Science.gov

Sample records for desiccant systems utilizing

  1. Closed cycle desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Tchernev, D. I.; Emerson, D. T.

    1986-10-01

    The breadboard prototype of a closed cycle desiccant cooling system was designed, constructed and its performance tested. The system combines the sorption properties of solid zeolite/refrigerant vapor pairs with the principle of regenerative heat exchangers. Since solid zeolites are difficult to move in vacuum tight containers and in order to avoid intermittent operation, the desiccant is housed in two separate containers which are alternately heated and cooled by a heat transfer fluid. Using the principle of energy regeneration, the heat removed from the container being cooled is recycled in the container being heated. The breadboard system, with 90 pounds of zeolite, demonstrated a recycling efficiency of 75%, while the system capacity was 2,000 Btu/hr. This significantly increased the system thermal Coefficient of Performance (COP) to 1.1 at ARI conditions from the single container thermal COP of 0.4.

  2. Desiccant-based dehumidification system and method

    DOEpatents

    Fischer, John C.

    2004-06-22

    The present invention provides an apparatus for dehumidifying air supplied to an enclosed space by an air conditioning unit. The apparatus includes a partition separating the interior of the housing into a supply portion and a regeneration portion. The supply portion has an inlet for receiving supply air from the air conditioning unit and an outlet for supplying air to the enclosed space. A regeneration fan creates the regeneration air stream. The apparatus includes an active desiccant wheel positioned such that a portion of the wheel extends into the supply portion and a portion of the wheel extends into the regeneration portion, so that the wheel can rotate through the supply air stream and the regeneration air stream to dehumidify the supply air stream. A heater warms the regeneration air stream as necessary to regenerate the desiccant wheel. The invention also comprises a hybrid system that combines air conditioning and dehumidifying components into a single integrated unit.

  3. An effective desiccant system to regulate the humidity inside the chambers of the solid dosage forms.

    PubMed

    Lehto, Vesa-Pekka; Erling, Ida

    2007-11-01

    The most common way to protect moisture-sensitive pharmaceutical powders is to utilize protective packaging. However, the most convenient package materials are all permeable to water molecules to some extent and limited protection is normally achieved with this arrangement even though desiccants are employed. In the present study we introduce a novel system that can regulate the internal humidity of the containers used with solid dosage forms for a desired time at a requested level. Instead of the widely used solid adsorbents the system utilizes saturated salt solutions loaded in desiccant bags made of various polymer materials with appropriate permeation properties. By utilizing salt solutions the size of the desiccant bag can be further reduced. A wide variety of commonly used powder chambers and desiccant bags are tested, proving the effectiveness of the introduced system.

  4. Desiccant dehumidification and cooling systems assessment and analysis

    SciTech Connect

    Collier, R.K. Jr.

    1997-09-01

    The objective of this report is to provide a preliminary analysis of the principles, sensitivities, and potential for national energy savings of desiccant cooling and dehumidification systems. The report is divided into four sections. Section I deals with the maximum theoretical performance of ideal desiccant cooling systems. Section II looks at the performance effects of non-ideal behavior of system components. Section III examines the effects of outdoor air properties on desiccant cooling system performance. Section IV analyzes the applicability of desiccant cooling systems to reduce primary energy requirements for providing space conditioning in buildings. A basic desiccation process performs no useful work (cooling). That is, a desiccant material drying air is close to an isenthalpic process. Latent energy is merely converted to sensible energy. Only when heat exchange is applied to the desiccated air is any cooling accomplished. This characteristic is generic to all desiccant cycles and critical to understanding their operation. The analyses of Section I show that desiccant cooling cycles can theoretically achieve extremely high thermal CoP`s (>2). The general conclusion from Section II is that ventilation air processing is the most viable application for the solid desiccant equipment analyzed. The results from the seasonal simulations performed in Section III indicate that, generally, the seasonal performance of the desiccant system does not change significantly from that predicted for outdoor conditions. Results from Section IV show that all of the candidate desiccant systems can save energy relative to standard vapor-compression systems. The largest energy savings are achieved by the enthalpy exchange devise.

  5. Review of open-cycle desiccant air-conditioning concepts and systems

    SciTech Connect

    Wurm, J.

    1986-08-01

    This paper attempts to overview the development status of desiccant cooling. Over the past 30 years of progressively intensifying attention, this promising technology has become a domain of interest of many research agencies and manufacturing companies. As a result, the market potential for machines based on desiccant processes, particularly in comfort cooling and agricultural applications, is getting close to realization. One of the most important incentives of developing heat-activated, open-cycle desiccant cooling machines (air conditioners) has always been its potential simplicity. Such premise has been deceiving to a degree that in many instances has slowed the progress. However, the persistent analytical and material research brought some desiccant systems close to the marketplace. They provide attractive alternatives to consumers and utilities, offering particularly effective humidity and temperature control in cases of high fresh-air-makeup requirements. The control of bacteria, airborne particulates, as well as CO/sub 2/, combined with effective heating capability make them attractive for controlled-atmosphere agriculture. Finally, the capability of using low-temperature waste heat to drive the cycle becomes an important attribute of a desiccant concept, specifically when combined with a regular vapor-compression cooling machine in energy saving space-conditioning concepts. The presented assessment concludes that, particularly for specialized applications, machines based on open-cycle desiccant cooling processes are very close to playing an important role in the space-conditioning (including comfort control) marketplace.

  6. Solid desiccant dehumidification systems for residential applications

    NASA Astrophysics Data System (ADS)

    Marciniak, T. J.; Grolmes, M. A.; Epstein, M.

    1985-03-01

    It is shown that gas regenerated desiccant dehumidifiers (GRDD) can be economically superior to vapor compression units in the hot, humid climates of the southeast and south. Altough the first cost of a GRDD unit is significantly higher than a vapor compression dehumidifier, reduced operating costs and savings in the installed cost of smaller air-conditioning units can provide an economic means for effective humidity control. The economic benefits are dependent upon: (1) the number of hours of dehumidifier operation per year; and (2) electricity and natural gas cost differentials. Of secondary importance is the coefficient of performance (COP) of the units. Recommendations for additional research and development for a commercial GRDD product line are outlined.

  7. An economic analysis of a solar open cycle desiccant dehumidification system

    SciTech Connect

    Thornbloom, M.; Nimmo, B.

    1995-11-01

    Desiccants can be used to remove moisture from an air stream prior to sensible cooling. This may lead to a significant reduction in total air conditioning load. In addition, solar thermal energy can be used to regenerate the desiccant and thereby further increase the energy savings. This paper compares a solar-regenerated Open Cycle Liquid Desiccant Dehumidification System to a Conventional (vapor compression) System by comparing performance and costs. The liquid desiccant selected for the study is a solution of calcium chloride and water. The desiccant solution in the glazed collector/ regenerator comes in direct contact with the ambient air. The use of conventional materials and roofing construction methods reduces costs.

  8. Development of Desiccant System using Wakkanai Siliceous Shale

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Saya; Nagano, Katsunori; Nakamura, Makoto; Togawa, Junya; Kurokawa, Asami

    The aim of this study is to develop a desiccant system using Wakkanai siliceous shale. A honeycombed desiccant rotor containing this shale's powder and chlorides was made and evaluated. However a specific surface area and a pore volume were smaller than a silica-gel rotor or a zeolite rotor, the maximum amount of water adsorption was twice as other rotors. We have verified the function of this desiccant rotor concerning adsorption and desorption of moisture from the draft experiments. The rotor containing the shale could adsorb moisture stably in the cyclic test, and be regenerated by 40°C air under this experimental condition. This means that the exhaust heat from the heat pump can be used for regenerating rotor. Furthermore, the numerical simulation was carried out on the assumption that this rotor was used for a dehumidification for the residential air conditioning in Tokyo. This rotor could adsorb 37.1% moisture of the required dehumidification amount for the hottest day in 2008. When we employed a pre-cooling before dehumidification, the amount of adsorption increased to 66.2%.

  9. Photovoltaic-electrodialysis regeneration method for liquid desiccant cooling system

    SciTech Connect

    Li, Xiu-Wei; Zhang, Xiao-Song

    2009-12-15

    Liquid desiccant cooling system (LDCS) is an (a novel) air-conditioning system with good energy saving potential. Regenerator is the power centre for LDCS. Currently, the regeneration process is always fuelled by thermal energy. Nevertheless, this regeneration pattern has some disadvantages in that its performance will become poor when the surrounding atmosphere is of high humidity, and the heat provided for regeneration will be unfavourable to the following dehumidification process. To ameliorate that, a new regeneration method is proposed in this paper: a membrane regenerator is employed to regenerate the liquid desiccant in an electrodialysis way; while solar photovoltaic generator is adopted to supply electric power for this process. Analysis has been made about this new regeneration method and the result reveals: this new manner achieves good stability with the immunity against the adverse impact from the outside high humidity; its performance is much higher than that of the thermal regeneration manner while putting aside the low efficiency of the photovoltaic system. Besides, purified water can be obtained in company with the regeneration process. (author)

  10. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  11. Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pentomopathogenic nematodes may be more capable of controlling soil pests when they are harbored by desiccated cadavers. A small-scale system was developed from a modified crop seed planter to effectively deliver desiccated nematode-infected cadavers into the soil. The system mainly consists of a me...

  12. Competitive assessment of desiccant solar/gas systems for single family residences

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The solar/gas desiccant space conditioning system was compared with competing gas and electric technologies. Benefits and costs to the residential gas customer were evaluated, and practical recommendations regarding an appropriate R&D agenda to maximize the probability of successful development of an advanced desiccant system for that market were provided.

  13. Thermodynamic performance of a hybrid air cycle refrigeration system using a desiccant rotor

    NASA Astrophysics Data System (ADS)

    Hwang, Kyudae; Song, Chan Ho; Kim, Sung Ki; Saito, Kiyoshi; Kawai, Sunao

    2013-03-01

    Due to the concern on global warming, the demand for a system using natural refrigerant is increasing and many researches have been devoted to develop systems with natural refrigerants. Among natural refrigerant systems, an air cycle system has emerged as one of alternatives of Freon gas system due to environmentally friendly feature in spite of the inherent low efficiency. To overcome the technical barrier, this study proposed combination of multiple systems as a hybrid cycle to achieve higher efficiency of an air cycle system. The hybrid air cycle adopts a humidity control units such as an adsorber and a desorber to obtain the cooling effect from latent heat as well as sensible heat. To investigate the efficacy of the hybrid air cycle, the cooling performance of a hybrid air cycle is investigated analytically and experimentally. From the simulation result, it is found that COP of the hybrid air cycle is two times higher than that of the conventional air cycle. The experiments are conducted on the performance of the desiccant system according to the rotation speed in the system and displayed the feasibility of the key element in the hybrid air cycle system. From the results, it is shown that the system efficiency can be enhanced by utilization of the exhausted heat through the ambient heat exchanger with advantage of controlling the humidity by the desiccant rotor.

  14. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    SciTech Connect

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to

  15. Performance characteristics of a commercially available gas-fired desiccant system

    SciTech Connect

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    2000-07-01

    Performance characteristics of a commercially available desiccant dehumidification system are experimentally determined. The system under consideration utilizes a rotary desiccant wheel that is regenerated by a gas-fired hot water heating system. The constituents of the study are (1) evaluation of the issues critical to accurate data acquisition and (2) examination of the sensitivities of system performance parameters to perturbations in certain design set points. The effectiveness of a mixing device in providing a uniform-property supply air is demonstrated, and its importance is discussed from the standpoint of the uncertainties in the experimental data. Sample data are presented to demonstrate the temporal variation of the supply air properties, temperature and humidity ratio, when the regeneration heating system is operated by an on-off control scheme. Two design variables, regeneration-to-process air ratio and regeneration temperature, are allowed to deviate from their respective set points, while the responses of the system performance parameters (an overall coefficient of performance [COP] for dehumidification, a local COP, the moisture removal capacity, and the effective equivalent cooling capacity) are observed. The local COP is a means for evaluating the efficiency of the dehumidification process based on the net heat output of the regeneration heating system. The distinction between these definitions for COP is useful in identifying the regeneration heating system or the dehumidification process as the potential source of inefficiency in the overall system performance.

  16. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  17. Impact of ambient pressure on performance of desiccant cooling systems

    SciTech Connect

    Pesaran, A.A.

    1991-12-01

    The impact of ambient pressure on the performance of the ventilation cycle desiccant cooling system and its components was studied using computer simulations. The impact of ambient pressure depended on whether the system was designed for fixed-mass flow rate or fixed-volume flow rate operation. As ambient pressure decreased from 1.0 to 0.8 atm, the system thermal coefficient of performance increased by 8% for both fixed-mass and fixed-volume flow rate, the cooling capacity of the system (in kW) was decreased by 14% for the fixed-volume flow rate system and increased by 7% for the fixed-mass flow rate system, the electric power requirements for the system with fixed-volume flow rate did not change, and the electric power requirement for the fixed-mass flow rate system increased by 44%. The overall coefficient of performance increased up to 5% for the fixed-volume flow rate systems, and decreased up to 4% for the fixed-mass flow rate system. 16 refs.

  18. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  19. Gas-fired desiccant system for retail super center

    SciTech Connect

    Spears, J.W.; Judge, J.

    1997-10-01

    Concerns about indoor air quality have led to increasing outside air requirements that have prompted HVAC system designers to rethink how to handle outside air. The resulting increase in latent load can cause a variety of problems such as uncomfortably high humidity, mold and mildew, sweating ducts and higher energy cost. These problems occur not only in very humid climates but also in moderate climates during the swing season when the sensible load is low and the outside humidity is high. This combined with increasing concern for occupant comfort has led engineers to look for HVAC designs that provide good temperature and humidity control while still providing adequate quantities of outside air ventilation. This article describes the results of a one-year monitored evaluation of a gas-fired desiccant makeup air system used in a Wal-Mart super center. The system provides continuous fresh-air ventilation and independent temperature and humidity control. It also demonstrates the potential for energy savings and reduced first cost of the HVAC system. This approach, investigated by the owners` design team and independently monitored and verified in this Gas Research Institute-funded field study, has proven to be a cost-effective solution to meeting the new ventilation standard.

  20. Parametric analysis of variables that affect the performance of a desiccant dehumidification system

    SciTech Connect

    Vineyard, E.A.; Sand, J.R.; Durfee, D.J.

    2000-07-01

    Desiccant dehumidification systems, which are used to reduce the moisture (latent load) of the conditioned air in buildings, are typically specified on the basis of grain depression (pounds of water removed per hour) for a given volumetric flow rate of air at a specified dry-bulb or wet-bulb temperature. While grain depression gives some indication of the performance of the system, it does not adequately describe the efficiency of the moisture removal process. Several operating parameters, such as desiccant wheel speed, regeneration temperature, volumetric air flow rate, wheel thickness, sector angle, and desiccant loading, affect the ability of the desiccant dehumidification system to remove moisture. There are so many design parameters that influence the operation of a desiccant system that it is difficult to quantify the impact from the interactions on system performance. The purpose of this study is to investigate the impact of varying some of these operating parameters on the performance of a desiccant dehumidification system and to report the results using more quantitative measures, such as latent capacity and latent coefficient of performance (COP), that better describe the efficiency of the moisture removal process. The results will be used to improve the understanding of the operation of desiccant systems and to optimize their performance by changing certain operating parameters or improving components. Two desiccant loadings were tested: one at normal production level and the other with 25% more desiccant applied to the wheel. For both desiccant loadings, the latent capacity and COP increased as desiccant wheel speed increased. As expected, latent capacity improved significantly as air flow rates increased. It is noted, however, that the efficiency (latent COP) was quite sensitive to air flow rate and showed a maximum at a particular flow rate that best matched the other operating/design conditions of the system. Finally, higher regeneration temperatures

  1. A desiccant/steam-injected gas-turbine industrial cogeneration system

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

    1993-01-01

    An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

  2. A desiccant/steam-injected gas-turbine industrial cogeneration system

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

    1993-12-31

    An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

  3. A low-cost-solar liquid desiccant system for residential cooling

    NASA Astrophysics Data System (ADS)

    Ware, Joel D., III

    The use of liquid desiccants for dehumidification of heating, ventilation, and air conditioning (HVAC) process air is becoming a more promising concept as the drive for energy conservation continues to grow. Recently, liquid desiccant systems have been implemented on the commercial level in conjunction with evaporative coolers and have recorded energy savings upwards of 50%. The aim of this research is to test the potential liquid desiccant systems have on the residential level when paired with a conventional vapor compression cycle and to construct a system that would overcome some of its barriers to the residential market. A complete low-cost-solar liquid desiccant system was designed, constructed, and tested in the Off-Grid Zero Emissions Building (OGZEB) at the Florida State University. Key design characteristics include turbulent process air flow through the conditioner and airside heating in the regenerator. The system was tested in the two following ways: (1) for the energy savings while maintaining a constant temperature over a twenty four hour period and (2) for the energy savings over a single cooling cycle. The liquid desiccant system achieved a maximum energy savings of 38% over a complete day and 52% over a single cooling cycle. It was projected that the system has the potential to save 1064 kWh over the course of a year. When combined with a renewable source of heat for regeneration, liquid desiccant systems become very cost effective. The levelized cost of energy for the combination of the liquid desiccant system and solar thermal collectors was calculated to be 7.06 C/kWh with a payback period of 4.4 years. This research provides evidence of the technology's potential on the residential sector and suggests ways for it to become competitive in the market.

  4. Parametric study of the cyclic behaviour of a hygroscopic matrix in a desiccant airflow system

    NASA Astrophysics Data System (ADS)

    Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.

    2011-09-01

    The study of the transport phenomena in desiccant airflow systems has been addressed in numerous research works, some of them concerning combined processes of cooling, dehumidification and energy recovery. In this paper a detailed numerical model is used to simulate the behaviour of a parallel-plate channel, cyclically exposed to two airflows with different inlet conditions, the plate being composed by a substrate and a desiccant porous layer. The modelled channel is considered to be representative of a real channel of a hygroscopic matrix that is operating at steady state regime, like it occurs in desiccant or enthalpy rotors. The numerical results are treated in order to represent the global behaviour of the hygroscopic rotor under steady state conditions. Results of a parametric study are presented as maps of isovalues of the heat and mass transfer rates and of the outlet states of both airflows, considering channels of distinct wall thickness, of different thickness of the desiccant and the subtract layers, together with wide ranges of the rotation speed and of the wheel partition. The mapped results presented provide an overview of the operation characteristics of hygroscopic rotors, allowing a quick determination of the optimum range of values for relevant parameters, such as the rotation speed and the wheel partition. The model is thus an interesting tool for design and manufacture purposes of enthalpy and desiccant wheels.

  5. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  6. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  7. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  8. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong

    SciTech Connect

    Li, Yutong; Lu, Lin; Yang, Hongxing

    2010-12-15

    In this article, a transient simulation model and the EnergyPlus were used to study the energy performance and economical feasibility for integrating a solar liquid desiccant dehumidification system with a conventional vapor compression air-conditioning system for the weather condition of Hong Kong. The vapor compression system capacity in the solar assisted air-conditioning system can be reduced to 19 kW from original 28 kW of a conventional air-conditioning system as a case study due to the solar desiccant cooling. The economical performance of the solar desiccant dehumidification system is compared with that of the conventional air-conditioning system. The results show that the energy saving potentials due to incorporation of the solar desiccant dehumidification system in a traditional air-conditioning system is significant for the hot wet weather in Hong Kong due to higher COP resulted from higher supply chilled water temperature from chiller plants. The annual operation energy savings for the hybrid system is 6760 kWh and the payback period of the hybrid system is around 7 years. The study shows that the solar assisted air-conditioning is a viable technology for utilizations in subtropical areas. (author)

  9. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3

    SciTech Connect

    Fischer, J.

    2001-07-09

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations--a college dormitory and a research laboratory--during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systems were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pilot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air.

  10. Dehumidification Performance of Hybrid Type Humidity Control System Coupling a Desiccant Rotor in a Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Horibe, Akihiko; Takaki, Sadao; Inaba, Hideo; Haruki, Naoto

    Desiccant air-conditioning system is a promising technology because the exhaust heat can be effectively used in the future. We have reported the proposed system that combines a desiccant rotor with a vapor compression refrigerator. The confirmation experiment of stability and the performance was conducted with the experimental prototype. The result showed that it had the performance that was necessary for dehumidification driving in the summer and the humidification driving in the winter. In this report, we examined the influence on humidity controlling performance of the processing air temperature and humidity. As a result, we got high dehumidification efficiency and clarified the dehumidification characteristic in dehumidification driving in the summer. Dehumidification efficiency about 4.0 kg/kWh and COP of the system about 2.0 in summer driving mode were obtained.

  11. Analysis of a field-installed hybrid solar desiccant cooling system

    SciTech Connect

    West, M.K.; Iyer, S.V.

    1995-08-01

    Many hotels, restaurants, and supermarkets report problems with high humidity. Also, heating, ventilating, and air-conditioning (HVAC) humidity issues were found to be major contributors to energy inefficiency in these applications. Desiccant cooling systems, thermally regenerated with solar heat, waste heat, natural gas, or other thermal sources, are becoming a viable air-conditioning option to control humidity. The objective of this work is to monitor and assess the performance of a commercial hybrid solar solid desiccant air-conditioning system in a high-humidity restaurant application. Air is heated in the regeneration section by a heat recirculator coil, a condenser waste heat recovery coil, and a solar coil, accounting for roughly 27%, 24%, and 49% of the regeneration heat, respectively, when solar energy is available. The specific humidity change across the desiccant wheel varies from 4 to 90 gr/lb (0.57 to 12.86 g/kg) over the 108 F to 197 F (42.2 C to 91.7 C) regeneration temperature range. The coefficient of performance (COP), defined as the usable cooling capacity divided by the heat input, increased from 0.2 to 1.0 at the rate of 0.01 for every 10 F rise in the regeneration temperature. The results from this project provide much valued field data as well as a design future work.

  12. Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system

    PubMed Central

    Mitra, Jayeeta; Xu, Guanghui; Wang, Bo; Li, Meijing; Deng, Xin

    2013-01-01

    Vegetative tissues of Boea hygrometrica, a member of the Gesneriaceae family, can tolerate severe water loss to desiccated state and fully recover upon rehydration. Unlike many other so called “resurrection plants,” the detached leaves of B. hygrometrica also possess the same level of capacity for desiccation tolerance (DT) as that of whole plant. B. hygrometrica is distributed widely from the tropics to northern temperate regions in East Asia and grows vigorously in areas around limestone rocks, where dehydration occurs frequently, rapidly, and profoundly. The properties of detached B. hygrometrica leaves and relative ease of culture have made it a useful system to study the adaptive mechanisms of DT. Extensive studies have been conducted to identify the physiological, cellular, and molecular mechanisms underlying DT in the last decade, including specific responses to water stress, such as cell wall folding and pigment-protein complex stabilizing in desiccated leaves. In this review, the insight into the structural, physiological, and biochemical, and molecular alterations that accompany the acquisition of DT in B. hygrometrica is described. Finally a future perspective is proposed, with an emphasis on the emerging regulatory roles of retroelements and histone modifications in the acquisition of DT, and the need of establishment of genome sequence database and high throughput techniques to identify novel regulators for fully understanding of the matrix of DT. PMID:24273545

  13. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  14. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Watson, David W.; Wingard, Charles D.; West, Phillip W.; Cmarik, Gregory E.; Miller, Lee A.

    2016-01-01

    Advanced Exploration Systems are integral to crewed missions beyond low earth orbit and beyond the moon. The long-term goal is to reach Mars and return to Earth, but current air revitalization systems are not capable of extended operation within the mass, power, and volume requirements of such a mission. Two primary points are the mechanical stability of sorbent pellets and recovery of sorbent productivity after moisture exposure in the event of a leak. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds.

  15. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  16. Advanced desiccant materials research

    SciTech Connect

    Czanderna, A.W.; Thomas, T.M.

    1986-05-01

    The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

  17. Gas-fired desiccant dehumidification system field evaluation in a quick-service restaurant. Final report, October 1989

    SciTech Connect

    Koopman, R.N.; Marciniak, T.J.

    1989-10-01

    This report describes the results of a field evaluation of state-of-art desiccant dehumidification equipment in Houston, TX. The evaluation demonstrated that comfort control in a quick-service restaurant could be improved dramatically. However, available gas-fired desiccant dehumidification equipment is too expensive, inefficient, and unreliable to be considered for wide application in the restaurant industry. Results of a technical and economic analysis of four HVAC options in four U.S. cities indicated that improved comfort control could be achieved with only a modest increase in operating costs with an advanced system. This, coupled with the economic benefits achieved through lower indoor humidity such as improved crew performance and reduced maintenance costs, could justify the introduction of an advanced, integrated, HVAC system using desiccant technology which has an installed cost similar to current equipment.

  18. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  19. Hybrid Type Humidity Control System Coupling a Desiccant Rotor in a Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Horibe, Akihiko; Takaki, Sadao; Inaba, Hideo; Haruki, Naoto

    This paper describes a new hybrid humidity control system that combines a desiccant rotor with a vapor compression refrigerator. This rotor uses a kind of advanced sorbent and desorption at low temperature below 50°C is possible. Therefore the rotor can be recovered by exhaust heat of a condenser. Applying the new hybrid system, we installed an experimental prototype and investigated its performance. As a result, dehumidification can be achieved even if the absolute humidity of the processing air is less than 0.002 kg/kg'. This suggests that water can be taken out from the exhausting air to humidify the returning air in winter. Furthermore, dehumidification efficiency is 4.1kg/kWh, system COP1.8 for the processing air 30°C, 62%RH. That corresponds with the summer weather condition. If it is winter, the dehumidification efficiency is 1.9kg/kWh, system COP0.97 for the processing air 22°C, 50%RH.

  20. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  1. [Development of the new desiccator system for measuring the removal effect of the formaldehyde as an indoor air pollutant by the adsorbent].

    PubMed

    Tsutsumi, Hiromu; Mihara, Yuichi; Ogawa, Norihiro; Hoshino, Toru; Kumagai, Takeshi; Yokota, Katsushi

    2005-06-01

    The new desiccator system with measures for the prevention of dew drops and the processing of the formaldehyde (FA) gas discharged from the final desiccator was produced, and the FA removal rate for various adsorbents was examined. For the prevention of dew drops in the desiccator, a hygroscopic bottle containing silica gel was used next to the FA gas generator, and humidity was adjusted by adjusting the interval between the FA gas outlet (a) and the desiccant (b). The removal of the harmful FA gas discharged from the final desiccator (n=5) is an important in the environmental preservation. To solve this problem, the FA gas was passed through an oxidation bottle containing KMnO(4)-H(2)SO(4) solution, and it was possible to confirm the complete decomposition of the FA by increase of the CO(2) and elimination of the FA. For the determination of the FA concentration in the desiccator, 100 ml air was beforehand collected using a gas collector into a 100 ml vial bottle containing 2 ml distilled water, and 50 ml of air from each desiccator was injected using a glass syringe. This was left under a slightly reduced pressure for 20 min, and the FA concentration was determined by the AHMT method. The FA removal rate after 1 h for each adsorbent (0.5 g) was 50% or more for chitin, KIMCO and silica gel. The removal efficacy for activated carbon was higher for fine particles than for coarse particles, and a dose-response relationship was established.

  2. Relaxation nuclear magnetic resonance imaging (R-NMRI) of desiccation in M9787 silicone pads.

    SciTech Connect

    Alam, Todd M; Cherry, Brian Ray; Alam, Mary Kathleen

    2004-06-01

    The production and aging of silicone materials remains an important issue in the weapons stockpile due to their utilization in a wide variety of components and systems within the stockpile. Changes in the physical characteristics of silicone materials due to long term desiccation has been identified as one of the major aging effects observed in silicone pad components. Here we report relaxation nuclear magnetic resonance imaging (R-NMRI) spectroscopy characterization of the silica-filled and unfilled polydimethylsiloxane (PDMS) and polydiphenylsiloxane (PDPS) copolymer (M9787) silicone pads within desiccating environments. These studies were directed at providing additional details about the heterogeneity of the desiccation process. Uniform NMR spin-spin relaxation time (T2) images were observed across the pad thickness indicating that the drying process is approximately uniform, and that the desiccation of the M9787 silicone pad is not a H2O diffusion limited process. In a P2O5 desiccation environment, significant reduction of T2 was observed for the silica-filled and unfilled M9787 silicone pad for desiccation up to 225 days. A very small reduction in T2 was observed for the unfilled copolymer between 225 and 487 days. The increase in relative stiffness with desiccation was found to be higher for the unfilled copolymer. These R-NMRI results are correlated to local changes in the modulus of the material

  3. Desiccant contamination research: Report on the desiccant contamination test facility

    SciTech Connect

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  4. Options of desiccant cooling and dehumidification technology

    SciTech Connect

    Kweller, E. ); Mei, V.C.; Chen, F.C. )

    1991-01-01

    The recent CFC issue regarding the depleting of ozone layer and the greenhouse effect has become an impetus in research and development work for non-CFC air conditioning alternatives. Desiccant cooling is considered a good candidate for replacement of vapor compression chillers. A review of the present status of the desiccant based systems indicate that the technology has significantly advanced in recent years, and has become one of the most promising alternatives. New and better desiccants have been developed and novel cycles and more efficient system designs have been studied. As a result, the thermal coefficient of performance (COP) of desiccant cooling systems has been revised from around 0.6 to 1.0 or higher. These advances coupled with potentially reduced production cost could become very competitive with conventional systems in the near future. This study gives a review of the present status of desiccant materials, system designs, and computer models. 17 refs., 4 figs.

  5. A Field-Test of Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio; Hirose, Tsutomu

    A field-test of solar assisted desiccant evaporative cooling process has been carried out, which is a quite attractive cooling / dehumidification process considering various environmental problems caused by conventional electricity driven air conditioners. The process performance has been examined by means of temperature drop between outside air and supply air and COPs (COP value based on solar irradiation). This cooling performance was strongly influenced by solar irradiation and ambient air condition. Stable irradiation produced a higher regeneration temperature resulting higher dehumidifying performance. At one day with as table solar irradiation, the cooling process could produce cool supply air of 18.7°C against the ambient air of 30.1°C and averaged COP, was 0.41. On the other hand, unstable irradiation due to some clouds made the dehumidifying performance lower. However, decrease in the cooling performance was small compared to that obtained at the stable irradiation condition. This is due to buffering by thermal storage of the water circulating in solar collectors. Influence of ambient humidity on the cooling performance was rather serious. At higher humidity condition, the amount of dehumidified water became larger due to increase of effective adsorption capacity of the desiccant rotor. However, the temperature drop was decreased to 6.9°C. This behavior was mainly due to simultaneous increase of humidity and temperature in the dehumidified air. In this situation, an effective evaporation in the following water spray evaporative cooler did not occur.

  6. Testing of novel desiccant materials and dehumidifier matrices for desiccant cooling applications

    SciTech Connect

    Pesaran, A.A.; Bingham, C.E.

    1989-03-01

    This paper presents the results of testing of desiccant materials and dehumidifier matrices for desiccant cooling and dehumidification applications. In testing desiccant materials, we used a gravimetric technique to measure the moisture capacity of four desiccant materials. These materials were microporous silica gel powder, macroporous silica gel powder, polystyrene sulfonic acid sodium salt, and a silica-gel/epoxy composite. The microporous silica gel powder had the most desirable moisture capacity properties of the four materials tested for desiccant cooling applications. The polystyrene sulfonic acid sodium salt showed some promise. Our testing of dehumidifier matrices included measuring the pressure drop and heat- and mass-transfer rate characteristics of a silica-gel/corrugated dehumidifier matrix under conditions typical of desiccant cooling systems. The matrix is a section of a commercial dehumidifier. The transient dehumidification capacity of the matrix was calculated from the tests and compared with previously tested matrices. 9 refs., 10 figs., 2 tabs.

  7. Molecular Strategies of the Caenorhabditis elegans Dauer Larva to Survive Extreme Desiccation

    PubMed Central

    Erkut, Cihan; Vasilj, Andrej; Boland, Sebastian; Habermann, Bianca; Shevchenko, Andrej; Kurzchalia, Teymuras V.

    2013-01-01

    Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals. PMID:24324795

  8. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    SciTech Connect

    Fischer, J

    2005-12-21

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system

  9. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    SciTech Connect

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  10. Experiments on sorption hysteresis of desiccant materials

    SciTech Connect

    Pesaran, A.; Zangrando, F.

    1984-08-01

    Solid desiccant cooling systems take advantage of solar energy for air conditioning. The process involves passing air through a desiccant bed for drying and subsequent evaporative cooling to provide the air conditioning. The desiccant is then regenerated with hot air provided by a gas burner or solar collectors. This performance is limited by the capacity of the desiccant, its sorption properties, and the long-term stability of the desiccant material under cyclic operation conditions. Therefore, we have developed a versatile test facility to measure the sorption properties of candidate solid desiccant materials under dynamic conditions, under different geometrical configurations, and under a broad range of process air stream conditions, characteristic of desiccant dehumidifer operation. We identified a dependence of the sorption processes on air velocity and the test cell aspect ratio and the dynamic hysteresis between adsorption and desorption processes. These experiments were geared to provide data on the dynamic performance of silica gel in a parallel-passage configuration to prepare for tests with a rotary dehumidifier that will be conducted at SERI in late FY 1984. We also recommend improving the accuracy of the isotopic perturbation technique.

  11. Analysis of the adsorption process and of desiccant cooling systems: a pseudo- steady-state model for coupled heat and mass transfer. [DESSIM, DESSIM2, DESSIM4

    SciTech Connect

    Barlow, R.S.

    1982-12-01

    A computer model to simulate the adiabatic adsorption/desorption process is documented. Developed to predict the performance of desiccant cooling systems, the model has been validated through comparison with experimental data for single-blow adsorption and desorption. A literature review on adsorption analysis, detailed discussions of the adsorption process, and an initial assessment of the potential for performance improvement through advanced component development are included.

  12. Desiccant cooling: State-of-the-art assessment

    SciTech Connect

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  13. Desiccant cooling: State-of-the-art assessment

    SciTech Connect

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  14. How worms survive desiccation

    PubMed Central

    Erkut, Cihan; Penkov, Sider; Fahmy, Karim; Kurzchalia, Teymuras V.

    2012-01-01

    While life requires water, many organisms, known as anhydrobiotes, can survive in the absence of water for extended periods of time. Although discovered 300 years ago, we know very little about the fascinating phenomenon of anhydrobiosis. In this paper, we summarize our previous findings on the desiccation tolerance of the Caenorhabditis elegans dauer larva. A special emphasis is given to the role of trehalose in protecting membranes against desiccation. We also propose a simple mechanism for this process. PMID:24058825

  15. Energy-efficient regenerative liquid desiccant drying process

    DOEpatents

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  16. Electric utility system master plan

    SciTech Connect

    Erickson, O.M.

    1992-10-01

    This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

  17. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  18. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae.

    PubMed

    Tapia, Hugo; Young, Lindsey; Fox, Douglas; Bertozzi, Carolyn R; Koshland, Douglas

    2015-05-12

    Diverse organisms capable of surviving desiccation, termed anhydrobiotes, include species from bacteria, yeast, plants, and invertebrates. However, most organisms are sensitive to desiccation, likely due to an assortment of different stresses such as protein misfolding and aggregation, hyperosmotic stress, membrane fracturing, and changes in cell volume and shape leading to an overcrowded cytoplasm and metabolic arrest. The exact stress(es) that cause lethality in desiccation-sensitive organisms and how the lethal stresses are mitigated in desiccation-tolerant organisms remain poorly understood. The presence of trehalose in anhydrobiotes has been strongly correlated with desiccation tolerance. In the yeast Saccharomyces cerevisiae, trehalose is essential for survival after long-term desiccation. Here, we establish that the elevation of intracellular trehalose in dividing yeast by its import from the media converts yeast from extreme desiccation sensitivity to a high level of desiccation tolerance. This trehalose-induced tolerance is independent of utilization of trehalose as an energy source, de novo synthesis of other stress effectors, or the metabolic effects of trehalose biosynthetic intermediates, indicating that a chemical property of trehalose is directly responsible for desiccation tolerance. Finally, we demonstrate that elevated intracellular maltose can also make dividing yeast tolerant to short-term desiccation, indicating that other disaccharides have stress effector activity. However, trehalose is much more effective than maltose at conferring tolerance to long-term desiccation. The effectiveness and sufficiency of trehalose as an antagonizer of desiccation-induced damage in yeast emphasizes its potential to confer desiccation tolerance to otherwise sensitive organisms.

  19. An assessment of desiccant cooling and dehumidification technology

    SciTech Connect

    Mei, V.C.; Chen, F.C. ); Lavan, Z. ); Collier, R.K. Jr. ); Meckler, G. )

    1992-07-01

    Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

  20. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    SciTech Connect

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  1. The performance of a solar-regenerated open-cycle desiccant bed grain cooling system

    SciTech Connect

    Ismail, M.Z.; Angus, D.E. ); Thorpe, G.R. )

    1991-01-01

    The cooling of stored food grains suppresses the growth of populations of insect pests, inhibits spoilage by fungi and helps to preserve grain quality. In temperate and subtropical climates, grains may be effectively cooled by ventilating them with ambient air. In tropical climates, the enthalpy of the air must be reduced before it can be used for cooling grain. One method of achieving this is to isothermally reduce the humidity of the air. This paper describes experiments carried out on a simple-to-build solar-regenerated open-cycle grain cooling system. The device consists of a 5.85 m{sup 2} collector coupled with two beds of silica gel. Results from a series of experiments suggest that the device may be used to cool up to 200 tons of grain. The electrical power consumption of the device is of the order of 0.3 watt per ton of grain cooled, and the total electrical energy consumption is of the order of 0.7 kWh per ton of grain stored for a six-month period. The effectiveness of the device is a function of air flow rate and the enthalpy of ambient air, and results presented in this paper suggest that the solar cooling device is particularly effective in tropical climates.

  2. Active Desiccant-Based Preconditioning Market Analysis and Product Development

    SciTech Connect

    Fischer, J.

    2001-01-11

    The Phase 1 report (ORNL/Sub/94-SVO44/1), completed earlier in this program, involved a comprehensive field survey and market analysis comparing various specialized outdoor air handling units. This initial investigation included conventional cooling and reheat, conventional cooling with sensible recovery, total energy recovery systems (passive desiccant technology) and various active desiccant systems. The report concluded that several markets do promise a significant sales opportunity for a Climate Changer-based active desiccant system offering. (Climate Changer is a registered trademark of Trane Company.) This initial market analysis defined the wants and needs of the end customers (design engineers and building owners), which, along with subsequent information included in this report, have been used to guide the determination of the most promising active desiccant system configurations. This Phase 2 report begins with a summary of a more thorough investigation of those specific markets identified as most promising for active desiccant systems. Table 1 estimates the annual sales potential for a cost-effective product line of active desiccant systems, such as that built from Climate Changer modules. The Product Development Strategy section describes the active desiccant system configurations chosen to best fit the needs of the marketplace while minimizing system options. Key design objectives based on market research are listed in this report for these active desiccant systems. Corresponding performance goals for the dehumidification wheel required to meet the overall system design objectives are also defined. The Performance Modeling section describes the strategy used by SEMCO to design the dehumidification wheels integrated into the prototype systems currently being tested as part of the U.S. Department of Energy's Advanced Desiccant Technology Program. Actual performance data from wheel testing was used to revise the system performance and energy analysis

  3. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect

    Sand, J R; Grossman, G; Rice, C K; Fairchild, P D; Gross, I L

    1994-01-01

    Desiccant air-conditioning systems can be used as alternatives for conventional air-conditioning equipment in any commercial or residential building. Recent breakthroughs in desiccant materials technology and the creation of new markets by Indoor Air Quality issues make desiccant-based air-conditioning equipment practical for many space-conditioning applications.

  4. CELSS nutrition system utilizing snails.

    PubMed

    Midorikawa, Y; Fujii, T; Ohira, A; Nitta, K

    1993-08-01

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants--rice, soybean, lettuce and strawberry--were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the above mentioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  5. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  6. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOEpatents

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  7. Study of the application of solar chemical dehumidification system to wind tunnel facilities of NASA Lewis Research Center at Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Energy utilization and cost payback analyses were prepared for proposed modifications. A 50,000 CFM standard compact packaged solid desiccant dehumidifier utilizing high temperature hot water (HTHW) for desiccant regeneration was added. The HTHW is generated by utilizing solar energy and is stored in a storage tank. A steam boiler is provided as a back-up for the solar system. A 50,000 CFM standard compact package solid desiccant dehumidifier utilizing high temperature hot water (HTHW) for desiccant regeneration was added. The HTHW is generated by utilizing a steam boiler and a heat exchanger and is stored in a storage tank.

  8. Desiccation tolerance of prokaryotes.

    PubMed Central

    Potts, M

    1994-01-01

    The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One

  9. Experimental evaluation of commercial desiccant dehumidifier wheels

    SciTech Connect

    Slayzak, S.J.; Pesaran, A.A.; Hancock, C.E.

    1996-01-01

    The National Renewable Energy Laboratory is currently characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The data are being obtained in our HVAC Equipment Test Facility in accordance with the proposed ASHRAE test standard. The experimental data will provide industry and end users with independent performance evaluation and the United States Department of Energy and NREL with the information necessary to assess advances in the energy savings potential of the technology. This paper proposes several figures of merit for evaluating performance. The results of these tests indicate that dehumidification capacity performance parameters can be correlated to process inlet air relative humidity.

  10. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    SciTech Connect

    Fischer, J

    2003-01-23

    The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system

  11. Desiccant cooling using unglazed transpired solar collectors

    SciTech Connect

    Pesaran, A.A. ); Wipke, K. )

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

  12. Utility integration issues of residential photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yamayee, Z. A.; Peschon, J.

    1981-05-01

    The economic aspects of residential solar photovoltaic (SPV) systems are discussed from the electric utility perspective. The following schemes of SPV integration are considered: (1) SPV with complete utility buy-back and backup; (2) SPV with utility system storage; and (3) SPV with residential storage. Estimates are made of the price that the utility might pay for SPV owner's surplus energy compared to what it would charge for deficits by evaluating economic savings of SVP to the utility.

  13. Composite desiccant structure

    DOEpatents

    Fraioli, Anthony V.; Schertz, William W.

    1987-01-01

    A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  14. Composite desiccant structure

    DOEpatents

    Fraioli, A.V.; Schertz, W.W.

    1984-06-06

    This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  15. Experimental study on performance of celdek packed liquid desiccant dehumidifier

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Asati, A. K.

    2016-09-01

    Dehumidifier is the main component of liquid desiccant dehumidification system. Effect of the inlet parameters on various outlet parameters of the dehumidifier is studied in the present paper with structured pads as packing material and calcium chloride as liquid desiccant to process the air. The outlet parameters are change in specific humidity, mass transfer coefficient, moisture removal rate, air temperature, solution temperature, effectiveness and the corresponding inlet process parameters; mass flow rate of air, temperature of air, temperature and flow rate of desiccant solution. It is observed that mass transfer coefficient and moisture removal rate increase with increasing mass flow rate of the air and desiccant while these parameters decrease with increasing temperature of air and desiccant solution. Dehumidifier effectiveness gets increased with increasing solution flow rate. The present investigations are compared with the results of the researchers in the past.

  16. Degradation of desiccants upon contamination: An experimental study

    SciTech Connect

    Pesaran, A A

    1990-11-01

    Experiments were conducted to quantify the effects of thermal cycling and exposure to contamination on solid desiccant materials that may be used in desiccant cooling systems. A test apparatus was used to thermally cycle several desiccant samples and expose them to ambient or contaminated humid air. The source of contamination was cigarette smoke. Six different solid desiccants were tested: two types of silica gel, activated alumina, activated carbon, molecular sieves, and lithium chloride. The exposed desiccant samples were removed after 0.5, 1, 2, 4, or 11 months of exposure and their moisture capacities were measured. Other tests were conducted to characterize pollutants deposited on the exposed samples or to evaluate impact of exposure on internal structure of the samples. Compared to fresh samples, the capacity loss due to thermal cycling with ambient air was generally 10% to 30%. The capacity loss due to only cigarette smoke was generally between 20% to 50%. 7 refs., 8 figs., 3 tabs.

  17. Solar-regenerated desiccant dehumidification

    NASA Astrophysics Data System (ADS)

    Haves, P.

    1982-02-01

    The dehumidification requirements of buildings are discussed, and the most suitable desiccant material is identified as silica gel. Several conceptual designs for solar regenerated desiccant dehumidifiers using a solid desiccant are described. The construction and operation of a laboratory experiment to determine the performance of a packed bed of silica gel at low flow rate is described. The experimental results are presented and compared to the predictions of a simple computer model which assumes local equilibrium between the desiccant and the airstream. The simulations used to predict desiccant bed performance and the integration of the desiccant bed simulation with a simulation of the thermal performance of a passively cooled residence are described. Results for an average July day are presented. Sizing relationships derived from the simulation are described, and an economic analysis and recommendations for further work are presented.

  18. Low-Cost "Vacuum Desiccator"

    NASA Astrophysics Data System (ADS)

    Sweet, Frederick

    2004-10-01

    Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. The device can be used for enclosing small vials or bottles and also jars that are too large to be placed in conventional glass or plastic desiccators. This shrink-wrapping device is proposed for producing "vacuum desiccators" in large undergraduate chemistry laboratories or in graduate and research laboratories.

  19. Characterization of a starch based desiccant wheel dehumidifier

    NASA Astrophysics Data System (ADS)

    Beery, Kyle Edward

    Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.

  20. Polymers as advanced materials for desiccant applications, 1988

    SciTech Connect

    Czanderna, A.W.; Neidlinger, H.H.

    1990-09-01

    This report documents work to identify a next-generation, low-cost material with which solar energy or heat from another low-cost energy source can be used for regenerating the water vapor sorption activity of the desiccant. The objective of the work is to determine how the desired sorption performance of advanced desiccant materials can be predicted by understanding the role of the material modifications and material surfaces. The work concentrates on solid materials to be used for desiccant cooling systems and which process water vapor in an atmosphere to produce cooling. The work involved preparing modifications of polystyrene sulfonic acid sodium salt, synthesizing a hydrogel, and evaluating the sorption performances of these and similar commercially available polymeric materials; all materials were studied for their potential application in solid commercial desiccant cooling systems. Background information is also provided on desiccant cooling systems and the role of a desiccant material within such a system, and it includes the use of polymers as desiccant materials. 31 refs., 16 figs., 5 tabs.

  1. Polymers as advanced materials for desiccant applications

    SciTech Connect

    Czanderna, A.W.

    1990-12-01

    This research is concerned with solid materials used as desiccants for desiccant cooling systems (DCSs) that process water vapor in an atmosphere to produce cooling. Background information includes an introduction to DCSs and the role of the desiccant as a system component. The water vapor sorption performance criteria used for screening the modified polymers prepared include the water sorption capacity from 5% to 80% relative humidity (R.H.), isotherm shape, and rate of adsorption and desorption. Measurements are presented for the sorption performance of modified polymeric advanced desiccant materials with the quartz crystal microbalance. Isotherms of polystyrene sulfonic acid (PSSA) taken over a 5-month period show that the material has a dramatic loss in capacity and that the isotherm shape is time dependent. The adsorption and desorption kinetics for PSSA and all the ionic salts of it studied are easily fast enough for commercial DCS applications with a wheel rotation speed of 6 min per revolution. Future activities for the project are addressed, and a 5-year summary of the project is included as Appendix A. 34 refs., 20 figs., 3 tabs.

  2. Desiccant Dehumidification Wheel Test Guide

    SciTech Connect

    Slayzak, S.J.; Ryan, J.P.

    2001-01-25

    NREL's Desiccant Dehumidification Wheel Test Guide intends to facilitate execution of the new standards by certification labs and manufacturers. The Test Guide is a product of more than 20 years of experience gained at NREL's desiccant research facilities. It details practical experimental experience with rotary mass exchangers in relation to the standards and aims to develop testing expertise in industry quickly and cost effectively.

  3. Light duty utility arm baseline system description

    SciTech Connect

    Kiebel, G.R.

    1996-02-01

    This document describes the configuration of the Light Duty Utility Arm (LDUA) Baseline System. The baseline system is the initial configuration of the LDUA system that will be qualified for hot deployment in Hanford single shell underground storage tanks.

  4. Desiccation-Induced Volumetric Shrinkage of Compacted Metakaolin-Treated Black Cotton Soil for a Hydraulic Barriers System

    NASA Astrophysics Data System (ADS)

    Moses, George; Peter, Oriola F. O.; Osinubi, Kolawole J.

    2016-03-01

    Black cotton soil treated with up to 24% metakaolin (MCL) content was prepared by molding water contents of -2, 0, 2, 4 and 6% of optimum moisture content (OMC) and compacted with British Standard Light (BSL) and West African Standard (WAS) or `Intermediate' energies. The specimens were extruded from the compaction molds and allowed to air dry in a laboratory in order to assess the effect of desiccation-induced shrinkage on the compacted mix for use as a hydraulic barrier in a waste containment application. The results recorded show that the volumetric shrinkage strain (VSS) values were large within the first 10 days of drying; the VSS values increased with a higher molding of the water content, relative to the OMC. The VSS generally increased with a higher initial degree of saturation for the two compactive efforts, irrespective of the level of MCL treatment. Generally, the VSS decreased with an increasing MCL content. Only specimens treated with a minimum 20% MCL content and compacted with the WAS energy satisfied the regulatory maximum VSS of 4% for use as a hydraulic barrier.

  5. The earthquake vulnerability of a utility system

    SciTech Connect

    Burhenn, T.A.; Hawkins, H.G.; Ostrom, D.K.; Richau, E.M. )

    1992-01-01

    This paper describes a method to assess the earthquake vulnerability of a utility system and presents an example application. First, the seismic hazard of the system is modeled. Next, the damage and operational disruption to the facilities are estimated. The approach described herein formulates the problem so that the best documented and judgmental information on the earthquake performance of a utility's components can be utilized. finally, the activities and estimates of the time necessary to restore the system to different levels of service are developed. This method of analysis provides a realistic picture of the resiliency of utility service, not just vulnerabilities of various types of equipment.

  6. Review of Desiccant Dehumidification Technology

    SciTech Connect

    Pesaran, A. A.

    1994-10-01

    This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the I990s.

  7. Distinguishing biogeochemical processes influencing phosphorus dynamics in oxidizing and desiccating mud deposits from a freshwater wetland system

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Wassen, Martin J.; Griffioen, Jasper

    2015-04-01

    Focus and aim: Currently, lake Markermeer (680 km2) provides poor environmental conditions for the development of flora and fauna due to a thick fluffy layer that prevails at the lake's bed. To improve the conditions in the lake, large wetlands will be built from this fluffy layer, possibly mixed with sand or with the underlying Southern Sea deposit. The aim of this study is to distinguish biogeochemical processes influencing phosphorus dynamics in porewater during oxidation and desiccation of mud deposits from this lake. We focus on three important aspects that potentially influence these processes: granulometry, sediment type and modification by plants. Material and methods: A greenhouse experiment was conducted with three types of sediment that potentially will function as building material for the islands: fluffy mud (FM), sandy mud (SM) and Southern Sea deposit (SSD). Reed (Phragmites australis) was planted in half of the pots to distinguish influence by plants. For six months, the porewater-, soil- and plant quality was monitored to determine important biogeochemical processes. Variables measured from the porewater include: Cl-, NO2-, NO3-, PO43- and SO42- (IC); Ca, Fe, K, Mn, Na, P, Si, Sr (ICP-OES); as well as Fe2+, pH, alkalinity and EC. A phosphorus fractionation was carried out on the sediment to determine the phosphorus pools and the major elements of the sediments were determined following an aqua regia destruction using ICP-OES. Plant tissue was analysed for N, P, K and C content as well as the above- and belowground biomass. Results and discussion: It was found that sulfate production was the most important process influencing phosphorus availability in these soils. Due to oxidation processes in the mud, sulfate (SO42-) concentrations rose drastically in porewater from 100 ppm at the beginning of the experiment to well over 2000 ppm at the end of the experiment. This effect was strongest in SSD soils, likely due to higher presence of pyrite that gets

  8. Maximizing Resource Utilization in Video Streaming Systems

    ERIC Educational Resources Information Center

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  9. High slot utilization systems for electric machines

    DOEpatents

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  10. A desiccant dehumidifier for electric vehicle heating

    SciTech Connect

    Aceves, S.M.; Smith, J.R.

    1996-09-01

    Vehicle heating requires a substantial amount of energy. Engines in conventional cars produce enough waste heat to provide comfort heating and defogging/defrosting, even under very extreme conditions. Electric vehicles (EVs), however, generate little waste heat. Using battery energy for heating may consume a substantial fraction of the energy storage capacity, reducing the vehicle range, which is one of the most important parameters in determining EV acceptability. Water vapor generated by the vehicle passengers is in large part responsible for the high heating loads existing in vehicles. In cold climates, the generation of water vapor inside the car may result in water condensation on the windows, diminishing visibility. Two strategies are commonly used to avoid condensation on windows: windows are kept warm, and a large amount of ambient air is introduced in the vehicle. Either strategy results in a substantial heating load. These strategies are often used in combination, and a trade-off exists between them. If window temperature is decreased, ventilation rate has to be increased. Reducing the ventilation rate requires an increase of the temperature of the windows to prevent condensation. An alternative solution is a desiccant dehumidifier, which adsorbs water vapor generated by the passengers. Window temperatures and ventilation rates can then be reduced, resulting in a substantially lower heating load. This paper explores the dehumidifier heating concept. The first part shows the energy savings that could be obtained by using this technology. The second part specifies the required characteristics and dimensions of the system. The results indicate that the desiccant system can reduce the steady-state heating load by 60% or more under typical conditions. The reduction in heating load is such that waste heat may be enough to provide the required heating under most ambient conditions. Desiccant system dimensions and weight appear reasonable for packaging in an EV.

  11. Overview of waste heat utilization systems

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  12. Desiccant outdoor air preconditioners maximize heat recovery ventilation potentials

    SciTech Connect

    Meckler, M.

    1995-12-31

    Microorganisms are well protected indoors by the moisture surrounding them if the relative humidity is above 70%. They can cause many acute diseases, infections, and allergies. Humidity also has an effect on air cleanliness and causes the building structure and its contents to deteriorate. Therefore, controlling humidity is a very important factor to human health and comfort and the structural longevity of a building. To date, a great deal of research has been done, and is continuing, in the use of both solid and liquid desiccants. This paper introduces a desiccant-assisted system that combines dehumidification and mechanical refrigeration by means of a desiccant preconditioning module that can serve two or more conventional air-conditioning units. It will be demonstrated that the proposed system, also having indirect evaporative cooling within the preconditioning module, can reduce energy consumption and provide significant cost savings, independent humidity and temperature control, and, therefore, improved indoor air quality and enhanced occupant comfort.

  13. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  14. Insect capa neuropeptides impact desiccation and cold tolerance.

    PubMed

    Terhzaz, Selim; Teets, Nicholas M; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G; Nachman, Ronald J; Dow, Julian A T; Denlinger, David L; Davies, Shireen-A

    2015-03-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.

  15. Smart data acquisition system for utilities metering

    NASA Astrophysics Data System (ADS)

    Ileana, I.; Risteiu, M.; Tulbure, A.; Rusu, M.

    2009-01-01

    The paper approaches the task of automatically reading and recognition of registered data on the utility meters of the users and is a part of a more complex project of our team concerning the remote data acquisition from industrial processes. A huge amount of utility meters in our country is of mechanical type without remote acquiring facilities and as an intermediate solution we propose an intelligent optical acquisition system which will store the read values in desktop and mobile devices. The main requirements of such a system are: portability, data reading accuracy, fast processing and energy independence. The paper analyses several solutions (including Artificial Neural Networks approach) tested by our team and present the experimental results and our conclusions.

  16. Workshop on electric utility systems modeling

    SciTech Connect

    Prasad, R.; Kittur, R.; Walker, R.; Marten, D.

    1992-01-01

    The primary objective of this workshop is to obtain a clear understanding of the various details involved in developing electric utility models from public-domain information. The workshop is aimed at providing a thorough tutorial and a hands-on exercise in developing a set of relational databases that can be used to analyze the behavior of selected power systems. Because of several modeling details that can be utility-specific, issues that are common among all systems need to be addressed. These common issues include: Data collection from public-domain sources; generation of connectivity diagrams; generation/load/tie-line MW assignments; parameter database creation (.DAT); development of one-line database (.OL); development of geographic database (.GEO); error-checking between databases; development of power-flow data files (.DCD and IEE); and power-flow analysis

  17. Workshop on electric utility systems modeling

    SciTech Connect

    Prasad, R.; Kittur, R.; Walker, R.; Marten, D.

    1992-12-31

    The primary objective of this workshop is to obtain a clear understanding of the various details involved in developing electric utility models from public-domain information. The workshop is aimed at providing a thorough tutorial and a hands-on exercise in developing a set of relational databases that can be used to analyze the behavior of selected power systems. Because of several modeling details that can be utility-specific, issues that are common among all systems need to be addressed. These common issues include: Data collection from public-domain sources; generation of connectivity diagrams; generation/load/tie-line MW assignments; parameter database creation (.DAT); development of one-line database (.OL); development of geographic database (.GEO); error-checking between databases; development of power-flow data files (.DCD and IEE); and power-flow analysis

  18. Measurement uncertainty of adsorption testing of desiccant materials

    SciTech Connect

    Bingham, C E; Pesaran, A A

    1988-12-01

    The technique of measurement uncertainty analysis as described in the current ANSI/ASME standard is applied to the testing of desiccant materials in SERI`s Sorption Test Facility. This paper estimates the elemental precision and systematic errors in these tests and propagates them separately to obtain the resulting uncertainty of the test parameters, including relative humidity ({plus_minus}.03) and sorption capacity ({plus_minus}.002 g/g). Errors generated by instrument calibration, data acquisition, and data reduction are considered. Measurement parameters that would improve the uncertainty of the results are identified. Using the uncertainty in the moisture capacity of a desiccant, the design engineer can estimate the uncertainty in performance of a dehumidifier for desiccant cooling systems with confidence. 6 refs., 2 figs., 8 tabs.

  19. Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi.

    PubMed

    Rizzo, Angela M; Negroni, Manuela; Altiero, Tiziana; Montorfano, Gigliola; Corsetto, Paola; Berselli, Patrizia; Berra, Bruno; Guidetti, Roberto; Rebecchi, Lorena

    2010-06-01

    Reactive oxygen species (ROS) are formed in all aerobic organisms, potentially leading to oxidative damage of all biological molecules. A number of defence mechanisms have developed to protect the organism from attack by ROS. Desiccation tolerance is correlated with an increase in the antioxidant potential in several organisms, but the regulation of the antioxidant defence system is complex and its role in desiccation-tolerant organisms is not yet firmly established. To determine if anhydrobiotic tardigrades have an antioxidant defence system, capable of counteracting ROS, we compared the activity of several antioxidant enzymes, the fatty acid composition and Heat shock protein expression in two physiological states (desiccated vs. hydrated) of the tardigrade Paramacrobiotus richtersi. In hydrated tardigrades, superoxide dismutase and catalase show comparable activities, while in desiccated specimens the activity of superoxide dismutase increases. Both glutathione peroxidase and glutathione were induced by desiccation. The percentage of fatty acid composition of polyunsaturated fatty acids and the amount of thiobarbituric acid reactive substances are higher in desiccated animals than in hydrated ones. Lastly, desiccated tardigrades did not differ significantly from the hydrated ones in the relative levels of Hsp70 and Hsp90. These results indicate that the possession of antioxidant metabolism could represent a crucial strategy to avoid damages during desiccation in anhydrobiotic tardigrades.

  20. Adaptable formations utilizing heterogeneous unmanned systems

    NASA Astrophysics Data System (ADS)

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  1. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  2. Microbiological quality of desiccated coconut.

    PubMed Central

    Kinderlerer, J. L.; Clark, R. A.

    1986-01-01

    A microbial survey of Sri Lankan desiccated coconut has been made on material purchased in supermarkets in Sheffield or on material obtained directly from the processing company. The total viable count (TVC) was reduced by spoilage and pasteurization from 10(4)/g to 10(3)/g. Most samples contained low levels of coagulase-positive Staphylococcus aureus suggesting that this commodity had been handled during production. One focus of contamination with Aspergillus flavus was found for each 8.34 g of desiccated coconut (mean contamination). The number of bacteria and moulds in spoiled coconut was significantly lower than that in coconut obtained from the processor or purchased from retail outlets. It is suggested that the accumulation of free fatty acids, aliphatic methyl ketones and secondary alcohols produced during fungal spoilage has had a bactericidal and fungicidal effect. The use of microbial specifications for foods is questioned in situations where there is evidence of microbial spoilage having taken place. PMID:3081627

  3. Microbiological quality of desiccated coconut.

    PubMed

    Kinderlerer, J L; Clark, R A

    1986-02-01

    A microbial survey of Sri Lankan desiccated coconut has been made on material purchased in supermarkets in Sheffield or on material obtained directly from the processing company. The total viable count (TVC) was reduced by spoilage and pasteurization from 10(4)/g to 10(3)/g. Most samples contained low levels of coagulase-positive Staphylococcus aureus suggesting that this commodity had been handled during production. One focus of contamination with Aspergillus flavus was found for each 8.34 g of desiccated coconut (mean contamination). The number of bacteria and moulds in spoiled coconut was significantly lower than that in coconut obtained from the processor or purchased from retail outlets. It is suggested that the accumulation of free fatty acids, aliphatic methyl ketones and secondary alcohols produced during fungal spoilage has had a bactericidal and fungicidal effect. The use of microbial specifications for foods is questioned in situations where there is evidence of microbial spoilage having taken place.

  4. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    SciTech Connect

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  5. Utilizing Internet Technologies in Observatory Control Systems

    NASA Astrophysics Data System (ADS)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  6. Controlling rotary desiccant wheels for dehumidification and cooling

    SciTech Connect

    Crooks, K.W.; Banks, N.J.

    1996-12-31

    With greater focus on indoor air quality (IAQ) and ventilation, humidity control within spaces such as office buildings, hotels, schools, ice-skating rinks, nursing homes, and operating rooms has become paramount during the past decade. Control of relative humidity (RH) has been linked to increased comfort and the improved health of building occupants. The desiccant wheel process can be utilized in these applications to provide increased dehumidification while introducing minimal additional control parameters, often at lower cost.

  7. Desiccant-Based Preconditioning Market Analysis

    SciTech Connect

    Fischer, J.

    2001-01-11

    A number of important conclusions can be drawn as a result of this broad, first-phase market evaluation. The more important conclusions include the following: (1) A very significant market opportunity will exist for specialized outdoor air-handling units (SOAHUs) as more construction and renovation projects are designed to incorporate the recommendations made by the ASHRAE 62-1989 standard. Based on this investigation, the total potential market is currently $725,000,000 annually (see Table 6, Sect. 3). Based on the market evaluations completed, it is estimated that approximately $398,000,000 (55%) of this total market could be served by DBC systems if they were made cost-effective through mass production. Approximately $306,000,000 (42%) of the total can be served by a non-regenerated, desiccant-based total recovery approach, based on the information provided by this investigation. Approximately $92,000,000 (13%) can be served by a regenerated desiccant-based cooling approach (see Table 7, Sect. 3). (2) A projection of the market selling price of various desiccant-based SOAHU systems was prepared using prices provided by Trane for central-station, air-handling modules currently manufactured. The wheel-component pricing was added to these components by SEMCO. This resulted in projected pricing for these systems that is significantly less than that currently offered by custom suppliers (see Table 4, Sect. 2). Estimated payback periods for all SOAHU approaches were quite short when compared with conventional over-cooling and reheat systems. Actual paybacks may vary significantly depending on site-specific considerations. (3) In comparing cost vs benefit of each SOAHU approach, it is critical that the total system design be evaluated. For example, the cost premium of a DBC system is very significant when compared to a conventional air handling system, yet the reduced chiller, boiler, cooling tower, and other expense often equals or exceeds this premium, resulting in a

  8. Hyperspectral imaging utility for transportation systems

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver

    2015-03-01

    The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

  9. Optimizing Resource Utilization in Grid Batch Systems

    NASA Astrophysics Data System (ADS)

    Gellrich, Andreas

    2012-12-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  10. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  11. Systems utilization enhancement data system overview. [for PCM telemetry

    NASA Technical Reports Server (NTRS)

    Schmid, J. Andre

    1987-01-01

    An overview of the Systems Utilization Enhancement (SUE) data system is presented. The subsystems are described, including the telemetry processor, communications processor, digital maintenance and control subsystem, link console subsystem, digital recording subsystem, communications processor SUE system interface unit, data quality monitoring subsystem, analog parameter and event recorder, status SUE system interface unit, and portable maintenance subsystem. Hardware design considerations are discussed, including architecture, coupling, commonality, modularity. reliability, fault-tolerance, and growth.

  12. Characterization of the desiccation of wheat kernels by multivariate imaging.

    PubMed

    Jaillais, B; Perrin, E; Mangavel, C; Bertrand, D

    2011-06-01

    Variations in the quality of wheat kernels can be an important problem in the cereal industry. In particular, desiccation conditions play an essential role in both the technological characteristics of the kernel and its ability to sprout. In planta desiccation constitutes a key stage in the determinism of the functional properties of seeds. The impact of desiccation on the endosperm texture of seed is presented in this work. A simple imaging system had previously been developed to acquire multivariate images to characterize the heterogeneity of food materials. A special algorithm for the use under principal component analysis (PCA) was developed to process the acquired multivariate images. Wheat grains were collected at physiological maturity, and were subjected to two types of drying conditions that induced different kinetics of water loss. A data set containing 24 images (dimensioned 702 × 524 pixels) corresponding to the different desiccation stages of wheat kernels was acquired at different wavelengths and then analyzed. A comparison of the images of kernel sections highlighted changes in kernel texture as a function of their drying conditions. Slow drying led to a floury texture, whereas fast drying caused a glassy texture. The automated imaging system thus developed is sufficiently rapid and economical to enable the characterization in large collections of grain texture as a function of time and water content.

  13. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  14. Integrating Solar PV in Utility System Operations

    SciTech Connect

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  15. Monitoring Vadose Zone Desiccation with Geophysical Methods

    SciTech Connect

    Truex, Michael J.; Johnson, Timothy C.; Strickland, Christopher E.; Peterson, John E.; Hubbard, Susan S.

    2013-05-01

    Soil desiccation was recently field tested as a potential vadose zone remediation technology. Desiccation removes water from the vadose zone and significantly decreases the aqueous-phase permeability of the desiccated zone, thereby decreasing movement of moisture and contaminants. The 2-D and 3-D distribution of moisture content reduction over time provides valuable information for desiccation operations and for determining when treatment goals have been reached. This type of information can be obtained through use of geophysical methods. Neutron moisture logging, cross-hole electrical resistivity tomography, and cross-hole ground penetrating radar approaches were evaluated with respect to their ability to provide effective spatial and temporal monitoring of desiccation during a treatability study conducted in the vadose zone of the DOE Hanford Site in WA.

  16. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  17. Properties of a new liquid desiccant solution - Lithium chloride and calcium chloride mixture

    SciTech Connect

    Ertas, A.; Anderson, E.E.; Kiris, I. )

    1992-09-01

    Desiccants, broadly classified as solid and liquid desiccants, have the property of extracting and retaining moisture from air brought into contact with them. By using either type, moisture in the air is removed and the resulting dry air can be used for air-conditioning or drying purposes. Because of its properties, lithium chloride is the most stable liquid desiccant and has a large dehydration concentration (30% to 45%), but its cost is relatively high ($9.00-13.00 per kg). It is expected that lithium chloride will reduce the relative humidity to as low as 15%. Calcium chloride is the cheapest (45 cents per kg) and most readily available desiccant, but it has the disadvantage of being unstable depending on the air inlet conditions and the concentration of the desiccant in the solution. To stabilize calcium chloride and to decrease the high cost of lithium chloride, the two can be mixed in different weight combinations. The main objective of this research is to measure the physical properties of different combinations of this mixture such as density, viscosity, and vapor pressure which are necessary for analysis of heat and mass transfer in a packed tower desiccant-air contact system. The solubility of this new liquid desiccant under certain temperature-concentrations will also be studied.

  18. Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria.

    PubMed

    Fleming, Erich D; Castenholz, Richard W

    2007-06-01

    Scytonemin is an ultraviolet radiation (UVR)-screening compound synthesized by some sheathed cyanobacteria exposed to high solar and sky radiation. It is primarily produced in response to UVA radiation, but certain environmental stresses can enhance synthesis. This study focuses on the effects of periodic desiccation on scytonemin synthesis in three desiccation-tolerant cyanobacterial strains, Nostoc punctiforme PCC 73102, Chroococcidiopsis CCMEE 5056 and Chroococcidiopsis CCMEE 246. Nostoc punctiforme and Chroococcidiopsis CCMEE 5056 exposed to UVA radiation produced more concentrated scytonemin screens when experiencing periodic desiccation (i.e. 1 day desiccated for every 2 days hydrated) than when continuously hydrated. A more concentrated scytonemin screen would reduce the amount of UVR damage accrued when cells are desiccated and metabolically inactive. This might allow the cyanobacteria to allocate more energy to systems other than UVR damage repair during rehydration, which would facilitate recovery. The scytonemin screen is extremely stable, remaining largely intact in the sheaths of desiccated N. punctiforme even when continuously exposed to UVA radiation for about 2 months. In contrast to the above findings, scytonemin synthesis in Chroococcidiopsis CCMEE 246, a strain that produces scytonemin constitutively under low visible light (no UVA), was partially inhibited by periodic desiccation.

  19. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Bilton, David T.; Arribas, Paula

    2016-01-01

    Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin. PMID:27635346

  20. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Bilton, David T.; Arribas, Paula

    2016-01-01

    Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin.

  1. Implications of the lack of desiccation tolerance in recalcitrant seeds

    PubMed Central

    Berjak, Patricia; Pammenter, Norman W.

    2013-01-01

    A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic “switch-off” and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a “fact” of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are

  2. Desiccation response of mammalian cells: anhydrosignaling.

    PubMed

    Huang, Zebo; Tunnacliffe, Alan

    2007-01-01

    Dehydration through evaporation, or air drying, is expected to have both similarities and differences to osmostress. Both stresses involve water loss, but the degree of dehydration will ultimately be more severe during desiccation. Despite the severity of desiccation stress, there are examples of organisms that can survive almost complete water loss, including resurrection plants and plant seeds, certain invertebrates among the nematodes, brine shrimps, tardigrades and bdelloid rotifers, and many microorganisms, including bakers' yeast. During desiccation, these organisms enter a state of suspended animation, a process known as anhydrobiosis ("life without water"). For other organisms, desiccation is lethal, but there is considerable interest in using what is known about anhydrobiosis to confer desiccation tolerance on sensitive cell types, such as mammalian cells. Success with this approach, which we have termed anhydrobiotic engineering, will require a more complete knowledge of the mechanisms of desiccation tolerance and the sensing and response of nontolerant organisms to extreme dehydration. With this goal in mind, we have attempted to characterize the response of human tissue culture cells to desiccation and to compare this response with osmotic upshift. This chapter describes some of the methods used to begin to uncover the response to evaporative water loss in human cell cultures.

  3. Water isotopes in desiccating lichens.

    PubMed

    Hartard, Britta; Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-12-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition.

  4. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  5. Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC

    SciTech Connect

    Fischer, J

    2002-04-17

    This report summarizes a research and development program that produced a stand-alone active desiccant module (ADM) that can be easily integrated with new or existing packaged cooling equipment. The program also produced a fully integrated hybrid system, combining the active desiccant section with a conventional direct expansion air-conditioning unit, that resulted in a compact, low-cost, energy-efficient end product. Based upon the results of this investigation, both systems were determined to be highly viable products for commercialization. Major challenges--including wheel development, compact packaging, regeneration burner development, control optimization, and low-cost design--were all successfully addressed by the final prototypes produced and tested as part of this program. Extensive laboratory testing was completed in the SEMCO laboratory for each of the two ADM system approaches. This testing confirmed the performance of the ADM systems to be attractive compared with that of alternate approaches currently used to precondition outdoor air, where a return air path is not readily available for passive desiccant recovery or where first cost is the primary design criterion. Photographs, schematics, and performance maps are provided for the ADM systems that were developed; and many of the control advantages are discussed. Based upon the positive results of this research and development program, field tests are under way for fully instrumented pilot installations of ADM systems in both a hotel/motel and a restaurant.

  6. [Desiccation cracking of soil body: a review].

    PubMed

    Pei, Yin-Ge; Xu, Ze-Min; Zhang, Jia-Ming

    2012-04-01

    Desiccation cracking of soil body is a complex physical process, which can affect the strength, stability, and permeability of soil body, and involve in several disciplines such as soil science, agricultural science, engineering geology, and environmental science. This paper introduced the significances of the study on the desiccation cracking of soil body, reviewed the related theoretical and applied researches and the quantitative analysis of crack morphology, and discussed the deficiencies in the research fields, research contents, and research methods. The future research directions about the desiccation cracking of soil body were pointed out.

  7. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    SciTech Connect

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  8. Cotton gin trash: can it be safely utilized

    SciTech Connect

    Parnell, C.B.; Emino, E.R.; Grubaugh, E.K.

    1980-08-01

    Ginning creates lots of gin trash with subsequent disposal problems. The Texas A and M University Agricultural Engineering Dept. is conducting a systems engineering study of three utilization alternatives, composting, fuel, and cattlefeed, funded by the National Science Foundation. Arsenic contamination is a major constraint in utilizing cotton gin trash - arsenic acid is used to desiccate the cotton plant before harvesting. Data from growth trials of 12 species of vegetable and ornamental plants grown on composted cotton gin trash are presented. (Refs. 2).

  9. Desiccation Tolerance in the Moss Polytrichum formosum: Physiological and Fine-structural Changes during Desiccation and Recovery

    PubMed Central

    Proctor, Michael C. F.; Ligrone, Roberto; Duckett, Jeffrey G.

    2007-01-01

    similar to those seen in published data from the pteridophyte Selaginella lepidophylla. Conclusions Initial recovery of respiration and photosynthesis (as of protein synthesis) is very rapid, and independent of protein synthesis, suggesting physical reactivation of systems conserved intact through desiccation and rehydration, but full recovery takes approx. 24 h. This is consistent with the cytological evidence, which shows the thylakoids and cristae remaining intact through the whole course of dehydration and rehydration. Substantial and co-ordinated changes in other cell components, which must affect spatial relationships of organelles and metabolic systems, return to normal on a time span similar to full recovery of photosynthesis. Comparison of the present data with recently published results suggests a significant role for the cytoskeleton in desiccation responses. PMID:17158142

  10. Utilizing Information Systems in Career Preparation Programs.

    ERIC Educational Resources Information Center

    Ardito, Stephanie

    This paper describes the contributions of the Gerontological Information Program (GRIP) to the area of career preparation, particularly its role in (1) assisting college faculty in providing courses in gerontology, (2) training students in the utilization of gerontological information, (3) career placement, and (4) manpower assessment. A…

  11. Basic Utility Distribution Systems. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Department of Health, Education, and Welfare, Washington, DC.

    The scope of facilities required for the conduct of research in health-related sciences is governed by the type of work to be undertaken and the physical characteristics of the building, and can range from a simple office to extremely complex laboratories with numerous utility services. Every laboratory should be designed to accommodate--(1) all…

  12. Utility battery storage systems program report for FY 94

    SciTech Connect

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  13. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  14. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  15. Clay with Desiccation Cracks is an Advection Dominated Environment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  16. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain...

  17. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain...

  18. Reliability impact of solar electric generation upon electric utility systems

    NASA Astrophysics Data System (ADS)

    Day, J. T.; Hobbs, W. J.

    1982-08-01

    The introduction of solar electric systems into an electric utility grid brings new considerations in the assessment of the utility's power supply reliability. This paper summarizes a methodology for estimating the reliability impact of solar electric technologies upon electric utilities for value assessment and planning purposes. Utility expansion and operating impacts are considered. Sample results from photovoltaic analysis show that solar electric plants can increase the reliable load-carrying capability of a utility system. However, the load-carrying capability of the incremental power tends to decrease, particularly at significant capacity penetration levels. Other factors influencing reliability impact are identified.

  19. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    PubMed

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  20. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  1. Junction formation during desiccation cracking.

    PubMed

    Toga, K B; Alaca, B Erdem

    2006-08-01

    In order to provide a sound physical basis for the understanding of the formation of desiccation crack networks, an experimental study is presented addressing junction formation. Focusing on junctions, basic features of the network determining the final pattern, provides an elemental approach and imparts conceptual clarity to the rather complicated problem of the evolution of crack patterns. Using coffee-water mixtures a clear distinction between junction formation during nucleation and propagation is achieved. It is shown that for the same drying suspension, one can switch from the well-known symmetric triple junctions that are unique to the nucleation phase to propagation junctions that are purely dictated by the variations of the stress state. In the latter case, one can even manipulate the path of a propagating crack in a deterministic fashion by changing the stress state within the suspension. Clear microscopic evidence is provided for the formation of propagation junctions, and material inhomogeneity is observed to be reflected by a broad distribution of angles, in stark contrast to shrinkage cracks in homogeneous solid films.

  2. Utility battery storage systems. Program report for FY95

    SciTech Connect

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  3. Integrated support systems for electric utility operations

    SciTech Connect

    Hong, H.W.; Imparato, C.F.; Becker, D.L.; Malinowski, J.H. )

    1992-01-01

    Power system dispatch, the real-time monitoring and coordination of transmission and generation facilities, is the focal point of power system operations. However, dispatch is just one of the many duties of the typical power system operations department. Many computer-based tools and systems are used in support of these duties. Energy management systems (EMS), the centralized, mainframe-, or mini-computer-based systems that support dispatch, have been widely publicized, but few of the other support systems have been given much notice. This article provides an overview of these support tools and systems, frames the major issues faced in systems integration, and describes the path taken to integrate EMS, workstations, desktop computers, networks and applications. Network architecture enables the distribution of real-time operations data throughout the company, from EMS to power plants to district offices, on an unprecedented scale.

  4. Desiccation tolerance in Bryophytes: relevance to the evolution of desiccation tolerance in Land Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 120-130 species that exhibit some degree of vegetative desiccation tolerance. ...

  5. Enhancing Teacher Utilization of Complex Instructional Systems.

    ERIC Educational Resources Information Center

    Shore, Ann; Daniel, Dan

    This paper describes a research and development effort by Jostens Learning Corporation that resulted in the Renaissance Information Management System (RIMS), an information-management user interface for an integrated learning system that is designed to overcome two major obstacles to the use of computer systems by classroom teachers--limited…

  6. Utility Battery Storage Systems Program report for FY93

    SciTech Connect

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  7. Integrated Baseline System (IBS) Version 1.03: Utilities guide

    SciTech Connect

    Burford, M.J.; Downing, T.R.; Pottier, M.C.; Schrank, E.E.; Williams, J.R.

    1993-01-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool that was developed under the direction of the Federal Emergency Management Agency (FEMA). This Utilities Guide explains how to operate utility programs that are supplied as a part of the IBS. These utility programs are chiefly for managing and manipulating various kinds of IBS data and system administration files. Many of the utilities are for creating, editing, converting, or displaying map data and other data that are related to geographic location.

  8. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    NASA Astrophysics Data System (ADS)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  9. Emission abatement system utilizing particulate traps

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  10. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  11. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  12. Utilizing reward systems to mobilize change.

    PubMed

    Wilson, T B

    1995-01-01

    The pressures for change in health care organizations mean that people need to do things differently. Reward systems offer an opportunity to share in the success of the enterprise if they are designed and managed effectively. This article shows how and why they work. Case studies illustrate the key principles in action.

  13. Microgravity experiment system utilizing a balloon

    NASA Astrophysics Data System (ADS)

    Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.

    A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.

  14. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  15. Vapor pressures of the aqueous desiccants

    SciTech Connect

    Chung, T.W.; Luo, C.M.

    1999-09-01

    The vapor pressures of the aqueous desiccants lithium chloride, lithium bromide, calcium chloride, ethylene glycol, propylene glycol, and their mixtures were measured at their typical operating concentrations and at temperatures from 298 K to 313 K. The experimental data were fitted to an Antoine type of equation, ln[P(kPa)] = A {minus} B/[T(K) + C], where A, B, and C are constants and are concentration dependent. Vapor pressure data were further used to predict the effectiveness of dehumidification in liquid desiccant dehumidifiers.

  16. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  17. Motion Estimation System Utilizing Point Cloud Registration

    NASA Technical Reports Server (NTRS)

    Chen, Qi (Inventor)

    2016-01-01

    A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.

  18. Utility-scale system preventive and failure-related maintenance

    SciTech Connect

    Jennings, C.; Hutchinson, P.

    1995-11-01

    This paper describes the design and performance background on PVUSA utility-scale systems at Davis and Kerman, California, and reports on a preventative and failure-related maintenance approach and costs.

  19. The use of desiccation to treat Staphylococcus aureus biofilm-infected wounds.

    PubMed

    Park, Eugene; Long, Sarah A; Seth, Akhil K; Geringer, Matthew; Xu, Wei; Chavez-Munoz, Claudia; Leung, Kai; Hong, Seok Jong; Galiano, Robert D; Mustoe, Thomas A

    2016-03-01

    Chronic wounds colonized with biofilm present a major burden to our healthcare system. While the current paradigm for wound healing is to maintain a moist environment, we sought to evaluate the effects of desiccation, and the ability of honey to desiccate wounds, on wound healing characteristics in Staphylococcus aureus biofilm wounds. In vivo biofilm wound healing after exposure to open-air desiccation, honey, molasses, and saline was analyzed using a rabbit ear model of S. aureus biofilm wounds previously developed by our group. Wound morphology was examined using scanning electron microscopy and granulation tissue deposition was measured using light microscopy with hematoxylin and eosin staining. Viable bacterial counts in rabbit ear biofilm wounds and scabs were measured using a drop dilution method. In vitro S. aureus growth curves were established using tryptic soy broth containing honey and glycerol. Gene expression analysis of rabbit ear wounds was performed using reverse transcription quantitative PCR. Rabbit ear S. aureus biofilm wounds exposed to open-air desiccation, honey, and molasses developed a dry scab, which displaced the majority of biofilm bacteria off of the wound bed. Wounds treated with open-air desiccation, honey, and molasses expressed lower levels of the inflammatory markers tumor necrosis factor-α and interleukin-1β at postoperative day 12 compared with wounds treated with saline, and had increased levels of granulation tissue formation. In vitro growth of S. aureus in tryptic soy broth was inhibited by the presence of honey to a greater extent than by the presence of osmolality-matched glycerol. Desiccation of chronic wounds colonized with biofilm via exposure to open air or honey leads to improved wound healing by decreasing bacterial burden and inflammation, and increasing granulation tissue formation. The ability of honey to help heal chronic wounds is at least in part due to its ability to desiccate bacterial biofilm, but other

  20. Integrated Baseline System (IBS) Version 2.0: Utilities Guide

    SciTech Connect

    Burford, M.J.; Downing, T.R.; Williams, J.R.; Bower, J.C.

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

  1. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    PubMed Central

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A. A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors. PMID:26733996

  2. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats.

    PubMed

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A A

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min-48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors. PMID:26733996

  3. Do subtoxic levels of chlorate influence the desiccation tolerance of Egeria densa?

    PubMed

    Palma, Alvaro T; Schwarz, Alex; Henríquez, Luís A; Alvarez, Ximena; Fariña, José M; Lu, Qimiao

    2013-02-01

    Among the different factors hypothesized to be responsible for the virtual disappearance of Egeria densa, once a dominant aquatic macrophyte in a southern Chile wetland ecosystem, are the negative effects of certain chemical compounds (mainly chlorate) and harsh environmental conditions (desiccation caused by prolonged atmospheric exposure). The authors performed an integrated experiment in which E. densa plants were first exposed for four weeks inside a mesocosm system to levels of chlorate that existed in the wetland at the time of the plant's demise and then exposed to desiccation conditions that also resembled those that the system had experienced. Hence, the authors tested the hypothesis that E. densa plants exposed to sublethal levels of chlorate are more susceptible to the deleterious effect of desiccation compared with plants that had not been exposed to chlorate. This hypothesis was tested by means of quantifying physiologically related parameters in plants right after the four weeks under water and then after the desiccation period of 6 h. Their results rejected this hypothesis, because all plants, regardless of their history, are equally affected by desiccation. PMID:23161751

  4. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  5. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spike-mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved or revolved desiccation tolerance (DT). A sister group comparison was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, S. ...

  6. Performance of cross-cooled desiccant dehumidifiers

    SciTech Connect

    Mei, V.C.; Lavan, Z.

    1980-01-01

    A cross-cooled silica gel desiccant dehumidifier model was designed, built and tested. The performance of the unit was studied as a function of inlet process stream dew point, process stream and cooling stream flowrates and regeneration stream temperature and dew point. The tests were also simulated by a computer program and were compared to the experimental results.

  7. Desiccation tolerance in bryophytes: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desiccation tolerance, the ability to lose virtually all free intracellular water and then recover normal function upon rehydration, is one of the most remarkable features of bryophytes. The physiology of bryophytes differs in major respects from that of vascular plants by virtue of their smaller s...

  8. Trehalose Accumulation Triggers Autophagy during Plant Desiccation

    PubMed Central

    Moghaddam, Lalehvash; Long, Hao; Dickman, Martin B; Zhang, Xiuren; Mundree, Sagadevan

    2015-01-01

    Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops. PMID:26633550

  9. A multichannel EEG telemetry system utilizing a PCM subcarrier

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1974-01-01

    A multichannel personal-type telemetry system is described that utilizes PCM encoding for the most effective range with minimum RF bandwidth and noise interference. Recent IC developments (COS MOS) make it possible to implement a sophisticated encoding system (PCM) within the low power and size constraints necessary for a personal biotelemetry system. This system includes low-level high-impedance preamplifiers to make the system suitable for EEG recording.

  10. Performance predictions of silica-gel desiccant dehumidifiers. Technical report No. 3

    SciTech Connect

    Mathiprakasam, B.; Lavan, Z.

    1980-01-01

    The analysis of a cross-cooled desiccant dehumidifier using silica gel in the form of sheets is described. This unit is the principal component of solar powered desiccant air conditioning system. The mathematical model has first been formulated describing the dynamics of the dehumidifier. The model leads to a system of nonlinear coupled heat and mass transfer equations for the sorption processes and linear heat transfer equations for the purging processes. The model accounts for the gas film resistance and for the moisture diffusion in the desiccant. The governing equations are solved by a finite difference scheme to obtain periodic steady state solutions. The accuracy of the theoretical predictions is ascertained by comparing them with the experimental results. The performance of the dehumidifier, for a chosen set of initial conditions and dehumidifier parameters, has also been given.

  11. Effects of temperature on desiccant catalysis of refrigerant and lubricant decomposition. Final report

    SciTech Connect

    Rohatgi, N.D.T.

    1998-06-01

    Accelerated aging at high temperatures (149 C) for short aging times (28 days) is effective in screening the compatibility of different materials in refrigeration systems. However, in actual applications temperatures are usually lower and operating times much longer. Therefore plots to allow for interpolation or extrapolation of experimental data to actual operating conditions are needed. In the current study, aging of refrigerant/lubricant/desiccant/metal systems was conducted at five different temperatures, and for each temperature at four different aging times. The data collected from this study provided plots relating refrigerant or lubricant decomposition to aging time, aging temperature, and type of desiccant, which can be used for interpolation or extrapolation.

  12. Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal

    2012-02-01

    Storage of energy metabolites has been investigated in different sets of laboratory selected desiccation or starvation resistant lines but few studies have examined such changes in wild-caught populations of Drosophila melanogaster. In contrast to parallel selection of desiccation and starvation tolerance under laboratory selection experiments, opposite clines were observed in wild populations of D. melanogaster. If resistance to desiccation and starvation occurs in opposite directions under field conditions, we may expect a trade-off for energy metabolites but such correlated changes are largely unknown. We tested whether there is a trade-off for storage as well as actual utilization of carbohydrates (trehalose and glycogen), lipids and proteins in D. melanogaster populations collected from different altitudes (512-2500 m). For desiccation resistance, darker flies (>50% body melanization) store more body water content and endure greater loss of water (higher dehydration tolerance) as compared to lighter flies (<30% body melanization). Based on within population analysis, we found evidence for coadapted phenotypes i.e. darker flies store and actually utilize more carbohydrates to confer greater desiccation resistance. In contrast, higher starvation resistance in lighter flies is associated with storage and actual utilization of greater lipid amount. However, darker and lighter flies did not vary in the rate of utilization of carbohydrates under desiccation stress; and of lipids under starvation stress. Thus, we did not find support for the hypothesis that a lower rate of utilization of energy metabolites may contribute to greater stress resistance. Further, for increased desiccation resistance of darker flies, about two-third of total energy budget is provided by carbohydrates. By contrast, lighter flies derive about 66% of total energy content from lipids which sustain higher starvation tolerance. Our results support evolutionary trade-off for storage as well as

  13. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  14. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  15. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  16. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  17. Distributed photovoltaic systems: Utility interface issues and their present status

    NASA Technical Reports Server (NTRS)

    Hassan, M.; Klein, J.

    1981-01-01

    Major technical issues involving the integration of distributed photovoltaics (PV) into electric utility systems are defined and their impacts are described quantitatively. An extensive literature search, interviews, and analysis yielded information about the work in progress and highlighted problem areas in which additional work and research are needed. The findings from the literature search were used to determine whether satisfactory solutions to the problems exist or whether satisfactory approaches to a solution are underway. It was discovered that very few standards, specifications, or guidelines currently exist that will aid industry in integrating PV into the utility system. Specific areas of concern identified are: (1) protection, (2) stability, (3) system unbalance, (4) voltage regulation and reactive power requirements, (5) harmonics, (6) utility operations, (7) safety, (8) metering, and (9) distribution system planning and design.

  18. Automated system for machine tool capacity and utilization

    SciTech Connect

    Bankes, W.F.

    1986-01-01

    An automated system based on Symphony spreadsheet softwre has been developed to monitor machine tool utilization and capacity in a small- to medium-sized machine shop. This application compiles reports on annual machine tool requirements and use from production routing data for a shop producing over 100 different small machined parts with batch sizes ranging from 100 to 1000 parts and up to 25,000 parts per year. The operational routings for approximately 30 parts are currently stored in the system. Levels of utilization are analyzed, which aids in determining the need for additional equipment or multiple workshifts, and thereby helps balance the workload and product flow. Valuable information was compiled in a special report for layout of a new shop facility. Group technology cell arrangements of equipment were analyzed for capacity and utilization. Many Symphony spreadsheet and data base management features were used to produce this program. The final system incorporated menu systems for users unfamiliar with this spreadsheet software.

  19. The potential benefit of an advanced integrated utility system

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1975-01-01

    The applicability of an advanced integrated utility system based on 1980 technology was investigated. An example of such a system, which provides electricity, heating and air conditioning, solid waste disposal, and water treatment in a single integrated plant, is illustrated for a hypothetical apartment complex. The system requires approximately 50 percent of the energy and approximately 55 percent of the water that would be required by a typical current conventional system.

  20. Distributed photovoltaic systems - Addressing the utility interface issues

    NASA Astrophysics Data System (ADS)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  1. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  2. Waste heat utilization in an anaerobic digestion system

    NASA Astrophysics Data System (ADS)

    Boissevain, Brett

    Anaerobic digestion has great potential as an energy source. Not only does it provide an effective method for waste mitigation, but it has the potential to generate significant quantities of fuel and electricity. In order to ensure efficient digestion and biomass utilization, however, the system must be continuously maintained at elevated temperatures. It is technically feasible to supplement such a system with outside energy, but it is more cost effective to heat the system using only the produced biogas. While there is considerable literature covering the theory of anaerobic digestion, there are very few practical studies to show how heat utilization affects system operation. This study considers the effect of major design variables (i.e. heat exchanger efficiencies and biogas conditioning) on promoting a completely self-sustaining digestion system. The thesis considers a real world system and analyzes how it can be improved to avoid the need of an external energy source.

  3. Consulting report on the NASA technology utilization network system

    NASA Technical Reports Server (NTRS)

    Hlava, Marjorie M. K.

    1992-01-01

    The purposes of this consulting effort are: (1) to evaluate the existing management and production procedures and workflow as they each relate to the successful development, utilization, and implementation of the NASA Technology Utilization Network System (TUNS) database; (2) to identify, as requested by the NASA Project Monitor, the strengths, weaknesses, areas of bottlenecking, and previously unaddressed problem areas affecting TUNS; (3) to recommend changes or modifications of existing procedures as necessary in order to effect corrections for the overall benefit of NASA TUNS database production, implementation, and utilization; and (4) to recommend the addition of alternative procedures, routines, and activities that will consolidate and facilitate the production, implementation, and utilization of the NASA TUNS database.

  4. Regional Utilization of the Union Catalog of Medical Periodicals System

    PubMed Central

    Sprinkle, Michael D.

    1969-01-01

    This paper describes regional utilization of the Union Catalog of Medical Periodicals system and data base in producing union lists outside Metropolitan New York, the area served by the Union Catalog. A basic introduction to the Medical Library Center of New York's UCMP system is set forth, demonstrating the system's value in the production of such medical and paramedical union lists throughout the country. Several applications are then described, showing how these union lists were produced. PMID:5789816

  5. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)—Systems over 600 volts, nominal—Aboveground wiring methods § 1910.308(c)(2)—Class 1, Class 2, and Class 3 remote control, signaling, and power-limited circuits—Marking § 1910.308(d)—Fire alarm systems (4... 29 Labor 5 2010-07-01 2010-07-01 false Electric utilization systems. 1910.302 Section...

  6. Bilayer resist system utilizing alkali-developable organosilicon positive photoresist

    NASA Astrophysics Data System (ADS)

    Nate, Kazuo; Mizushima, Akiko; Sugiyama, Hisashi

    1991-06-01

    A bi-layer resist system utilizing an alkali-developable organosilicon positive photoresist (OSPR) has been developed. The composite prepared from an alkali-soluble organosilicon polymer, poly(p- hydroxybenzylsilsesquioxane) and naphthoquinone diazide becomes a alkali-developable positive photoresist which is sensitive to UV (i line - g line) region, and exhibited high oxygen reactive ion etching (O2 RIE) resistance. The sensitivity and the resolution of OSPR are almost the same as those of conventional novolac-based positive photoresists. The bi-layer resist system utilizing OSPR as the top imaging layer gave fine patterns of underlayers with high aspect ratio easily.

  7. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    PubMed Central

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  8. Utilizing expert systems for satellite monitoring and control

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.

    1991-01-01

    Spacecraft analysts in the spacecraft control center for the Cosmic Background Explorer (COBE) satellite are currently utilizing a fault-isolation expert system developed to assist in the isolation and correction of faults in the communications link. This system, the communication link expert assistance resource (CLEAR), monitors real time spacecraft and ground systems performance parameters in search of configuration discrepancies and communications link problems. If such a discrepancy or problem is isolated, CLEAR alerts the analyst and provides advice on how to resolve the problem swiftly and effectively. The CLEAR system is the first real time expert system to be used in the operational environment of a satellite control center at the NASA Goddard Space Flight Center. Clear has not only demonstrated the utility and potential of an expert system in the demanding environment of a satellite control center, but also has revealed many of the pitfalls and deficiencies of development of expert systems. One of the lessons learned from this and other initial expert system projects is that prototypes can often be developed quite rapidly, but operational expert systems require considerable effort. Development is generally a slow, tedious process that typically requires the special skills of trained programmers. Due to the success of CLEAR and several other systems in the control center domain, a large number of expert systems will certainly be developed to support control center operations during the early 1990's. To facilitate the development of these systems, a project was initiated to develop an integrated, domain-specific tool, the generic spacecraft analyst assistent (GenSAA), that alows the spacecraft analysts to rapidly create simple expert systems themselves. By providing a highly graphical point-and-select method of system development, GenSAA allows the analyst to utilize and/or modify previously developed rule bases and system components; thus, facilitating

  9. Experimental results on advanced rotary desiccant dehumidifiers

    SciTech Connect

    Bharathan, D; Parsons, J; Maclaine-cross, I

    1986-08-01

    The Solar Energy Research Institute (SERI) has developed the Cyclic Test Facility (CTF) to develop and validate analytical methods for evaluating and predicting the performance of advanced rotary dehumidifiers. This paper describes the CTF, the dehumidifiers tested at the CTF, and the analytical methods used. The results reported provide an engineering data base and a design tool for evaluating rotary dehumidifiers for desiccant cooling applications.

  10. A review of desiccant dehumidification technology

    SciTech Connect

    Pesaran, A.A.

    1994-10-01

    This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the 1990s. After briefly reviewing the principle of operation, the authors present three case studies-for supermarkets, a hotel, and an office building. The authors also discuss recent advances and ongoing research and development activities.

  11. Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms.

    PubMed

    Garcés Cea, Marcelo; Claverol, Stephan; Alvear Castillo, Carla; Rabert Pinilla, Claudia; Bravo Ramírez, León

    2014-04-01

    desiccation takes place therefore precludes the induction of protective systems, suggesting a constitutive mechanism of cellular protection.

  12. Development of burner flame diagnostic system for utility boilers

    SciTech Connect

    Ito, F. ); Watanabe, N.; Misono, K.Y. ); Miyamae, S.; Hashimoto, H.; Tagami, I. )

    1990-01-01

    The combustion monitoring system in utility boilers generally consists of equipment for analyzing O{sub 2}, NO{sub x} and dust in flue gas at the boiler exit. The burner flame diagnostic system developed in this research is comprised of optical probes, optical fibers connecting the burners to a multispectrometer through an optical scanner for multiple burners of the boiler and computer for evaluating flame behavior, so as to serve precise spectroscopic analysis. This research began with a small size test furnace in order to derive combustion evaluation indices, thus successfully leading to theoretical expression in application to a large scale utility boiler. A ploto-type system was mounted on a 350 MW boiler with test result that clearly demonstrate this system to be effective for precise evaluation of individual burners of the boiler.

  13. Development of Membrane-Based Desiccant Fiber for Vacuum Desiccant Cooling.

    PubMed

    Yang, Yifan; Rana, Dipak; Lan, Christopher Q; Matsuura, Takeshi

    2016-06-22

    A novel hydrophobic membrane-based desiccant fiber (MDF) was developed by loading lithium chloride into hydrophobic hollow fiber membranes. The MDF thus made was then tested for vapor absorption under controlled conditions. Furthermore, an MDF pad, which was made by weaving MDF into a piece of garment, was built into a laboratory vacuum desiccant cooling (VDC) setup, which included the MDF pad as the desiccant layer and a cooling towel saturated with water as the water reservoir, to test the cooling effects at atmospheric pressure and vacuum of 25 in. of Hg. Results indicate that MDF is suitable for applications such as in VDC. Mass and heat transfer of vapor absorption by MDF were also analyzed.

  14. Development of Membrane-Based Desiccant Fiber for Vacuum Desiccant Cooling.

    PubMed

    Yang, Yifan; Rana, Dipak; Lan, Christopher Q; Matsuura, Takeshi

    2016-06-22

    A novel hydrophobic membrane-based desiccant fiber (MDF) was developed by loading lithium chloride into hydrophobic hollow fiber membranes. The MDF thus made was then tested for vapor absorption under controlled conditions. Furthermore, an MDF pad, which was made by weaving MDF into a piece of garment, was built into a laboratory vacuum desiccant cooling (VDC) setup, which included the MDF pad as the desiccant layer and a cooling towel saturated with water as the water reservoir, to test the cooling effects at atmospheric pressure and vacuum of 25 in. of Hg. Results indicate that MDF is suitable for applications such as in VDC. Mass and heat transfer of vapor absorption by MDF were also analyzed. PMID:27253330

  15. CLASSIFICATION OF THE MGR OFF-SITE UTILITIES SYSTEM

    SciTech Connect

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) offsite utilities system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  16. Dehydration-Induced Redistribution of Amphiphilic Molecules between Cytoplasm and Lipids Is Associated with Desiccation Tolerance in Seeds1

    PubMed Central

    Buitink, Julia; Leprince, Olivier; Hoekstra, Folkert A.

    2000-01-01

    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumber (Cucumis sativa) seeds. Survival following drying and a membrane integrity assay indicated that desiccation tolerance was present during early imbibition and lost in germinated radicles. In germinated cucumber radicles, desiccation tolerance could be re-induced by an incubation in polyethylene glycol (PEG) before drying. In desiccation-intolerant radicles, partitioning of spin probes into lipids during dehydration occurred at higher water contents compared with tolerant and PEG-induced tolerant radicles. The difference in partitioning behavior between desiccation-tolerant and -intolerant tissues could not be explained by the loss of water. Consequently, using a two-phase model system composed of sunflower or cucumber oil and water, physical properties of the aqueous solvent that may affect the partitioning of amphiphilic spin probes were investigated. A significant relationship was found between the partitioning of spin probes and the viscosity of the aqueous solvent. Moreover, in desiccation-sensitive radicles, the rise in cellular microviscosity during drying commenced at higher water contents compared with tolerant or PEG-induced tolerant radicles, suggesting that the microviscosity of the cytoplasm may control the partitioning behavior in dehydrating seeds. PMID:11080316

  17. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds.

    PubMed

    Buitink, J; Leprince, O; Hoekstra, F A

    2000-11-01

    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumber (Cucumis sativa) seeds. Survival following drying and a membrane integrity assay indicated that desiccation tolerance was present during early imbibition and lost in germinated radicles. In germinated cucumber radicles, desiccation tolerance could be re-induced by an incubation in polyethylene glycol (PEG) before drying. In desiccation-intolerant radicles, partitioning of spin probes into lipids during dehydration occurred at higher water contents compared with tolerant and PEG-induced tolerant radicles. The difference in partitioning behavior between desiccation-tolerant and -intolerant tissues could not be explained by the loss of water. Consequently, using a two-phase model system composed of sunflower or cucumber oil and water, physical properties of the aqueous solvent that may affect the partitioning of amphiphilic spin probes were investigated. A significant relationship was found between the partitioning of spin probes and the viscosity of the aqueous solvent. Moreover, in desiccation-sensitive radicles, the rise in cellular microviscosity during drying commenced at higher water contents compared with tolerant or PEG-induced tolerant radicles, suggesting that the microviscosity of the cytoplasm may control the partitioning behavior in dehydrating seeds.

  18. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of desiccation tolerance of lichens, and of their photobionts in particular, has frequently focused on the antioxidant system that protects the cell against photo-oxidative stress during dehydration/rehydration cycles. Thus, in this work we carried out proteomic and transcript analyses of ...

  19. Manufactured residential utility wall system (ResCore), overview

    SciTech Connect

    Wendt, R.; Lundell, C.; Lau, T.M.

    1997-05-01

    This paper provides an overview of the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self-contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the residential kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty and students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the US Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a ``layered`` manufacturing technique that allows each major component group--structural, cold water, hot water, drain, gas, electric, etc.--to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

  20. Manufactured Residential Utility Wall System (ResCore),

    SciTech Connect

    Wendt, Robert; Lundell, Clark; Lau, Tin Man

    1997-12-31

    This paper describes the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty, students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the U.S. Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a layered manufacturing technique that allows each major component group: structural, cold water, hot water, drain, gas, electric, etc. to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

  1. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    SciTech Connect

    Wills, R.H.

    1994-06-01

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  2. Study of Lyndon B. Johnson Space Center utility systems

    NASA Technical Reports Server (NTRS)

    Redding, T. E.; Huber, W. C.

    1977-01-01

    The results of an engineering study of potential energy saving utility system modifications for the NASA Lyndon B. Johnson Space Center are presented. The objective of the study was to define and analyze utility options that would provide facility energy savings in addition to the approximately 25 percent already achieved through an energy loads reduction program. A systems engineering approach was used to determine total system energy and cost savings resulting from each of the ten major options investigated. The results reported include detailed cost analyses and cost comparisons of various options. Cost are projected to the year 2000. Also included are a brief description of a mathematical model used for the analysis and the rationale used for a site survey to select buildings suitable for analysis.

  3. HVAC systems in shopping centers as a utility business

    SciTech Connect

    Wolfert, J.E.

    1985-01-01

    Retail spaces in shopping centers have been noted for their low-cost and medium-quality HVAC systems. Typically, these systems are installed with minimal engineering and provided with less maintenance. There are, however, methods of providing higher quality HVAC systems for these retail spaces. One method is for the developer to provide a central plant type system and redistribute HVAC services for these spaces. The central plant system can redistribute chilled water, heated water, chilled air, heated air, tower water, electricity, or any other readily transportable energy source. With central type services, the economics are such that the individual retailer experiences no more overall cost but receives the benefits of a higher quality system. The developer has a larger investment but receives a reasonable return on this additional investment. The utilities now service a building that has a lower demand and a higher load factor. And society as a whole is presented with a facility that is considerably more energy efficient.

  4. Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field study.

    PubMed

    Weaver, L; Webber, J B; Hickson, A C; Abraham, P M; Close, M E

    2015-05-01

    Groundwater is used as a precious resource for drinking water worldwide. Increasing anthropogenic activity is putting increasing pressure on groundwater resources. One impact of increased groundwater abstraction coupled with increasing dry weather events is the lowering of groundwater levels within aquifers. Biofilms within groundwater aquifers offer protection to the groundwater by removing contaminants entering the aquifer systems from land use activities. The study presented investigated the impact of desiccation events on the biofilms present in groundwater aquifers using field and laboratory experiments. In both field and laboratory experiments a reduction in enzyme activity (glucosidase, esterase and phosphatase) was seen during desiccation compared to wet controls. However, comparing all the data together no significant differences were seen between either wet or desiccated samples or between the start and end of the experiments. In both field and laboratory experiments enzyme activity recovered to start levels after return to wet conditions. The study shows that biofilms within groundwater systems are resilient and can withstand periods of desiccation (4 months).

  5. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  6. Spectrum-orbit utilization - An overview. [domestic satellite communication systems

    NASA Technical Reports Server (NTRS)

    Sawitz, P. H.

    1975-01-01

    This paper discusses the problems associated with the efficient utilization of the natural resources of frequency spectrum and geo-stationary orbital arc. The nature of these resources is explained and their quantities are estimated. The present and projected future demand for them is given, and the problem areas are identified and discussed. Special emphasis is placed on mutual interference, launch limitations, propagation effects, and operational restrictions. The technical factors bearing on these problems, such as antenna patterns, modulation methods, emission restrictions, equipment characteristics, and system requirements, are discussed in detail. Some important trade-offs are presented, and special techniques that can be used to increase spectrum-orbit utilization are described. Particular emphasis is given throughout to U.S. domestic satellite communication systems.

  7. Pneumatic Regolith Transfer Systems for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Townsend, I. I.; Mantovani, J. G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This slide presentation reviews the testing of a pneumatic system for transfering regolith, to be used for In Situ Resource Utilization (ISRU). Using both the simulated microgravity of parabolic flight and ground testing, the tests demonstrated that lunar regolith can be conveyed pneumatically into a simulated ISRU oxygen production plant reactor. The ground testing also demonstrated that the regolith can be expelled from the ISRU reactor for disposal or for other resource processing.

  8. The l-Arabinan Utilization System of Geobacillus stearothermophilus▿

    PubMed Central

    Shulami, Smadar; Raz-Pasteur, Ayelet; Tabachnikov, Orly; Gilead-Gropper, Sarah; Shner, Itzhak; Shoham, Yuval

    2011-01-01

    Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a β-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster. PMID:21460081

  9. Proteome analysis of leaves of the desiccation-tolerant grass, sporobolus stapfianus, in response to desiccation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sporobolus stapfianus is a resurrection grass native to South Africa which can tolerate the complete drying of its vegetative tissue structure; i.e., desiccation, and recover fully within hours of rewetting. Gene expression studies have demonstrated that the grass employs a strategy of gene inductio...

  10. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  11. The precipitation response to the desiccation of Lake Chad

    SciTech Connect

    Lauwaet D.; VanWeverberg K.; vanLipzig, N. P. M., Weverberg, K. V., Ridderb, K. D., and Goyens, C.

    2012-04-01

    Located in the semi-arid African Sahel, Lake Chad has shrunk from a surface area of 25000 km2 in 1960 to about 1350 km2 due to a series of droughts and anthropogenic influences. The disappearance of such a large open-water body can be expected to have a noticeable effect on the meteorology in the surroundings of the lake. The impact could extend even further to the west as westward propagating convective systems pass Lake Chad in the rainfall season. This study examines the sensitivity of the regional hydrology and convective processes to the desiccation of the lake using a regional atmospheric model. Three Lake Chad scenarios are applied reflecting the situation in 1960, the current situation and a potential future scenario in which the lake and the surrounding wetlands have disappeared. The model simulations span the months July-September in 2006, which includes the rainfall season in the Lake Chad area. Total precipitation amounts and the components of the hydrological cycle are found to be hardly affected by the existence of the lake. A filled Lake Chad does, however, increase the precipitation at the east side of the lake. The model results indicate that the boundary layer moisture and temperature are significantly altered downwind of the lake. By investigating a mesoscale convective system (MCS) case, this is found to affect the development and progress of the system. At first, the MCS is intensified by the more unstable boundary layer air but the persistence of the system is altered as the cold pool propagation becomes less effective. The proposed mechanism is able to explain the differences in the rainfall patterns nearby Lake Chad between the scenarios. This highlights the local sensitivity to the desiccation of Lake Chad whereas the large-scale atmospheric processes are not affected.

  12. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge

    PubMed Central

    Gusev, Oleg; Suetsugu, Yoshitaka; Cornette, Richard; Kawashima, Takeshi; Logacheva, Maria D.; Kondrashov, Alexey S.; Penin, Aleksey A.; Hatanaka, Rie; Kikuta, Shingo; Shimura, Sachiko; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Shagimardanova, Elena; Alexeev, Dmitry; Govorun, Vadim; Wisecaver, Jennifer; Mikheyev, Alexander; Koyanagi, Ryo; Fujie, Manabu; Nishiyama, Tomoaki; Shigenobu, Shuji; Shibata, Tomoko F.; Golygina, Veronika; Hasebe, Mitsuyasu; Okuda, Takashi; Satoh, Nori; Kikawada, Takahiro

    2014-01-01

    Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki. PMID:25216354

  13. Adsorption / Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    Adsorption / desorption behavior of water vapor onto desiccant rotor has been investigated to improve the desiccant cooling system by means of computer simulation. In this paper, we paid attention to the relationship between the equilibrium amount of water adsorbed onto the desiccant material and the relative humidity, that is adsorption isotherm as a principal characteristic feature of adsorbent. Considering actual adsorbents, five types of adsorption isotherms were assumed to clarify the influence of adsorption isotherm on the dehumidifying performance. After the investigation on the influences of some operating conditions on the dehumidifying performance at each selected adsorption isotherm, it was found that higher dehumidifying performance and reduction of length of desiccant rotor could be achieved by selecting appropriate adsorption isotherm. It was also predicted that S-shaped adsorption isotherm which is raised sharply at relative humidity around 15 % could produce the lowest air humidity at regeneration air temperature 80 °C. Moreover influence of the intraparticle diffusion coefficient which significantly influence on the adsorption / desorption rate was discussed choosing two adsorption isotherm from the above five isotherms. It seems that effective range of the intraparticle diffusion coefficient for the significant improvement of the dehumidifying performance was strongly influenced by the shape of adsorption isotherm.

  14. Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes.

    PubMed

    Watkins, James E; Mack, Michelle C; Sinclair, Thomas R; Mulkey, Stephen S

    2007-01-01

    Ferns have radiated into the same diverse environments as spermatophytes, and have done so with an independent gametophyte that is not protected by the parent plant. The degree and extent of desiccation tolerance (DT) in the gametophytes of tropical fern species was assessed to understand mechanisms that have allowed ferns to radiate into a diversity of habitats. Species from several functional groups were subjected to a series of desiccation events, including varying degrees of intensity and multiple desiccation cycles. Measurements of chlorophyll fluorescence were used to assess recovery ability and compared with species ecology and gametophyte morphology. It is shown that vegetative DT (rare in vascular plants) is widely exhibited in fern gametophytes and the degree of tolerance is linked to species habitat preference. It is proposed that gametophyte morphology influences water-holding capacity, a novel mechanism that may help to explain how ferns have radiated into drought-prone habitats. Fern gametophytes have often been portrayed as extreme mesophytes with little tolerance for desiccation. The discovery of DT in gametophytes holds potential for improving our understanding of both the controls on fern species distribution and their evolution. It also advances a new system with which to study the evolution of DT in vascular plants.

  15. Molecular mechanisms of desiccation tolerance in resurrection plants.

    PubMed

    Gechev, Tsanko S; Dinakar, Challabathula; Benina, Maria; Toneva, Valentina; Bartels, Dorothea

    2012-10-01

    Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.

  16. Hybrid energy storage systems utilizing redox active organic compounds

    SciTech Connect

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  17. Desiccation resistance in four Drosophila species: sex and population effects.

    PubMed

    Matzkin, Luciano M; Watts, Thomas D; Markow, Therese A

    2007-01-01

    Desiccation resistance and body mass were measured in multiple populations of each of four species of Drosophila: two desert endemic species (D. nigrospiracula and D. mojavensis), and two with more widespread distributions (D. melanogaster and D. pseudoobscura). While flies from the desert species were more desiccation tolerant, there was, in certain cases, significant variation in desiccation resistance among populations of the same species. A significant difference in desiccation resistance was observed between the sexes, females were more resistant than males, but this relationship was reversed when taking into account body mass differences between the sexes. The degree of observed within-species variability demonstrates that studies focusing upon differences between species can produce different conclusions if they rely on observations for only single populations of a given species. Our data also suggest the existence of multiple mechanisms for desiccation resistance. PMID:18836314

  18. Liquid-Desiccant Vapor Separation Reduces the Energy Requirements of Atmospheric Moisture Harvesting.

    PubMed

    Gido, Ben; Friedler, Eran; Broday, David M

    2016-08-01

    An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior.

  19. Liquid-Desiccant Vapor Separation Reduces the Energy Requirements of Atmospheric Moisture Harvesting.

    PubMed

    Gido, Ben; Friedler, Eran; Broday, David M

    2016-08-01

    An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior. PMID:27435379

  20. National Maglev initiative: California line electric utility power system requirements

    NASA Astrophysics Data System (ADS)

    Save, Phil

    1994-05-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  1. National Maglev initiative: California line electric utility power system requirements

    NASA Technical Reports Server (NTRS)

    Save, Phil

    1994-01-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  2. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  3. Dynamic phase imaging utilizing a 4-dimensional microscope system.

    PubMed

    Creath, Katherine

    2011-02-21

    This paper describes a new, novel interference Linnik microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with a variety of magnifications and wavelengths with fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different organisms such as flagellates and rotifers will be presented, as will measurements of human breast cancer cells with the addition of various agents that break down the cells. These data highlight examples of monitoring different biological processes and motions. PMID:24357901

  4. Bandwidth utilization maximization of scientific RF communication systems

    SciTech Connect

    Rey, D.; Ryan, W.; Ross, M.

    1997-01-01

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, was developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.

  5. Dynamic phase imaging utilizing a 4-dimensional microscope system

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2011-03-01

    This paper describes a new, novel interference Linnik microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with a variety of magnifications and wavelengths with fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phase measurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different organisms such as flagellates and rotifers will be presented, as will measurements of human breast cancer cells with the addition of various agents that break down the cells. These data highlight examples of monitoring different biological processes and motions.

  6. Medicare Interim Payment System's Impact on Medicare Home Health Utilization

    PubMed Central

    Liu, Korbin; Long, Sharon K.; Dowling, Krista

    2003-01-01

    The Medicare home health interim payment system (IPS) implemented in fiscal year 1998 provided very strong incentives for home health agencies (HHAs) to reduce the number of visits provided to each Medicare user and to avoid those beneficiaries whose Medicare plan of care was likely to exceed the average beneficiary cost limit. We analyzed multiple years of data from the Medicare Current Beneficiary Survey (MCBS) to examine how the IPS affected subgroups of the Medicare population by health and socioeconomic characteristics. We found that the IPS strongly reduced overall utilization, but that few subgroups were disproportionately affected. PMID:14997695

  7. Optimizing bandwidth utilization in packet based telemetry systems

    SciTech Connect

    Kalibjian, J.R.

    1995-10-17

    A consistent theme in spacecraft telemetry system design is the desire to obtain maximum bandwidth utilization given a fixed transmission capability (usually due to cost/weight criteria). Extensions to basic packetization telemetry architectures are discussed which can facilitate a reduction in the amount of actual data telemetered, without loss of data quality. Central to the extensions are the establishment of an ``intelligent`` telemetry process, which can evaluate pending data to be telemetered, and act to compress, discard, or re-formulate data before actual transmission to ground stations.

  8. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Bruno, Cy

    2012-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single

  9. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small

  10. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia

    PubMed Central

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  11. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia.

    PubMed

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  12. Space Station Freedom external fluid utilities system design and integration

    NASA Astrophysics Data System (ADS)

    Reinhard, Dawn M.

    1993-02-01

    This paper presents the current Space Station Freedom External Fluid System Design, which is an integrated design of numerous criteria, such as safety, reliability, availability, manufacturability, commonality and compatibility with Extravehicular Activity (EVA). McDonnell Douglas engineers are working to meet a Critical Design Review (CDR) in 1993 and to begin production of fluid system hardware for first launch in 1996, with successive launches continuing through the decade. The fluid system design hardware, such as the 316L Stainless Steel tubing, Inconel, flexible metal hoses, tee fittings, clamping systems and quick disconnect couplings will be presented, with special emphasis on how they were selected in the early phases of the design process. Fabrication and assembly of the Space Station Freedom fluid utility system, using the Numerically Controlled (NC) tube bender and Orbital Welder will be discussed. The Extravehicular Activity (EVA) on-orbit assembly and maintenance techniques of this system will also be briefly explained. Recommendations which have contributed to the success of this design effort include: Consistent communications between groups. a centralized computer-aided drafting/Computer-aided manufacturing (CAD/CAM) system with Electronic Development Fixture (EDF) capability, and technical review boards to control and minimize changes to the design baseline.

  13. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    SciTech Connect

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  14. Gene Transfer to the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis

    PubMed Central

    Billi, Daniela; Friedmann, E. Imre; Helm, Richard F.; Potts, Malcolm

    2001-01-01

    The coccoid cyanobacterium Chroococcidiopsis dominates microbial communities in the most extreme arid hot and cold deserts. These communities withstand constraints that result from multiple cycles of drying and wetting and/or prolonged desiccation, through mechanisms which remain poorly understood. Here we describe the first system for genetic manipulation of Chroococcidiopsis. Plasmids pDUCA7 and pRL489, based on the pDU1 replicon of Nostoc sp. strain PCC 7524, were transferred to different isolates of Chroococcidiopsis via conjugation and electroporation. This report provides the first evidence that pDU1 replicons can be maintained in cyanobacteria other than Nostoc and Anabaena. Following conjugation, both plasmids replicated in Chroococcidiopsis sp. strains 029, 057, and 123 but not in strains 171 and 584. Both plasmids were electroporated into strains 029 and 123 but not into strains 057, 171, and 584. Expression of PpsbA-luxAB on pRL489 was visualized through in vivo luminescence. Efficiencies of conjugative transfer for pDUCA7 and pRL489 into Chroococcidiopsis sp. strain 029 were approximately 10−2 and 10−4 transconjugants per recipient cell, respectively. Conjugative transfer occurred with a lower efficiency into strains 057 and 123. Electrotransformation efficiencies of about 10−4 electrotransformants per recipient cell were achieved with strains 029 and 123, using either pDUCA7 or pRL489. Extracellular deoxyribonucleases were associated with each of the five strains. Phylogenetic analysis, based upon the V6 to V8 variable regions of 16S rRNA, suggests that desert strains 057, 123, 171, and 029 are distinct from the type species strain Chroococcidiopsis thermalis PCC 7203. The high efficiency of conjugative transfer of Chroococcidiopsis sp. strain 029, from the Negev Desert, Israel, makes this a suitable experimental strain for genetic studies on desiccation tolerance. PMID:11244070

  15. Desiccation stress induces developmental heterochrony in Drosophila melanogaster.

    PubMed

    Thorat, Leena; Oulkar, Dasharath P; Banerjee, Kaushik; Nath, Bimalendu B

    2016-09-01

    Stressful environments are known to perturb developmental patterns in insects. In the purview of desiccation as a stressor, relatively little is known about the developmental consequences linked with desiccation tolerance. In this study, we have particularly focused on the exploration of the temporal profile of postembryonic development in response to desiccation exposure in Drosophila melanogaster and the associated trade-offs. We document a correlation between variations in 20-hydroxyecdysone levels and the altered timing of metamorphic events during the life cycle. Following desiccation, we observed an extension in the larval longevity whereas the duration of the pupal and adult stages was significantly shortened. Alternately, feeding of 20-hydroxyecdysone apparently led to the restoration of the normal temporal pattern of development in the desiccated group. In spite of the desiccation-responsive heterochronic shifts in development, the overall lifespan post recovery remained almost unaltered among the desiccated and undesiccated groups suggesting plasticity in developmental control. This observation reminisces 'canalization-like' phenomenon that buffers alterations in the overall lifespan. We thus identified a desiccationresponsive period in the lifespan of D. melanogaster during which variations in ecdysone levels are capable to alter the temporal course of development. PMID:27581925

  16. Desiccation stress induces developmental heterochrony in Drosophila melanogaster.

    PubMed

    Thorat, Leena; Oulkar, Dasharath P; Banerjee, Kaushik; Nath, Bimalendu B

    2016-09-01

    Stressful environments are known to perturb developmental patterns in insects. In the purview of desiccation as a stressor, relatively little is known about the developmental consequences linked with desiccation tolerance. In this study, we have particularly focused on the exploration of the temporal profile of postembryonic development in response to desiccation exposure in Drosophila melanogaster and the associated trade-offs. We document a correlation between variations in 20-hydroxyecdysone levels and the altered timing of metamorphic events during the life cycle. Following desiccation, we observed an extension in the larval longevity whereas the duration of the pupal and adult stages was significantly shortened. Alternately, feeding of 20-hydroxyecdysone apparently led to the restoration of the normal temporal pattern of development in the desiccated group. In spite of the desiccation-responsive heterochronic shifts in development, the overall lifespan post recovery remained almost unaltered among the desiccated and undesiccated groups suggesting plasticity in developmental control. This observation reminisces 'canalization-like' phenomenon that buffers alterations in the overall lifespan. We thus identified a desiccationresponsive period in the lifespan of D. melanogaster during which variations in ecdysone levels are capable to alter the temporal course of development.

  17. Utilization of the terrestrial cyanobacteria

    NASA Astrophysics Data System (ADS)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yokoshima, Mika; Yamaguchi, Yuji; Takenaka, Hiroyuki

    The terrestrial, N _{2}-fixing cyanobacterium, Nostoc commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. Previously, the first author indicated that desiccation related genes were analyzed and the suggested that the genes were related to nitrogen fixation and metabolisms. In this report, we suggest possibility of agriculture, using the cyanobacterium. Further, we also found radioactive compounds accumulated N. commune (cyanobacterium) in Fukushima, Japan after nuclear accident. Thus, it is investigated to decontaminate radioactive compounds from the surface soil by the cyanobacterium and showed to accumulate radioactive compounds using the cyanobacterium. We will discuss utilization of terrestrial cyanobacteria under closed environment. Keyword: Desiccation, terrestrial cyanobacteria, bioremediation, agriculture

  18. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  19. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  20. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM

  1. Development of space manufacturing systems concepts utilizing lunar resources

    NASA Technical Reports Server (NTRS)

    Bock, E. H.

    1979-01-01

    Results of a NASA sponsored study to evaluate the merits of constructing solar power satellites using lunar and terrestrial resources are reviewed. Three representative lunar resources utilization (LRU) concepts were developed and compared with a previously designed earth baseline concept, and major system hardware elements as well as personnel requirements were defined. LRU for space construction was shown to be competitive with earth baseline approach for a program requiring 10 to the 5th metric tons per year of completed satellites. Results also indicated that LRU can reduce earth launched cargo requirements to less than 10% of that needed to build satellites exclusively from earth materials, with a significant percentage of the reduction due to the use of liquid oxygen derived from lunar soil. A concept using the mass driver to catapult lunar material into space was found to be superior to the other LRU logistics techniques investigated.

  2. Solar house system interfaced with the power utility grid

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1975-01-01

    Photovoltaic cells may be used to convert sunlight directly into electrical energy and into low-grade heat to be used for large scale terrestrial solar energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). CdS/Cu2S solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, stability of performance, are discussed. Systems design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental solar house of the University of Delaware, are given. Economic aspects are discussed.

  3. Development of a terrain severity measurement system utilizing optical lasers

    NASA Astrophysics Data System (ADS)

    Dembski, Nicholas; Rizzoni, Giorgio; Soliman, Ahmed

    2006-05-01

    A terrain severity measurement system utilizing non-contact optical scanning laser technologies employed in on-road profiling has been developed to make detailed measurements of the relative smoothness of all types of terrain from paved roads to extreme off-road conditions. The objectives included operation in all climatic conditions, simplified operation, and rapid availability of data. Accelerometers and inclinometers are used to measure laser sensor movement in order to eliminate measurement errors due to vehicle pitch and roll. A GPS receiver is used to correlate terrain profile information to position and elevation data. The end result is an accurate description of the longitudinal and lateral terrain profile that can be used to characterize the terrain and within vehicle modeling and simulation programs.

  4. Pneumatic Regolith Transfer Systems for In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.

    2010-01-01

    One aspect of In-Situ Resource Utilization (lSRU) in a lunar environment is to extract oxygen and other elements from the minerals that make up the lunar regolith. Typical ISRU oxygen production processes include but are not limited to hydrogen reduction, carbothermal and molten oxide electrolysis. All of these processes require the transfer of regolith from a supply hopper into a reactor for chemical reaction processing, and the subsequent extraction of the reacted regolith from the reactor. This paper will discuss recent activities in the NASA ISRU project involved with developing pneumatic conveying methods to achieve lunar regolith simulant transfer under I-g and 1/6-g gravitational environments. Examples will be given of hardware that has been developed and tested by NASA on reduced gravity flights. Lessons learned and details of pneumatic regolith transfer systems will be examined as well as the relative performance in a 1/6th G environment

  5. Frost Growth CFD Model of an Integrated Active Desiccant Rooftop Unit

    SciTech Connect

    Geoghegan, Patrick J; Petrov, Andrei Y; Vineyard, Edward Allan; Zaltash, Abdolreza; Linkous, Randall Lee

    2008-01-01

    A frost growth model is incorporated into a Computational Fluid Dynamics (CFD) simulation of a heat pump by means of a user-defined function in FLUENT, a commercial CFD code. The transient model is applied to the outdoor section of an Integrated Active Desiccant Rooftop (IADR) unit in heating mode. IADR is a hybrid vapor compression and active desiccant unit capable of handling 100% outdoor air (dedicated outdoor air system) or as a total conditioning system, handling both outdoor air and space cooling or heating loads. The predicted increase in flow resistance and loss in heat transfer capacity due to frost build-up are compared to experimental pressure drop readings and thermal imaging. The purpose of this work is to develop a CFD model that is capable of predicting frost growth, an invaluable tool in evaluating the effectiveness of defrost-on-demand cycles.

  6. Composite desiccant material "CaCl2/Vermiculite/Saw wood": a new material for fresh water production from atmospheric air

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Yadav, Avadhesh

    2016-04-01

    In this study a novel composite desiccant material "CaCl2/Vermiculite/Saw wood" have been synthesized and tested for the water generation from atmospheric air. The vermiculite- saw wood used as a host matrix and CaCl2 as a hygroscopic salt. A solar glass desiccant box type system with a collector area of 0.36 m2 has been used. Design parameters for water generation are height of glass from the desiccant material bed as 0.22 m, inclination in angle as 30º, the effective thickness of glass as 3 mm and number of glazing as single. It has been found that the concentration of calcium chloride is the most influencing factor for fresh water generation from atmospheric air. The maximum amount of water produced by using novel composite desiccant material is 195 ml/kg/day.

  7. Improved accounting of emissions from utility energy storage system operation

    SciTech Connect

    Paul Denholm; Tracey Holloway

    2005-12-01

    Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO{sub 2} and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions 'accounting' might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation. 35 refs., 5 figs., 2 tabs.

  8. Improved accounting of emissions from utility energy storage system operation.

    PubMed

    Denholm, Paul; Holloway, Tracey

    2005-12-01

    Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO2 and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions "accounting" might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation.

  9. Utilization of commercial communications systems for space based research applications

    NASA Astrophysics Data System (ADS)

    Overmyer, Carolyn; Thompson, Clark

    1998-01-01

    With the increase in utilization of space for research and development activities, the need for a communication system which improves the availability of payload uplink and downlink with the ground becomes increasingly more critical. At the same time, experiment developers are experiencing a tightening of their budgets for space based research. They don't have the capability to develop a unique communication interface that requires unique software and hardware packages. They would prefer to use commercial protocols and standards available through off-the-shelf components. Also, the need for secure communication is critical to keep proprietary data from being distributed to competing organizations. In order to meet the user community needs, SPACEHAB is currently in the process of developing and testing a system designed specifically for the user community called the SPACEHAB Universal Communication System (SHUCS). The purpose of this paper is to present customer requirements, the SHUCS design approach and top level operations, terrestrial test results, and flight testing scheduled for STS-91 and -95.

  10. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  11. Genetic Analysis of Desiccation Tolerance in Saccharomyces cerevisiae

    PubMed Central

    Calahan, Dean; Dunham, Maitreya; DeSevo, Chris; Koshland, Douglas E.

    2011-01-01

    Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. Although the budding yeast Saccharomyces cerevisiae exhibits extreme desiccation tolerance, its usefulness has been hampered by an inability to reduce tolerance more than a few fold by physiological or genetic perturbations. Here we report that fewer than one in a million yeast cells from low-density logarithmic cultures survive desiccation, while 20–40% of cells from saturated cultures survive. Using this greatly expanded metric, we show that mutants defective in trehalose biosynthesis, hydrophilins, responses to hyperosmolarity, and hypersalinity, reactive oxygen species (ROS) scavenging and DNA damage repair nevertheless retain wild-type levels of desiccation tolerance, suggesting that this trait involves a unique constellation of stress factors. A genome-wide screen for mutants that render stationary cells as sensitive as log phase cells identifies only mutations that block respiration. Respiration as a prerequisite for acquiring desiccation tolerance is corroborated by respiration inhibition and by growth on nonfermentable carbon sources. Suppressors bypassing the respiration requirement for desiccation tolerance reveal at least two pathways, one of which, involving the Mediator transcription complex, is associated with the shift from fermentative to respiratory metabolism. Further study of these regulators and their targets should provide important clues to the sensors and effectors of desiccation tolerance. PMID:21840858

  12. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; McConaughy, G.; Lynnes, C.; Morse, S.; Isaac, D.

    2004-12-01

    The last decade's influx of raw data and derived geophysical parameters from several Earth observing satellites to NASA data centers has created a data-rich environment for Earth science research and applications. For example, the Distributed Active Archive Centers of NASA's Earth Observing System Data and Information System held over 2.8 petabytes of data at the end of 2003, growing at a rate of about 3 terabytes per day. The data products are distributed to a large community of scientific researchers, educators and operational government agencies. With advances in computational hardware, networks, information management and software technologies, much progress has been made over the last decade in data archiving and providing data access for a broad, diverse user community. However, to realize the full potential of the growing archives of valuable scientific data, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. The set of providers of data and services pertaining to archiving and distribution of Earth science data is quite heterogeneous and distributed today and is likely to be even more so in the future. This is due to the diversity of Earth Science disciplines and the distribution of expertise needed to provide data and services in those disciplines. Thus, in typical real world applications scenarios, the data and services will be obtained through service chains involving multiple data archive sites or systems. It is in this context that the development of technologies to improve data utilization must occur. Sponsored by NASA's Intelligent Systems Project within the Computing, Information and Communication Technology Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization by adding intelligence into the archives in the context of an overall knowledge building system. Potential Intelligent Archive concepts

  13. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  14. [Development of topical drug delivery systems utilizing polymeric materials].

    PubMed

    Machida, Y

    1993-05-01

    Topical drug delivery is important from the view points of improvement of therapeutic effect and reduction of systemic side effects. Utilization of polymeric materials seemed to be as a key for the development of new topical dosage forms including targeting drug delivery systems. Adriamycin ointment for local chemotherapy to breast cancer prepared using polyethylene glycol, ammonium polyacrylate and hydroxypropyl cellulose (HPC) according to an optimum formulation showed an excellent clinical effect in spite of a decreased drug content. Double-layered mucoadhesive sticks for the treatment of uterine cervix cancer were prepared by direct compression of powder mixture of bleomycin, HPC and carboxyvinyl polymer (CP). Drug release property of the sticks could be controlled by the weight of outer layer, drug combining ratio to each layer and coating of core layer. The results suggested a possibility of a "once-a-week" treatment that is preferable for the patients. Magnetic granules for the treatment of esophageal cancer were prepared using ferrite, HPC and CP. Magnetic guidance and retainment of the granules on esophageal mucosa were confirmed using rabbits in vivo. Buoyant sustained release preparations were prepared using chitosan, soybean protein, HPC and other polymers. Usefulness of the buoyant preparations was suggested from the results in vitro and in vivo. Insulin microspheres (IMS) for targeting delivery to the small intestine were prepared by the newly developed method. Employment of enteric coating material (Eudragit) and combination of protease inhibitor protected insulin from enzymatic attack and gave decreased levels of blood glucose by oral administration.

  15. Imprecise results: Utilizing partial computations in real-time systems

    NASA Technical Reports Server (NTRS)

    Lin, Kwei-Jay; Natarajan, Swaminathan; Liu, Jane W.-S.

    1987-01-01

    In real-time systems, a computation may not have time to complete its execution because of deadline requirements. In such cases, no result except the approximate results produced by the computations up to that point will be available. It is desirable to utilize these imprecise results if possible. Two approaches are proposed to enable computations to return imprecise results when executions cannot be completed normally. The milestone approach records results periodically, and if a deadline is reached, returns the last recorded result. The sieve approach demarcates sections of code which can be skipped if the time available is insufficient. By using these approaches, the system is able to produce imprecise results when deadlines are reached. The design of the Concord project is described which supports imprecise computations using these techniques. Also presented is a general model of imprecise computations using these techniques, as well as one which takes into account the influence of the environment, showing where the latter approach fits into this model.

  16. Genome structure of bdelloid rotifers: shaped by asexuality or desiccation?

    PubMed

    Gladyshev, Eugene A; Arkhipova, Irina R

    2010-01-01

    Bdelloid rotifers are microscopic invertebrate animals best known for their ancient asexuality and the ability to survive desiccation at any life stage. Both factors are expected to have a profound influence on their genome structure. Recent molecular studies demonstrated that, although the gene-rich regions of bdelloid genomes are organized as colinear pairs of closely related sequences and depleted in repetitive DNA, subtelomeric regions harbor diverse transposable elements and horizontally acquired genes of foreign origin. Although asexuality is expected to result in depletion of deleterious transposons, only desiccation appears to have the power to produce all the uncovered genomic peculiarities. Repair of desiccation-induced DNA damage would require the presence of a homologous template, maintaining colinear pairs in gene-rich regions and selecting against insertion of repetitive DNA that might cause chromosomal rearrangements. Desiccation may also induce a transient state of competence in recovering animals, allowing them to acquire environmental DNA. Even if bdelloids engage in rare or obscure forms of sexual reproduction, all these features could still be present. The relative contribution of asexuality and desiccation to genome organization may be clarified by analyzing whole-genome sequences and comparing foreign gene and transposon content in species which lost the ability to survive desiccation.

  17. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.

    PubMed

    Huang, Hui; Song, Songquan

    2013-07-01

    Desiccation tolerance is one of the most important traits determining seed survival during storage and under stress conditions. However, the mechanism of seed desiccation tolerance is still unclear in detail. In the present study, we used a combined model system, desiccation-tolerant and -sensitive maize embryos with identical genetic background, to investigate the changes in desiccation tolerance, malonyldialdehyde (MDA) level, hydrogen peroxide (H₂O₂) content and antioxidant enzyme activity during seed development and germination in 0, -0.6 and -1.2 MPa polyethylene glycol (PEG)-6000 solutions. Our results indicated that maize embryos gradually acquired and lost desiccation tolerance during development and germination, respectively. The acquirement and loss of desiccation tolerance of embryos during development and germination were related to the ability of antioxidant enzymes including superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) to scavenge reactive oxygen species (ROS) and to control MDA content. Compared with treatment in water, PEG-6000 treatment could markedly delay the loss of desiccation tolerance of germinating embryos by delaying water uptake and time course of germination, increasing GR activity and decreasing MDA content. Our data showed the combination of antioxidant enzyme activity and MDA content is a good parameter for assessing the desiccation tolerance of maize embryos. In addition, H₂O₂ accumulated in mature embryos and PEG-treated embryos after drying, which was at least partially related to a longer embryo/seedling length in rehydration and the physiological mechanisms of priming.

  18. Polypropylene Fiber Amendments to Alleviate Initiation and Evolution of Desiccation Cracks in Bentonite Liners

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Gebrenegus, T. B.

    2009-12-01

    Sodium saturated bentonite is a major constituent of compacted and geosynthetic liners and covers for hydraulic isolation of hazardous waste, playing a crucial role in protecting groundwater and other environmental resources from harmful landfill leachates. Due to favorable hydraulic properties (i.e., low permeability), large surface area and associated adsorption capacity for particular contaminants, and relative abundance and low cost, bentonite is the material of choice in many modern waste containment systems. However, long-term interactions between bentonite and waste leachate and exposure of bentonite to desiccative conditions may significantly deteriorate liner or cover performance and ultimately lead to failure of containment systems. In the presented study, the potential usefulness of polypropylene fiber amendments for preventing initiation and evolution of desiccation cracks, while maintaining acceptably low permeability under saturated conditions was investigated. Well-controlled desiccation experiments were conducted using initially saturated bentonite-sand mixtures that contained varying amounts of polypropylene fibers. Initiation and evolution of surface cracks were observed by means of X-Ray Computed Tomography (CT). Advanced image analysis techniques were employed to characterize and quantify 2-D and 3-D features of the evolving crack networks. Potential negative effects of employed additives on saturated hydraulic conductivity were determined with fully-automated Flexible Wall Permeametry (FWP).

  19. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation.

    PubMed

    Bar-Eyal, Leeat; Eisenberg, Ido; Faust, Adam; Raanan, Hagai; Nevo, Reinat; Rappaport, Fabrice; Krieger-Liszkay, Anja; Sétif, Pierre; Thurotte, Adrien; Reich, Ziv; Kaplan, Aaron; Ohad, Itzhak; Paltiel, Yossi; Keren, Nir

    2015-10-01

    Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.

  20. Desiccation of unsaturated porous media: Intermediate-scale experiments and numerical simulation

    SciTech Connect

    Oostrom, Martinus; Wietsma, Thomas W.; Dane, J. H.; Truex, Michael J.; Ward, Anderson L.

    2009-08-01

    Soil desiccation (drying) is recognized as a potentially robust vadose zone remediation process involving water evaporation induced by air injection and extraction. Desiccation has the potential to immobilize contaminants and could potentially improve access for other gas-phase treatments by reducing water saturation and therefore increasing sediment gas-phase permeability. Before this technology could be deployed in the field, concerns related to energy limitations, osmotic effects, and potential contaminant remobilization after rewetting need to be addressed. A series of detailed wedge-shaped, intermediate-scale laboratory experiments in unsaturated homogeneous and simple heterogeneous systems was conducted to improve the understanding of the impact of energy balance issues on soil desiccation. The experiments were simulated with the multifluid flow simulator STOMP, using independently obtained hydraulic and thermal porous medium properties. In all the experiments, the injection of dry air proved to be an effective means for removing essentially all moisture from the test media. Evaporative cooling was observed which generally decreased with increased distance from the gas inlet chamber. Observations of temperature in fine-grained sands in the heterogeneous systems show two local temperature minima associated with the cooling. The first one occurs because of evaporation in the adjacent medium-grained sand whereas the second minimum is attributed to evaporative cooling in the fine-grained sand itself. Results of the laboratory tests were simulated accurately when thermal properties of the flow cell walls and insulation material were taken into account, indicating that the proper physics were incorporated into the simulator.

  1. Effects of Porous Medium Heterogeneity on Vadose Zone Desiccation: Intermediate-scale Laboratory Experiments and Simulations

    SciTech Connect

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Dane, Jacob H.; Truex, Michael J.

    2012-11-01

    Soil desiccation (drying), involving water evaporation induced by dry gas injection, is a potentially robust vadose zone remediation process to limit contaminant transport through the vadose zone. A series of four intermediate-scale flow cell experiments was conducted in homogeneous and simple layered heterogeneous porous medium systems to investigate the effects of heterogeneity on desiccation of unsaturated porous media. The permeability ratios of porous medium layers ranged from about five to almost two orders of magnitude. The insulated flow cell was equipped with twenty humidity and temperature sensors and a dual-energy gamma system was used to determine water saturations at various times. The multiphase code STOMP was used to simulate the desiccation process. Results show that injected dry gas flowed predominantly in the higher permeability layer and delayed water removal from the lower permeability material. For the configurations tested, water vapor diffusion from the lower to the higher permeability zone was considerable over the duration of the experiments, resulting in much larger relative humidity values of the outgoing air than based on permeability ratios alone. Acceptable numerical matches with the experimental data were obtained when an extension of the saturation-capillary pressure relation below the residual water saturation was used. The agreements between numerical and experimental results suggest that the correct physics are implemented in the simulator and that the thermal and hydraulic properties of the porous media, flow cell wall and insulation materials were properly represented.

  2. Research in biomass production and utilization: Systems simulation and analysis

    NASA Astrophysics Data System (ADS)

    Bennett, Albert Stewart

    of a mobile juice harvester is not economically viable due to low sugar recovery. The addition of front-end stalk processing/pressing equipment into existing ethanol facilities was found to be economically viable when combined with the plants' use of residuals as a natural gas fuel replacement. Because of high loss of fermentable carbohydrates during ensilage, storage of sweet sorghum in bunkers was not found to be economically viable. The fourth section looks at double cropping winter triticale with late-planted summer corn and compares these scenarios to traditional single cropped corn. Double cropping systems show particular promise for co-production of grain and biomass feedstocks and potentially can allow for greater utilization of grain crop residues. However, additional costs and risks associated with producing two crops instead of one could make biomass-double crops less attractive for producers despite productivity advantages. Detailed evaluation and comparisons show double cropped triticale-corn to be at a significant economic disadvantage relative to single crop corn. The cost benefits associated with using less equipment combined with availability of risk mitigating crop insurance and government subsidies will likely limit farmer interest and clearly indicate that traditional single-crop corn will provide greater financial returns to management. To evaluate the various sweet sorghum, single crop corn and double cropped triticale-corn production scenarios, a detailed but generic model was developed. The primary goal of this generic approach was to develop a modeling foundation that can be rapidly adapted, by an experienced user, to describe new and existing biomass and crop production scenarios that may be of interest to researchers. The foundation model allows input of management practices, crop production characteristics and utilizes standardized machinery performance and cost information, including farm-owned machinery and implements, and machinery and

  3. Hydraulic conductivity of desiccated geosynthetic clay liners

    SciTech Connect

    Boardman, B.T.; Daniel, D.E.

    1996-03-01

    Large-scale tests were performed to determine the effect of a cycle of wetting and drying on the hydraulic conductivity of several geosynthetic clay liners (GCLs). The GCLs were covered with 0.6 m of pea gravel and permeated with water. After steady seepage had developed, the water was drained away, and the GCL was desiccated by circulating heated air through the overlying gravel. The drying caused severe cracking in the bentonite component of the GCLs. The GCLs were again permeated with water. As the cracked bentonite hydrated and swelled, the hydraulic conductivity slowly decreased from an initially high value. The long-term, steady value of hydraulic conductivity after the wetting and drying cycle was found to be essentially the same as the value for the undesiccated GCL. It is concluded that GCLs possess the ability to self-heal after a cycle of wetting and drying, which is important for applications in which there may be alternate wetting and drying of a hydraulic barrier (e.g. within a landfill final cover).

  4. The modern office environment desiccates the eyes?

    PubMed

    Wolkoff, P; Nøjgaard, J K; Franck, C; Skov, P

    2006-08-01

    Eye irritation is a common complaint in the office environment. The purpose of this overview is to merge knowledge within indoor air science, ophthalmology, and occupational health to promote understanding eye irritation symptomatology, the cause of which is still partly unknown. High periocular relative humidity appears to protect the pre-corneal tear film against desiccation and sensory irritating pollutants and reduces the development of eye irritation symptoms. This is particularly relevant for intensive computer work, where the pre-corneal tear film is altered resulting in dry spot formation and eye dryness, in addition to enhanced susceptibility towards sensory irritating pollutants. The workplace, thermal conditions, and work schedule (including breaks) should be planned in such a way to help maintain a normal eye blink frequency to minimize alterations of the pre-corneal tear film. The role of relative humidity on eye irritation symptoms should not be underestimated. Multiple short breaks are justified by the beneficial effect on the pre-corneal tear film. In addition, longer breaks in tasks, which require demanding visual work, should be considered. In addition, air temperature as well as certain alkene oxidation products by ozone may worsen eye irritation symptoms, but the latter factor may be smaller at higher relative humidity.

  5. Genomics of aerobic cellulose utilization systems in actinobacteria.

    PubMed

    Anderson, Iain; Abt, Birte; Lykidis, Athanasios; Klenk, Hans-Peter; Kyrpides, Nikos; Ivanova, Natalia

    2012-01-01

    Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.

  6. Genomics of Aerobic Cellulose Utilization Systems in Actinobacteria

    PubMed Central

    Anderson, Iain; Abt, Birte; Lykidis, Athanasios; Klenk, Hans-Peter; Kyrpides, Nikos; Ivanova, Natalia

    2012-01-01

    Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms. PMID:22723998

  7. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  8. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    NASA Astrophysics Data System (ADS)

    Vargas, Danilo; Cable Kurwitz, R.; Carron, Igor; DePriest, K. Russell

    2016-02-01

    A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A) consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1) and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  9. Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness

    PubMed Central

    Stark, Lloyd R.; Brinda, John C.

    2015-01-01

    Background and Aims Two ecological strategies of desiccation tolerance exist in plants, constitutive and inducible. Because of difficulties in culturing sporophytes, very little is known about desiccation tolerance in this generation and how desiccation affects sexual fitness. Methods Cultured sporophytes and vegetative shoots from a single genotype of the moss Aloina ambigua raised in the laboratory were tested for their strategy of desiccation tolerance by desiccating the shoot–sporophyte complex and vegetative shoots at different intensities, and comparing outcomes with those of undried shoot–sporophyte complexes and vegetative shoots. By using a dehardened clonal line, the effects of field, age and genetic variance among plants were removed. Key Results The gametophyte and embryonic sporophyte were found to employ a predominantly inducible strategy of desiccation tolerance, while the post-embryonic sporophyte was found to employ a moderately constitutive strategy of desiccation tolerance. Further, desiccation reduced sporophyte fitness, as measured by sporophyte mass, seta length and capsule size. However, the effects of desiccation on sporophyte fitness were reduced if the stress occurred during embryonic development as opposed to postembryonic desiccation. Conclusions The effects of desiccation on dehardened sporophytes of a bryophyte are shown for the first time. The transition from one desiccation tolerance strategy to the other in a single structure or generation is shown for only the second time in plants and for the first time in bryophytes. Finding degrees of inducible strategies of desiccation tolerance in different life phases prompts the formulation of a continuum hypothesis of ecological desiccation tolerance in mosses, where desiccation tolerance is not an either/or phenomenon, but varies in degree along a gradient of ecological inducibility. PMID:25578378

  10. Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community.

    PubMed

    Bujan, Jelena; Yanoviak, Stephen P; Kaspari, Michael

    2016-09-01

    Desiccation resistance, the ability of an organism to reduce water loss, is an essential trait in arid habitats. Drought frequency in tropical regions is predicted to increase with climate change, and small ectotherms are often under a strong desiccation risk. We tested hypotheses regarding the underexplored desiccation potential of tropical insects. We measured desiccation resistance in 82 ant species from a Panama rainforest by recording the time ants can survive desiccation stress. Species' desiccation resistance ranged from 0.7 h to 97.9 h. We tested the desiccation adaptation hypothesis, which predicts higher desiccation resistance in habitats with higher vapor pressure deficit (VPD) - the drying power of the air. In a Panama rainforest, canopy microclimates averaged a VPD of 0.43 kPa, compared to a VPD of 0.05 kPa in the understory. Canopy ants averaged desiccation resistances 2.8 times higher than the understory ants. We tested a number of mechanisms to account for desiccation resistance. Smaller insects should desiccate faster given their higher surface area to volume ratio. Desiccation resistance increased with ant mass, and canopy ants averaged 16% heavier than the understory ants. A second way to increase desiccation resistance is to carry more water. Water content was on average 2.5% higher in canopy ants, but total water content was not a good predictor of ant desiccation resistance or critical thermal maximum (CT max), a measure of an ant's thermal tolerance. In canopy ants, desiccation resistance and CT max were inversely related, suggesting a tradeoff, while the two were positively correlated in understory ants. This is the first community level test of desiccation adaptation hypothesis in tropical insects. Tropical forests do contain desiccation-resistant species, and while we cannot predict those simply based on their body size, high levels of desiccation resistance are always associated with the tropical canopy.

  11. Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community.

    PubMed

    Bujan, Jelena; Yanoviak, Stephen P; Kaspari, Michael

    2016-09-01

    Desiccation resistance, the ability of an organism to reduce water loss, is an essential trait in arid habitats. Drought frequency in tropical regions is predicted to increase with climate change, and small ectotherms are often under a strong desiccation risk. We tested hypotheses regarding the underexplored desiccation potential of tropical insects. We measured desiccation resistance in 82 ant species from a Panama rainforest by recording the time ants can survive desiccation stress. Species' desiccation resistance ranged from 0.7 h to 97.9 h. We tested the desiccation adaptation hypothesis, which predicts higher desiccation resistance in habitats with higher vapor pressure deficit (VPD) - the drying power of the air. In a Panama rainforest, canopy microclimates averaged a VPD of 0.43 kPa, compared to a VPD of 0.05 kPa in the understory. Canopy ants averaged desiccation resistances 2.8 times higher than the understory ants. We tested a number of mechanisms to account for desiccation resistance. Smaller insects should desiccate faster given their higher surface area to volume ratio. Desiccation resistance increased with ant mass, and canopy ants averaged 16% heavier than the understory ants. A second way to increase desiccation resistance is to carry more water. Water content was on average 2.5% higher in canopy ants, but total water content was not a good predictor of ant desiccation resistance or critical thermal maximum (CT max), a measure of an ant's thermal tolerance. In canopy ants, desiccation resistance and CT max were inversely related, suggesting a tradeoff, while the two were positively correlated in understory ants. This is the first community level test of desiccation adaptation hypothesis in tropical insects. Tropical forests do contain desiccation-resistant species, and while we cannot predict those simply based on their body size, high levels of desiccation resistance are always associated with the tropical canopy. PMID:27648242

  12. The limits and frontiers of desiccation-tolerant life.

    PubMed

    Alpert, Peter

    2005-11-01

    Drying to equilibrium with the air is lethal to most species of animals and plants, making drought (i.e., low external water potential) a central problem for terrestrial life and a major cause of agronomic failure and human famine. Surprisingly, a wide taxonomic variety of animals, microbes, and plants do tolerate complete desiccation, defined as water content below 0.1 g H(2)O g(-1) dry mass. Species in five phyla of animals and four divisions of plants contain desiccation-tolerant adults, juveniles, seeds, or spores. There seem to be few inherent limits on desiccation tolerance, since tolerant organisms can survive extremely intense and prolonged desiccation. There seems to be little phylogenetic limitation of tolerance in plants but may be more in animals. Physical constraints may restrict tolerance of animals without rigid skeletons and to plants shorter than 3 m. Physiological constraints on tolerance in plants may include control by hormones with multiple effects that could link tolerance to slow growth. Tolerance tends to be lower in organisms from wetter habitats, and there may be selection against tolerance when water availability is high. Our current knowledge of limits to tolerance suggests that they pose few obstacles to engineering tolerance in prokaryotes and in isolated cells and tissues, and there has already been much success on this scientific frontier of desiccation tolerance. However, physical and physiological constraints and perhaps other limits may explain the lack of success in extending tolerance to whole, desiccation-sensitive, multicellular animals and plants. Deeper understanding of the limits to desiccation tolerance in living things may be needed to cross this next frontier.

  13. Microbial biosynthesis of wax esters during desiccation: an adaptation for colonization of the earliest terrestrial environments?

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Brassell, S. C.; Pratt, L. M.

    2008-12-01

    Biosynthesis of wax esters (WE) by prokaryotes in natural systems, notably bacteria from hot springs and marine phytoplankton, is poorly documented, primarily because saponification is a routine step in the analysis of microbial mat lipids. Use of this preparative procedure, critical for characterization of the diagnostic distributions of carboxylic acids in phospholipids, precludes recovery of intact WE. Examination of non-saponified lipids in emergent and desiccated mats with comparable microbial communities from the Warner Lake region, Oregon, reveals increases in the relative abundance (18.6 to 59.9μg/g Corg) and average chain length (C38 to C46) of WE in the latter, combined with assimilation of phytol and tocopherol moieties. Prokaryotes can accumulate WE as storage lipids in vitro, notably at elevated temperature or under nitrogen limiting conditions, but we propose that biosynthesis of long-chain WE that have a low solubility and are resistant to degradation/oxidation may represent an evolutionary strategy to survive desiccation in evaporative environments. Moreover, aeolian transport of desiccated mat-rip-ups between lake flats allows for migration of microbial communities within and between lake flats and basins during arid conditions. Subsequent rehydration within an alkaline environment would naturally saponify WE, and thereby regenerate alcohol and acid moieties that could serve as membrane lipids for the next viable microbial generation. The evolutionary cradle of WE was likely abiotic generation under hydrothermal conditions, which is consistent with the antiquity of the ester linkage necessitated by its integral role in the membranes of Eubacteria (though not Archaea) and in bacteriochlorophyll. The subsequent capability of microbes to biosynthesize WE may have facilitated their survival when nutrients were limiting, and production of long-chain WE (>C40) may represent a further critical evolutionary threshold that enabled their persistence through

  14. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.

    PubMed

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y; de Folter, Stefan; Herrera-Estrella, Luis

    2016-08-30

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  15. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana

    PubMed Central

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A.; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y.; de Folter, Stefan; Herrera-Estrella, Luis

    2016-01-01

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  16. Initial comparisons of modular-sized, integrated utility systems and conventional systems for several building types

    NASA Technical Reports Server (NTRS)

    Benson, H. E.; Monford, L. G., Jr.

    1976-01-01

    The results of a study of the application of a modular integrated utility system to six typical building types are compared with the application of a conventional utility system to the same facilities. The effects of varying the size and climatic location of the buildings and the size of the powerplants are presented. Construction details of the six building types (garden apartments, a high rise office building, high rise apartments, a shopping center, a high school, and a hospital) and typical site and floor plans are provided. The environmental effects, the unit size determination, and the market potential are discussed. The cost effectiveness of the various design options is not considered.

  17. Quantification of ammonia binding sites in Davison (Type 3A) zeolite desiccant : a solid-state Nitrogen-15 MAS NMR spectroscopy investigation.

    SciTech Connect

    Alam, Todd Michael; Holland, Gregory P.; Cherry, Brian Ray

    2004-01-01

    The quantitative analysis of ammonia binding sites in the Davison (Type 3A) zeolite desiccant using solid-state {sup 15}N MAS NMR spectroscopy is reported. By utilizing 15N enriched ammonia ({sup 15}NH{sub 3}) gas, the different adsorption/binding sites within the zeolite were investigated as a function of NH{sub 3} loading. Using {sup 15}N MAS NMR multiple sites were resolved that have distinct cross-polarization dynamics and chemical shift behavior. These differences in the {sup 15}N NMR were used to characterize the adsorption environments in both the pure 3A zeolite and the silicone-molded forms of the desiccant.

  18. Characterization of a mannose utilization system in Bacillus subtilis.

    PubMed

    Sun, Tianqi; Altenbuchner, Josef

    2010-04-01

    The mannose operon of Bacillus subtilis consists of three genes, manP, manA, and yjdF, which are responsible for the transport and utilization of mannose. Upstream and in the same orientation as the mannose operon a regulatory gene, manR, codes for a transcription activator of the mannose operon, as shown in this study. Both mannose operon transcription and manR transcription are inducible by mannose. The presence of mannose resulted in a 4- to 7-fold increase in expression of lacZ from the manP promoter (P(manP)) and in a 3-fold increase in expression of lacZ from the manR promoter (P(manR)). The transcription start sites of manPA-yjdF and manR were determined to be a single A residue and a single G residue, respectively, preceded by -10 and -35 boxes resembling a vegetative sigma(A) promoter structure. Through deletion analysis the target sequences of ManR upstream of P(manP) and P(manR) were identified between bp -80 and -35 with respect to the transcriptional start site of both promoters. Deletion of manP (mannose transporter) resulted in constitutive expression from both the P(manP) and P(manR) promoters, indicating that the phosphotransferase system (PTS) component EII(Man) has a negative effect on regulation of the mannose operon and manR. Moreover, both P(manP) and P(manR) are subject to carbon catabolite repression (CCR). By constructing protein sequence alignments a DNA binding motif at the N-terminal end, two PTS regulation domains (PRDs), and an EIIA- and EIIB-like domain were identified in the ManR sequence, indicating that ManR is a PRD-containing transcription activator. Like findings for other PRD regulators, the phosphoenolpyruvate (PEP)-dependent phosphorylation by the histidine protein HPr via His15 plays an essential role in transcriptional activation of P(manP) and P(manR). Phosphorylation of Ser46 of HPr or of the homologous Crh protein by HPr kinase and formation of a repressor complex with CcpA are parts of the B. subtilis CCR system. Only

  19. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  20. Effective Operation for an Adsorptive Desiccant Cooling Process using a Double-Stage Regeneration of Honeycomb Rotary Dehumidifier

    NASA Astrophysics Data System (ADS)

    Kodama, Akio; Ando, Kouke; Hirose, Tsutomu; Goto, Motonobu; Tuziguchi, Takuya; Okano, Hiroshi

    A double-stage regeneration concept has been applied to a rotary dehumidifier to achieve a high efficient desiccant cooling process. In this concept, regeneration zone of the dehumidifier was divided into two zones. One was pre-regeneration zone where the desiccant rotor was regenerated by warm air heated at the sensible heat exchanger, and the other was heating regeneration zone where the rotor was further regenerated by hot air heated up to the controlled temperature at a heating system. In this paper, the influence of the area ratio of these two zones on the dehumidifying/cooling performance and energy efficiency of this desiccant system were mainly discussed at several levels of the regeneration temperature, supply air velocity and inlet air humidity. Experimental results indicated that the area ratio of the heating regeneration zone should be optimized to produce a sufficient dehumidifying/cooling performance with high energy efficiency, considering humidity requested in supply air. It was also found that the amount of energy input was rather decreased than the decrease of the cooling performance as the area ratio of the heating regeneration zone decreased, and this tendency was more remarkable at higher regeneration temperature. Finally, the double-stage regeneration was confirmed to be an effective operating method for the desiccant cooling process equipped with a otary dehumidifier.

  1. Overview of the US Department of Energy Utility Battery Storage Systems Program

    SciTech Connect

    Eaton, R.; Akhil, A.; Butler, P.C.; Hurwitch, J.

    1993-08-01

    The US Department of Energy (DOE) is sponsoring the Utility Battery Storage Systems Program at Sandia National Laboratories and its contractors. This program is specifically aimed at developing battery energy storage systems for electric utility applications commencing in the mid to late 1990s. One factory-integrated utility battery system and three battery technologies: sodium/sulfur, zinc/bromine, and lead-acid are being developed under this program. In the last few years the emphasis of this program has focused on battery system development. This emphasis has included greater interactions with utilities to define application requirements. Recent activities have identified specific applications of battery energy storage in certain utility systems and quantified the value of these applications to these utility companies. In part due to these activities, battery energy storage is no longer regarded by utilities as a load-leveling resource only, but as a multifunction, energy management resource.

  2. Desiccation tolerance of protoplasts isolated from pea embryos.

    PubMed

    Xiao, L; Koster, K L

    2001-11-01

    To facilitate studies of desiccation tolerance at the cellular level, a technique to isolate protoplasts from desiccation-tolerant pea (Pisum sativum L. cv. Alaska) embryos has been developed. Using FDA (fluorescein diacetate) as a probe, viability of the protoplasts was investigated before and after drying to determine whether the protoplasts could survive desiccation in a manner similar to the tissue from which they were isolated. Protoplasts were isolated from 12 h imbibed pea axes, suspended in several different sugar solutions, then dried to water contents less than 0.2 g H(2)O g(-1) DW. Protoplasts only survived drying if the rate was rapid (<2 h), while slow drying (24 h) was lethal. Maximal survival (75%) was obtained after drying protoplasts with a mixture of sucrose and raffinose, while pure sucrose and trehalose were somewhat less effective protectants. Low survival was obtained after drying protoplasts with monosaccharides and pure raffinose. Protoplasts isolated from germinated seedlings did not survive dehydration below 0.2 g H(2)O g(-1) DW. Transmission electron microscopy revealed that dried desiccation-tolerant protoplasts appeared shrunken, with folded membranes, while dried protoplasts from sensitive tissue had disrupted membranes. While isolated protoplasts maintained some of the desiccation tolerance of orthodox seeds, their inability to survive complete drying and their sensitivity to drying rate is similar to the behaviour of recalcitrant embryos.

  3. Wheat seedlings as a model to understand desiccation tolerance and sensitivity.

    PubMed

    Farrant, Jill M.; Bailly, Christophe; Leymarie, Juliette; Hamman, Brigitte; Côme, Daniel; Corbineau, Françoise

    2004-04-01

    The coleoptiles of wheat (Triticum aestivum L.) seedlings of cultivar Trémie are desiccation tolerant when 3 days old, although the roots are not. Cutting some of the coleoptiles open prior to dehydration rapidly increased the drying rate. This rendered the coleoptiles sensitive to desiccation, providing a useful model with which to study desiccation tolerance. Both sensitive and tolerant seedlings were dehydrated to 0.3 g H(2)O g(-1) dry mass (g.g) and thereafter rehydrated. Sensitive tissues accr- ued the lipid peroxidation products H(2)O(2)and MDA, and substantial subcellular damage was evident in dry tissues. H(2)O(2) and MDA accumulated slightly only in dry tolerant coleoptiles and no subcellular damage was evident. The activity of antioxidant enzymes glutathione reductase (EC1.6.2.4), superoxide dismutase (EC 1.14.1.1) and catalase (EC 1.11.1.6) increased on drying in both tolerant and sensitive tissues, but were sustained on rehydration in only the tolerant tissues. It is proposed that free radical damage sustained during rapid drying exceeded the ameliorating capacity of antioxidant systems, allowed accrual of lethal subcellular damage. Slow drying enabled sufficient detoxification by antioxidants to minimize damage and allow tolerance to drying. Three LEA- (p11 and Asp 52) and dehydrin- (XV8) like proteins were detected by western blots in tolerant coleoptiles dried to 3.0 g.g and below. Only one (Asp 52) was induced at low water content in rapidly dried sensitive coleoptiles. None were present in root tissues. XV8 RNA (northern analyses) was induced on drying only in tolerant coleoptiles and correlated with protein expression. These stress-putative protein protectants (and XV8 transcripts) appear to be down-regulated during germination but wheat seedlings temporarily retain the ability to reproduce them if drying is slow. Sucrose accumulation during dehydration was similar for both sensitive and tolerant tissues, suggesting that this sugar has little

  4. A control system for improved battery utilization in a PV-powered peak-shaving system

    SciTech Connect

    Palomino, E; Stevens, J.; Wiles, J.

    1996-08-01

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  5. Desiccation resistance and persistence of Cronobacter species in infant formula.

    PubMed

    Osaili, T; Forsythe, S

    2009-12-31

    Cronobacter is a newly described genus which includes opportunistic pathogens formerly known as 'Enterobacter sakazakii'. These organisms have been isolated from a wide variety of sources, including powdered infant formula (PIF). This review focuses on the desiccation survival of Cronobacter, and its relevance to vehicles of infection. Due to its probable natural habitat of plant material, the organism has an array of survival mechanisms which includes resistance to desiccation and osmotic stresses. The organism can survive for long periods of time (>2years) in the desiccated state, and can be recovered from a large number of powdered foods in addition to powdered infant formula. On reconstitution, the organism may rapidly multiply and present a risk to immunocompromised infants. It is expected that an improved understanding of the nature of Cronobacter persistence may aid in further improved control measures and eliminate the bacterium from the critical food production environments.

  6. Function of desiccate in gustatory sensilla of drosophila melanogaster

    PubMed Central

    Kawano, Takeshi; Ryuda, Masasuke; Matsumoto, Hitoshi; Ochiai, Masanori; Oda, Yasunori; Tanimura, Teiichi; Csikos, Gyorge; Moriya, Megumi; Hayakawa, Yoichi

    2015-01-01

    Desiccate (Desi), initially discovered as a gene expressing in the epidermis of Drosophila larvae for protection from desiccation stress, was recently found to be robustly expressed in the adult labellum; however, the function, as well as precise expression sites, was unknown. Here, we found that Desi is expressed in two different types of non-neuronal cells of the labellum, the epidermis and thecogen accessory cells. Labellar Desi expression was significantly elevated under arid conditions, accompanied by an increase in water ingestion by adults. Desi overexpression also promoted water ingestion. In contrast, a knockdown of Desi expression reduced feeding as well as water ingestion due to a drastic decrease in the gustatory sensillar sensitivity for all tested tastants. These results indicate that Desi helps protect insects from desiccation damage by not only preventing dehydration through the integument but also accelerating water ingestion via elevated taste sensitivities of the sensilla. PMID:26610608

  7. Function of desiccate in gustatory sensilla of drosophila melanogaster.

    PubMed

    Kawano, Takeshi; Ryuda, Masasuke; Matsumoto, Hitoshi; Ochiai, Masanori; Oda, Yasunori; Tanimura, Teiichi; Csikos, Gyorge; Moriya, Megumi; Hayakawa, Yoichi

    2015-11-27

    Desiccate (Desi), initially discovered as a gene expressing in the epidermis of Drosophila larvae for protection from desiccation stress, was recently found to be robustly expressed in the adult labellum; however, the function, as well as precise expression sites, was unknown. Here, we found that Desi is expressed in two different types of non-neuronal cells of the labellum, the epidermis and thecogen accessory cells. Labellar Desi expression was significantly elevated under arid conditions, accompanied by an increase in water ingestion by adults. Desi overexpression also promoted water ingestion. In contrast, a knockdown of Desi expression reduced feeding as well as water ingestion due to a drastic decrease in the gustatory sensillar sensitivity for all tested tastants. These results indicate that Desi helps protect insects from desiccation damage by not only preventing dehydration through the integument but also accelerating water ingestion via elevated taste sensitivities of the sensilla.

  8. Bacterial survival responses to extreme desiccation and high humidity

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shinichi; Yamagishi, Akihiko

    The presence of water is thought to be essential for life and strongly considered in life searching operation on extraterrestrial planets. In this study we show different survival responses of bacterial species to water availability and temperatures (25, 4 and - 70 o C). At these temperatures, E.coli lost viability much faster under extreme desiccation than under high humidity. Deinococcus radiodurans exhibited much higher survival rate under desiccation than under high humidity at 25 o C, while its survivals under desiccation and high humidity increased to the same level at 4 and - 70 o C. Bacillus pumilus spores generally survived well under all tested conditions. Water is favorable for the survival of most microorganisms but not a "safeguard" for all microorganisms. Microbial survival at low temperatures may not be affected by water availability. Water absence should not preclude us from seeking life on other planets.

  9. 75 FR 79982 - Authority To Designate Financial Market Utilities as Systemically Important

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ...; ] FINANCIAL STABILITY OVERSIGHT COUNCIL 12 CFR Chapter XIII Authority To Designate Financial Market Utilities... designate as systemically important a financial market utility if the Council determines that the failure, or a disruption to the functioning, of a financial market utility could create or increase the...

  10. Design handbook for photovoltaic power systems. Volume 1: Simplified methods for utility interconnected systems

    NASA Astrophysics Data System (ADS)

    Gupta, Y. P.; Young, K.

    1981-10-01

    Principles of photovoltaic power system operation and the elements of system design are discussed. Design characteristics and issues (related to site conditions, building architecture, energy use, and economics) which influence PV system design and performance are identified. Economic feasibility and preliminary array sizing for a PV system application are assessed. A system configuration appropriate for the given site, building, and energy application is provided. Standard techniques and concepts of economic evaluation that form the basis for determining cost effective sizes for PV solar arrays are presented. The building energy load data that is required to perform the PV system analyses are characterized. Procedures for estimating residential energy demand are included. The array, estimate performance, and evaluate the economic value of the PV system are sized. Key aspects of system design including module/panel interconnection, array structure, power conditioning, and utility/load interfaces are discussed.

  11. Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods.

    PubMed

    Dias, André T C; Krab, Eveline J; Mariën, Janine; Zimmer, Martin; Cornelissen, Johannes H C; Ellers, Jacintha; Wardle, David A; Berg, Matty P

    2013-07-01

    Predicted changes in soil water availability regimes with climate and land-use change will impact the community of functionally important soil organisms, such as macro-detritivores. Identifying and quantifying the functional traits that underlie interspecific differences in desiccation resistance will enhance our ability to predict both macro-detritivore community responses to changing water regimes and the consequences of the associated species shifts for organic matter turnover. Using path analysis, we tested (1) how interspecific differences in desiccation resistance among 22 northwestern European terrestrial isopod species could be explained by three underlying traits measured under standard laboratory conditions, namely, body ventral surface area, water loss rate and fatal water loss; (2) whether these relationships were robust to contrasting experimental conditions and to the phylogenetic relatedness effects being excluded; (3) whether desiccation resistance and hypothesized underlying traits could explain species distribution patterns in relation to site water availability. Water loss rate and (secondarily) fatal water loss together explained 90% of the interspecific variation in desiccation resistance. Our path model indicated that body surface area affects desiccation resistance only indirectly via changes in water loss rate. Our results also show that soil moisture determines isopod species distributions by filtering them according to traits underpinning desiccation resistance. These findings reveal that it is possible to use functional traits measured under standard conditions to predict soil biota responses to water availability in the field over broad spatial scales. Taken together, our results demonstrate an increasing need to generate mechanistic models to predict the effect of global changes on functionally important organisms.

  12. Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.

    1985-01-01

    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.

  13. Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.

    1985-05-01

    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.

  14. Advances in open-cycle solid desiccant cooling

    SciTech Connect

    Penney, T R; Maclaine-cross, I

    1985-05-01

    Of the solar cooling options available open cycle solid desiccant cooling looks very promising. A brief review of the experimental and analytical efforts to date shows that within the last 10 years thermal performance has doubled. Research centers have been developed to explore new materials and geometry options and to improve and validate mathematical models that can be used by design engineers to develop new product lines. Typical results from the Solar Energy Research Institute's (SERI) Desiccant Cooling Research Program are shown. Innovative ideas for new cycles and spinoff benefits provide incentives to continue research in this promising field.

  15. Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance

    NASA Astrophysics Data System (ADS)

    Baxter, Bonnie K.; Eddington, Breanne; Riddle, Misty R.; Webster, Tabitha N.; Avery, Brian J.

    2007-09-01

    Great Salt Lake (GSL) is home to halophiles, salt-tolerant Bacteria and Archaea, which live at 2-5M NaCl. In addition to salt tolerance, GSL halophiles exhibit resistance to both ultraviolet (UV) irradiation and desiccation. First, to understand desiccation resistance, we sought to determine the diversity of GSL halophiles capable of surviving desiccation in either recently formed GSL halite crystals or GSL Artemia (brine shrimp) cysts. From these desiccated environments, surviving microorganisms were cultured and isolated, and genomic DNA was extracted from the individual species for identification by 16S rRNA gene homology. From the surface-sterilized cysts we also extracted DNA of the whole microbial population for non-cultivation techniques. We amplified the archaeal or bacterial 16S rRNA gene from all genomic DNA, cloned the cyst population amplicons, and sequenced. These sequences were compared to gene databases for determination of closest matched species. Interestingly, the isolates from the crystal dissolution are distinct from those previously isolated from GSL brine. The cyst population results reveal species not found in crystals or brine, and may indicate microorganisms that live as endosymbionts of this hypersaline arthropod. Second, we explored UV resistance in a GSL haloarchaea species, "H. salsolis." This strain resists UV irradiation an order of magnitude better than control species, all of which have intact repair systems. To test the hypothesis that halophiles have a photoprotection system, which prevents DNA damage from occurring, we designed an immunoassay to detect thymine dimers following UV irradiation. "H. salsolis" showed remarkable resistance to dimer formation. Evidence for both UV and desiccation resistance in these salt-tolerant GSL halophiles makes them well-suited as models for Astrobiological studies in pursuit of questions about life beyond earth.

  16. Utilization of space resources in the space transportation system

    NASA Technical Reports Server (NTRS)

    Simon, Michael C.

    1992-01-01

    Utilization of space resources (i.e., raw materials obtained from nonterrestrial sources) has often been cited as a prerequisite for large-scale industrialization and habitation of space. While transportation of extremely large quantities of material from Earth would be costly and potentially destructive to our environment, vast quantities of usable resources might be derived from the Moon, the asteroids, and other celestial objects in a cost-effective and environmentally benign manner. The primary purpose of the parametric cost model developed as part of this study is to identify the factors that have the greatest influence on the economics of space resource utilization. In the near term, this information can be used to devise strategies for technology development so that capabilities developed will produce cost-effective results.

  17. Utilization of space resources in the space transportation system

    NASA Astrophysics Data System (ADS)

    Simon, Michael C.

    Utilization of space resources (i.e., raw materials obtained from nonterrestrial sources) has often been cited as a prerequisite for large-scale industrialization and habitation of space. While transportation of extremely large quantities of material from Earth would be costly and potentially destructive to our environment, vast quantities of usable resources might be derived from the Moon, the asteroids, and other celestial objects in a cost-effective and environmentally benign manner. The primary purpose of the parametric cost model developed as part of this study is to identify the factors that have the greatest influence on the economics of space resource utilization. In the near term, this information can be used to devise strategies for technology development so that capabilities developed will produce cost-effective results.

  18. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  19. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  20. Case for Deploying Complex Systems Utilizing Commodity Components

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Pitts, R. Lee; Ritter, George

    2003-01-01

    This viewgraph representation presents a study of the transition of computer networks and software engineering at the Huntsville Operations Support Center (HOSC) from a client/server UNIX based system to a client/server system based on commodity priced and open system components. Topics covered include: an overview of HOSC ground support systems, an analysis for changes to the existing ground support system, an analysis of options considered for the transition to a new system, and a consideration of goals for a new system.

  1. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2008-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  2. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  3. In-situ Resource Utilization (ISRU) and Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry; Larson, Bill; Sacksteder, Kurt

    2007-01-01

    This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.

  4. Lessons on dehydration tolerance from desiccation tolerant plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extremophiles: organisms that thrive (a relative term) in environments where conditions are such that the majority of organisms cannot survive. This is not strictly true if one is describing desiccation-tolerant plants, as other plants do grow around them, but it is certainly true that they can surv...

  5. Desiccation-crack-induced salinization in deep clay sediment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Ronen, Z.; Kurtzman, D.; Külls, C.; Dahan, O.

    2013-04-01

    A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  6. Desiccation-crack-induced salinization in deep clay sediment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Ronen, Z.; Kurtzman, D.; Küells, C.; Dahan, O.

    2012-11-01

    A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water-content and on the chemical and isotopic composition of the sediment and pore-water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ∼3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a Desiccation-Crack-Induced Salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  7. Transcriptional Response of Saccharomyces cerevisiae to Desiccation and Rehydration†

    PubMed Central

    Singh, Jatinder; Kumar, Deept; Ramakrishnan, Naren; Singhal, Vibha; Jervis, Jody; Garst, James F.; Slaughter, Stephen M.; DeSantis, Andrea M.; Potts, Malcolm; Helm, Richard F.

    2005-01-01

    A transcriptional analysis of the response of Saccharomyces cerevisiae strain BY4743 to controlled air-drying (desiccation) and subsequent rehydration under minimal glucose conditions was performed. Expression of genes involved in fatty acid oxidation and the glyoxylate cycle was observed to increase during drying and remained in this state during the rehydration phase. When the BY4743 expression profile for the dried sample was compared to that of a commercially prepared dry active yeast, strikingly similar expression changes were observed. The fact that these two samples, dried by different means, possessed very similar transcriptional profiles supports the hypothesis that the response to desiccation is a coordinated event independent of the particular conditions involved in water removal. Similarities between “stationary-phase-essential genes” and those upregulated during desiccation were also noted, suggesting commonalities in different routes to reduced metabolic states. Trends in extracellular and intracellular glucose and trehalose levels suggested that the cells were in a “holding pattern” during the rehydration phase, a concept that was reinforced by cell cycle analyses. Application of a “redescription mining” algorithm suggested that sulfur metabolism is important for cell survival during desiccation and rehydration. PMID:16332871

  8. Desiccation tolerance of prokaryotes: application of principles to human cells.

    PubMed

    Potts, Malcolm; Slaughter, Stephen M; Hunneke, Frank-U; Garst, James F; Helm, Richard F

    2005-11-01

    The loss of water from cells is a stress that was likely imposed very early in evolution. An understanding of the sensitivity or tolerance of cells to depletion of intracellular water is relevant to the study of quiescence, longevity and aging, because one consequence of air-drying is full metabolic arrest, sometimes for extended periods. When considering the adaptation of cells to physiological extremes of pH, temperature or pressure, it is generally assumed that evolution is driven toward optimum function rather than maximum stability. However, adaptation to desiccation has the singular and crucial distinction that dried cells do not grow, and the time the cell is dried may represent the greater part of the life (the time the cell remains viable) of that cell and its component macromolecules. Is a consideration of "function" relevant in the context of desiccated cells? The response of prokaryotic cells to desiccation, and the mechanisms they employ to tolerate this stress at the level of the cell, genome and proteome are considered. Fundamental principles were then implemented in the design of strategies to achieve air-dry stabilization of sensitive eukaryotic (human) cells. The responses of the transcriptomes and proteomes of prokaryotic cells and eukaryotic cells (yeast and human) to drying in air are compared and contrasted to achieve an evolutionary context. The concept of the "desiccome" is developed to question whether there is common set of structural, physiological and molecular mechanisms that constitute desiccation tolerance. PMID:21676831

  9. Operation of a phase locked loop system under distorted utility conditions

    SciTech Connect

    Kaura, V.; Blasko, V.

    1997-01-01

    Operation of a phase locked loop (PLL) system under distorted utility conditions is presented. A control model of the PLL system is developed and recommendations are made on tuning of this model specially for operation under common utility distortions as line notching, voltage unbalance/loss, frequency variations. The PLL is completely implemented in software without any filters. All analytical results are experimentally verified.

  10. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  11. Industrial Power Distribution System Reliability Assessment utilizing Markov Approach

    NASA Astrophysics Data System (ADS)

    Guzman-Rivera, Oscar R.

    A method to perform power system reliability analysis using Markov Approach, Reliability Block Diagrams and Fault Tree analysis has been presented. The Markov method we use is a state space model and is based on state diagrams generated for a one line industrial power distribution system. The Reliability block diagram (RBD) method is a graphical and calculation tool used to model the distribution power system of an industrial facility. Quantitative reliability estimations on this work are based on CARMS and Block Sim simulations as well as state space, RBD's and Failure Mode analyses. The power system reliability was assessed and the main contributors to power system reliability have been identified, both qualitatively and quantitatively. Methods to improve reliability have also been provided including redundancies and protection systems that might be added to the system in order to improve reliability.

  12. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  13. Low-head saltwater recirculating aquaculture systems utilized for juvenile red drum production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recirculating aquaculture systems reuse water with mechanical and biological treatment between each use and thus require wastewater treatment techniques for continuous waste removal. However, the traditional techniques and equipment utilized in recirculating aquaculture systems are expensive. The d...

  14. Technology evaluation of control/monitoring systems for MIUS application. [utility services management

    NASA Technical Reports Server (NTRS)

    Pringle, L. M., Jr.

    1974-01-01

    Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed.

  15. Utility FGD survey: January--December 1989. Volume 1, Categorical summaries of FGD systems

    SciTech Connect

    Hance, S.L.; McKibben, R.S.; Jones, F.M.

    1992-03-01

    This is Volume 1 of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  16. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    SciTech Connect

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  17. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  18. Production of concrete articles utilizing heat-reclaiming system

    SciTech Connect

    Wauhop Jr., B. J.; Stratz, W. W.

    1985-07-30

    A method of producing concrete articles comprises reclaiming a portion of the heat energy from the kiln atmosphere during the curing of the concrete articles, and then utilizing the reclaimed heat energy to pre-heat mixing water used to form other concrete articles, or to add to boiler feed water used to generate low pressure steam, or both. In the case where two or more kilns are operated simultaneously at staggered curing cycles, the high temperature kiln atmosphere from the kiln undergoing cool down is intermixed with the low temperature kiln atmosphere from the kiln undergoing heat up thereby reclaiming heat energy from one kiln and using it in the other kiln thereby reducing the total energy consumption required for curing.

  19. Advanced Water Purification System for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  20. System utilization benchmark on the Cray T3E and IBM SP

    SciTech Connect

    Wong, Adrian; Oliker, Leonid; Kramer, William; Kaltz, Teresa; Bailey, David

    2000-02-28

    Obtaining maximum utilization of parallel systems continues to be an active area of research and development. This article outlines a new benchmark, called the Effective System Performance (ESP) test, designed to provide a utilization metric that is transferable between systems and illuminate the effects of various scheduling parameters. Results with discussion are presented for the Cray T3E and IBM SP systems together with insights obtained from simulation.

  1. [Desiccation tolerance in seeds of Prosopisferox and Pterogyne nitens (Fabaceae)].

    PubMed

    Morandini, Marcelo Nahuel; Giamminola, Eugenia Mabel; de Viana, Marta Leonor

    2013-03-01

    The high number of endemisms and species diversity together with the accelerated biodiversity loss by deforestation, especially in North Western Argentina, points out the need to work on species conservation combining ex situ and in situ strategies. The aim of this work was to study the desiccation tolerance in seeds of P ferox and P nitens for long term ex situ conservation at the Germplasm Bank of Native Species (BGEN) of the National University of Salta (Argentina). The fruits were collected from ten individuals in P ferox at the National Park Los Cardones and from two sites (Orán and Rivadavia) for P nitens. Desiccation tolerance was assessed following previous established methodologies. The moisture content (MC) of the seeds was determined by keeping them in oven at 103 degreeC and weighting the samples at different intervals till constant weight. Germination essays were carried out with two treatments (control and scarification), with different seed MC (fresh, 10-12%, 3-5%) and in desiccated seeds (3-5% MC) stored six months at -20 degreeC. The MC in P ferox seeds was 14.2% and 10% in P nitens, for both populations studied. Percentage germination in P ferox was higher in the scarification treatments (<82%). The difference between treatments increased with the reduction in MC and the storage for six months at -20 degreeC. Fresh seeds of P nitens do not need scarification treatment, but it is required with the reduction in MC and storage. Mean germination percentage of desiccated seeds stored six months at -20 degreeC was similar in both populations and greater than 82%.We concluded that both species are probably orthodox because seeds tolerated desiccation to 3-5% and storage for six months at -20 degree C. PMID:23894986

  2. Control of new energy sources in an electric utility system

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    1981-01-01

    The addition of generators based on renewable resources to the electric power system brings new problems of control and communication if the generators are to be controlled as an integrated part of the power system. Since many of these generators are small, it will require a large number of them, connected to the distribution system, to represent an appreciable fraction of the total generation. This situation contrasts with present day generation control which typically involves only the control of a small number of large generators. This paper examines the system requirements for integrated control, and proposes a control arrangement in which the incremental cost of power is an important parameter.

  3. Economic impact of non-utility generation on electric power systems

    NASA Astrophysics Data System (ADS)

    Gupta, Rajnish

    Non-Utility Generation is a major force in the way electrical energy is now being produced and marketed, and electric utilities are reacting to the growth of this new industry. When a utility buys electric energy from a non-utility generation at short notice, such as a few hours, one of the difficult issues encountered by the utility is the evaluation of the rate (buyback rate) it should pay the non-utility generation such that the utility maximizes its economic benefit. Utilities calculate their purchase rates based on a number of different formulae. Short term buyback rates should be based on the operating cost that a utility avoids by utilizing energy from a non-utility generation. This cost is termed as the avoided operating cost in this thesis. Suitable techniques for thermal and hydrothermal systems are developed to assess the short term avoided operating cost under different operating conditions. The studies described in this thesis focus specifically on the economic assessment of the incorporation of non-utility generation in the short term planning of power systems at the generation level and the composite generation and transmission level. In another study, it was assumed that non-utility generation produces energy from its cogeneration and wind facilities. These sources of energy have some typical characteristics that make them different from other sources of electricity. These characteristics were taken into account in modeling the non-utility generation and studies were performed to show their effect on a thermal power system. Composite generation and transmission assessment involves a composite appraisal of both the generation and transmission facilities and their ability to supply adequate, dependable and suitable electrical energy to the major load point. Studies were performed to show the impact of non-utility generation on a thermal power system at this level. The studies and examples presented in the thesis suggest that the proposed techniques

  4. IPSIM: Additional System Enhancements Utilized in a Chemistry Application.

    ERIC Educational Resources Information Center

    McClain, Donald H.; Wessels, Stephen W.

    The University of Iowa has been involved with the development, implementation, and operation of computer-based test-item pools and a test construction and course management system titled IPSIM (Iowa's Item Pool System for Instructional Management), originally devised for a freshman medical course in the Pathology Department of the College of…

  5. Utility of Automatic Classification Systems for Information Storage and Retrieval.

    ERIC Educational Resources Information Center

    Litofsky, Barry

    Large-scale, on-line information storage and retrieval systems pose numerous problems above those encountered by smaller systems. A step toward the solution of these problems is presented along with several demonstrations of feasibility and advantages. The methodology on which this solution is based is that of a posteriori automatic classification…

  6. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  7. Utilization of membranes for H2O recycle system

    NASA Technical Reports Server (NTRS)

    Ohya, H.; Oguchi, M.

    1986-01-01

    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  8. Designing flexible engineering systems utilizing embedded architecture options

    NASA Astrophysics Data System (ADS)

    Pierce, Jeff G.

    This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates

  9. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  10. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    SciTech Connect

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  11. Animal models of systemic sclerosis: their utility and limitations

    PubMed Central

    Artlett, Carol M

    2014-01-01

    Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune disease. In this review, the focus is on models of systemic sclerosis and how they have progressed our understanding of fibrosis and vasculopathy, and whether they are relevant to the pathogenesis of systemic sclerosis.

  12. In situ conversion process utilizing a closed loop heating system

    SciTech Connect

    Sandberg, Chester Ledlie; Fowler, Thomas David; Vinegar, Harold J.; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  13. Proposed advanced satellite applications utilizing space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  14. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... concerning the following gas appliance startup procedures: (i) One at a time, opening equipment shutoff... of the furnace and water heater thermostats. ER19OC07.026 Note: Fittings in the drainage system...

  15. Utility operation of a flat plate photovoltaic system

    NASA Astrophysics Data System (ADS)

    Hernandez, E.; Risser, V.

    The 20-kilowatt El Paso Photovoltaic Project is one of four PRDA-38 flat-plate experiments. This system was designed, constructed, and integrated onto an existing uninterruptable power supply (UPS) at the El Paso Electric Company's Newman Power Station. The system has provided more than 49,000 kilowatt-hours to the load in the first 19 months. A two year partially DOE-funded operation and maintenance cooperative agreement is currently in place with the New Mexico Solar Energy Institute as prime contractor. During this period, the responsibility for this system will be transferred to El Paso Electric. To ensure that capability for independent system operation, maintenance, and evaluation was available at El Paso Electric, certain tasks were initiated and are discussed in this paper.

  16. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  17. Interactive asthma learning system utilizing a mobile phone platform.

    PubMed

    Wood, Jeffrey; Yablochnikov, Ilya; Finkelstein, Joseph

    2008-11-06

    We developed an interactive patient learning system for use on mobile phones to inform an asthma patient about this chronic condition and enforce knowledge retention by questioning the user. The system uses a mobile phone's Internet connection to retrieve information from a database and download recorded audio files corresponding to asthma information screens. The mobile application was successfully developed, implemented, and tested on the Motorola i730 mobile phone with Nextel as a service provider.

  18. Advanced Transport Operating System (ATOPS) utility library software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Slominski, Christopher J.; Dickson, Richard W.; Wolverton, David A.

    1993-01-01

    The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described.

  19. Total Laparoscopic Hysterectomy Utilizing a Robotic Surgical System

    PubMed Central

    Nelson, Keith H.; Daucher, James A.

    2005-01-01

    Objectives: To describe the use of a robotic surgical system for total laparoscopic hysterectomy. Methods: We report a series of laparoscopic hysterectomies performed using the da Vinci Robotic Surgical System. Participants were women eligible for hysterectomy by standard laparoscopy. Operative times and complications are reported. Results: We completed 10 total laparoscopic hysterectomies between November 2001 and December 2002 with the use of the da Vinci Robotic Surgical System. Operative results were similar to those of standard laparoscopic hysterectomy. Operative time varied from 2 hours 28 minutes to 4 hours 37 minutes. Blood loss varied from 25 mL to 350 mL. Uterine weights varied from 49 g to 227 g. A cystotomy occurred in a patient with a history of a prior cystotomy unrelated to the robotic system. Conclusion: Total laparoscopic hysterectomy is a complex surgical procedure requiring advanced laparoscopic skills. Tasks like lysis of adhesions, suturing, and knot tying were enhanced with the robotic surgical system, thus providing unique advantages over existing standard laparoscopy. Total laparoscopic hysterectomy can be performed using robotic surgical systems. PMID:15791963

  20. Advanced Water Purification System for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extraterrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtration material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removal technique. Our studies have shown a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  1. Advanced Water Purification System for In Situ Resource Utilization Project

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  2. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    SciTech Connect

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Mittal, Saurabh; Wu, Hongyu; Jones, Wesley

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.

  3. Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect

    Not Available

    2002-07-01

    In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

  4. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    SciTech Connect

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  5. Microchemical and Thermal Systems for In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Wegeng, Robert S.; Sanders, Gerald B.

    1999-01-01

    Process Intensification and Process Miniaturization can simultaneously be achieved through the application of microfabricated chemical process systems, based on the rapid heat and mass transport in engineered microchannels. Researchers at NASA's Johnson Space Center (JSC) and the Department of Energy's Pacific Northwest National Laboratory (PNNL) are collaboratively developing micro thermal and chemical systems for NASA's Mission to Mars program. Preliminary results show that many standard chemical process components (e.g., heat exchangers, chemical reactors and chemical separations units) can be reduced in hardware volume without a corresponding reduction in chemical production rates. Low pressure drops and improved thermal integration are also accomplished when appropriate scaling rules are applied and when individual microchemical components are packaged together into integral systems.

  6. Radio frequency communication system utilizing radiating transmission lines

    DOEpatents

    Struven, Warren C.

    1984-01-01

    A radio communication system for use in tunnels, mines, buildings or other shielded locations in which a pair of radiating transmission lines (30), (31) extend through such location in spaced coextensive relation to each other. Each transmission line (30), (31) has at least one unidirectional amplifier (32), (33) interposed therein with the sense of the unidirectional amplifier (32) of one transmission line (30) being opposite to the sense of the unidirectional amplifier (33) of the other transmission line (31). Each of the amplifiers (32), (33) has a gain which is less than the coupling loss between the transmission lines (30), (31). Two or more mobile transceivers (35) in the location served by the system are coupled to the transmission lines (30), (31) by electromagnetic wave propagation in space in order to communicate directly with each other at a given radio frequency within the frequency range of the system.

  7. SKYMAP system description: Star catalog data base generation and utilization

    NASA Technical Reports Server (NTRS)

    Gottlieb, D. M.

    1979-01-01

    The specifications, design, software description, and use of the SKYMAP star catalog system are detailed. The SKYMAP system was developed to provide an accurate and complete catalog of all stars with blue or visual magnitudes brighter than 9.0 for use by attitude determination programs. Because of the large number of stars which are brighter than 9.0 magnitude, efficient techniques of manipulating and accessing the data were required. These techniques of staged distillation of data from a Master Catalog to a Core Catalog, and direct access of overlapping zone catalogs, form the basis of the SKYMAP system. The collection and tranformation of data required to produce the Master Catalog data base is described. The data flow through the main programs and levels of star catalogs is detailed. The mathematical and logical techniques for each program and the format of all catalogs are documented.

  8. Electric utility system planning studies for OTEC power integration

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The integration of OTEC into the Florida Power Corporation (FTC) system was evaluated. Existing system planning procedures, assumptions, and corporate financial criteria for planning generating capacity were used without modification. A baseline configuration for an OTEC plant was developed for review with standard planning procedures. The OTEC plant characteristics and costs were incorporated in considerable detail. It was found that with the initial set of conditions, OTEC would not be economically viable. Using the same system planning procedures, a number of adjustments were made to the key study assumptions. It was found that two considerations dominate the analysis: the assumed rate of fuel cost escalation, and the projected capital cost of the OTEC plant. After corporate financial analysis, it was found that even if the cost competitive criterion were to be reached, the plan including OTEC could not be financed by FPC.

  9. Military clouds: utilization of cloud computing systems at the battlefield

    NASA Astrophysics Data System (ADS)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  10. Achieving functional restorations utilizing a new Ceromer system.

    PubMed

    Trinkner, T

    1997-01-01

    The advent of pressed ceramic restorations (IPS Empress, Ivoclar Williams, Amherst, NY) has driven dental therapy to continuously strive for more aesthetic and functional materials. The dental profession requires restorations to exhibit strength, natural color, wear resistance, marginal integrity, and ease of fabrication in the restorative therapies selected. With the introduction of a new ceromer and fiber-reinforced composite (FRC) system (Targis System, Ivoclar Williams, Amherst, NY), the replacement of a single tooth or multiple teeth with a FRC, metal-free bridge is now a suitable alternative to conventional dental therapy. This presentation will review the clinical protocol, material properties, and aesthetic characteristics of this new generation of restorative material.

  11. Utilization of potatoes in CELSS: Productivity and growing systems

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.

    1986-01-01

    The potato plant (solanum tuberosum L.) is one of the basic food crops that should be studied for use in NASA's closed Ecological Life Support System (CELSS). It offers high yields per unit area and time, with most of this production in the form of highly digestible carbohydrate. Potatoes, like wheat and rice, are particularly useful in human diets because of their nutritional versatility and ease of processing and preparation. The growth of the potato was studied and it was found to be a useful species for life support systems.

  12. Radio frequency science considerations. [technology utilization of telecommunications system

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1974-01-01

    Use of the 400 MHz telecommunications system to obtain scientific information, to provide backup information for the experiments flown, and to obtain measurements which aid in designing future probes is considered. Recommended objectives of such a program are summarized and include: measure 400 MHz amplitude to determine adsorption and perhaps scintillation (if data rate permits); measure noise strength near 400 MHz to reexamine 400 MHz choice and to observe thermal, cosmic, and local synchrotron noise trends; probe VSWR sensing to monitor integrity of system, icing, and possible plasma effects; after the probe is finished, have the bus radio occultation in the same region where the probe fell to evaluate the occultation.

  13. Semantic web ontology utilization for heart failure expert system design.

    PubMed

    Prcela, Marin; Gamberger, Dragan; Jovic, Alan

    2008-01-01

    In this work we present the usage of semantic web knowledge representation formalism in combination with general purpose reasoning for building a medical expert system. The properties of the approach have been studied on the example of the knowledge base construction for decision support tasks in the heart failure domain. The work consisted of descriptive knowledge presentation in the ontological form and its integration with the heart failure procedural knowledge. In this setting instance checking in description logic represents the main process of the expert system reasoning.

  14. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    SciTech Connect

    Truex, Michael J.; Strickland, Christopher E.; Oostrom, Martinus; Johnson, Christian D.; Tartakovsky, Guzel D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  15. Power systems utilizing the heat of produced formation fluid

    DOEpatents

    Lambirth, Gene Richard

    2011-01-11

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  16. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., transformation, transmission, or distribution of power used exclusively for operation of rolling stock or... remote control, signaling, and power-limited circuits—Marking § 1910.308(d)—Fire alarm systems (4... volts, nominal—Tunnel installations § 1910.308(b)(3)—Emergency power systems—Signs §...

  17. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., transformation, transmission, or distribution of power used exclusively for operation of rolling stock or... remote control, signaling, and power-limited circuits—Marking § 1910.308(d)—Fire alarm systems (4... volts, nominal—Tunnel installations § 1910.308(b)(3)—Emergency power systems—Signs §...

  18. The Facial Expression Coding System (FACES): Development, Validation, and Utility

    ERIC Educational Resources Information Center

    Kring, Ann M.; Sloan, Denise M.

    2007-01-01

    This article presents information on the development and validation of the Facial Expression Coding System (FACES; A. M. Kring & D. Sloan, 1991). Grounded in a dimensional model of emotion, FACES provides information on the valence (positive, negative) of facial expressive behavior. In 5 studies, reliability and validity data from 13 diverse…

  19. DBMS UTILIZATION: A Corporate Information System (CIS) development approach

    NASA Technical Reports Server (NTRS)

    Rozett, P.

    1983-01-01

    The Corporate Information System (CIS), an integrated information system intended to tie the corporation together as a functioning entity, is described. In addition to being a major upgraded automated data processing system, the CIS is a management philosophy which recognizes data as a valuable corporate resource and which distinguishes between data and selected data, or information. It further recognizes that different users need different kinds of information. Plans for CIS development are discussed. It will offer its users not just after-the-fact data, but timely information in a format that is meaningful and useful to the particular user, so that the information can be applied in planning, controlling, and decision making by all levels of management. In effect, CIS will help the corporation itself to function as a total, integrated system by typing together administrative activities through information exchange. The CIS supports the operational, tactical control, and strategic planning functions of the corporation. Operational functions are the day-to-day processing necessary to support the corporation's work, such as purchasing and payroll.

  20. Eliciting Utility Functions for Validating Course Placement Systems.

    ERIC Educational Resources Information Center

    Sawyer, Richard

    Course placement systems in postsecondary education consist of an assessment component to estimate students' probability of success in standard first-year courses and an instructional component in which underprepared students are taught the skills and knowledge they need to succeed in the standard courses. Student success is usually defined in…

  1. Effect of different artificial tears against desiccation in cultured human epithelial cells

    PubMed Central

    Tost, Frank; Keiss, Ramona; Großjohann, Rico; Jürgens, Clemens; Giebel, Jürgen

    2012-01-01

    Summary Background A large number of artificial tears is widely used to treat dry eye symptoms. To test the efficacy of these drugs independent of individual parameters in vitro models are required. As described previously, we employed a reproducible in vitro cell culture system to evaluate the desiccation protection capability of some artificial tears. In the present paper data is presented of another set of pharmaceutical agents. Material/Methods Conjunctival epithelial cell line Chang 1-5c-4 (series 1) and the corneal cell line 2.040 pRSV-T (series 2) were cultured under standard conditions. Confluent cells were wetted for 20 min with artificial tears (Arufil® Uno, Arufil®, Lacrimal®, Lacophthal® sine, Siccaprotect®, Tears Again®, Vidisept® EDO, Vistil®, Wet Comod®) or PBS as a control. After exposure to a constant air flow for 0, 15, 30 and 45 minutes respectively, cells were incubated with the vital dye alamarBlue. Subsequently, absorption of the oxidised form of the dye was assessed using an ELISA-Reader. Results Cell best survival rates in series 1 after 15 min were found for Lacrimal® (0.89), Wet Comod® (0.84) compared to PBS (0.66) and in series 2 for Vidisept® EDO (0.57) and Lacrimal® (0.56) compared to PBS (0.01). After 45 min highest survival was seen in series 1 for Lacrimal® (0.46) and Lacophthal® sine (0.36) compared to PBS (0.33) and in series 2 for Lacrimal® (−0.06) and Arufil (−0.16) compared to PBS (−0.23). Conclusions Both cell lines tested showed different susceptibility towards desiccation and the artificial tears showed differences in preventing cells from desiccation. PMID:22534701

  2. Characterization of a bifidobacterial system that utilizes galacto-oligosaccharides

    PubMed Central

    Shigehisa, Akira; Sotoya, Hidetsugu; Sato, Takashi; Hara, Taeko; Matsumoto, Hoshitaka

    2015-01-01

    The galacto-oligosaccharide (GOS) OLIGOMATE 55N (Yakult) is a mixture of oligosaccharides, the main component of which is 4′-galactosyllactose (4′-GL). Numerous reports have shown that GOSs are non-digestible, reach the colon and selectively stimulate the growth of bifidobacteria. The product has been used as a food ingredient and its applications have expanded rapidly. However, the bifidobacterial glycoside hydrolases and transporters responsible for utilizing GOSs have not been characterized sufficiently. In this study, we aimed to identify and characterize genes responsible for metabolizing 4′-GL in Bifidobacterium breve strain Yakult. We attempted to identify B. breve Yakult genes induced by 4′-GL using transcriptional profiling during growth in basal medium containing 4′-GL with a custom microarray. We found that BbrY_0420, which encodes solute-binding protein (SBP), and BbrY_0422, which encodes β-galactosidase, were markedly upregulated relative to that during growth in basal medium containing lactose. Investigation of the substrate specificity of recombinant BbrY_0420 protein using surface plasmon resonance showed that BbrY_0420 protein bound to 4′-GL, but not to 3′-GL and 6′-GL, structural isomers of 4′-GL. Additionally, BbrY_0420 had a strong affinity for 4-galactobiose (4-GB), suggesting that this SBP recognized the non-reducing terminal structure of 4′-GL. Incubation of purified recombinant BbrY_0422 protein with 4′-GL, 3′-GL, 6′-GL and 4-GB revealed that the protein efficiently hydrolysed 4′-GL and 4-GB, but did not digest 3′-GL, 6′-GL or lactose, suggesting that BbrY_0422 digested the bond within Gal1,4-β-Gal. Thus, BbrY_0420 (SBP) and BbrY_0422 (β-galactosidase) had identical, strict substrate specificity, suggesting that they were coupled by co-induction to facilitate the transportation and hydrolysis of 4′-GL. PMID:25903756

  3. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  4. Case for Deploying Complex Systems Utilizing Commodity Components

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Pitts, R. Lee

    2003-01-01

    When the International Space Station (ISS) finally reached an operational state, many of the Payload Operations and Integration Facility (POIF) hardware components were reaching end of life, COTS product costs were soaring, and the ISS budget was becoming severely constrained. However, most requirement development was complete. In addition, the ISS program is a fully functioning program with at least fifteen years of operational life remaining. Therefore it is critical that any upgrades, refurbishments, or enhancements be accomplished in realtime with minimal disruptions to service. For these and other reasons, it was necessary to ensure the viability of the POIF. Due to the to the breadth of capability of the POIF (a NASA ground station), it is believed that the lessons to be learned by other complex systems are applicable and any solutions garnered by the POIF are applicable to other complex systems as well. With that in mind, a number of new approaches have been investigated to increase the portability of the POIF and reduce the cost of refurbishment, operations, and maintenance. These new approaches were directed at the Total Cost of Ownership (TCO); not only the refurbishment but also current operational difficulties, licensing, and anticipation of the next refurbishment. Our basic premise is that technology had evolved dramatically since the concept of the POIF ground system and we should leverage our experience on this new technological landscape. Fortunately, Moore's law and market forces have changed the landscape considerably. These changes are manifest in five (5) ways that are particularly relevant to POIF: 1. Complex Instruction Set Computing (CISC) processors have advanced to unprecedented levels of compute capacity with a dramatic cost break, 2. Linux has become a major operating system supported by most vendors on a broad range of platforms, 3. Windows(TradeMark) based desktops are pervasive in the office environment, 4. Stable and affordable

  5. Development of highly sensitive sensor system for methane utilizing cataluminescence.

    PubMed

    Gong, Gu; Zhu, Hua

    2016-02-01

    A gaseous sensor system was developed for the detection of methane based on its cataluminescence emission. Cataluminescence characteristics and optimal conditions were studied in detail under optimized experimental conditions. Results showed that the methane cataluminescence sensor system could cover a linear detection range from 10 to 5800 ppm (R = 0.9963, n = 7) and the detection limit was about 7 ppm (S/N = 3), which was below the standard permitted concentration. Moreover, a linear discriminant analysis method was used to test the recognizable performance of the methane sensor. It was found that methane, ethane, propane and pentane could be distinguished clearly. Its methane sensing properties, including improved sensitivity, selectivity, stability and recognition demonstrated the TiO2/SnO2 materials to be promising candidates for constructing a cataluminescence-based gas sensor that could be used for detecting explosive gas contaminants.

  6. NASA's Space Launch System (SLS) Program: Mars Program Utilization

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  7. Heat storage system utilizing phase change materials government rights

    DOEpatents

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  8. Utility of Space Transportation System to Space Communication Community

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1975-01-01

    A potentially cost effective technique was investigated of launching operational satellites into synchronous orbit using the space transportation system (STS). This technique uses an unguided spinning solid rocket motor as the means for boosting a satellite from a low altitude shuttle parking orbit into a synchronous transfer orbit. The spacecraft is then injected into a geosynchronous orbit by an apogee kick motor fired at transfer orbit apogee. The approach is essentially that used on all Delta and Atlas-Centaur launches of synchronous satellites with the shuttle orbiter performing the function of the first two stages of the Delta three stage launch vehicle and the perigee kick motor performing the function of the Delta third state. It is concluded that the STS can be useful to the space communication community as well as to other geostationary satellite system users if the recommended actions are implemented.

  9. Optimal Design of Biomass Utilization System for Rural Area Includes Technical and Economic Dimensions

    NASA Astrophysics Data System (ADS)

    Morioka, Yasuki; Nakata, Toshihiko

    In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.

  10. Attachment of marine fasteners utilizing portable friction stud welding systems

    SciTech Connect

    Grey, I.C.; Steel, R.L.

    1995-10-01

    A fast, economical and structurally reliable method for attachment of fasteners in marine environments has long been sought by engineers and marine structure owners. A new portable friction stud welding system is one possible solution. The paper will present an explanation of friction welding, a description of portable friction stud welding equipment, as well as laboratory test results evidencing the integrity of this method of material joining. A method of providing improved electrical continuity is also presented.

  11. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  12. Integrated Utility Systems Feasibility Study and Conceptual Design at the University of Florida. Executive Summary.

    ERIC Educational Resources Information Center

    Kirmse, Dale W.; Manyimo, Steve B.

    This executive summary presents a brief analysis of findings and recommendations. The concept of the Integrated Utility System (IUS) is to consider the interaction and mutual support of five utility subsystems needed by a campus complex of buildings. The subsystems are: (1) Electric power service; (2) Heating - ventilating - air conditioning and…

  13. The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome.

    PubMed

    Maia, Julio; Dekkers, Bas J W; Provart, Nicholas J; Ligterink, Wilco; Hilhorst, Henk W M

    2011-01-01

    The combination of robust physiological models with "omics" studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants. PMID:22195004

  14. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  15. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  16. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  17. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  18. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel

    SciTech Connect

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie; Satake, Akira; Yoshie, Ryuichiro; Mitamura, Tiruaki; Baba, Seizo

    2010-07-15

    The experimental evaluation of the separated and coupled rotating desiccant wheel and heat wheel is reported. The study aims to investigate the performance of the desiccant wheel and of the heat wheel both when operated separately and jointly. The performance evaluation of the desiccant wheel is based on its moisture removal capacity (MRC), moisture removal regeneration (MRR), and moisture mass balance (MMB). In addition, the study used the total energy balance (TEB), sensible coefficient of performance (COP{sub Sensible}), latent coefficient of performance (COP{sub Latent}) and, total coefficient of performance (COP{sub Total}). The performance of the heat wheel is based on its effectiveness. The COP{sub Sensible}, COP{sub Latent} and, COP{sub Total} are used in the performance evaluation of the coupled desiccant wheel and heat wheel. The general results of the study show that the MRC, MRR and MMB coupled with the TEB, COP{sub Latent}, COP{sub Sensible} and COP{sub Total} predict adequately the performance of the desiccant wheel. In addition, the coupled operation of the desiccant wheel and heat wheel, contributed to the reduction of the external thermal energy requirement for the regeneration of the desiccant wheel. This study can be applied in other researches seeking evaluation of the desiccant wheel, heat wheel, and their combined operation. Moreover, the data presented here are significant for the desiccant wheel benchmarking and for evaluation of the desiccant wheel models. (author)

  19. Lead abatement system cuts corners, costs for utility company

    SciTech Connect

    Fuller, B.

    1996-11-01

    When Consolidated Edison Co. (New York) called for bids to remove lead from the 125-foot-tall steam-dispersion stacks at its Astoria Power Generating Station, the company specified that no lead could be released into the environment during the project. Another restriction was that any abrasive blasting for surface preparation would have to be accompanied by full-scale containment--including use of airtight seals, ventilation systems, entrance and exit air locks, and impermeable containment material--to ensure minimal discharge to the generating plant below the stack. Prospective contractors also would be required to meet Occupational Safety and Health Administration standards for medical surveillance, hygiene facilities, eating areas and personal protective equipment if lead levels exceeded 30 micrograms per cubic meter. To reduce the cost of erecting and maintaining full containment without jeopardizing health and safety criteria, Con Ed incorporated a practical solution to remove its aging, lead-based paint. The technology, comprised of a Vac-Pac{reg_sign} self-drumming HEPA filtration system, supports up to 10 operators using proprietary scalers and needleguns. The scalers are effective for flat areas, removing coatings at 45 square feet per hour, while the needleguns are designed for use on corners, edges, rivets and bolts.

  20. Reactor technology assessment and selection utilizing systems engineering approach

    SciTech Connect

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-12

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  1. Reactor technology assessment and selection utilizing systems engineering approach

    NASA Astrophysics Data System (ADS)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  2. Late Pleistocene desiccation of Lake Tana, source of the Blue Nile

    NASA Astrophysics Data System (ADS)

    Lamb, Henry F.; Bates, C. Richard; Coombes, Paul V.; Marshall, Michael H.; Umer, Mohammed; Davies, Sarah J.; Dejen, Eshete

    2007-02-01

    High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late

  3. An informatics approach to assess pediatric pharmacotherapy: design and implementation of a hospital drug utilization system.

    PubMed

    Zuppa, Athena; Vijayakumar, Sundararajan; Jayaraman, Bhuvana; Patel, Dimple; Narayan, Mahesh; Vijayakumar, Kalpana; Mondick, John T; Barrett, Jeffrey S

    2007-09-01

    Drug utilization in the inpatient setting can provide a mechanism to assess drug prescribing trends, efficiency, and cost-effectiveness of hospital formularies and examine subpopulations for which prescribing habits may be different. Such data can be used to correlate trends with time-dependent or seasonal changes in clinical event rates or the introduction of new pharmaceuticals. It is now possible to provide a robust, dynamic analysis of drug utilization in a large pediatric inpatient setting through the creation of a Web-based hospital drug utilization system that retrieves source data from our accounting database. The production implementation provides a dynamic and historical account of drug utilization at the authors' institution. The existing application can easily be extended to accommodate a multi-institution environment. The creation of a national or even global drug utilization network would facilitate the examination of geographical and/or socioeconomic influences in drug utilization and prescribing practices in general. PMID:17656617

  4. Expression profiling and cross-species RNA interference (RNAi) of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae

    PubMed Central

    2010-01-01

    of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance. PMID:20085654

  5. Cellular structure of detonation utilized in propulsion system

    NASA Astrophysics Data System (ADS)

    Zhang, XuDong; Fan, BaoChun; Gui, MingYue; Pan, ZhenHua

    2012-10-01

    How to confine a detonation in a combustor is a key issue of detonation applications in propulsion systems. Based on achieving schemes, detonations applied in the combustor, including pulse detonation wave (PDW), oblique detonation wave (ODW) and rotating detonation wave (RDW), are different from that described by the classic CJ theory in fine structures and its self-sustaining mechanisms. In this work, the cellular structures and flow fields of ODW and RDW were obtained numerically, and the fundamental characteristics and self-sustaining mechanisms of the detonations were analyzed and discussed. ODW front consists of three parts: the ZND-like front, the single-headed triple point front and the dual-headed triple point front. Cellular structures of RDW are heterogeneous, and the cell size near the outer wall is smaller than that near the inner wall.

  6. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect

    BENECKE MW

    2010-09-08

    This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is

  7. 15. NAVFAC Drawing 6101668 (814E3) (1978), 'Repair of Utility System, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NAVFAC Drawing 6101668 (814-E-3) (1978), 'Repair of Utility System, Building 814, Existing Plan, Section and Elevation' - Mare Island Naval Shipyard, Chemical Cleaning Facility, North of Fourteenth Street, between California & Railroad Avenue, Vallejo, Solano County, CA

  8. Pneumatic Planetary Regolith Feed System for In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Mueller, Robert P.; Townsend, Ivan I.; Craft, Jack; Zacny, Kris

    2010-01-01

    The NASA In-situ Resource Utilization (ISRU) project requires a regolith feed system that can transfer lunar regolith several meters vertically into a chemical reactor for oxygen production on the moon.

  9. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  10. Thrips domiciles protect larvae from desiccation in an arid environment.

    PubMed

    Gilbert, James D J

    2014-11-01

    Desiccation is a particular risk for small animals in arid environments. In response, many organisms "construct niches," favorable microenvironments where they spend part or all of their life cycle. Some maintain such environments for their offspring via parental care. Insect eggs are often protected from desiccation by parentally derived gels, casings, or cocoons, but active parental protection of offspring from desiccation has never been demonstrated. Most free-living thrips (Thysanoptera) alleviate water loss via thigmotaxis (crevice seeking). In arid Australia, Acacia thrips (Phlaeothripidae) construct many kinds of niche. Some thrips induce galls; others, like Dunatothrips aneurae, live and breed within "domiciles" made from loosely glued phyllodes. The function of domiciles is unknown; like other constructed niches, they may 1) create favorable microenvironments, 2) facilitate feeding, 3) protect from enemies, or a combination. To test the first 2 alternatives experimentally, field-collected domiciles were destroyed or left intact. Seven-day survival of feeding and nonfeeding larval stages was monitored at high (70-80%) or low (8-10%, approximately ambient) humidity. Regardless of humidity, most individuals survived in intact domiciles, whereas for destroyed domiciles, survival depended on humidity, suggesting parents construct and maintain domiciles to prevent offspring desiccating. Feeding and nonfeeding larvae had similar survival patterns, suggesting the domicile's role is not nutritional. Outside domiciles, survival at "high" humidity was intermediate, suggesting very high humidity requirements, or energetic costs of wandering outside domiciles. D. aneurae commonly cofound domiciles; cofoundresses may benefit both from shared nestbuilding costs, and from "deferred byproduct mutualism," that is, backup parental care in case of mortality.

  11. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  12. Thrips domiciles protect larvae from desiccation in an arid environment

    PubMed Central

    2014-01-01

    Desiccation is a particular risk for small animals in arid environments. In response, many organisms “construct niches,” favorable microenvironments where they spend part or all of their life cycle. Some maintain such environments for their offspring via parental care. Insect eggs are often protected from desiccation by parentally derived gels, casings, or cocoons, but active parental protection of offspring from desiccation has never been demonstrated. Most free-living thrips (Thysanoptera) alleviate water loss via thigmotaxis (crevice seeking). In arid Australia, Acacia thrips (Phlaeothripidae) construct many kinds of niche. Some thrips induce galls; others, like Dunatothrips aneurae, live and breed within “domiciles” made from loosely glued phyllodes. The function of domiciles is unknown; like other constructed niches, they may 1) create favorable microenvironments, 2) facilitate feeding, 3) protect from enemies, or a combination. To test the first 2 alternatives experimentally, field-collected domiciles were destroyed or left intact. Seven-day survival of feeding and nonfeeding larval stages was monitored at high (70–80%) or low (8–10%, approximately ambient) humidity. Regardless of humidity, most individuals survived in intact domiciles, whereas for destroyed domiciles, survival depended on humidity, suggesting parents construct and maintain domiciles to prevent offspring desiccating. Feeding and nonfeeding larvae had similar survival patterns, suggesting the domicile’s role is not nutritional. Outside domiciles, survival at “high” humidity was intermediate, suggesting very high humidity requirements, or energetic costs of wandering outside domiciles. D. aneurae commonly cofound domiciles; cofoundresses may benefit both from shared nestbuilding costs, and from “deferred byproduct mutualism,” that is, backup parental care in case of mortality. PMID:25419084

  13. Reversible Inactivation and Desiccation Tolerance of Silicified Viruses

    SciTech Connect

    Laidler, James J.; Shugart, Jessica A.; Cady, Sherry L.; Bahjat, Keith S.; Stedman, Kenneth M.

    2013-11-19

    Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus SSV-K and Vaccinia are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. By contrast, bacteriophage PRD1 is not silicified. Moreover silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.

  14. Utilization of geographic information system in lunar mapping

    NASA Astrophysics Data System (ADS)

    Mardon, A. A.

    1992-09-01

    Substantial digital remote sensing, lunar orbital photography, Earth-based remote sensing, and mapping of a variety of surficial lunar phenomena have occurred since the advent of the Space Age. This has led to a bewildering and quite disparate collection of archival sources insofar as this digital data and its cartographic representation can be found within many countries of the world. The importance of this mapping program in support of human expansion onto our nearest planetary neighbor has been recognized. A series of small scale maps of the Moon at 1 km to 1 cm, done with the support of Geographic Information System (GIS), would serve decision makers well in the process of accessing the development of manned occupance of the Moon. Maps and the data that they are derived from are the primary way in which people explore new environments and use previously discovered data to increase the bounties of any exploration. The inherent advantage of GIS is that it would allow immediate online access on the Moon of topographically represented data with analysis either on site or from Earth.

  15. Utilization of Geographic Information System in Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    Substantial digital remote sensing, lunar orbital photography, Earth-based remote sensing, and mapping of a variety of surficial lunar phenomena have occurred since the advent of the Space Age. This has led to a bewildering and quite disparate collection of archival sources insofar as this digital data and its cartographic representation can be found within many countries of the world. The importance of this mapping program in support of human expansion onto our nearest planetary neighbor has been recognized. A series of small scale maps of the Moon at 1 km to 1 cm, done with the support of Geographic Information System (GIS), would serve decision makers well in the process of accessing the development of manned occupance of the Moon. Maps and the data that they are derived from are the primary way in which people explore new environments and use previously discovered data to increase the bounties of any exploration. The inherent advantage of GIS is that it would allow immediate online access on the Moon of topographically represented data with analysis either on site or from Earth.

  16. Reflection Effects in Multimode Fiber Systems Utilizing Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Bates, Harry E.

    1991-01-01

    A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.

  17. Solar heating and cooling system for an office building at Reedy Creek Utilities

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  18. A widely adaptable habitat construction system utilizing space resources

    NASA Technical Reports Server (NTRS)

    Wykes, Harry B.

    1993-01-01

    This study suggests that the cost of providing accommodations for various manned activities in space may be reduced by the extensive use of resources that are commonly found throughout the solar system. Several concepts are proposed for converting these resources into simple products with many uses. Concrete is already being considered as a possible moonbase material. Manufacturing equipment should be as small and simple as possible, which leads to the idea of molding it into miniature modules that can be produced and assembled in large numbers to create any conceivable shape. Automated equipment could build up complex structures by laying down layer after layer in a process resembling stereolithography. These tiny concrete blocks handle compression loads and provide a barrier to harmful radiation. They are joined by a web of tension members that could be made of wire or fiber-reinforced plastic. The finished structure becomes air-tight with the addition of a flexible liner. Wire can be made from the iron modules found in lunar soil. In addition to its structural role, a relatively simple apparatus can bend and weld it into countless products like chairs and shelving that would otherwise need to be supplied from Earth. Wire woven into a loose blanket could be an effective micrometeoroid shield, tiny wire compression beams could be assembled into larger beams which in turn form larger beams to create very large space-frame structures. A technology developed with lunar materials could be applied to the moons of Mars or the asteroids. To illustrate its usefulness several designs for free-flying habitats are presented. They begin with a minimal self-contained living unit called the Cubicle. It may be multiplied into clusters called Condos. These are shown in a rotating tether configuration that provides a substitute for gravity. The miniature block proposal is compared with an alternate design based on larger triangular components and a tetrahedral geometry. The

  19. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  20. THE ANALYSIS AND DEVELOPMENT OF A SEMI-AUTOMATED BUS UTILIZATION SCHEDULING SYSTEM.

    ERIC Educational Resources Information Center

    ISAACS, ALAN S.; SIMON, MURRAY

    INVESTIGATION AND RESEARCH FOR AN AUTOMATED, BUS UTILIZATION AND SCHEDULING SYSTEM WAS REPORTED. THE DEVELOPMENT OF THIS SYSTEM WOULD INVOLVE (1) PROGRAM DESIGN AND COMPUTER SELECTION, (2) CODING OF THE SUPERVISOR PROGRAM AND RELATED PROGRAMS, (3) PROGRAM CHECKOUT, (4) DATA CONVERSION, (5) SYSTEM VERIFICATION, AND (6) FINAL DOCUMENTATION,…

  1. In situ heat treatment process utilizing a closed loop heating system

    SciTech Connect

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  2. A Statistical Approach to Characterizing the Reliability of Systems Utilizing HBT Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Wang, Qing; Kayali, Sammy

    2004-01-01

    This paper presents a statistical approach to characterizing the reliability of systems with HBT devices. The proposed approach utilizes the statistical reliability information of the HBT individual devices, along with the analysis on the critical paths of the system, to provide more accurate and more comprehensive reliability information about the HBT systems compared to the conventional worst-case method.

  3. Assessment of the potential of solar thermal small power systems in small utilities

    NASA Technical Reports Server (NTRS)

    Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.

    1978-01-01

    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.

  4. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense.

    PubMed

    Dinakar, Challabathula; Djilianov, Dimitar; Bartels, Dorothea

    2012-01-01

    Resurrection plants are regarded as excellent models to study the mechanisms associated with desiccation tolerance. During the past years tremendous progress has been made in understanding the phenomenon of desiccation tolerance in resurrection plants, but many questions are open concerning the mechanisms enabling these plants to survive desiccation. The photosynthetic apparatus is very sensitive to reactive oxygen species mediated injury during desiccation and must be maintained or quickly repaired upon rehydration. The photosynthetic apparatus is a primary source of generating reactive oxygen species. The unique ability of plants to withstand the oxidative stress imposed by reactive oxygen species during desiccation depends on the production of antioxidants. The present review considers the overall strategies and the mechanisms involved in the desiccation tolerance in the first part and will focus on the effects on photosynthesis, energy metabolism and antioxidative stress defenses in the second part.

  5. An Experimental Evolution Test of the Relationship between Melanism and Desiccation Survival in Insects

    PubMed Central

    Rajpurohit, Subhash; Peterson, Lisa Marie; Orr, Andrew J.; Marlon, Anthony J.; Gibbs, Allen G.

    2016-01-01

    We used experimental evolution to test the ‘melanism-desiccation’ hypothesis, which proposes that dark cuticle in several Drosophila species is an adaptation for increased desiccation tolerance. We selected for dark and light body pigmentation in replicated populations of D. melanogaster and assayed several traits related to water balance. We also scored pigmentation and desiccation tolerance in populations selected for desiccation survival. Populations in both selection regimes showed large differences in the traits directly under selection. However, after over 40 generations of pigmentation selection, dark-selected populations were not more desiccation-tolerant than light-selected and control populations, nor did we find significant changes in mass or carbohydrate amounts that could affect desiccation resistance. Body pigmentation of desiccation-selected populations did not differ from control populations after over 140 generations of selection, although selected populations lost water less rapidly. Our results do not support an important role for melanization in Drosophila water balance. PMID:27658246

  6. Anisotropic stress accumulation in cooling lava flows and resulting fracture patterns: Insights from starch-water desiccation experiments

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Desiccation of starch-water slurries is a useful analog for the production of polygonal fractures/columnar joints in cooling lava flows. When left to dry completely, a simple mixture of 1:1 starch and water will produce columns that appear remarkably similar to natural columnar joints formed in cooled lava flows. Columns form when the accumulation of isotropic stress exceeds the tensile strength of a material, at which point a fracture forms and advances through the material perpendicular to the desiccating surface. Individual fractures will initially form orthogonal to the desiccation surface but will quickly evolve into a hexagonal fracture network that advances incrementally through the material. However, some fracture patterns found within natural lava flows are not hexagonal ( Lodge and Lescinsky, 2009-this issue), but rather have fracture lengths that are much longer than the distance to adjacent fractures. These fractures are commonly found at lava flows that have interacted with glacial ice during emplacement. The purpose of this study is to utilize starch analog experiments to better understand the formation of these fractures and the stress regimes responsible for their non-hexagonal patterns. To simulate anisotropic conditions during cooling, the starch slurry was poured into a container with a movable wall that was attached to a screw-type jack. The jack was then set to slowly extend or retract while the slurry desiccated. This resulted in either a decrease or increase in the chamber cross-sectional area thus creating compressional or extensional regimes. Decreasing chamber area (DCA) experiments resulted in fractures with larger lengths parallel to the direction of wall movement (also direction of compression). It also caused localized thrust faulting and curved column development. Increasing chamber area (ICA) experiments produced a zone of horizontal column development along the expanding margin (produced when the wall detached from the sample

  7. Desiccation resistance and contamination as mechanisms of gaia.

    PubMed

    Brown, S; Margulis, L; Ibarra, S; Siqueiros, D

    1985-01-01

    The gaia hypothesis, formulated by J.E. Lovelock, asserts the composition of the reactive gases, the oxidation-reduction state and the temperature of the lower atmosphere of the planet Earth are actively regulated by the biota. Lovelock and Watson, using highly simplified mathematical models, have shown that the modulation of atmospheric temperature can be achieved by exponentially growing populations of differently colored organisms ("dark and light daisies"). It is more likely that the modulation of atmospheric gas composition is based on the colligative properties of exponentially growing mixed populations of microorganisms rather than on "daisies". Exponential growth of one population of microorganisms leads to gaseous and other metabolic products released to the environment, which favor the exponential growth of different populations, each with their own unique emissions. Extremely high densities of mixed populations of microorganisms ensue. These populations form structured microbial communities composed of members in varying states of activity. Growth potential of metabolically diverse populations most likely provides the basis for the responsiveness of the biota to changing environments. We have attempted to measure an aspect of the growth potential and diversity of one microbial community, that from a flat laminated microbial mat dominated by the cyanobacterium, Microcoleus. Microbial mat samples collected at yearly intervals between 1977 and 1982 were allowed to dry. Subsamples were revived under laboratory conditions by rewetting, and the resulting complex microbial populations were analyzed. Greater than 10(4) viable organisms per ml were estimated to be present in the desiccated samples. Only a portion of the diverse community could be characterized. There were at least 115 different types of desiccation resistant microorganisms present in these samples, primarily bacteria. However, more than a dozen types of rather uncommon fungi and protoctists were

  8. Desiccation resistance and contamination as mechanisms of gaia.

    PubMed

    Brown, S; Margulis, L; Ibarra, S; Siqueiros, D

    1985-01-01

    The gaia hypothesis, formulated by J.E. Lovelock, asserts the composition of the reactive gases, the oxidation-reduction state and the temperature of the lower atmosphere of the planet Earth are actively regulated by the biota. Lovelock and Watson, using highly simplified mathematical models, have shown that the modulation of atmospheric temperature can be achieved by exponentially growing populations of differently colored organisms ("dark and light daisies"). It is more likely that the modulation of atmospheric gas composition is based on the colligative properties of exponentially growing mixed populations of microorganisms rather than on "daisies". Exponential growth of one population of microorganisms leads to gaseous and other metabolic products released to the environment, which favor the exponential growth of different populations, each with their own unique emissions. Extremely high densities of mixed populations of microorganisms ensue. These populations form structured microbial communities composed of members in varying states of activity. Growth potential of metabolically diverse populations most likely provides the basis for the responsiveness of the biota to changing environments. We have attempted to measure an aspect of the growth potential and diversity of one microbial community, that from a flat laminated microbial mat dominated by the cyanobacterium, Microcoleus. Microbial mat samples collected at yearly intervals between 1977 and 1982 were allowed to dry. Subsamples were revived under laboratory conditions by rewetting, and the resulting complex microbial populations were analyzed. Greater than 10(4) viable organisms per ml were estimated to be present in the desiccated samples. Only a portion of the diverse community could be characterized. There were at least 115 different types of desiccation resistant microorganisms present in these samples, primarily bacteria. However, more than a dozen types of rather uncommon fungi and protoctists were

  9. Salinity effects on the dynamics and patterns of desiccation cracks

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to

  10. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  11. Need for desiccant in containers exposed to atmospheric conditions for long periods of time

    SciTech Connect

    Mead, K.E.

    1981-11-01

    Current component and system designs are required to perform satisfactorily up to 25 years. A maximum leak rate of 1 x 10/sup -6/ cc(STP) helium/sec-atm is a frequent requirement for component containers. Calculations show that undesiccated component containers continuously exposed to 50% relative humidity at 20/sup 0/C and having an internal free volume of less than 300 cc and the above leak rate will allow the internal dew point to rise enough for potential liquid condensation in less than four years. For the same vapor pressure differential, the moisture permeation rate through one linear inch of silicone o-ring is 750 times as fast as moisture enters a welded container whose leak rate is 1 x 10/sup -6/ cc(STP) helium/sec-atm. For ethylene propylene o-ring material this ratio is about 13. These values correspond to the ratios of the quantities of desiccant required to maintain an acceptable dew point temperature when the moisture capacity of the free volume is not included. Charts are provided for estimating the amount of desiccant required for helium leak tested containers and for containers sealed with elastomeric o-rings.

  12. Physiological and biochemical changes during the loss of desiccation tolerance in germinating Adenanthera pavonina L. seeds.

    PubMed

    Soares, Giuliana C M; Dias, Denise C F S; Faria, José M R; Borges, Eduardo E L

    2015-01-01

    We investigated the loss of desiccation tolerance (DT) in Adenanthera pavonina seeds during germination. Seeds were subjected to imbibition for 0, 24, 36, 48, 60 and 81 h, then dried to their initial moisture content (13%), rehydrated and evaluated for survival (resumption of growth and development of normal seedlings) and membrane system integrity (electrolyte leakage). Embryonic axes of seeds subjected only to imbibition during the same early time periods were used to investigate the electrophoretic patterns of heat-stable proteins and the relative nuclear DNA content. In A. pavonina seeds, DT remained unchanged until 36 h of imbibition (resulting in germination and 82% normal seedlings), after which it was progressively lost, and seeds with a protruded radicle length of 1 mm did not withstand dehydration. The loss of desiccation tolerance could not be related to either membrane damage caused by drying or the resumption of the cell cycle during germination. However, the decrease in heat-stable protein contents observed throughout germination may be related to the loss of DT in A. pavonina seeds.

  13. Physiological and biochemical changes during the loss of desiccation tolerance in germinating Adenanthera pavonina L. seeds.

    PubMed

    Soares, Giuliana C M; Dias, Denise C F S; Faria, José M R; Borges, Eduardo E L

    2015-01-01

    We investigated the loss of desiccation tolerance (DT) in Adenanthera pavonina seeds during germination. Seeds were subjected to imbibition for 0, 24, 36, 48, 60 and 81 h, then dried to their initial moisture content (13%), rehydrated and evaluated for survival (resumption of growth and development of normal seedlings) and membrane system integrity (electrolyte leakage). Embryonic axes of seeds subjected only to imbibition during the same early time periods were used to investigate the electrophoretic patterns of heat-stable proteins and the relative nuclear DNA content. In A. pavonina seeds, DT remained unchanged until 36 h of imbibition (resulting in germination and 82% normal seedlings), after which it was progressively lost, and seeds with a protruded radicle length of 1 mm did not withstand dehydration. The loss of desiccation tolerance could not be related to either membrane damage caused by drying or the resumption of the cell cycle during germination. However, the decrease in heat-stable protein contents observed throughout germination may be related to the loss of DT in A. pavonina seeds. PMID:26628022

  14. Method and composition for molding low density desiccant syntactic foam articles

    DOEpatents

    Lula, James W.; Schicker, James R.

    1984-01-01

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  15. Desiccation as a Long-Term Survival Mechanism for the Archaeon Methanosarcina barkeri

    PubMed Central

    Anderson, Kimberly L.; Apolinario, Ethel E.

    2012-01-01

    Viable methanogens have been detected in dry, aerobic environments such as dry reservoir sediment, dry rice paddies and aerobic desert soils, which suggests that methanogens have mechanisms for long-term survival in a desiccated state. In this study, we quantified the survival rates of the methanogenic archaeon Methanosarcina barkeri after desiccation under conditions equivalent to the driest environments on Earth and subsequent exposure to different stress factors. There was no significant loss of viability after desiccation for 28 days for cells grown with either hydrogen or the methylotrophic substrates, but recovery was affected by growth phase, with cells desiccated during the stationary phase of growth having a higher rate of recovery after desiccation. Synthesis of methanosarcinal extracellular polysaccharide (EPS) significantly increased the viability of desiccated cells under both anaerobic and aerobic conditions compared with that of non-EPS-synthesizing cells. Desiccated M. barkeri exposed to air at room temperature did not lose significant viability after 28 days, and exposure of M. barkeri to air after desiccation appeared to improve the recovery of viable cells compared with that of desiccated cells that were never exposed to air. Desiccated M. barkeri was more resistant to higher temperatures, and although resistance to oxidative conditions such as ozone and ionizing radiation was not as robust as in other desiccation-resistant microorganisms, the protection mechanisms are likely adequate to maintain cell viability during periodic exposure events. The results of this study demonstrate that after desiccation M. barkeri has the innate capability to survive extended periods of exposure to air and lethal temperatures. PMID:22194299

  16. Preparation of perlite-based magnesium perchlorate desiccant with colour indicator.

    PubMed

    Wu, L; He, H

    1994-05-01

    A new desiccant consisting of magnesium perchlorate, expanded perlite and metal chelate was prepared. The performance tests show that the desiccant is superior to magnesium perchlorate desiccant in dehydration efficiency, absorption capacity for water, flow resistance, color indicator and regeneration. It can reduce the amount of water in gases to approximately 0.7 ppm(v/v). Its applications in gas analysis and purification were investigated.

  17. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  18. Effect of nitrogen starvation on desiccation tolerance of Arctic Microcoleus strains (cyanobacteria)

    PubMed Central

    Tashyreva, Daria; Elster, Josef

    2015-01-01

    Although desiccation tolerance of Microcoleus species is a well-known phenomenon, there is very little information about their limits of desiccation tolerance in terms of cellular water content, the survival rate of their cells, and the environmental factors inducing their resistance to drying. We have discovered that three Microcoleus strains, isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to 0.23 g water g-1 dry mass), but did not tolerate complete desiccation (to 0.03 g water g-1 dry mass) regardless of pre-desiccation treatments. However, these treatments were critical for the survival of incomplete desiccation: cultures grown under optimal conditions failed to survive even incomplete desiccation; a low temperature enabled only 0–15% of cells to survive, while 39.8–65.9% of cells remained alive and intact after nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in periodically dry habitats involves avoidance of complete desiccation, but tolerance to milder desiccation stress, which is induced by suboptimal conditions (e.g., nitrogen starvation). PMID:25904909

  19. ProP Is Required for the Survival of Desiccated Salmonella enterica Serovar Typhimurium Cells on a Stainless Steel Surface

    PubMed Central

    Finn, Sarah; Händler, Kristian; Condell, Orla; Colgan, Aoife; Cooney, Shane; McClure, Peter; Amézquita, Aléjandro; Hinton, Jay C. D.

    2013-01-01

    Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate- and low-moisture foods. PMID:23666329

  20. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; Martin, J.; Chakrabarti, S.

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  1. Constructing a Traffic Information Providing System Utilizing Multi-Source Information

    NASA Astrophysics Data System (ADS)

    Tamaki, Hiroshi; Yano, Junji; Kagawa, Kouji; Morita, Tetsuo; Numao, Masayuki; Kurihara, Satoshi

    To realize an effective ITS(Intelligent Transport Systems) services, such as a traffic jam prediction system or car navigation system, the traffic information like average traffic speed is indispensable. However, current systems providing traffic information have serious problems about lack of data. Hence, we construct a system which provides traffic information, which complements lack data using incomplete probe and VICS(Vehicle Information and Communication System) data. The system utilizes multi-information such as real time/stored/diffusion/succession information effectively. We verified the performance of the system through experiments using probe/VICS data of Nagoya city, and confirmed beneficial results.

  2. Social cost considerations and legal constraints in implementing modular integrated utility systems

    NASA Technical Reports Server (NTRS)

    Lede, N. W.; Dixon, H. W.; King, O.; Hill, D. K.

    1974-01-01

    Social costs associated with the design, demonstration, and implementation of the Modular Integrated Utility System are considered including the social climate of communities, leadership patterns, conflicts and cleavages, specific developmental values, MIUS utility goal assessment, and the suitability of certian alternative options for use in a program of implementation. General considerations are discussed in the field of socio-technological planning. These include guidelines for understanding the conflict and diversity; some relevant goal choices and ideas useful to planners of the MIUS facility.

  3. ProSEDS Telemetry System Utilization of GPS Position Data for Transmitter Cycling

    NASA Technical Reports Server (NTRS)

    Kennedy, Paul; Sims, Herb

    2000-01-01

    NASA Marshall Space Flight Center will launch the Propulsive Small Expendable Deployer System (ProSEDS) space experiment in late 2000. ProSEDS will demonstrate the use of an electrodynamic tether propulsion system and will utilize a conducting wire tether to generate limited spacecraft power. This paper will provide an overview of the ProSEDS mission and will discuss the design, development and test of the spacecraft telemetry system which utilizes a custom designed GPS subsystem to determine spacecraft position relative to ground station location and to control transmitter on/off cycling based on spacecraft state vector and ground station visibility.

  4. Technological Systems and Momentum Change: American Electric Utilities, Restructuring, and Distributed Generation Technologies

    ERIC Educational Resources Information Center

    Hirsh, Richard F.; Sovacool, Benjamin K.

    2006-01-01

    The American electric utility system has been massively transformed during the last three decades. Viewed previously as a staid, secure, and heavily regulated natural monopoly, the system has shed elements of government oversight and now appears to be increasingly susceptible to terrorist attacks and other disruptions. Overturning the conventional…

  5. Utilities For the NJOY (6/83) Nuclear Data Processing System.

    1990-12-11

    Version 00 NJOY-UTIL-EIR complements the NJOY (6/83) nuclear data processing system. The eight modules in the system have the following functions: collapsing of groupwise files, combining of ENDF/B formatted files, separation of one file, plotting of cross sections or differences between two cross section files and combining ACE cross section files.

  6. Recognition of binary x-ray systems utilizing the doppler effect

    NASA Technical Reports Server (NTRS)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  7. Geophysical flight line flying and flight path recovery utilizing the Litton LTN-76 inertial navigation system

    SciTech Connect

    Mitkus, A.F.; Cater, D.; Farmer, P.F.; Gay, S.P. Jr.

    1981-11-01

    The Litton LTN-76 Inertial Navigation Systems (INS) with Inertial Track guidance System (ITGS) software is geared toward the airborne survey industry. This report is a summary of tests performed with the LTN-76 designed to fly an airborne geophysical survey as well as to recover the subsequent flight path utilizing INS derived coordinates.

  8. Federal policies to promote the widespread utilization of photovoltaic systems. Supplement: Review and critique

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Review comments of the Congressional report entitled 'Federal Policies to Promote the Widespread Utilization of Photovoltaic Systems' are presented. Responses to the review comments by the Jet Propulsion Laboratory, preparer of the Congressional report, are also presented. The Congressional report discussed various issues related to promoting the deployment of photovoltaic systems through the Federal Photovoltaic Program. Various program strategies and funding levels were examined.

  9. Revision arthroplasty utilizing the Biomet Total Toe System for failed silicone elastomer implants.

    PubMed

    Koenig, R D

    1994-01-01

    The author presents a 3-year study of 10 cases of revisional arthroplasty utilizing the Biomet Total Toe System. The procedure is performed to eliminate pain and restore function in cases of metatarsophalangeal joint silicone elastomer implant failure. The surgeon should be familiar with the Total Toe System before attempting revision. PMID:8081327

  10. Effect of supply/regeneration section area ratio on the performance of desiccant wheels in hot and humid climates: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Zendehboudi, Alireza; Esmaeili, Hossein

    2016-06-01

    Desiccant cooling system is a suitable alternative option for conventional cooling system in humid climates. It is an environmental protection technique for cooling buildings. This study has investigated the effect of supply/regeneration section area ratio on the performance of desiccant wheels in hot and humid climates, using Silica Gel (WSG) and Molecular Sieve (LT3) desiccants. To this end, some parameters such as outlet air humidity ratio, process removed moisture, process outlet temperature, reactivation outlet temperature and reactivation outlet moisture have been examined as a function of rotational speed and inlet air humidity ratio in 1:3, 1:2 and 1:1 split. In this study, desiccant materials are regenerated using a constant regeneration temperature of 80 °C, wheel rotation speed range of 4-12 RPH (revolutions per hour) and variable humidity. The results show that a rise in area ratio causes an increase in process removed moisture, process outlet temperature, reactivation outlet temperature and a drop in reactivation outlet moisture and outlet humidity ratio of process air.

  11. Utilization of the terrestrial cyanobacterial sheet

    NASA Astrophysics Data System (ADS)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yamaguchi, Yuji; Takenaka, Hiroyuki; Kohno, Nobuyuki

    2016-07-01

    The terrestrial nitrogen-fixing cyanobacterium, Nostoc commune, is living ranging from polar to desert. N. commune makes visible colonies composed extracellular polymeric substances. N. commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. To exhibit the potential abilities, the N. commune sheet is made to use convenient and evaluated by plant growth and radioactive accumulation. We will discuss utilization of terrestrial cyanobacteria under closed environment.

  12. Time Utility Functions for Modeling and Evaluating Resource Allocations in a Heterogeneous Computing System

    SciTech Connect

    Briceno, Luis Diego; Khemka, Bhavesh; Siegel, Howard Jay; Maciejewski, Anthony A; Groer, Christopher S; Koenig, Gregory A; Okonski, Gene D; Poole, Stephen W

    2011-01-01

    This study considers a heterogeneous computing system and corresponding workload being investigated by the Extreme Scale Systems Center (ESSC) at Oak Ridge National Laboratory (ORNL). The ESSC is part of a collaborative effort between the Department of Energy (DOE) and the Department of Defense (DoD) to deliver research, tools, software, and technologies that can be integrated, deployed, and used in both DOE and DoD environments. The heterogeneous system and workload described here are representative of a prototypical computing environment being studied as part of this collaboration. Each task can exhibit a time-varying importance or utility to the overall enterprise. In this system, an arriving task has an associated priority and precedence. The priority is used to describe the importance of a task, and precedence is used to describe how soon the task must be executed. These two metrics are combined to create a utility function curve that indicates how valuable it is for the system to complete a task at any given moment. This research focuses on using time-utility functions to generate a metric that can be used to compare the performance of different resource schedulers in a heterogeneous computing system. The contributions of this paper are: (a) a mathematical model of a heterogeneous computing system where tasks arrive dynamically and need to be assigned based on their priority, precedence, utility characteristic class, and task execution type, (b) the use of priority and precedence to generate time-utility functions that describe the value a task has at any given time, (c) the derivation of a metric based on the total utility gained from completing tasks to measure the performance of the computing environment, and (d) a comparison of the performance of resource allocation heuristics in this environment.

  13. Utility FGD Survey, January--December 1989. Volume 2, Design performance data for operating FGD systems, Part 1

    SciTech Connect

    Hance, S.L.; McKibben, R.S.; Jones, F.M.

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  14. Desiccation tolerance of iron bacteria biofilms on Mars regolith simulants

    NASA Astrophysics Data System (ADS)

    Feyh, Nina; Szewzyk, Ulrich

    2010-05-01

    Iron oxidizing bacteria play an important role in the geological redox cycling of iron on earth. The redox change between Fe(II) and Fe(III) can be used for biological energy production [1]. Therefore iron oxidation in the iron rich martian soils may be or may have been microbially mediated. The microbial conversion of iron is considered to be an ancient form of metabolism [2], so it might have evolved on Mars as well. However, to exist in recent martian soils, bacteria must be able to endure dry and cold conditions. Neutrophilic iron oxidizers can be found in various iron rich aquatic environments, where they lead to the precipitation of insoluble ferric hydroxides. Some of these environments fall temporarily dry, what could have led to an adaptation to desiccation by bacteria, existing there. One strategy of iron bacteria to endure drought stress might be the formation of biofilms by excreting Extracellular Polymeric Substances (EPS). The deposition of iron hydroxides could enable them to endure dry conditions as well. For our experiments, neutrophilic iron oxidizing bacteria have been isolated from a creek in Bad Salzhausen/Hesse and temporarily drying out pools in Tierra del Fuego. Strains from aquatic environments in the national park "Unteres Odertal" and from water wells in Berlin/Brandenburg are included in the tests as well. In desiccation experiments, the capability of iron bacteria to tolerate dry conditions are investigated. The aim of our first experiment is the adaptation to dry conditions. Biofilms of 15 strains are grown on ceramic beads in liquid medium containing complexed Fe(II), established biofilms contain Fe(III) precipitates. The cultures are desiccated in a sterile airflow until the weight of the cultures remained constant. After a desiccation period of 9 h up to 7 d, the beads are transferred to fresh liquid medium. Adapted strains are used in further desiccation experiments, where biofilms are grown on two martian regolith simulants. These

  15. Solar energy utilization and microcomputer control in the greenhouse builk curing and drying solar system

    SciTech Connect

    Nassar, A.N.H.

    1987-01-01

    Three agricultural applications in a specially designed greenhouse solar system functioning as a multi-purpose solar air collector for crop production and curing/drying processes are examined. An automated hydroponic crop production system is proposed for the greenhouse solar system. Design criteria of the proposed system and its utilization of solar energy for root-zone warming are presented and discussed. Based upon limited testing of the hydroponic system considered, hydroponic production of greenhouse crops is believed reasonable to complement the year-round use of the greenhouse solar system. The hardware/software design features of a microcomputer-based control system applied in the greenhouse solar barn are presented and discussed. On-line management and utilization of incident solar energy by the microcomputer system are investigated for both the greenhouse and tobacco curing/drying modes of operation. The design approach considered for the microcomputer control system is believed suitable for regulating solar energy collection and utilization for crop production applications in greenhouse systems.

  16. The Patterns of Health Care Utilization by Elderly Europeans: Frailty and Its Implications for Health Systems

    PubMed Central

    Ilinca, Stefania; Calciolari, Stefano

    2015-01-01

    Objective To examine the patterns of health care utilization by the elderly and test the influence of functional decline. Data Source and Study Design We used the three regular waves of the SHARE survey to estimate the influence of frailty on health care utilization in 10 European countries. We controlled for the main correlates of frailty and unobserved individual effects. Results The frail elderly increase their primary and hospital care utilization before the onset of disability. Multimorbidity moderates the effect of frailty on care utilization. Conclusions The prevalence of frailty is high in most countries and is expected to increase. This renders frailty prevention and remediation efforts imperative for two complementary reasons: to promote healthier aging and to reduce the burden on health systems. PMID:25139146

  17. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  18. Post-Delivery test report for light duty utility arm high resolution stereoscopic video system (HRSVS)

    SciTech Connect

    Pardini, A.F., Westinghouse Hanford

    1996-05-07

    This report documents the post delivery testing of the High Resolution Stereoscopic Video Camera System (HRSVS) LDUA system,designed for use by the Light Duty Utility Arm (LDUA) project.The post delivery test shows by demonstration that the high resolution stereoscopic video camera system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank.

  19. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems

    SciTech Connect

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  20. The use of information systems to transform utilities and regulatory commissions: The application of geographic information systems

    SciTech Connect

    Wirick, D.W.; Montgomery, G.E.; Wagman, D.C.; Spiers, J.

    1995-09-01

    One technology that can assist utilities remain financially viable in competitive markets and help utilities and regulators to better serve the public is information technology. Because geography is an important part of an electric, natural gas, telecommunications, or water utility, computer-based Geographic Information Systems (GIS) and related Automated Mapping/Facilities Management systems are emerging as core technologies for managing an ever-expanding variety of formerly manual or paper-based tasks. This report focuses on GIS as an example of the types of information systems that can be used by utilities and regulatory commissions. Chapter 2 provides general information about information systems and effects of information on organizations; Chapter 3 explores the conversion of an organization to an information-based one; Chapters 4 and 5 set out GIS as an example of the use of information technologies to transform the operations of utilities and commissions; Chapter 6 describes the use of GIS and other information systems for organizational reengineering efforts; and Chapter 7 examines the regulatory treatment of information systems.

  1. Lbs Augmented Reality Assistive System for Utilities Infrastructure Management Through Galileo and Egnos

    NASA Astrophysics Data System (ADS)

    Stylianidis, E.; Valaria, E.; Smagas, K.; Pagani, A.; Henriques, J.; Garca, A.; Jimeno, E.; Carrillo, I.; Patias, P.; Georgiadis, C.; Kounoudes, A.; Michail, K.

    2016-06-01

    There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures' data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 641460.

  2. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster.

    PubMed

    Stinziano, Joseph R; Sové, Richard J; Rundle, Howard D; Sinclair, Brent J

    2015-02-01

    The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster.

  3. Community energy systems and the law of public utilities. Volume 20. Louisiana

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Louisiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities--Volume One: An overview. This report also contains a summary of a strategy described in Volume One--An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enchance the likelihood of ICES implementation.

  4. FGD systems: What utilities chose in phase 1 and what they might choose in phase 2

    SciTech Connect

    South, D.W.; Bailey, K.A.

    1995-07-01

    Title IV (acid rain) of the Clean Air Act Amendments of 1990 is imposing new limitations on the emission of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from electric power plants. The Act requires utilities to develop compliance plans to reduce these emissions, and indications are that these plans will dramatically alter traditional operating procedures. A key provision of the SO{sub 2} control program defined in Title IV is the creation of a system of emission allowances, with utilities having, the option of complying by adjusting system emissions and allowance holdings. The central focus of this paper is the identification of sulfur dioxide (SO{sub 2}) control options being implemented by the electric utility industry, current compliance trends, synergistic control issues and a discussion of the implications of Phase I decisions for Phase II.

  5. Extended periods of hydration do not elicit dehardening to desiccation tolerance in regeneration trials of the moss Syntrichia caninervis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dehardening (deacclimation) to water stress is seldom studied in plants, and yet is an integral phase of desiccation tolerance. Most bryophytes are desiccation tolerant (DT), and yet even fully DT species lose a significant portion of their ability to withstand desiccation if dehardened. Shoots of t...

  6. Performance improvement of a solar heating system utilizing off-peak electric auxiliary

    SciTech Connect

    Eltimsahy, A.H.

    1980-06-01

    The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

  7. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons

    PubMed Central

    Arcaz, Arthur C.; Huestis, Diana L.; Dao, Adama; Yaro, Alpha S.; Diallo, Moussa; Andersen, John; Blomquist, Gary J.; Lehmann, Tovi

    2016-01-01

    ABSTRACT The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii. Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism. PMID:27207644

  8. 76 FR 44763 - Authority To Designate Financial Market Utilities as Systemically Important

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Utilities as Systemically Important, 76 FR 17047 (March 28, 2011). A. The aggregate monetary value of... Important, 76 FR at 17055. The NPRM indicated that the Council expected to use the statutory considerations... and analysis of specific FMUs from both a quantitative and qualitative perspective. In this stage,...

  9. Utility of the PASS Theory and Cognitive Assessment System for Dutch Children with and without ADHD

    ERIC Educational Resources Information Center

    Van Luit, Johannes E. H.; Kroesbergen, Evelyn H.; Naglieri, Jack A.

    2005-01-01

    This study examined the utility of the Planning, Attention, Simultaneous, Successive (PASS) theory of intelligence as measured by the "Cognitive Assessment System" (CAS) for evaluation of children with attention-deficit/hyperactivity disorder (ADHD). The CAS scores of 51 Dutch children without ADHD were compared to the scores of a group of 20…

  10. Utilization of KSC Present Broadband Communications Data System For Digital Video Services

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    2001-01-01

    This report covers a visibility study of utilizing present KSC broadband communications data system (BCDS) for digital video services. Digital video services include compressed digital TV delivery and video-on-demand. Furthermore, the study examines the possibility of providing interactive video on demand to desktop personal computers via KSC computer network.

  11. Utilization of KSC Present Broadband Communications Data System for Digital Video Services

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    2002-01-01

    This report covers a visibility study of utilizing present KSC broadband communications data system (BCDS) for digital video services. Digital video services include compressed digital TV delivery and video-on-demand. Furthermore, the study examines the possibility of providing interactive video on demand to desktop personal computers via KSC computer network.

  12. The Application of Multiple-Criteria Utility Theory to the Evaluation of Information Systems.

    ERIC Educational Resources Information Center

    Herner, Sauls; Snapper, Kurt J.

    1978-01-01

    Proposes the use of the multiple criteria utility theory, a means of measuring satisfaction of predetermined evaluative criteria, quantifying their relative importance, and identifying and determining the best trade-offs among them to evaluate information systems. This method is demonstrated via the evaluation of a hypothetical selective…

  13. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times.

    PubMed

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-01-01

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival-halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages-remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival. PMID:26226005

  14. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times.

    PubMed

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-01-01

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival-halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages-remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival.

  15. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times

    PubMed Central

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-01-01

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival—halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages—remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival. PMID:26226005

  16. Cracking dynamics and morphology of desiccating clay overlying a granular substrate

    NASA Astrophysics Data System (ADS)

    DeCarlo, K.; Shokri, N.

    2012-12-01

    Desiccation cracks are a common phenomenon present in many environmental, hydrological and engineering applications, including soil physics, where they act as preferential pathways for transport processes; and geotechnical engineering, where they compromise the structural stability of buildings and waste containment facilities. Thus better understanding of its physics and dynamics has many applications. We conducted a comprehensive investigation to delineate the effects of a discrete and discontinuous substrate on the cracking dynamics, patterns and morphology of an overlying thin layer of clay. Square glass containers (40x40x2.5 cm3) packed with a thin layer of kaolinite clay overlying seven types of a silica sand substrate differing in particle size distribution were used in our laboratory experiments. Both layers were saturated with water. The container was mounted on a digital balance to record the evaporation rate, and an automatic imaging system was used to record the general dynamics and patterns of cracking on the evaporating surface with a 5 second time interval. Images were then used to quantify crack dynamics, propagation velocities and patterns as a function of substrate texture. Results indicate an increasing crack density and smaller characteristic crack length with decreasing substrate particle size, attributed to the decreased coefficient of friction of the underlying wet sand with increasing particle size. Additionally, our results suggest that the onset and propagation of the earliest cracks are closely related to the saturation and stress gradients of the desiccating clay surface, with initially high velocities that decay to small but non-zero values as they approach the saturated zones of the clay. The majority of macroscale cracking in all cases occurred within the early stages of the evaporation process. Obtained results also show that cracking duration is inversely related to the standard deviation of the particle size of each substrate, with

  17. Estimates for Masses of Different Minerals Precipitated on the Aral Sea Bottom during its Desiccation

    NASA Astrophysics Data System (ADS)

    Zavialov, Sergey; Zavialov, Peter

    2010-05-01

    The salinity build-up in the Aral Sea following its desiccation was accompanied by massive precipitation of minerals from the water column. However, while the sequence of minerals to precipitate is theoretically known (calcium and magnesium carbonates, gypsum, mirabilite, halite, …), the total masses of the compounds sedimented to date, as well as the relative proportions between different minerals, are practically unknown because of the lack of quantitative data. There are two possible approaches to obtaining these estimates. Firstly, one can compare the ionic contents of the Sea's water mass before and after the desiccation, and thereby quantify the masses of individual ions consumed by precipitation. The masses of ions can then be converted into the masses of specified minerals by solving a system of linear equations (with certain misfit). This is an indirect approach. Secondly, one can attempt directly analyze samples of the bottom sediments. The both methods require a substantial number of samples collected from different locations of the lake. In this work, we followed the both approaches, using chemical analyses of water samples collected in field surveys of the last years on the one hand, and bottom sediment samples we collected in August 2009 at 5 stations along a section across the western basin of the Sea on the other. The bottom sediment samples were analyzed through X-ray spectroscopy in the Institute of Geochemistry, Russian Academy of Sciences. The indirect method yielded the following results (billion tones precipitated over the entire desiccation period): Calcium carbonate - 0.07 (2%); Magnesium carbonate - 0.1 (2%); Gypsum - 2.3 (49%); Mirabilite - 1.9 (40%); Halite - 0.4 (8%). The rate of salt accumulation is estimated as 3 kg per m2 per year. The number of bottom sediment samples analyzed through the direct approach was insufficient to allow for estimates of the total masses. However, we note that the both approaches yielded rather similar

  18. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    SciTech Connect

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  19. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  20. Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System

    SciTech Connect

    Randy Peden; Sanjiv Shah

    2005-07-26

    This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

  1. Sub-meter desiccation crack patterns imaged by Curiosity at Gale Crater on Mars shed additional light on former lakes evident from examined outcrops

    NASA Astrophysics Data System (ADS)

    Hallet, B.; Sletten, R. S.; Mangold, N.; Oehler, D. Z.; Williams, R. M. E.; Bish, D. L.; Heydari, E.; Rubin, D. M.; Rowland, S. K.

    2015-12-01

    Small-scale desiccation crack patterns (mudcrack-like arrays of uniform ~0.1 to 1 m polygonal domains separated by linear or curving cracks in exposed bedding) imaged by Curiosity in Gale Crater, Mars complement a wealth of diverse data obtained from exposures of sedimentary rocks that point to deposition "in fluvial, deltaic, and lacustrine environments" including an "intracrater lake system likely [to have] existed intermittently for thousands to millions of years …"(e.g. Grotzinger et al., 2015, Science, submitted). We interpret these mudcrack-like patterns, found on many of the bedrock exposures imaged by Curiosity, as desiccation cracks that developed either of two ways: 1) at the soft sediment-air interface like common mudcracks, or 2) at or below the sediment-water interface by synaeresis or diastasis (involving differential compaction). In the context of recent studies of terrestrial mudcracks, and cracks formed experimentally in various wet powders as they loose moisture, these desiccation features reflect diverse aspects of the formative environment. If they formed as mudcracks, some of the lakes were shallow enough to permit the recurrent drying and wetting that can lead to the geometric regularity characteristic of several of sets of mudcracks. Moreover, the water likely contained little suspended sediment otherwise the mudcracks would be buried too rapidly for the crack pattern to persist and to mature into regular polygonal patterns. The preservation of these desiccation crack patterns does not require, but does not exclude, deep burial and exhumation. Although invisible from satellite because of their size, a multitude of Mastcam and Navcam images reveals these informative features in considerable detail. These images complement much evidence, mostly from HiRISE data from several regions, suggesting that potential desiccation polygons on larger scales may be more common on the surface of Mars than generally recognized.

  2. Integrated Utility Function-Based Scheduling for Mixed Traffic in LTE Systems

    NASA Astrophysics Data System (ADS)

    Lee, Deokhui; So, Jaewoo

    This paper proposes a utility function-based scheduling algorithm for integrated real-time and non-real-time services in long-term evolution systems. The proposed utility function satisfies the target dropping ratio of real-time users; it uses the delay constraint and increases the throughput of non-real-time users by scheduling real-time users together with non-real-time users. Simulation results show that the proposed scheduling algorithm significantly improves the throughput of non-real-time users without sacrificing the quality of service of real-time users.

  3. Top-level modeling of an als system utilizing object-oriented techniques

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. F.; Kang, S.; Ting, K. C.

    The possible configuration of an Advanced Life Support (ALS) System capable of supporting human life for long-term space missions continues to evolve as researchers investigate potential technologies and configurations. To facilitate the decision process the development of acceptable, flexible, and dynamic mathematical computer modeling tools capable of system level analysis is desirable. Object-oriented techniques have been adopted to develop a dynamic top-level model of an ALS system.This approach has several advantages; among these, object-oriented abstractions of systems are inherently modular in architecture. Thus, models can initially be somewhat simplistic, while allowing for adjustments and improvements. In addition, by coding the model in Java, the model can be implemented via the World Wide Web, greatly encouraging the utilization of the model. Systems analysis is further enabled with the utilization of a readily available backend database containing information supporting the model. The subsystem models of the ALS system model include Crew, Biomass Production, Waste Processing and Resource Recovery, Food Processing and Nutrition, and the Interconnecting Space. Each subsystem model and an overall model have been developed. Presented here is the procedure utilized to develop the modeling tool, the vision of the modeling tool, and the current focus for each of the subsystem models.

  4. Top-level modeling of an ALS system utilizing object-oriented techniques.

    PubMed

    Rodriguez, L F; Kang, S; Ting, K C

    2003-01-01

    The possible configuration of an Advanced Life Support (ALS) System capable of supporting human life for long-term space missions continues to evolve as researchers investigate potential technologies and configurations. To facilitate the decision process the development of acceptable, flexible, and dynamic mathematical computer modeling tools capable of system level analysis is desirable. Object-oriented techniques have been adopted to develop a dynamic top-level model of an ALS system. This approach has several advantages; among these, object-oriented abstractions of systems are inherently modular in architecture. Thus, models can initially be somewhat simplistic, while allowing for adjustments and improvements. In addition, by coding the model in Java, the model can be implemented via the World Wide Web, greatly encouraging the utilization of the model. Systems analysis is further enabled with the utilization of a readily available backend database containing information supporting the model. The subsystem models of the ALS system model include Crew, Biomass Production, Waste Processing and Resource Recovery, Food Processing and Nutrition, and the Interconnecting Space. Each subsystem model and an overall model have been developed. Presented here is the procedure utilized to develop the modeling tool, the vision of the modeling tool, and the current focus for each of the subsystem models. PMID:14503522

  5. Research recommendations for ac interfacing between electric utility transmission and distribution systems and wind, photovoltaics, and OTEC energy systems

    NASA Astrophysics Data System (ADS)

    Longrigg, P.; Buell, E. H.

    1985-03-01

    Work that deals semiquantitatively with many integration problems that may have to be solved as wind, photovoltaic, and ocean energy systems are tied into electrical transmission utility grids is documented. The problems that will arise as these distributed storage and generation (DSG) energy systems are integrated into the electric utility grids are not yet fully known, and their extent may depend on the level of penetration of the DSGs into the grid network. Aspects of DSG integration covered are fuse and relay coordination, harmonics, communications, control protocols, safety, and artificial intelligence (computer driven controls). An appendix on the effects of electromagnetic pulse is also included.

  6. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  7. Micro-Electro-Mechanical-Systems-Based Micro-Ro-Boat Utilizing Steam as Propulsion Power

    NASA Astrophysics Data System (ADS)

    Choi, Ju Chan; Choi, Young Chan; Kyoo Lee, June; Kong, Seong Ho

    2012-06-01

    We report the design and fabrication of a micro-electro-mechanical-systems (MEMS)-based microactuator, that floats on the surface of water and is driven by steam. We named the actuator “micro-Ro-boat”, a compound word created from the words “robot” and “boat”. The MEMS-based micro-Ro-boat utilizes steam as the propulsion power, giving it a high speed and long lifetime. A hydrophobic surface has been utilized for the wing of the actuator to enhance the buoyancy. Instead of using gas or fuel, the proposed micro-Ro-boat utilizes steam form electrically heated water. The velocity of the micro-Ro-boat is in the range of 0.5-2 cm/s and the maximum loading capability for a device size of 10 ×10 mm2 is 0.4 g.

  8. Conceptual design of thermal energy storage systems for near term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.

    1979-01-01

    Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.

  9. Impacts and Benefits of a Satellite Power System on the Electric Utility Industry

    NASA Technical Reports Server (NTRS)

    Winer, B. M.

    1977-01-01

    The purpose of this limited study was to investigate six specific issues associated with interfacing a Satellite Power System (5 GW) with large (by present standards) terrestrial power pools to a depth sufficient to determine if certain interface problems and/or benefits exist and what future studies of these problems are required. The issues investigated are as follows: (1) Stability of Power Pools Containing a 5 GWe SPS; (2) Extra Reserve Margin Required to Maintain the Reliability of Power Pools Containing a 5 GWe SPS; (3) Use of the SPS in Load Following Service (i.e. in two independent pools whose times of peak demand differ by three hours); (4) Ownership of the SPS and its effect on SPS Usage and Utility Costs; (5) Utility Sharing of SPS related RD and D Costs; (6) Utility Liability for SPS Related Hazards.

  10. Integrating the Illness Beliefs Model in clinical practice: a Family Systems Nursing knowledge utilization model.

    PubMed

    Duhamel, Fabie; Dupuis, France; Turcotte, Annie; Martinez, Anne-Marie; Goudreau, Johanne

    2015-05-01

    To promote the integration of Family Systems Nursing (FSN) in clinical practice, we need to better understand how nurses overcome the challenges of FSN knowledge utilization. A qualitative exploratory study was conducted with 32 practicing female nurses from hospital and community settings who had received FSN intervention training and skill development based on the Illness Beliefs Model and the Calgary Family Assessment and Intervention Models. The participants were interviewed about how they utilized FSN knowledge in their nursing practice. From the data analysis, a FSN Knowledge Utilization Model emerged that involves three major components: (a) nurses' beliefs in FSN and in their FSN skills, (b) nurses' knowledge utilization strategies to address the challenges of FSN practice, and (c) FSN positive outcomes. The FSN Knowledge Utilization Model describes a circular, incremental, and iterative process used by nurses to integrate FSN in daily nursing practice. Findings point to a need for re-evaluation of educational and management strategies in clinical settings for advancing the practice of FSN.

  11. Increasing inspection equipment productivity by utilizing factory automation SW on TeraScan 5XX systems

    NASA Astrophysics Data System (ADS)

    Jakubski, Thomas; Piechoncinski, Michal; Moses, Raphael; Bugata, Bharathi; Schmalfuss, Heiko; Köhler, Ines; Lisowski, Jan; Klobes, Jens; Fenske, Robert

    2009-01-01

    Especially for advanced masks the reticle inspection operation is a very significant cost factor, since it is a time consuming process and inspection tools are becoming disproportionately expensive. Analyzing and categorizing historical equipment utilization times of the reticle inspection tools however showed a significant amount of time which can be classified as non productive. In order to reduce the inspection costs the equipment utilization needed to be improved. The main contributors to non productive time were analyzed and several use cases identified, where automation utilizing a SECS1 equipment interface was expected to help to reduce these non productive times. The paper demonstrates how real time access to equipment utilization data can be applied to better control manufacturing resources. Scenarios are presented where remote monitoring and control of the inspection equipment can be used to avoid setup errors or save inspection time by faster response to problem situations. Additionally a solution to the second important need, the maximization of tool utilization in cases where not all of the intended functions are available, is explained. Both the models and the software implementation are briefly explained. For automation of the so called inspection strategy a new approach which allows separation of the business rules from the automation infrastructure was chosen. Initial results of inspection equipment performance data tracked through the SECS interface are shown. Furthermore a system integration overview is presented and examples of how the inspection strategy rules are implemented and managed are given.

  12. High-efficiency SO{sub 2} removal in utility FGD systems

    SciTech Connect

    Phillips, J.L.; Gray, S.; Dekraker, D.

    1995-11-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO{sub 2}) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company`s Big Bend Station; cocurrent, packed absorbers at Hoosier Energy`s Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company`s Pirkey Station; horizontal spray absorbers at PSI Energy`s Gibson Station; venturi scrubbers at Duquesne Light`s Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations`s (NYSEG`s) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO{sub 2} removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO{sub 2} removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994.

  13. Method and apparatus for extracting water from air using a desiccant

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  14. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis

    PubMed Central

    Dinakar, Challabathula; Bartels, Dorothea

    2013-01-01

    Most higher plants are unable to survive desiccation to an air-dried state. An exception is a small group of vascular angiosperm plants, termed resurrection plants. They have evolved unique mechanisms of desiccation tolerance and thus can tolerate severe water loss, and mostly adjust their water content with the relative humidity in the environment. Desiccation tolerance is a complex phenomenon and depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Most of the resurrection plants have a large genome and are difficult to transform which makes them unsuitable for genetic approaches. However, technical advances have made it possible to analyze changes in gene expression on a large-scale. These approaches together with comparative studies with non-desiccation tolerant plants provide novel insights into the molecular processes required for desiccation tolerance and will shed light on identification of orphan genes with unknown functions. Here, we review large-scale recent transcriptomic, proteomic, and metabolomic studies that have been performed in desiccation tolerant plants and discuss how these studies contribute to understanding the molecular basis of desiccation tolerance. PMID:24348488

  15. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones.

  16. Field-Scale Assessment of Desiccation Implementation for Deep Vadose Zone Contaminants

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Chronister, Glen B.; Benecke, Mark W.; Johnson, Christian D.

    2012-11-01

    Desiccation of the vadose zone has the potential to reduce the flux of contaminants to underlying groundwater by removing moisture and decreasing the aqueous-phase permeability of the desiccated zone. However, data to evaluate implementation of desiccation are needed to enable consideration of desiccation as a potential remedy. Implementation of desiccation was field tested by injecting dry nitrogen gas to a target treatment zone and monitoring the spatial and temporal progress of the drying process. Aqueous waste discharges to disposal cribs approximately 50 years ago distributed water and contaminants, including primarily technetium-99 and nitrate, within the 100-m deep vadose zone at the test site. A field test location was selected adjacent to one of the former disposal cribs. The test was conducted in a contaminated portion of the vadose zone dominated by fine sands with lenses of silt material. Desiccation reduced volumetric moisture content to as low as 0.01. The lateral and vertical distribution of drying from the injection well was influenced by the subsurface heterogeneity. However, over time, desiccation occurred in the initially wetter, lower permeability lenses.

  17. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune.

    PubMed

    Tamaru, Yoshiyuki; Takani, Yayoi; Yoshida, Takayuki; Sakamoto, Toshio

    2005-11-01

    The cyanobacterium Nostoc commune is adapted to the terrestrial environment and has a cosmopolitan distribution. In this study, the role of extracellular polysaccharides (EPS) in the desiccation tolerance of photosynthesis in N. commune was examined. Although photosynthetic O2 evolution was not detected in desiccated colonies, the ability of the cells to evolve O2 rapidly recovered after rehydration. The air-dried colonies contained approximately 10% (wt/wt) water, and field-isolated, natural colonies with EPS were highly water absorbent and were rapidly hydrated by atmospheric moisture. The cells embedded in EPS in Nostoc colonies were highly desiccation tolerant, and O2 evolution was not damaged by air drying. Although N. commune was determined to be a mesophilic cyanobacterium, the cells with EPS were heat tolerant in a desiccated state. EPS could be removed from cells by homogenizing colonies with a blender and filtering with coarse filter paper. This treatment to remove EPS did not damage Nostoc cells or their ability to evolve O2, but O2 evolution was significantly damaged by desiccation treatment of the EPS-depleted cells. Similar to the EPS-depleted cells, the laboratory culture strain KU002 had only small amount of EPS and was highly sensitive to desiccation. In the EPS-depleted cells, O2 evolution was also sensitive to freeze-thaw treatment. These results strongly suggest that EPS of N. commune is crucial for the stress tolerance of photosynthesis during desiccation and during freezing and thawing.

  18. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones. PMID:26154304

  19. Effect of desiccation and resubmersion on the oxidative stress response of the kuruma shrimp Marsupenaeus japonicus.

    PubMed

    Duan, Yafei; Zhang, Jiasong; Dong, Hongbiao; Wang, Yun; Liu, Qingsong; Li, Hua

    2016-02-01

    In the present study, the oxidative stress response in hepatopancreas of Marsupenaeus japonicus to desiccation stress and resubmersed in seawater were studied, such as respiratory burst, ROS production ( [Formula: see text] ), activities of antioxidant enzymes (CAT, GPx, SOD, POD and GST) and oxidative damage to lipid and protein (indexed by contents of MDA). The duration of desiccation significantly influenced shrimp survival, and the mortality rates were 37.5% and 87.5% after desiccation 5 h and 10 h, respectively. After desiccation stress 3 h, the respiratory burst, ROS production, and the activity of SOD and CAT were up-regulated significantly. The activity of GPx and POD, and the content of MDA decreased significantly at 0.5 h and 1 h, and then increased significantly at 3 h. But GST activity was no significant change after desiccation. During the resubmersion period, most of the antioxidant enzymes activities could recover to the control level at 24 h, but a small quantity of the oxidative stress still existed in tissues. HE staining showed that desiccation stress induced damage symptoms in hepatopancreas of M. japonicus. These results revealed that desiccation influenced the antioxidative status and caused oxidative stress and tissue damage via confusion of antioxidant enzymes in M. japonicus, but the oxidative stress could be eliminated within a certain range after the shrimps were resubmersed in seawater.

  20. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Utility Rate Equations of Group Population Dynamics in Biological and Social Systems

    PubMed Central

    Yukalov, Vyacheslav I.; Yukalova, Elizaveta P.; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita. PMID:24386163

  2. Community Energy Systems and the Law of Public Utilities. Volume Sixteen. Indiana

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Indiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Twelve. Georgia

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Georgia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Utility rate equations of group population dynamics in biological and social systems.

    PubMed

    Yukalov, Vyacheslav I; Yukalova, Elizaveta P; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about [Formula: see text] each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita. PMID:24386163

  5. Community Energy Systems and the Law of Public Utilities. Volume Twenty-three. Massachusetts

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Massachusetts governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Five. Arizona

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arizona governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Eight. Colorado

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Colorado governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Forty. Pennsylvania

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Pennsylvania governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Two. Federal

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is presented of the laws and programs of the Federal government governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Thirteen. Hawaii

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Hawaii governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Fifty-one. Wisconsin

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wisconsin governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Twenty-seven. Missouri

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Missouri governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Twenty-six. Mississippi

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Mississippi governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Twenty-two. Maryland

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maryland governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Fifty-two. Wyoming

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wyoming governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Nine. Connecticut

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Connecticut governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Thirty-three. New Mexico

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Mexico governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Six. Arkansas

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arkansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.