Associated with Acute Desiccation Stress in Anopheles gambiae

    PubMed Central

    Wang, Mei-Hui; Marinotti, Osvaldo; Vardo-Zalik, Anne; Boparai, Rajni; Yan, Guiyun

    2011-01-01

    Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts) was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru) (67/248, or 27%) is similar to the percentage of transcripts located within these inversions (31%). These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of candidate regions

  8. Determination of dimethyl fumarate and other potential allergens in desiccant and antimould sachets.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Regueiro, Jorge; Llompart, Maria; Garcia-Jares, Carmen

    2009-08-01

    A method for the determination of dimethyl fumarate (DMF), benzothiazole (BT) and tert-butylphenol (TBP) in desiccant and antimould agents employed for protecting consumer products from humidity and mould has been developed. The method is based on ultrasound-assisted extraction (UAE) followed by GC-MS analysis. Parameters that could affect the extraction of the compounds have been optimised using a multivariate approach. In the final conditions, the extraction is performed using only 0.5 or 1 mL ethyl acetate and applying ultrasound energy for 5 min. Simultaneous extractions could also be carried out in 5 min without losing efficiency. The method was validated showing good linearity (R2 >0.995). Both intra- and inter-day precisions were studied at several concentration levels, being satisfactory in all cases (RSD <10%). Recovery was evaluated in four real desiccant samples at different compound concentrations, ranging between 87% and 109%. Limits of detection and quantification were in the low nanogramme per gramme level, thus allowing the determination of DMF at concentrations well below the limit established by the recent EU Directive (0.1 microg/g). The proposed procedure was applied to the determination of the target compounds in several desiccant and antimould samples. Although most of them were simply labelled as "silica gel", more than 70% of the tested samples contained high amounts of DMF, many of them at the high microgram per gramme level. Many samples also showed the presence of the other two potential allergens. These results demonstrate that the content of the "desiccant" sachets and tablets in consumer products does not usually belong with the label of the desiccant, and hence, the high risk of exposition to the powerful allergen DMF and other potentially harmful chemicals through consumer goods should be a matter of concern.

  9. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  10. Bayesian reconstruction of ancestral expression of the LEA gene families reveals propagule-derived desiccation tolerance in resurrection plants.

    PubMed

    Fisher, Kirsten M

    2008-04-01

    Desiccation tolerance is a complex trait that is broadly but infrequently present throughout the evolutionary tree of life. Desiccation tolerance has played a significant role in land plant evolution, in both the vegetative and reproductive life history stages. In the land plants, the late embryogenesis abundant (LEA) gene families are involved in both abiotic stress tolerance and the development of reproductive propagules. They are also a major component of vegetative desiccation tolerance. Phylogenies were estimated for four families of LEA genes from Arabidopsis, Physcomitrella, and the desiccation tolerant plants Tortula ruralis, Craterostigma plantagineum, and Xerophyta humilis. Microarray expression data from Arabidopsis and a subset of the Physcomitrella LEAs were used to estimate ancestral expression patterns in the LEA families and to evaluate alternative hypotheses for the origins of vegetative desiccation tolerance in the flowering plants. The results contradict the idea that vegetative desiccation tolerance in the resurrection angiosperms Craterostigma and Xerophyta arose through the co-option of genes exclusively related to stress tolerance, and support the propagule-derived origin of vegetative desiccation tolerance in the resurrection plants.

  11. Desiccation induced changes in osmolytes production and the antioxidative defence in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Singh, Priyanka; Tiwari, Anupam; Singh, Sureshwar Prasad; Asthana, Ravi Kumar

    2013-01-01

    Cells of Anabaena sp. PCC 7120, a low desiccation tolerant cyanobacterium, was subjected to prolonged desiccation and effect of loss of water was examined on production of osmolytes, and antioxidant response as well as on overall viability in terms of photosynthetic activity. During dehydration (22 h), the organism maintained about 98.5 % loss of cellular water, yet cells remained viable as about 30 % of photosynthetic O2-evolution activity resumed upon hydrating (1 h) such cells. In desiccated state, cyanobacterial cells accumulated osmolytes within 1 h though their contents decreased thereafter. The highest levels of trehalose (179 nmol mg(-1) protein), sucrose (805 nmol mg(-1) protein) and proline (23.2 nmol mg(-1) protein) were attained within 1 h. Chlorophyll a and carotenoid contents also increased within 1 h but phycocyanin level showed opposite trend. The oxygen-evolving activity declined in desiccated cyanobacterial biomass while rehydration led to instant recovery, indicating that cells protect the photosynthetic machinery against desiccation. Notwithstanding, activities of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) attained their peaks after 3 h of desiccation, though within 10 min of rehydration, their levels returned back close to basal activities of the cultured cells. We propose that onset of osmolyte production in conjunction with upshift of antioxidant enzymes apparently protects the cyanobacterial cells from desiccation stress.

  12. Level rise episodes triggered by volcanic eruptions during the desiccation of Lake Lisan

    NASA Astrophysics Data System (ADS)

    Bookman, R.; Filin, S.; Avni, Y.; Marco, S.

    2012-12-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin (DSB). Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the Last Glacial Maximum. The terraces were compared with a dated time series of volcanigenic sulfate from the GISP2 ice core, and similar numbers of sulfate peaks and shore terraces were found with significant correlation (R2=0.8) between the SO4 concentration and the physical and hydrological character of the terraces. We suggest that this correlation indicates a link between the explosivity of past eruptions, the magnitude of stratographic injection, and their impact on the northern hemisphere water balance. The record of such short-term climato-hydrological effects is made possible by the dramatic desiccation of Lake Lisan and may show the amplification of the volcanic atmospheric perturbation during the main climatic transition at the end of the Last Glacial Maximum. Detailed records of such events, albeit rare because of their vulnerability and short longevity, provide an important demonstration of global climatic teleconnections.

  13. Dehydration rate and time of desiccation affect recovery of the lichen alga [corrected] Trebouxia erici: alternative and classical protective mechanisms.

    PubMed

    Gasulla, Francisco; de Nova, Pedro Gómez; Esteban-Carrasco, Alberto; Zapata, José M; Barreno, Eva; Guéra, Alfredo

    2009-12-01

    The mechanisms involved in desiccation tolerance of lichens and their photobionts are still poorly understood. To better understand these mechanisms we have studied dehydration rate and desiccation time in Trebouxia, the most abundant chlorophytic photobiont in lichen. Our findings indicate that the drying rate has a profound effect on the recovery of photosynthetic activity of algae after rehydration, greater than the effects of desiccation duration. The basal fluorescence (F'(o)) values in desiccated algae were significantly higher after rapid dehydration, than after slow dehydration, suggesting higher levels of light energy dissipation in slow-dried algae. Higher values of PSII electron transport were recovered after rehydration of slow-dried Trebouxia erici compared to rapid-dried algae. The main component of non-photochemical quenching after slow dehydration was energy dependent (q (E)), whereas after fast dehydration it was photoinhibition (q (I)). Although q (E) seems to play a role during desiccation recovery, no significant variations were detected in the xanthophyll cycle components. Desiccation did not affect PSI functionality. Classical antioxidant activities like superoxide dismutase or peroxidase decreased during desiccation and early recovery. Dehydrins were detected in the lichen-forming algae T. erici and were constitutively expressed. There is probably a minimal period required to develop strategies which will facilitate transition to the desiccated state in this algae. In this process, the xanthophyll cycle and classical antioxidant mechanisms play a very limited role, if any. However, our results indicate that there is an alternative mechanism of light energy dissipation during desiccation, where activation is dependent on a sufficiently slow dehydration rate.

  14. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  15. Desiccation sensitivity and cryopreservation of excised embryonic axes of Citrus suhuiensis cv. limau madu, Citrumelo [Citrus paradisi macf. × Poncirus trifoliata (l.) raf.] and Fortunella polyandra.

    PubMed

    Al Zoubi, O M; Normah, M N

    2012-01-01

    Excised embryonic axes from seeds of three taxa, namely, Citrus suhuiensis cv. limau madu, Citrumelo (Citrus paradisi x Poncirus trifoliate) and Fortunella polyandra, were desiccated in a laminar airflow, over silica gel, and ultra-rapidly. Desiccation sensitivity (WC50) was estimated for each taxon using the quantal response model. High desiccation tolerance (WC50 = 0.11 g water per g dry mass. g/gdw) was observed for limau madu embryonic axes desiccated in a laminar airflow and ultra-rapidly (WC50 =0.10 g/gdw). Desiccation tolerance was substantially lower (WC50 = 0.19 g/gdw) for silica gel dehydration. Similarly, high desiccation tolerance (WC50 = 0.15 g/gdw) was associated with F. polyandra embryonic axes when desiccated in a laminar airflow, while a lower desiccation tolerance (WC50 = 0.17 g/gdw) was observed with silica gel dehydration. Ultra-rapid desiccation led to the highest desiccation tolerance (WC50 = 0.14 g/gdw). The dehydration rate, however, had no influence on desiccation tolerance (WC50 ~ 0.14 g/gdw) for Citrumelo embryonic axes. After each desiccation period, embryonic axes were directly immersed in liquid nitrogen (LN) followed by rapid rewarming. Normal seedling recovery of 80 to 83% for excised embryonic axes of limau madu was observed for laminar airflow and ultra-rapid dehydration, but for silica gel dehydration, 57% recovery was obtained. Similarly, for Citrumelo, high recoveries of 100% and 97% were obtained from axes desiccated in a laminar airflow and using ultra-rapid dehydration, respectively, whereas a lower value was associated with silica gel dehydration (80%). For F. polyandra, 50% recovery was obtained both for laminar airflow and ultra-rapid dehydration, while much lower recovery (43%) was associated with silica gel dehydration. Regardless of the drying method employed, axis survival percentages following exposure to LN were commensurate with the desiccation sensitivity pattern.

  16. Primary Energy Efficiency Analysis of Different Separate Sensible and Latent Cooling Techniques

    SciTech Connect

    Abdelaziz, Omar

    2015-01-01

    Separate Sensible and Latent cooling (SSLC) has been discussed in open literature as means to improve air conditioning system efficiency. The main benefit of SSLC is that it enables heat source optimization for the different forms of loads, sensible vs. latent, and as such maximizes the cycle efficiency. In this paper I use a thermodynamic analysis tool in order to analyse the performance of various SSLC technologies including: multi-evaporators two stage compression system, vapour compression system with heat activated desiccant dehumidification, and integrated vapour compression with desiccant dehumidification. A primary coefficient of performance is defined and used to judge the performance of the different SSLC technologies at the design conditions. Results showed the trade-off in performance for different sensible heat factor and regeneration temperatures.

  17. Response of the methanogenic microbial communities in Amazonian oxbow lake sediments to desiccation stress.

    PubMed

    Conrad, Ralf; Ji, Yang; Noll, Matthias; Klose, Melanie; Claus, Peter; Enrich-Prast, Alex

    2014-06-01

    Methanogenic microbial communities in soil and sediment function only when the environment is inundated and anoxic. In contrast to submerged soils, desiccation of lake sediments happens only rarely. However, some predictions suggest that extreme events of drying will become more common in the Amazon region, and this will promote an increase in sediments drying and exposure. We asked whether and how such methanogenic communities can withstand desiccation stress. Therefore, we determined the rates and pathways of CH(4) production (analysis of CH(4) and δ(13) C of CH(4), CO(2) and acetate), the copy numbers of bacterial and archaeal 16S rRNA genes and mcrA genes (quantitative PCR), and the community composition of Archaea and Bacteria (T-RFLP and pyrosequencing) in oxbow lake sediments of rivers in the Brazilian Amazon region. The rivers were of white water, black water and clear water type. The measurements were done with sediment in fresh state and after drying and rewetting. After desiccation and rewetting the composition of both, the archaeal and bacterial community changed. Since lake sediments from white water rivers exhibited only negligible methanogenic activity, probably because of relatively high iron and low organic matter content, they were not further analysed. The other sediments produced CH(4), with hydrogenotrophic methanogenesis usually accounting for > 50% of total activity. After desiccation and rewetting, archaeal and bacterial gene copy numbers decreased. The bacterial community showed a remarkable increase of Clostridiales from about 10% to > 30% of all Bacteria, partially caused by proliferation of specific taxa as the numbers of OTU shared with fresh sediment decreased from about 9% to 3%. Among the Archaea, desiccation specifically enhanced the relative abundance of either Methanocellales (black water) and/or Methanosarcinaceae (clear water). Despite the changes in gene copy numbers and composition of the microbial community, rates of CH

  18. Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus.

    PubMed

    Elnitsky, Michael A; Benoit, Joshua B; Denlinger, David L; Lee, Richard E

    2008-01-01

    The availability of water is recognized as the most important determinant of the distribution and activity of terrestrial organisms within the maritime Antarctic. Within this environment, arthropods may be challenged by drought stress during both the austral summer, due to increased temperature, wind, insolation, and extended periods of reduced precipitation, and the winter, as a result of vapor pressure gradients between the surrounding icy environment and the body fluids. The purpose of the present study was to assess the desiccation tolerance of the Antarctic springtail, Cryptopygus antarcticus, under ecologically-relevant conditions characteristic of both summer and winter along the Antarctic Peninsula. In addition, this study examined the physiological changes and effects of mild drought acclimation on the subsequent desiccation tolerance of C. antarcticus. The collembolans possessed little resistance to water loss under dry air, as the rate of water loss was >20% h(-1) at 0% relative humidity (RH) and 4 degrees C. Even under ecologically-relevant desiccating conditions, the springtails lost water at all relative humidities below saturation (100% RH). However, slow dehydration at high RH dramatically increased the desiccation tolerance of C. antarcticus, as the springtails tolerated a greater loss of body water. Relative to animals maintained at 100% RH, a mild drought acclimation at 98.2% RH significantly increased subsequent desiccation tolerance. Drought acclimation was accompanied by the synthesis and accumulation of several sugars and polyols that could function to stabilize membranes and proteins during dehydration. Drought acclimation may permit C. antarcticus to maintain activity and thereby allow sufficient time to utilize behavioral strategies to reduce water loss during periods of reduced moisture availability. The springtails were also susceptible to desiccation at subzero temperatures in equilibrium with the vapor pressure of ice; they lost

  19. Explanatory ecological factors for the persistence of desiccation-sensitive seeds in transient soil seed banks: Quercus ilex as a case study

    PubMed Central

    Joët, Thierry; Ourcival, Jean-Marc; Capelli, Mathilde; Dussert, Stéphane; Morin, Xavier

    2016-01-01

    Background and Aims Dominant tree species in northern temperate forests, for example oak and beech, produce desiccation-sensitive seeds. Despite the potentially major influence of this functional trait on the regeneration and distribution of species under climate change, little is currently known about the ecological determinants of the persistence of desiccation-sensitive seeds in transient soil seed banks. Knowing which key climatic and microsite factors favour seed survival will help define the regeneration niche for species whose seeds display extreme sensitivity to environmental stress Methods Using the Mediterranean Holm oak (Quercus ilex) forest as a model system, an in situ time-course monitoring of seed water status and viability was performed during the unfavourable winter season in two years with contrasting rainfall, at an instrumented site with detailed climate records. In parallel, the characteristics of the microhabitat and their influence on the post-winter water status and viability of seeds were investigated in a regional survey of 33 woodlands representative of the French distribution of the species. Key Results Time-course monitoring of seed water status in natural conditions confirmed that in situ desiccation is the main abiotic cause of mortality in winter. Critical water contents could be reached in a few days during drought spells. Seed dehydration rates were satisfactorily estimated using integrative climate proxies including vapour pressure deficit and potential evapotranspiration. Seed water status was therefore determined by the balance between water uptake after a rainfall event and water loss during dry periods. Structural equation modelling of microhabitat factors highlighted the major influence of canopy openness and resulting incident radiation on the ground. Conclusions This study provides part of the knowledge required to implement species distribution models which incorporate their regeneration niche. It is an important step

  20. Patterns in fish radiation are compatible with Pleistocene desiccation of Lake Victoria and 14,600 year history for its cichlid species flock.

    PubMed Central

    Seehausen, Ole

    2002-01-01

    Geophysical data are currently being interpreted as evidence for a late Pleistocene desiccation of Lake Victoria and its refilling 14,600 years ago. This implies that between 500 and 1000 endemic cichlid fish species must have evolved in 14,600 years, the fastest large-scale species radiation known. A recent review concludes that biological evidence clearly rejects the postulated Pleistocene desiccation of the lake: a 14,600 year history would imply exceptionally high speciation rates across a range of unrelated fish taxa. To test this suggestion, I calculated speciation rates for all 41 phylogenetic lineages of fish in the lake. Except for one cichlid lineage, accepting a 14 600 year history does not require any speciation rates that fall outside the range observed in fishes in other young lakes around the world. The exceptional taxon is a lineage of haplochromine cichlids that is also known for its rapid speciation elsewhere. Moreover, since it is unknown how many founding species it has, it is not certain that its speciation rates are really outside the range observed in fishes in other young lakes. Fish speciation rates are generally faster in younger than in older lakes, and those in Lake Victoria, by far the largest of the young lakes of the world, are no exception. From the speciation rates and from biogeographical observations that Lake Victoria endemics, which lack close relatives within the lake basin, have such relatives in adjacent drainage systems that may have had Holocene connections to Lake Victoria, I conclude that the composition of the fish assemblage does not provide biological evidence against Pleistocene desiccation. It supports a hypothesis of recent colonization from outside the lake basin rather than survival of a diverse assemblage within the basin. PMID:11886641

  1. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula.

    PubMed

    Dupuy, Pierre; Gourion, Benjamin; Sauviac, Laurent; Bruand, Claude

    2016-11-23

    The soil bacterium Sinorhizobium meliloti, a nitrogen-fixing symbiont of legume plants, is exposed to numerous stress conditions in nature, some of which cause the formation of harmful DNA double strand breaks (DSB). In particular, the reactive oxygen (ROS) and nitrogen (RNS) species produced during symbiosis, and the desiccation occurring in dry soils, are conditions which induce DSB. Two major systems of DSB repair are known in S. meliloti: homologous recombination (HR) and non-homologous end-joining (NHEJ). However, their role in the resistance to ROS, RNS and desiccation has never been examined in this bacterial species, and the importance of DSB repair in the symbiotic interaction has not been properly evaluated. Here, we constructed S. meliloti strains deficient in HR (by deleting the recA gene) or in NHEJ (by deleting the four ku genes) or both. Interestingly, we observed that ku and/or recA genes are involved in S. meliloti resistance to ROS and RNS. Nevertheless, a S. meliloti strain deficient in both HR and NHEJ was not altered in its ability to establish and maintain an efficient nitrogen-fixing symbiosis with Medicago truncatula, showing that rhizobial DSB repair is not essential for this process. This result suggests either that DSB formation in S. meliloti is efficiently prevented during symbiosis, or that DSB are not detrimental for symbiosis efficiency. In contrast, we found for the first time that both recA and ku genes are involved in S. meliloti resistance to desiccation, suggesting that DSB repair could be important for rhizobium persistence in the soil.

  2. Contrasting assembly processes in a bacterial metacommunity along a desiccation gradient

    PubMed Central

    Valverde, Angel; Makhalanyane, Thulani P.; Cowan, Don A.

    2014-01-01

    Understanding the relative influence of deterministic and stochastic processes in driving community assembly is a major goal in microbial ecology. Here, we have investigated the influence of these processes on bacterial community assembly in the lateral sediments of a salt pan along a desiccation gradient over a three-year period. We show that the role of deterministic processes increases in communities distant from the water line (shaped by drought), probably as a result of the interplay between abiotic and biotic factors. By contrast, the influence of stochastic processes on bacterial community assembly was higher in the sediments closest to the water line, more likely due to lower levels of abiotic stress. Our results demonstrate that both deterministic and stochastic processes influence bacterial community assembly in salt pan sediments, and that their relative influence varies along a desiccation gradient. PMID:25520714

  3. Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells

    PubMed Central

    Bissoyi, Akalabya; Gusev, Oleg; Patra, Pradeep Kumar

    2016-01-01

    Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation. PMID:27597869

  4. Plant Drought Tolerance Enhancement by Trehalose Production of Desiccation-Tolerant Microorganisms

    PubMed Central

    Vílchez, Juan I.; García-Fontana, Cristina; Román-Naranjo, Desireé; González-López, Jesús; Manzanera, Maximino

    2016-01-01

    A collection of desiccation-tolerant xeroprotectant-producing microorganisms was screened for their ability to protect plants against drought, and their role as plant growth-promoting rhizobacteria was investigated in two different crops (tomato and pepper). The most commonly described biochemical mechanisms for plant protection against drought by microorganisms including the production of phytohormones, antioxidants and xeroprotectants were analyzed. In particular, the degree of plant protection against drought provided by these microorganisms was characterized. After studying the findings and comparing them with results of the closest taxonomic relatives at the species and strain levels, we propose that trehalose produced by these microorganisms is correlated with their ability to protect plants against drought. This proposal is based on the increased protection of plants against drought by the desiccation-sensitive microorganism Pseudomonas putida KT2440, which expresses the otsAB genes for trehalose biosynthesis in trans. PMID:27746776

  5. Survival, sublethal injury, and recovery of environmental Burkholderia pseudomallei in soil subjected to desiccation.

    PubMed

    Larsen, Eloise; Smith, James J; Norton, Robert; Corkeron, Maree

    2013-04-01

    Environmental Burkholderia pseudomallei isolated from sandy soil at Castle Hill, Townsville, in the dry tropic region of Queensland, Australia, was inoculated into sterile-soil laboratory microcosms subjected to variable soil moisture. Survival and sublethal injury of the B. pseudomallei strain were monitored by recovery using culture-based methods. Soil extraction buffer yielded higher recoveries as an extraction agent than sterile distilled water. B. pseudomallei was not recoverable when inoculated into desiccated soil but remained recoverable from moist soil subjected to 91 days' desiccation and showed a growth response to increased soil moisture over at least 113 days. Results indicate that endemic dry tropic soil may act as a reservoir during the dry season, with an increase in cell number and potential for mobilization from soil into water in the wet season.

  6. Differential effects of abscisic acid on desiccation tolerance and carbohydrates in three species of liverworts.

    PubMed

    Pence, Valerie C; Dunford, Susan S; Redella, Steven

    2005-12-01

    Tissues of three species of in vitro grown liverworts, Riccia fluitans, Pallavicinia lyellii, and Marchantia polymorpha, were subjected to rapid drying with and without preculture for 1 week on medium containing 10 microM ABA. ABA preculture initiated total desiccation tolerance in R. fluitans, whereas control tissues were killed after 30 min of drying. Survival was also improved in P. lyellii, whereas ABA did not affect survival of M. polymorpha after rapid drying. ABA treatment did, however, reduce the rate of water loss in M. polymorpha. Total soluble carbohydrates were increased in ABA-treated R. fluitans and P. lyellii, but not in M. polymorpha, although there was no correlation between survival and changes in the percentage of these carbohydrates as reducing sugars. These differences in response to ABA and desiccation likely reflect different adaptations of these three species to conditions in situ.

  7. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect.

    PubMed

    Raanan, Hagai; Oren, Nadav; Treves, Haim; Keren, Nir; Ohad, Itzhak; Berkowicz, Simon M; Hagemann, Martin; Koch, Moriz; Shotland, Yoram; Kaplan, Aaron

    2016-06-01

    Organisms inhabiting biological soil crusts (BSCs) are able to cope with extreme environmental conditions including daily hydration/dehydration cycles, high irradiance and extreme temperatures. The photosynthetic machinery, potentially the main source of damaging reactive oxygen species during cessation of CO(2) fixation in desiccating cells, must be protected to avoid sustained photodamage. We compared certain photosynthetic parameters and the response to excess light of BCS-inhabiting, desiccation-tolerant cyanobacteria Leptolyngbya ohadii and Nostoc reinholdii with those observed in the "model" organisms Nostoc sp. PCC 7120, able to resurrect after mild desiccation, and Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803 that are unable to recover from dehydration. Desiccation-tolerant strains exhibited a transient decline in the photosynthetic rate at light intensities corresponding to the inflection point in the PI curve relating the O(2) evolution rate to light intensity. They also exhibited a faster and larger loss of variable fluorescence and profoundly faster Q(A)(-) re-oxidation rates after exposure to high illumination. Finally, a smaller difference was found in the temperature of maximal thermoluminescence signal in the absence or presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) than observed in "model" cyanobacteria. These parameters indicate specific functional differences of photosystem II (PSII) between desiccation tolerant and sensitive cyanobacteria. We propose that exposure to excess irradiation activates a non-radiative electron recombination route inside PSII that minimizes formation of damaging singlet oxygen in the desiccation-tolerant cyanobacteria and thereby reduces photodamage.

  8. Reasons for success: Rapid evolution for desiccation resistance and life-history changes in the polyphagous fly Anastrepha ludens.

    PubMed

    Tejeda, Marco T; Arredondo, José; Liedo, Pablo; Pérez-Staples, Diana; Ramos-Morales, Patricia; Díaz-Fleischer, Francisco

    2016-11-01

    Species that exhibit broad ranges of distribution may successfully navigate environmental changes by modifying some of their life-history traits. Environmental humidity imposes a critical stress that organisms may overcome by increasing their resistance to desiccation. We used experimental evolution to investigate adaptation to desiccation in the tephritid Anastrepha ludens, a species with high fecundity, late maturation, and long lifespan. We measured morphological, physiological, developmental as well as demographic changes involved in the adaptation to desiccation. Notwithstanding a low heritability (h(2) = 0.237), desiccation resistance evolved extremely rapidly and few negative trade-offs were detected. Selected flies exhibited correlated increases in longevity, body size, the amount of body lipids, and bulk water content, and in the duration of the pupal stage. Females further delayed sexual maturation, decreased daily fecundity but retained high lifetime reproductive potential. No differences in male mating competitiveness were found. Selected and control lines differed in longevity but not in total female fecundity, demonstrating that A. ludens flies have the capability for fast adaptation to desiccation without loosing their reproductive capability. Thus, it seems that a rapid evolutionary response to desiccation in this polyphagous insect works as a buffer for environmental variation and reduces the strength of selection on reproductive traits.

  9. The effect of desiccation on water management and compartmentalisation in scorpions: the hepatopancreas as a water reservoir.

    PubMed

    Gefen, Eran; Ar, Amos

    2005-05-01

    Scorpions of the Family Buthidae have lower water loss rates (WLR) and enhanced osmoregulatory capacities in comparison with sympatric species of F. Scorpionidae. In this study we followed changes in water content of different body compartments in four scorpion species under prolonged desiccation conditions. The high initial WLR previously reported for Scorpionidae result in rapid depletion of body water stores. A significant decrease in total body water content of Scorpionidae was recorded following loss of only 5% of initial mass, whereas no such decrease was recorded for Buthidae following severe desiccation. When desiccated, scorpions lose water primarily from the hepatopancreas, while haemolymph volume is more tightly regulated. However, the haemolymph volume of Scorpionidae decreases as a result of depletion of hepatopancreas water stores following severe desiccation. The increasing lipid fraction in the hepatopancreas of Scorpionidae during desiccation suggests that depletion of body water stores may induce enhanced catabolism of carbohydrates, which may contribute to volume regulation by making initially glycogen-bound water available to the desiccating scorpion.

  10. Prediction of Desiccation Sensitivity in Seeds of Woody Species: A Probabilistic Model Based on Two Seed Traits and 104 Species

    PubMed Central

    DAWS, M. I.; GARWOOD, N. C.; PRITCHARD, H. W.

    2006-01-01

    • Background and Aims Seed desiccation sensitivity limits the ex situ conservation of up to 47 % of plant species, dependent on habitat. Whilst desirable, empirically determining desiccation tolerance levels in seeds of all species is unrealistic. A probabilistic model for the rapid identification of woody species at high risk of displaying seed desiccation sensitivity is presented. • Methods The model was developed using binary logistic regression on seed trait data [seed mass, moisture content, seed coat ratio (SCR) and rainfall in the month of seed dispersal] for 104 species from 37 families from a semi-deciduous tropical forest in Panamá. • Key Results For the Panamanian species, only seed mass and SCR were significantly related to the response to desiccation, with the desiccation-sensitive seeds being large and having a relatively low SCR (i.e. thin ‘seed’ coats). Application of this model to a further 38 species, of known seed storage behaviour, from two additional continents and differing vegetation types (dryland Africa and temperate Europe) correctly predicted the response to desiccation in all cases, and resolved conflicting published data for two species (Acer pseudoplatanus and Azadirachta indica). • Conclusions This model may have application as a decision-making tool in the handling of species of unknown seed storage behaviour in species from three disparate habitats. PMID:16464874

  11. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance

    PubMed Central

    Herburger, Klaus; Holzinger, Andreas

    2015-01-01

    Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema. PMID:26412780

  12. Coherent optical analysis of crystal-like patterns induced by human blood plasma desiccation

    NASA Astrophysics Data System (ADS)

    Kulyabina, Tatyana V.; Drajevsky, Roman A.; Kochubey, Vyacheslav I.; Zimnyakov, Dmitry A.

    2001-05-01

    The comparative investigation of blood plasma and serum polycrystal layers properties was executed. Formation of microcrystals by desiccation of blood plasma is shown. Such crystals are absent in serum layers. The formation of thrombus at blood serum preparation and, as a result, lack of protein molecules is the reason of the difference. The possibility of Wiener spectra application for analysis of formed crystal structure disorder is shown.

  13. Functional genomic and phenotypic responses to desiccation in natural populations of a desert drosophilid.

    PubMed

    Rajpurohit, Subhash; Oliveira, Cássia C; Etges, William J; Gibbs, Allen G

    2013-05-01

    We used whole-transcriptome microarrays to assess changes in gene expression and monitored mortality rates and epicuticular hydrocarbons (CHCs) in response to desiccation stress in four natural populations of Drosophila mojavensis from Baja California and mainland Mexico. Desiccation had the greatest effect on gene expression, followed by biogeographical variation at regional and population levels. Genes involved in environmental sensing and cuticular structure were up-regulated in dry conditions, while genes involved in transcription itself were down-regulated. Flies from Baja California had higher expression of reproductive and mitochondrial genes, suggesting that these populations have greater fecundity and higher metabolic rates. Host plant differences had a surprisingly minor effect on the transcriptome. In most cases, desiccation-caused mortality was greater in flies reared on fermenting cactus tissues than that on laboratory media. Water content of adult females and males was significantly different and was lower in Baja California males. Different groups of CHCs simultaneously increased and decreased in amounts due to desiccation exposure of 9 and 18 h and were population-specific and dependent on larval rearing substrates. Overall, we observed that changes in gene expression involved a coordinated response of behavioural, cuticular and metabolic genes. Together with differential expression of cuticular hydrocarbons, this study revealed some of the mechanisms that have allowed D. mojavensis to exploit its harsh desert conditions. Certainly, for D. mojavensis that uses different host plants, population-level understanding of responses to stressors associated with future climate change in desert regions must be evaluated across geographical and local ecological scales.

  14. Inversion 2La is associated with enhanced desiccation resistance in Anopheles gambiae

    PubMed Central

    Gray, Emilie M; Rocca, Kyle AC; Costantini, Carlo; Besansky, Nora J

    2009-01-01

    Background Anopheles gambiae, the principal vector of malignant malaria in Africa, occupies a wide range of habitats. Environmental flexibility may be conferred by a number of chromosomal inversions non-randomly associated with aridity, including 2La. The purpose of this study was to determine the physiological mechanisms associated with the 2La inversion that may result in the preferential survival of its carriers in hygrically-stressful environments. Methods Two homokaryotypic populations of A. gambiae (inverted 2La and standard 2L+a) were created from a parental laboratory colony polymorphic for 2La and standard for all other known inversions. Desiccation resistance, water, energy and dry mass of adult females of both populations were compared at several ages and following acclimation to a more arid environment. Results Females carrying 2La were significantly more resistant to desiccation than 2L+a females at emergence and four days post-emergence, for different reasons. Teneral 2La females had lower rates of water loss than their 2L+a counterparts, while at four days, 2La females had higher initial water content. No differences in desiccation resistance were found at eight days, with or without acclimation. However, acclimation resulted in both populations significantly reducing their rates of water loss and increasing their desiccation resistance. Acclimation had contrasting effects on the body characteristics of the two populations: 2La females boosted their glycogen stores and decreased lipids, whereas 2La females did the contrary. Conclusion Variation in rates of water loss and response to acclimation are associated with alternative arrangements of the 2La inversion. Understanding the mechanisms underlying these traits will help explain how inversion polymorphisms permit exploitation of a heterogeneous environment by this disease vector. PMID:19772577

  15. Desiccation tolerance, longevity and seed-siring ability of entomophilous pollen from UK native orchid species

    PubMed Central

    Marks, Timothy R.; Seaton, Philip T.; Pritchard, Hugh W.

    2014-01-01

    Background and Aims Pollinator-limited seed-set in some terrestrial orchids is compensated for by the presence of long-lived flowers. This study tests the hypothesis that pollen from these insect-pollinated orchids should be desiccation tolerant and relatively long lived using four closely related UK terrestrial species; Anacamptis morio, Dactylorhiza fuchsii, D. maculata and Orchis mascula. Methods Pollen from the four species was harvested from inflorescences and germinated in vitro, both immediately and also after drying to simulate interflower transit. Their tolerance to desiccation and short-term survival was additionally assessed after 3 d equilibration at a range of relative humidities (RHs), and related to constructed sorption isotherms (RH vs. moisture content, MC). Ageing of D. fuchsii pollen was further tested over 2 months against temperature and RH, and the resultant survival curves were subjected to probit analysis, and the distribution of pollen death in time (σ) was determined. The viability and siring ability, following artificial pollinations, were determined in D. fuchsii pollen following storage for 6 years at –20 °C. Key Results The pollen from all four species exhibited systematic increases in germinability and desiccation tolerance as anthesis approached, and pollen from open flowers generally retained high germinability. Short-term storage revealed sensitivity to low RH, whilst optimum survival occurred at comparable RHs in all species. Similarly, estimated pollen life spans (σ) at differing temperatures were longest under the dry conditions. Despite a reduction in germination and seeds per capsule, long-term storage of D. fuchsii pollen did not impact on subsequent seed germination in vitro. Conclusions Substantial pollen desiccation tolerance and life span of the four entomophilous orchids reflects a resilient survival strategy in response to unpredictable pollinator visitation, and presents an alternative approach to germplasm

  16. Functional genomic and phenotypic responses to desiccation in natural populations of a desert drosophilid

    PubMed Central

    Rajpurohit, Subhash; Oliveira, Cássia C.; Etges, William J.; Gibbs, Allen G.

    2014-01-01

    We used whole transcriptome microarrays to assess changes in gene expression and monitored mortality rates and epicuticular hydrocarbons (CHCs) in response to desiccation stress in four natural populations of Drosophila mojavensis from Baja California and mainland Mexico. Desiccation had the greatest effect on gene expression, followed by biogeographical variation at regional and population levels. Genes involved in environmental sensing and cuticular structure were up-regulated in dry conditions, while genes involved in transcription itself were down-regulated. Flies from Baja California had higher expression of reproductive and mitochondrial genes, suggesting that these populations have greater fecundity and higher metabolic rates. Host plant differences had a surprisingly minor effect on the transcriptome. In most cases, desiccation-caused mortality was greater in flies reared on fermenting cactus tissues than laboratory media. Water content of adult females and males was significantly different, and was lower in Baja California males. Different groups of CHCs simultaneously increased and decreased in amounts due to desiccation exposure of 9 and 18 hr and were population-specific and dependent on larval rearing substrates. Overall, we observed that changes in gene expression involved a coordinated response of behavioral, cuticular and metabolic genes. Together with differential expression of cuticular hydrocarbons, this study revealed some of the mechanisms that have allowed D. mojavensis to exploit its harsh desert conditions. Certainly, for D. mojavensis that uses different host plants, population-level understanding of responses to stressors associated with future climate change in desert regions must be evaluated across geographical and local ecological scales. PMID:23505972

  17. Role of Abscisic Acid in the Induction of Desiccation Tolerance in Developing Seeds of Arabidopsis thaliana

    PubMed Central

    Meurs, Cor; Basra, Amarjit S.; Karssen, Cees M.; van Loon, Leendert C.

    1992-01-01

    In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance. ImagesFigure 1Figure 2Figure 4Figure 5Figure 6Figure 8 PMID:16668818

  18. Facing the Heat: Does Desiccation and Thermal Stress Explain Patterns of Orientation in an Intertidal Invertebrate?

    PubMed

    Fraser, Clarissa M L; Seebacher, Frank; Lathlean, Justin; Coleman, Ross A

    2016-01-01

    A key challenge for ecologists is to quantify, explain and predict the ecology and behaviour of animals from knowledge of their basic physiology. Compared to our knowledge of many other types of distribution and behaviour, and how these are linked to individual function, we have a poor level of understanding of the causal basis for orientation behaviours. Most explanations for patterns of animal orientation assume that animals will modify their exposure to environmental factors by altering their orientation. We used a keystone grazer on rocky shores, the limpet Cellana tramoserica, to test this idea. Manipulative experiments were done to evaluate whether orientation during emersion affected limpet desiccation or body temperature. Body temperature was determined from infrared thermography, a technique that minimises disturbance to the test organism. No causal relationships were found between orientation and (i) level of desiccation and (ii) their body temperature. These results add to the growing knowledge that responses to desiccation and thermal stress may be less important in modifying the behaviour of intertidal organisms than previously supposed and that thermoregulation does not always reflect patterns of animal orientation. Much of what we understand about orientation comes from studies of animals able to modify orientation over very short time scales. Our data suggests that for animals whose location is less flexible, orientation decisions may have less to do with responses to environmental factors and more to do with structural habitat properties or intrinsic individual attributes. Therefore we suggest future studies into processes affecting orientation must include organisms with differing levels of behavioural plasticity.

  19. Desiccating stress-induced disruption of ocular surface immune tolerance drives dry eye disease.

    PubMed

    Guzmán, M; Keitelman, I; Sabbione, F; Trevani, A S; Giordano, M N; Galletti, J G

    2016-05-01

    Dry eye is an allegedly autoimmune disorder for which the initiating mechanisms and the targeted antigens in the ocular surface are not known, yet there is extensive evidence that a localized T helper type 1 (Th1)/Th17 effector T cell response is responsible for its pathogenesis. In this work, we explore the reconciling hypothesis that desiccating stress, which is usually considered an exacerbating factor, could actually be sufficient to skew the ocular surface's mucosal response to any antigen and therefore drive the disease. Using a mouse model of dry eye, we found that desiccating stress causes a nuclear factor kappa B (NF-κB)- and time-dependent disruption of the ocular surface's immune tolerance to exogenous ovalbumin. This pathogenic event is mediated by increased Th1 and Th17 T cells and reduced regulatory T cells in the draining lymph nodes. Conversely, topical NF-κB inhibitors reduced corneal epithelial damage and interleukin (IL)-1β and IL-6 levels in the ocular surface of mice under desiccating stress. The observed effect was mediated by an augmented regulatory T cell response, a finding that highlights the role of mucosal tolerance disruption in dry eye pathogenesis. Remarkably, the NF-κB pathway is also involved in mucosal tolerance disruption in other ocular surface disorders. Together, these results suggest that targeting of mucosal NF-κB activation could have therapeutic potential in dry eye.

  20. Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation.

    PubMed

    Li, Shumin; Chakraborty, Nilay; Borcar, Apurva; Menze, Michael A; Toner, Mehmet; Hand, Steven C

    2012-12-18

    Expression of late embryogenesis abundant (LEA) proteins is highly correlated with desiccation tolerance in anhydrobiotic animals, selected land plants, and bacteria. Genes encoding two LEA proteins, one localized to the cytoplasm/nucleus (AfrLEA2) and one targeted to mitochondria (AfrLEA3m), were stably transfected into human HepG2 cells. A trehalose transporter was used for intracellular loading of this disaccharide. Cells were rapidly and uniformly desiccated to low water content (<0.12 g H(2)O/g dry weight) with a recently developed spin-drying technique. Immediately on rehydration, control cells without LEA proteins or trehalose exhibited 0% membrane integrity, compared with 98% in cells loaded with trehalose and expressing AfrLEA2 or AfrLEA3m; surprisingly, AfrLEA3m without trehalose conferred 94% protection. Cell proliferation across 7 d showed an 18-fold increase for cells dried with AfrLEA3m and trehalose, compared with 27-fold for nondried controls. LEA proteins dramatically enhance desiccation tolerance in mammalian cells and offer the opportunity for engineering biostability in the dried state.

  1. Desiccation tolerance of Muellerius cf. capillaris (Nematoda: Protostrongylidae) first-stage larvae.

    PubMed

    Solomon, A; Ilan, P; Itamar, G

    1998-08-01

    Muellerius cf. capillaris is the most common lung worm of wild Nubian ibex (Capra ibex nubiana) in the northern Negev desert, Israel. The capacity of the free-living stages (L1) of the parasite to survive extreme desiccation was tested under 2 different dehydration regimes at 23 C: rapid dehydration through direct exposure to 0% relative humidity (RH), and a slow dehydration regime of preconditioning at 33% RH for 7 days prior to exposure to 0% RH for a further 21 days. In direct exposures to 0% and 33% RH, by day 11 survival rates of L1 were significantly higher than when stored in water and in 97% RH (P < 0.05). The slow dehydration regime enhanced the survival of L1 up to 10-fold by day 28 as compared with direct exposure to 0% RH. The same mean numbers of larvae were recovered from the land snail Theba pisana infected with L1 exposed for 21 days at 33% RH and from T. pisana infected with nondesiccated L1 (P > 0.1). L1 surviving after 21 days of desiccation at 0% RH were, on the other hand, less infective to T. pisana. The percentage of such postdesiccated L1 reaching infective stage (L3) was, however, the same as that of the control group. The ability of M. cf. capillaris L1 to survive anhydrobiosis and retain infectivity to land snails after extreme desiccation enables their coexistence with the Nubian ibex in desert habitat.

  2. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation.

    PubMed

    Moore, John P; Nguema-Ona, Eric E; Vicré-Gibouin, Mäite; Sørensen, Iben; Willats, William G T; Driouich, Azeddine; Farrant, Jill M

    2013-03-01

    A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as 'pectic plasticizers'. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of 'plasticising' the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.

  3. Potential desiccation cracks on Mars: A synthesis from modeling, analogue-field studies, and global observations

    NASA Astrophysics Data System (ADS)

    El-Maarry, M. R.; Watters, W.; McKeown, N. K.; Carter, J.; Noe Dobrea, E.; Bishop, J. L.; Pommerol, A.; Thomas, N.

    2014-10-01

    Potential desiccation polygons (PDPs) are polygonal surface patterns that are a common feature in Noachian-to-Hesperian-aged phyllosilicate- and chloride-bearing terrains and have been observed with size scales that range from cm-wide (by current rovers) to 10s of meters-wide. The global distribution of PDPs shows that they share certain traits in terms of morphology and geologic setting that can aid identification and distinction from fracturing patterns caused by other processes. They are mostly associated with sedimentary deposits that display spectral evidence for the presence of Fe/Mg smectites, Al-rich smectites or less commonly kaolinites, carbonates, and sulfates. In addition, PDPs may indicate paleolacustrine environments, which are of high interest for planetary exploration, and their presence implies that the fractured units are rich in smectite minerals that may have been deposited in a standing body of water. A collective synthesis with new data, particularly from the HiRISE camera suggests that desiccation cracks may be more common on the surface of Mars than previously thought. A review of terrestrial research on desiccation processes with emphasis on the theoretical background, field studies, and modeling constraints is presented here as well and shown to be consistent with and relevant to certain polygonal patterns on Mars.

  4. Experimental forensic and bioanthropological aspects of soft tissue taphonomy: 1. Factors influencing postmortem tissue desiccation rate.

    PubMed

    Aturaliya, S; Lukasewycz, A

    1999-09-01

    Euthanized rats' carcasses were exposed in an environmental chamber to multiple variables including: (1) position, (2) enveloping clothing, and (3) soil interment in an effort to determine the individual variables' effect on postmortem rate of body and visceral organ water loss. Results indicated that body water loss was enhanced by a horizontal position versus vertical, probably because of wider spread of bacteria- and enzyme-laden abdominal fluid secondary to diaphragm digestion with consequent greater tissue digestion and liquefaction. Clothing also accelerated the desiccation rate. Desiccation was about equally as effective by soil interment as by air exposure, though simulating windy conditions by tripling the air flow rate resulted in much more rapid desiccation in the air-exposed specimen. These studies suggest that the single most important factor influencing postmortem body water loss rate is the environment at the skin surface that acts to enhance or impair water removal from the skin surface and thus influences the water concentration gradient between the skin and underlying deeper tissues.

  5. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis

    PubMed Central

    Richter-Boix, Alex; Tejedo, Miguel; Rezende, Enrico L

    2011-01-01

    Anurans breed in a variety of aquatic habitats with contrasting levels of desiccation risk, which may result in selection for faster development during larval stages. Previous studies suggest that species in ephemeral ponds reduce their developmental times to minimize desiccation risks, although it is not clear how variation in desiccation risk affects developmental strategies in different species. Employing a comparative phylogenetic approach including data from published and unpublished studies encompassing 62 observations across 30 species, we tested if species breeding in ephemeral ponds (High risk) develop faster than those from permanent ponds (Low risk) and/or show increased developmental plasticity in response to drying conditions. Our analyses support shorter developmental times in High risk, primarily by decreasing body mass at metamorphosis. Plasticity in developmental times was small and did not differ between groups. However, accelerated development in High risk species generally resulted in reduced sizes at metamorphosis, while some Low risk species were able compensate this effect by increasing mean growth rates. Taken together, our results suggest that plastic responses in species breeding in ephemeral ponds are constrained by a general trade-off between development and growth rates. PMID:22393479

  6. Taken to the limit--Is desiccation stress causing precocious encystment of trematode parasites in snails?

    PubMed

    O'Dwyer, Katie; Poulin, Robert

    2015-12-01

    When hosts experience environmental stress, the quantity and quality of resources they provide for parasites may be diminished, and host longevity may be decreased. Under stress, parasites may adopt alternative strategies to avoid fitness reductions. Trematode parasites typically have complex life cycles, involving asexual reproduction in a gastropod first intermediate host. A rare phenomenon, briefly mentioned in the literature, and termed 'precocious encystment' involves the next stage in the parasites' life cycle (metacercarial cyst) forming within the preceding stage (redia), while still inside the snail. In the trematode Parorchis sp. NZ using rocky shore snails exposed to long periods outside water, we hypothesised that this might be an adaptive strategy against desiccation, preventing parasite emergence from the snail. To test this, we first investigated the effect of prolonged desiccation on the survival of two species of high intertidal snails. Secondly, we measured the reproductive output (cercarial production) of the parasite under wet and dry conditions. Finally, we quantified the influence of desiccation stress on the occurrence of precocious encystment. Snail mortality was higher under dry conditions, indicating stress, and it was somewhat exacerbated for infected snails. Parasite reproductive output differed between wet and dry conditions, with parasites of snails kept in dry conditions producing more cercariae when placed in water. Little variation was observed in the occurrence of precocious encystment, although some subtle patterns emerged. Given the stresses associated with living in high intertidal environments, we discuss precocious encystment as a possible stress response in this trematode parasite.

  7. Global Lysine Acetylome Analysis of Desiccated Somatic Embryos of Picea asperata

    PubMed Central

    Xia, Yan; Jing, Danlong; Kong, Lisheng; Zhang, Jianwei; OuYang, Fangqun; Zhang, Hanguo; Wang, Junhui; Zhang, Shougong

    2016-01-01

    Partial desiccation treatment (PDT) promotes the germination capacity of conifer somatic embryos. Lysine acetylation (LysAc) is a dynamic and reversible post-translational modification that plays a key role in many biological processes including metabolic pathways and stress response. To investigate the functional impact of LysAc in the response of Picea asperata somatic embryos to PDT, we performed a global lysine acetylome analysis. Here, combining antibody-based affinity enrichment and high-resolution mass spectrometry, we identified and validated 1079 acetylation sites in 556 acetylated proteins from P. asperata somatic embryos during PDT. These data represent a novel large-scale dataset of lysine-acetylated proteins from the conifer family. Intensive bioinformatics analysis of the Gene Ontology of molecular functions demonstrated that lysine-acetylated proteins were mainly associated with binding, catalytic activities, and structural molecular activities. Functional characterization of the acetylated proteins revealed that in the desiccated somatic embryos, LysAc is mainly involved in the response to stress and central metabolism. Accordingly, the majority of these interacting proteins were also highly enriched in ribosome, proteasome, spliceosome, and carbon metabolism clusters. This work provides the most comprehensive profile of LysAc for a coniferous species obtained to date and facilitates the systematic study of the physiological role of LysAc in desiccated somatic embryos of P. asperata. PMID:28066480

  8. Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds.

    PubMed

    Masetto, Tathiana E; Faria, Jose M; Fraiz, Ana C R

    2014-09-01

    This work aimed to characterize the re-induction of desiccation tolerance (DT) in germinated seeds, using polyethylene glycol (PEG 8000). Cell changes were investigated through cytological assays (cell viability and transmission electronic microscopy) as well as DNA integrity during loss and re-establishment of DT. The loss of DT was characterized by drying germinated seeds with different radicle lengths (1, 2, 3, 4 and 5 mm) in silica gel, decreasing the moisture content to ten percentage points intervals, followed by pre-humidification (100% RH / 24 h) and rehydration. To re-induce DT, germinated seeds were treated for 72 h with PEG (-2.04 MPa) and PEG (-2.04 MPa) + ABA (100 µM) before dehydration. Germinated seeds did not tolerate desiccation to 10% moisture content, irrespectively of the radicle length. However, when incubated in PEG, those with 1 and 2 mm long radicle attained 71% and 29% survival, respectively. The PEG+ABA treatment was efficient to re-establish DT in seeds with 1 mm long radicles (100% survival). The ultrastructural assays of the cells of germinated seeds with 2 and 5 mm length confirmed the obtained physiological results. Germinated seeds of C. fissilis constitute a useful tool for desiccation tolerance investigations.

  9. Desiccation plasticity in the embryonic life histories of non-annual rivulid species

    PubMed Central

    2014-01-01

    Background Diapause is a developmental arrest present in annual killifish, whose eggs are able to survive long periods of desiccation when the temporary ponds they inhabit dry up. Diapause can occur in three different developmental stages. These differ, within and between species, in their responsiveness to different environmental cues. A role of developmental plasticity and genetic assimilation in diapause evolution has been previously suggested but not experimentally explored. We investigated whether plastic developmental delays or arrests provoked by an unusual and extreme environment could be the ancestral condition for diapause. This would be in agreement with plasticity evolution playing a role in the emergence of diapause in this group. We have used a comparative experimental approach and exposed embryos of non-annual killifish belonging to five different species from the former genus Rivulus to brief periods of desiccation. We have estimated effects on developmental and mortality rates during and after the desiccation treatment. Results Embryos of these non-annual rivulids decreased their developmental rates in early stages of development in response to desiccation and this effect persisted after the treatment. Two pairs of two different species had sufficient sample sizes to investigate rates of development in later stages well. In one of these, we found cohorts of embryos in the latest stages of development that did not hatch over a period of more than 1 month without mortality. Several properties of this arrest are also used to characterize diapause III in annual killifish. Such a cohort is present in control conditions and increases in frequency in the desiccation treatment. Conclusions The presence of plasticity for developmental timing and a prolonged developmental arrest in non-annual rivulids, suggest that a plastic developmental delay or diapause might have been present in the shared ancestor of annual and non-annual South American killifish and

  10. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants.

    PubMed

    Mishra, Ratnesh Chandra; Richa; Grover, Anil

    2016-09-01

    Caseinolytic proteases (Clps) perform the important role of removing protein aggregates from cells, which can otherwise prove to be highly toxic. ClpD system is a two-component protease complex composed of a regulatory ATPase module ClpD and a proteolytic component ClpP. Under desiccation stress condition, rice ClpD1 (OsClpD1) gene encoding for the regulatory subunit, was represented by four variant transcripts differing mainly in the expanse of their N-terminal amino acids. These transcripts were expressed in a differential manner in response to salt, mannitol and polyethylene glycol stresses in rice. Purified OsClpD1.3 protein exhibited intrinsic chaperone activity, shown using citrate synthase as substrate. Arabidopsis (Col-0) plants over-expressing OsClpD1.3 open reading frame downstream to CaMV35S promoter (ClpD1.3 plants) showed higher tolerance to salt and desiccation stresses as compared to wild type plants. ClpD1.3 seedlings also showed enhanced growth during the early stages of seed germination under unstressed, control conditions. The free proline levels and starch breakdown activities were higher in the ClpD1.3 seedlings as compared to the wild type Arabidopsis seedlings. It thus emerges that increasing the potential of ClpD1 chaperoning activity may be of advantage in protection against abiotic stresses.

  11. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis

    PubMed Central

    Oliver, Melvin J; Dowd, Scot E; Zaragoza, Joaquin; Mauget, Steven A; Payton, Paxton R

    2004-01-01

    Background The cellular response of plants to water-deficits has both economic and evolutionary importance directly affecting plant productivity in agriculture and plant survival in the natural environment. Genes induced by water-deficit stress have been successfully enumerated in plants that are relatively sensitive to cellular dehydration, however we have little knowledge as to the adaptive role of these genes in establishing tolerance to water loss at the cellular level. Our approach to address this problem has been to investigate the genetic responses of plants that are capable of tolerating extremes of dehydration, in particular the desiccation-tolerant bryophyte, Tortula ruralis. To establish a sound basis for characterizing the Tortula genome in regards to desiccation tolerance, we analyzed 10,368 expressed sequence tags (ESTs) from rehydrated rapid-dried Tortula gametophytes, a stage previously determined to exhibit the maximum stress induced change in gene expression. Results The 10, 368 ESTs formed 5,563 EST clusters (contig groups representing individual genes) of which 3,321 (59.7%) exhibited similarity to genes present in the public databases and 2,242 were categorized as unknowns based on protein homology scores. The 3,321 clusters were classified by function using the Gene Ontology (GO) hierarchy and the KEGG database. The results indicate that the transcriptome contains a diverse population of transcripts that reflects, as expected, a period of metabolic upheaval in the gametophyte cells. Much of the emphasis within the transcriptome is centered on the protein synthetic machinery, ion and metabolite transport, and membrane biosynthesis and repair. Rehydrating gametophytes also have an abundance of transcripts that code for enzymes involved in oxidative stress metabolism and phosphorylating activities. The functional classifications reflect a remarkable consistency with what we have previously established with regards to the metabolic activities that

  12. Controlling the Transient Interface Shape and Deposition Profile Left by Desiccation of Colloidal Droplets on Multiple Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Dunning, Peter David

    A colloidal suspension is a small constituent of insoluble solid particles suspended in a liquid medium. Control over the wetting, evaporation, and deposition patterns left by colloidal suspensions is valuable in many biological, medical, industrial, and agricultural applications. Understanding the governing principles of wetting and evaporative phenomena of these colloidal suspensions may lead to greater control over resultant deposition patterns. Perhaps the most familiar pattern forms when an initially heterogeneous colloidal suspension leaves a dark ring pattern at the edge of a drop. This pattern is referred to as a coffee-stain and it can be seen from dried droplets of spilled coffee. This coffee-stain effect was first investigated by Deegan et. al. who discovered that these patterns occur when outward radial flows driven by evaporation at the triple contact line dominate over other effects. While the presence of coffee-stain patterns is undesirable in many printing and medical diagnostic processes, it can also be advantageous in the production of low cost transparent conductive films, the deposition of metal vapor, and the manipulation of biological structures. Controlling the interactions between the substrate, liquid, vapor, and particles can lead to control over the size and morphology of evaporative deposition patterns left by aqueous colloidal suspensions. Several methods have been developed to control the evaporation of colloidal suspensions to either suppress or enhance the coffee stain effect. Electrowetting on Dielectric (EWOD) is one promising method that has been used to control colloidal depositions by applying either an AC or DC electric field. EWOD actuation has the potential to dynamically control colloidal deposition left by desiccated droplets to either suppress or enhance the coffee stain effect. It may also allow for independent control of the fluidic interface and deposition of particles via electrowetting and electrokinetic forces

  13. Influence of Protoplasmic Water Loss on the Control of Protein Synthesis in the Desiccation-Tolerant Moss Tortula ruralis 1

    PubMed Central

    Oliver, Melvin J.

    1991-01-01

    Desiccation tolerance of the moss Tortula ruralis is characterized by a desiccation-induced change in gene expression that becomes evident upon rehydration. As reported earlier, this change in gene expression is apparently brought about by a change in the control of translation and does not include a major shift in mRNA abundance. A full qualitative and quantitative analysis of the alteration in gene expression, which is characterized by the loss of (or greater than fivefold decrease in) the synthesis of 25 hydration (h) proteins and initiation (or greater than fivefold increase) of the synthesis of 74 rehydration (r) proteins, is given in this report. Exposure to a desiccating atmosphere, for times that result in varying levels of water loss, enabled the determination that the control of synthesis of r proteins is different from the control of synthesis of h proteins. The r and h protein synthesis responses are internally coordinate, however. Similarly, the return to normal levels of h protein synthesis differs from that of the r proteins. The return to normal synthetic levels for all h proteins is synchronous, but the rate of loss of r protein synthesis varies with each individual r protein. Run-off translation of polysomes isolated from gametophytes during the drying phase demonstrates that there are no novel mRNAs recruited and no particular mRNA is favored for translation during desiccation. These findings add credence to the argument that translational control is the major component of the desiccation-induced alteration in gene expression in this plant, as discussed. Aspects of the response of protein synthesis to desiccation are consistent with the hypothesis that T. ruralis exhibits a repair-based mechanism of desiccation tolerance. ImagesFigure 2Figure 3Figure 5Figure 6Figure 7 PMID:16668577

  14. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance

    PubMed Central

    Hundertmark, Michaela; Buitink, Julia

    2013-01-01

    In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the ABSCISIC ACID INSENSITIVE3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4g H2O g DW–1. Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds. PMID:24043848

  15. The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach.

    PubMed

    Gasulla, Francisco; Vom Dorp, Katharina; Dombrink, Isabel; Zähringer, Ulrich; Gisch, Nicolas; Dörmann, Peter; Bartels, Dorothea

    2013-09-01

    Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation-tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation-sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x-DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x-DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation-sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer- to non-bilayer-forming lipids, thus contributing to protein and membrane stabilization.

  16. The insect capa neuropeptides impact desiccation and cold stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  17. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance.

    PubMed

    Capece, Angela; Votta, Sonia; Guaragnella, Nicoletta; Zambuto, Marianna; Romaniello, Rossana; Romano, Patrizia

    2016-05-01

    The most diffused formulation of starter for winemaking is active dry yeast (ADY). ADYs production process is essentially characterized by air-drying stress, a combination of several stresses, including thermal, hyperosmotic and oxidative and cell capacity to counteract such multiple stresses will determine its survival. The molecular mechanisms underlying cell stress response to desiccation have been mostly studied in laboratory and commercial yeast strains, but a growing interest is currently developing for indigenous yeast strains which represent a valuable and alternative source of genetic and molecular biodiversity to be exploited. In this work, a comparative study of different Saccharomyces cerevisiae indigenous wine strains, previously selected for their technological traits, has been carried out to identify potentially relevant genes involved in desiccation stress tolerance. Cell viability was evaluated along desiccation treatment and gene expression was analyzed by real-time PCR before and during the stress. Our data show that the observed differences in individual strain sensitivity to desiccation stress could be associated to specific gene expression over time. In particular, either the basal or the stress-induced mRNA levels of certain genes, such as HSP12, SSA3, TPS1, TPS2, CTT1 and SOD1, result tightly correlated to the strain survival advantage. This study provides a reliable and sensitive method to predict desiccation stress tolerance of indigenous wine yeast strains which could be preliminary to biotechnological applications.

  18. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    PubMed Central

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  19. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses.

    PubMed

    Yi, Shu-Xia; Gantz, J D; Lee, Richard E

    2017-01-01

    Many insects use rapid cold-hardening (RCH), a physiological response to sub-lethal exposure to stressors, such as chilling and desiccation, to enhance their cold tolerance within minutes. Recently, drought-induced RCH, triggered by brief, mild desiccation, was described in larvae of the freeze-tolerant gall fly (Eurosta solidaginis). However, its prevalence and ecological significance in other insects is not known. Consequently, we used a freeze-intolerant model, the flesh fly, Sarcophaga bullata, to investigate the effects and mechanisms of drought-induced RCH. In addition, we investigated how drought- and cold-induced RCH interact by exposing flies to both desiccation and chilling. Desiccation for 3 h increased larval pupariation after cold shock from 28 to 40 %-the first example of drought-induced RCH in both a freeze-intolerant insect and in a non-overwintering life stage. We also found that desiccation and chilling together enhanced the cold hardiness of larvae and adults more than either did separately, suggesting that drought and cold trigger distinct physiological mechanisms that interact to afford greater cold tolerance. These results suggest that drought-induced RCH is a highly conserved response used by insects with diverse life history strategies. Furthermore, the protective interaction between drought- and cold-induced RCH suggests that, in nature, insects use multiple cues and physiological mechanisms to fine-tune their response to changing ambient conditions.

  20. Synergistic interaction between the fungus Beauveria bassiana and desiccant dusts applied against poultry red mites (Dermanyssus gallinae).

    PubMed

    Steenberg, Tove; Kilpinen, Ole

    2014-04-01

    The poultry red mite, Dermanyssus gallinae, is a major pest in egg production, feeding on laying hens. Widely used non-chemical control methods include desiccant dusts, although their persistence under field conditions is often short. Entomopathogenic fungi may also hold potential for mite control, but these fungi often take several days to kill mites. Laboratory experiments were carried out to study the efficacy of 3 types of desiccant dusts, the fungus Beauveria bassiana and combinations of the two control agents against D. gallinae. There was significant synergistic interaction between each of the desiccant dusts and the fungus, with observed levels of mite mortality significantly higher than those expected for an additive effect (up to 38 % higher). Synergistic interaction between desiccant dust and fungus was found also when different application methods were used for the fungus and at different levels of relative humidity. Although increased levels of mortality were reached due to the synergistic interaction, the speed of lethal action was not influenced by combining the two components. The persistence of the control agents applied separately or in combination did not change over a period of 4 weeks. Overall, combinations of desiccant dusts and fungus conidia seem to hold considerable promise for future non-chemical control of poultry red mites.

  1. Effect of transparent film desiccant on the lifetime of top-emitting active matrix organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Duk; Cho, Yoon-Hyung; Kim, Won-Jong; Oh, Min Ho; Lee, Jong Hyuk; Zang, Dong Sik

    2007-03-01

    The effects of a transparent film desiccant on the lifetime of top-emitting active matrix organic light emitting diodes (AMOLEDs) were investigated. The transparent film desiccants were prepared by mixing solutions dispersed with calcium oxide powders and ultraviolet-curable resins. As the solid content in the solutions increased from 15to30wt%, the average particle size increased from 107to240nm, whereas the transmittance of the films decreased from 98% to 80% in the visible range. The devices encapsulated with the transparent film desiccants which contained 20wt% CaO exhibited no dark spots and 97% of the initial luminance, even after being stored for over 500h at 70°C and 90% relative humidity. Also, the operational lifetime of these devices was 1850h, ten times longer than that of a device without desiccant. These results confirmed that the transparent film desiccants, which absorbed the moisture that penetrated into the devices, could be applied to the encapsulation of top-emitting AMOLEDs.

  2. Conservation and dissipation of light energy in desiccation-tolerant photoautotrophs, two sides of the same coin.

    PubMed

    Heber, Ulrich

    2012-09-01

    Conservation of light energy in photosynthesis is possible only in hydrated photoautotrophs. It requires complex biochemistry and is limited in capacity. Charge separation in reaction centres of photosystem II initiates energy conservation but opens also the path to photooxidative damage. A main mechanism of photoprotection active in hydrated photoautotrophs is controlled by light. This is achieved by coupling light flux to the protonation of a special thylakoid protein which activates thermal energy dissipation. This mechanism facilitates the simultaneous occurrence of energy conservation and energy dissipation but cannot completely prevent damage by light. Continuous metabolic repair is required to compensate damage. More efficient photoprotection is needed by desiccation-tolerant photoautotrophs. Loss of water during desiccation activates ultra-fast energy dissipation in mosses and lichens. Desiccation-induced energy dissipation neither requires a protonation reaction nor light but photoprotection often increases when light is present during desiccation. Two different mechanisms contribute to photoprotection of desiccated photoautotrophs. One facilitates energy dissipation in the antenna of photosystem II which is faster than energy capture by functional reaction centres. When this is insufficient for full photoprotection, the other one permits energy dissipation in the reaction centres themselves.

  3. Desiccation tolerance of the resurrection plant Ramonda serbica is associated with dehydration-dependent changes in levels of proteolytic activities.

    PubMed

    Kidrič, Marjetka; Sabotič, Jerica; Stevanović, Branka

    2014-07-15

    The unique response of desiccation-tolerant, or resurrection plants, to extreme drought is accompanied by major changes in the protein pool, raising the possibility of the involvement of proteases. We detected and characterized proteases present in their active state in leaf extracts of desiccated Ramonda serbica Panč., a resurrection plant from the Balkan Peninsula. Plants desiccated under laboratory conditions and maintained in anhydrobiosis for 4 and 14 months revived upon rehydration. Protease activities were determined spectrophotometrically in solution and by zymography on gels. Several endo- and aminopeptidases were detected and characterized by their pH profiles. Their enzyme class was determined using specific inhibitors. Those with higher activities were a serine endopeptidase active against Bz-Arg-pNA with a pH optimum around 9, and aminopeptidases optimally active at pHs from 7 to 9 against Leu-pNA, Met-pNA, Phe-pNA, Pro-pNA and Ala-pNA. The levels of their activities in leaf extracts from desiccated plants were significantly higher than those from rehydrated plants and from regularly watered plants, implying their involvement in the recovery of vegetative tissues from desiccation.

  4. Avian food selection with application to pesticide risk assessment: are dead and desiccated insects a desirable food source?

    PubMed

    Stafford, Jennifer M; Brewer, Larry W; Gessaman, James A

    2003-06-01

    Past evaluations of pesticide exposure have been conducted with substantial uncertainty regarding avian consumption of contaminated food items. One question is whether birds consume invertebrates that are killed by a chemical application and that may present an increasing chemical concentration as they desiccate. We addressed the research question in two phases. First, a laboratory study was conducted in which wild-caught birds were individually offered three food choices, i.e., live, fresh-dead, and desiccated insect larvae. Second, these same food choices plus live, fresh-dead, and desiccated crickets were presented in study plots in two agricultural crops, i.e., a cornfield and an orchard. The experimental food items were monitored with videography equipment to determine their fate and to compare laboratory and field results. Laboratory results showed that birds have a strong preference for live and fresh-dead prey over desiccated prey, with live prey taken before fresh-dead prey in most trials. The field study revealed a similar preference for live prey over desiccated prey, with preference for fresh-dead prey intermediate to the two other types.

  5. Can lake sensitivity to desiccation be predicted from lake geometry?

    NASA Astrophysics Data System (ADS)

    Torabi Haghighi, Ali; Menberu, Meseret Walle; Aminnezhad, Mousa; Marttila, Hannu; Kløve, Bjørn

    2016-08-01

    Declining lake levels (Aral Sea syndrome) can be caused by changes in climate, increased water use or changed regulation patterns. This paper introduces a novel lake geometry index (LGI) to quantify lake hydrological characteristics. The index was developed using a large representative dataset of lake hypsographic characteristics from 152 lakes and man-made reservoirs. Using the LGI index, lakes can be classified into five groups: groups 1-4 when LGI is 0.5-2.5, 2.5-4.5, 4.5-6.5 and 6.5-8.5, respectively, and group 5 when LGI is >8.5. Naturally shallow and vast lakes and wetlands fall into the first group and deep man-made reservoirs in narrow valleys are in group 5. The response of three different lake systems (LGI 0.75, 2.75 and 6.5) to different water flow scenarios was then simulated using the water balance equation. From this, the index 'potential lake area' (Apot) was developed to show lake responses to changed hydro-climatological conditions. Apot and LGI can be used to classify lakes into open or closed systems. Simulations showed that lakes with low LGI have a shorter response time to flow and climate changes. As a result, the impact of water balance restoration is faster for lakes with low LGI than for lakes with high LGI. The latter are also more vulnerable to climate variation and change.

  6. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia

    NASA Astrophysics Data System (ADS)

    Xi, Xin; Sokolik, Irina N.

    2016-10-01

    A regional dust model system is applied to quantify the anthropogenic dust emission in the post-Soviet Central Asia from 2000 to 2014. Two physically based dust schemes suggest that a proportion of 18.3-32.8% of total dust emissions is contributed by agricultural land use and the desiccation of Aral Sea, whereas a simplified dust scheme yields higher estimates in the range of 49.7-56.5% depending on whether a static or dynamic preferential dust source function is used. The dust schemes also differ greatly in the spatial distribution of anthropogenic dust and the sensitivity to the use of land use intensity in separating natural and human-made source areas, suggesting that the model representation of erosion threshold velocity, especially the role of vegetation, is a key source of model uncertainty in quantifying anthropogenic dust. The relative importance of agriculture and dried Aral Sea bed (Aralkum) differs greatly among the dust schemes. Despite the increased dust from the expansion of Aralkum, there is a negative trend in the anthropogenic dust proportion, indicating a shift of dust emission toward natural source areas. All dust schemes show a decrease in anthropogenic dust in response to land cover changes over agricultural lands.

  7. Phylogenetic analyses in cornus substantiate ancestry of xylem supercooling freezing behavior and reveal lineage of desiccation related proteins.

    PubMed

    Karlson, Dale T; Xiang, Qiu-Yun; Stirm, Vicki E; Shirazi, A M; Ashworth, Edward N

    2004-07-01

    The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydrin proteins, which accumulate during cold acclimation in numerous herbaceous and woody plants, have been speculated to provide, among other things, protection from desiccative extracellular ice formation. Here we use Cornus as a model system to provide the first phylogenetic characterization of xylem freezing behavior and dehydrin-like proteins. Our data suggest that both freezing behavior and the accumulation of dehydrin-like proteins in Cornus are lineage related; supercooling and nonaccumulation of dehydrin-like proteins are ancestral within the genus. The nonsupercooling strategy evolved within the blue- or white-fruited subgroup where representative species exhibit high levels of freeze tolerance. Within the blue- or white-fruited lineage, a single origin of dehydrin-like proteins was documented and displayed a trend for size increase in molecular mass. Phylogenetic analyses revealed that an early divergent group of red-fruited supercooling dogwoods lack a similar protein. Dehydrin-like proteins were limited to neither nonsupercooling species nor to those that possess extreme freeze tolerance.

  8. Natural variation in resistance to desiccation and heat shock protein expression in the land snail Theba pisana along a climatic gradient.

    PubMed

    Mizrahi, Tal; Goldenberg, Shoshana; Heller, Joseph; Arad, Zeev

    2015-01-01

    Land snails frequently encounter desiccating conditions, and their survival depends on a suite of morphological, physiological, and molecular adaptations to the specific microhabitat. Strategies of survival can be determined by integrating information from various levels of biological organization. In this study, we used a combination of physiological parameters related to water economy and molecular factors (stress protein expression) to investigate the strategies of survival adopted by seven populations of the Mediterranean-type land snail Theba pisana from different habitats. We analyzed water compartmentalization during aestivation and used experimental desiccation to compare desiccation resistance. We also measured the endogenous levels of heat shock proteins (HSPs) Hsp72, Hsp74, and Hsp90 under nonstress conditions and analyzed the HSP response to desiccation in two populations that differed mostly in their resistance to desiccation. We revealed significant intraspecific differences in resistance to desiccation that seem to be determined by the speed of recruitment of the water-preserving mechanisms. The ability to cope with desiccating conditions was correlated with habitat temperature but not with the rainfall gradient, implying that in the coastal region, temperature is likely to have a major impact on desiccation resistance rather than precipitation. Also, higher desiccation resistance was correlated with higher constitutive levels of Hsp74 in the foot tissue. HSPs were upregulated during desiccation, but the response was delayed and was milder in the most resistant population compared to the most susceptible one. Our study suggests that T. pisana populations from warmer habitats were more resistant to desiccation and developed distinct strategies of HSP expression for survival, namely, the maintenance of high constitutive levels of Hsp70 together with a delayed and limited response to stress.

  9. A Rapid Transcriptome Response Is Associated with Desiccation Resistance in Aerially-Exposed Killifish Embryos

    PubMed Central

    Tingaud-Sequeira, Angèle; Lozano, Juan-José; Zapater, Cinta; Otero, David; Kube, Michael; Reinhardt, Richard; Cerdà, Joan

    2013-01-01

    Delayed hatching is a form of dormancy evolved in some amphibian and fish embryos to cope with environmental conditions transiently hostile to the survival of hatchlings or larvae. While diapause and cryptobiosis have been extensively studied in several animals, very little is known concerning the molecular mechanisms involved in the sensing and response of fish embryos to environmental cues. Embryos of the euryhaline killifish Fundulus heteroclitus advance dvelopment when exposed to air but hatching is suspended until flooding with seawater. Here, we investigated how transcriptome regulation underpins this adaptive response by examining changes in gene expression profiles of aerially incubated killifish embryos at ∼100% relative humidity, compared to embryos continuously flooded in water. The results confirm that mid-gastrula embryos are able to stimulate development in response to aerial incubation, which is accompanied by the differential expression of at least 806 distinct genes during a 24 h period. Most of these genes (∼70%) appear to be differentially expressed within 3 h of aerial exposure, suggesting a broad and rapid transcriptomic response. This response seems to include an early sensing phase, which overlaps with a tissue remodeling and activation of embryonic development phase involving many regulatory and metabolic pathways. Interestingly, we found fast (0.5–1 h) transcriptional differences in representatives of classical “stress” proteins, such as some molecular chaperones, members of signalling pathways typically involved in the transduction of sensor signals to stress response genes, and oxidative stress-related proteins, similar to that described in other animals undergoing dormancy, diapause or desiccation. To our knowledge, these data represent the first transcriptional profiling of molecular processes associated with desiccation resistance during delayed hatching in non-mammalian vertebrates. The exceptional transcriptomic plasticity

  10. A rapid transcriptome response is associated with desiccation resistance in aerially-exposed killifish embryos.

    PubMed

    Tingaud-Sequeira, Angèle; Lozano, Juan-José; Zapater, Cinta; Otero, David; Kube, Michael; Reinhardt, Richard; Cerdà, Joan

    2013-01-01

    Delayed hatching is a form of dormancy evolved in some amphibian and fish embryos to cope with environmental conditions transiently hostile to the survival of hatchlings or larvae. While diapause and cryptobiosis have been extensively studied in several animals, very little is known concerning the molecular mechanisms involved in the sensing and response of fish embryos to environmental cues. Embryos of the euryhaline killifish Fundulus heteroclitus advance dvelopment when exposed to air but hatching is suspended until flooding with seawater. Here, we investigated how transcriptome regulation underpins this adaptive response by examining changes in gene expression profiles of aerially incubated killifish embryos at ∼100% relative humidity, compared to embryos continuously flooded in water. The results confirm that mid-gastrula embryos are able to stimulate development in response to aerial incubation, which is accompanied by the differential expression of at least 806 distinct genes during a 24 h period. Most of these genes (∼70%) appear to be differentially expressed within 3 h of aerial exposure, suggesting a broad and rapid transcriptomic response. This response seems to include an early sensing phase, which overlaps with a tissue remodeling and activation of embryonic development phase involving many regulatory and metabolic pathways. Interestingly, we found fast (0.5-1 h) transcriptional differences in representatives of classical "stress" proteins, such as some molecular chaperones, members of signalling pathways typically involved in the transduction of sensor signals to stress response genes, and oxidative stress-related proteins, similar to that described in other animals undergoing dormancy, diapause or desiccation. To our knowledge, these data represent the first transcriptional profiling of molecular processes associated with desiccation resistance during delayed hatching in non-mammalian vertebrates. The exceptional transcriptomic plasticity

  11. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries

    PubMed Central

    Clark, Melody S; Thorne, Michael AS; Purać, Jelena; Grubor-Lajšić, Gordana; Kube, Michael; Reinhardt, Richard; Worland, M Roger

    2007-01-01

    Background Ice, snow and temperatures of -14°C are conditions which most animals would find difficult, if not impossible, to survive in. However this exactly describes the Arctic winter, and the Arctic springtail Onychiurus arcticus regularly survives these extreme conditions and re-emerges in the spring. It is able to do this by reducing the amount of water in its body to almost zero: a process that is called "protective dehydration". The aim of this project was to generate clones and sequence data in the form of ESTs to provide a platform for the future molecular characterisation of the processes involved in protective dehydration. Results Five normalised libraries were produced from both desiccating and rehydrating populations of O. arcticus from stages that had previously been defined as potentially informative for molecular analyses. A total of 16,379 EST clones were generated and analysed using Blast and GO annotation. 40% of the clones produced significant matches against the Swissprot and trembl databases and these were further analysed using GO annotation. Extraction and analysis of GO annotations proved an extremely effective method for identifying generic processes associated with biochemical pathways, proving more efficient than solely analysing Blast data output. A number of genes were identified, which have previously been shown to be involved in water transport and desiccation such as members of the aquaporin family. Identification of these clones in specific libraries associated with desiccation validates the computational analysis by library rather than producing a global overview of all libraries combined. Conclusion This paper describes for the first time EST data from the arctic springtail (O. arcticus). This significantly enhances the number of Collembolan ESTs in the public databases, providing useful comparative data within this phylum. The use of GO annotation for analysis has facilitated the identification of a wide variety of ESTs

  12. LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii.

    PubMed

    Rodriguez-Salazar, Julieta; Moreno, Soledad; Espín, Guadalupe

    2017-03-03

    Late embryogenesis abundant (LEA) proteins constitute a large protein family that is closely associated with resistance to abiotic stresses in multiple organisms and protect cells against drought and other stresses. Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts. This bacterium possesses two genes, here named lea1 and lea2, coding for avLEA1 and avLEA2 proteins, both containing 20-mer motifs characteristic of eukaryotic plant LEA proteins. In this study, we found that disruption of the lea1 gene caused a loss of the cysts' viability after 3 months of desiccation, whereas at 6 months, wild-type or lea2 mutant strain cysts remained viable. Vegetative cells of the lea1 mutant were more sensitive to osmotic stress; cysts developed by this mutant were also more sensitive to high temperatures than cysts or vegetative cells of the wild type or of the lea2 mutant. Expression of lea1 was induced several fold during encystment. In addition, the protective effects of these proteins were assessed in Escherichia coli cells. We found that E. coli cells overexpressing avLEA1 were more tolerant to salt stress than control cells; finally, in vitro analysis showed that avLEA1 protein was able to prevent the freeze thaw-induced inactivation of lactate dehydrogenase. In conclusion, avLEA1 is essential for the survival of A. vinelandii in dry conditions and for protection against hyper-osmolarity, two major stress factors that bacteria must cope with for survival in the environment. This is the first report on the role of bacterial LEA proteins on the resistance of cysts to desiccation.

  13. Desiccation kinetics and biothermodynamics of glass forming trehalose solutions in thin films.

    PubMed

    He, Xiaoming; Fowler, Alex; Menze, Michael; Hand, Steve; Toner, Mehmet

    2008-08-01

    In this study, the desiccation kinetics of aqueous trehalose solutions were investigated numerically by solving the coupled heat and mass transfer problem with a moving interface using the finite element method. The free volume models for vapor pressure and mutual diffusion coefficient were incorporated into the model to account for the effect of glass transition on the heat and mass transport process that ultimately determines the desiccation kinetics. It was found that the temperature in the film could drop significantly upon the initiation of drying due to the absorption of latent heat associated with water evaporation although the spatial distribution of temperature in the solution is very homogeneous. On the contrary, the spatial distribution of water content in the solution is non-homogeneous, particularly at the solution-vapor interface where an extremely thin layer of skin with extremely low molecular mobility usually forms during drying. The solution film can be dried to approximately 6-10 wt.% residual water within minutes for thin films; but drying times depends strongly on the initial film thickness, initial solution concentration, temperature, and convective coefficient. Desiccation to below 6 wt.% residual water is very slow due to the retarded water mobility in the extremely thin skin where the solution is in the glassy state. Since the water mobility in a trehalose solution or glass with 6-10% residual water is still high enough to allow degradative reactions to occur in a relatively short time at room temperature, it is important that the samples should be kept at a temperature around 0 degrees C or lower for storage after drying. Furthermore, approaches that might enable further quick reduction of the residual water to less than 6-10 wt.% are also proposed so that a sample could be preserved at super-zero or even room temperature. The established models and the reported results will be useful for the development of effective protocols for

  14. Desiccant-assisted air conditioner improves IAQ and comfort

    SciTech Connect

    Meckler, M. )

    1994-10-01

    This article describes a system which offers the advantage of downsizing the evaporator coil and condensing unit capacities for comparable design loads, which in turn provides numerous benefits. Airborne microorganisms, which are responsible for many acute diseases, infections, and allergies, are well protected indoors by the moisture surrounding them. While the human body is generally the host for various bacteria and viruses, fungi can grow in moist places. It has been concluded that an optimum relative humidity (RH) range of 40 to 60 percent is necessary to minimize or eliminate the bacterial, viral, and fungal growth. In addition, humidity also has an effect on air cleanliness--it reduces the presence of dust particles--and on the deterioration of the building structure and its contents. Therefore, controlling humidity is a very important factor to human comfort in minimizing adverse health effects and maximizing the structural longevity of the building.

  15. The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of Drosophila.

    PubMed

    Matute, Daniel R; Harris, Alexandra

    2013-08-01

    Drosophila yakuba and D. santomea are sister species that differ in their levels of abdominal pigmentation; D. yakuba shows heavily pigmented posterior abdominal segments in both sexes, whereas D. santomea lacks dark pigment anywhere on its body. Using naturally collected lines, we demonstrate the existence of altitudinal variation in abdominal pigmentation in D. yakuba but not in D. santomea. We use the variation in pigmentation within D. yakuba and two body-color mutants in D. yakuba to elucidate selective advantage of differences in pigmentation. Our results indicate that although differences in abdominal pigmentation have no effect on desiccation resistance, lighter pigmentation confers ultraviolet radiation resistance in this pair of species.

  16. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms.

    PubMed

    Knowles, Emily J; Castenholz, Richard W

    2008-11-01

    Two major stresses that threaten rock-inhabiting microbial communities are desiccation and freezing; both result in a loss of liquid water in the cells. The mechanisms necessary to tolerate these extremes may be similar, but are not well understood. In both cases extracellular polysaccharides (EPS) seem to play an important role. This study examines whether the EPS released by a rock-inhabiting phototroph can have a protective effect on other members of similar and neighboring microbial communities. This interaction was modeled by adding EPS isolated from the cryptoendolithic cyanobacterium Nostoc sp. to cells of the cryptoendolithic green alga Chlorella sp. and to cells of the epilithic cyanobacterium Chroococcidiopsis sp. The cells were then subjected to desiccation and freezing and the survival rates were determined by vital staining, using membrane integrity as a measure of viability. The results clearly demonstrate the importance of exogenous EPS in the desiccation tolerance of both species, while mixed results were found for the freezing trials.

  17. Nitrogen Limitation and Slow Drying Induce Desiccation Tolerance in Conjugating Green Algae (Zygnematophyceae, Streptophyta) from Polar Habitats

    PubMed Central

    Pichrtová, Martina; Kulichová, Jana; Holzinger, Andreas

    2014-01-01

    Background Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress. Key Findings Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks), supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified) consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow); viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation. Conclusions The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed. PMID:25398135

  18. Desiccant dust and the use of CO2 gas as a mobility stimulant for bed bugs: a potential control solution?

    PubMed

    Aak, Anders; Roligheten, Espen; Rukke, Bjørn Arne; Birkemoe, Tone

    2017-01-01

    The common bed bug (Cimex lectularius, Hemiptera; Cimicidae) infests homes and service industries, and the number of infestations has greatly increased over the past 20 years. At present, no cost-effective control methods are available, and eradication programs are expensive and laborious. We investigated the control potential of desiccant dust in combination with CO2 as a bed bug activity stimulant. An initial experiment with two desiccant dusts was followed by arena studies with varying doses, available hiding places and the presence or absence of host signals. Finally, we conducted a field experiment with Syloid 244FP with or without CO2 gas. Syloid was superior compared to diatomaceous earth, and effective at the concentration of 1.0 g/m(2) in the field experiment. The number of harborages and partial application of desiccant dust decreased mortality in the laboratory. Bed bug activation by CO2 appeared of minor importance in the arena studies, but was crucial for the eradication in the student dormitories. In fact, all 5 bed bug-infested dormitories with a combined treatment of desiccant dust and CO2 were freed of bed bugs, whereas eradication was not successful in any of the 6 dormitories with only desiccant dust treatment. The different results in the laboratory and field experiment were most likely caused by the longer activation and higher dose of CO2 used in the field experiment than the laboratory experiment. Our study showed that application of desiccant dust in combination with release of CO2 gas to mimic human presence is a promising option for bed bug control.

  19. Effect of air desiccation and salt stress factors on in vitro regeneration of rice (Oryza sativa L.)

    PubMed Central

    Siddique, Abu Baker; Ara, Israt; Islam, S M Shahinul; Tuteja, Narendra

    2014-01-01

    Enhancement of callus induction and its regeneration efficiency through in vitro techniques has been optimized for 2 abiotic stresses (salt and air desiccation) using 3 rice genotypes viz. BR10, BRRI dhan32 and BRRI dhan47. The highest frequency of callus induction was obtained for BRRI dhan32 (64.44%) in MS medium supplemented with 2, 4-D (2.5 mgL−1) and Kin (1.0 mgL−1). Different concentrations of NaCl (2.9, 5.9, 8.8 and 11.7 gL−1) were used and its effect was recorded on the basis of viability of calli (VC), relative growth rate (RGR), tolerance index (TI) and relative water content (RWC). It was observed that in all cases BRRI dhan47 showed highest performance on tolerance to VC (45.33%), RGR (1.03%), TI (0.20%) and RWC (10.23%) with 11.7 gL−1 NaCl. Plant regeneration capability was recorded after partial air desiccation pretreatment to calli for 15, 30, 45 and 60 h. In this case BRRI dhan32 gave maximum number of regeneration (76.19%) when 4 weeks old calli were desiccated for 45 h. It was observed that air desiccation was 2-3 folds more effective for enhancing green plantlet regeneration compared to controls. Furthermore, desiccated calli also showed the better capability to survive in NaCl induced abiotic stress; and gave 1.9 fold (88.80%) increased regeneration in 11.7 gL−1 salt level for BRRI dhan47. Analysis of variance (ANOVA) showed that the genotypes, air desiccation and NaCl had significant effect on plant regeneration at P < 0.01. PMID:25482754

  20. Effect of desiccation on the dynamics of genome-wide DNA methylation in orthodox seeds of Acer platanoides L.

    PubMed

    Plitta, Beata P; Michalak, Marcin; Bujarska-Borkowska, Barbara; Barciszewska, Mirosława Z; Barciszewski, Jan; Chmielarz, Paweł

    2014-12-01

    5-methylcytosine, an abundant epigenetic mark, plays an important role in the regulation of plant growth and development, but there is little information about stress-induced changes in DNA methylation in seeds. In the present study, changes in a global level of m5C were measured in orthodox seeds of Acer platanoides L. during seed desiccation from a WC of 1.04 to 0.05-0.06 g H2O g g(-1) dry mass (g g(-1)). Changes in the level of DNA methylation were measured using 2D TLC e based method. Quality of desiccated seeds was examined by germination and seedling emergence tests. Global m5C content (R2)increase was observed in embryonic axes isolated from seeds collected at a high WC of 1.04 g g(-1) after their desiccation to significantly lower WC of 0.17 and 0.19 g g(-1). Further desiccation of these seeds to a WC of 0.06 g g(-1), however, resulted in a significant DNA demethylation to R2 ¼ 11.52-12.22%. Similar m5C decrease was observed in seeds which undergo maturation drying on the tree and had four times lower initial WC of 0.27 g g(-1) at the time of harvest, as they were dried to a WC of 0.05 g g(-1). These data confirm that desiccation induces changes in seed m5C levels. Results were validated by seed lots derived from tree different A. platanoides provenances. It is plausible that sine wave-like alterations in m5C amount may represent a specific response of orthodox seeds to drying and play a relevant role in desiccation tolerance in seeds.

  1. The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: effects of rate of drying on shoot damage and regeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Bryophytes are regarded as a clade incorporating constitutive desiccation tolerance, especially terrestrial species. Here we test the hypothesis that the opposing ecological strategy of desiccation tolerance, inducibility, is present in a desert moss, and addressed by varying r...

  2. The Involvement of Respiration in Free Radical Processes during Loss of Desiccation Tolerance in Germinating Zea mays L. (An Electron Paramagnetic Resonance Study).

    PubMed

    Leprince, O.; Atherton, N. M.; Deltour, R.; Hendry, GAF.

    1994-04-01

    When germinating Zea mays L. seeds are rapidly desiccated, free radical-mediated lipid peroxidation and phospholipid de-esterification is accompanied by a desiccation-induced buildup of a stable free radical associated with rapid loss of desiccation tolerance. Comparison of the electron paramagnetic resonance and electron nuclear double resonance properties of this radical with those of the radical in dried, desiccation-intolerant moss showed that the two were identical. At the subcellular level, the radical was associated with the hydrophilic fraction resulting from lipid extraction. Isolated mitochondria subjected to drying were also found to accumulate an identical radical in vitro. When increasing concentrations of cyanide were used, a significant positive correlation was shown between rates of respiration and the accumulation of the radical in desiccation-intolerant tissues. Another positive correlation was found when rates of O2 uptake by radicles at different stages of germination were plotted against free radical content following desiccation. This indicates that free radical production is closely linked to respiration in a process likely to involve the desiccation-induced impairment of the mitochondrial electron transport chain to form thermodynamically favorable conditions to induce accumulation of a stable free radical and peroxidized lipids. Modulation of respiration using a range of inhibitors resulted in broadly similar modulation of the buildup of the stable free radical. One site of radical generation was likely to be the NADH dehydrogenase of complex I and probably as a direct consequence of desiccation-impaired electron flow at or close to the ubiquinone pool.

  3. Transcriptomics of Desiccation Tolerance in the Streptophyte Green Alga Klebsormidium Reveal a Land Plant-Like Defense Reaction

    PubMed Central

    Holzinger, Andreas; Kaplan, Franziska; Blaas, Kathrin; Zechmann, Bernd; Komsic-Buchmann, Karin; Becker, Burkhard

    2014-01-01

    Background Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. Principal Findings For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative

  4. Seasonal changes in tolerance to cold and desiccation in Phauloppia sp. (Acari, Oribatida) from Finse, Norway.

    PubMed

    Sjursen; Sømme

    2000-10-01

    In the alpine region at Finse, Norway, Phauloppia spp. (Acari, Oribatida) inhabit lichens on top of boulders. Adult mites are about 0.5 mm in length and have a mean weight of ca. 15 µg. Temperatures in the lichens may drop below -35 degrees C in winter and increase to 55 degrees C in the summer. Large seasonal variations were recorded in supercooling points and body fluid osmolality. Mean January values of SCPs and osmolality were -35.3 degrees C and 3756 mOsm, while July values were -9.4 degrees C and 940 mOsm, respectively. Thermal hysteresis proteins were present in both summer and winter acclimated mites. In mid-winter, some of the mites survived more than 49 days in a water vapor saturated atmosphere at -19 degrees C, and more than 42 days enclosed in ice at the same temperature.The mites showed high tolerance to desiccation. Specimens collected in October survived up to 23 days at 22 degrees C and 5% RH. The tolerance to desiccation was lower in specimens collected during the winter. Some mites survived the loss of up to 90% of their total water content and were reactivated when given access to water. Length measurements of individual Phauloppia sp. showed that both male and female mites are clearly divided in two size groups, suggesting that they belong to two closely related species or different populations.

  5. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    SciTech Connect

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated.

  6. Cryptic species within the cosmopolitan desiccation-tolerant moss Grimmia laevigata.

    PubMed

    Fernandez, Catherine C; Shevock, James R; Glazer, Alexander N; Thompson, John N

    2006-01-17

    The common cushion moss Grimmia laevigata (Bridel) Bridel grows on bare rock in a broad range of environments on every continent except Antarctica. As such, it must harbor adaptations to a remarkably broad set of environmental stresses, the extremes of which can include very high temperatures, prolonged nearly complete desiccation, and high ultraviolet B (UVB) exposure. Yet, like many mosses, G. laevigata shows very little morphological variability across its cosmopolitan range. This presents an evolutionary puzzle, the solution to which lies in understanding the phylogeographic structure of this morphologically simple organism. Here we report the results of an analysis of amplified fragment length polymorphisms (AFLPs) in G. laevigata, focusing on individuals from the California Floristic Province. We found evidence that populations within California constitute two distinct geographically overlapping cryptic species. Each clade harbors multiple private alleles, indicating they have been genetically isolated for some time. We suggest that the existence of cryptic species within G. laevigata, in combination with its life history, growth habits, and extreme desiccation tolerance, makes this moss an ideal research tool and a candidate for a biological indicator of climate change and pollution.

  7. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding.

    PubMed

    Ohneiser, Christian; Florindo, Fabio; Stocchi, Paolo; Roberts, Andrew P; DeConto, Robert M; Pollard, David

    2015-11-10

    The Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ(18)O record to model relative sea-level changes. Antarctic sedimentary successions indicate AIS expansion at 6 Ma coincident with major MSC desiccation; relative sea-level modelling indicates a prolonged ∼50 m lowstand at the Strait of Gibraltar, which resulted from AIS expansion and local evaporation of sea water in concert with evaporite precipitation that caused lithospheric deformation. Our results reconcile MSC events and demonstrate that desiccation and refilling were timed by the interplay between glacio-eustatic sea-level variations, glacial isostatic adjustment and mantle deformation in response to changing water and evaporite loads.

  8. A method for characterizing desiccation-induced consolidation and permeability loss of organic soils

    NASA Astrophysics Data System (ADS)

    Arnold, Chelsea L.; Ghezzehei, Teamrat A.

    2015-01-01

    A new method was developed to measure soil consolidation by capillary suction in organic soils. This method differs from previous methods of measuring soil consolidation in that no external load is utilized and only the forces generated via capillary suction consolidate the soil matrix. This limits the degree of consolidation that can occur, but gives a more realistic ecological perspective on the response of organic soils to desiccation in the field. This new method combines the principles behind a traditional triaxial cell (for measurements of volume change), a pressure plate apparatus, (to facilitate drainage by capillary suction), and the permeameter, (to measure saturated hydraulic conductivity) and allows for simultaneous desaturation of the soil while monitoring desiccation-induced volume change in the soil. This method also enables detection of historic limit of dryness. The historic limit of dryness is a novel concept that is unique to soils that have never experienced drying since their formation. It is fundamentally equivalent to the precompression stress of externally loaded soils. This method is particularly important for forecasting structural and hydrologic changes that may occur in soils that were formed in very wet regimes (e.g., wet meadows at the foot of persistent snowpacks and permafrost peats) as they respond to a changing climate.

  9. Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens

    PubMed Central

    Xia, Jing; Wang, Xiaoqin; Perroud, Pierre-François; He, Yikun; Quatrano, Ralph; Zhang, Weixiong

    2016-01-01

    Early land plants like moss Physcomitrella patens have developed remarkable drought tolerance. Phytohormone abscisic acid (ABA) protects seeds during water stress by activating genes through transcription factors such as ABSCISIC ACID INSENSITIVE (ABI3). Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are key gene regulators in eukaryotes, playing critical roles in stress tolerance in plants. Combining next-generation sequencing and computational analysis, we profiled and characterized sncRNA species from two ABI3 deletion mutants and the wild type P. patens that were subject to ABA treatment in dehydration and rehydration stages. Small RNA profiling using deep sequencing helped identify 22 novel miRNAs and 6 genomic loci producing trans-acting siRNAs (ta-siRNAs) including TAS3a to TAS3e and TAS6. Data from degradome profiling showed that ABI3 genes (ABI3a/b/c) are potentially regulated by the plant-specific miR536 and that other ABA-relevant genes are regulated by miRNAs and ta-siRNAs. We also observed broad variations of miRNAs and ta-siRNAs expression across different stages, suggesting that they could potentially influence desiccation tolerance. This study provided evidence on the potential roles of sncRNA in mediating desiccation-responsive pathways in early land plants. PMID:27443635

  10. Mechanical properties of desiccated ragweed pollen grains determined by micromanipulation and theoretical modelling.

    PubMed

    Liu, T; Zhang, Z

    2004-03-30

    The mechanical properties of desiccated ragweed pollen grains were determined using a micromanipulation technique and a theoretical model. Single pollen grains with a diameter of approximately 20 microm were compressed and held, compressed and released, and compressed to rupture at different speeds between two parallel surfaces. Simultaneously, the force being imposed on the pollen grains was measured. It has been found that the rupture force of pollen grains increased linearly with their displacement at rupture on average, but was independent of their diameter. The mean rupture force was 1.20 +/- 0.03 mN, and mean deformation (the ratio between the displacement and diameter) at rupture was 22 +/- 0.6%. Single pollen grains were modeled as a capsule with a core full of air and a non permeable wall. A constitutive equation based on Hookean law was used to determine the mechanical property parameters Eh (product of the Young's modulus and wall thickness), and the mean value of Eh of desiccated pollen gains was estimated to be 1653 +/- 36 N/m.

  11. Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation.

    PubMed

    Röhrig, Horst; Schmidt, Jürgen; Colby, Thomas; Bräutigam, Anne; Hufnagel, Peter; Bartels, Dorothea

    2006-08-01

    Reversible phosphorylation of proteins is an important mechanism by which organisms regulate their reactions to external stimuli. To investigate the involvement of phosphorylation during acquisition of desiccation tolerance, we have analysed dehydration-induced protein phosphorylation in the desiccation tolerant resurrection plant Craterostigma plantagineum. Several dehydration-induced proteins were shown to be transiently phosphorylated during a dehydration and rehydration (RH) cycle. Two abundantly expressed phosphoproteins are the dehydration- and abscisic acid (ABA)-responsive protein CDeT11-24 and the group 2 late embryogenesis abundant (LEA) protein CDeT6-19. Although both proteins accumulate in leaves and roots with similar kinetics in response to dehydration, their phosphorylation patterns differ. Several phosphorylation sites were identified on the CDeT11-24 protein using liquid chromatography-tandem mass spectrometry (LCMS/MS). The coincidence of phosphorylation sites with predicted coiled-coil regions leads to the hypothesis that CDeT11-24 phosphorylations influence the stability of coiled-coil interactions with itself and possibly other proteins.

  12. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization.

    PubMed

    Halberg, Kenneth Agerlin; Jørgensen, Aslak; Møbjerg, Nadja

    2013-01-01

    Life unfolds within a framework of constraining abiotic factors, yet some organisms are adapted to handle large fluctuations in physical and chemical parameters. Tardigrades are microscopic ecdysozoans well known for their ability to endure hostile conditions, such as complete desiccation--a phenomenon called anhydrobiosis. During dehydration, anhydrobiotic animals undergo a series of anatomical changes. Whether this reorganization is an essential regulated event mediated by active controlled processes, or merely a passive result of the dehydration process, has not been clearly determined. Here, we investigate parameters pivotal to the formation of the so-called "tun", a state that in tardigrades and rotifers marks the entrance into anhydrobiosis. Estimation of body volume in the eutardigrade Richtersius coronifer reveals an 87 % reduction in volume from the hydrated active state to the dehydrated tun state, underlining the structural stress associated with entering anhydrobiosis. Survival experiments with pharmacological inhibitors of mitochondrial energy production and muscle contractions show that i) mitochondrial energy production is a prerequisite for surviving desiccation, ii) uncoupling the mitochondria abolishes tun formation, and iii) inhibiting the musculature impairs the ability to form viable tuns. We moreover provide a comparative analysis of the structural changes involved in tun formation, using a combination of cytochemistry, confocal laser scanning microscopy and 3D reconstructions as well as scanning electron microscopy. Our data reveal that the musculature mediates a structural reorganization vital for anhydrobiotic survival, and furthermore that maintaining structural integrity is essential for resumption of life following rehydration.

  13. Compensatory Development and Costs of Plasticity: Larval Responses to Desiccated Conspecifics

    PubMed Central

    Sadeh, Asaf; Truskanov, Noa; Mangel, Marc; Blaustein, Leon

    2011-01-01

    Understanding constraints on phenotypic plasticity is central to explaining its evolution and the evolution of phenotypes in general, yet there is an ongoing debate on the classification and relationships among types of constraints. Since plasticity is often a developmental process, studies that consider the ontogeny of traits and their developmental mechanisms are beneficial. We manipulated the timing and reliability of cues perceived by fire salamander larvae for the future desiccation of their ephemeral pools to determine whether flexibility in developmental rates is constrained to early ontogeny. We hypothesized that higher rates of development, and particularly compensation for contradictory cues, would incur greater endogenous costs. We found that larvae respond early in ontogeny to dried conspecifics as a cue for future desiccation, but can fully compensate for this response in case more reliable but contradictory cues are later perceived. Patterns of mortality suggested that endogenous costs may depend on instantaneous rates of development, and revealed asymmetrical costs of compensatory development between false positive and false negative early information. Based on the results, we suggest a simple model of costs of development that implies a tradeoff between production costs of plasticity and phenotype-environment mismatch costs, which may potentially underlie the phenomenon of ontogenetic windows constraining plasticity. PMID:21246048

  14. Desiccation induces viable but Non-Culturable cells in Sinorhizobium meliloti 1021

    PubMed Central

    2012-01-01

    Sinorhizobium meliloti is a microorganism commercially used in the production of e.g. Medicago sativa seed inocula. Many inocula are powder-based and production includes a drying step. Although S. meliloti survives drying well, the quality of the inocula is reduced during this process. In this study we determined survival during desiccation of the commercial strains 102F84 and 102F85 as well as the model strain USDA1021. The survival of S. meliloti 1021 was estimated during nine weeks at 22% relative humidity. We found that after an initial rapid decline of colony forming units, the decline slowed to a steady 10-fold reduction in colony forming units every 22 days. In spite of the reduction in colony forming units, the fraction of the population identified as viable (42-54%) based on the Baclight live/dead stain did not change significantly over time. This change in the ability of viable cells to form colonies shows (i) an underestimation of the survival of rhizobial cells using plating methods, and that (ii) in a part of the population desiccation induces a Viable But Non Culturable (VBNC)-like state, which has not been reported before. Resuscitation attempts did not lead to a higher recovery of colony forming units indicating the VBNC state is stable under the conditions tested. This observation has important consequences for the use of rhizobia. Finding methods to resuscitate this fraction may increase the quality of powder-based seed inocula. PMID:22260437

  15. Combined effects of copper, desiccation, and frost on the viability of earthworm cocoons

    SciTech Connect

    Holmstrup, M.; Petersen, B.F. |; Larsen, M.M.

    1998-01-01

    The effects of heavy metal pollution on earthworms have been extensively studied, but no studies have examined how earthworms react if they are simultaneously exposed to metal pollution and climatic stress. This question has been addressed in a laboratory study where cocoons of Aporrectodea caliginosa and Dendrobaena octaedra were initially exposed to copper in aqueous solutions of copper chloride and thereafter exposed to realistic degrees of either desiccation or frost. Earthworm embryos absorbed copper in amounts comparable to concentrations found in various tissues of earthworms from metal-polluted soils. Desiccation and copper exposure in combination had synergistic effects on survival rates for both species. For example, at full saturation, the NOEC (the highest tested concentration with no statistically significant effect) for copper of A. caliginosa was 12 mg/L, whereas at 97% relative humidity it was only 6 mg/L. Frost and copper exposure in combination also showed synergistic effects in some experiments. No cocoons of A. caliginosa exposed to 20 mg copper/L were viable after exposure to {minus}3 C but at 0 C viability was as high as 95%. The same tendency was seen in D. octaedra but not as clearly as in A/. caliginosa. A change of the environmental conditions (moisture, temperature) to increasing severity caused a shift in the statistically derived NOEC toward lower critical values of copper. The involvement of combination effects in ecotoxicological tests could therefore improve risk assessment of soil-polluting compounds.

  16. Rapid Recovery of Cyanobacterial Pigments in Desiccated Biological Soil Crusts following Addition of Water

    PubMed Central

    Abed, Raeid M. M.; Polerecky, Lubos; Al-Habsi, Amal; Oetjen, Janina; Strous, Marc; de Beer, Dirk

    2014-01-01

    We examined soil surface colour change to green and hydrotaxis following addition of water to biological soil crusts using pigment extraction, hyperspectral imaging, microsensors and 13C labeling experiments coupled to matrix-assisted laser desorption and ionization time of flight-mass spectrometry (MALD-TOF MS). The topsoil colour turned green in less than 5 minutes following water addition. The concentrations of chlorophyll a (Chl a), scytonemin and echinenon rapidly increased in the top <1 mm layer while in the deeper layer, their concentrations remained low. Hyperspectral imaging showed that, in both wet and dehydrated crusts, cyanobacteria formed a layer at a depth of 0.2–0.4 mm and this layer did not move upward after wetting. 13C labeling experiments and MALDI TOF analysis showed that Chl a was already present in the desiccated crusts and de novo synthesis of this molecule started only after 2 days of wetting due to growth of cyanobacteria. Microsensor measurements showed that photosynthetic activity increased concomitantly with the increase of Chl a, and reached a maximum net rate of 92 µmol m−2 h−1 approximately 2 hours after wetting. We conclude that the colour change of soil crusts to green upon water addition was not due to hydrotaxis but rather to the quick recovery and reassembly of pigments. Cyanobacteria in crusts can maintain their photosynthetic apparatus intact even under prolonged periods of desiccation with the ability to resume their photosynthetic activities within minutes after wetting. PMID:25375172

  17. Water loss and viability in Zizania (Poaceae) seeds during short-term desiccation.

    PubMed

    Horne, F R; Kahn, A

    2000-11-01

    How Texas wild rice, Zizania texana, became isolated in the San Marcos River of Central Texas, hundreds of kilometres from other wild rice populations is not known. Zizania seeds are intolerant of short-term desiccation. Seeds desiccated at 14% relative humidity (RH) and 75% RH do not survive after only 5-6 d and 2-3 wk of drying. Water loss is rapid and reaches a maximum at the time of seed death due to drying. And although all Zizania seeds germinate well following a long, cold dormancy period, Z. texana seeds readily germinate in the isothermic water (22°C) of the San Marcos River and Springs without an obligate, cold dormant period. Within 30-60 d of collection, Z. texana seeds germinate in substantial numbers, unlike seeds of Z. palustris, which require a long, cold dormant period. The Texas population of Z. texana may represent a relict population of a once more widely dispersed wild rice population, since the San Marcos springs probably have never gone dry.

  18. Rapid recovery of cyanobacterial pigments in desiccated biological soil crusts following addition of water.

    PubMed

    Abed, Raeid M M; Polerecky, Lubos; Al-Habsi, Amal; Oetjen, Janina; Strous, Marc; de Beer, Dirk

    2014-01-01

    We examined soil surface colour change to green and hydrotaxis following addition of water to biological soil crusts using pigment extraction, hyperspectral imaging, microsensors and 13C labeling experiments coupled to matrix-assisted laser desorption and ionization time of flight-mass spectrometry (MALD-TOF MS). The topsoil colour turned green in less than 5 minutes following water addition. The concentrations of chlorophyll a (Chl a), scytonemin and echinenon rapidly increased in the top <1 mm layer while in the deeper layer, their concentrations remained low. Hyperspectral imaging showed that, in both wet and dehydrated crusts, cyanobacteria formed a layer at a depth of 0.2-0.4 mm and this layer did not move upward after wetting. 13C labeling experiments and MALDI TOF analysis showed that Chl a was already present in the desiccated crusts and de novo synthesis of this molecule started only after 2 days of wetting due to growth of cyanobacteria. Microsensor measurements showed that photosynthetic activity increased concomitantly with the increase of Chl a, and reached a maximum net rate of 92 µmol m-2 h-1 approximately 2 hours after wetting. We conclude that the colour change of soil crusts to green upon water addition was not due to hydrotaxis but rather to the quick recovery and reassembly of pigments. Cyanobacteria in crusts can maintain their photosynthetic apparatus intact even under prolonged periods of desiccation with the ability to resume their photosynthetic activities within minutes after wetting.

  19. A morpho-anatomical characterisation of Myrothamnus moschatus (Myrothamnaceae) under the aspect of desiccation tolerance.

    PubMed

    Korte, N; Porembski, S

    2012-05-01

    Morpho-anatomical traits of the rarely studied dicotyledonous desiccation-tolerant shrub Myrothamnus moschatus were examined and compared for the first time to Myrothamnus flabellifolius under the aspect of desiccation tolerance. Both species almost exclusively occur on rock outcrops and differ mainly in their geographic range and leaf morphology (fan-shaped in M. flabellifolius, lanceolate in M. moschatus) but have a very similar leaf and wood anatomy, except for the lack of hydathodes in M. moschatus. Both species adopt the parallel leaf venation of monocots, although this is more pronounced in M. moschatus. This provides a mechanical and protective advantage over the net venation pattern of most dicots and facilitates the reversible, drought-induced, accordion-like leaf contraction. The sclerenchyma, as a stabilising tissue, is mainly confined to vascular bundles in leaves of both species. Here, mechanical support seems to be less crucial for survival in long periods of drought than other morpho-anatomical traits (e.g. parallel leaf venation).

  20. Bacterial survival in response to desiccation and high humidity at above zero and subzero temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2009-04-01

    Earthly microorganisms might have contaminated Mars for millions of years by intellectual activities or natural transfer. Knowledge on the preservation of microorganisms may help our searching for life on outer planets, particularly Mars-contaminated earthly microorganisms at ancient time. Extreme dryness is one of the current Mars characteristics. However, a humid or watery Mars at earlier time was suggested by evidence accumulated in recent decades. It raises the question that whether water helps preservation of the microorganisms or not, particularly those with high possibility of interplanetary transfer like spores and Deinococci. In this study, we examined the effects of desiccation and high humidity on survival and DNA double strand breaks (DSB) of Escherichia coli, Deinococcus radiodurans and spores of Bacillus pumilus at 25, 4 and -70 °C. They exhibited different survival rates and DSB patterns under desiccation and high humidity. Higher survival and less DSB occurred at lower temperature. We suggest that some Mars-contaminated bacteria might have been viably preserved on cold Mars regions for long periods, regardless of water availability. It is more likely to find ancient spores than ancient Deinococci on Mars. In our search for preserved extraterrestrial life, priority should be given to the Mars Polar Regions.

  1. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria).

    PubMed

    Wright, Deborah J; Smith, Sue C; Joardar, Vinita; Scherer, Siegfried; Jervis, Jody; Warren, Andrew; Helm, Richard F; Potts, Malcolm

    2005-12-02

    Cyanobacterium Nostoc commune can tolerate the simultaneous stresses of desiccation, UV irradiation, and oxidation. Acidic WspA, of approximately 33.6 kDa, is secreted to the three-dimensional extracellular matrix and accounts for greater than 70% of the total soluble protein. The wspA gene of N. commune strain DRH1 was cloned and found in a single genomic copy, in a monocistronic operon. Transcription of wspA and sodF (superoxide dismutase), and synthesis and secretion of WspA, were induced upon desiccation or UV-A/B irradiation of cells. Recombinant WspA binds the UV-A/B absorbing pigment scytonemin through non-covalent interactions. WspA peptide polymorphism, and heterogeneity of multiple wspA sequences within cells of a single colony, account for distinct WspA isoforms. WspA has no similarity to entries in the sequence databases and wspA, a possible xenolog, is restricted to a subset of strains in the "form species" N. commune characterized through group I intron phylogeny. We hypothesize that WspA plays a central role in the global stress response of N. commune through modulation of the structure and function of the three-dimensional extracellular matrix, particularly the transport, distribution, and/or macromolecular architecture of mycosporine and scytonemin UV-A/B absorbing pigment complexes.

  2. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding

    PubMed Central

    Ohneiser, Christian; Florindo, Fabio; Stocchi, Paolo; Roberts, Andrew P.; DeConto, Robert M.; Pollard, David

    2015-01-01

    The Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ18O record to model relative sea-level changes. Antarctic sedimentary successions indicate AIS expansion at 6 Ma coincident with major MSC desiccation; relative sea-level modelling indicates a prolonged ∼50 m lowstand at the Strait of Gibraltar, which resulted from AIS expansion and local evaporation of sea water in concert with evaporite precipitation that caused lithospheric deformation. Our results reconcile MSC events and demonstrate that desiccation and refilling were timed by the interplay between glacio-eustatic sea-level variations, glacial isostatic adjustment and mantle deformation in response to changing water and evaporite loads. PMID:26556503

  3. ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging.

    PubMed

    Parkhey, Suruchi; Naithani, S C; Keshavkant, S

    2012-08-01

    Reactive oxygen species (ROS) and lipid peroxidation products appear to correlate strongly with the desiccation induced loss of viability in recalcitrant sal seeds. The 100% germination in fresh sal seeds declined with dehydration under natural storage conditions (26 ± 1 °C, relative humidity 52 ± 2%). Seeds became non-viable within 8 days. Desiccation induced disturbances in the metabolic activity of seeds resulted in generation of enormous amounts of ROS that are responsible for cellular damage and viability loss. Oxidative stress in the dehydrating aging sal seeds was further aggravated by inducing lipid peroxidation as the amounts of free fatty acid, conjugated diene, lipid hydroperoxide and secondary free radicals; malondialdehyde and 4-hydroxy-2-nonenal, were also promoted. In addition, significant rise in lipid degrading enzymes; lipase (EC 3.1.1.3) and lipoxygenase (LOX, EC 1.13.11.12) were detected in dehydrating sal seeds. Our results indicated multiple pathways (ROS, lipid peroxidation & lipase and LOX) that operate in the dehydrating recalcitrant sal seeds finally contributing to loss of viability.

  4. Changed Properties of the Cytoplasmic Matrix Associated with Desiccation Tolerance of Dried Carrot Somatic Embryos. An in Situ Fourier Transform Infrared Spectroscopic Study1

    PubMed Central

    Wolkers, Willem F.; Tetteroo, Frans A.A.; Alberda, Mark; Hoekstra, Folkert A.

    1999-01-01

    Abscisic acid-pretreated carrot (Daucus carota) somatic embryos survive dehydration upon slow drying, but fast drying leads to poor survival of the embryos. To determine whether the acquisition of desiccation tolerance is associated with changes in the physical stability of the cytoplasm, in situ Fourier transform infrared microspectroscopy was used. Although protein denaturation temperatures were similar in the embryos after slow or fast drying, the extent of the denaturation was greater after fast drying. Slowly dried embryos are in a glassy state at room temperature, and no clearly defined glassy matrix was observed in the rapidly dried embryos. At room temperature the average strength of hydrogen bonding was much weaker in the rapidly dried than in the slowly dried embryos. We interpreted the molecular packing to be “less tight” in the rapidly dried embryos. Whereas sucrose (Suc) is the major soluble carbohydrate after fast drying, upon slow drying the trisaccharide umbelliferose accumulates at the expense of Suc. The possibly protective role of umbelliferose was tested on protein and phospholipid model systems, using Suc as a reference. Both umbelliferose and Suc form a stable glass with drying: They depress the transition temperature of dry liposomal membranes equally well, they both prevent leakage from dry liposomes after rehydration, and they protect a polypeptide that is desiccation sensitive. The similar protection properties in model systems and the apparent interchangeability of both sugars in viable, dry somatic embryos suggest no special role of umbelliferose in the improved physical stability of the slowly dried embryos. Also, during slow drying LEA (late-embryogenesis abundant) transcripts are expressed. We suggest that LEA proteins embedded in the glassy matrix confer stability to these slowly dried embryos. PMID:10318693

  5. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes du...

  6. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  7. Sealed tube comparisons of the compatibility of desiccants with refrigerants and lubricants. Final report, August 1993--January 1995

    SciTech Connect

    Field, J.E.

    1995-05-01

    Continuing environmental concerns mandate replacement of CFC`s with alternate refrigeration fluids. Until now, relatively little testing had been reported in the literature for compatibility of desiccants in these new working fluids. Using bench scale test methods generally accepted throughout the industry today, this work provides data necessary to assess the compatibility of virtually all of the currently used desiccant types - both bead and molded core, with thirteen refrigerant/lubricant combinations. The desiccants have been tested by exposure to refrigerant and lubricant in sealed, glass tubes in accordance with ASHRAE/ANSI Standard 97-1989. After aging, the liquid phase was evaluated for acid anion formation, change in color, and presence of halide ions, the gas phase was analyzed for refrigerant decomposition by gas chromatography, and the desiccants were evaluated for changes in crush strength and for retention of acids and halide ions. Metal catalysts, also present in the sealed tubes, were visually examined for corrosion, copper plating, and appearance changes.

  8. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to ‘resurrect’ from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/de...

  9. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts.

    PubMed

    Margulis, L; Hinkle, G; McKhann, H; Moynihan, B

    1988-09-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  10. Downregulation of dTps1 in Drosophila melanogaster larvae confirms involvement of trehalose in redox regulation following desiccation.

    PubMed

    Thorat, Leena; Mani, Krishna-Priya; Thangaraj, Pradeep; Chatterjee, Suvro; Nath, Bimalendu B

    2016-03-01

    As a survival strategy to environmental water deficits, desiccation-tolerant organisms are commonly known for their ability to recruit stress-protective biomolecules such as trehalose. We have previously reported the pivotal role of trehalose in larval desiccation tolerance in Drosophila melanogaster. Trehalose has emerged as a versatile molecule, serving mainly as energy source in insects and also being a stress protectant. While several recent reports have revealed the unconventional role of trehalose in scavenging reactive oxygen species in yeast and plants, this aspect has not received much attention in animals. We examined the status of desiccation-induced generation of reactive oxygen species in D. melanogaster larvae and the possible involvement of trehalose in ameliorating the harmful consequences thereof. Insect trehalose synthesis is governed by the enzyme trehalose 6-phosphate synthase 1 (TPS1). Using the ubiquitous da-GAL4-driven expression of the dTps1-RNAi transgene, we generated dTps1-downregulated Drosophila larvae possessing depleted levels of dTps1 transcripts. This resulted in the inability of the larvae for trehalose synthesis, thereby allowing us to elucidate the significance of trehalose in the regulation of desiccation-responsive redox homeostasis. Furthermore, the results from molecular genetics studies, biochemical assays, electron spin resonance analyses and a simple, non-invasive method of whole larval live imaging suggested that trehalose in collaboration with superoxide dismutase (SOD) is involved in the maintenance of redox state in D. melanogaster.

  11. Possible involvement of reactive oxygen species scavenging enzymes in desiccation sensitivity of Antiaris toxicaria seeds and axes.

    PubMed

    Cheng, Hong-Yan; Song, Song-Quan

    2008-12-01

    The relationships among desiccation sensitivities of Antiaris toxicaria seeds and axes, changes in activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase, (DHAR), production rate of superoxide radical (.O(2) (-)), and the contents of hydrogen peroxide (H(2)O(2)) and thiobarbituric acid (TBA)-reactive substance were studied. Desiccation tolerance of seeds and axes decreased with dehydration. Desiccation tolerance of axes was higher than that of seeds, and that of epicotyls was higher than radicles. Activities of SOD, CAT and DHAR of seeds increased during the initial phase of dehydration, and then decreased with further dehydration, whereas activities of APX and GR decreased with dehydration. These five enzyme activities of axes, however, increased during the initial phase of dehydration, and then decreased with further dehydration. The rate of superoxide radical production, and the contents of H(2)O(2) and TBA-reactive products of seeds and axes gradually increased with dehydration. These results show that the A. toxicaria seed is a typical recalcitrant seed. Loss of desiccation tolerance in seeds and axes was correlated with the increase in .O(2) (-) production rate, content of H(2)O(2) and TBA-reactive products, and the decline of antioxidant enzyme activities of seeds and axes.

  12. An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation.

    PubMed

    Roach, Thomas; Ivanova, Mariyana; Beckett, Richard P; Minibayeva, Farida V; Green, Ian; Pritchard, Hugh W; Kranner, Ilse

    2008-06-01

    Recalcitrant seeds are intolerant of desiccation and cannot be stored in conventional seed banks. Cryopreservation allows storage of the germplasm of some recalcitrant seeded species, but application to a wide range of plant diversity is still limited. The present work aimed at understanding the stresses that accompany the first steps in cryopreservation protocols, wounding and desiccation, both of which are likely to lead to the formation of reactive oxygen species (ROS). Extracellular ROS production was studied in isolated embryonic axes of sweet chestnut (Castanea sativa). Axis excision was accompanied by a burst of superoxide (O(2)(*-)), demonstrated by a colorimetric assay using epinephrine, electron spin resonance and staining with nitroblue tetrazolium. Superoxide was immediately produced on the cut surface after isolation of the axis from the seed, with an initial 'burst' in the first 5 min. Isolated axes subjected to variable levels of desiccation stress showed a decrease in viability and vigour and increased electrolyte leakage, indicative of impaired membrane integrity. The pattern of O(2)(*-) production showed a typical Gaussian pattern in response to increasing desiccation stress. The results indicate a complex interaction between excision and subsequent drying and are discussed with a view of manipulating ROS production for optimisation of cryopreservation protocols.

  13. Identification of two hydrophilins that contribute to the desiccation and freezing tolerance of yeast (Saccharomyces cerevisiae) cells.

    PubMed

    Dang, Nghiem X; Hincha, Dirk K

    2011-06-01

    Hydrophilins are a group of proteins that are present in all organisms and that have been defined as being highly hydrophilic and rich in glycine. They are assumed to play important roles in cellular dehydration tolerance. There are 12 genes in the yeast Saccharomyces cerevisiae that encode hydrophilins and most of these genes are stress responsive. However, the functional role of yeast hydrophilins, especially in desiccation and freezing tolerance, is largely unknown. Here, we selected six candidate hydrophilins for further analysis. All six proteins were predicted to be intrinsically disordered, i.e. to have no stable structure in solution. The contribution of these proteins to the desiccation and freezing tolerance of yeast was investigated in the respective knock-out strains. Only the disruption of the genes YJL144W and YMR175W (SIP18) resulted in significantly reduced desiccation tolerance, while none of the strains was affected in its freezing tolerance under our experimental conditions. Complementation experiments showed that yeast cells overexpressing these two genes were both more desiccation and freezing tolerant, confirming the role of these two hydrophilins in yeast dehydration stress tolerance.

  14. Antibiotic and Desiccation Resistance of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and Processing Environments

    PubMed Central

    Fei, Peng; Jiang, Yujun; Feng, Jing; Forsythe, Stephen J.; Li, Ran; Zhou, Yanhong; Man, Chaoxin

    2017-01-01

    This study evaluated the antimicrobial and desiccation resistance of Cronobacter sakazakii and Cronobacter malonaticus isolates from powdered infant formula and processing environments. The antimicrobial susceptibility tests showed that the 70 Cronobacter strains, representing 19 sequence types, were susceptible to the most of the antibiotics except for amoxicillin-clavulanate, ampicillin, and cefazolin. Furthermore, the growth of six C. sakazakii and two C. malonaticus strains from different sequence types (STs) in hyperosmotic media was measured. The growth of the two C. sakazakii strains (CE1 and CE13) from the neonatal pathovars ST4 and ST8, were significantly higher (p < 0.05) than that of other strains. C. malonaticus strain CM35 (ST201) was the slowest grower in all strains, and most could not grow in more than 8% NaCl solution. Also the survival of these strains under desiccation conditions was followed for 1 year. The viable count of Cronobacter spp. under desiccation conditions was reduced on average by 3.02 log cycles during 1 year, with CE13 (ST8) being the most desiccation resistant strain. These results will improve our understanding of the persistence of the two closely related species C. sakazakii and C. malonaticus which are of concern for neonatal and adult health. PMID:28303125

  15. Antibiotic and Desiccation Resistance of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and Processing Environments.

    PubMed

    Fei, Peng; Jiang, Yujun; Feng, Jing; Forsythe, Stephen J; Li, Ran; Zhou, Yanhong; Man, Chaoxin

    2017-01-01

    This study evaluated the antimicrobial and desiccation resistance of Cronobacter sakazakii and Cronobacter malonaticus isolates from powdered infant formula and processing environments. The antimicrobial susceptibility tests showed that the 70 Cronobacter strains, representing 19 sequence types, were susceptible to the most of the antibiotics except for amoxicillin-clavulanate, ampicillin, and cefazolin. Furthermore, the growth of six C. sakazakii and two C. malonaticus strains from different sequence types (STs) in hyperosmotic media was measured. The growth of the two C. sakazakii strains (CE1 and CE13) from the neonatal pathovars ST4 and ST8, were significantly higher (p < 0.05) than that of other strains. C. malonaticus strain CM35 (ST201) was the slowest grower in all strains, and most could not grow in more than 8% NaCl solution. Also the survival of these strains under desiccation conditions was followed for 1 year. The viable count of Cronobacter spp. under desiccation conditions was reduced on average by 3.02 log cycles during 1 year, with CE13 (ST8) being the most desiccation resistant strain. These results will improve our understanding of the persistence of the two closely related species C. sakazakii and C. malonaticus which are of concern for neonatal and adult health.

  16. Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration.

    PubMed

    Oliver, Melvin J; Jain, Renuka; Balbuena, Tiago S; Agrawal, Ganesh; Gasulla, Franscisco; Thelen, Jay J

    2011-07-01

    Drought and its affects on agricultural production is a serious issue facing global efforts to increase food supplies and ensure food security for the growing world population. Understanding how plants respond to dehydration is an important prerequisite for developing strategies for crop improvement in drought tolerance. This has proved to be a difficult task as all of the current research plant models do not tolerate cellular dehydration well and, like all crops, they succumb to the effects of a relatively small water deficit of -4MPa or less. For these reasons many researchers have started to investigate the usefulness of resurrection plants, plants that can survive extremes of dehydration to the point of desiccation, to provide answers as to how plants tolerate water loss. We have chosen to investigate the leaf proteome response of the desiccation-tolerant grass Sporobolus stapfianus Gandoger to dehydration to a water content that encompasses the initiation of the cellular protection response evident in these plants. We used a combination of two-dimensional Difference Gel Electrophoresis (2D-DIGE) and liquid chromatography-tandem-mass spectrometry to compare the proteomes of young leaves from hydrated plants to those dehydrated to approximately 30% relative water content. High-resolution 2D-DIGE revealed 96 significantly different proteins and 82 of these spots yielded high-quality protein assignments by tandem-mass spectrometry. Inferences from the bioinformatic annotations of these proteins revealed the possible involvement of protein kinase-based signaling cascades and brassinosteroid involvement in the regulation of the cellular protection response. Enzymes of glycolysis, both cytoplasmic and plastidic, as well as five enzymes of the Calvin cycle increased in abundance. However, the RuBisCO large subunit and associated proteins were reduced, indicating a loss of carbon fixation but a continued need to supply the necessary carbon skeletons for the

  17. Formation of Specialized Propagules Resistant to Desiccation and Cryopreservation in the Threatened Moss Ditrichum plumbicola (Ditrichales, Bryopsida)

    PubMed Central

    Rowntree, J. K.; Duckett, J. G.; Mortimer, C. L.; Ramsay, M. M.; Pressel, S.

    2007-01-01

    Background and Aims Successful cryopreservation of bryophytes is linked to intrinsic desiccation tolerance and survival can be enhanced by pre-treatment with abscisic acid (ABA) and sucrose. The pioneer moss Ditrichum plumbicola is naturally subjected to desiccation in the field but showed unexpectedly low survival of cryopreservation, as well as a poor response to pre-treatment. The effects of the cryopreservation protocol on protonemata of D. plumbicola were investigated in order to explore possible relationships between the production in vitro of cryopreservation-tolerant asexual propagules and the reproductive biology of D. plumbicola in nature. Methods Protonemata were prepared for cryopreservation using a four-step protocol involving encapsulation in sodium alginate, pre-treatment for 2 weeks with ABA and sucrose, desiccation for 6 h and rapid freezing in liquid nitrogen. After each stage, protonemata were prepared for light and electron microscopy and growth on standard medium was monitored. Further samples were prepared for light and electron microscopy at intervals over a 24-h period following removal from liquid nitrogen and re-hydration. Key Results Pre-treatment with ABA and sucrose caused dramatic changes to the protonemata. Growth was arrested and propagules induced with pronounced morphological and cytological changes. Most cells died, but those that survived were characterized by thick, deeply pigmented walls, numerous small vacuoles and lipid droplets in their cytoplasm. Desiccation and cryopreservation elicited no dramatic cytological changes. Cells returned to their pre-dehydration and cryopreservation state within 2 h of re-hydration and/or removal from liquid nitrogen. Regeneration was normal once the ABA/sucrose stimulus was removed. Conclusions The ABA/sucrose pre-treatment induced the formation of highly desiccation- and cryopreservation-tolerant propagules from the protonemata of D. plumbicola. This parallels behaviour in the wild, where

  18. Variation in Phospholipid Ester-Linked Fatty Acids and Carotenoids of Desiccated Nostoc commune (Cyanobacteria) from Different Geographic Locations

    PubMed Central

    Potts, Malcolm; Olie, Jaap J.; Nickels, Janet S.; Parsons, John; White, David C.

    1987-01-01

    Profiles of phospholipid fatty acids and carotenoids in desiccated Nostoc commune (cyanobacteria) collected from China, Federal Republic of Germany, and Antarctica and in axenic cultures of the desiccation-tolerant strains N. commune UTEX 584 and Hydrocoleum strain GOEI were analyzed. The phospholipid fatty acid contents of the three samples of desiccated Nostoc species were all similar, and the dominant compounds were 16:1ω7c, 16:0, 18:2ω6, 18:3ω3, and 18:1ω7c. In comparison with the field materials, N. commune UTEX 584 had a much higher ratio of 18:2ω6 to 18:3ω3 (5.36) and a significantly lower ratio of 18:1ω7c to 18:1ω9c (1.86). Compound 18:3 was present in large amounts in the samples of desiccated Nostoc species which had been subject, in situ, to repeated cycles of drying and rewetting, but represented only a small fraction of the total fatty acids of the strains grown in liquid culture. This finding is in contrast to the data obtained from studies on the effects of drought and water stress on higher plants. Field materials of Nostoc species contained, in contrast to the axenic strains, significant amounts of apocarotenoids and a P384 pigment which, upon reduction with NaBH4, yielded a mixture of a chlorophyll derivative and a compound with an absorption maximum of 451 nm. A clear distinction can be made between the carotenoid contents of the axenic cultures and the desiccated field materials. In the former, β-carotene and echinenone predominate; in the latter, canthaxanthin and the β-γ series of carotenoids are found. PMID:16347265

  19. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    SciTech Connect

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  20. Comparison of thylakoid structure and organization in sun and shade Haberlea rhodopensis populations under desiccation and rehydration.

    PubMed

    Sárvári, Eva; Mihailova, Gergana; Solti, Adám; Keresztes, Aron; Velitchkova, Maya; Georgieva, Katya

    2014-11-01

    The resurrection plant, Haberlea rhodopensis can survive nearly total desiccation only in its usual low irradiation environment. However, populations with similar capacity to recover were discovered recently in several sunny habitats. To reveal what kind of morphological, structural and thylakoid-level alterations play a role in the acclimation of this low-light adapted species to high-light environment and how do they contribute to the desiccation tolerance mechanisms, the structure of the photosynthetic apparatus, the most sensitive component of the chlorophyll-retaining resurrection plants, was analyzed by transmission electron microscopy, steady state low-temperature fluorescence and two-dimensional Blue-Native/SDS PAGE under desiccation and rehydration. In contrast to the great differences in the morphology of plants, the ultrastructure and the organization of thylakoids were surprisingly similar in well-hydrated shade and sun populations. A high ratio of photosystem (PS)I binding light harvesting complex (LHC)II, important in low- and fluctuating light environment, was characteristic to both shade and sun plant, and the ratios of the main chlorophyll-protein complexes were also similar. The intensive protective mechanisms, such as shading by steep leaf angle and accumulation of protective substances, probably reduced the light intensity at the chloroplast level. The significantly increased ratio of monomer to oligomer antennae in well-hydrated sun plants may be connected with the temporary high light exposure of chloroplasts. During desiccation, LHCII was removed from PSI and part of PSII supercomplexes disassembled with some loss of PSII core and LHCII. The different reorganization of antennae, possibly connected with different quenching mechanisms, involved an increased amount of monomers in shade plants but unchanged proportion of oligomers in sun plants. Desiccation-induced responses were more pronounced in sun plants which also had a greater capacity to

  1. A New Physiological Role for the DNA Molecule as a Protector against Drying Stress in Desiccation-Tolerant Microorganisms

    PubMed Central

    García-Fontana, Cristina; Narváez-Reinaldo, Juan J.; Castillo, Francisco; González-López, Jesús; Luque, Irene; Manzanera, Maximino

    2016-01-01

    The DNA molecule is associated with the role of encoding information required to produce RNA which is translated into proteins needed by the cell. This encoding involves information transmission to offspring or to other organisms by horizontal transfer. However, despite the abundance of this molecule in both the cell and the environment, its physiological role seems to be restricted mainly to that of a coding and inheritance molecule. In this paper, we report a new physiological role for the DNA molecule as involved in protection against desiccation, in addition to its well-established main information transfer and other recently reported functions such as bio-film formation in eDNA form. Desiccation-tolerant microorganisms such as Microbacterium sp. 3J1 significantly upregulate genes involved in DNA synthesis to produce DNA as part of their defensive mechanisms to protect protein structures and functions from drying according to RNA-seq analysis. We have observed the intracellular overproduction of DNA in two desiccation-tolerant microorganisms, Microbacterium sp. 3J1 and Arthrobacter siccitolerans 4J27, in response to desiccation signals. In addition, this conclusion can be made from our observations that synthetic DNA protects two proteins from drying and when part of a xeroprotectant preparation, DNA from various organisms including desiccation-sensitive species, does the same. Removal of DNA by nuclease treatment results in absence of this additive protective effect. We validated this role in biochemical and biophysical assays in proteins and occurs in trans even with short, single chains of synthetically produced DNA. PMID:28066383

  2. Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis.

    PubMed

    Fernández-Marín, Beatriz; Kranner, Ilse; San Sebastián, María; Artetxe, Unai; Laza, José Manuel; Vilas, José Luis; Pritchard, Hugh W; Nadajaran, Jayanthi; Míguez, Fátima; Becerril, José María; García-Plazaola, José Ignacio

    2013-07-01

    Desiccation-tolerant plants are able to withstand dehydration and resume normal metabolic functions upon rehydration. These plants can be dehydrated until their cytoplasm enters a 'glassy state' in which molecular mobility is severely reduced. In desiccation-tolerant seeds, longevity can be enhanced by drying and lowering storage temperature. In these conditions, they still deteriorate slowly, but it is not known if deteriorative processes include enzyme activity. The storage stability of photosynthetic organisms is less studied, and no reports are available on the glassy state in photosynthetic tissues. Here, the desiccation-tolerant moss Syntrichia ruralis was dehydrated at either 75% or <5% relative humidity, resulting in slow (SD) or rapid desiccation (RD), respectively, and different residual water content of the desiccated tissues. The molecular mobility within dry mosses was assessed through dynamic mechanical thermal analysis, showing that at room temperature only rapidly desiccated samples entered the glassy state, whereas slowly desiccated samples were in a 'rubbery' state. Violaxanthin cycle activity, accumulation of plastoglobules, and reorganization of thylakoids were observed upon SD, but not upon RD. Violaxanthin cycle activity critically depends on the activity of violaxanthin de-epoxidase (VDE). Hence, it is proposed that enzymatic activity occurred in the rubbery state (after SD), and that in the glassy state (after RD) no VDE activity was possible. Furthermore, evidence is provided that zeaxanthin has some role in recovery apparently independent of its role in non-photochemical quenching of chlorophyll fluorescence.

  3. Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis

    PubMed Central

    Fernández-Marín, Beatriz; Kranner, Ilse; Sebastián, María San; Artetxe, Unai; Laza, José Manuel; Vilas, José Luis; Pritchard, Hugh W.; Nadajaran, Jayanthi; Míguez, Fátima; Becerril, José María; García-Plazaola, José Ignacio

    2013-01-01

    Desiccation-tolerant plants are able to withstand dehydration and resume normal metabolic functions upon rehydration. These plants can be dehydrated until their cytoplasm enters a ‘glassy state’ in which molecular mobility is severely reduced. In desiccation-tolerant seeds, longevity can be enhanced by drying and lowering storage temperature. In these conditions, they still deteriorate slowly, but it is not known if deteriorative processes include enzyme activity. The storage stability of photosynthetic organisms is less studied, and no reports are available on the glassy state in photosynthetic tissues. Here, the desiccation-tolerant moss Syntrichia ruralis was dehydrated at either 75% or <5% relative humidity, resulting in slow (SD) or rapid desiccation (RD), respectively, and different residual water content of the desiccated tissues. The molecular mobility within dry mosses was assessed through dynamic mechanical thermal analysis, showing that at room temperature only rapidly desiccated samples entered the glassy state, whereas slowly desiccated samples were in a ‘rubbery’ state. Violaxanthin cycle activity, accumulation of plastoglobules, and reorganization of thylakoids were observed upon SD, but not upon RD. Violaxanthin cycle activity critically depends on the activity of violaxanthin de-epoxidase (VDE). Hence, it is proposed that enzymatic activity occurred in the rubbery state (after SD), and that in the glassy state (after RD) no VDE activity was possible. Furthermore, evidence is provided that zeaxanthin has some role in recovery apparently independent of its role in non-photochemical quenching of chlorophyll fluorescence. PMID:23761488

  4. Programming desiccation-tolerance: from plants to seeds to resurrection plants.

    PubMed

    Farrant, Jill M; Moore, John P

    2011-06-01

    Desiccation-tolerance (DT) evolved as the key solution to survival on land by the early algal ancestors of terrestrial plants. This 'first' DT involved utilizing rapidly mobilisable repair mechanisms and is still found today in mosses, such as Tortula ruralis, and ferns, such as Mohria caffrorum. The first seed plants lost vegetative DT while investing their seeds with tolerance mechanisms improving their survival in unfavourable environments. The mechanisms of DT in seeds are strongly connected to their developmentally regulated maturation programs. We propose that angiosperm resurrection plants acquired tolerance by re-activating their innate DT mechanisms in their vegetative tissues. Here we review the current hypotheses regarding the genetic evidence for the evolution of DT in resurrection plants. We also present strong evidence showing the activation of seed specific genetic elements in the vegetative tissues of resurrection plants.

  5. Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors.

    PubMed

    Gonzalez-Benito, M Elena; Prieto, Roberto-Moreno; Herradon, Esther; Martin, Carmen

    2002-01-01

    This study examines different factors included in the cryopreservation protocols for Quercus ilex and Q. suber embryonic axes. In vitro incubation temperature played an important role in the appropriate development of Q. ilex axes, as 15 degrees C was superior to 25 degrees C. Q. suber axes proved to be more sensitive to desiccation and cooling. Poor survival (35%) was observed when axes were included into cryovials and then in liquid nitrogen, and none when immersed in sub-cooled liquid nitrogen (-210 degrees C). Q. ilex axes showed poorly organised development in vitro (c. 50% of non-cooled axes showed shoot development). However, c. 80% survival was observed after cryopreservation (either in liquid nitrogen or sub-cooled liquid nitrogen at 0.34 g water / g dry weight), of which c. 15% showed shoot development.

  6. Dehydration rate determines the degree of membrane damage and desiccation tolerance in bryophytes.

    PubMed

    Cruz de Carvalho, Ricardo; Catalá, Myriam; Branquinho, Cristina; Marques da Silva, Jorge; Barreno, Eva

    2017-03-01

    Desiccation tolerant (DT) organisms are able to withstand an extended loss of body water and rapidly resume metabolism upon rehydration. This ability, however, is strongly dependent on a slow dehydration rate. Fast dehydration affects membrane integrity leading to intracellular solute leakage upon rehydration and thereby impairs metabolism recovery. We test the hypothesis that the increased cell membrane damage and membrane permeability observed under fast dehydration, compared with slow dehydration, is related to an increase in lipid peroxidation. Our results reject this hypothesis because following rehydration lipid peroxidation remains unaltered, a fact that could be due to the high increase of NO upon rehydration. However, in fast-dried samples we found a strong signal of red autofluorescence upon rehydration, which correlates with an increase in ROS production and with membrane leakage, particularly the case of phenolics. This could be used as a bioindicator of oxidative stress and membrane damage.

  7. Microbial community response to hydration-desiccation cycles in desert soil

    PubMed Central

    Šťovíček, Adam; Kim, Minsu; Or, Dani; Gillor, Osnat

    2017-01-01

    Life in desert soil is marked by episodic pulses of water and nutrients followed by long periods of drought. While the desert flora and fauna flourish after rainfall the response of soil microorganisms remains unclear and understudied. We provide the first systematic study of the role of soil aqueous habitat dynamics in shaping microbial community composition and diversity. Detailed monitoring of natural microbial communities after a rainfall event revealed a remarkable decrease in diversity and a significant transition in community composition that were gradually restored to pre-rainfall values during soil desiccation. Modelling results suggest a critical role for the fragmented aqueous habitat in maintaining microbial diversity under dry soil conditions and diversity loss with wetting events that increase connectivity among habitats. This interdisciplinary study provides new insights into wetting and drying processes that promote and restore the unparalleled microbial diversity found in soil. PMID:28383531

  8. Physiological changes in rhizobia after growth in peat extract may be related to improved desiccation tolerance.

    PubMed

    Casteriano, Andrea; Wilkes, Meredith A; Deaker, Rosalind

    2013-07-01

    Improved survival of peat-cultured rhizobia compared to survival of liquid-cultured cells has been attributed to cellular adaptations during solid-state fermentation in moist peat. We have observed improved desiccation tolerance of Rhizobium leguminosarum bv. trifolii TA1 and Bradyrhizobium japonicum CB1809 after aerobic growth in water extracts of peat. Survival of TA1 grown in crude peat extract was 18-fold greater than that of cells grown in a defined liquid medium but was diminished when cells were grown in different-sized colloidal fractions of peat extract. Survival of CB1809 was generally better when grown in crude peat extract than in the control but was not statistically significant (P > 0.05) and was strongly dependent on peat extract concentration. Accumulation of intracellular trehalose by both TA1 and CB1809 was higher after growth in peat extract than in the defined medium control. Cells grown in water extracts of peat exhibit morphological changes similar to those observed after growth in moist peat. Electron microscopy revealed thickened plasma membranes, with an electron-dense material occupying the periplasmic space in both TA1 and CB1809. Growth in peat extract also resulted in changes to polypeptide expression in both strains, and peptide analysis by liquid chromatography-mass spectrometry indicated increased expression of stress response proteins. Our results suggest that increased capacity for desiccation tolerance in rhizobia is multifactorial, involving the accumulation of trehalose together with increased expression of proteins involved in protection of the cell envelope, repair of DNA damage, oxidative stress responses, and maintenance of stability and integrity of proteins.

  9. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress.

    PubMed

    Herburger, Klaus; Karsten, Ulf; Holzinger, Andreas

    2016-09-01

    The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats.

  10. Mortality from desiccation contributes to a genotype–temperature interaction for cold survival in Drosophila melanogaster

    PubMed Central

    Kobey, Robert L.; Montooth, Kristi L.

    2013-01-01

    SUMMARY Survival at cold temperatures is a complex trait, primarily because of the fact that the physiological cause of injury may differ across degrees of cold exposure experienced within the lifetime of an ectothermic individual. In order to better understand how chill-sensitive insects experience and adapt to low temperatures, we investigated the physiological basis for cold survival across a range of temperature exposures from −4 to 6°C in five genetic lines of the fruit fly Drosophila melanogaster. Genetic effects on cold survival were temperature dependent and resulted in a significant genotype–temperature interaction for survival across cold temperature exposures that differ by as little as 2°C. We investigated desiccation as a potential mechanism of injury across these temperature exposures. Flies were dehydrated following exposures near 6°C, whereas flies were not dehydrated following exposures near −4°C. Furthermore, decreasing humidity during cold exposure decreased survival, and increasing humidity during cold exposure increased survival at 6°C, but not at −4°C. These results support the conclusion that in D. melanogaster there are multiple physiological mechanisms of cold-induced mortality across relatively small differences in temperature, and that desiccation contributes to mortality for exposures near 6°C but not for subzero temperatures. Because D. melanogaster has recently expanded its range from tropical to temperate latitudes, the complex physiologies underlying cold tolerance are likely to be important traits in the recent evolutionary history of this fruit fly. PMID:23197100

  11. Impact of protective agents and drying methods on desiccation tolerance of Salix nigra L. seeds.

    PubMed

    Santagapita, Patricio R; Ott Schneider, Helena; Agudelo-Laverde, Lina M; Buera, M Pilar

    2014-09-01

    Willow seeds are classified as orthodox, but they show some recalcitrant characteristics, as they lose viability in a few weeks at room temperature. The aim of this work was to improve the desiccation tolerance of willow seeds (Salix nigra L.), as a model of sensitive materials to dehydration, through imbibition in solutions and later vacuum (VD) or freeze-drying (FD). Imbibition was conducted with 45% w/v trehalose or polyethylene glycol 400 -PEG- or water prior to dehydration treatments. Water- and especially trehalose-imbibed seeds subjected to VD showed better germination capability with respect to the freeze-dried ones. Water crystallization was mainly responsible for the great loss of capability germination observed in water- or trehalose-imbibed seeds subjected to FD. PEG behavior was better when seeds were FD instead of VD. DSC thermograms of seeds allowed to identify two thermal transitions corresponding to lipids melting and to proteins denaturation. This last transition reveals information about proteins state/functionality. Dehydration of control and PEG- or water-imbibed seeds affected proteins functionality leading to lower germinability. In the case of trehalose-imbibed seeds subjected to VD, proteins maintained their native state along dehydration, and the seeds showed a great germination capacity for all the water content range. Germinated seeds showed higher luminosity (L*), greenness (a*) and yellowness (b*) values than not-germinated seeds independently of the employed agent. Present work reveals that the presence of adequate protective agents as well the dehydration method were the main critical factors involved in willow seed desiccation tolerance.

  12. Liposomes with diverse compositions are protected during desiccation by LEA proteins from Artemia franciscana and trehalose.

    PubMed

    Moore, Daniel S; Hansen, Richard; Hand, Steven C

    2016-01-01

    Intracellular accumulation of Late Embryogenesis Abundant (LEA) proteins and the disaccharide trehalose is associated with cellular desiccation tolerance in a number of animal species. Two LEA proteins from anhydrobiotic embryos of the brine shrimp Artemia franciscana were tested for the ability to protect liposomes of various compositions against desiccation-induced damage in the presence and absence of trehalose. Damage was assessed by carboxyfluorescein leakage after drying and rehydration. Further, using a cytoplasmic-localized (AfrLEA2) and a mitochondrial-targeted (AfrLEA3m) LEA protein allowed us to evaluate whether each may preferentially stabilize membranes of a particular lipid composition based on the protein's subcellular location. Both LEA proteins were able to offset damage during drying of liposomes that mimicked the lipid compositions of the inner mitochondrial membrane (with cardiolipin), outer mitochondrial membrane, and the inner leaflet of the plasma membrane. Thus liposome stabilization by AfrLEA3m or AfrLEA2 was not dependent on lipid composition, provided physiological amounts of bilayer and non-bilayer-forming lipids were present (liposomes with a non-biological composition of 100% phosphatidylcholine were not protected by either protein). Additive protection by LEA proteins plus trehalose was dependent on the lipid composition of the target membrane. Minimal additional damage occurred to liposomes stored at room temperature in the dried state for one week compared to liposomes rehydrated after 24h. Consistent with the ability to stabilize lipid bilayers, molecular modeling of the secondary structures for AfrLEA2 and AfrLEA3m revealed bands of charged amino acids similar to other amphipathic proteins that interact directly with membranes.

  13. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting.

    PubMed

    Barnard, Romain L; Osborne, Catherine A; Firestone, Mary K

    2013-11-01

    The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured. Although bacterial community composition differed among sites, all sites shared a similar response pattern of the present and potentially active bacterial community to dry-down and wet-up. In contrast, the fungal community was not detectably different among sites, and was largely unaffected by dry-down, showing marked resistance to dessication. The potentially active bacterial community changed significantly as summer dry-down progressed, then returned to pre-dry-down composition within several hours of rewetting, displaying spectacular resilience. Upon rewetting, transcript copies of bacterial rpoB genes increased consistently, reflecting rapid activity resumption. Acidobacteria and Actinobacteria were the most abundant phyla present and potentially active, and showed the largest changes in relative abundance. The relative increase (Actinobacteria) and decrease (Acidobacteria) with dry-down, and the reverse responses to rewetting reflected a differential response, which was conserved at the phylum level and consistent across sites. These contrasting desiccation-related bacterial life-strategies suggest that predicted changes in precipitation patterns may affect soil nutrient and carbon cycling by differentially impacting activity patterns of microbial communities.

  14. Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulcaricus.

    PubMed

    Santos, Mauricio I; Araujo-Andrade, Cuauhtémoc; Esparza-Ibarra, Edgar; Tymczyszyn, Elizabeth; Gómez-Zavaglia, Andrea

    2014-01-01

    Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was dehydrated on desiccators containing silica gel in the presence of 20% w/w of two types of galacto-oligosaccharides (GOS Biotempo and GOS Cup Oligo H-70®) and lactulose, until no changes in water desorption were detected. After rehydration, bacterial growth was monitored at 37°C by determining: (a) the absorbance at 600 nm and (b) the near infrared spectra (NIR). Principal component analysis (PCA) was then performed on the NIR spectra of samples dehydrated in all conditions. A multiparametric flow cytometry assay was carried out using carboxyfluorescein diacetate and propidium iodide probes to determine the relative composition of damaged, viable, and dead bacteria throughout the growth kinetics. The absorbance at 600 nm and the position of the second derivative band at ∼1370 nm were plotted against the time of incubation. The efficiency of the protectants was GOS Biotempo > GOS Cup Oligo H-70®  > lactulose. The better protectant capacity of GOS Biotempo was explained on the basis of the lower contribution of damaged cells immediately after rehydration (t = 0). PCA showed three groups along PC1, corresponding to the lag, exponential and stationary phases of growth, which explained 99% of the total variance. Along PC2, two groups were observed, corresponding to damaged or viable cells. The results obtained support the use of NIR to monitor the recovery of desiccated microorganisms in real time and without the need of chemical reagents. The use of GOS and lactulose as protectants in dehydration/rehydration processes was also supported.

  15. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    PubMed

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of (60)Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  16. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  17. Experimental and numerical investigation on the performance of an internally cooled dehumidifier

    NASA Astrophysics Data System (ADS)

    Turgut, Oguz Emrah; Çoban, Mustafa Turhan

    2016-12-01

    Liquid desiccant based dehumidifiers are important components of the air conditioning applications. Internally cooled dehumidifiers with liquid desiccants are deemed to be superior to the adiabatic types, thanks to the cooling medium which takes away the latent heat of vaporization occured when moist air contacts with liquid desiccant. However, its utilization in industrial applications is restricted due to the inherent corrosive characteristics of the liquid desiccants. In this study, an experimental chamber is built for epoxy coated plate fin type dehumidifier which is used in order to diminish the corrosive effect of the lithium chloride aqueous solution. Dehumidification effectiveness and moisture removal rate, two parameter indices, are adopted to measure the performance of the air conditioning system. The effect of inlet operating parameters on moisture removal rates is extensively analyzed. Two dimensional numerical model adapted from the conservation principles is utilized for obtainment of output parameters. Experimental results are compared with the numerical model and comparisons show that numerical outputs agrees with the experimental results. And also, dehumidification performance of lithium chloride and lithium bromide aqueous solutions are evaluated and compared against each other.

  18. Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal

    2012-02-01

    Storage of energy metabolites has been investigated in different sets of laboratory selected desiccation or starvation resistant lines but few studies have examined such changes in wild-caught populations of Drosophila melanogaster. In contrast to parallel selection of desiccation and starvation tolerance under laboratory selection experiments, opposite clines were observed in wild populations of D. melanogaster. If resistance to desiccation and starvation occurs in opposite directions under field conditions, we may expect a trade-off for energy metabolites but such correlated changes are largely unknown. We tested whether there is a trade-off for storage as well as actual utilization of carbohydrates (trehalose and glycogen), lipids and proteins in D. melanogaster populations collected from different altitudes (512-2500 m). For desiccation resistance, darker flies (>50% body melanization) store more body water content and endure greater loss of water (higher dehydration tolerance) as compared to lighter flies (<30% body melanization). Based on within population analysis, we found evidence for coadapted phenotypes i.e. darker flies store and actually utilize more carbohydrates to confer greater desiccation resistance. In contrast, higher starvation resistance in lighter flies is associated with storage and actual utilization of greater lipid amount. However, darker and lighter flies did not vary in the rate of utilization of carbohydrates under desiccation stress; and of lipids under starvation stress. Thus, we did not find support for the hypothesis that a lower rate of utilization of energy metabolites may contribute to greater stress resistance. Further, for increased desiccation resistance of darker flies, about two-third of total energy budget is provided by carbohydrates. By contrast, lighter flies derive about 66% of total energy content from lipids which sustain higher starvation tolerance. Our results support evolutionary trade-off for storage as well as

  19. Dormancy induction by summer temperatures and/or desiccation in imbibed seeds of trumpet daffodils Narcissus alcaracensis and N. longispathus (Amaryllidaceae).

    PubMed

    Herranz, J M; Copete, E; Copete, M A; Márquez, J; Ferrandis, P

    2017-01-01

    We analysed the effects of summer temperatures (28/14 °C) and/or desiccation (from 48% to 8% humidity) on imbibed Narcissus alcaracensis and N. longispathus seeds with an elongating embryo. In the N. alcaracensis seeds that overcame dormancy (embryo elongation = 27.14%), exposure to high temperatures induced secondary dormancy and reduced subsequent embryo growth. A further 3-month cold stratification (5 °C) was required to break secondary dormancy. Desiccation in early embryo growth stages (elongation = 11.42%) also reduced germination. Desiccation in the seeds in a more advanced growth stage (i.e. embryo elongation = 27.14%) induced secondary dormancy, which the further 3-month cold stratification did not overcome. When desiccation was preceded by high temperatures, seeds better overcame secondary dormancy (i.e. longer embryo elongation and seed germination). Treatments did not affect seed viability. In the N. longispathus seeds that overcame dormancy (embryo elongation = 59.21%), exposure to high temperatures induced secondary dormancy and they needed a further 1-month stratification at 15/4 °C + 2 months at 5 °C to reactivate the germination process. When embryo elongation was 42.10%, seed desiccation totally impeded subsequent germination. When embryo elongation reached 59.21%, desiccation induced secondary dormancy, which was not overcome by the above-described stratification treatment. When desiccation was preceded by high temperatures, seeds better overcame dormancy. Stress treatments killed 5-10% of seeds. This study suggests that the seeds of species with complex morphophysiological dormancy (MPD) levels are sensitive to desiccation in early embryo development stages, as opposed to the seeds of species with deep simple epicotyl MPD, which better tolerate water stress.

  20. Dentin sensitivity, odontoblasts and nerves under desiccated or infected experimental cavities. A clinical, light microscopic and ultrastructural investigation.

    PubMed

    Lilja, J; Nordenvall, K J; Bränström, M

    1982-01-01

    Cavities were prepared in 35 pairs of young human premolars. One tooth in each pair served as a control. In one Series the test cavity was desiccated with compressed air for one minute. LM and TEM examination of the dentin and the adjacent pulp revealed an extensive aspiration of odontoblasts. Nerve fibers had moved 0.1 to 0.2 mm outward in the tubules. It is suggested that a streching or disruption of the nerve had occurred during desiccation. In a second Series, the test cavity was infected for 1 to 2 weeks. No nerve fibers were seen in the dentinal tubules under the cavities, only cellular remnants and some microorganisms. Despite the absence of nerves the dentin in the bottom of the infected cavities was highly sensitive to stimulation. It was concluded that the nociceptive nerves present in the adjacent inflamed pulp may be terminals, mechanosensitive in nature and that they activated by rapid outward movements of the tubules fluid.

  1. Repellent activity of desiccant dusts and conidia of the entomopathogenic fungus Beauveria bassiana when tested against poultry red mites (Dermanyssus gallinae) in laboratory experiments.

    PubMed

    Kilpinen, Ole; Steenberg, Tove

    2016-11-01

    Desiccant dusts and entomopathogenic fungi have previously been found to hold potential against the poultry red mite, which is an important pest in egg production and notoriously difficult to control. Both control agents may cause repellence in other arthropods and potentially also influence control levels adversely when used against the poultry red mite. Five desiccant dust products with good efficacy against the poultry red mite Dermanyssus gallinae caused avoidance behavior in mites when tested in bioassays. The repellent activity was correlated with efficacy, which was found to depend on both dose and relative humidity (RH). However, one desiccant dust was significantly less repellent compared to other dusts with similar levels of efficacy. Further, dry conidia of the fungus Beauveria bassiana were also shown to be repellent to poultry red mites, both when applied on its own and when admixed with a low dose of the desiccant dust Diamol. The pick-up of desiccant dust particles and fungus conidia from treated surfaces by mites did not differ depending on RH, whereas the overall efficacy of the two control agents were significantly higher at 75 than at 85 % RH. In addition, the combined effect of the two substances was synergistic when tested in a bioassay where mites could choose whether to cross a treated surface. This is the first time a member of Acari has been shown to be repelled by desiccant dusts and by conidia of an entomopathogenic fungus.

  2. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae.

    PubMed

    Gantz, J D; Lee, Richard E

    2015-02-01

    Rapid cold-hardening (RCH) is a highly conserved response in insects that induces physiological changes within minutes to hours of exposure to low temperature and provides protection from chilling injury. Recently, a similar response, termed drought-induced RCH, was described following as little as 6h of desiccation, producing a loss of less than 10% of fresh mass. In this study, we investigated the limits and mechanisms of this response in larvae of the goldenrod gall fly Eurosta solidaginis (Diptera, Tephritidae). The cold-hardiness of larvae increased markedly after as few as 2h of desiccation and a loss of less than 1% fresh mass, as organismal survival increased from 8% to 41% following exposure to -18 °C. Tissue-level effects of desiccation were observed within 1h, as 87% of midgut cells from desiccated larvae remained viable following freezing compared to 57% of controls. We also demonstrated that drought-induced RCH occurs independently of neuroendocrine input, as midgut tissue desiccated ex vivo displayed improved freeze-tolerance relative to control tissue (78-11% survival, respectively). Finally, though there was an increase in hemolymph osmolality beyond the expected effects of the osmo-concentration of solutes during dehydration, we determined that this increase was not due to the synthesis of glycerol, glucose, sorbitol, or trehalose. Our results indicate that E. solidaginis larvae are extremely sensitive to desiccation, which is a triggering mechanism for one or more physiological pathways that confer enhanced freeze-tolerance.

  3. Complete inactivation of photosynthetic activity during desiccation and rapid recovery by rehydration in the aerial microalga Trentepohlia jolithus.

    PubMed

    Zhang, L; Li, Y; Liu, J

    2016-11-01

    Aerial microalgae are more exposed to harsh and rapidly changing environmental conditions, including desiccation and radiation. Under high light, aerial algae in the desiccated state would be highly subject to photodamage. Therefore, aerial algae need effective protective mechanisms to dissipate excess excitation energy. In this study, the changes in photosynthetic behaviors during desiccation and after rehydration in Trentepohlia jolithus were confirmed using chlorophyll a fluorescence (OJIP) transient, allowing determination of the photoprotection mechanisms of this aerial alga. The filaments of T. jolithus cells at 25% relative air humidity (RH) are significantly shrunken compared with those at 100% and 87% RH, decreasing the surface area for light absorption. At 25% RH, the shape and intensity of the OJIP transient disappeared, but recovered rapidly to the level at 100% RH after 5 s of rehydration. Compared with 100% RH, the maximum quantum yield of PSII (φPo ), phenomenological energy fluxes for absorption (ABS/CSm) and active PSII reaction centers (RCs) at 25% RH decreased significantly, the specific energy fluxes for absorption (ABS/RC) increased significantly, but the specific energy fluxes for trapping (TRo/RC) at 25% RH did not change. These parameters at 25% RH recovered rapidly to the level at 100% RH after 5 s of rehydration. These results suggest that the efficiency of PSII light absorption and activities of PSII RCs were reversibly down-regulated in desiccated T. jolithus, which may be a special adaptive mechanism for the survivability of aerial microalgae in habitats with rapidly changing water availability.

  4. Identification and characterization of a NaCl-responsive genetic locus involved in survival during desiccation in Sinorhizobium meliloti.

    PubMed

    Vriezen, Jan A C; de Bruijn, Frans J; Nüsslein, Klaus

    2013-09-01

    The Rhizobiaceae are a bacterial family of enormous agricultural importance due to the ability of its members to fix atmospheric nitrogen in an intimate relationship with plants. Their survival as naturally occurring soil bacteria in agricultural soils as well as popular seed inocula is affected directly by drought and salinity. Survival after desiccation in the presence of NaCl is enabled by underlying genetic mechanisms in the model organism Sinorhizobium meliloti 1021. Since salt stress parallels a loss in water activity, the identification of NaCl-responsive loci may identify loci involved in survival during desiccation. This approach enabled identification of the loci asnO and ngg by their reduced ability to grow on increased NaCl concentrations, likely due to their inability to produce the osmoprotectant N-acetylglutaminylglutamine (NAGGN). In addition, the mutant harboring ngg::Tn5luxAB was affected in its ability to survive desiccation and responded to osmotic stress. The desiccation sensitivity may have been due to secondary functions of Ngg (N-acetylglutaminylglutamine synthetase)-like cell wall metabolism as suggested by the presence of a d-alanine-d-alanine ligase (dAla-dAla) domain and by sensitivity of the mutant to β-lactam antibiotics. asnO::Tn5luxAB is expressed during the stationary phase under normal growth conditions. Amino acid sequence similarity to enzymes producing β-lactam inhibitors and increased resistance to β-lactam antibiotics may indicate that asnO is involved in the production of a β-lactam inhibitor.

  5. Field investigation of dried lakes in western United States as an analogue to desiccation fractures on Mars

    NASA Astrophysics Data System (ADS)

    El-Maarry, M. R.; Watters, W. A.; Yoldi, Z.; Pommerol, A.; Fischer, D.; Eggenberger, U.; Thomas, N.

    2015-12-01

    Potential Desiccation Polygons (PDPs), tens to hundreds of meters in size, have been observed in numerous regions on Mars, particularly in ancient (>3 Gyr old) terrains of inferred paleolacustrine/playa geologic setting, and in association with hydrous minerals such as smectites. Therefore, a better understanding of the conditions in which large desiccation polygons form could yield unique insight into the ancient climate on Mars. Many dried lakebeds/playas in western United States display large (>50 m wide) desiccation polygons, which we consider to be analogues for PDPs on Mars. Therefore, we have carried out fieldwork in seven of these dried lakes in San Bernardino and the Death Valley National Park regions complemented with laboratory and spectral analysis of collected samples. Our study shows that the investigated lacustrine/playa sediments have (a) a soil matrix containing ~40-75% clays and fine silt (by volume) where the clay minerals are dominated by illite/muscovite followed by smectite, (b) carbonaceous mineralogy with variable amounts of chloride and sulfate salts, and significantly, (c) roughly similar spectral signatures in the visible-near-infrared (VIS-NIR) range. We conclude that the development of large desiccation fractures is consistent with water table retreat. In addition, the comparison of the mineralogical to the spectral observations further suggests that remote sensing VIS-NIR spectroscopy has its limitations for detailed characterization of lacustrine/playa deposits. Finally, our results imply that the widespread distribution of PDPs on Mars indicates global or regional climatic transitions from wet conditions to more arid ones making them important candidate sites for future in situ missions.

  6. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects.

    PubMed

    Sinclair, Brent J; Ferguson, Laura V; Salehipour-shirazi, Golnaz; MacMillan, Heath A

    2013-10-01

    Multiple stressors, both abiotic and biotic, often are experienced simultaneously by organisms in nature. Responses to these stressors may share signaling pathways ("cross-talk") or protective mechanisms ("cross-tolerance"). Temperate and polar insects that must survive the winter experience low temperatures accompanied by additional abiotic stressors, such as low availability of water. Cold and desiccation have many similar effects at a cellular level, and we present evidence that the cellular mechanisms that protect against cold stress also protect against desiccation, and that the responses to cold and dehydration likely evolved as cross-tolerance. By contrast, there are several lines of evidence suggesting that low temperature stress elicits an upregulation of immune responses in insects (and vice versa). Because there is little mechanistic overlap between cold stress and immune stress at the cellular level, we suggest that this is cross-talk. Both cross-talk and cross-tolerance may be adaptive and likely evolved in response to synchronous stressors; however, we suggest that cross-talk and cross-tolerance may lead to different responses to changes in the timing and severity of multiple stress interactions in a changing world. We present a framework describing the potentially different responses of cross-tolerance and cross-talk to a changing environment and describe the nature of these impacts using interaction of cold-desiccation and cold-immunity in overwintering insects as an example.

  7. Temporal separation between CO2 assimilation and growth? Experimental and theoretical evidence from the desiccation-tolerant moss Syntrichia ruralis.

    PubMed

    Royles, Jessica; Ogée, Jérôme; Wingate, Lisa; Hodgson, Dominic A; Convey, Peter; Griffiths, Howard

    2013-03-01

    The extent of an external water layer around moss tissue influences CO(2) assimilation. Experiments on the desiccation-tolerant moss Syntrichia ruralis assessed the real-time dependence of the carbon and oxygen isotopic compositions of CO(2) and H(2)O in terms of moss water status and integrated isotope signals in cellulose. As external (capillary) water, and then mesophyll water, evaporated from moss tissue, assimilation rate, relative water content and the stable isotope composition of tissue water (δ(18)O(TW)), and the CO(2) and H(2)O fluxes, were analysed. After drying, carbon (δ(13)C(C)) and oxygen (δ(18)O(C)) cellulose compositions were determined. During desiccation, assimilation and (13)CO(2) discrimination increased to a maximum and then declined; δ(18)O(TW) increased progressively by 8‰, indicative of evaporative isotopic enrichment. Experimental and meteorological data were combined to predict tissue hydration dynamics over one growing season. Nonsteady-state model predictions of δ(18)O(TW) were consistent with instantaneous measurements. δ(13)C(C) values suggest that net assimilation occurs at 25% of maximum relative water content, while δ(18)O(C) data suggests that cellulose is synthesized during much higher relative water content conditions. This implies that carbon assimilation and cellulose synthesis (growth) may be temporally separated, with carbon reserves possibly contributing to desiccation tolerance and resumption of metabolism upon rehydration.

  8. The effects of temperature, desiccation, and body mass on the locomotion of the terrestrial isopod, Porcellio laevis.

    PubMed

    Dailey, Tara M; Claussen, Dennis L; Ladd, Gregory B; Buckner, Shizuka T

    2009-06-01

    Locomotion in terrestrial isopods is strongly influenced by body size and by abiotic factors. We determined the speeds of isopods of differing masses within a linear racetrack at temperatures ranging from 15 to 35 degrees C. We also predicted maximum speeds based on the Froude number concept as originally applied to vertebrates. In addition we used a circular thermal gradient to examine the temperature preferences of isopods, and we measured the effects of desiccation on locomotion. Measured speeds of the isopods progressively increased with temperature with an overall Q(10) of 1.64 and scaling exponents ranging from 0.38 to 0.63. The predicted maximum speeds were remarkably close to the measured speeds at the highest test temperature although the scaling exponents were closer to 0.15. The isopods did not exhibit a strong thermal preference within the gradient; however, they did generally avoid temperatures above 25 degrees C. Moderate desiccation had no apparent effect on locomotor performance, but there was a progressive decrease in speed once animals had lost more than 10% of their initial body mass. Though largely restricted to moist habitats, P. laevis can easily withstand short exposures to desiccating conditions, and they are capable of effective locomotion over a wide range of temperatures. Since they are nonconglobating, active escape appears to be their primary defense when threatened under exposed conditions. Although their maximum speeds may be limited both by temperature and by their inability to change gait, these speeds are clearly adequate for survival.

  9. Evidence of Tolerance to Silica-Based Desiccant Dusts in a Pyrethroid-Resistant Strain of Cimex lectularius (Hemiptera: Cimicidae)

    PubMed Central

    Lilly, David G.; Webb, Cameron E.; Doggett, Stephen L.

    2016-01-01

    Insecticide resistance in bed bugs (Cimex lectularius and Cimex hemipterus) has become widespread, which has necessitated the development of new IPM (Integrated Pest Management) strategies and products for the eradication of infestations. Two promising options are the diatomaceous earth and silica gel-based desiccant dusts, both of which induce dehydration and eventual death upon bed bugs exposed to these products. However, the impact of underlying mechanisms that confer resistance to insecticides, such as cuticle thickening, on the performance of these dusts has yet to be determined. In the prese