ERIC Educational Resources Information Center
Koszalka, Tiffany A.; Wu, Yiyan
2010-01-01
Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…
ERIC Educational Resources Information Center
Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward
2016-01-01
The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…
Engineering design skills coverage in K-12 engineering program curriculum materials in the USA
NASA Astrophysics Data System (ADS)
Chabalengula, Vivien M.; Mumba, Frackson
2017-11-01
The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.
Civil engineering reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, F.S.
1986-01-01
The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.
NASA Astrophysics Data System (ADS)
Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik
2017-10-01
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.
Group Design Problems in Engineering Design Graphics.
ERIC Educational Resources Information Center
Kelley, David
2001-01-01
Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)
Collaborative engineering-design support system
NASA Technical Reports Server (NTRS)
Lee, Dong HO; Decker, D. Richard
1994-01-01
Designing engineering objects requires many engineers' knowledge from different domains. There needs to be cooperative work among engineering designers to complete a design. Revisions of a design are time consuming, especially if designers work at a distance and with different design description formats. In order to reduce the design cycle, there needs to be a sharable design describing the engineering community, which can be electronically transportable. Design is a process of integrating that is not easy to define definitively. This paper presents Design Script which is a generic engineering design knowledge representation scheme that can be applied in any engineering domain. The Design Script is developed through encapsulation of common design activities and basic design components based on problem decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The physical relationships between engineering objects and their subparts can be constructed in a hierarchical manner. The same design process is repeatedly applied at each given level of hierarchy and recursively into lower levels of the hierarchy. Each class of the structure can be represented using the Design Script.
Space Transportation Main Engine
NASA Technical Reports Server (NTRS)
Monk, Jan C.
1992-01-01
The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.
NASA Astrophysics Data System (ADS)
McMahon, Ann P.
Educating K-12 students in the processes of design engineering is gaining popularity in public schools. Several states have adopted standards for engineering design despite the fact that no common agreement exists on what should be included in the K-12 engineering design process. Furthermore, little pre-service and in-service professional development exists that will prepare teachers to teach a design process that is fundamentally different from the science teaching process found in typical public schools. This study provides a glimpse into what teachers think happens in engineering design compared to articulated best practices in engineering design. Wenger's communities of practice work and van Dijk's multidisciplinary theory of mental models provide the theoretical bases for comparing the mental models of two groups of elementary teachers (one group that teaches engineering and one that does not) to the mental models of design engineers (including this engineer/researcher/educator and professionals described elsewhere). The elementary school teachers and this engineer/researcher/educator observed the design engineering process enacted by professionals, then answered questions designed to elicit their mental models of the process they saw in terms of how they would teach it to elementary students. The key finding is this: Both groups of teachers embedded the cognitive steps of the design process into the matrix of the social and emotional roles and skills of students. Conversely, the engineers embedded the social and emotional aspects of the design process into the matrix of the cognitive steps of the design process. In other words, teachers' mental models show that they perceive that students' social and emotional communicative roles and skills in the classroom drive their cognitive understandings of the engineering process, while the mental models of this engineer/researcher/educator and the engineers in the video show that we perceive that cognitive understandings of the engineering process drive the social and emotional roles and skills used in that process. This comparison of mental models with the process that professional designers use defines a problem space for future studies that investigate how to incorporate engineering practices into elementary classrooms. Recommendations for engineering curriculum development and teacher professional development based on this study are presented.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.
Wave rotor demonstrator engine assessment
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
1996-01-01
The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.
Designing for Success: Developing Engineers Who Consider Universal Design Principles
ERIC Educational Resources Information Center
Bigelow, Kimberly Edginton
2012-01-01
Engineers must design for a diverse group of potential users of their products; however, engineering curricula rarely include an emphasis on universal design principles. This research article details the effectiveness of a design project implemented in a first-year engineering course in an effort to raise awareness of the need for engineers to be…
Expert vs. novice: Problem decomposition/recomposition in engineering design
NASA Astrophysics Data System (ADS)
Song, Ting
The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.
NREL: News - Solar Decathlon Engineering Design Results Announced
Engineering Design Results Announced Thursday, October 3, 2002 Distinguished Panel Picks University first place in the Engineering Design results announced today at the Department of Energy's (DOE) Solar the University of Maryland remains in third. The Engineering Design panel includes engineers prominent
Incorporating a Product Archaeology Paradigm across the Mechanical Engineering Curriculum
ERIC Educational Resources Information Center
Moore-Russo, Deborah; Cormier, Phillip; Lewis, Kemper; Devendorf, Erich
2013-01-01
Historically, the teaching of design theory in an engineering curriculum has been relegated to a senior capstone design experience. Presently, however, engineering design concepts and courses can be found through the entirety of most engineering programs. Educators have recognized that engineering design provides a foundational platform that can…
Engineering Design Education Program for Graduate School
NASA Astrophysics Data System (ADS)
Ohbuchi, Yoshifumi; Iida, Haruhiko
The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.
Iteration in Early-Elementary Engineering Design
NASA Astrophysics Data System (ADS)
McFarland Kendall, Amber Leigh
K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
The Complex Dynamics of Student Engagement in Novel Engineering Design Activities
NASA Astrophysics Data System (ADS)
McCormick, Mary
In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The implications span research and practice, specifically targeting how we attend to and support students as they engage in engineering design.
Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Lapshin, E.
2018-01-01
The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.
NASA Astrophysics Data System (ADS)
Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi
This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.
Construction of an Engineer's Notebook Rubric
ERIC Educational Resources Information Center
Kelley, Todd R.
2014-01-01
It is evident that there is a need for assessment instruments that measure design and engineering design skills, knowledge, and ways of design thinking. These student assessments must be authentic to engineering design practices and measure key elements of the engineering design process. Kelley (2011) presented a rationale to include…
Laursen, Esben Skov; Møller, Louise
2015-01-01
This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.
Design of a miniature hydrogen fueled gas turbine engine
NASA Technical Reports Server (NTRS)
Burnett, M.; Lopiccolo, R. C.; Simonson, M. R.; Serovy, G. K.; Okiishi, T. H.; Miller, M. J.; Sisto, F.
1973-01-01
The design, development, and delivery of a miniature hydrogen-fueled gas turbine engine are discussed. The engine was to be sized to approximate a scaled-down lift engine such as the teledyne CAE model 376. As a result, the engine design emerged as a 445N(100 lb.)-thrust engine flowing 0.86 kg (1.9 lbs.) air/sec. A 4-stage compressor was designed at a 4.0 to 1 pressure ratio for the above conditions. The compressor tip diameter was 9.14 cm (3.60 in.). To improve overall engine performance, another compressor with a 4.75 to 1 pressure ratio at the same tip diameter was designed. A matching turbine for each compressor was also designed. The turbine tip diameter was 10.16 cm (4.0 in.). A combustion chamber was designed, built, and tested for this engine. A preliminary design of the mechanical rotating parts also was completed and is discussed. Three exhaust nozzle designs are presented.
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design
1974-08-30
1.3 ENGINE REPLACEMENT .............. ......................... 8-1 8-1.4 ENGINE AIR INDUCTION SYSTEM .............................. 8-2 8-1.5 ENGINE ...8-5 8-2.2 ENGINE AIR INDUCTION SYSTEM .............................. 8-5 8-2.2.1 G eneral Design...8-5 8-2.2.2 Air Induction System Inlet Location ............................... 8-6 8-2.2.3 Engine Air Induction System Pressure Losses
Engine Development Design Margins Briefing Charts
NASA Technical Reports Server (NTRS)
Bentz, Chuck
2006-01-01
New engines experience durability problems after entering service. The most prevalent and costly is the hot section, particularly the high-pressure turbine. The origin of durability problems can be traced back to: 1) the basic aero-mechanical design systems, assumptions, and design margins used by the engine designers, 2) the available materials systems, and 3) to a large extent, aggressive marketing in a highly competitive environment that pushes engine components beyond the demonstrated capability of the basic technology available for the hardware designs. Unfortunately the user must operate the engine in the service environment in order to learn the actual thrust loading and the time at max effort take-off conditions used in service are needed to determine the hot section life. Several hundred thousand hours of operational service will be required before the demonstrated reliability of a fleet of engines or the design deficiencies of the engine hot section parts can be determined. Also, it may take three to four engine shop visits for heavy maintenance on the gas path hardware to establish cost effective build standards. Spare parts drive the oerator's engine maintenance costs but spare parts also makes lots of money for the engine manufacturer during the service life of an engine. Unless competition prevails for follow-on engine buys, there is really no motivation for an OEM to spend internal money to improve parts durability and reduce earnings derived from a lucrative spare parts business. If the hot section life is below design goals or promised values, the OEM migh argue that the engine is being operated beyond its basic design intent. On the other hand, the airframer and the operator will continue to remind the OEM that his engine was selected based on a lot of promises to deliver spec thrust with little impact on engine service life if higher thrust is used intermittently. In the end, a standoff prevails and nothing gets fixed. This briefing will propose ways to hold competing engine manufacturers more accountable for engine hot section design margins during the entire Engine Development process as well as provide tools to assess the design temperature margins in the hot section parts of Service Engines.
Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Diem, H. G.
1980-01-01
The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.
Shedding Light on Engineering Design
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Nyquist, Chell; Tyrie, Nancy
2013-01-01
This article describes the steps incorporated to teach an engineering design process in a fifth-grade science classroom. The engineering design-based activity was an existing scientific inquiry activity using UV light--detecting beads and purposefully creating a series of engineering design-based challenges around the investigation. The…
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-03-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Table-Top Robotics for Engineering Design
ERIC Educational Resources Information Center
Wilczynski, Vincent; Dixon, Gregg; Ford, Eric
2005-01-01
The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…
77 FR 53802 - Procurement, Management, and Administration of Engineering and Design Related Services
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
...-2012-0043] RIN 2125-AF44 Procurement, Management, and Administration of Engineering and Design Related... regulations governing the procurement, management, and administration of engineering and design related... . Background The FHWA proposes to modify existing regulations for the administration of engineering and design...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
Interactive-graphic flowpath plotting for turbine engines
NASA Technical Reports Server (NTRS)
Corban, R. R.
1981-01-01
An engine cycle program capable of simulating the design and off-design performance of arbitrary turbine engines, and a computer code which, when used in conjunction with the cycle code, can predict the weight of the engines are described. A graphics subroutine was added to the code to enable the engineer to visualize the designed engine with more clarity by producing an overall view of the designed engine for output on a graphics device using IBM-370 graphics subroutines. In addition, with the engine drawn on a graphics screen, the program allows for the interactive user to make changes to the inputs to the code for the engine to be redrawn and reweighed. These improvements allow better use of the code in conjunction with the engine program.
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
ERIC Educational Resources Information Center
Atman, Cindy; Kilgore, Deborah; McKenna, Ann
2009-01-01
This analysis, that utilizes data from part of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE), found that as a result of taking a course in engineering design and/or studying engineering for four years, students acquire engineering design language that is common to a larger community of practice…
Easy method of matching fighter engine to airframe for use in aircraft engine design courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattingly, J.D.
1989-01-01
The proper match of the engine(s) to the airframe affects both aircraft size and life cycle cost. A fast and straightforward method is developed and used for the matching of fighter engine(s) to airframes during conceptual design. A thrust-lapse equation is developed for the dual-spool, mixed-flow, afterburning turbofan type of engine based on the installation losses of 'Aircraft Engine Design' and the performance predictions of the cycle analysis programs ONX and OFFX. Using system performance requirements, the effects of aircraft thrust-to-weight, wing loading, and engine cycle on takeoff weight are analyzed and example design course results presented. 5 refs.
Mechanical Engineering Senior Design Project Final Presentations | College
Mechanical Engineering Senior Design Project Final Presentations December 7, 2015 Mechanical Engineering On Wednesday, Dec. 9th, the mechanical engineering senior design project final presentations will be made in and Steven Keller Objective: Design a temperature controlled unit that would cool and maintain a
Introducing Engineering Design through an Intelligent Rube Goldberg Implementation
ERIC Educational Resources Information Center
Acharya, Sushil; Sirinterlikci, Arif
2010-01-01
Engineering students need a head start on designing a component, a process, or a system early in their educational endeavors, and engineering design topics need to be introduced appropriately without negatively affecting students' motivation for engineering. In ENGR1010 at Robert Morris University, freshmen engineering students are introduced to…
Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA
ERIC Educational Resources Information Center
Chabalengula, Vivien M.; Mumba, Frackson
2017-01-01
The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, R.; Jones, J. M.
2006-07-01
With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less
Rethinking the Systems Engineering Process in Light of Design Thinking
2016-04-30
systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system
The common engine concept for ALS application - A cost reduction approach
NASA Technical Reports Server (NTRS)
Bair, E. K.; Schindler, C. M.
1989-01-01
Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.
Stirling engine design manual, 2nd edition
NASA Technical Reports Server (NTRS)
Martini, W. R.
1983-01-01
This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
Engineering Design vs. Artistic Design: Some Educational Consequences
ERIC Educational Resources Information Center
Eder, Wolfgang Ernst
2013-01-01
"Design" can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be coordinated for internal consistency and plausibility. Design research tries to clarify design processes and their underlying theories--for designing in general, and for particular forms, e.g., design engineering. Theories are a…
Potential of Spark Ignition Engine : Engine Design Concepts
DOT National Transportation Integrated Search
1980-03-01
This report provides a review and assessment of potential improvements in fuel economy for a selected number of spark ignition engine design technologies for passenger cars and light trucks. The engine design technologies examined include: : a) optim...
Evolutionary engineering for industrial microbiology.
Vanee, Niti; Fisher, Adam B; Fong, Stephen S
2012-01-01
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Optimal Solution for an Engineering Applications Using Modified Artificial Immune System
NASA Astrophysics Data System (ADS)
Padmanabhan, S.; Chandrasekaran, M.; Ganesan, S.; patan, Mahamed Naveed Khan; Navakanth, Polina
2017-03-01
An Engineering optimization leads a essential role in several engineering application areas like process design, product design, re-engineering and new product development, etc. In engineering, an awfully best answer is achieved by comparison to some completely different solutions by utilization previous downside information. An optimization algorithms provide systematic associate degreed economical ways that within which of constructing and comparison new design solutions so on understand at best vogue, thus on best solution efficiency and acquire the foremost wonderful design impact. In this paper, a new evolutionary based Modified Artificial Immune System (MAIS) algorithm used to optimize an engineering application of gear drive design. The results are compared with existing design.
The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum
NASA Astrophysics Data System (ADS)
Iveland, Ashley
In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories their ideas fit within, the more complex their understanding was thought to be). I found that the most commonly referenced aspects of engineering design were in line with the three main dimensions described in the Next Generation Science Standards (NGSS Lead States, 2013). I also found that the practicing teacher participants overall conveyed the most complex and integrated understandings of engineering design, with the undergraduate, prospective teachers not far behind. One of the most important factors related to a more integrated understanding of engineering design was having formal engineering experience, especially in the form of conducting engineering research or having been a professional engineer. Further, I found that female participants were more likely than their male counterparts to view engineering as having a human element--recognizing the need to collaborate with others throughout the process and the need to think about the potential user of the product the engineer is solving the problem for. These findings suggest that prior experience with engineering, and not experience in the classroom or with engineering education, tends to lead to a deeper, more authentic view of engineering. Finally, I close with a discussion of the overall findings, limitations of the study, potential implications, and future work.
Unified Engineering Software System
NASA Technical Reports Server (NTRS)
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
Energy Efficient Engine: Control system component performance report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Bennett, G. W.
1984-01-01
An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.
NASA Astrophysics Data System (ADS)
Goncher, Andrea M.
thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Koenig, R. W.
1972-01-01
A computer program which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN 4 listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two-stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-engine; and (9) three-spool, two-stream, aft-fan engine. The simulation of other engines by using logical variables built into the program is also described.
Code of Federal Regulations, 2014 CFR
2014-01-01
... series, displacement, and design characteristics and are approved under the same type certificate... engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds...
Code of Federal Regulations, 2013 CFR
2013-01-01
... series, displacement, and design characteristics and are approved under the same type certificate... engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds...
ERIC Educational Resources Information Center
Smith, David R.; Cole, Joanne
2012-01-01
The School of Engineering and Design Multidisciplinary Project (MDP) at Brunel University is a one week long project based activity involving first year undergraduate students from across the School subject areas of Electronic and Computer Engineering, Mechanical Engineering, Civil Engineering and Design. This paper describes the main aims of the…
NASA Technical Reports Server (NTRS)
Bair, E. K.
1986-01-01
The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.
NASA Technical Reports Server (NTRS)
German, J.; Fogel, P.; Wilson, C.
1980-01-01
The design was based on the LTS-101 engine family for the core engine. A high bypass fan design (BPR=9.4) was incorporated to provide reduced fuel consumption for the design mission. All acoustic and pollutant emissions goals were achieved. A discussion of the preliminary design of a business jet suitable for the developed propulsion system is included. It is concluded that large engine technology can be successfully applied to small turbofans, and noise or pollutant levels need not be constraints for the design of future small general aviation turbofan engines.
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
NASA Technical Reports Server (NTRS)
Reynolds, C. N.
1985-01-01
The preliminary design of advanced technology (1992) prop-fan engines for single-rotation prop-fans, the conceptual design of the entire propulsion system, and an aircraft evaluation of the resultant designs are discussed. Four engine configurations were examined. A two-spool engine with all axial compressors and a three-spool engine with axial/centrifugal compressors were selected. Integrated propulsion systems were designed in conjunction with airframe manufacturers. The design efforts resulted in 12,000 shaft horsepower engines installed in over the installations with in-line and offset gearboxes. The prop-fan powered aircraft used 21 percent less fuel and cost 10 percent less to operate than a similar aircraft powered by turbofan engines with comparable technology.
Energy Efficient Engine (E3) controls and accessories detail design report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Lavash, J. P.
1982-01-01
An Energy Efficient Engine program has been established by NASA to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, a new turbofan engine was designed. This report describes the fuel and control system for this engine. The system design is based on many of the proven concepts and component designs used on the General Electric CF6 family of engines. One significant difference is the incorporation of digital electronic computation in place of the hydromechanical computation currently used.
Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit
ERIC Educational Resources Information Center
Apedoe, Xornam S.; Reynolds, Birdy; Ellefson, Michelle R.; Schunn, Christian D.
2008-01-01
Infusing engineering design projects in K-12 settings can promote interest and attract a wide range of students to engineering careers. However, the current climate of high-stakes testing and accountability to standards leaves little room to incorporate engineering design into K-12 classrooms. We argue that design-based learning, the combination…
Code of Federal Regulations, 2014 CFR
2014-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Code of Federal Regulations, 2011 CFR
2011-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines designed for lawn and garden applications? 1048.615 Section 1048.615 Protection of Environment... designed for lawn and garden applications? This section is intended for engines designed for lawn and garden applications, but it applies to any engines meeting the criteria in paragraph (a) of this section...
Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue
2016-01-01
Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…
High School Engineering and Technology Education Integration through Design Challenges
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
The Engineering of Engineering Education: Curriculum Development from a Designer's Point of View
ERIC Educational Resources Information Center
Rompelman, Otto; De Graaff, Erik
2006-01-01
Engineers have a set of powerful tools at their disposal for designing robust and reliable technical systems. In educational design these tools are seldom applied. This paper explores the application of concepts from the systems approach in an educational context. The paradigms of design methodology and systems engineering appear to be suitable…
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
Building Safer Systems With SpecTRM
NASA Technical Reports Server (NTRS)
2003-01-01
System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.
Energy efficient engine. Core engine bearings, drives and configuration: Detailed design report
NASA Technical Reports Server (NTRS)
Broman, C. L.
1981-01-01
The detailed design of the forward and aft sumps, the accessory drive system, the lubrication system, and the piping/manifold configuration to be employed in the core engine test of the Energy Efficient Engine is addressed. The design goals for the above components were established based on the requirements of the test cell engine.
1+1=3: Cross-Discipline Collaboration Really Adds Up!
ERIC Educational Resources Information Center
Breen, Mindy
2006-01-01
The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…
Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation
DOT National Transportation Integrated Search
1980-03-01
Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Blarigan, P.
A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueledmore » operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.« less
ERIC Educational Resources Information Center
de Vere, Ian; Melles, Gavin; Kapoor, Ajay
2010-01-01
Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…
Design issues for lunar in situ aluminum/oxygen propellant rocket engines
NASA Technical Reports Server (NTRS)
Meyer, Michael L.
1992-01-01
Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented.
Optical engineering capstone design projects with industry sponsors
NASA Astrophysics Data System (ADS)
Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.
2014-09-01
Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.
Eliciting and characterizing students' mental models within the context of engineering design
NASA Astrophysics Data System (ADS)
Dankenbring, Chelsey
Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
Inclusion by Design: Engineering Inclusive Practices in Secondary Schools
ERIC Educational Resources Information Center
Dukes, Charles; Lamar-Dukes, Pamela
2009-01-01
In order to help teachers understand the importance of intentional design for inclusive education, this article describes the design process an engineer might use when designing a new project. If teachers learn to think like engineers, it is possible for them to design inclusive education. This conceptual design can then be combined with…
Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking
NASA Astrophysics Data System (ADS)
Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.
2018-02-01
Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.
Automotive Stirling Engine Mod 1 Design Review, Volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Risk assessment, safety analysis of the automotive stirling engine (ASE) mod I, design criteria and materials properties for the ASE mod I and reference engines, combustion are flower development, and the mod I engine starter motor are discussed. The stirling engine system, external heat system, hot engine system, cold engine system, and engine drive system are also discussed.
Genome scale engineering techniques for metabolic engineering.
Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T
2015-11-01
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
The Topology Optimization Design Research for Aluminum Inner Panel of Automobile Engine Hood
NASA Astrophysics Data System (ADS)
Li, Minhao; Hu, Dongqing; Liu, Xiangzheng; Yuan, Huanquan
2017-11-01
This article discusses the topology optimization methods for automobile engine hood design. The aluminum inner panel of engine hood and mucilage glue regions are set as design areas, and the static performances of engine hood included modal frequency, lateral stiffness, torsional stiffness and indentation stiffness are set as the optimization objectives. The topology optimization results about different objective functions are contrasted for analysis. And based on the reasonable topology optimization result, a suited automobile engine hood designs are raised to further study. Finally, an automobile engine hood that good at all of static performances is designed, and a favorable topology optimization method is put forward for discussion.
ERIC Educational Resources Information Center
Fox, Garey A.; Weckler, Paul; Thomas, Dan
2015-01-01
In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and transfer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…
Quiet Clean Short Haul Experimental Engine
1973-02-21
Program manager Carl Ciepluch poses with a model of the Quiet Clean Short Haul Experimental Engine (QCSEE) conceived by the National Aeronautics and Space Administration (NASA) Lewis Research Center. The QCSEE engine was designed to power future short-distance transport aircraft without generating significant levels of noise or pollution and without hindering performance. The engines were designed to be utilized on aircraft operating from small airports with short runways. Lewis researchers investigated two powered-lift designs and an array of new technologies to deal with the shorter runways. Lewis contracted General Electric to design the two QCSEE engines—one with over-the-wing power-lift and one with an under-the-wing design. A scale model of the over-the-wing engine was tested in the Full Scale Tunnel at the Langley Research Center in 1975 and 1976. Lewis researchers investigated both versions in a specially-designed test stand, the Engine Noise Test Facility, on the hangar apron. The QCSEE engines met the goals set out by the NASA researchers. The aircraft industry, however, never built the short-distance transport aircraft for which the engines were intended. Different technological elements of the engine, however, were applied to some future General Electric engines.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.
Performance Benefits for Wave Rotor-Topped Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Jones, Scott M.; Welch, Gerard E.
1996-01-01
The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.
Engineering Encounters: Minding Design Missteps
ERIC Educational Resources Information Center
Crismond, David; Gellert, Laura; Cain, Ryan; Wright, Shequana
2013-01-01
The "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013) asks teachers to give engineering design equal standing with scientific inquiry in their science lessons. This article asks the following questions: What do engineering design practices look like, and how do you assess them? How similar and different is engineering design…
Incorporating Engineering Design Challenges into STEM Courses
ERIC Educational Resources Information Center
Householder, Daniel L., Ed.; Hailey, Christine E., Ed.
2012-01-01
Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…
Design of a high-performance rotary stratified-charge research aircraft engine
NASA Technical Reports Server (NTRS)
Jones, C.; Mount, R. E.
1984-01-01
The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.
Avco Lycoming QCGAT program design cycle, demonstrated performance and emissions
NASA Technical Reports Server (NTRS)
Fogel, P.; Koschier, A.
1980-01-01
A high bypass ratio, twin spool turbofan engine of modular design which incorporates a front fan module driven by a modified LTS101 core engine was tested. The engine is housed in a nacelle incorporating full length fan ducting with sound treatment in both the inlet and fan discharge flow paths. Design goals of components and results of component tests are presented together with full engine test results. The rationale behind the combustor design selected for the engine is presented as well as the emissions test results. Total system (engine and nacelle) test results are included.
Optimization, an Important Stage of Engineering Design
ERIC Educational Resources Information Center
Kelley, Todd R.
2010-01-01
A number of leaders in technology education have indicated that a major difference between the technological design process and the engineering design process is analysis and optimization. The analysis stage of the engineering design process is when mathematical models and scientific principles are employed to help the designer predict design…
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910
Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines
NASA Technical Reports Server (NTRS)
Allan, R. D.; Joy, W.
1977-01-01
An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.
Developing Elementary Math and Science Process Skills Through Engineering Design Instruction
NASA Astrophysics Data System (ADS)
Strong, Matthew G.
This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.
Feasibility Study of a Pressure-fed Engine for a Water Recoverable Space Shuttle Booster
NASA Technical Reports Server (NTRS)
Gerstl, E.
1972-01-01
Detailed mass properties are presented for a gimbaled, fixed thrust, regeneratively cooled engine having a coaxial pintle injector. The baseline design parameters for this engine are tabulated. Mass properties are also summarized for several other engine configurations i.e., a hinge nozzle using a Techroll seal, a gimbaled duct cooled engine and a regeneratively cooled engine using liquid injection thrust vector control (LITVC). Detailed engine analysis and design trade studies leading to the selection of a regeneratively cooled gimbaled engine and pertaining to the selection of the baseline design configuration are also given.
Automotive Stirling engine: Mod 2 design report
NASA Technical Reports Server (NTRS)
Nightingale, Noel P.
1986-01-01
The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
Expert System Approach For Generating And Evaluating Engine Design Alternatives
NASA Astrophysics Data System (ADS)
Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.
1989-03-01
Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.
Iteration in Early-Elementary Engineering Design
ERIC Educational Resources Information Center
McFarland Kendall, Amber Leigh
2017-01-01
K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect…
ERIC Educational Resources Information Center
Gerlick, Robert Edward
2010-01-01
The research presented in this manuscript was focused on the development of assessments for engineering design outcomes. The primary goal was to support efforts by the Transferrable Integrated Design Engineering Education (TIDEE) consortium in developing assessment instruments for multidisciplinary engineering capstone courses. Research conducted…
Engineering Encounters: Identifying an Engineering Design Problem
ERIC Educational Resources Information Center
Chizek, Lisa; VanMeeteren, Beth; McDermott, Mark; Uhlenberg, Jill
2018-01-01
Engineering is an intriguing way for students to connect the design process with their knowledge of science (NRC 2012). This article describes the "Engineering a Pancake Recipe" design process which was created to make the structure and properties of matter more meaningful for fifth grade students. The whole pancake recipe engineering…
Documenting the Engineering Design Process
ERIC Educational Resources Information Center
Hollers, Brent
2017-01-01
Documentation of ideas and the engineering design process is a critical, daily component of a professional engineer's job. While patent protection is often cited as the primary rationale for documentation, it can also benefit the engineer, the team, company, and stakeholders through creating a more rigorously designed and purposeful solution.…
Float Your Boat: Making Instant Design Challenges Meaningful and Relevant
ERIC Educational Resources Information Center
Oehrli, Robbie
2016-01-01
Engineering design is a core component of technology and engineering education, and although not every student will become an engineer following high school, all students can profit from having engineering design experiences in high school (Apedoe, Reynolds, Ellefson, & Schunn, 2008; Denson & Lammi, 2014; Grubbs & Strimel, 2015;…
ERIC Educational Resources Information Center
Kelley, Todd; Sung, Euisuk
2017-01-01
The introduction of engineering practices within the "Next Generation Science Standards" provides technology educators with opportunities to help STEM educators infuse engineering design within a core curriculum. The introduction of teaching engineering design in early elementary grades also provides opportunities to conduct research…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
...) Protection, Limit Engine Torque Loads for Sudden Engine Stoppage, and Design Roll Maneuver Requirement AGENCY... design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. These design features include limit engine torque loads for sudden engine...
Composite engines for application to a single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Bendot, J. G.; Brown, P. N.; Piercy, T. G.
1975-01-01
Seven composite engines were designed for application to a reusable single-stage-to-orbit vehicle. The engine designs were variations of the supercharged ejector ramjet engine. The resulting performance, weight, and drawings of each engine form a data base for establishing a potential of this class of composite engine to various missions, including the single-stage-to-orbit application. The impact of advanced technology in the design of the critical fan turbine was established.
NASA Technical Reports Server (NTRS)
1973-01-01
Calculations, curves, and substantiating data which support the engine design characteristics of the RL-10 engines are presented. A description of the RL-10 ignition system is provided. The performance calculations of the RL-10 derivative engines and the performance results obtained are reported. The computer simulations used to establish the control system requirements and to define the engine transient characteristics are included.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
2000-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.
Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler; Stanley K. Borowski
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified asmore » the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.« less
Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Schnitzler, Bruce G.; Borowski, Stanley K.
2012-01-01
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.
DESIGN CONSIDERATIONS FOR PULP AND PAPER-MILL SLUDGE LANDFILLS
This report presents procedures for the engineering design and control of pulp and paper-mill sludge disposal landfills. Engineering design will allow more efficient use, thereby contributing to economic and environmental benefits. To form the basis for engineering design of slud...
Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle
NASA Technical Reports Server (NTRS)
Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.
2004-01-01
This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 25.361 Section 25.361...
The Roles of Engineering Notebooks in Shaping Elementary Engineering Student Discourse and Practice
ERIC Educational Resources Information Center
Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.
2017-01-01
Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum "Engineering is Elementary" (EiE) support student work during design challenges. Through educational ethnography and…
Quiet engine program flight engine design study
NASA Technical Reports Server (NTRS)
Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.
1974-01-01
The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.
Theo Jansen Project in Engineering Design Course and a Design Example
ERIC Educational Resources Information Center
Liu, Yucheng; Artigue, Aaron; Sommers, Jeremy; Chambers, Terence
2011-01-01
Objectives of a project-oriented mechanical engineering course, Engineering Design, were achieved through a design project, where students designed, built and demonstrated an extreme version of a basic Theo Jansen device. Through this project, junior students in the University of Louisiana fully developed the capability of applying mathematic and…
ERIC Educational Resources Information Center
Bi, Youyi
2017-01-01
Human-centered design requires thorough understanding of people (e.g. customers, designers, engineers) in order to better satisfy the needs and expectations of all stakeholders in the design process. Designers are able to create better products by incorporating customers' subjective evaluations on products. Engineers can also build better tools…
Working on the Boundaries: Philosophies and Practices of the Design Process
NASA Technical Reports Server (NTRS)
Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.
1996-01-01
While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.
Creating Learning Environment Connecting Engineering Design and 3D Printing
NASA Astrophysics Data System (ADS)
Pikkarainen, Ari; Salminen, Antti; Piili, Heidi
Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds... Model means all commercial aircraft turbine engines which are of the same general series, displacement...
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds... Model means all commercial aircraft turbine engines which are of the same general series, displacement...
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds... Model means all commercial aircraft turbine engines which are of the same general series, displacement...
How to Teach Engineering and Industrial Design: a U.K. Experience.
ERIC Educational Resources Information Center
Sheldon, D. F.
1988-01-01
Explored are the possibilities of teaching engineering through a project approach. Discussed are the introduction, clashing cultures of industrial and engineering design, skills required of a designer, teaching approach to the total design activity, CAD/CAM experiences, and conclusions. (Author/YP)
Engine System Loads Analysis Compared to Hot-Fire Data
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.
Preparing University Students to Lead K-12 Engineering Outreach Programmes: A Design Experiment
ERIC Educational Resources Information Center
Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi
2016-01-01
This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year…
Coming to Terms with Engineering Design as Content
ERIC Educational Resources Information Center
Lewis, Theodore
2005-01-01
This article addresses the challenges posed by engineering design as a content area of technology education. What adjustments will technology teachers have to make in their approach to teaching and learning when they teach design as engineering in response to the new standards? How faithful to engineering as practiced must their approach be? There…
Patent Information Use in Engineering Technology Design: An Analysis of Student Work
ERIC Educational Resources Information Center
Phillips, Margaret; Zwicky, Dave
2017-01-01
How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…
The Engineering Design Process: Conceptions along the Learning-To-Teach Continuum
ERIC Educational Resources Information Center
Iveland, Ashley
2017-01-01
In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering…
ERIC Educational Resources Information Center
Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik
2017-01-01
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…
How to Develop an Engineering Design Task
ERIC Educational Resources Information Center
Dankenbring, Chelsey; Capobianco, Brenda M.; Eichinger, David
2014-01-01
In this article, the authors provide an overview of engineering and the engineering design process, and describe the steps they took to develop a fifth grade-level, standards-based engineering design task titled "Getting the Dirt on Decomposition." Their main goal was to focus more on modeling the discrete steps they took to create and…
STV engine design considerations
NASA Technical Reports Server (NTRS)
1991-01-01
The topics covered include the following: (1) engine design criteria and issues; (2) design requirements for man rating; (3) test requirements for man rating; (4) design requirements for space basing; (5) engine operation requirements; (6) health monitoring; (7) lunar transfer vehicle (LTV) feed system; (8) lunar excursion vehicle (LEV) propellant system; (9) area ratio gimbal angle limits; (10) reaction control system; and (11) engine configuration and characteristics. This document is presented in viewgraph form.
Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering
NASA Astrophysics Data System (ADS)
Kainer, Karl U.
2006-02-01
Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.
Three-Dimensional Computational Fluid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
Ye, Yanmei; Wu, Cifang; Cheng, Chengbiao; Qiu, Lingzhang; Huang, Shengyu; Zheng, Ruihui
2002-09-01
The concept and characteristics of engineering designs on sustainable agricultural land consolidation project were discussed in this paper. Principles, basic methods and procedures of engineering designs on agricultural land consolidation project were put forward, which were successfully adopted for designing agricultural land consolidation in Xuemeiyang region of Changtai County, including diversity designs of sustainable land use, engineering designs of soil improvement, roads, ditches, and drains for protecting existent animal environments, and design of ecological shelter-forests in farmland. Moreover, from sustainable economic, ecological and social points, the results of these engineering designs were evaluated based on fouteen important indexes. After carrying out these engineeringdesigns, the eco-environments and agricultural production conditions were significantly improved, and the farm income was increased in planned regions.
A Software Tool for Integrated Optical Design Analysis
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)
2001-01-01
Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.
Revised Point of Departure Design Options for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce
2015-01-01
In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.
14 CFR 33.21 - Engine cooling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...
14 CFR 33.21 - Engine cooling.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...
14 CFR 33.21 - Engine cooling.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...
14 CFR 33.21 - Engine cooling.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...
14 CFR 33.21 - Engine cooling.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...
The J-2X Oxidizer Turbopump - Design, Development, and Test
NASA Technical Reports Server (NTRS)
Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.
2011-01-01
Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.
DOT National Transportation Integrated Search
2011-01-01
In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers : mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves se...
Human Systems Integration Competency Development for Navy Systems Commands
2012-09-01
cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences. KSA...cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences...requirements (as required). Fundamental cognizance of Applied Engineering / Psychology relative to knowledge engineering, training, team work, user
Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.
2005-01-01
This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.
Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Paxson, Daniel E.; Wilson, Jack; Synder, Philip H.
1999-01-01
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.
Design and test of aircraft engine isolators for reduced interior noise
NASA Technical Reports Server (NTRS)
Unruh, J. F.; Scheidt, D. C.
1982-01-01
Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.
Applications of Computer Graphics in Engineering
NASA Technical Reports Server (NTRS)
1975-01-01
Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.
Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study
NASA Technical Reports Server (NTRS)
Stuckas, K. J.
1980-01-01
The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.
Engineering aids for the design of survivable defense communications transmission capability
NASA Astrophysics Data System (ADS)
Stover, H. A.
1984-01-01
Adequate military communications are essential to the security of the United States, especially in the various stages of major wars. Enough communications must survive to make effective use of our military forces and weaponry, even in the face of a concerted enemy effort to destroy those communications. An evolutionary approach to provide survivability is recommended. It must be provided by the design engineer. Afterthought and modification must be replaced with foresight and design. The engineer must make survivability a criterion in every design decision. The design engineer needs help with the challenges and associated details of successfully accomplishing this. The author discusses and recommends development of convenient-to-use survivability engineering design tools to provide this help.
Integrating ethics in design through the value-sensitive design approach.
Cummings, Mary L
2006-10-01
The Accreditation Board of Engineering and Technology (ABET) has declared that to achieve accredited status, 'engineering programs must demonstrate that their graduates have an understanding of professional and ethical responsibility.' Many engineering professors struggle to integrate this required ethics instruction in technical classes and projects because of the lack of a formalized ethics-in-design approach. However, one methodology developed in human-computer interaction research, the Value-Sensitive Design approach, can serve as an engineering education tool which bridges the gap between design and ethics for many engineering disciplines. The three major components of Value-Sensitive Design, conceptual, technical, and empirical, exemplified through a case study which focuses on the development of a command and control supervisory interface for a military cruise missile.
Quiet Clean Short-Haul Experimental Engine (QSCEE). Preliminary analyses and design report, volume 1
NASA Technical Reports Server (NTRS)
1974-01-01
The experimental propulsion systems to be built and tested in the 'quiet, clean, short-haul experimental engine' program are presented. The flight propulsion systems are also presented. The following areas are discussed: acoustic design; emissions control; engine cycle and performance; fan aerodynamic design; variable-pitch actuation systems; fan rotor mechanical design; fan frame mechanical design; and reduction gear design.
New business opportunity: Green field project with new technology
NASA Astrophysics Data System (ADS)
Lee, Seung Jae; Woo, Jong Hun; Shin, Jong Gye
2014-06-01
Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation technology.
ERIC Educational Resources Information Center
Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.
2011-01-01
A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long…
An Undergraduate Electrical Engineering Course on Computer Organization.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…
ERIC Educational Resources Information Center
Viswanathan, Shekar
2017-01-01
Final program projects (capstone course) in manufacturing design engineering technology at National University are intensive experiences in critical thinking and analysis, designed to broaden students' perspectives and provide an opportunity for integration of coursework in the area of manufacturing design engineering. This paper focuses on three…
Engine System Loads Development for the Fastrac 60K Flight Engine
NASA Technical Reports Server (NTRS)
Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph
2000-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.
Design mentoring tool : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves seni...
Facet‐Engineered Surface and Interface Design of Photocatalytic Materials
Wang, Lili; Li, Zhengquan
2016-01-01
The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398
Research on Visualization Design Method in the Field of New Media Software Engineering
NASA Astrophysics Data System (ADS)
Deqiang, Hu
2018-03-01
In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
1999-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Astrophysics Data System (ADS)
Monell, Donald W.; Piland, William M.
2000-07-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
ERIC Educational Resources Information Center
Dixon, Raymond A.; Johnson, Scott D.
2012-01-01
A cognitive construct that is important when solving engineering design problems is executive control process, or metacognition. It is a central feature of human consciousness that enables one "to be aware of, monitor, and control mental processes." The framework for this study was conceptualized by integrating the model for creative design, which…
Building a Framework for Engineering Design Experiences in STEM: A Synthesis
ERIC Educational Resources Information Center
Denson, Cameron D.
2011-01-01
Since the inception of the National Center for Engineering and Technology Education in 2004, educators and researchers have struggled to identify the necessary components of a "good" engineering design challenge for high school students. In reading and analyzing the position papers on engineering design many themes emerged that may begin to form a…
Research on reform plan of civil engineering adult education graduation design
NASA Astrophysics Data System (ADS)
Su, Zhibin; Sun, Shengnan; Cui, Shicai
2017-12-01
As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.
Knowledge Gained from Practical Experience in the Designing of Aircraft Engines
NASA Technical Reports Server (NTRS)
Kurtz, Oskar
1933-01-01
The present report examines a few important points of engine design such as: in-line water cooled engines, air-cooled in-line engines, and air-cooled radial engines. Subassemblies are also discussed like cylinder types, blower driving gears, pistons, valves, bearings, and crankshafts.
A minimum cost tolerance allocation method for rocket engines and robust rocket engine design
NASA Technical Reports Server (NTRS)
Gerth, Richard J.
1993-01-01
Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.
Theory and Practice Meets in Industrial Process Design -Educational Perspective-
NASA Astrophysics Data System (ADS)
Aramo-Immonen, Heli; Toikka, Tarja
Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.
Teaching ethics to engineers: ethical decision making parallels the engineering design process.
Bero, Bridget; Kuhlman, Alana
2011-09-01
In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.
ERIC Educational Resources Information Center
Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander
2007-01-01
A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…
40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the fuel type on which the engines in the engine family are designed to operate. You must meet the... data, such as data from research engines or similar engine models that are already in production. Your... for the engine or its components, and any relevant customer design specifications. Your demonstration...
40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the fuel type on which the engines in the engine family are designed to operate. You must meet the... data, such as data from research engines or similar engine models that are already in production. Your... for the engine or its components, and any relevant customer design specifications. Your demonstration...
40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the fuel type on which the engines in the engine family are designed to operate. You must meet the... data, such as data from research engines or similar engine models that are already in production. Your... for the engine or its components, and any relevant customer design specifications. Your demonstration...
40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the fuel type on which the engines in the engine family are designed to operate. You must meet the... data, such as data from research engines or similar engine models that are already in production. Your... for the engine or its components, and any relevant customer design specifications. Your demonstration...
40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the fuel type on which the engines in the engine family are designed to operate. You must meet the... data, such as data from research engines or similar engine models that are already in production. Your... for the engine or its components, and any relevant customer design specifications. Your demonstration...
Performance analysis and dynamic modeling of a single-spool turbojet engine
NASA Astrophysics Data System (ADS)
Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin
2017-01-01
The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.
Reverse engineering by design: using history to teach.
Fagette, Paul
2013-01-01
Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.
Creating meaningful learning experiences: Understanding students' perspectives of engineering design
NASA Astrophysics Data System (ADS)
Aleong, Richard James Chung Mun
There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.
Advanced Control Considerations for Turbofan Engine Design
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy
2016-01-01
This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.
Stratified charge rotary aircraft engine technology enablement program
NASA Technical Reports Server (NTRS)
Badgley, P. R.; Irion, C. E.; Myers, D. M.
1985-01-01
The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.
Engine design considerations for 2nd generation supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, J.W.
1983-03-10
A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.
Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features
NASA Technical Reports Server (NTRS)
Zeman, J.
1945-01-01
Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.
NASA Technical Reports Server (NTRS)
Gallaway, Glen R.
1987-01-01
Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.
Engineers: Designers--No Alibis.
ERIC Educational Resources Information Center
Stevens, Susan A. R.; Wilkins, Linda C.
Engineering is the science, art, and business of designing and getting things done; engineers are required to make things happen through interpersonal relationships. At Monash University (Australia), a new course, Management for Engineers, was set up in 1990 to encourage a more holistic approach to the process of engineering. The course included…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... engine design certification, and the certification requirements for engine control systems are driven by... following novel or unusual design features: Electronic engine control system. Discussion As discussed above...; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...
Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms
ERIC Educational Resources Information Center
Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick
2009-01-01
This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…
E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education
ERIC Educational Resources Information Center
Morton, William; Uhomoibhi, James
2011-01-01
Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…
Introducing the "Decider" Design Process
ERIC Educational Resources Information Center
Prasa, Anthony R., Jr.; Del Guercio, Ryan
2016-01-01
Engineers are faced with solving important problems every day and must follow a step-by-step design process to arrive at solutions. Students who are taught an effective design process to apply to engineering projects begin to see problems as an engineer would, consider all ideas, and arrive at the best solution. Using an effective design process…
Design, Test, Redesign: Simulation in Technology, Engineering, and Design Education Classrooms
ERIC Educational Resources Information Center
Swinson, Ronnie; Clark, Aaron C.; Ernst, Jeremy V.; Sutton, Kevin
2016-01-01
Today's engineers, designers, and technologists are often thrust into the role of problem solver, from the initial design phase of a product or process all the way to final development. Many engineers in manufacturing environments are tasked with solving problems and continuously improving processes to enhance company profitability, efficiency,…
Constructing engineers through practice: Gendered features of learning and identity development
NASA Astrophysics Data System (ADS)
Tonso, Karen L.
How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.
ERIC Educational Resources Information Center
Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick
2017-01-01
Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…
46 CFR 11.524 - Service requirements for designated duty engineer of steam and/or motor vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... steam and/or motor vessels. 11.524 Section 11.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Engineer Officer § 11.524 Service requirements for designated duty engineer of steam and/or motor vessels... requirements for endorsements as DDE are: (1) For designated duty engineer of steam and/or motor vessels of any...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.31 Applicability. This subpart prescribes additional design and construction requirements for reciprocating aircraft engines. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.31 Applicability. This subpart prescribes additional design and construction requirements for reciprocating aircraft engines. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.61 Applicability. This subpart prescribes additional design and construction requirements for turbine aircraft engines. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.61 Applicability. This subpart prescribes additional design and construction requirements for turbine aircraft engines. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.61 Applicability. This subpart prescribes additional design and construction requirements for turbine aircraft engines. ...
Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project
NASA Technical Reports Server (NTRS)
Venneri, S. L.
1983-01-01
To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.
QCGAT aircraft/engine design for reduced noise and emissions
NASA Technical Reports Server (NTRS)
Lanson, L.; Terrill, K. M.
1980-01-01
The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.
Engineering design activities and conceptual change in middle school science
NASA Astrophysics Data System (ADS)
Schnittka, Christine G.
The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will persist when not specifically addressed. (2) Engineering design activities are not enough to promote conceptual change. (3) A middle school teacher can successfully implement an engineering design-based curriculum in a science class. (4) Results may also be of interest to science curriculum developers and engineering educators involved in developing engineering outreach curricula for middle school students.
Automotive Stirling reference engine design report
NASA Technical Reports Server (NTRS)
1981-01-01
The reference Stirling engine system is described which provides the best possible fuel economy while meeting or exceeding all other program objectives. The system was designed to meet the requirements of a 1984 Pontiac Phoenix (X-body). This design utilizes all new technology that can reasonably be expected to be developed by 1984 and that is judged to provide significant improvement, relative to development risk and cost. Topics covered include: (1) external heat system; (2) hot engine system; (3) cold engine system; (4) engine drive system; (5) power control system and auxiliaries; (6) engine instalation; (7) optimization and vehicle simulation; (8) engine materials; and (9) production cost analysis.
Cycle Analysis of a New Air Engine Design
NASA Astrophysics Data System (ADS)
Attar, Wiam Fadi
This thesis investigates a new externally heated engine design being developed by Soony Systems Inc. to serve as the prime mover in a residential-scale combined heat and power system. This is accomplished by developing a thermodynamic model for the engine and sweeping through the design parameter space in order to identify designs that maximize power output, efficiency, and brake mean effective pressure (BMEP). It was discovered that the original engine design was flawed so a new design was proposed and analyzed. The thermodynamic model was developed in four stages. The first model was quasi-static while the other three were time-dependent and used increasingly realistic models of the heat exchangers. For the range of design parameters investigated here, the peak power output is 6.8 kW, the peak efficiency is approximately 60%, and the peak BMEP is 389 kPa. These performance levels are compared to those of other closed-cycle engines. The results suggest that the Soony engine has the potential to be more efficient than Stirlings because it more closely approximates the Carnot cycle, but this comes at the cost of significantly lower BMEP (389 kPa vs. 2,760 kPa for the SOLO Stirling engine).
Upgraded automotive gas turbine engine design and development program, volume 2
NASA Technical Reports Server (NTRS)
Wagner, C. E. (Editor); Pampreen, R. C. (Editor)
1979-01-01
Results are presented for the design and development of an upgraded engine. The design incorporated technology advancements which resulted from development testing on the Baseline Engine. The final engine performance with all retro-fitted components from the development program showed a value of 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44. The miss in power was primarily due to missing the efficiency targets of small size turbomachinery. Most of the SFC deficit was attributed to missed goals in the heat recovery system relative to regenerator effectiveness and expected values of heat loss. Vehicular fuel consumption, as measured on a chassis dynamometer, for a vehicle inertia weight of 3500 lbs., was 15 MPG for combined urban and highway driving cycles. The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight.
Reducing the Time and Cost of Testing Engines
NASA Technical Reports Server (NTRS)
2004-01-01
Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
ERIC Educational Resources Information Center
Morris, Richard; Childs, Peter; Hamilton, Tom
2007-01-01
Courses in product design are offered within the United Kingdom at the University of Brighton and the University of Sussex and in both cases are run within engineering departments alongside traditional engineering courses. This paper outlines some of the intrinsic pedagogic practices that are employed by these, and other, design courses. It…
A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes
NASA Technical Reports Server (NTRS)
Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw
2004-01-01
There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.
Optimization in the systems engineering process
NASA Technical Reports Server (NTRS)
Lemmerman, Loren A.
1993-01-01
The essential elements of the design process consist of the mission definition phase that provides the system requirements, the conceptual design, the preliminary design and finally the detailed design. Mission definition is performed largely by operations analysts in conjunction with the customer. The result of their study is handed off to the systems engineers for documentation as the systems requirements. The document that provides these requirements is the basis for the further design work of the design engineers at the Lockheed-Georgia Company. The design phase actually begins with conceptual design, which is generally conducted by a small group of engineers using multidisciplinary design programs. Because of the complexity of the design problem, the analyses are relatively simple and generally dependent on parametric analyses of the configuration. The result of this phase is a baseline configuration from which preliminary design may be initiated.
Airesearch QCGAT program. [quiet clean general aviation turbofan engines
NASA Technical Reports Server (NTRS)
Heldenbrand, R. W.; Norgren, W. M.
1979-01-01
A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
Engineering design in the primary school: applying stem concepts to build an optical instrument
NASA Astrophysics Data System (ADS)
King, Donna; English, Lyn D.
2016-12-01
Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts. As such, this study examined the learning that occurred when fifth-grade students completed an optical engineering activity using an iterative engineering design model. Through a qualitative methodology using a case study design, we analysed multiple data sources including students' design sketches from eight focus groups. Three key findings emerged: first, the collaborative process of the first design sketch enabled students to apply core STEM concepts to model construction; second, during the construction stage students used experimentation for the positioning of lenses, mirrors and tubes resulting in a simpler 'working' model; and third, the redesign process enabled students to apply structural changes to their design. The engineering design model was useful for structuring stages of design, construction and redesign; however, we suggest a more flexible approach for advanced applications of STEM concepts in the future.
1979-07-01
Engineering Division p 0 CAR WE H FRZIAN, NENBER Design Branch Engineering Division J SEPE FIN~EGAN, JR.,CIV ater Control Branch * Engineering Division...Operator g. Purpose of Dam h. Design and Construction History i. Normal Operational Procedures 1.3 PERTINENT DATA ........................... 4 a...Tunnel i. Spillways j. Regulating Outlets SECTION 2: ENGINEERING DATA 2.1 DESIGN .............................. 9 a. Available Data b. Design Features c
NASA Astrophysics Data System (ADS)
González, M. R.; Lambán, M. P.
2012-04-01
This paper presents the result of designing the subject Quality Engineering and Security of the Product, belonging to the Degree of Engineering in Industrial Design and Product Development, on the basis of the case methodology. Practical sessions of this subject are organized using the whole documents of the Quality System Management of the virtual company BeaLuc S.A.
Design and Testing of an H2/O2 Predetonator for a Simulated Rotating Detonation Engine Channel
2013-03-01
Diameter PDE Pulse Detonation Engines RDE Rotating Detonation Engine WPAFB Wright Patterson Air Force Base ZND Zeldovich, von Neumann and Doring xv...DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL THESIS Stephen J. Miller, 2Lt, USAF AFIT-ENY-13-M-23...RELEASE; DISTRIBUTION UNLIMITED AFIT-ENY-13-M-23 DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL Stephen
Advanced 35 W Free-Piston Stirling Engine for Space Power Applications
NASA Astrophysics Data System (ADS)
Wood, J. Gary; Lane, Neill
2003-01-01
This paper presents the projected performance and overall design characteristics of a high efficiency, low mass 35 W free-piston Stirling engine design. Overall (engine plus linear alternator) thermodynamic performance greater than 50% of Carnot, with a specific power close to 100 W/kg appears to be a reasonable goal at this small power level. Supporting test data and analysis results from exiting engines are presented. Design implications of high specific power in relatively low power engines is presented and discussed.
LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Wong; Tian Tian; Luke Moughon
2005-09-30
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less
Developments in REDES: The rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Developments in REDES: The Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines
NASA Technical Reports Server (NTRS)
Radil, Kevin C.
1997-01-01
Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.
NASA Astrophysics Data System (ADS)
Patel, Harinkumar Rajendrabhai
One of the main area of research currently in air-breathing propulsion is increasing the fuel efficiency of engines. Increasing fuel efficiency of an air-breathing engine will be advantageous for civil transport as well as military aircraft. This objective can be achieved in several ways. Present design models are developed based on their uses: commercial transport, high range rescue aircraft, military aircraft. One of the main property of military aircraft is possessing high thrust but increasing fuel efficiency will also be advantageous resulting in more time in combat. Today's engine design operates best at their design point and has reduced thrust and high fuel consumption values in off-design. The adaptive cycle engine concept was introduced to overcome this problem. The adaptive cycle engine is a variable cycle engine concept equipped with an extra bypass (3rd bypass) stream. This engine varies the bypass ratio and the fan pressure ratio, the two main parameters affecting thrust and fuel consumption values of the engine. In cruise, more flow will flow through the third stream resulting in the high bypass engine giving lower fuel consumption. on the other hand, the engine will act as a low bypass engine producing more thrust by allowing more air to flow through core while in combat. The simulation of this engine was carried out using the Numerical Propulsion System Simulation (NPSS) software. The effect of the bypass ratio and the fan pressure ratio along with Mach number were studied. After the parametric variation study, the mixture configuration was also studied. Once the effect of the parameters were understood, the best design operating point configuration was selected and then the engine performance for off-design was calculated. Optimum values of bypass ratio and fan pressure ratio were also obtained for each altitude selected for off-design performance.
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
Preparing university students to lead K-12 engineering outreach programmes: a design experiment
NASA Astrophysics Data System (ADS)
Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi
2016-11-01
This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year design experiment to examine the programme's effectiveness at preparing university students to lead pre-engineering activities. Pre- and post-surveys incorporated items from the Student Engagement sub-scale of the Teacher Sense of Efficacy Scale. Surveys were analysed using paired-samples t-test. Interview and open-ended survey data were analysed using discourse analysis and the constant comparative method. As a result of participation in the programme, university students reported a gain in efficacy to lead pre-engineering activities. The paper discusses programme features that supported efficacy gains and concludes with a set of design principles for developing learning environments that effectively prepare university students to facilitate pre-engineering outreach programmes.
NASA Technical Reports Server (NTRS)
1981-01-01
The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...
Space transportation booster engine configuration study. Addendum: Design definition document
NASA Technical Reports Server (NTRS)
1989-01-01
Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine.
14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Design and test requirements for Early... Aircraft Engines § 33.201 Design and test requirements for Early ETOPS eligibility. An applicant seeking type design approval for an engine to be installed on a two-engine airplane approved for ETOPS without...
The Use of a Parametric Feature Based CAD System to Teach Introductory Engineering Graphics.
ERIC Educational Resources Information Center
Howell, Steven K.
1995-01-01
Describes the use of a parametric-feature-based computer-aided design (CAD) System, AutoCAD Designer, in teaching concepts of three dimensional geometrical modeling and design. Allows engineering graphics to go beyond the role of documentation and communication and allows an engineer to actually build a virtual prototype of a design idea and…
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
The objective of this research was to explore the relationship between information access and design solution quality of high school students presented with an engineering design problem. This objective is encompassed in the research question driving this inquiry: How does information access impact the design process? This question has emerged in…
Talking to Texts and Sketches: The Function of Written and Graphic Mediation in Engineering Design.
ERIC Educational Resources Information Center
Lewis, Barbara
2000-01-01
Describes the author's research that explores the role of language, particularly texts, in the engineering design process. Notes that results of this case study support a new "mediated" model of engineering design as an inventional activity in which designers use talk, written language, and other symbolic representations as tools to think about…
ERIC Educational Resources Information Center
Pieper, Jon; Mentzer, Nathan
2013-01-01
Mentzer and Becker (2011) and Becker and Mentzer (2012) demonstrated that high school students engaged in engineering design problems spent more time accessing information and spent more time designing when provided with Internet access. They studied high school students engaged in an engineering design challenge. The two studies attempted to…
ERIC Educational Resources Information Center
English, Lyn D.; King, Donna; Smeed, Joanna
2017-01-01
As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…
48 CFR 19.1005 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... nonpropelled ships west of the 108th meridian. 3. Architectural and Engineering Services (Including Surveying... Architect-Engineering Services (including landscaping, interior layout, and designing). PSC C212 Engineering... Services. PSC C215 A&E Production Engineering Services (including Design and Control, and Building...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Engineering, Architectural Services, Design Policies and Construction Standards AGENCY: Rural Utilities..., engineering services and architectural services for transactions above the established threshold dollar levels... Code of Federal Regulations as follows: PART 1724--ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... turboprop engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds...
Integral Engine Inlet Particle Separator. Volume 2. Design Guide
1975-08-01
herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines . Apprupriate technical personnel...OF INTEGRAL GAS TURBINE ENGINE SOLID PARTICLE INLET SEPARATORS, PHASE I, FEASIBILITY STUDY AND DESIGN, Pratt and Whitney Aircraft ; USAAVLABS Technical...USAAVLABS Technical Report 70-36, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, August 1970 AD 876 584. 13. ENGINES , AIRCRAFT
NASA Technical Reports Server (NTRS)
1987-01-01
The Unducted Fan engine (UDF trademark) concept is based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the design methodology and details for the major components of this engine. The design intent of the engine is to efficiently produce 25,000 pounds of static thrust while meeting life and stress requirements. The engine is required to operate at Mach numbers of 0.8 or above.
Spacecraft Systems Engineering, 3rd Edition
NASA Astrophysics Data System (ADS)
Fortescue, Peter; Stark, John; Swinerd, Graham
2003-03-01
Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manouevring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.
VLSI (Very Large Scale Integrated) Design of a 16 Bit Very Fast Pipelined Carry Look Ahead Adder.
1983-09-01
the ability for systems engineers to custom design digital integrated circuits. Until recently, the design of integrated circuits has been...traditionally carried out by a select group of logic designers working in semiconductor laboratories. Systems engineers had to "make do" or "fit in" the...products of these labs to realize their designs. The systems engineers had little participation in the actual design of the chip. The MED and CONWAY design
Radiological controls integrated into design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kindred, G.W.
1995-03-01
Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facilitymore » from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.« less
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
Design concepts for low-cost composite engine frames
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1983-01-01
Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.
Enhancing Decision Topology Assessment in Engineering Design
2014-04-10
in engineering design decision making. References 1. Clemen , R. T., 1997, Making Hard Decisions, Second Edition, Duxbury Press. 2. Hazelrigg, G. A...United Kingdom. 6. Lewis, K., Chen, W. and L. C. Schmidt , Editors, 2006, Decision Making in Engineering Design, ASME Press, New York. 7. Myers
23 CFR 172.1 - Purpose and applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ENGINEERING AND DESIGN RELATED SERVICE CONTRACTS § 172.1 Purpose and applicability. This part prescribes policies and procedures for the administration of engineering and design related service contracts under 23... involve federally funded contracts for engineering and design related services for projects subject to the...
Engine dynamic analysis with general nonlinear finite element codes
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1991-01-01
A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1980-01-01
To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of technology and associated software for integrated company-wide management of engineering information. The project has been underway since 1976 under the guidance of an Industry Technical Advisory Board (ITAB) composed of representatives of major engineering and computer companies and in close collaboration with the Air Force Integrated Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD project include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrate selected design functions. Ongoing work concentrates on development of prototype software to manage engineering information, and initial software is nearing release.
Engineering Changes in Product Design - A Review
NASA Astrophysics Data System (ADS)
Karthik, K.; Janardhan Reddy, K., Dr
2016-09-01
Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.
Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report
NASA Technical Reports Server (NTRS)
Bisset, J. W.; Howe, D. C.
1983-01-01
The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.
Elementary Students' Acquisition of Academic Vocabulary Through Engineering Design
NASA Astrophysics Data System (ADS)
Kugelmass, Rachel
This study examines how STEM (science, technology, engineering, and mathematics) inquiry-based learning through a hands-on engineering design can be beneficial in helping students acquire academic vocabulary. This research took place in a second grade dual- language classroom in a public, suburban elementary school. English language learners, students who speak Spanish at home, and native English speakers were evaluated in this study. Each day, students were presented with a general academic vocabulary focus word during an engineering design challenge. Vocabulary pre-tests and post-tests as well as observation field notes were used to evaluate the student's growth in reading and defining the focus academic vocabulary words. A quiz and KSB (knowledge and skill builder) packet were used to evaluate students' knowledge of science and math content and engineering design. The results of this study indicate that engineering design is an effective means for teaching academic vocabulary to students with varying levels of English proficiency.
ERIC Educational Resources Information Center
Wallace, Melanie; Wallace, Mack
2003-01-01
Presented as a conversation between a teacher and engineer about school design, addresses educators' preferences and engineers' perspectives on issues, such as windows, sustainable design, sinks, acoustics, and natural ventilation. (EV)
Warfighting Concepts to Future Weapon System Designs (WARCON)
2003-09-12
34* Software design documents rise to litigation. "* A Material List "Cost information that may support, or may * Final Engineering Process Maps be...document may include design the system as derived from the engineering design, software development, SRD. MTS Technologies, Inc. 26 FOR OFFICIAL USE...document, early in the development phase. It is software engineers produce the vision of important to establish a standard, formal the design effort. As
A simple method of calculating Stirling engines for engine design optimization
NASA Technical Reports Server (NTRS)
Martini, W. R.
1978-01-01
A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.
Optimization applications in aircraft engine design and test
NASA Technical Reports Server (NTRS)
Pratt, T. K.
1984-01-01
Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.
Fastrac Nozzle Design, Performance and Development
NASA Technical Reports Server (NTRS)
Peters, Warren; Rogers, Pat; Lawrence, Tim; Davis, Darrell; DAgostino, Mark; Brown, Andy
2000-01-01
With the goal of lowering the cost of payload to orbit, NASA/MSFC (Marshall Space Flight Center) researched ways to decrease the complexity and cost of an engine system and its components for a small two-stage booster vehicle. The composite nozzle for this Fastrac Engine was designed, built and tested by MSFC with fabrication support and engineering from Thiokol-SEHO (Science and Engineering Huntsville Operation). The Fastrac nozzle uses materials, fabrication processes and design features that are inexpensive, simple and easily manufactured. As the low cost nozzle (and injector) design matured through the subscale tests and into full scale hot fire testing, X-34 chose the Fastrac engine for the propulsion plant for the X-34. Modifications were made to nozzle design in order to meet the new flight requirements. The nozzle design has evolved through subscale testing and manufacturing demonstrations to full CFD (Computational Fluid Dynamics), thermal, thermomechanical and dynamic analysis and the required component and engine system tests to validate the design. The Fastrac nozzle is now in final development hot fire testing and has successfully accumulated 66 hot fire tests and 1804 seconds on 18 different nozzles.
The J-2X Fuel Turbopump - Design, Development, and Test
NASA Technical Reports Server (NTRS)
Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.
2011-01-01
Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.
Study of an advanced General Aviation Turbine Engine (GATE)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.
1979-01-01
The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.
Definition study for variable cycle engine testbed engine and associated test program
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.
1978-01-01
The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.
Model building techniques for analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald
2009-09-01
The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less
Energy Efficient Engine combustor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.
Energy Efficient Engine (E3) combustion system component technology performance report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.
Low-thrust chemical rocket engine study
NASA Technical Reports Server (NTRS)
Shoji, J. M.
1981-01-01
An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.
A New, Highly Improved Two-Cycle Engine
NASA Technical Reports Server (NTRS)
Wiesen, Bernard
2008-01-01
The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.
Multi-Fuel Rotary Engine for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
26 CFR 1.460-2 - Long-term manufacturing contracts.
Code of Federal Regulations, 2011 CFR
2011-04-01
... specific customer, a taxpayer must consider the extent to which research, development, design, engineering... substantial amount of research, design, and engineering to produce, C determines that the equipment is a... produce, will be delivered to B in 2003. C determines that the research, design, engineering, retooling...
Engineer's Notebook--A Design Assessment Tool
ERIC Educational Resources Information Center
Kelley, Todd R.
2011-01-01
As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…
Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Lee, Dong-Kuk; Lee, Eun-Sang
2016-01-01
The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…
26 CFR 1.263A-1 - Uniform capitalization of costs.
Code of Federal Regulations, 2014 CFR
2014-04-01
... or facilities. (P) Engineering and design costs. Engineering and design costs include pre-production costs, such as costs attributable to research, experimental, engineering, and design activities (to the... customer demand. (9) Research and experimental expenditures. See section 263A(c)(2) for an exception for...
Enhancing Engineering Computer-Aided Design Education Using Lectures Recorded on the PC
ERIC Educational Resources Information Center
McGrann, Roy T. R.
2006-01-01
Computer-Aided Engineering (CAE) is a course that is required during the third year in the mechanical engineering curriculum at Binghamton University. The primary objective of the course is to educate students in the procedures of computer-aided engineering design. The solid modeling and analysis program Pro/Engineer[TM] (PTC[R]) is used as the…
ERIC Educational Resources Information Center
Avery, Zanj Kano
2010-01-01
The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.
Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course
2016-01-01
American Institute of Aeronautics and Astronautics 1 Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course...development costs, engine production costs, and scheduling (Byerley A. R., 2013) as well as the linkage between turbine inlet temperature, blade cooling...analysis SE majors have studied and how this is linked to the specific issues they must face in aircraft gas turbine engine design. Aeronautical and
Design of a Premixed Gaseous Rocket Engine Injector for Ethylene and Oxygen
2006-12-01
and uniform combustion zone. An engine will benefit by having a greater characteristic exhaust velocity efficiency (ηc*), less soot production and...the challenges of designing a premixed injector. The design requirements for the engine are to provide a wide range of combustion pressure... Engineering Original Premixed Injector1 Downstream of the three inch combustion chamber a bolt-on conical nozzle was attached. This nozzle had a
Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines
NASA Technical Reports Server (NTRS)
Phillips, W. H.
1984-01-01
Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.
Excite Kids about Engineering: Design Squad[TM] and Engineer Your Life[TM] Resources Make It Easy
ERIC Educational Resources Information Center
Cheng, Jack
2008-01-01
The author discusses "Design Squad", a television program designed to introduce students to the engineering process. Each episode tells the story of how two teams tackled a particular challenge. A graphic announces each stage (e.g., brainstorm, design, build, test, and redesign) as the teams construct their solutions. These graphics make visual…
1992-12-01
problems. Leadership forums were conducted for chiefs of structural design from each office for both military and civil works areas. (Continued) 14...Photographs ....................................... 7 Maintaining Design Quality in the Corps of Engineers .................... II Expedited Design and...25 Portugues Dam Monolith Layout and Survey Control ...................... 33 Cofferdam Design Problems, Point Marion Lock
Engineering and Design: Rock Mass Classification Data Requirements for Rippability
1983-06-30
Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY Distribution Restriction Statement Approved for public release...and Design: Rock Mass Classification Data Requirements for Rippability Contract Number Grant Number Program Element Number Author(s) Project...Technical Letter 1110-2-282 Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY 1“ -“ This ETL contains information on data
NASA Astrophysics Data System (ADS)
Appolloni, L.; Juhls, A.; Rieck, U.
2002-01-01
Designing for value is one of the very actual upcoming methods for design optimization, which broke into the domain of aerospace engineering in the late 90's. In the frame of designing for value two main design philosophies exist: Design For Cost and Design To Cost. Design To Cost is the iterative redesign of a project until the content of the project meets a given budget. Designing For Cost is the conscious use of engineering process technology to reduce life cycle cost while satisfying, and hopefully exceeding, customer demands. The key to understanding cost, and hence to reducing cost, is the ability to measure cost accurately and to allocate it appropriately to products. Only then can intelligent decisions be made. Therefore the necessity of new methods as "Design For Value" or "Design For Competitiveness", set up with a generally multidisciplinary approach to find an optimized technical solution driven by many parameters, depending on the mission scenario and the customer/market needs. Very often three, but not more than five parametric drivers are sufficient. The more variable exist, the higher is in fact the risk to find just a sub-optimized local and not the global optimum, and the less robust is the found solution against change of input parameters. When the main parameters for optimization have been identified, the system engineer has to communicate them to all design engineers, who shall take care of these assessment variables during the entire design and decision process. The design process which has taken to the definition of the feasible structural concepts for the Engine Thrust Frame of the Ariane 5 Upper Cryogenic Stage ESC-B follows these most actual design philosophy methodologies, and combines a design for cost approach, to a design to cost optimization loop. Ariane 5 is the first member of a family of heavy-lift launchers. It aims to evolve into a family of launchers that responds to the space transportation challenges of the 21st century. New upper stages, along with modifications to the main cryogenic stage and solid boosters, will increase performance and meet demands of a changing market. A two-steps approach was decided for future developments of the launcher upper stage, in order to increase the payload lift capability of Ariane 5. The first step ESC-A is scheduled for first launch in 2002. As later step ESC-B shall grow up to 12 tons in GTO orbit, with multiple restart capability, i.e. re-ignitable engine. Ariane 5 ESC-B first flight is targeted for 2006. It will be loaded with 28 metric tons of liquid oxygen and liquid hydrogen and powered by a new expander cycle engine "Vinci". The Vinci engine will be connected to the tanks of the ESC-B stage via the structure named from the designers ETF, or Engine Thrust Frame. In order to develop a design concept for the ETF component a trade off was performed, based on the most modern system engineering methodologies. This paper will describe the basis of the system engineering approach in the design to cost process, and illustrate such approach as it has been applied during the trade off for the baseline selection of the Engine Thrust Frame of Ariane 5 ESC-B.
Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Schaefer, J. W.
1977-01-01
The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.
NASA Technical Reports Server (NTRS)
Boccaccio, Paul
1921-01-01
This report examines the idea of coupling numerous engines together to turn a single propeller, which the author feels would free aircraft design from the problems of multi-engine and propeller design.
Design of a Hybrid Propulsion System for Orbit Raising Applications
NASA Astrophysics Data System (ADS)
Boman, N.; Ford, M.
2004-10-01
A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2011 CFR
2011-07-01
... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2012 CFR
2012-07-01
... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2014 CFR
2014-07-01
... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2013 CFR
2013-07-01
... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...
New Perspectives: Technology Teacher Education and Engineering Design
ERIC Educational Resources Information Center
Hill, Roger B.
2006-01-01
Initiatives to integrate engineering design within the field of technology education are increasingly evident. The National Science Foundation has encouraged and funded opportunities for technology educators and engineers to work collaboratively. However, perspectives regarding the role engineering should play within the discipline of technology…
Summary of engine design and analytical studies to mature the 1137400E engine baseline
NASA Technical Reports Server (NTRS)
Kleinert, D. E.; Lester, W. A.
1972-01-01
Activities in packaging components into integral module arrangements compatible with engine design requirements for the 1137400E flight engine baseline are summarized along with the applied mechanics and thermal analysis. Revisions to drawings, configurations, and support structures are discussed.
Fluid design studies of integrated modular engine system
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce; Carek, Jerry
1993-01-01
A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.
Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.
Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4
NASA Technical Reports Server (NTRS)
Rice, Tharen
2002-01-01
Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.
Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2
NASA Technical Reports Server (NTRS)
1974-01-01
The experimental and flight propulsion systems are presented. The following areas are discussed: engine core and low pressure turbine design; bearings and seals design; controls and accessories design; nacelle aerodynamic design; nacelle mechanical design; weight; and aircraft systems design.
The roles of engineering notebooks in shaping elementary engineering student discourse and practice
NASA Astrophysics Data System (ADS)
Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.
2017-06-01
Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum Engineering is Elementary (EiE) support student work during design challenges. Through educational ethnography and discourse analysis, transcripts of student talk and action were created and coded around the uses of notebooks in the accomplishment of engineering tasks. Our coding process identified two broad categories of roles of the notebooks: they scaffold student activity and support epistemic practices of engineering. The study showed the importance of prompts to engage students in effective uses of writing, the roles the notebook assumes in the students' small groups, and the ways design challenges motivate children to write and communicate.
A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.
Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel
2018-02-20
Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.
A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints
Navet, Nicolas; Havet, Lionel
2018-01-01
Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489
National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum
ERIC Educational Resources Information Center
Azizur, Rahman M. M.
2011-01-01
In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…
75 FR 65399 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... determination that the engineering principles used in its design of its Continuous Speed Control Yard located at... states that the design elements of the Continuous Speed Control System meets American Railway Engineering... Section 2.4 of the AREMA Manual for Railway Engineering. UP also states that the design of Roseville yard...
Integrating Innovation Skills in an Introductory Engineering Design-Build Course
ERIC Educational Resources Information Center
Liebenberg, Leon; Mathews, Edward Henry
2012-01-01
Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondarily for operation in water. Auxiliary emission control device (AECD) means any element of design that... design which controls or reduces the emission of substances from an engine. Engine, as used in this part... testing, to translation of designs from the test stage to the production stage, or to engine manufacture...
Code of Federal Regulations, 2012 CFR
2012-07-01
... secondarily for operation in water. Auxiliary emission control device (AECD) means any element of design that... design which controls or reduces the emission of substances from an engine. Engine, as used in this part... testing, to translation of designs from the test stage to the production stage, or to engine manufacture...
Code of Federal Regulations, 2014 CFR
2014-07-01
... secondarily for operation in water. Auxiliary emission control device (AECD) means any element of design that... design which controls or reduces the emission of substances from an engine. Engine, as used in this part... testing, to translation of designs from the test stage to the production stage, or to engine manufacture...
Project-Based Teaching-Learning Computer-Aided Engineering Tools
ERIC Educational Resources Information Center
Simoes, J. A.; Relvas, C.; Moreira, R.
2004-01-01
Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…
How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices
ERIC Educational Resources Information Center
Fan, Szu-Chun; Yu, Kuang-Chao
2017-01-01
STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…
RS-84 Engine Completes Design Review
NASA Technical Reports Server (NTRS)
2003-01-01
This is an artist's concept of the kerosene-fueled RS-84 engine, one of several technologies competing to power NASA's next generation of launch vehicles. The RS-84 has successfully completed its preliminary design review as a reusable, liquid kerosene booster engine that will deliver a thrust level of 1 million pounds of force. The preliminary design review is a lengthy technical analysis that evaluates engine design according to stringent system requirements. The review ensures development is on target to meet Next Generation Launch Technology goals: Improved safety, reliability, and cost.
Evolutionary and biological metaphors for engineering design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakiela, M.
1994-12-31
Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.
Advanced turbocharger design study program
NASA Technical Reports Server (NTRS)
Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.
1984-01-01
The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.
Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.
General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century
NASA Technical Reports Server (NTRS)
Burkardt, Leo A.
1998-01-01
Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.
NASA Technical Reports Server (NTRS)
Martini, W. R.
1978-01-01
This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.
Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine
NASA Technical Reports Server (NTRS)
Jiang, Nan; Simon, Terrence W.
2006-01-01
The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.
Feasibility of magnetic bearings for advanced gas turbine engines
NASA Technical Reports Server (NTRS)
Hibner, David; Rosado, Lewis
1992-01-01
The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.
Knowledge-based environment for optical system design
NASA Astrophysics Data System (ADS)
Johnson, R. Barry
1991-01-01
Optical systems are extensively utilized by industry government and military organizations. The conceptual design engineering design fabrication and testing of these systems presently requires significant time typically on the order of 3-5 years. The Knowledge-Based Environment for Optical System Design (KB-OSD) Program has as its principal objectives the development of a methodology and tool(s) that will make a notable reduction in the development time of optical system projects reduce technical risk and overall cost. KB-OSD can be considered as a computer-based optical design associate for system engineers and design engineers. By utilizing artificial intelligence technology coupled with extensive design/evaluation computer application programs and knowledge bases the KB-OSD will provide the user with assistance and guidance to accomplish such activities as (i) develop system level and hardware level requirements from mission requirements (ii) formulate conceptual designs (iii) construct a statement of work for an RFP (iv) develop engineering level designs (v) evaluate an existing design and (vi) explore the sensitivity of a system to changing scenarios. The KB-OSD comprises a variety of computer platforms including a Stardent Titan supercomputer numerous design programs (lens design coating design thermal materials structural atmospherics etc. ) data bases and heuristic knowledge bases. An important element of the KB-OSD Program is the inclusion of the knowledge of individual experts in various areas of optics and optical system engineering. This knowledge is obtained by KB-OSD knowledge engineers performing
Design of lightning protection for a full-authority digital engine control
NASA Technical Reports Server (NTRS)
Dargi, M.; Rupke, E.; Wiles, K.
1991-01-01
The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.
Control Design for a Generic Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; May, Ryan D.
2010-01-01
This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements
Design concepts for low-cost composite turbofan engine frame
NASA Technical Reports Server (NTRS)
Mitchell, S. C.; Stoffer, L. J.
1980-01-01
Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.
Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears detailed design report
NASA Technical Reports Server (NTRS)
Defeo, A.; Kulina, M.
1977-01-01
Lightweight turbine engines with geared slower speed fans are considered. The design of two similar but different gear ratio, minimum weight, epicyclic star configuration main reduction gears for the under the wing (UTW) and over the wing (OTW) engines is discussed. The UTW engine reduction gear has a ratio of 2.465:1 and a 100% power design rating of 9885 kW (13,256 hp) at 3143 rpm fan speed. The OTW engine reduction gear has a ratio of 2.062:1 and a 100% power design rating of 12813 kW (17183 hp) at 3861 rpm fan speed. Details of configuration, stresses, deflections, and lubrication are presented.
13 CFR 305.4 - Projects for design and engineering work.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engineering work. 305.4 Section 305.4 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION... and engineering work. In the case of Public Works Investment Assistance awarded solely for design and engineering work, the following additional application requirements and terms shall apply: (a) EDA may...
13 CFR 305.4 - Projects for design and engineering work.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engineering work. 305.4 Section 305.4 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION... and engineering work. In the case of Public Works Investment Assistance awarded solely for design and engineering work, the following additional application requirements and terms shall apply: (a) EDA may...
13 CFR 305.4 - Projects for design and engineering work.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engineering work. 305.4 Section 305.4 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION... and engineering work. In the case of Public Works Investment Assistance awarded solely for design and engineering work, the following additional application requirements and terms shall apply: (a) EDA may...
13 CFR 305.4 - Projects for design and engineering work.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engineering work. 305.4 Section 305.4 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION... and engineering work. In the case of Public Works Investment Assistance awarded solely for design and engineering work, the following additional application requirements and terms shall apply: (a) EDA may...
13 CFR 305.4 - Projects for design and engineering work.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engineering work. 305.4 Section 305.4 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION... and engineering work. In the case of Public Works Investment Assistance awarded solely for design and engineering work, the following additional application requirements and terms shall apply: (a) EDA may...
49 CFR 240.105 - Criteria for selection of designated supervisors of locomotive engineers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of locomotive engineers. 240.105 Section 240.105 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.105 Criteria for selection of designated supervisors of locomotive engineers. (a) Each railroad's program shall include...
49 CFR 240.105 - Criteria for selection of designated supervisors of locomotive engineers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of locomotive engineers. 240.105 Section 240.105 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.105 Criteria for selection of designated supervisors of locomotive engineers. (a) Each railroad's program shall include...
49 CFR 240.105 - Criteria for selection of designated supervisors of locomotive engineers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of locomotive engineers. 240.105 Section 240.105 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.105 Criteria for selection of designated supervisors of locomotive engineers. (a) Each railroad's program shall include...
49 CFR 240.105 - Criteria for selection of designated supervisors of locomotive engineers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of locomotive engineers. 240.105 Section 240.105 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.105 Criteria for selection of designated supervisors of locomotive engineers. (a) Each railroad's program shall include...
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1994-01-01
The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.
Hurol, Yonca
2014-06-01
Architects design building structures, although structural design is the profession of structural engineers. Thus, it is better for architects and structural engineers to collaborate starting from the initial phases of the architectural design. However, this is not very common because of the contradictory design processes and value systems held within the two professions. This article provides a platform upon which architects and structural engineers can resolve the value conflicts between them by analysing phases of the structural design of reinforced concrete frame systems in architecture, the criteria of the structural design for each phase and determining the conflicting values for each criterion. The results shown in the article demonstrate that the architectural design of structures is a complex process, which is based on contradictory values and value systems. Finally, the article suggests to architects and structural engineers to use Value Sensitive Design and to choose an appropriate team leader in order to resolve the unethical conflict between them and to avoid any unreasonable decision making.
Comparing Freshman and doctoral engineering students in design: mapping with a descriptive framework
NASA Astrophysics Data System (ADS)
Carmona Marques, P.
2017-11-01
This paper reports the results of a study of engineering students' approaches to an open-ended design problem. To carry out this, sketches and interviews were collected from 9 freshmen (first year) and 10 doctoral engineering students, when they designed solutions for orange squeezers. Sketches and interviews were analysed and mapped with a descriptive 'ideation framework' (IF) of the design process, to document and compare their design creativity (Carmona Marques, P., A. Silva, E. Henriques, and C. Magee. 2014. "A Descriptive Framework of the Design Process from a Dual Cognitive Engineering Perspective." International Journal of Design Creativity and Innovation 2 (3): 142-164). The results show that the designers worked in a manner largely consistent with the IF for generalisation and specialisation loops. Also, doctoral students produced more alternative solutions during the ideation process. In addition, compared to freshman, doctoral used the generalisation loop of the IF, working at higher levels of abstraction. The iterative nature of design is highlighted during this study - a potential contribution to decrease the gap between both groups in engineering education.
A computer simulator for development of engineering system design methodologies
NASA Technical Reports Server (NTRS)
Padula, S. L.; Sobieszczanski-Sobieski, J.
1987-01-01
A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples.
Integrating ergonomics in design processes: a case study within an engineering consultancy firm.
Sørensen, Lene Bjerg; Broberg, Ole
2012-01-01
This paper reports on a case study within an engineering consultancy firm, where engineering designers and ergonomists were working together on the design of a new hospital sterile processing plant. The objective of the paper is to gain a better understanding of the premises for integrating ergonomics into engineering design processes and how different factors either promote or limit the integration. Based on a grounded theory approach a model illustrating these factors is developed and different hypotheses about how these factors either promote and/or limit the integration of ergonomics into design processes is presented along with the model.
Multiple case studies of STEM teachers' orientations to science teaching through engineering design
NASA Astrophysics Data System (ADS)
Rupp, Madeline
The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.
Deimos Methane-Oxygen Rocket Engine Test Results
NASA Astrophysics Data System (ADS)
Engelen, S.; Souverein, L. J.; Twigt, D. J.
This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.
Low-thrust chemical rocket engine study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1981-01-01
Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.
Software Development for EECU Platform of Turbofan Engine
NASA Astrophysics Data System (ADS)
Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk
2017-04-01
The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.
Camera Layout Design for the Upper Stage Thrust Cone
NASA Technical Reports Server (NTRS)
Wooten, Tevin; Fowler, Bart
2010-01-01
Engineers in the Integrated Design and Analysis Division (EV30) use a variety of different tools to aid in the design and analysis of the Ares I vehicle. One primary tool in use is Pro-Engineer. Pro-Engineer is a computer-aided design (CAD) software that allows designers to create computer generated structural models of vehicle structures. For the Upper State thrust cone, Pro-Engineer was used to assist in the design of a layout for two camera housings. These cameras observe the separation between the first and second stage of the Ares I vehicle. For the Ares I-X, one standard speed camera was used. The Ares I design calls for two separate housings, three cameras, and a lighting system. With previous design concepts and verification strategies in mind, a new layout for the two camera design concept was developed with members of the EV32 team. With the new design, Pro-Engineer was used to draw the layout to observe how the two camera housings fit with the thrust cone assembly. Future analysis of the camera housing design will verify the stability and clearance of the camera with other hardware present on the thrust cone.
Variable speed gas engine-driven air compressor system
NASA Astrophysics Data System (ADS)
Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.
1992-11-01
Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
System Re-engineering Project Executive Summary
1991-11-01
Management Information System (STAMIS) application. This project involved reverse engineering, evaluation of structured design and object-oriented design, and re- implementation of the system in Ada. This executive summary presents the approach to re-engineering the system, the lessons learned while going through the process, and issues to be considered in future tasks of this nature.... Computer-Aided Software Engineering (CASE), Distributed Software, Ada, COBOL, Systems Analysis, Systems Design, Life Cycle Development, Functional Decomposition, Object-Oriented
NASA Astrophysics Data System (ADS)
Kersten, Jennifer Anna
In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.
ERIC Educational Resources Information Center
Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.
On the instruction of the Council of Ontario Universities, the Advisory Committee on Academic Planning in cooperation with the Committee of Ontario Deans of Engineering has conducted a planning assessment for doctoral work in industrial engineering and systems design. Recommendations for doctoral work in engineering studies are presented.…
ERIC Educational Resources Information Center
Park, Do-Yong; Park, Mi-Hwa; Bates, Alan B.
2018-01-01
This case study explores young children's understanding and application of the concept of volume through the practices of engineering design in a STEM activity. STEM stands for science, technology, engineering, and mathematics. However, engineering stands out as a challenging area to implement. In addition, most early engineering education…
Computational studies of an intake manifold for restricted engine application
NASA Astrophysics Data System (ADS)
Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar
2018-02-01
The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.
Orbit transfer rocket engine technology program. Phase 2: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C.; Martinez, A.; Hines, B.
1987-01-01
In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.
Test results and description of a 1-kW free-piston Stirling engine with a dashpot load
NASA Technical Reports Server (NTRS)
Schreiber, J.
1983-01-01
A 1 kW (1.33 hp) single cylinder free piston Stirling engine was installed in the test facilities at the Lewis laboratory. The engine was designed specifically for research of the dynamics of its operation. A more complete description of the engine and its instrumentation is provided in a prior NASA paper TM-82999 by J. G. Schreiber. Initial tests at Lewis showed the power level and efficiency of the engine to be below design level. Tests were performed to help determine the specific problems in the engine causing the below design level performance. Modifications to engine hardware and to the facility where performed in an effort to bring the power output and efficiency to their design values. As finally configured the engine generated more than 1250 watts of output power at an engine efficiency greater than 32 percent. This report presents the tests performed to help determine the specific problems, the results if the problem was eliminated, the fix performed to the hardware, and the test results after the engine was tested. In cases where the fix did not cause the anticipated effects, a possible explanation is given.
Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.
ERIC Educational Resources Information Center
Tempelman, E.; Pilot, A.
2011-01-01
In 2007, the Faculty of Industrial Design Engineering of the Delft University of Technology introduced a new bachelor program. Based on theories of learning and instruction three design principles were used to develop an approach that aims to make it easier for students to bridge the gap between theoretical design engineering courses and practical…
NASA Astrophysics Data System (ADS)
Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.
2015-04-01
The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.
Intelligent Life-Extending Controls for Aircraft Engines Studied
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2005-01-01
Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.
NASA Technical Reports Server (NTRS)
Maul, William A.; Meyer, Claudia M.
1991-01-01
A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.
Protein Design for Pathway Engineering
Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin
2013-01-01
Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037
Protein design for pathway engineering.
Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin
2014-02-01
Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.
A 1050 K Stirling space engine design
NASA Technical Reports Server (NTRS)
Penswick, L. Barry
1988-01-01
As part of the NASA CSTI High Capacity Power Program on Conversion Systems for Nuclear Applications, Sunpower, Inc. completed for NASA Lewis a reference design of a single-cylinder free-piston Stirling engine that is optimized for the lifetimes and temperatures appropriate for space applications. The NASA effort is part of the overall SP-100 program which is a combined DOD/DOE/NASA project to develop nuclear power for space. Stirling engines have been identified as a growth option for SP-100 offering increased power output and lower system mass and radiator area. Superalloy materials are used in the 1050 K hot end of the engine; the engine temperature ratio is 2.0. The engine design features simplified heat exchangers with heat input by sodium heat pipes, hydrodynamic gas bearings, a permanent magnet linear alternator, and a dynamic balance system. The design shows an efficiency (including the alternator) of 29 percent and a specific mass of 5.7 kg/kW. This design also represents a significant step toward the 1300 K refractory Stirling engine which is another growth option of SP-100.
Visit from JAXA to NASA MSFC: The Engines Element & Ideas for Collaboration
NASA Technical Reports Server (NTRS)
Greene, William D.
2013-01-01
System Design, Development, and Fabrication: Design, develop, and fabricate or procure MB-60 component hardware compliant with the imposed technical requirements and in sufficient quantities to fulfill the overall MB-60 development effort. System Development, Assembly, and Test: Manage the scope of the development, assembly, and test-related activities for MB-60 development. This scope includes engine-level development planning, engine assembly and disassembly, test planning, engine testing, inspection, anomaly resolution, and development of necessary ground support equipment and special test equipment. System Integration: Provide coordinated integration in the realms of engineering, safety, quality, and manufacturing disciplines across the scope of the MB-60 design and associated products development Safety and Mission Assurance, structural design, fracture control, materials and processes, thermal analysis. Systems Engineering and Analysis: Manage and perform Systems Engineering and Analysis to provide rigor and structure to the overall design and development effort for the MB-60. Milestone reviews, requirements management, system analysis, program management support Program Management: Manage, plan, and coordinate the activities across all portions of the MB-60 work scope by providing direction for program administration, business management, and supplier management.
Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.
2016-01-01
The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…
Advanced stratified charge rotary aircraft engine design study
NASA Technical Reports Server (NTRS)
Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.
1982-01-01
A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.
Murphy, Colleen; Gardoni, Paolo
2017-07-18
The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.
Study, optimization, and design of a laser heat engine. [for satellite applications
NASA Technical Reports Server (NTRS)
Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.
1978-01-01
Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.
Advanced Information Technology in Simulation Based Life Cycle Design
NASA Technical Reports Server (NTRS)
Renaud, John E.
2003-01-01
In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.
2012-01-01
The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.
Main Engine Prototype Development for 2nd Generation RLV RS-83
NASA Technical Reports Server (NTRS)
Vilja, John; Fisher, Mark; Lyles, Garry M. (Technical Monitor)
2002-01-01
This presentation reports on the NASA project to develop a prototype for RS-83 engine designed for use on reusable launch vehicles (RLV). Topics covered include: program objectives, overview schedule, organizational chart, integrated systems engineering processes, requirement analysis, catastrophic engine loss, maintainability analysis tools, and prototype design analysis.
Experiential Engineering through iGEM--An Undergraduate Summer Competition in Synthetic Biology
ERIC Educational Resources Information Center
Mitchell, Rudolph; Dori, Yehudit Judy; Kuldell, Natalie H.
2011-01-01
Unlike students in other engineering disciplines, undergraduates in biological engineering typically have limited opportunity to develop design competencies, and even fewer chances to implement their designed projects. The international Genetically Engineered Machines (iGEM) competition is a student Synthetic Biology competition that, in 2009,…
40 CFR 1042.840 - Application requirements for remanufactured engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel). List each distinguishable... and the range of values for maximum engine power resulting from production tolerances, as described in...
40 CFR 1042.840 - Application requirements for remanufactured engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel). List each distinguishable... and the range of values for maximum engine power resulting from production tolerances, as described in...
Elementary Teachers' Views about Teaching Design, Engineering, and Technology
ERIC Educational Resources Information Center
Hsu, Ming-Chien; Purzer, Senay; Cardella, Monica E.
2011-01-01
While there is a growing interest in infusing engineering into elementary classrooms, very little is known about how well positioned elementary teachers are to teach engineering. This study examined elementary teachers' perceptions of and familiarity with design,engineering, and technology (DET). We collected data from 192 elementary teachers…
ERIC Educational Resources Information Center
Eekels, J.
1987-01-01
Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)
High School Student Modeling in the Engineering Design Process
ERIC Educational Resources Information Center
Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde
2014-01-01
A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... CFR Parts 1724 and 1726 RIN 0572-AC20 Electric Engineering, Architectural Services, Design Policies... standard forms of contracts promulgated by RUS for construction, procurement, engineering services and... XVII of title 7 of the Code of Federal Regulations as follows: PART 1724--ELECTRIC ENGINEERING...
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... design, engine family, emission control system, or with any other durability-related design difference... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.096-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
1988-06-01
Washington, DC Richard Celin Naval Air Engineering Center (201) 323-2173 Lakehurst, NJ Alice Giampapa TRIAD Engineering Co., Inc. Administrative (609) 939...7 3.1 DESIGN DESIGN PROCESS Producibility Engineering ........................................................ 7 Producibility Advisor... Engineers in Manufacturing Processes ........................... 21 Method Improvement Report Program
7 CFR 3201.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...
7 CFR 3201.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...
7 CFR 3201.25 - 2-Cycle engine oils.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...
30 CFR 36.25 - Engine exhaust system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Engine exhaust system. 36.25 Section 36.25... EQUIPMENT Construction and Design Requirements § 36.25 Engine exhaust system. (a) Construction. The exhaust system of the engine shall be designed to withstand an internal pressure equal to 4 times the maximum...
ERIC Educational Resources Information Center
Venkateswarlu, P.
2017-01-01
Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with…
Integrating Literacy and Engineering Instruction for Young Learners
ERIC Educational Resources Information Center
Wilson-Lopez, Amy; Gregory, Stacie
2015-01-01
According to recently published national standards, elementary students should engage in engineering design activities. This article outlines ways that teachers can use literacy instruction to support young students' engineering design activity, such as by selecting texts in which characters face problems that can be solved through engineering,…
NASA Technical Reports Server (NTRS)
2004-01-01
The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.
1988-12-01
engineering disciplines. (Here I refer to training in multifunction team mana ement dir’lplines, quality engineering methods, experimental design by such...4001 SSOME ISSUES S• View of strategic issues has been evolving - Speed of design and product deployment - to accelerate experimentation with new...manufacturingprocess design n New technologies (e.g., composites) which can revolutionize prod-uct technical design in some cases Issue still to be faced: " non
Revised Point of Departure Design Options for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Fittje, James E.; Schnitzler, Bruce G.; Borowoski, Stanley
2015-01-01
Four Revised Point of Departure NTR Engines were Designed and Analyzed using MCNP and NESS. All Four Engines Have Thermodynamically Closed Cycles at Nominal Chamber Pressures. 111 kilonewton (25 kip-force) Cermet Design Required Dedicated Heater Elements to Close the Cycle. Cermet Based Designs had Slightly Higher TW Ratios, but Required Substantially More U-235. NERVA Derived Criticality Limited Engine Could Operate at Lower Power and Thrust Levels Compared to the Criticality Limited Cermet Design.
Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade
NASA Astrophysics Data System (ADS)
Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.
2010-07-01
The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.
Developing Systems Engineering Skills Through NASA Summer Intern Project
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe
2010-01-01
During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.61 Applicability. This subpart prescribes additional design and construction requirements for turbine aircraft engines. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.61 Applicability. This subpart prescribes additional design and construction requirements for turbine aircraft engines. ...
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Design study of an air pump and integral lift engine ALF-504 using the Lycoming 502 core
NASA Technical Reports Server (NTRS)
Rauch, D.
1972-01-01
Design studies were conducted for an integral lift fan engine utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analyses include fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.
An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights
NASA Technical Reports Server (NTRS)
David, D.
1983-01-01
Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.
Integrating computer programs for engineering analysis and design
NASA Technical Reports Server (NTRS)
Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.
1983-01-01
The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.
COMETBOARDS Can Optimize the Performance of a Wave-Rotor-Topped Gas Turbine Engine
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.
1997-01-01
A wave rotor, which acts as a high-technology topping spool in gas turbine engines, can increase the effective pressure ratio as well as the turbine inlet temperature in such engines. The wave rotor topping, in other words, may significantly enhance engine performance by increasing shaft horse power while reducing specific fuel consumption. This performance enhancement requires optimum selection of the wave rotor's adjustable parameters for speed, surge margin, and temperature constraints specified on different engine components. To examine the benefit of the wave rotor concept in engine design, researchers soft coupled NASA Lewis Research Center's multidisciplinary optimization tool COMETBOARDS and the NASA Engine Performance Program (NEPP) analyzer. The COMETBOARDS-NEPP combined design tool has been successfully used to optimize wave-rotor-topped engines. For illustration, the design of a subsonic gas turbine wave-rotor-enhanced engine with four ports for 47 mission points (which are specified by Mach number, altitude, and power-setting combinations) is considered. The engine performance analysis, constraints, and objective formulations were carried out through NEPP, and COMETBOARDS was used for the design optimization. So that the benefits that accrue from wave rotor enhancement could be examined, most baseline variables and constraints were declared to be passive, whereas important parameters directly associated with the wave rotor were considered to be active for the design optimization. The engine thrust was considered as the merit function. The wave rotor engine design, which became a sequence of 47 optimization subproblems, was solved successfully by using a cascade strategy available in COMETBOARDS. The graph depicts the optimum COMETBOARDS solutions for the 47 mission points, which were normalized with respect to standard results. As shown, the combined tool produced higher thrust for all mission points than did the other solution, with maximum benefits around mission points 11, 25, and 31. Such improvements can become critical, especially when engines are sized for these specific mission points.
Reasoning Strategies in the Context of Engineering Design with Everyday Materials
ERIC Educational Resources Information Center
Worsley, Marcelo; Blikstein, Paulo
2016-01-01
"Making" represents an increasingly popular label for describing a form of engineering design. While making is growing in popularity, there are still open questions about the strategies that students are using in these activities. Assessing and improving learning in making/ engineering design contexts require that we have a better…
Framework for Implementing Engineering Senior Design Capstone Courses and Design Clinics
ERIC Educational Resources Information Center
Franchetti, Matthew; Hefzy, Mohamed Samir; Pourazady, Mehdi; Smallman, Christine
2012-01-01
Senior design capstone projects for engineering students are essential components of an undergraduate program that enhances communication, teamwork, and problem solving skills. Capstone projects with industry are well established in management, but not as heavily utilized in engineering. This paper outlines a general framework that can be used by…
Influence of End Customer Exposure on Product Design within an Epistemic Game Environment
ERIC Educational Resources Information Center
Markovetz, Matthew R.; Clark, Renee M.; Swiecki, Zachari; Irgens, Golnaz Arastoopour; Chesler, Naomi C.; Shaffer, David W.; Bodnar, Cheryl A.
2017-01-01
Engineering product design requires both technical aptitude and an understanding of the nontechnical requirements in the marketplace, economic or otherwise. Engineering education has long focused on the technical side of product design, but there is increasing demand for market-aware engineers in industry. Market-awareness and customer-focus are…
Capstone Engineering Design Projects for Community Colleges
ERIC Educational Resources Information Center
Walz, Kenneth A.; Christian, Jon R.
2017-01-01
Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…
The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills
ERIC Educational Resources Information Center
Kösa, Temel; Karakus, Fatih
2018-01-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…
Critical Literacy, Disciplinary Literacy: Reading the Engineering-Designed World
ERIC Educational Resources Information Center
Wilson-Lopez, Amy; Strong, Kristin; Sias, Christina
2017-01-01
Globally, many people spend most of their time interacting with the products of engineering design as they wear clothes, drink clean water, use transportation systems, and more. Given the omnipresence of engineering design, whose material results are felt daily in people's lives, it seems especially important that students learn to recognize and…
Academic Preparedness as a Predictor of Achievement in an Engineering Design Challenge
ERIC Educational Resources Information Center
Mentzer, Nathan; Becker, Kurt
2010-01-01
The purpose of this study was to determine if a student's academic success, measured by grade point average (GPA) in mathematics, science, and communication courses, is correlated with student change in achievement during an engineering design challenge. Engineering design challenges have been implemented and researched in K-16 environments where…
Modeling as an Engineering Habit of Mind and Practice
ERIC Educational Resources Information Center
Lammi, Matthew D.; Denson, Cameron D.
2017-01-01
In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…
Integration, Authenticity, and Relevancy in College Science through Engineering Design
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Hoffman, Adam R.
2018-01-01
Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…
Teacher Challenges to Implement Engineering Design in Secondary Technology Education
ERIC Educational Resources Information Center
Kelley, Todd R.; Wicklein, Robert C.
2009-01-01
This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…
Building a Framework for Engineering Design Experiences in High School
ERIC Educational Resources Information Center
Denson, Cameron D.; Lammi, Matthew
2014-01-01
In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Kurzius, S. C.; Doktor, M. F.
1984-01-01
The design of a subscale jet engine driven ejector/diffuser system is examined. Analytical results and preliminary design drawings and plans are included. Previously developed performance prediction techniques are verified. A safety analysis is performed to determine the mechanism for detonation suppression.
A hypersonic research vehicle to develop scramjet engines
NASA Technical Reports Server (NTRS)
Gregorek, G. M.; Reuss, R. L.
1990-01-01
Four student design teams produced conceptual designs for a research vehicle to develop the supersonic combustion ramjet (scramjet) engines necessary for efficient hypersonic flight. This research aircraft would provide flight test data for prototype scramjets that is not available in groundbased test facilities. The design specifications call for a research aircraft to be launched from a carrier aircraft at 40,000 feet and a Mach number of 0.8. The aircraft must accelerate to Mach 6 while climbing to a 100,000 foot altitude and then ignite the experimental scramjet engines for acceleration to Mach 10. The research vehicle must then be recovered for another flight. The students responded with four different designs, two piloted waverider configurations, and two unmanned vehicles, one with a blended body-wing configuration, the other with a delta wing shape. All aircraft made use of an engine database provided by the General Electric Aircraft Engine Group; both turbofan ramjet and scramjet engine performance using liquid hydrogen fuel was available. Explained here are the students' conceptual designs and the aerodynamic and propulsion concepts that made their designs feasible.
NASA Technical Reports Server (NTRS)
Zachary, A. T.
1973-01-01
Analysis and design of an optimum LO2/LH2, combustion topping cycle, 88,964 Newtons (20,000-pound) thrust, liquid rocket engine was conducted. The design selected is well suited to high-energy, upper-stage engine applications such as the Space Tug and embodies features directed toward optimization of vehicle performance. A configuration selection was conducted based on prior Air Force Contracts, and additional criteria for optimum stage performance. Following configuration selection, analyses and design of the major components and engine systems were conducted to sufficient depth to provide layout drawings suitable for subsequent detailing. In addition, engine packaging to a common interface and a retractable nozzle concept were defined. Alternative development plans and related costs were also established. The design embodies high-performance, low-weight, low NPSH requirements (saturated propellant inlet conditions at start), idle-mode operation, and autogenous pressurization. The design is the result of the significant past and current LO2/LH2 technology efforts of the NASA centers and the Air Force, as well as company-funded programs.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Wave Engine Topping Cycle Assessment
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping constraints. Positive and negative aspects of wave engine topping in gas turbine engines are identified.
Biomaterials for Bone Regenerative Engineering.
Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T
2015-06-24
Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Affordability Engineering: Bridging the Gap Between Design and Cost
NASA Technical Reports Server (NTRS)
Reeves, J. D.; DePasquale, Dominic; Lim, Evan
2010-01-01
Affordability is a commonly used term that takes on numerous meanings depending on the context used. Within conceptual design of complex systems, the term generally implies comparisons between expected costs and expected resources. This characterization is largely correct, but does not convey the many nuances and considerations that are frequently misunderstood and underappreciated. In the most fundamental sense, affordability and cost directly relate to engineering and programmatic decisions made throughout development programs. Systems engineering texts point out that there is a temporal aspect to this relationship, for decisions made earlier in a program dictate design implications much more so than those made during latter phases. This paper explores affordability engineering and its many sub-disciplines by discussing how it can be considered an additional engineering discipline to be balanced throughout the systems engineering and systems analysis processes. Example methods of multidisciplinary design analysis with affordability as a key driver will be discussed, as will example methods of data visualization, probabilistic analysis, and other ways of relating design decisions to affordability results.
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Patnaik, Surya N.
2000-01-01
A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.
Measurement Uncertainty Within the Uniform Engine Test Programme
1989-05-01
Design to Cost and l.ifc (.cle Cost to Aircraft Engines AGARD LS 107 (May 1980) Microcomputer Applications in Power and Propulsion Systems AGARD LS...Flows in Propulsion Systems AGARD LS 140 (June 1985) Engine Airframe Integration for Rotorcraft AGARD LS 148 (June 1986) Design Methods Used in Solid...modest nero-thermodynamic design was of no consequence. Two engines were loaned to the proeram by the U.S. Air Force. Due to higher priority test workload
Mechanical Design of Spacecraft
NASA Technical Reports Server (NTRS)
1962-01-01
In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.
Design control for clinical translation of 3D printed modular scaffolds.
Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E
2015-03-01
The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion.
Design Control for Clinical Translation of 3D Printed Modular Scaffolds
Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.
2015-01-01
The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115
Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems
NASA Technical Reports Server (NTRS)
Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.
2000-01-01
Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.
Orbit Transfer Rocket Engine Technology - 7.5K-LB Thrust Rocket Engine Preliminary Design
1993-10-15
AND SPACE ADMINISTRATION October, 1993 r W NASA-Lewis Research Center Cleveland, Ohio 44135 94-08572 Contract Nc. NAS3-23773 Task B.7 and D.5 4I3’OA4 3 ...APPROACH 1 4.0 SUMMARY OF ACCOMPLISHMENTS 2 5.0 TECHNICAL DISCUSSIONS 3 6.0 PROGRAM WORK PLAN 5 6.1 Engine Analysis 5 6.2 Component Analysis 15 6.2.1...FIGURES Page Figure 1 Advanced Engine Studv Logic Diagram 4 Figure 2 Design Point Engine Pertormance at Full Thrust & MR = 6.0 7 Figure 3 Off-Design
Small, low-cost, expendable turbojet engine. 1: Design, fabrication, and preliminary testing
NASA Technical Reports Server (NTRS)
Dengler, R. P.; Macioce, L. E.
1976-01-01
A small experimental axial-flow turbojet engine in the 2,669-Newton (600-lbf) thrust class was designed, fabricated, and tested to demonstrate the feasibility of several low-cost concepts. Design simplicity was stressed in order to reduce the number of components and machining operations. Four engines were built and tested for a total of 157 hours. Engine testing was conducted at both sea-level static and simulated flight conditions for engine speeds as high as 38,000 rpm and turbine-inlet temperatures as high as 1,255 K (1,800 F).
Applying the design-build-test paradigm in microbiome engineering.
Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook
2017-12-01
The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Instructional design considerations promoting engineering design self-efficacy
NASA Astrophysics Data System (ADS)
Jackson, Andrew M.
Engineering design activities are frequently included in technology and engineering classrooms. These activities provide an open-ended context for practicing critical thinking, problem solving, creativity, and innovation---collectively part of the 21st Century Skills which are increasingly needed for success in the workplace. Self-efficacy is a perceptual belief that impacts learning and behavior. It has been shown to directly impact each of these 21st Century Skills but its relation to engineering design is only recently being studied. The purpose of this study was to examine how instructional considerations made when implementing engineering design activities might affect student self-efficacy outcomes in a middle school engineering classroom. Student responses to two self-efficacy inventories related to design, the Engineering Design Self-Efficacy Instrument and Creative Thinking Self-Efficacy Inventory, were collected before and after participation in an engineering design curriculum. Students were also answered questions on specific factors of their experience during the curriculum which teachers may exhibit control over: teamwork and feedback. Results were analyzed using Pearson's correlation coefficients, paired and independent t-tests, and structural equation modeling to better understand patterns for self-efficacy beliefs in students. Results suggested that design self-efficacy and creative thinking self-efficacy are significantly correlated, r(1541) = .783, p < .001, and increased following participation in a design curriculum, M diff = 1.32, t(133) = 7.60, p < .001 and Mdiff = 0.79, t(124) = 4.19, p < .001 respectively. Structural models also showed that students perceive team inclusion and feedback as significant contributors to their self-efficacy beliefs, while team diversity was not related to self-efficacy. Separate models for each predictor demonstrated good fit. Recommendations are made based on the corresponding nature of engineering design self-efficacy and creative thinking self-efficacy: strategies encouraging self-efficacy in these domains may be transferrable. Instructors are made aware of the significant impact of classroom strategies for increasing self-efficacy and given specific recommendations related to teamwork and feedback to support students. Finally, although there were weaknesses in the study related to the survey administration, future research opportunities are presented which may build from this work.
Teaching Engineering Design Using Computer Workstations.
ERIC Educational Resources Information Center
Hodgson, J. M.
1988-01-01
Explains the use of computer workstations in Electronic Engineering and in Control and Computer Engineering. Provides an introduction; initial teaching exercises at the first year, second, and third year design, research and development; and conclusions. (YP)
Simulation of a combined-cycle engine
NASA Technical Reports Server (NTRS)
Vangerpen, Jon
1991-01-01
A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.
Program for refan JT8D engine design, fabrication and test, phase 2
NASA Technical Reports Server (NTRS)
Glass, J. A.; Zimmerman, E. S.; Scaramella, V. M.
1975-01-01
The objective of the JT8D refan program was to design, fabricate, and test certifiable modifications of the JT8D engine which would reduce noise generated by JT8D powered aircraft. This was to be accomplished without affecting reliability and maintainability, at minimum retrofit cost, and with no performance penalty. The mechanical design, engine performance and stability characteristics at sea-level and altitude, and the engine noise characteristics of the test engines are documented. Results confirmed the structural integrity of the JT8D-109. Engine operation was stable throughout the airplane flight envelope. Fuel consumption of the test engines was higher than that required to meet the goal of no airplane performance penalty, but the causes were identified and corrected during a normal pre-certification engine development program. Compared to the baseline JT8D-109 engine, the acoustically treated JT8D-109 engine showed noise reductions of 6 PNdB at takeoff and 11 PNdB at a typical approach power setting.
NASA Technical Reports Server (NTRS)
1998-01-01
NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.
Design of a micro-Wankel rotary engine for MEMS fabrication
NASA Astrophysics Data System (ADS)
Jiang, Kyle C.; Prewett, Philip D.; Ward, M. C. L.; Tian, Y.; Yang, H.
2001-04-01
This paper presents the design of a micro Wankel engine for deep etching micro fabrication. The micro engine design is part of a research program in progress to develop a micro actuator to supply torque for driving micro machines. To begin with, the research work concentrates on the micro Wankel engine powered by liquid CO2. Then, a Wankel internal combustion engines will be investigated. The Wankel engine is a planetary rotation engine. It is selected because of its largely 2D structure which is suitable for lithographic processes. The engine has been simplified and redesigned to suit the fabrication processes. In particular, the fuel inlet has been moved to the top cover of the housing from the side, and the outlet is made as a groove on the housing, so that the both parts can be etched. A synchronization valve is mounted on the engine to control the supply of CO2. One of advantages of the micro engines is their high energy density compared with batteries. A research study has been conducted in comparing energy densities of commonly used fuels. It shows that the energy densities of fuels for combustion engines are 10 - 30 times higher than that of batteries. The deigns of the micro Wankel engines have been tested for verification by finite element analysis, CAD assembly, and construction of a prototype, which proves the design is valid.
ERIC Educational Resources Information Center
Weaver, Kim M.
2005-01-01
In this unit, elementary students design and build a lunar plant growth chamber using the Engineering Design Process. The purpose of the unit is to help students understand and apply the design process as it relates to plant growth on the moon. This guide includes six lessons, which meet a number of national standards and benchmarks in…
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Technical Reports Server (NTRS)
Filippi, Richard E; Dugan, James F , Jr
1956-01-01
The engines, each with a compressor overall total-pressure ratio of 12 and a design inner-turbine-inlet temperature of 2500 degrees R, were investigated at static sea-level conditions to determine the effect on transient performance of varying the desitn pressure ratio divisions 2-6, 3-4, and 4-3 between the outer and inner compressors. The transient considered was an acceleration from 40 to 100 percent design thrust. When the outer compressor of each engine reached design speed, the inner compressors were overspeeding, the maximum being only 1.7 over design mechanical speed. Acceleration times for the three engines were equal.
Integrated two-cylinder liquid piston Stirling engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ning; Rickard, Robert; Pluckter, Kevin
2014-10-06
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harnessmore » useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.« less
Integrated two-cylinder liquid piston Stirling engine
NASA Astrophysics Data System (ADS)
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd
2014-10-01
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
78 FR 19982 - Special Conditions: Turbomeca Ardiden 3K Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... novel or unusual design feature that is a 30-minute all engines operating (AEO) power rating for... appropriate safety standards for this design feature. These special conditions contain the additional safety... Ardiden 3K engine is the first variant in the new Ardiden 3 series. This engine incorporates a two-stage...
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2012 CFR
2012-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2014 CFR
2014-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2013 CFR
2013-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
Hands-on Summer Camp to Attract K-12 Students to Engineering Fields
ERIC Educational Resources Information Center
Yilmaz, Muhittin; Ren, Jianhong; Custer, Sheryl; Coleman, Joyce
2010-01-01
This paper explains the organization and execution of a summer engineering outreach camp designed to attract and motivate high school students as well as increase their awareness of various engineering fields. The camp curriculum included hands-on, competitive design-oriented engineering projects from several disciplines: the electrical,…
Engineering a General Education Program: Designing Mechanical Engineering General Education Courses
ERIC Educational Resources Information Center
Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.
2013-01-01
The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…
ERIC Educational Resources Information Center
Baukal, Charles E.; Ausburn, Lynna J.
2017-01-01
Continuing engineering education (CEE) is important to ensure engineers maintain proficiency over the life of their careers. However, relatively few studies have examined designing effective training for working engineers. Research has indicated that both learner instructional preferences and prior knowledge can impact the learning process, but it…
ERIC Educational Resources Information Center
Shanahan, Lynn E.; McVee, Mary B.; Slivestri, Katarina N.; Haq, Kate
2016-01-01
This conceptual article addresses the question: What are the disciplinary literacy practices surrounding the Engineering Design Process (EDP) at the elementary level? Recent attention has focused on developing science, technology, engineering, and math (STEM) skills for U.S. students. In the United States, the Next Generation Science Standards and…
A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.
1984-01-01
This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.
A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.
1983-01-01
This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.
NASA Technical Reports Server (NTRS)
Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.
2005-01-01
This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).
ERIC Educational Resources Information Center
Adnan, Nor Hafizah; Ritzhaupt, Albert D.
2018-01-01
The failure of many instructional design initiatives is often attributed to poor instructional design. Current instructional design models do not provide much insight into design processes for creating e-learning instructional solutions. Given the similarities between the fields of instructional design and software engineering, instructional…
Developing Engineering and Science Process Skills Using Design Software in an Elementary Education
NASA Astrophysics Data System (ADS)
Fusco, Christopher
This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.
Cognitive engineering and health informatics: Applications and intersections.
Hettinger, A Zachary; Roth, Emilie M; Bisantz, Ann M
2017-03-01
Cognitive engineering is an applied field with roots in both cognitive science and engineering that has been used to support design of information displays, decision support, human-automation interaction, and training in numerous high risk domains ranging from nuclear power plant control to transportation and defense systems. Cognitive engineering provides a set of structured, analytic methods for data collection and analysis that intersect with and complement methods of Cognitive Informatics. These methods support discovery of aspects of the work that make performance challenging, as well as the knowledge, skills, and strategies that experts use to meet those challenges. Importantly, cognitive engineering methods provide novel representations that highlight the inherent complexities of the work domain and traceable links between the results of cognitive analyses and actionable design requirements. This article provides an overview of relevant cognitive engineering methods, and illustrates how they have been applied to the design of health information technology (HIT) systems. Additionally, although cognitive engineering methods have been applied in the design of user-centered informatics systems, methods drawn from informatics are not typically incorporated into a cognitive engineering analysis. This article presents a discussion regarding ways in which data-rich methods can inform cognitive engineering. Copyright © 2017 Elsevier Inc. All rights reserved.
Advanced Subsonic Airplane Design and Economic Studies
NASA Technical Reports Server (NTRS)
Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.
1995-01-01
A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2014 CFR
2014-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2010 CFR
2010-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2013 CFR
2013-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2012 CFR
2012-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... and other associated airport projects are currently undergoing final engineering and design...) has submitted a request to the FAA for approval of the engineering and design refinements that are minor changes to the previously approved project. The ROD and Order approves the engineering and design...
A Multi- and Cross-Disciplinary Capstone Experience in Engineering Art: Animatronic Polar Bear
ERIC Educational Resources Information Center
Sirinterlikci, Arif; Toukonen, Kayne; Mason, Steve; Madison, Russel
2005-01-01
An animatronic robot was designed and constructed for the 2003 Annual Student Robotic Technology and Engineering Challenge organized by the Robotics International (RI) association of the Society of Manufacturing Engineers (SME). It was also the senior capstone design project for two of the design team members. After a thorough study of body and…
NASA Technical Reports Server (NTRS)
Hurley, J. F.; Anson, L.; Wilson, C.
1978-01-01
This report describes the design configuration and method used to design the forced engine exhaust to bypass air mixing system for Lycoming's QCGAT engine. This mixer is an integral part of the total engine and nacelle system and was configured to reduce the propulsion system noise and fuel consumption levels.
Code of Federal Regulations, 2014 CFR
2014-10-01
... designated duty engineer (DDE) of steam, motor, and/or gas turbine-propelled vessels. 11.524 Section 11.524... requirements for national endorsement as designated duty engineer (DDE) of steam, motor, and/or gas turbine... steam, motor, and/or gas turbine-propelled vessels of unlimited propulsion power, the applicant must...
Code of Federal Regulations, 2014 CFR
2014-10-01
... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...
Code of Federal Regulations, 2011 CFR
2011-10-01
... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...
ERIC Educational Resources Information Center
Capobianco, Brenda M.; DeLisi, Jacqueline; Radloff, Jeffrey
2018-01-01
In an effort to document teachers' enactments of new reform in science teaching, valid and scalable measures of science teaching using engineering design are needed. This study describes the development and testing of an approach for documenting and characterizing elementary science teachers' multiday enactments of engineering design-based science…
Code of Federal Regulations, 2012 CFR
2012-10-01
... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...
Code of Federal Regulations, 2013 CFR
2013-10-01
... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...
Integrating Engineering Design Challenges into Secondary STEM Education
ERIC Educational Resources Information Center
Carr, Ronald L.; Strobel, Johannes
2011-01-01
Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…
Integrating Surface Modeling into the Engineering Design Graphics Curriculum
ERIC Educational Resources Information Center
Hartman, Nathan W.
2006-01-01
It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…
The Concurrent Engineering Design Paradigm Is Now Fully Functional for Graphics Education
ERIC Educational Resources Information Center
Krueger, Thomas J.; Barr, Ronald E.
2007-01-01
Engineering design graphics education has come a long way in the past two decades. The emergence of solid geometric modeling technology has become the focal point for the graphical development of engineering design ideas. The main attraction of this 3-D modeling approach is the downstream application of the data base to analysis and…
Comparing Freshman and Doctoral Engineering Students in Design: Mapping with a Descriptive Framework
ERIC Educational Resources Information Center
Carmona Marques, P.
2017-01-01
This paper reports the results of a study of engineering students' approaches to an open-ended design problem. To carry out this, sketches and interviews were collected from 9 freshmen (first year) and 10 doctoral engineering students, when they designed solutions for orange squeezers. Sketches and interviews were analysed and mapped with a…
An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects
ERIC Educational Resources Information Center
Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M.
2015-01-01
Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…
Engine system assessment study using Martian propellants
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John
1992-01-01
A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.
2006-07-01
31 July 1995 3. Human Engineering Guide to Equipment Design, Department of Defense, Washington D.C., 1972 4. American National Standard for Human Factors Engineering of Visual Display Terminal Workstations , ANSI
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
1991-01-01
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
A new generation of high performance engines for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Rosenberg, Sanders D.; Schoenman, Leonard
1991-01-01
Experimental data validating advanced engine designs at three thrust levels (5, 15, and 100 lbF) is presented. All of the three engine designs considered employ a Moog bipropellant torque motor valve, platelet injector design, and iridium-lined rhenium combustion chamber. Attention is focused on the performance, robustness, duration, and flexibility characteristics of the engines. It is noted that the 5- and 15-lbF thrust engines can deliver a steady state specific impulse in excess of 310 lbF-sec/lbm at an area ratio of 150:1, while the 150-lbF thrust engines deliver a steady state specific impulse of 320 lbF-sec/lbm at an area ratio of 250:1. The hot-fire test results reveal specific impulse improvements of 15 to 25 sec over conventional fuel film cooled columbium chamber designs while operating at maximum chamber temperatures.
Protein design in systems metabolic engineering for industrial strain development.
Chen, Zhen; Zeng, An-Ping
2013-05-01
Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
1991-09-01
jet engine (even rocket engine ) rotating components. Examples have been presented for compressor and turbine profile designs. Both methods are...used for experimental studies on plasmatrons and gasdynamic stands in which the gas jets are created by special aviation and rocket engines . Similar... Aviation Institute, Bd. Pacli 220, 77538 Bucharest, ROMANIA 45 --’, Inverse Airfoil Design Procedure .Uging a Mliitigrid Navier-Stokes ,Method) J.B
Human Factors Engineering. Part 2. HEDGE (Human Factors Engineering Data Guide for Evaluation)
1983-11-30
Use.Condit ions 0 7ý est Item ComoentsTask Categories EPurposes 2 ;c . INDEX TO THE INDEX MAN/ITEM TASK SHEET DETAILED DESIGN CONSIDERATION The purpose of...The use of these materials, in addition to standard Task and Design Checklists and Questionnaires, will enable you to tailor your FIFE subtest to a...specific Con item. The These materials have been prepared especially for you: I. They are intended to support test engineers not design engineers. 2
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
Structural design of Stirling engine with free pistons
NASA Astrophysics Data System (ADS)
Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan
2014-08-01
Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.
Creating a Strong Foundation with Engineering Design Graphics.
ERIC Educational Resources Information Center
Newcomer, Jeffrey L.; McKell, Eric K.; Raudebaugh, Robert A.; Kelley, David S.
2001-01-01
Describes the two-course engineering design graphics sequence on introductory design and graphics topics. The first course focuses on conceptual design and the development of visualization and sketching skills while the second one concentrates on detail design and parametric modeling. (Contains 28 references.) (Author/ASK)
Integrating Thermal Tools Into the Mechanical Design Process
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.
1999-01-01
The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.