Sample records for design features performance

  1. New features and applications of PRESTO, a computer code for the performance of regenerative, superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Staiger, P. J.

    1982-01-01

    The code was designed to analyze performance at valves-wide-open design flow. The code can model conventional steam cycles as well as cycles that include such special features as process steam extraction and induction and feedwater heating by external heat sources. Convenience features and extensions to the special features were incorporated into the PRESTO code. The features are described, and detailed examples illustrating the use of both the original and the special features are given.

  2. Incremental Costs and Performance Benefits of Various Features of Concrete Pavements

    DOT National Transportation Integrated Search

    2004-04-01

    Various design features (such as dowel bars, tied shoulders, or drainable bases) may be added to a portland cement concrete (PCC) pavement design to improve its overall performance by maintaining a higher level of serviceability or by extending its s...

  3. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  4. Impact of design features on pavement response and performance in rehabilitated flexible and rigid pavements.

    DOT National Transportation Integrated Search

    2011-10-01

    The primary focus of this research was to determine the effects of design and construction features, such as overlay : thickness and mix type, presence of milling, and type of restoration, on pavement response and performance and to : establish their...

  5. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  6. Ambient response of a unique performance-based design building with dynamic response modification features

    USGS Publications Warehouse

    Çelebi, Mehmet; Huang, Moh; Shakal, Antony; Hooper, John; Klemencic, Ron

    2012-01-01

    A 64-story, performance-based design building with reinforced concrete core shear-walls and unique dynamic response modification features (tuned liquid sloshing dampers and buckling-restrained braces) has been instrumented with a monitoring array of 72 channels of accelerometers. Ambient vibration data recorded are analyzed to identify modes and associated frequencies and damping. The low-amplitude dynamic characteristics are considerably different than those computed from design analyses, but serve as a baseline against which to compare with future strong shaking responses. Such studies help to improve our understanding of the effectiveness of the added features to the building and help improve designs in the future.

  7. Joint Feature Extraction and Classifier Design for ECG-Based Biometric Recognition.

    PubMed

    Gutta, Sandeep; Cheng, Qi

    2016-03-01

    Traditional biometric recognition systems often utilize physiological traits such as fingerprint, face, iris, etc. Recent years have seen a growing interest in electrocardiogram (ECG)-based biometric recognition techniques, especially in the field of clinical medicine. In existing ECG-based biometric recognition methods, feature extraction and classifier design are usually performed separately. In this paper, a multitask learning approach is proposed, in which feature extraction and classifier design are carried out simultaneously. Weights are assigned to the features within the kernel of each task. We decompose the matrix consisting of all the feature weights into sparse and low-rank components. The sparse component determines the features that are relevant to identify each individual, and the low-rank component determines the common feature subspace that is relevant to identify all the subjects. A fast optimization algorithm is developed, which requires only the first-order information. The performance of the proposed approach is demonstrated through experiments using the MIT-BIH Normal Sinus Rhythm database.

  8. Modeling OPC complexity for design for manufacturability

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong

    2005-11-01

    Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data from OPC and mask data preparation runs, we build models of FC as function of OPC tolerances and layout parameters.

  9. Utilizing gamma band to improve mental task based brain-computer interface design.

    PubMed

    Palaniappan, Ramaswamy

    2006-09-01

    A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.

  10. Passive solar water heating: breadbox design for the Fred Young Farm Labor Center in Indio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melzer, B; Maeda, B

    1979-10-01

    An appropriate passive solar preheater for multifamily housing units in the Fred Young Farm Labor Center in Indio, California, was designed and analyzed. A brief summary of passive preheater systems and the key design features used in current designs is presented. The design features necessary for the site requirements are described. The eight preliminary preheater designs reviewed for the project are presented. The results of thermal performance simulation for the eight prototype systems are discussed. Alternative monitoring systems for the installation are described and evaluated. The consultants' recommendations, working drawings, and performance estimates of the system selected are presented. (MHR)

  11. 49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...

  12. 49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...

  13. 49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...

  14. 49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...

  15. Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

    NASA Technical Reports Server (NTRS)

    Breeding, Shawn; Khodabandeh, Julia

    2002-01-01

    Contents include the following: Quench Module Insert (QMI) science requirements. QMI interfaces. QMI design layout. QMI thermal analysis and design methodology. QMI bread board testing and instrumentation approach. QMI thermal probe design parameters. Design features for gradient measurement. Design features for heated zone measurements. Thermal gradient analysis results. Heated zone analysis results. Bread board thermal probe layout. QMI bread board correlation and performance. Summary and conclusions.

  16. Design of 240,000 orthogonal 25mer DNA barcode probes.

    PubMed

    Xu, Qikai; Schlabach, Michael R; Hannon, Gregory J; Elledge, Stephen J

    2009-02-17

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications.

  17. Design of 240,000 orthogonal 25mer DNA barcode probes

    PubMed Central

    Xu, Qikai; Schlabach, Michael R.; Hannon, Gregory J.; Elledge, Stephen J.

    2009-01-01

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications. PMID:19171886

  18. Emergent features and perceptual objects: re-examining fundamental principles in analogical display design.

    PubMed

    Holt, Jerred; Bennett, Kevin B; Flach, John M

    2015-01-01

    Two sets of design principles for analogical visual displays, based on the concepts of emergent features and perceptual objects, are described. An interpretation of previous empirical findings for three displays (bar graph, polar graphic, alphanumeric) is provided from both perspectives. A fourth display (configural coordinate) was designed using principles of ecological interface design (i.e. direct perception). An experiment was conducted to evaluate performance (accuracy and latency of state identification) with these four displays. Numerous significant effects were obtained and a clear rank ordering of performance emerged (from best to worst): configural coordinate, bar graph, alphanumeric and polar graphic. These findings are consistent with principles of design based on emergent features; they are inconsistent with principles based on perceptual objects. Some limitations of the configural coordinate display are discussed and a redesign is provided. Practitioner Summary: Principles of ecological interface design, which emphasise the quality of very specific mappings between domain, display and observer constraints, are described; these principles are applicable to the design of all analogical graphical displays.

  19. Design of prototype charged particle fog dispersal unit

    NASA Technical Reports Server (NTRS)

    Collins, F. G.; Frost, W.; Kessel, P.

    1981-01-01

    The unit was designed to be easily modified so that certain features that influence the output current and particle size distribution could be examined. An experimental program was designed to measure the performance of the unit. The program described includes measurements in a fog chamber and in the field. Features of the nozzle and estimated nozzle characteristics are presented.

  20. The Impact of a Racing Feature on Middle School Science Students' Performance in an Educational Game: The Effect of Content-Free Game-Actions

    ERIC Educational Resources Information Center

    Ault, Marilyn; Craig-Hare, Jana; Frey, Bruce

    2016-01-01

    Reason Racer is an online, rate-based, multiplayer game designed to engage middle school students in the knowledge and skills related to scientific argumentation. Several game features are included as design considerations unrelated to science content or argumentation. One specific feature, a competitive racing component that occurs in between…

  1. Online Patient Education for Chronic Disease Management: Consumer Perspectives.

    PubMed

    Win, Khin Than; Hassan, Naffisah Mohd; Oinas-Kukkonen, Harri; Probst, Yasmine

    2016-04-01

    Patient education plays an important role in chronic disease management. The aim of this study is to identify patients' preferences in regard to the design features of effective online patient education (OPE) and the benefits. A review of the existing literature was conducted in order to identify the benefits of OPE and its essential design features. These design features were empirically tested by conducting survey with patients and caregivers. Reliability analysis, construct validity and regression analysis were performed for data analysis. The results identified patient-tailored information, interactivity, content credibility, clear presentation of content, use of multimedia and interpretability as the essential design features of online patient education websites for chronic disease management.

  2. Effects of prospective-user factors and sign design features on guessability of pharmaceutical pictograms.

    PubMed

    Chan, Alan H S; Chan, Ken W L

    2013-02-01

    To examine the associations between the guessing performance of 25 pharmaceutical pictograms and five sign features for naïve participants. The effect of prospective-user factors on guessing performance was also investigated. A total of 160 Hong Kong Chinese people, drawn largely from a young student population, guessed the meanings of 25 pharmaceutical pictograms that were generally not familiar to them. Participants then completed a questionnaire about their drug buying and drug label reading habits, and their demographics and medication history. Finally they rated five features (familiarity, concreteness, complexity, meaningfulness, and semantic distance) of the pharmaceutical pictograms using 0-100 scales. For all pharmaceutical pictograms, mean and standard deviation of guessability score were 64.8 and 17.1, respectively. Prospective-user factors of 'occupation', 'age' and 'education level' significantly affected guessing performance. For sign features, semantic closeness was the best predictor of guessability score, followed by simplicity, concreteness, meaningfulness and familiarity. User characteristics and sign features are critical for pharmaceutical pictograms. To be effective, pharmaceutical pictograms should have obvious and direct connections with familiar things and it is recommended that pharmaceutical pictograms should be designed with consideration of the five sign features investigated here. This study provides useful information and recommendations to assist interface designers to create and evaluate icons for pharmaceutical products and to design more user-friendly pharmaceutical pictograms. However, further work is needed to see how older people respond to such pharmaceutical pictograms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. A human performance evaluation of graphic symbol-design features.

    PubMed

    Samet, M G; Geiselman, R E; Landee, B M

    1982-06-01

    16 subjects learned each of two tactical display symbol sets (conventional symbols and iconic symbols) in turn and were then shown a series of graphic displays containing various symbol configurations. For each display, the subject was asked questions corresponding to different behavioral processes relating to symbol use (identification, search, comparison, pattern recognition). The results indicated that: (a) conventional symbols yielded faster pattern-recognition performance than iconic symbols, and iconic symbols did not yield faster identification than conventional symbols, and (b) the portrayal of additional feature information (through the use of perimeter density or vector projection coding) slowed processing of the core symbol information in four tasks, but certain symbol-design features created less perceptual interference and had greater correspondence with the portrayal of specific tactical concepts than others. The results were discussed in terms of the complexities involved in the selection of symbol design features for use in graphic tactical displays.

  4. Robust evaluation of time series classification algorithms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.

    2014-03-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.

  5. NASA Tech House: An early evaluation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An architect-engineering firm, as well as university participants, performed system studies, evaluated construction methods, performed cost effectiveness studies, and prepared construction drawings which incorporated the selected technology features into a final design. A Technology Utilization House (Tech House) based on this design was constructed at the NASA Langley Research Center in Hampton, Virginia. The Tech House is instrumented so that the performance of the design features and energy systems can be evaluated during a planned family live-in period. As such, the house is both a demonstration unit and a research laboratory. The Tech House is to demonstrate the kind of single-family residence that will probably be available within the next five years.

  6. Innovation in Aerodynamic Design Features of Soviet Missiles

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2006-01-01

    Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA.

  7. Designing for Temporal Awareness: The Role of Temporality in Time-Critical Medical Teamwork

    PubMed Central

    Kusunoki, Diana S.; Sarcevic, Aleksandra

    2016-01-01

    This paper describes the role of temporal information in emergency medical teamwork and how time-based features can be designed to support the temporal awareness of clinicians in this fast-paced and dynamic environment. Engagement in iterative design activities with clinicians over the course of two years revealed a strong need for time-based features and mechanisms, including timestamps for tasks based on absolute time and automatic stopclocks measuring time by counting up since task performance. We describe in detail the aspects of temporal awareness central to clinicians’ awareness needs and then provide examples of how we addressed these needs through the design of a shared information display. As an outcome of this process, we define four types of time representation techniques to facilitate the design of time-based features: (1) timestamps based on absolute time, (2) timestamps relative to the process start time, (3) time since task performance, and (4) time until the next required task. PMID:27478880

  8. Small Gas Turbine Combustor Primary Zone Study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.

    1983-01-01

    A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.

  9. CAS-ATLID (co-alignment sensor of ATLID instrument) thermo-structural design and performance

    NASA Astrophysics Data System (ADS)

    Moreno, Javier; Serrano, Javier; González, David; Rodríguez, Gemma; Manjón, Andrés.; Vásquez, Eloi; Carretero, Carlos; Martínez, Berta

    2017-11-01

    This paper describes the main thermo-mechanical design features and performances of the Co-Alignment Sensor (CAS) developed by LIDAX and CRISA under ESA program with AIRBUS Defence and Space as industry prime.

  10. Designing human centered GeoVisualization application--the SanaViz--for telehealth users: a case study.

    PubMed

    Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E

    2012-01-01

    Public health data is typically organized by geospatial unit. GeoVisualization (GeoVis) allows users to see information visually on a map. Examine telehealth users' perceptions towards existing public health GeoVis applications and obtains users' feedback about features important for the design and development of Human Centered GeoVis application "the SanaViz". We employed a cross sectional study design using mixed methods approach for this pilot study. Twenty users involved with the NUTES telehealth center at Federal University of Pernambuco (UFPE), Recife, Brazil were enrolled. Open and closed ended questionnaires were used to gather data. We performed audio recording for the interviews. Information gathered included socio-demographics, prior spatial skills and perception towards use of GeoVis to evaluate telehealth services. Card sorting and sketching methods were employed. Univariate analysis was performed for the continuous and categorical variables. Qualitative analysis was performed for open ended questions. Existing Public Health GeoVis applications were difficult to use. Results found interaction features zooming, linking and brushing and representation features Google maps, tables and bar chart as most preferred GeoVis features. Early involvement of users is essential to identify features necessary to be part of the human centered GeoVis application "the SanaViz".

  11. Quantitative Comparison of Minimum Inductance and Minimum Power Algorithms for the Design of Shim Coils for Small Animal Imaging

    PubMed Central

    HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.

    2010-01-01

    High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157

  12. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  13. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  14. A Customized Attention-Based Long Short-Term Memory Network for Distant Supervised Relation Extraction.

    PubMed

    He, Dengchao; Zhang, Hongjun; Hao, Wenning; Zhang, Rui; Cheng, Kai

    2017-07-01

    Distant supervision, a widely applied approach in the field of relation extraction can automatically generate large amounts of labeled training corpus with minimal manual effort. However, the labeled training corpus may have many false-positive data, which would hurt the performance of relation extraction. Moreover, in traditional feature-based distant supervised approaches, extraction models adopt human design features with natural language processing. It may also cause poor performance. To address these two shortcomings, we propose a customized attention-based long short-term memory network. Our approach adopts word-level attention to achieve better data representation for relation extraction without manually designed features to perform distant supervision instead of fully supervised relation extraction, and it utilizes instance-level attention to tackle the problem of false-positive data. Experimental results demonstrate that our proposed approach is effective and achieves better performance than traditional methods.

  15. Spectral feature design in high dimensional multispectral data

    NASA Technical Reports Server (NTRS)

    Chen, Chih-Chien Thomas; Landgrebe, David A.

    1988-01-01

    The High resolution Imaging Spectrometer (HIRIS) is designed to acquire images simultaneously in 192 spectral bands in the 0.4 to 2.5 micrometers wavelength region. It will make possible the collection of essentially continuous reflectance spectra at a spectral resolution sufficient to extract significantly enhanced amounts of information from return signals as compared to existing systems. The advantages of such high dimensional data come at a cost of increased system and data complexity. For example, since the finer the spectral resolution, the higher the data rate, it becomes impractical to design the sensor to be operated continuously. It is essential to find new ways to preprocess the data which reduce the data rate while at the same time maintaining the information content of the high dimensional signal produced. Four spectral feature design techniques are developed from the Weighted Karhunen-Loeve Transforms: (1) non-overlapping band feature selection algorithm; (2) overlapping band feature selection algorithm; (3) Walsh function approach; and (4) infinite clipped optimal function approach. The infinite clipped optimal function approach is chosen since the features are easiest to find and their classification performance is the best. After the preprocessed data has been received at the ground station, canonical analysis is further used to find the best set of features under the criterion that maximal class separability is achieved. Both 100 dimensional vegetation data and 200 dimensional soil data were used to test the spectral feature design system. It was shown that the infinite clipped versions of the first 16 optimal features had excellent classification performance. The overall probability of correct classification is over 90 percent while providing for a reduced downlink data rate by a factor of 10.

  16. An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights

    NASA Technical Reports Server (NTRS)

    David, D.

    1983-01-01

    Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.

  17. Impact of experimental design on PET radiomics in predicting somatic mutation status.

    PubMed

    Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L

    2017-12-01

    PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Regression-Based Approach For Feature Selection In Classification Issues. Application To Breast Cancer Detection And Recurrence

    NASA Astrophysics Data System (ADS)

    Belciug, Smaranda; Serbanescu, Mircea-Sebastian

    2015-09-01

    Feature selection is considered a key factor in classifications/decision problems. It is currently used in designing intelligent decision systems to choose the best features which allow the best performance. This paper proposes a regression-based approach to select the most important predictors to significantly increase the classification performance. Application to breast cancer detection and recurrence using publically available datasets proved the efficiency of this technique.

  19. What vehicle features are considered important when buying an automobile? An examination of driver preferences by age and gender.

    PubMed

    Vrkljan, Brenda H; Anaby, Dana

    2011-02-01

    Certain vehicle features can help drivers avoid collisions and/or protect occupants in the event of a crash, and therefore, might play an important role when deciding which vehicle to purchase. The objective of this study was to examine the importance attributed to key vehicle features (including safety) that drivers consider when buying a car and its association with age and gender. A sample of 2,002 Canadian drivers aged 18 years and older completed a survey that asked them to rank the importance of eight vehicle features if they were to purchase a vehicle (storage, mileage, safety, price, comfort, performance, design, and reliability). ANOVA tests were performed to: (a) determine if there were differences in the level of importance between features and; (b) examine the effect of age and gender on the importance attributed to these features. Of the features examined, safety and reliability were the most highly rated in terms of importance, whereas design and performance had the lowest rating. Differences in safety and performance across age groups were dependent on gender. This effect was most evident in the youngest and oldest age groups. Safety and reliability were considered the most important features. Age and gender play a significant role in explaining the importance of certain features. Targeted efforts for translating safety-related information to the youngest and oldest consumers should be emphasized due to their high collision, injury, and fatality rates. Copyright © 2011 National Safety Council and Elsevier Ltd. All rights reserved.

  20. Boiler water regime

    NASA Astrophysics Data System (ADS)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  1. Allicat magnetoresistive head design and performance

    NASA Astrophysics Data System (ADS)

    Hannon, David; Krounbi, Mohamed; Christner, Jodie

    1994-03-01

    The general design features of the magnetoresistive (MR) merged head are described and compared to the earlier MR piggy-back head called Corsair. Examples of static, magnetic, and error rate testing are given. Dual track profiles show the read-narrow feature of the MR head. Stability of the signal with write disturbance shows the effectiveness of the hard-bias longitudinal biasing. Error rate versus off-track position indicates the robustness of the file design.

  2. The building blocks of a 'Liveable Neighbourhood': Identifying the key performance indicators for walking of an operational planning policy in Perth, Western Australia.

    PubMed

    Hooper, Paula; Knuiman, Matthew; Foster, Sarah; Giles-Corti, Billie

    2015-11-01

    Planning policy makers are requesting clearer guidance on the key design features required to build neighbourhoods that promote active living. Using a backwards stepwise elimination procedure (logistic regression with generalised estimating equations adjusting for demographic characteristics, self-selection factors, stage of construction and scale of development) this study identified specific design features (n=16) from an operational planning policy ("Liveable Neighbourhoods") that showed the strongest associations with walking behaviours (measured using the Neighbourhood Physical Activity Questionnaire). The interacting effects of design features on walking behaviours were also investigated. The urban design features identified were grouped into the "building blocks of a Liveable Neighbourhood", reflecting the scale, importance and sequencing of the design and implementation phases required to create walkable, pedestrian friendly developments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Design of an occulter testbed at flight Fresnel numbers

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Kasdin, N. Jeremy; Kim, Yunjong; Vanderbei, Robert J.

    2015-01-01

    An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we are designing and building a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. Here, we present a sample design operating at a flight Fresnel number and is thus representative of a realistic space mission. We present calculations of experimental limits arising from the finite size and propagation distance available in the testbed, limitations due to manufacturing feature size, and non-ideal input beam. We demonstrate how the testbed is designed to be feature-size limited, and provide an estimation of the expected performance.

  4. Learning and Improving in Quality Improvement Collaboratives: Which Collaborative Features Do Participants Value Most?

    PubMed Central

    Nembhard, Ingrid M

    2009-01-01

    Objective To understand participants' views on the relative helpfulness of various features of collaboratives, why each feature was helpful and which features the most successful participants viewed as most central to their success. Data Sources Primary data collected from 53 teams in four 2004–2005 Institute for Healthcare Improvement (IHI) Breakthrough Series collaboratives; secondary data from IHI and demographic sources. Study Design Cross-sectional analyses were conducted to assess participants' views of 12 features, and the relationship between their views and performance improvement. Data Collection Methods Participants' views on features were obtained via self-administered surveys and semi-structured telephone interviews. Performance improvement data were obtained from IHI and demographic data from secondary sources. Principal Findings Participants viewed six features as most helpful for advancing their improvement efforts overall and knowledge acquisition in particular: collaborative faculty, solicitation of their staff's ideas, change package, Plan-Do-Study-Act cycles, Learning Session interactions, and collaborative extranet. These features also provided participants with motivation, social support, and project management skills. Features enabling interorganizational learning were rated higher by teams whose organizations improved significantly than by other teams. Conclusions Findings identify features of collaborative design and implementation that participants view as most helpful and highlight the importance of interorganizational features, at least for those organizations that most improve. PMID:19040423

  5. Gallium-arsenide process evaluation based on a RISC microprocessor example

    NASA Astrophysics Data System (ADS)

    Brown, Richard B.; Upton, Michael; Chandna, Ajay; Huff, Thomas R.; Mudge, Trevor N.; Oettel, Richard E.

    1993-10-01

    This work evaluates the features of a gallium-arsenide E/D MESFET process in which a 32-b RISC microprocessor was implemented. The design methodology and architecture of this prototype CPU are described. The performance sensitivity of the microprocessor and other large circuit blocks to different process parameters is analyzed, and recommendations for future process features, circuit approaches, and layout styles are made. These recommendations are reflected in the design of a second microprocessor using a more advanced process that achieves much higher density and performance.

  6. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    1996-01-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  7. Designing a Robust Micromixer Based on Fluid Stretching

    NASA Astrophysics Data System (ADS)

    Mott, David; Gautam, Dipesh; Voth, Greg; Oran, Elaine

    2010-11-01

    A metric for measuring fluid stretching based on finite-time Lyapunov exponents is described, and the use of this metric for optimizing mixing in microfluidic components is explored. The metric is implemented within an automated design approach called the Computational Toolbox (CTB). The CTB designs components by adding geometric features, such a grooves of various shapes, to a microchannel. The transport produced by each of these features in isolation was pre-computed and stored as an "advection map" for that feature, and the flow through a composite geometry that combines these features is calculated rapidly by applying the corresponding maps in sequence. A genetic algorithm search then chooses the feature combination that optimizes a user-specified metric. Metrics based on the variance of concentration generally require the user to specify the fluid distributions at inflow, which leads to different mixer designs for different inflow arrangements. The stretching metric is independent of the fluid arrangement at inflow. Mixers designed using the stretching metric are compared to those designed using a variance of concentration metric and show excellent performance across a variety of inflow distributions and diffusivities.

  8. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2018-06-06

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  9. Unique features of a new nickel-hydrogen 2-cell CPV

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1995-01-01

    Two-cell nickel-hydrogen common pressure vessel (CPV) units with some unusual design features have been successfully built and tested. The features of interest are half-normal platinum loading for the negative electrodes, the use of rabbit-ear terminals for a CPV unit, and the incorporation of a wall wick. The units have a nominal capacity of 20 Ah and are 3.5 inches in diameter. Electric performance data are provided. The data support the growing viability of the two-cell CPV design concept.

  10. Analysis of the Energy Performance of the Chesapeake Bay Foundation's Philip Merrill Environmental Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, B.; Deru M.; Torcellini, P.

    2005-04-01

    The Chesapeake Bay Foundation designed their new headquarters building to minimize its environmental impact on the already highly polluted Chesapeake Bay by incorporating numerous high-performance energy saving features into the building design. CBF then contacted NREL to perform a nonbiased energy evaluation of the building. Because their building attracted much attention in the sustainable design community, an unbiased evaluation was necessary to help designers replicate successes and identify and correct problem areas. This report focuses on NREL's monitoring and analysis of the overall energy performance of the building.

  11. Nuclear fuel performance: Trends, remedies and challenges

    NASA Astrophysics Data System (ADS)

    Rusch, C. A.

    2008-12-01

    It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.

  12. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less

  13. Perceived Importance of Wellness Features at a Cancer Center: Patient and Staff Perspectives.

    PubMed

    Tinner, Michelle; Crovella, Paul; Rosenbaum, Paula F

    2018-01-01

    Determine the relative impact of 11 building wellness features on preference and on the ability to deliver/receive quality care for two groups: patients and caregivers. The impact of building features that promote wellness is of increasing interest to the building owners, designers, and occupants. This study performed a postoccupancy evaluation of two user groups at a healthcare facility with specific wellness features. Seventy-six staff and 62 patients of a cancer center were polled separately to determine their preferences in 11 categories. Results showed that all wellness features were viewed favorably by the two groups, with natural lighting, views of nature, and thermal comfort as top categories for both. The t-test comparisons were performed, and significant differences ( p < .05) between the two groups were found for three of the features (views of nature, art and murals, and indoor plants). Discussion of these differences and the interaction of competing design goals (thermal comfort, views of nature, natural light, and desire for privacy) are included. Designers and owners will want to consider the preferred use of roof gardens, art and murals, and indoor plants for patient spaces, where their relative value is greater. Access to private and quiet spaces is the top need for caregivers. Ease of movement, thermal comfort, and natural light were top needs for patients.

  14. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    PubMed

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  15. Automatic feature design for optical character recognition using an evolutionary search procedure.

    PubMed

    Stentiford, F W

    1985-03-01

    An automatic evolutionary search is applied to the problem of feature extraction in an OCR application. A performance measure based on feature independence is used to generate features which do not appear to suffer from peaking effects [17]. Features are extracted from a training set of 30 600 machine printed 34 class alphanumeric characters derived from British mail. Classification results on the training set and a test set of 10 200 characters are reported for an increasing number of features. A 1.01 percent forced decision error rate is obtained on the test data using 316 features. The hardware implementation should be cheap and fast to operate. The performance compares favorably with current low cost OCR page readers.

  16. Earth Observing Scanning Polarimeter (EOSP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.

  17. Thin-film filament-based solar cells and modules

    NASA Astrophysics Data System (ADS)

    Tuttle, J. R.; Cole, E. D.; Berens, T. A.; Alleman, J.; Keane, J.

    1997-04-01

    This concept paper describes a patented, novel photovoltaic (PV) technology that is capable of achieving near-term commercialization and profitability based upon design features that maximize product performance while minimizing initial and future manufacturing costs. DayStar Technologies plans to exploit these features and introduce a product to the market based upon these differential positions. The technology combines the demonstrated performance and reliability of existing thin-film PV product with a cell and module geometry that cuts material usage by a factor of 5, and enhances performance and manufacturability relative to standard flat-plate designs. The target product introduction price is 1.50/Watt-peak (Wp). This is approximately one-half the cost of the presently available PV product. Additional features include: increased efficiency through low-level concentration, no scribe or grid loss, simple series interconnect, high voltage, light weight, high-throughput manufacturing, large area immediate demonstration, flexibility, modularity.

  18. Assessment of Genetics Understanding. Under What Conditions Do Situational Features Have an Impact on Measures?

    NASA Astrophysics Data System (ADS)

    Schmiemann, Philipp; Nehm, Ross H.; Tornabene, Robyn E.

    2017-12-01

    Understanding how situational features of assessment tasks impact reasoning is important for many educational pursuits, notably the selection of curricular examples to illustrate phenomena, the design of formative and summative assessment items, and determination of whether instruction has fostered the development of abstract schemas divorced from particular instances. The goal of our study was to employ an experimental research design to quantify the degree to which situational features impact inferences about participants' understanding of Mendelian genetics. Two participant samples from different educational levels and cultural backgrounds (high school, n = 480; university, n = 444; Germany and USA) were used to test for context effects. A multi-matrix test design was employed, and item packets differing in situational features (e.g., plant, animal, human, fictitious) were randomly distributed to participants in the two samples. Rasch analyses of participant scores from both samples produced good item fit, person reliability, and item reliability and indicated that the university sample displayed stronger performance on the items compared to the high school sample. We found, surprisingly, that in both samples, no significant differences in performance occurred among the animal, plant, and human item contexts, or between the fictitious and "real" item contexts. In the university sample, we were also able to test for differences in performance between genders, among ethnic groups, and by prior biology coursework. None of these factors had a meaningful impact upon performance or context effects. Thus some, but not all, types of genetics problem solving or item formats are impacted by situational features.

  19. Design and performance of the LCLS cavity BPM system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.; Norum, E.; Morrison, L.

    2008-01-01

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM{sub 010} monopole reference cavity and a TM{sub 110} dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low- noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  20. Design and Performance of the LCLS Cavity BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.M.; Morrison, L.H.; Norum, W.E.

    2008-01-23

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM{sub 010} monopole reference cavity and a TM{sub 110} dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  1. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  2. Expansion of CMOS array design techniques

    NASA Technical Reports Server (NTRS)

    Feller, A.; Ramondetta, P.

    1977-01-01

    The important features of the multiport (double entry) automatic placement and routing programs for standard cells are described. Measured performance and predicted performance were compared for seven CMOS/SOS array types and hybrids designed with the high speed CMOS/SOS cell family. The CMOS/SOS standard cell data sheets are listed and described.

  3. Identifying Key Features of Student Performance in Educational Video Games and Simulations through Cluster Analysis

    ERIC Educational Resources Information Center

    Kerr, Deirdre; Chung, Gregory K. W. K.

    2012-01-01

    The assessment cycle of "evidence-centered design" (ECD) provides a framework for treating an educational video game or simulation as an assessment. One of the main steps in the assessment cycle of ECD is the identification of the key features of student performance. While this process is relatively simple for multiple choice tests, when…

  4. "Sundiata, Lion King of Mali." Adapted by Kim Hines, Featuring Griot Alhaji Papa Susso, Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Freeman, Aakhu TuahNera

    This performance guide is designed for teachers to use with students before and after a performance of "Sundiata: Lion King of Mali," adapted by Kim Hines and featuring Griot Alhaji Papa Susso. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) Sundiata: Man & Myth (discusses…

  5. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  6. Banknotes and unattended cash transactions

    NASA Astrophysics Data System (ADS)

    Bernardini, Ronald R.

    2000-04-01

    There is a 64 billion dollar annual unattended cash transaction business in the US with 10 to 20 million daily transactions. Even small problems with the machine readability of banknotes can quickly become a major problem to the machine manufacturer and consumer. Traditional note designs incorporate overt security features for visual validation by the public. Many of these features such as fine line engraving, microprinting and watermarks are unsuitable as machine readable features in low cost note acceptors. Current machine readable features, mostly covert, were designed and implemented with the central banks in mind. These features are only usable by the banks large, high speed currency sorting and validation equipment. New note designs should consider and provide for low cost not acceptors, implementing features developed for inexpensive sensing technologies. Machine readable features are only as good as their consistency. Quality of security features as well as that of the overall printing process must be maintained to ensure reliable and secure operation of note readers. Variations in printing and of the components used to make the note are one of the major causes of poor performance in low cost note acceptors. The involvement of machine manufacturers in new currency designs will aid note producers in the design of a note that is machine friendly, helping to secure the acceptance of the note by the public as well as acting asa deterrent to fraud.

  7. Work plan for special design features and crack sealing maintenance.

    DOT National Transportation Integrated Search

    2013-09-01

    The Alaska DOT&PF wants to construct and maintain asphalt concrete (AC) paved highways in a way that minimizes roadway lifecycle costs while preserving acceptable : performance. Thermal cracking is a natural feature of most paved Alaska roadways that...

  8. 22 CFR 124.2 - Exemptions for training and military service.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...

  9. 22 CFR 124.2 - Exemptions for training and military service.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...

  10. 22 CFR 124.2 - Exemptions for training and military service.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...

  11. 22 CFR 124.2 - Exemptions for training and military service.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...

  12. Topical Reports: Sustainable Design for Schools.

    ERIC Educational Resources Information Center

    Fox, Anne W.

    This document presents several reports on the practical applications of sustainable design and schools; it includes information about student performance and sustainable design features involving lighting, acoustics, air quality, and student well-being. Three case studies (Washington's Bainbridge Island School District, Texas' Roy Lee Walker…

  13. Rotor design optimization using a free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Boschitsch, Alexander H.; Wachspress, Daniel A.; Chua, Kiat

    1993-01-01

    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed.

  14. What to Build for Middle-Agers to Come? Attractive and Necessary Functions of Exercise-Promotion Mobile Phone Apps: A Cross-Sectional Study

    PubMed Central

    Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie

    2017-01-01

    Background Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults’ quality perception toward exercise-promotion apps and which factor may influence such perception. Objectives The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. Methods A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London—Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. Results The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended with 14 design features, medium level with 6 features, whereas low-level participants are recommended with 1 feature. The analysis suggests that the implementation of demanded features could be low, as the average prevalence of demanded design features is 20% (4.3/21). Surprisingly, social comparison and social support, most implemented features in current apps, were categorized into the indifferent category. The magnitude of effect is larger for MPSE because it effects quality perception of more design features than PA. Delving into the 52 regression models revealed that high MPSE more likely induces attractive or one- dimensional categorization, suggesting the importance of technological self-efficacy on eHealth care promotion. Conclusions This study is the first to propose middle-agers’ needs in relation to mobile phone exercise-promotion. In addition to the tailor-made recommendations, suggestions are offered to app designers to enhance the performance of persuasive features. An interesting finding on change of quality perception attributed to MPSE is proposed as future research. PMID:28546140

  15. Monolithically interconnected silicon-film™ module technology

    NASA Astrophysics Data System (ADS)

    DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.

    1999-03-01

    AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.

  16. ASTROS: A multidisciplinary automated structural design tool

    NASA Technical Reports Server (NTRS)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  17. QMI: Rising to the Space Station Design Challenge

    NASA Astrophysics Data System (ADS)

    Carswell, W. E.; Farmer, J.; Coppens, C.; Breeding, S.; Rose, F.

    2002-01-01

    The Quench Module Insert (QMI) materials processing furnace is being designed to operate for 8000 hours over four years on the International Space Station as part of the first Materials Science Research Rack of the Materials Science Research Facility. The Bridgman-type furnace is being built for the directional solidification processing of metals and alloys in the microgravity environment of space. Most notably it will be used for processing aluminum and related alloys. Designing for the space station environment presents intriguing design challenges in the form of a ten-year life requirement coupled with both limited opportunities for maintenance and resource constraints in the form of limited power and space. The long life requirement has driven the design of several features in the furnace, including the design of the heater core, the selection and placement of the thermocouples, overall performance monitoring, and the design of the chill block. The power and space limitations have been addressed through a compact furnace design using efficient vacuum insulation. Details on these design features, as well as development test performance results to date, are presented.

  18. QMI: Rising to the Space Station Design Challenge

    NASA Technical Reports Server (NTRS)

    Carswell, W. E.; Farmer, J.; Coppens, C.; Breeding, S.; Rose, F.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Quench Module Insert (QMI) materials processing furnace is being designed to operate for 8000 hours over four years on the International Space Station (ISS) as part of the first Materials Science Research Rack (MSRR-1) of the Materials Science Research Facility (MSRF). The Bridgman-type furnace is being built for the directional solidification processing of metals and alloys in the microgravity environment of space. Most notably it will be used for processing aluminum and related alloys. Designing for the space station environment presents intriguing design challenges in the form of a ten-year life requirement coupled with both limited opportunities for maintenance and resource constraints in the form of limited power and space. The long life requirement has driven the design of several features in the furnace, including the design of the heater core, the selection and placement of the thermocouples, overall performance monitoring, and the design of the chill block. The power and space limitations have been addressed through a compact furnace design using efficient vacuum insulation. Details on these design features, as well as development test performance results to date, are presented.

  19. Design features of fans, blowers, and compressors

    NASA Astrophysics Data System (ADS)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  20. A performance goal-based seismic design philosophy for waste repository facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Q.A.

    1994-12-31

    A performance goal-based seismic design philosophy, compatible with DOE`s present natural phenomena hazards mitigation and {open_quotes}graded approach{close_quotes} philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed.

  1. MSFC Skylab airlock module, volume 1. [systems design and performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The history and development of the Skylab Airlock Module and Payload Shroud is presented from initial concept through final design. A summary is given of the Airlock features and systems. System design and performance are presented for the Spent Stage Experiment Support Module, structure and mechanical systems, mass properties, thermal and environmental control systems, EVA/IVA suite system, electrical power system, sequential system, sequential system, and instrumentation system.

  2. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection.

    PubMed

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.

  3. EVALUATION OF MUNICIPAL SOLID WASTE LANDFILL COVER DESIGNS

    EPA Science Inventory

    The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...

  4. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less

  6. Axial compressor gas path design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Cevik, Mert

    Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.

  7. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  8. Unsupervised quality estimation model for English to German translation and its application in extensive supervised evaluation.

    PubMed

    Han, Aaron L-F; Wong, Derek F; Chao, Lidia S; He, Liangye; Lu, Yi

    2014-01-01

    With the rapid development of machine translation (MT), the MT evaluation becomes very important to timely tell us whether the MT system makes any progress. The conventional MT evaluation methods tend to calculate the similarity between hypothesis translations offered by automatic translation systems and reference translations offered by professional translators. There are several weaknesses in existing evaluation metrics. Firstly, the designed incomprehensive factors result in language-bias problem, which means they perform well on some special language pairs but weak on other language pairs. Secondly, they tend to use no linguistic features or too many linguistic features, of which no usage of linguistic feature draws a lot of criticism from the linguists and too many linguistic features make the model weak in repeatability. Thirdly, the employed reference translations are very expensive and sometimes not available in the practice. In this paper, the authors propose an unsupervised MT evaluation metric using universal part-of-speech tagset without relying on reference translations. The authors also explore the performances of the designed metric on traditional supervised evaluation tasks. Both the supervised and unsupervised experiments show that the designed methods yield higher correlation scores with human judgments.

  9. High-density capacitors pack more energy in a smaller space

    NASA Astrophysics Data System (ADS)

    Lerner, E. J.

    1985-05-01

    Attention is given to the design features and performance characteristics of novel high density capacitor banks which furnish a tenfold energy increase over conventional capacitors, to values of the order of 100 J/kg or 0.28 J/cu cm. The essential feature of the new design is the replacement of plastic dielectric films interleaved with oil-soaked films by a paperless film system that uses perfluorocarbon rather than oil.

  10. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  11. Multiple feature extraction by using simultaneous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio

    2003-07-01

    We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.

  12. Common Characteristics of Good and Poorly Performing PCC Pavements

    DOT National Transportation Integrated Search

    1998-01-01

    This report documents the analysis and findings of a study to identify the site conditions and design/construction features of concrete pavements (JPCP, JRCP, CRCP) that lead to good performance and those that lead to poor performance. Data from Long...

  13. Common Characteristics of Good and Poorly Performing AC Pavements

    DOT National Transportation Integrated Search

    1999-12-01

    This report documents the analysis and findings of a study to identify the site conditions and design/construction features of : flexible pavements that lead to good performance and those that lead to poor performance. Data from the Long Term Pavemen...

  14. Use of CDMA access technology in mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Ramasastry, Jay; Wiedeman, Bob

    1995-01-01

    Use of Code Division Multiple Access (CDMA) technology in terrestrial wireless systems is fairly well understood. Similarly, design and operation of Power Control in a CDMA-based system in a terrestrial environment is also well established. Terrestrial multipath characteristics, and optimum design of the CDMA receiver to deal with multipath and fading conditions are reliably established. But the satellite environment is different. When the CDMA technology is adopted to the satellite environment, other design features need to be incorporated (for example; interleaving, open-loop and closed-loop power control design, diversity characteristics) to achieve comparable level of system performance. In fact, the GLOBALSTAR LEO/MSS system has incorporated all these features. Contrary to some published reports, CDMA retains the advantages in the satellite environment that are similar to those achieved in the terrestrial environment. This document gives a description of the CDMA waveform and other design features adopted for mobile satellite applications.

  15. Established Designs For Advanced Ground Based Astronomical Telescopes In The 1-meter To 4-meter Domain

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Barentine, J.; Legters, S.

    2012-01-01

    The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.

  16. Some Current Issues in the Design of Flight Training Devices.

    ERIC Educational Resources Information Center

    Prophet, Wallace W.; And Others

    The rationale is developed that training equipment should be selected or designed to furnish what the student needs to know and to be able to do to perform successfully on the operational job. Several considerations relevant to training equipment design from the systems engineering standpoint are examined. Suggested design features based upon…

  17. Harnessing Computational Biology for Exact Linear B-Cell Epitope Prediction: A Novel Amino Acid Composition-Based Feature Descriptor.

    PubMed

    Saravanan, Vijayakumar; Gautham, Namasivayam

    2015-10-01

    Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.

  18. Facilities Performance Indicators Report 2012-13: Tracking Your Facilities Vital Signs

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2014

    2014-01-01

    This paper features an expanded Web-based "Facilities Performance Indicators (FPI) Report." The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. "The Facilities Performance Indicators Report" is designed for survey…

  19. Design and construction of PCC pavements, volume 2 : design features and practices that influence performance of pavements.

    DOT National Transportation Integrated Search

    1998-10-01

    A study has been conducted to evaluate and analyze portland cement concrete (PCC) pavements in order to : develop recommendations for the design and construction of long-lived concrete pavements. It involved a : detailed evaluation and analysis of th...

  20. Information presentation features and comprehensibility of hospital report cards: design analysis and online survey among users.

    PubMed

    Sander, Uwe; Emmert, Martin; Dickel, Jochen; Meszmer, Nina; Kolb, Benjamin

    2015-03-16

    Improving the transparency of information about the quality of health care providers is one way to improve health care quality. It is assumed that Internet information steers patients toward better-performing health care providers and will motivate providers to improve quality. However, the effect of public reporting on hospital quality is still small. One of the reasons is that users find it difficult to understand the formats in which information is presented. We analyzed the presentation of risk-adjusted mortality rate (RAMR) for coronary angiography in the 10 most commonly used German public report cards to analyze the impact of information presentation features on their comprehensibility. We wanted to determine which information presentation features were utilized, were preferred by users, led to better comprehension, and had similar effects to those reported in evidence-based recommendations described in the literature. The study consisted of 5 steps: (1) identification of best-practice evidence about the presentation of information on hospital report cards; (2) selection of a single risk-adjusted quality indicator; (3) selection of a sample of designs adopted by German public report cards; (4) identification of the information presentation elements used in public reporting initiatives in Germany; and (5) an online panel completed an online questionnaire that was conducted to determine if respondents were able to identify the hospital with the lowest RAMR and if respondents' hospital choices were associated with particular information design elements. Evidence-based recommendations were made relating to the following information presentation features relevant to report cards: evaluative table with symbols, tables without symbols, bar charts, bar charts without symbols, bar charts with symbols, symbols, evaluative word labels, highlighting, order of providers, high values to indicate good performance, explicit statements of whether high or low values indicate good performance, and incomplete data ("N/A" as a value). When investigating the RAMR in a sample of 10 hospitals' report cards, 7 of these information presentation features were identified. Of these, 5 information presentation features improved comprehensibility in a manner reported previously in literature. To our knowledge, this is the first study to systematically analyze the most commonly used public reporting card designs used in Germany. Best-practice evidence identified in international literature was in agreement with 5 findings about German report card designs: (1) avoid tables without symbols, (2) include bar charts with symbols, (3) state explicitly whether high or low values indicate good performance or provide a "good quality" range, (4) avoid incomplete data (N/A given as a value), and (5) rank hospitals by performance. However, these findings are preliminary and should be subject of further evaluation. The implementation of 4 of these recommendations should not present insurmountable obstacles. However, ranking hospitals by performance may present substantial difficulties.

  1. Exploration of available feature detection and identification systems and their performance on radiographs

    NASA Astrophysics Data System (ADS)

    Wantuch, Andrew C.; Vita, Joshua A.; Jimenez, Edward S.; Bray, Iliana E.

    2016-10-01

    Despite object detection, recognition, and identification being very active areas of computer vision research, many of the available tools to aid in these processes are designed with only photographs in mind. Although some algorithms used specifically for feature detection and identification may not take explicit advantage of the colors available in the image, they still under-perform on radiographs, which are grayscale images. We are especially interested in the robustness of these algorithms, specifically their performance on a preexisting database of X-ray radiographs in compressed JPEG form, with multiple ways of describing pixel information. We will review various aspects of the performance of available feature detection and identification systems, including MATLABs Computer Vision toolbox, VLFeat, and OpenCV on our non-ideal database. In the process, we will explore possible reasons for the algorithms' lessened ability to detect and identify features from the X-ray radiographs.

  2. Anomalous Cases of Astronaut Helmet Detection

    NASA Technical Reports Server (NTRS)

    Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn

    2015-01-01

    An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.

  3. Dual arm master controller development

    NASA Technical Reports Server (NTRS)

    Kuban, D. P.; Perkins, G. S.

    1985-01-01

    The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape driven manipulators. Studies were performed which addressed to human factor design and performance tradeoffs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented.

  4. A Study of the Effect of the Front-End Styling of Sport Utility Vehicles on Pedestrian Head Injuries

    PubMed Central

    Qin, Qin; Chen, Zheng; Bai, Zhonghao; Cao, Libo

    2018-01-01

    Background The number of sport utility vehicles (SUVs) on China market is continuously increasing. It is necessary to investigate the relationships between the front-end styling features of SUVs and head injuries at the styling design stage for improving the pedestrian protection performance and product development efficiency. Methods Styling feature parameters were extracted from the SUV side contour line. And simplified finite element models were established based on the 78 SUV side contour lines. Pedestrian headform impact simulations were performed and validated. The head injury criterion of 15 ms (HIC15) at four wrap-around distances was obtained. A multiple linear regression analysis method was employed to describe the relationships between the styling feature parameters and the HIC15 at each impact point. Results The relationship between the selected styling features and the HIC15 showed reasonable correlations, and the regression models and the selected independent variables showed statistical significance. Conclusions The regression equations obtained by multiple linear regression can be used to assess the performance of SUV styling in protecting pedestrians' heads and provide styling designers with technical guidance regarding their artistic creations.

  5. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    PubMed

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  6. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities

    NASA Astrophysics Data System (ADS)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  7. 78 FR 59866 - New Car Assessment Program (NCAP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... because ESC is now required for all light vehicles. For many years, NCAP has provided comparative... site, www.safercar.gov . NCAP provides comparative information on the safety performance and features... Features on www.safercar.gov are designed to assist drivers in avoiding backover crashes. After considering...

  8. Detection Performance Evaluation of the ASDE-3 Using Fixed Frequency and Frequency-Agile Operation

    DOT National Transportation Integrated Search

    1981-03-01

    The ASDE-3 (Airport Surface Detection Equipment) Radar design has many features to enhance operational usefulness. The purpose of all these features is to provide a better airport surface surveillance display for the control power tower cab. One of t...

  9. Evaluation of experimental flexible pavements : final report.

    DOT National Transportation Integrated Search

    1979-01-01

    The construction and performance of seven Virginia flexible pavements containing at least some experimental features were evaluated. The objective was to evaluate the performance of the pavements incorporating new or timely design concepts and to ass...

  10. What to Build for Middle-Agers to Come? Attractive and Necessary Functions of Exercise-Promotion Mobile Phone Apps: A Cross-Sectional Study.

    PubMed

    Liao, Gen-Yih; Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie

    2017-05-25

    Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults' quality perception toward exercise-promotion apps and which factor may influence such perception. The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended with 14 design features, medium level with 6 features, whereas low-level participants are recommended with 1 feature. The analysis suggests that the implementation of demanded features could be low, as the average prevalence of demanded design features is 20% (4.3/21). Surprisingly, social comparison and social support, most implemented features in current apps, were categorized into the indifferent category. The magnitude of effect is larger for MPSE because it effects quality perception of more design features than PA. Delving into the 52 regression models revealed that high MPSE more likely induces attractive or one- dimensional categorization, suggesting the importance of technological self-efficacy on eHealth care promotion. This study is the first to propose middle-agers' needs in relation to mobile phone exercise-promotion. In addition to the tailor-made recommendations, suggestions are offered to app designers to enhance the performance of persuasive features. An interesting finding on change of quality perception attributed to MPSE is proposed as future research. ©Gen-Yih Liao, Yu-Tai Chien, Yu-Jen Chen, Hsiao-Fang Hsiung, Hsiao-Jung Chen, Meng-Hua Hsieh, Wen-Jie Wu. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 25.05.2017.

  11. Deep learning with convolutional neural networks for EEG decoding and visualization

    PubMed Central

    Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-01-01

    Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865

  12. Deep learning with convolutional neural networks for EEG decoding and visualization.

    PubMed

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. Deep nets vs expert designed features in medical physics: An IMRT QA case study.

    PubMed

    Interian, Yannet; Rideout, Vincent; Kearney, Vasant P; Gennatas, Efstathios; Morin, Olivier; Cheung, Joey; Solberg, Timothy; Valdes, Gilmer

    2018-03-30

    The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features. Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06. Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts. © 2018 American Association of Physicists in Medicine.

  14. Impact and Crashworthiness Characteristics of Venera Type Landers for Future Venus Missions

    NASA Technical Reports Server (NTRS)

    Schroeder, Kevin; Bayandor, Javid; Samareh, Jamshid

    2016-01-01

    In this paper an in-depth investigation of the structural design of the Venera 9-14 landers is explored. A complete reverse engineering of the Venera lander was required. The lander was broken down into its fundamental components and analyzed. This provided in-sights into the hidden features of the design. A trade study was performed to find the sensitivity of the lander's overall mass to the variation of several key parameters. For the lander's legs, the location, length, configuration, and number are all parameterized. The size of the impact ring, the radius of the drag plate, and other design features are also parameterized, and all of these features were correlated to the change of mass of the lander. A multi-fidelity design tool used for further investigation of the parameterized lander was developed. As a design was passed down from one level to the next, the fidelity, complexity, accuracy, and run time of the model increased. The low-fidelity model was a highly nonlinear analytical model developed to rapidly predict the mass of each design. The medium and high fidelity models utilized an explicit finite element framework to investigate the performance of various landers upon impact with the surface under a range of landing conditions. This methodology allowed for a large variety of designs to be investigated by the analytical model, which identified designs with the optimum structural mass to payload ratio. As promising designs emerged, investigations in the following higher fidelity models were focused on establishing their reliability and crashworthiness. The developed design tool efficiently modelled and tested the best concepts for any scenario based on critical Venusian mission requirements and constraints. Through this program, the strengths and weaknesses inherent in the Venera-Type landers were thoroughly investigated. Key features identified for the design of robust landers will be used as foundations for the development of the next generation of landers for future exploration missions to Venus.

  15. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    PubMed

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Design and construction of PCC pavements. Volume 1, summary of design features and construction practices that influence performance of pavements

    DOT National Transportation Integrated Search

    1998-04-01

    A study has been conducted to evaluate and analyze Portland cement concrete (PCC) pavements in order to develop recommendations for the design and construction of long-lived concrete pavements. In involved a detailed evaluation and analysis of the PC...

  17. Control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.

    1986-01-01

    Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.

  18. Design and construction of PCC pavements. Volume 2, design features and practices that influence performance of pavements

    DOT National Transportation Integrated Search

    1998-10-01

    A study has been conducted to evaluate and analyze Portland cement concrete (PCC) pavements in order to develop recommendations for the design and construction of long-lived concrete pavements. In involved a detailed evaluation and analysis of the PC...

  19. Design of an energy conservation building

    NASA Astrophysics Data System (ADS)

    Jensen, R. N.

    1981-11-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  20. Design of an energy conservation building

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  1. Feature Selection for Ridge Regression with Provable Guarantees.

    PubMed

    Paul, Saurabh; Drineas, Petros

    2016-04-01

    We introduce single-set spectral sparsification as a deterministic sampling-based feature selection technique for regularized least-squares classification, which is the classification analog to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function obtained using all features. We also introduce leverage-score sampling as an unsupervised randomized feature selection method for ridge regression. We provide risk bounds for both single-set spectral sparsification and leverage-score sampling on ridge regression in the fixed design setting and show that the risk in the sampled space is comparable to the risk in the full-feature space. We perform experiments on synthetic and real-world data sets; a subset of TechTC-300 data sets, to support our theory. Experimental results indicate that the proposed methods perform better than the existing feature selection methods.

  2. Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels

    PubMed Central

    Hyun, Seung Won; Wong, Weng Kee

    2016-01-01

    We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs. PMID:26565557

  3. Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels.

    PubMed

    Hyun, Seung Won; Wong, Weng Kee

    2015-11-01

    We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs.

  4. One hundred ampere-hour nickel-cadmium battery cells of improved design

    NASA Technical Reports Server (NTRS)

    Kantner, E.

    1972-01-01

    Nickel cadmium battery cells with 100 ampere hour capacity were developed. The design features, notably extension of the current collector tab to the full width of the battery plate, and the location of the cell terminals on the opposite ends, resulted in a reduction of internal impedance, and improved electrical performance with expected improvement in thermal performance. Tables of data and performance curves are included to support the theoretical considerations.

  5. Recent developments in BWR fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, S.P.; Noble, L.D.; Wood, J.E.

    1991-11-01

    Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less

  6. Three phase power conversion system for utility interconnected PV applications

    NASA Astrophysics Data System (ADS)

    Porter, David G.

    1999-03-01

    Omnion Power Engineering Corporation has developed a new three phase inverter that improves the cost, reliability, and performance of three phase utility interconnected photovoltaic inverters. The inverter uses a new, high manufacturing volume IGBT bridge that has better thermal performance than previous designs. A custom easily manufactured enclosure was designed. Controls were simplified to increase reliability while maintaining important user features.

  7. Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles

    NASA Astrophysics Data System (ADS)

    Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1998-01-01

    An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.

  8. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  9. Detection of sub-kilometer craters in high resolution planetary images using shape and texture features

    NASA Astrophysics Data System (ADS)

    Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.

    2012-01-01

    Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.

  10. Evaluating Pavement Design Features: Five Year Performance Evaluation of FA 401 and FA 409

    DOT National Transportation Integrated Search

    1993-02-01

    In the summer of 1986, the Illinois Department of Transportation began the construction of four demonstration projects which focused on evaluating proposed mechanistically-based asphalt concrete (AC) and Portland cement concrete (PCC) pavement design...

  11. VSCE technology definition study

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Hunt, R. B.

    1979-01-01

    Refined design definition of the variable stream control engine (VSCE) concept for advanced supersonic transports is presented. Operating and performance features of the VSCE are discussed, including the engine components, thrust specific fuel consumption, weight, noise, and emission system. A preliminary engine design is presented.

  12. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    PubMed Central

    Zhang, Xiong; Zhao, Yacong; Zhang, Yu; Zhong, Xuefei; Fan, Zhaowen

    2018-01-01

    The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities. PMID:29543737

  13. Receptive fields selection for binary feature description.

    PubMed

    Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal

    2014-06-01

    Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.

  14. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Thresher, Robert W

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  15. Learning from patients: Identifying design features of medicines that cause medication use problems.

    PubMed

    Notenboom, Kim; Leufkens, Hubert Gm; Vromans, Herman; Bouvy, Marcel L

    2017-01-30

    Usability is a key factor in ensuring safe and efficacious use of medicines. However, several studies showed that people experience a variety of problems using their medicines. The purpose of this study was to identify design features of oral medicines that cause use problems among older patients in daily practice. A qualitative study with semi-structured interviews on the experiences of older people with the use of their medicines was performed (n=59). Information on practical problems, strategies to overcome these problems and the medicines' design features that caused these problems were collected. The practical problems and management strategies were categorised into 'use difficulties' and 'use errors'. A total of 158 use problems were identified, of which 45 were categorized as use difficulties and 113 as use error. Design features that contributed the most to the occurrence of use difficulties were the dimensions and surface texture of the dosage form (29.6% and 18.5%, respectively). Design features that contributed the most to the occurrence of use errors were the push-through force of blisters (22.1%) and tamper evident packaging (12.1%). These findings will help developers of medicinal products to proactively address potential usability issues with their medicines. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Mutual information based feature selection for medical image retrieval

    NASA Astrophysics Data System (ADS)

    Zhi, Lijia; Zhang, Shaomin; Li, Yan

    2018-04-01

    In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.

  17. Numerical study on tailoring the shock sensitivity of TATB-based explosives using mesostructural features

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo

    2017-06-01

    Advanced manufacturing techniques offer control of explosive mesostructures necessary to tailor its shock sensitivity. However, structure-property relationships are not well established for explosives so there is little material design guidance for these techniques. The objective of this numerical study is to demonstrate how TATB-based explosives can be sensitized to shocks using mesostructural features. For this study, we use LX-17 (92.5%wt TATB, 7.5%wt Kel-F 800) as the prototypical TATB-based explosive. We employ features with different geometries and materials. HMX-based explosive features, high shock impedance features, and pores are used to sensitive the LX-17. Simulations are performed in the multi-physics hydrocode, ALE3D. A reactive flow model is used to simulate the shock initiation response of the explosives. Our metric for shock sensitivity in this study is run distance to detonation as a function of applied pressure. These numerical studies are important because they guide the design of novel energetic materials. This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-724986.

  18. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.

    PubMed

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng

    To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.

  19. Knowledge modeling tool for evidence-based design.

    PubMed

    Durmisevic, Sanja; Ciftcioglu, Ozer

    2010-01-01

    The aim of this study is to take evidence-based design (EBD) to the next level by activating available knowledge, integrating new knowledge, and combining them for more efficient use by the planning and design community. This article outlines a framework for a performance-based measurement tool that can provide the necessary decision support during the design or evaluation of a healthcare environment by estimating the overall design performance of multiple variables. New knowledge in EBD adds continuously to complexity (the "information explosion"), and it becomes impossible to consider all aspects (design features) at the same time, much less their impact on final building performance. How can existing knowledge and the information explosion in healthcare-specifically the domain of EBD-be rendered manageable? Is it feasible to create a computational model that considers many design features and deals with them in an integrated way, rather than one at a time? The found evidence is structured and readied for computation through a "fuzzification" process. The weights are calculated using an analytical hierarchy process. Actual knowledge modeling is accomplished through a fuzzy neural tree structure. The impact of all inputs on the outcome-in this case, patient recovery-is calculated using sensitivity analysis. Finally, the added value of the model is discussed using a hypothetical case study of a patient room. The proposed model can deal with the complexities of various aspects and the relationships among variables in a coordinated way, allowing existing and new pieces of evidence to be integrated in a knowledge tree structure that facilitates understanding of the effects of various design interventions on overall design performance.

  20. Student Use of Scaffolding Software: Relationships with Motivation and Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Butler, Kyle A.; Lumpe, Andrew

    2008-10-01

    This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students' movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students' feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation ( r = .499, p < .05) was between the saving/viewing features hits and the students' task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students' perception of how interesting, how important, and how useful the task is. The second significant correlation ( r = 0.553, p < 0.01) was between the searching features hits and the students' self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship between the student use of the searching features and the students' perception of their ability to accomplish a task as well as their confidence in their skills to perform that task. The third significant correlation ( r = 0.519, p < 0.05) was between the collaborative features hits and the students' essay performance scores. This correlation supports the assumption that there is a positive relationship between the student use of the collaborative features and the students' ability to perform high cognitive tasks. Finally, the last significant correlation ( r = 0.576, p < 0.01) was between the maintenance features time and the qualitative analysis of the concept maps. This correlation supports the assumption that there is a positive relationship between the student use of the maintenance features and student conceptual understanding of photosynthesis.

  1. No-reference image quality assessment based on statistics of convolution feature maps

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoxin; Qin, Min; Chen, Xiaohui; Wei, Guo

    2018-04-01

    We propose a Convolutional Feature Maps (CFM) driven approach to accurately predict image quality. Our motivation bases on the finding that the Nature Scene Statistic (NSS) features on convolution feature maps are significantly sensitive to distortion degree of an image. In our method, a Convolutional Neural Network (CNN) is trained to obtain kernels for generating CFM. We design a forward NSS layer which performs on CFM to better extract NSS features. The quality aware features derived from the output of NSS layer is effective to describe the distortion type and degree an image suffered. Finally, a Support Vector Regression (SVR) is employed in our No-Reference Image Quality Assessment (NR-IQA) model to predict a subjective quality score of a distorted image. Experiments conducted on two public databases demonstrate the promising performance of the proposed method is competitive to state of the art NR-IQA methods.

  2. Effects of Performance-Based Financial Incentives on Work Performance: A Study of Technical-Level Employees in the Private Sector in Sri Lanka

    ERIC Educational Resources Information Center

    Wickramasinghe, Vathsala; Dabere, Sampath

    2012-01-01

    The objective of the study is to investigate the effect of performance-based financial incentives on work performance. The study hypothesized that the design features of performance-based financial incentive schemes themselves may influence individuals' work performance. For the study, survey methodology was used and 93 technical-level employees…

  3. Knowledge Discovery for Transonic Regional-Jet Wing through Multidisciplinary Design Exploration

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuhisa; Obayashi, Shigeru; Morino, Hiroyuki

    Data mining is an important facet of solving multi-objective optimization problem. Because it is one of the effective manner to discover the design knowledge in the multi-objective optimization problem which obtains large data. In the present study, data mining has been performed for a large-scale and real-world multidisciplinary design optimization (MDO) to provide knowledge regarding the design space. The MDO among aerodynamics, structures, and aeroelasticity of the regional-jet wing was carried out using high-fidelity evaluation models on the adaptive range multi-objective genetic algorithm. As a result, nine non-dominated solutions were generated and used for tradeoff analysis among three objectives. All solutions evaluated during the evolution were analyzed for the tradeoffs and influence of design variables using a self-organizing map to extract key features of the design space. Although the MDO results showed the inverted gull-wings as non-dominated solutions, one of the key features found by data mining was the non-gull wing geometry. When this knowledge was applied to one optimum solution, the resulting design was found to have better performance compared with the original geometry designed in the conventional manner.

  4. Design and Construction of a Portable Oculometer for Use in Transportation Oriented Human Factors Studies

    DOT National Transportation Integrated Search

    1971-08-01

    THE REPORT DESCRIBES DEVELOPMENT OF AN INSTRUMENT DESIGNED TO ACQUIRE AND PROCESS INFORMATION ABOUT HUMAN VISUAL PERFORMANCE. THE INSTRUMENT HAS THE FOLLOWING FEATURES: IT CAN BE OPERATED IN A VARIETY OF TRANSPORTATION ENVIRONMENTS INCLUDING SIMULATO...

  5. Dobson ozone spectrophotometer modification.

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  6. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Technical Performance Assessment

    PubMed Central

    2017-01-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers (QIBs) to measure changes in these features. Critical to the performance of a QIB in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method and metrics used to assess a QIB for clinical use. It is therefore, difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America (RSNA) and the Quantitative Imaging Biomarker Alliance (QIBA) with technical, radiological and statistical experts developed a set of technical performance analysis methods, metrics and study designs that provide terminology, metrics and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of QIB performance studies so that results from multiple studies can be compared, contrasted or combined. PMID:24919831

  7. Small High-Speed Self-Acting Shaft Seals for Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.; Boynton, J. L.

    1977-01-01

    Design analysis, fabrication, and experimental evaluation were performed on three self-acting facetype LOX seal designs and one circumferential-type helium deal design. The LOX seals featured Rayleigh step lift pad and spiral groove geometry for lift augmentation. Machined metal bellows and piston ring secondary seal designs were tested. The helium purge seal featured floating rings with Rayleigh step lift pads. The Rayleigh step pad piston ring and the spiral groove LOX seals were successfully tested for approximately 10 hours in liquid oxygen. The helium seal was successfully tested for 24 hours. The shrouded Rayleigh step hydrodynamic lift pad LOX seal is feasible for advanced, small, high-speed oxygen turbopumps.

  8. Dental Implant Macro-Design Features Can Impact the Dynamics of Osseointegration.

    PubMed

    Vivan Cardoso, Marcio; Vandamme, Katleen; Chaudhari, Amol; De Rycker, Judith; Van Meerbeek, Bart; Naert, Ignace; Duyck, Joke

    2015-08-01

    The purpose of this study was to compare the clinical performance of two dental implant types possessing a different macro-design in the in vivo pig model. Titanium Aadva(TM) implants (GC, Tokyo, Japan) were compared with OsseoSpeed(TM) implants (Astra, Mölndal, Sweden), with the Aadva implant displaying significant larger inter-thread dimensions than the OsseoSpeed implant. Implants were installed in the parietal bone of 12 domestic pigs and left for healing for either 1 or 3 months. Implant osseointegration was evaluated by quantitative histology (bone volume relative to the tissue volume [BV/TV]; bone-to-implant contact [BIC]) for distinct implant regions (collar, body, total implant length) with specific implant thread features. The Wilcoxon-Mann-Whitney nonparametric test with α = 0.05 was performed. An inferior amount of bone enveloping the Aadva implant compared with the OsseoSpeed implant was observed, in particular at the implant body part with its considerable inter-thread gaps (p < .05). Concomitantly, the Aadva macro-design negatively affected the amount of bone in direct contact with the implant for this specific implant part (p < .05), and resulted in an overall impaired implant osseointegration at the initial healing stage (total implant length; 1-month healing; p < .05). Although the Aadva implant displayed a clinically acceptable level of osseointegration, the findings demonstrate that implant macro-design features can impact the dynamics of implant osseointegration. Consideration of specific implant macro-design features should be made relative to the biological and mechanical microenvironment. © 2013 Wiley Periodicals, Inc.

  9. Interactive design and analysis of future large spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1981-01-01

    An interactive computer aided design program used to perform systems level design and analysis of large spacecraft concepts is presented. Emphasis is on rapid design, analysis of integrated spacecraft, and automatic spacecraft modeling for lattice structures. Capabilities and performance of multidiscipline applications modules, the executive and data management software, and graphics display features are reviewed. A single user at an interactive terminal create, design, analyze, and conduct parametric studies of Earth orbiting spacecraft with relative ease. Data generated in the design, analysis, and performance evaluation of an Earth-orbiting large diameter antenna satellite are used to illustrate current capabilities. Computer run time statistics for the individual modules quantify the speed at which modeling, analysis, and design evaluation of integrated spacecraft concepts is accomplished in a user interactive computing environment.

  10. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Erler, Engin

    Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this region, this approach would entail a nominal performance penalty. Therefore, the chosen rotor design philosophy aims to keep the spanwise loading constant to avoid trading performance for desensitization. The rotor designs that resulted from this exercise are simulated in ANSYS CFX at different tip clearance sizes. The change in their performance with respect to tip clearance size (sensitivity) is compared both on an integral level in terms of pressure ratio and adiabatic efficiency, as well as on a detailed level in terms of aerodynamic losses and blockage associated with tip clearance flow. The sensitivity of aerodynamic stability is evaluated either directly through the simulations of the rotor characteristics up to the stall point (expensive in time and resources) for a few designs or indirectly through the position of the interface between the incoming and tip clearance flow with respect to the rotor leading edge plane. The latter approach is based on a generally observed stall criteria in modern axial compressors. The rotor designs are then assessed according to their sensitivity in comparison to that of the reference rotor design to detect features that can explain the trend in sensitivity to tip clearance size. These features can then be validated and the associated flow mechanisms explained through numerical simulations and modelling. Analysis of the database from the rotor parametric study shows that the observed trend in sensitivity cannot be explained by the shifting of the aerodynamic loading along the blade chord, as initially hypothesized based on the literature review. Instead, two flow features are found to reduce sensitivity of performance and stability to tip clearance, namely an increase in incoming meridional momentum in the tip region and a reduction/elimination of double leakage flow. Double leakage flow is the flow that exits the tip clearance of one blade and proceeds into the clearance of the adjacent blade rather than convecting downstream out of the local blade passage. These flow features are isolated and validated based on the reference rotor design through changes in the inlet total pressure condition to alter incoming flow momentum and blade number count to change double leakage rate. In terms of flow mechanism, double leakage is shown to be detrimental to performance and stability, and its proportional increase with tip clearance size explains the sensitivity increase in the presence of double leakage and, conversely, the desensitization effect of reducing or eliminating double leakage. The increase in incoming meridional momentum in the tip region reduces sensitivity to tip clearance through its reduction of double leakage as well as through improved mixing with tip clearance flow, as demonstrated by an analytical model without double leakage flow. The above results imply that any blade design strategy that exploits the two desensitizing flow features would reduce the performance and stability sensitivity to tip clearance size. The increase of the incoming meridional momentum can be achieved through forward chordwise sweep of the blade. The reduction of double leakage without changing blade pitch can be obtained by decreasing the blade stagger angle in the tip region. Examples of blade designs associated with these strategies are shown through CFX simulations to be successful in reducing sensitivity to tip clearance size.

  11. Lay out, test verification and in orbit performance of HELIOS a temperature control system

    NASA Technical Reports Server (NTRS)

    Brungs, W.

    1975-01-01

    HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.

  12. Simulation Studies as Designed Experiments: The Comparison of Penalized Regression Models in the “Large p, Small n” Setting

    PubMed Central

    Chaibub Neto, Elias; Bare, J. Christopher; Margolin, Adam A.

    2014-01-01

    New algorithms are continuously proposed in computational biology. Performance evaluation of novel methods is important in practice. Nonetheless, the field experiences a lack of rigorous methodology aimed to systematically and objectively evaluate competing approaches. Simulation studies are frequently used to show that a particular method outperforms another. Often times, however, simulation studies are not well designed, and it is hard to characterize the particular conditions under which different methods perform better. In this paper we propose the adoption of well established techniques in the design of computer and physical experiments for developing effective simulation studies. By following best practices in planning of experiments we are better able to understand the strengths and weaknesses of competing algorithms leading to more informed decisions about which method to use for a particular task. We illustrate the application of our proposed simulation framework with a detailed comparison of the ridge-regression, lasso and elastic-net algorithms in a large scale study investigating the effects on predictive performance of sample size, number of features, true model sparsity, signal-to-noise ratio, and feature correlation, in situations where the number of covariates is usually much larger than sample size. Analysis of data sets containing tens of thousands of features but only a few hundred samples is nowadays routine in computational biology, where “omics” features such as gene expression, copy number variation and sequence data are frequently used in the predictive modeling of complex phenotypes such as anticancer drug response. The penalized regression approaches investigated in this study are popular choices in this setting and our simulations corroborate well established results concerning the conditions under which each one of these methods is expected to perform best while providing several novel insights. PMID:25289666

  13. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  14. Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Tietz, J. C.; Thomas, H. M.; Gremban, K. D.; Hughes, C.; Chang, C. Y.

    1983-01-01

    The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped).

  15. Design study and performance analysis of a high-speed multistage variable-geometry fan for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Parker, D. E.

    1979-01-01

    A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.

  16. Impact of Aerodynamics and Structures Technology on Heavy Lift Tiltrotors

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2006-01-01

    Rotor performance and aeroelastic stability are presented for a 124,000-lb Large Civil Tilt Rotor (LCTR) design. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots at 30,000 ft altitude. Design features include a low-mounted wing and hingeless rotors, with a very low cruise tip speed of 350 ft/sec. The rotor and wing design processes are described, including rotor optimization methods and wing/rotor aeroelastic stability analyses. New rotor airfoils were designed specifically for the LCTR; the resulting performance improvements are compared to current technology airfoils. Twist, taper and precone optimization are presented, along with the effects of blade flexibility on performance. A new wing airfoil was designed and a composite structure was developed to meet the wing load requirements for certification. Predictions of aeroelastic stability are presented for the optimized rotor and wing, along with summaries of the effects of rotor design parameters on stability.

  17. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  18. Improved P300 speller performance using electrocorticography, spectral features, and natural language processing.

    PubMed

    Speier, William; Fried, Itzhak; Pouratian, Nader

    2013-07-01

    The P300 speller is a system designed to restore communication to patients with advanced neuromuscular disorders. This study was designed to explore the potential improvement from using electrocorticography (ECoG) compared to the more traditional usage of electroencephalography (EEG). We tested the P300 speller on two epilepsy patients with temporary subdural electrode arrays over the occipital and temporal lobes respectively. We then performed offline analysis to determine the accuracy and bit rate of the system and integrated spectral features into the classifier and used a natural language processing (NLP) algorithm to further improve the results. The subject with the occipital grid achieved an accuracy of 82.77% and a bit rate of 41.02, which improved to 96.31% and 49.47 respectively using a language model and spectral features. The temporal grid patient achieved an accuracy of 59.03% and a bit rate of 18.26 with an improvement to 75.81% and 27.05 respectively using a language model and spectral features. Spatial analysis of the individual electrodes showed best performance using signals generated and recorded near the occipital pole. Using ECoG and integrating language information and spectral features can improve the bit rate of a P300 speller system. This improvement is sensitive to the electrode placement and likely depends on visually evoked potentials. This study shows that there can be an improvement in BCI performance when using ECoG, but that it is sensitive to the electrode location. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Automated Depression Analysis Using Convolutional Neural Networks from Speech.

    PubMed

    He, Lang; Cao, Cui

    2018-05-28

    To help clinicians to efficiently diagnose the severity of a person's depression, the affective computing community and the artificial intelligence field have shown a growing interest in designing automated systems. The speech features have useful information for the diagnosis of depression. However, manually designing and domain knowledge are still important for the selection of the feature, which makes the process labor consuming and subjective. In recent years, deep-learned features based on neural networks have shown superior performance to hand-crafted features in various areas. In this paper, to overcome the difficulties mentioned above, we propose a combination of hand-crafted and deep-learned features which can effectively measure the severity of depression from speech. In the proposed method, Deep Convolutional Neural Networks (DCNN) are firstly built to learn deep-learned features from spectrograms and raw speech waveforms. Then we manually extract the state-of-the-art texture descriptors named median robust extended local binary patterns (MRELBP) from spectrograms. To capture the complementary information within the hand-crafted features and deep-learned features, we propose joint fine-tuning layers to combine the raw and spectrogram DCNN to boost the depression recognition performance. Moreover, to address the problems with small samples, a data augmentation method was proposed. Experiments conducted on AVEC2013 and AVEC2014 depression databases show that our approach is robust and effective for the diagnosis of depression when compared to state-of-the-art audio-based methods. Copyright © 2018. Published by Elsevier Inc.

  20. Impact of Hearing Aid Technology on Outcomes in Daily Life III: Localization.

    PubMed

    Johnson, Jani A; Xu, Jingjing; Cox, Robyn M

    Compared to basic-feature hearing aids, premium-feature hearing aids have more advanced technologies and sophisticated features. The objective of this study was to explore the difference between premium-feature and basic-feature hearing aids in horizontal sound localization in both laboratory and daily life environments. We hypothesized that premium-feature hearing aids would yield better localization performance than basic-feature hearing aids. Exemplars of premium-feature and basic-feature hearing aids from two major manufacturers were evaluated. Forty-five older adults (mean age 70.3 years) with essentially symmetrical mild to moderate sensorineural hearing loss were bilaterally fitted with each of the four pairs of hearing aids. Each pair of hearing aids was worn during a 4-week field trial and then evaluated using laboratory localization tests and a standardized questionnaire. Laboratory localization tests were conducted in a sound-treated room with a 360°, 24-loudspeaker array. Test stimuli were high frequency and low frequency filtered short sentences. The localization test in quiet was designed to assess the accuracy of front/back localization, while the localization test in noise was designed to assess the accuracy of locating sound sources throughout a 360° azimuth in the horizontal plane. Laboratory data showed that unaided localization was not significantly different from aided localization when all hearing aids were combined. Questionnaire data showed that aided localization was significantly better than unaided localization in everyday situations. Regarding the difference between premium-feature and basic-feature hearing aids, laboratory data showed that, overall, the premium-feature hearing aids yielded more accurate localization than the basic-feature hearing aids when high-frequency stimuli were used, and the listening environment was quiet. Otherwise, the premium-feature and basic-feature hearing aids yielded essentially the same performance in other laboratory tests and in daily life. The findings were consistent for both manufacturers. Laboratory tests for two of six major manufacturers showed that premium-feature hearing aids yielded better localization performance than basic-feature hearing aids in one out of four laboratory conditions. There was no difference between the two feature levels in self-reported everyday localization. Effectiveness research with different hearing aid technologies is necessary, and more research with other manufacturers' products is needed. Furthermore, these results confirm previous observations that research findings in laboratory conditions might not translate to everyday life.

  1. Preliminary evaluation of advanced air bag field performance using event data recorders

    DOT National Transportation Integrated Search

    2008-08-31

    This report describes a preliminary evaluation of the field performance of occupant restraint systems designed with advanced air bag features including those specified in the Federal Motor Vehicle Safety Standard No. 208 for advanced air bags, throug...

  2. Vibration isolation analysis of new design OEM damper for malaysia vehicle suspension system featuring MR fluid

    NASA Astrophysics Data System (ADS)

    Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.

    2018-01-01

    The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

  3. Influence of minor geometric features on Stirling pulse tube cryocooler performance

    NASA Astrophysics Data System (ADS)

    Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.; Perrella, M.

    2017-12-01

    Minor geometric features and imperfections are commonly introduced into the basic design of multi-component systems to simplify or reduce the manufacturing expense. In this work, the cooling performance of a Stirling type cryocooler was tested in different driving powers, cold-end temperatures and inclination angles. A series of Computational Fluid Dynamics (CFD) simulations based on a prototypical cold tip was carried out. Detailed CFD model predictions were compared with the experiment and were used to investigate the impact of such apparently minor geometric imperfections on the performance of Stirling type pulse tube cryocoolers. Predictions of cooling performance and gravity orientation sensitivity were compared with experimental results obtained with the cryocooler prototypes. The results indicate that minor geometry features in the cold tip assembly can have considerable negative effects on the gravity orientation sensitivity of a pulse tube cryocooler.

  4. Clustering-based Feature Learning on Variable Stars

    NASA Astrophysics Data System (ADS)

    Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos

    2016-04-01

    The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.

  5. Crash Energy Management Crush Zone Designs : Features, Functions and Forms

    DOT National Transportation Integrated Search

    2007-03-13

    On March 23, 2006, a full-scale test was conducted on a passenger train retrofitted with newly developed cab and coach car crush zone designs. This test was conducted as part of a larger testing program to establish the degree of enhanced performance...

  6. Facilities Guidelines for Fine Arts Programs.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This manual of facility guidelines examines the planning process and design features and considerations for public school fine arts programs in Maryland. Planning concepts and trends are highlighted followed by planning guidelines for dance, music, theater, visual arts, general education, and performance spaces. General design considerations…

  7. A Design Heritage-Based Forecasting Methodology for Risk Informed Management of Advanced Systems

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Fragola, Joseph R.

    1999-01-01

    The development of next generation systems often carries with it the promise of improved performance, greater reliability, and reduced operational costs. These expectations arise from the use of novel designs, new materials, advanced integration and production technologies intended for functionality replacing the previous generation. However, the novelty of these nascent technologies is accompanied by lack of operational experience and, in many cases, no actual testing as well. Therefore some of the enthusiasm surrounding most new technologies may be due to inflated aspirations from lack of knowledge rather than actual future expectations. This paper proposes a design heritage approach for improved reliability forecasting of advanced system components. The basis of the design heritage approach is to relate advanced system components to similar designs currently in operation. The demonstrated performance of these components could then be used to forecast the expected performance and reliability of comparable advanced technology components. In this approach the greater the divergence of the advanced component designs from the current systems the higher the uncertainty that accompanies the associated failure estimates. Designers of advanced systems are faced with many difficult decisions. One of the most common and more difficult types of these decisions are those related to the choice between design alternatives. In the past decision-makers have found these decisions to be extremely difficult to make because they often involve the trade-off between a known performing fielded design and a promising paper design. When it comes to expected reliability performance the paper design always looks better because it is on paper and it addresses all the know failure modes of the fielded design. On the other hand there is a long, and sometimes very difficult road, between the promise of a paper design and its fulfillment; with the possibility that sometimes the reliability promise is not fulfilled at all. Decision makers in advanced technology areas have always known to discount the performance claims of a design to a degree in proportion to its stage of development, and at times have preferred the more mature design over the one of lesser maturity even with the latter promising substantially better performance once fielded. As with the broader measures of performance this has also been true for projected reliability performance. Paper estimates of potential advances in design reliability are to a degree uncertain in proportion to the maturity of the features being proposed to secure those advances. This is especially true when performance-enhancing features in other areas are also planned to be part of the development program.

  8. METAShield: Hot Metallic Aeroshell Concept for RLV/SOV

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Poteet, Carl C.; Daryabeigi, Kamran; Nowak, Robert J.; Hsu, Su-Yuen; Schmidt, Irvin H.; Ku, Shih-Huei P.

    2003-01-01

    An innovative fuselage design approach that combines many desirable operational features with a simple and efficient structural approach is being developed by NASA. The approach, named METAShield for MEtallic TransAtmospheric Shield, utilizes lightly loaded, hot aeroshell structures surrounding integral propellant tanks that carry the primary structural loads. The aeroshells are designed to withstand the local pressure loads, transmitting them to the tanks with minimal restraint of thermal growth. No additional thermal protection system protects the METAShield, and a fibrous or multilayer insulation blanket, located in the space between the aeroshell and the tanks, serves as both high temperature and cryogenic insulation for the tanks. The concept is described in detail, and the performance and operational features are highlighted. Initial design results and analyses of the structural, thermal, and thermal-structural performance are described. Computational results evaluating resistance to hypervelocity impact damage, as well as some supporting aerothermal wind tunnel results. are also presented. Future development needs are summarized.

  9. Coil geometry effects on scanning single-coil magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-09-01

    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  10. Kinetic Assessment of Golf Shoe Outer Sole Design Features

    PubMed Central

    Smith, Neal A.; Dyson, Rosemary J.

    2009-01-01

    This study assessed human kinetics in relation to golf shoe outer sole design features during the golf swing using a driver club by measuring both within the shoe, and beneath the shoe at the natural grass interface. Three different shoes were assessed: metal 7- spike shoe, alternative 7-spike shoe, and a flat soled shoe. In-shoe plantar pressure data were recorded using Footscan RS International pressure insoles and sampling at 500 Hz. Simultaneously ground reaction force at the shoe outer sole was measured using 2 natural grass covered Kistler force platforms and 1000 Hz data acquisition. Video recording of the 18 right-handed golfers at 200 Hz was undertaken while the golfer performed 5 golf shots with his own driver in each type of shoe. Front foot (nearest to shot direction) maximum vertical force and torque were greater than at the back foot, and there was no significant difference related to the shoe type. Wearing the metal spike shoe when using a driver was associated with more torque generation at the back foot (p < 0. 05) than when the flat soled shoe was worn. Within shoe regional pressures differed significantly with golf shoe outer sole design features (p < 0.05). Comparison of the metal spike and alternative spike shoe results provided indications of the quality of regional traction on the outer sole. Potential golf shoe outer sole design features and traction were presented in relation to phases of the golf swing movement. Application of two kinetic measurement methods identified that moderated (adapted) muscular control of foot and body movement may be induced by golf shoe outer sole design features. Ground reaction force measures inform comparisons of overall shoe functional performance, and insole pressure measurements inform comparisons of the underfoot conditions induced by specific regions of the golf shoe outer sole. Key points Assessments of within golf shoe pressures and beneath shoe forces at the natural grass interface were conducted during golf shots with a driver. Application of two kinetic measurement methods simultaneously identified that moderated (adapted) muscular control of the foot and body movement may be induced by golf shoe outer sole localised design features. Ground force measures inform overall shoe kinetic functional performance. Insole pressure measurement informs of underfoot conditions induced by localised specific regions of the golf outer sole. Significant differences in ground-shoe torque generation and insole regional pressures were identified when different golf shoes were worn. PMID:24149603

  11. Good Practice Recommendations in the Field of Heating, Ventilation, and Air Conditioning for Health Related Research Laboratories.

    ERIC Educational Resources Information Center

    Laboratory Design Notes, 1966

    1966-01-01

    A collection of laboratory design notes to set forth minimum criteria required in the design of basic medical research laboratory buildings. Recommendations contained are primarily concerned with features of design which affect quality of performance and future flexibility of facility systems. Subjects of economy and safety are discussed where…

  12. Studies Using Single-Subject Designs in Sport Psychology: 30 Years of Research

    ERIC Educational Resources Information Center

    Martin, G. L.; Thompson, K.; Regehr, K.

    2004-01-01

    A prominent feature of behavior-analytic research has been the use of single-subject designs. We examined sport psychology journals and behavioral journals published during the past 30 years, and located 40 studies using single-subject designs to assess interventions for enhancing the performance of athletes and coaches. In this paper, we…

  13. Multi-mission Ni-H2 battery cell for the 1990's

    NASA Technical Reports Server (NTRS)

    Miller, Lee; Brill, Jack; Dodson, Gary

    1989-01-01

    A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analyses and validation test cells demonstrate improved performance plus attractive specific-energy characteristics will be achieved.

  14. High performance cryogenic turboexpanders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agahi, R.R.; Ershaghi, B.; Lin, M.C.

    1996-12-31

    The use of turboexpanders for deep cryogenic temperatures has been constrained because of thermal efficiency limitations. This limited thermal efficiency was mostly due to mechanical constraints. Recent improvements in analytical techniques, bearing technology, and design features have made it possible to design and operate turboexpanders at more favorable conditions, such as of higher rotational speeds. Several turboexpander installations in helium and hydrogen processes have shown a significant improvement in plant performance over non-turboexpander options.

  15. AlliedSignal driver's viewer enhancement (DVE) for paramilitary and commercial applications

    NASA Astrophysics Data System (ADS)

    Emanuel, Michael; Caron, Hubert; Kovacevic, Branislav; Faina-Cherkaoui, Marcela; Wrobel, Leslie; Turcotte, Gilles

    1999-07-01

    AlliedSignal Driver's Viewer Enhancement (DVE) system is a thermal imager using a 320 X 240 uncooled microbolometer array. This high performance system was initially developed for military combat and tactical wheeled vehicles. It features a very small sensor head remotely mounted from the display, control and processing module. The sensor head has a modular design and is being adapted to various commercial applications such as truck and car-driving aid, using specifically designed low cost optics. Tradeoffs in the system design, system features and test results are discussed in this paper. A short video shows footage of the DVE system while driving at night.

  16. Concurrent evolution of feature extractors and modular artificial neural networks

    NASA Astrophysics Data System (ADS)

    Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter

    2009-05-01

    This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.

  17. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Thresher, Robert W

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  18. The Fifth NASA Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design.

  19. Implementation of a digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic

    NASA Technical Reports Server (NTRS)

    Habiby, Sarry F.

    1987-01-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.

  20. A gaze independent hybrid-BCI based on visual spatial attention

    NASA Astrophysics Data System (ADS)

    Egan, John M.; Loughnane, Gerard M.; Fletcher, Helen; Meade, Emma; Lalor, Edmund C.

    2017-08-01

    Objective. Brain-computer interfaces (BCI) use measures of brain activity to convey a user’s intent without the need for muscle movement. Hybrid designs, which use multiple measures of brain activity, have been shown to increase the accuracy of BCIs, including those based on EEG signals reflecting covert attention. Our study examined whether incorporating a measure of the P3 response improved the performance of a previously reported attention-based BCI design that incorporates measures of steady-state visual evoked potentials (SSVEP) and alpha band modulations. Approach. Subjects viewed stimuli consisting of two bi-laterally located flashing white boxes on a black background. Streams of letters were presented sequentially within the boxes, in random order. Subjects were cued to attend to one of the boxes without moving their eyes, and they were tasked with counting the number of target-letters that appeared within. P3 components evoked by target appearance, SSVEPs evoked by the flashing boxes, and power in the alpha band are modulated by covert attention, and the modulations can be used to classify trials as left-attended or right-attended. Main Results. We showed that classification accuracy was improved by including a P3 feature along with the SSVEP and alpha features (the inclusion of a P3 feature lead to a 9% increase in accuracy compared to the use of SSVEP and Alpha features alone). We also showed that the design improves the robustness of BCI performance to individual subject differences. Significance. These results demonstrate that incorporating multiple neurophysiological indices of covert attention can improve performance in a gaze-independent BCI.

  1. Extended performance solar electric propulsion thrust system study. Volume 4: Thruster technology evaluation

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.; Weisman, Y. C.; Frisman, M.; Benson, G. C.; Mcgrath, R. J.; Martinelli, R. M.; Linsenbardt, T. L.; Beattie, J. R.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentrator solar array concept and is designed to interface with the Space Shuttle.

  2. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.

  3. The Multi-Feature Hypothesis: Connectionist Guidelines for L2 Task Design

    ERIC Educational Resources Information Center

    Moonen, Machteld; de Graaff, Rick; Westhoff, Gerard; Brekelmans, Mieke

    2014-01-01

    This study focuses on the effects of task type on the retention and ease of activation of second language (L2) vocabulary, based on the multi-feature hypothesis (Moonen, De Graaff, & Westhoff, 2006). Two tasks were compared: a writing task and a list-learning task. It was hypothesized that performing the writing task would yield higher…

  4. Fiber optic sensor for measurement of pressure fluctuations at high temperatures

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.

    1989-01-01

    A fiber-optic sensor, based on the principle of the fiber-optic lever, is described which features small size, extended bandwidth, and capability to operate at high temeratures, as required for measurements in hypersonic flow. The principle of operation, design features peculiar to the intended application, and expected performance at high temperatures are described.

  5. The Effectiveness of Reason Racer, a Game Designed to Engage Middle School Students in Scientific Argumentation

    ERIC Educational Resources Information Center

    Ault, Marilyn; Craig-Hare, Jana; Frey, Bruce; Ellis, James D.; Bulgren, Janis

    2015-01-01

    Reason Racer is an online, rate-based, multiplayer game that applies specific game features in order to engage middle school students in introductory knowledge of and thinking related to scientific argumentation. Game features include rapid and competitive play, timed performance, immediate feedback, and high rates of response across many…

  6. Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods

    NASA Astrophysics Data System (ADS)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.

  7. Development history of the Hybrid Test Vehicle

    NASA Technical Reports Server (NTRS)

    Trummel, M. C.; Burke, A. F.

    1983-01-01

    Phase I of a joint Department of Energy/Jet Propulsion Laboratory Program undertook the development of the Hybrid Test Vehicle (HTV), which has subsequently progressed through design, fabrication, and testing and evaluation phases. Attention is presently given to the design and test experience gained during the HTV development program, and a discussion is presented of the design features and performance capabilities of the various 'mule' vehicles, devoted to the separate development of engine microprocessor control, vehicle structure, and mechanical components, whose elements were incorporated into the final HTV design. Computer projections of the HTV's performance are given.

  8. Design of virtual three-dimensional instruments for sound control

    NASA Astrophysics Data System (ADS)

    Mulder, Axel Gezienus Elith

    An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object parameters. While the virtual instruments can be adapted to exploit many manipulation gestures, further work is required to reduce the need for technical expertise to realize adaptations. Better virtual object simulation techniques and faster sensor data acquisition will improve the performance of virtual instruments. The design environment which has been developed should prove useful as a (musical) instrument prototyping tool and as a tool for researching the optimal adaptation of machines to humans.

  9. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    NASA Astrophysics Data System (ADS)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  10. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    PubMed Central

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hznnera, K.; Hetzler, F.; Hyden, L.

    From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Some features of ASEA-ATOM's BWR fuel design and fabrication processes are given. The in pile fuel performance experience to date is reviewed. (auth)

  12. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  13. Qualification of the RSRM field joint CF case-to-insulation bondline inspection using the Thiokol Corporation ultrasonic RSRM bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Qualification testing of Combustion Engineering's AMDATA Intraspect/98 Data Acquisition and Imaging System that applies to the redesigned solid rocket motor field joint capture feature case-to-insulation bondline inspection was performed. Testing was performed at M-111, the Thiokol Corp. Inert Parts Preparation Building. The purpose of the inspection was to verify the integrity of the capture feature area case-to-insulation bondline. The capture feature scanner was calibrated over an intentional 1.0 to 1.0 in. case-to-insulation unbond. The capture feature scanner was then used to scan 60 deg of a capture feature field joint. Calibration of the capture feature scanner was then rechecked over the intentional unbond to ensure that the calibration settings did not change during the case scan. This procedure was successfully performed five times to qualify the unbond detection capability of the capture feature scanner. The capture feature scanner qualified in this test contains many points of mechanical instability that can affect the overall ultrasonic signal response. A new generation scanner, designated the sigma scanner, should be implemented to replace the current configuration scanner. The sigma scanner eliminates the unstable connection points of the current scanner and has additional inspection capabilities.

  14. Design of an efficient music-speech discriminator.

    PubMed

    Tardón, Lorenzo J; Sammartino, Simone; Barbancho, Isabel

    2010-01-01

    In this paper, the problem of the design of a simple and efficient music-speech discriminator for large audio data sets in which advanced music playing techniques are taught and voice and music are intrinsically interleaved is addressed. In the process, a number of features used in speech-music discrimination are defined and evaluated over the available data set. Specifically, the data set contains pieces of classical music played with different and unspecified instruments (or even lyrics) and the voice of a teacher (a top music performer) or even the overlapped voice of the translator and other persons. After an initial test of the performance of the features implemented, a selection process is started, which takes into account the type of classifier selected beforehand, to achieve good discrimination performance and computational efficiency, as shown in the experiments. The discrimination application has been defined and tested on a large data set supplied by Fundacion Albeniz, containing a large variety of classical music pieces played with different instrument, which include comments and speeches of famous performers.

  15. Convolutional neural network features based change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  16. A Novel Multi-Class Ensemble Model for Classifying Imbalanced Biomedical Datasets

    NASA Astrophysics Data System (ADS)

    Bikku, Thulasi; Sambasiva Rao, N., Dr; Rao, Akepogu Ananda, Dr

    2017-08-01

    This paper mainly focuseson developing aHadoop based framework for feature selection and classification models to classify high dimensionality data in heterogeneous biomedical databases. Wide research has been performing in the fields of Machine learning, Big data and Data mining for identifying patterns. The main challenge is extracting useful features generated from diverse biological systems. The proposed model can be used for predicting diseases in various applications and identifying the features relevant to particular diseases. There is an exponential growth of biomedical repositories such as PubMed and Medline, an accurate predictive model is essential for knowledge discovery in Hadoop environment. Extracting key features from unstructured documents often lead to uncertain results due to outliers and missing values. In this paper, we proposed a two phase map-reduce framework with text preprocessor and classification model. In the first phase, mapper based preprocessing method was designed to eliminate irrelevant features, missing values and outliers from the biomedical data. In the second phase, a Map-Reduce based multi-class ensemble decision tree model was designed and implemented in the preprocessed mapper data to improve the true positive rate and computational time. The experimental results on the complex biomedical datasets show that the performance of our proposed Hadoop based multi-class ensemble model significantly outperforms state-of-the-art baselines.

  17. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  18. Fusion reactor blanket/shield design study

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.

    1979-07-01

    A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  19. Scaffolding software: How does it influence student conceptual understanding and motivation?

    NASA Astrophysics Data System (ADS)

    Butler, Kyle A.

    The purpose of this study was to determine the influence of scaffolding software on student conceptual understanding and motivation. This study also provides insight on how students use the scaffolding features found in Artemis and the extent to which features show a relationship to student conceptual understanding and motivation. A Randomized Solomon Four Group Design was used in this study. As students worked through a project based unit over photosynthesis, the students performed information seeking activities that were based on their own inquiry. For this purpose, the students in the experimental group used an example of scaffolding software called Artemis, while the students in the control group used a search engine of their choice. To measure conceptual understanding, the researcher analyzed student generated concept maps on photosynthesis using three different methods (quantitative, qualitative, hierarchical). To measure motivation, the researcher used a survey that measured motivation on five different indicators: intrinsic goal orientation, extrinsic goal orientation, task value, control of learning beliefs, self-efficacy for learning and performance. Finally, the researcher looked at the relationship and influence of the scaffolding features on two student performance scores at the end of the unit. This created a total of ten dependent variables in relationship to the treatment. Overall, the students used the collaborative features 25% of the time, the maintenance features 0.84% of the time, the organizational features 16% of the time, the saving/viewing features 7% of the time and the searching features 51% of the time. There were significant correlations between the saving/viewing features hits and the students' task value (r = .499, p < .05), the searching features hits and the students' self-efficacy for learning and performance (r = .553, p < .01), the collaborative features hits and the students' essay performance scores (r = .519, p < .05) and the maintenance features time and the qualitative analysis of the concept maps (r = .576, p < .01). Finally, the results indicated that the scaffolding features in Artemis did not influence student conceptual understanding and motivation.

  20. Arts Education Facilities Planner for Grades K-8.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This reference document for public school facility designers addresses arts education programs and the facilities that support them. Some sections focus on concepts and features common to most or all arts education subject areas, such as sound management, acoustical design, teacher workstations, and performance facilities. Other sections describe…

  1. Health Indicators: A Tool for Program Review

    ERIC Educational Resources Information Center

    Abou-Sayf, Frank K.

    2006-01-01

    A visual tool used to evaluate instructional program performance has been designed by the University of Hawaii Community College system. The tool combines features from traffic lights, blood-chemistry test reports, and industry production control charts, and is labeled the Program Health-Indicator Chart. The tool was designed to minimize the labor…

  2. EVALUATING DESIGN AND VERIFYING COMPLIANCE OF CREATED WETLANDS IN THE VICINITY OF TAMPA, FLORIDA

    EPA Science Inventory

    Completed mitigation projects are being studied by the Wetlands Research Program nationwide to identify critical design features, develop methods for evaluating projects, determine the functions they perform, and describe how they change with time. his report is the second in a s...

  3. 7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...

  4. 7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...

  5. 7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...

  6. 7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...

  7. Transformation of the Schoolhouse. Annual Report for 1969.

    ERIC Educational Resources Information Center

    Coughlin, Gaila, Ed.

    This report reviews some of the more important educational innovations that have transformed the arrangement of space and design of the schoolhouse environment. Design, structural, and functional features are described for open plan schools (schools without interior walls). Consideration is given to the use of performance specifications in the…

  8. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1995-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.

  9. Formal implementation of a performance evaluation model for the face recognition system.

    PubMed

    Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young

    2008-01-01

    Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.

  10. The PHENIX PbSc calorimeter and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, G.; Goto, Y.; Kistenev, E.

    1997-11-01

    The authors have recently completed the production of the 15552 channel PbSc Electromagnetic calorimeter for the PHENIX experiment at RHIC. The design features a single 4 tower module which is repeated throughout and which was produced with a number of QC steps designed to achieve consistent, large light yield in all channels. They present results on uniformity of the calorimeter, accuracy of a cosmic muon based precalibration scheme and test beam performance.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Oberlin College’s Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials

  12. Smartphone Application for the Analysis of Prosodic Features in Running Speech with a Focus on Bipolar Disorders: System Performance Evaluation and Case Study.

    PubMed

    Guidi, Andrea; Salvi, Sergio; Ottaviano, Manuel; Gentili, Claudio; Bertschy, Gilles; de Rossi, Danilo; Scilingo, Enzo Pasquale; Vanello, Nicola

    2015-11-06

    Bipolar disorder is one of the most common mood disorders characterized by large and invalidating mood swings. Several projects focus on the development of decision support systems that monitor and advise patients, as well as clinicians. Voice monitoring and speech signal analysis can be exploited to reach this goal. In this study, an Android application was designed for analyzing running speech using a smartphone device. The application can record audio samples and estimate speech fundamental frequency, F0, and its changes. F0-related features are estimated locally on the smartphone, with some advantages with respect to remote processing approaches in terms of privacy protection and reduced upload costs. The raw features can be sent to a central server and further processed. The quality of the audio recordings, algorithm reliability and performance of the overall system were evaluated in terms of voiced segment detection and features estimation. The results demonstrate that mean F0 from each voiced segment can be reliably estimated, thus describing prosodic features across the speech sample. Instead, features related to F0 variability within each voiced segment performed poorly. A case study performed on a bipolar patient is presented.

  13. Smartphone Application for the Analysis of Prosodic Features in Running Speech with a Focus on Bipolar Disorders: System Performance Evaluation and Case Study

    PubMed Central

    Guidi, Andrea; Salvi, Sergio; Ottaviano, Manuel; Gentili, Claudio; Bertschy, Gilles; de Rossi, Danilo; Scilingo, Enzo Pasquale; Vanello, Nicola

    2015-01-01

    Bipolar disorder is one of the most common mood disorders characterized by large and invalidating mood swings. Several projects focus on the development of decision support systems that monitor and advise patients, as well as clinicians. Voice monitoring and speech signal analysis can be exploited to reach this goal. In this study, an Android application was designed for analyzing running speech using a smartphone device. The application can record audio samples and estimate speech fundamental frequency, F0, and its changes. F0-related features are estimated locally on the smartphone, with some advantages with respect to remote processing approaches in terms of privacy protection and reduced upload costs. The raw features can be sent to a central server and further processed. The quality of the audio recordings, algorithm reliability and performance of the overall system were evaluated in terms of voiced segment detection and features estimation. The results demonstrate that mean F0 from each voiced segment can be reliably estimated, thus describing prosodic features across the speech sample. Instead, features related to F0 variability within each voiced segment performed poorly. A case study performed on a bipolar patient is presented. PMID:26561811

  14. Software For Computer-Aided Design Of Control Systems

    NASA Technical Reports Server (NTRS)

    Wette, Matthew

    1994-01-01

    Computer Aided Engineering System (CAESY) software developed to provide means to evaluate methods for dealing with users' needs in computer-aided design of control systems. Interpreter program for performing engineering calculations. Incorporates features of both Ada and MATLAB. Designed to be flexible and powerful. Includes internally defined functions, procedures and provides for definition of functions and procedures by user. Written in C language.

  15. Multi-mission Ni-H2 battery cells for the 1990's

    NASA Technical Reports Server (NTRS)

    Miller, Lee; Brill, Jack; Dodson, Gary

    1989-01-01

    A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analysis and validation test cells demonstrate that improved performance plus attractive specific-energy characteristics will be achieved.

  16. Design of the advanced regional aircraft, the DART-75

    NASA Technical Reports Server (NTRS)

    Elliott, Steve; Gislason, Jason; Huffstetler, Mark; Mann, Jon; Withers, Ashley; Zimmerman, Mark

    1992-01-01

    This design analysis is intended to show the capabilities of the DART-75, a 75 passenger medium-range regional transport. Included are the detailed descriptions of the structures, performance, stability and control, weight and balance, and engine design. The design should allow for the DART to become the premier regional aircraft of the future due to some advanced features like the canard, semi-composite construction, and advanced engines.

  17. Development of a Bayesian response-adaptive trial design for the Dexamethasone for Excessive Menstruation study.

    PubMed

    Holm Hansen, Christian; Warner, Pamela; Parker, Richard A; Walker, Brian R; Critchley, Hilary Od; Weir, Christopher J

    2017-12-01

    It is often unclear what specific adaptive trial design features lead to an efficient design which is also feasible to implement. This article describes the preparatory simulation study for a Bayesian response-adaptive dose-finding trial design. Dexamethasone for Excessive Menstruation aims to assess the efficacy of Dexamethasone in reducing excessive menstrual bleeding and to determine the best dose for further study. To maximise learning about the dose response, patients receive placebo or an active dose with randomisation probabilities adapting based on evidence from patients already recruited. The dose-response relationship is estimated using a flexible Bayesian Normal Dynamic Linear Model. Several competing design options were considered including: number of doses, proportion assigned to placebo, adaptation criterion, and number and timing of adaptations. We performed a fractional factorial study using SAS software to simulate virtual trial data for candidate adaptive designs under a variety of scenarios and to invoke WinBUGS for Bayesian model estimation. We analysed the simulated trial results using Normal linear models to estimate the effects of each design feature on empirical type I error and statistical power. Our readily-implemented approach using widely available statistical software identified a final design which performed robustly across a range of potential trial scenarios.

  18. A novel content-based medical image retrieval method based on query topic dependent image features (QTDIF)

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Qiu, Bo; Tian, Qi; Mueller, Henning; Xu, Changsheng

    2005-04-01

    Medical image retrieval is still mainly a research domain with a large variety of applications and techniques. With the ImageCLEF 2004 benchmark, an evaluation framework has been created that includes a database, query topics and ground truth data. Eleven systems (with a total of more than 50 runs) compared their performance in various configurations. The results show that there is not any one feature that performs well on all query tasks. Key to successful retrieval is rather the selection of features and feature weights based on a specific set of input features, thus on the query task. In this paper we propose a novel method based on query topic dependent image features (QTDIF) for content-based medical image retrieval. These feature sets are designed to capture both inter-category and intra-category statistical variations to achieve good retrieval performance in terms of recall and precision. We have used Gaussian Mixture Models (GMM) and blob representation to model medical images and construct the proposed novel QTDIF for CBIR. Finally, trained multi-class support vector machines (SVM) are used for image similarity ranking. The proposed methods have been tested over the Casimage database with around 9000 images, for the given 26 image topics, used for imageCLEF 2004. The retrieval performance has been compared with the medGIFT system, which is based on the GNU Image Finding Tool (GIFT). The experimental results show that the proposed QTDIF-based CBIR can provide significantly better performance than systems based general features only.

  19. Good Features to Correlate for Visual Tracking

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Alatan, A. Aydin

    2018-05-01

    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.

  20. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.

    PubMed

    Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C

    2015-02-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Low and high speed propellers for general aviation - Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    A survey is presented of current research efforts in general aviation, low-speed propeller design and high-speed propfan design, with attention on such features as (1) advanced blade shapes, with novel airfoils and sweep, (2) tip devices, (3) integrated propeller/nacelle designs, (4) area-ruled spinners, (5) lightweight, all-composite blade construction, and (6) contra-rotating propfan systems. The potential overall improvements associated with these design modifications are calculated to lie at 10-15% for low-speed rotors and 15-30% for high-speed ones. Emphasis is placed on noise reduction, blade drag, performance prediction methods and wind tunnel testing of alternative rotor configurations. Extensive use of graphs is made in performance comparisons between alternative blade and rotor designs.

  2. Automatic change detection: does the auditory system use representations of individual stimulus features or gestalts?

    PubMed

    Deacon, D; Nousak, J M; Pilotti, M; Ritter, W; Yang, C M

    1998-07-01

    The effects of global and feature-specific probabilities of auditory stimuli were manipulated to determine their effects on the mismatch negativity (MMN) of the human event-related potential. The question of interest was whether the automatic comparison of stimuli indexed by the MMN was performed on representations of individual stimulus features or on gestalt representations of their combined attributes. The design of the study was such that both feature and gestalt representations could have been available to the comparator mechanism generating the MMN. The data were consistent with the interpretation that the MMN was generated following an analysis of stimulus features.

  3. The magic of solar adobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, B.M.

    1996-01-01

    This article describes the energy efficient features of a house in Santa Fe. It is a modern version of ancient adobe house of the area. The homes solar features added no net cost to its construction and save more than 80% on conventional energy use. Topic areas covered are as follows: art of adobe; solar design; back-up heat; energy and cost performance.

  4. Generating One Biometric Feature from Another: Faces from Fingerprints

    PubMed Central

    Ozkaya, Necla; Sagiroglu, Seref

    2010-01-01

    This study presents a new approach based on artificial neural networks for generating one biometric feature (faces) from another (only fingerprints). An automatic and intelligent system was designed and developed to analyze the relationships among fingerprints and faces and also to model and to improve the existence of the relationships. The new proposed system is the first study that generates all parts of the face including eyebrows, eyes, nose, mouth, ears and face border from only fingerprints. It is also unique and different from similar studies recently presented in the literature with some superior features. The parameter settings of the system were achieved with the help of Taguchi experimental design technique. The performance and accuracy of the system have been evaluated with 10-fold cross validation technique using qualitative evaluation metrics in addition to the expanded quantitative evaluation metrics. Consequently, the results were presented on the basis of the combination of these objective and subjective metrics for illustrating the qualitative properties of the proposed methods as well as a quantitative evaluation of their performances. Experimental results have shown that one biometric feature can be determined from another. These results have once more indicated that there is a strong relationship between fingerprints and faces. PMID:22399877

  5. Lithium Ion Battery (LIB) Charger: Spacesuit Battery Charger Design with 2-Fault Tolerance to Catastrophic Hazards

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Davies, Frank

    2009-01-01

    Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.

  6. A Pulsed Thermographic Imaging System for Detection and Identification of Cotton Foreign Matter

    PubMed Central

    Kuzy, Jesse; Li, Changying

    2017-01-01

    Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton quality, which in turn impacts the marketability of the cotton. Current grading systems return estimates of the amount of foreign matter present, but provide no information about the identity of the contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify cotton foreign matter. The design and implementation of a pulsed thermographic analysis system is described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-crafted waveform features and frequency-domain features were extracted and analyzed for statistical significance. Classification was performed on these features using linear discriminant analysis and support vector machines. Using waveform features and support vector machine classifiers, detection of cotton foreign matter was performed with 99.17% accuracy. Using frequency-domain features and linear discriminant analysis, identification was performed with 90.00% accuracy. These results demonstrate that pulsed thermographic imaging analysis produces data which is of significant utility for the detection and identification of cotton foreign matter. PMID:28273848

  7. Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-01-01

    The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.

  8. GPS test range mission planning

    NASA Astrophysics Data System (ADS)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  9. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.

    PubMed

    Wen, Ping-Ping; Shi, Shao-Ping; Xu, Hao-Dong; Wang, Li-Na; Qiu, Jian-Ding

    2016-10-15

    As one of the most important reversible types of post-translational modification, protein methylation catalyzed by methyltransferases carries many pivotal biological functions as well as many essential biological processes. Identification of methylation sites is prerequisite for decoding methylation regulatory networks in living cells and understanding their physiological roles. Experimental methods are limitations of labor-intensive and time-consuming. While in silicon approaches are cost-effective and high-throughput manner to predict potential methylation sites, but those previous predictors only have a mixed model and their prediction performances are not fully satisfactory now. Recently, with increasing availability of quantitative methylation datasets in diverse species (especially in eukaryotes), there is a growing need to develop a species-specific predictor. Here, we designed a tool named PSSMe based on information gain (IG) feature optimization method for species-specific methylation site prediction. The IG method was adopted to analyze the importance and contribution of each feature, then select the valuable dimension feature vectors to reconstitute a new orderly feature, which was applied to build the finally prediction model. Finally, our method improves prediction performance of accuracy about 15% comparing with single features. Furthermore, our species-specific model significantly improves the predictive performance compare with other general methylation prediction tools. Hence, our prediction results serve as useful resources to elucidate the mechanism of arginine or lysine methylation and facilitate hypothesis-driven experimental design and validation. The tool online service is implemented by C# language and freely available at http://bioinfo.ncu.edu.cn/PSSMe.aspx CONTACT: jdqiu@ncu.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.

  11. Paige Jadun | NREL

    Science.gov Websites

    dynamics. She has performed research in sustainable mobility, network optimization, supply chain analysis Experience Supply Chain Design Consultant, LLamasoft, Ann Arbor, MI Featured Publications Laura J

  12. Evaluating two process scale chromatography column header designs using CFD.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.

  13. Predicting the performance of fingerprint similarity searching.

    PubMed

    Vogt, Martin; Bajorath, Jürgen

    2011-01-01

    Fingerprints are bit string representations of molecular structure that typically encode structural fragments, topological features, or pharmacophore patterns. Various fingerprint designs are utilized in virtual screening and their search performance essentially depends on three parameters: the nature of the fingerprint, the active compounds serving as reference molecules, and the composition of the screening database. It is of considerable interest and practical relevance to predict the performance of fingerprint similarity searching. A quantitative assessment of the potential that a fingerprint search might successfully retrieve active compounds, if available in the screening database, would substantially help to select the type of fingerprint most suitable for a given search problem. The method presented herein utilizes concepts from information theory to relate the fingerprint feature distributions of reference compounds to screening libraries. If these feature distributions do not sufficiently differ, active database compounds that are similar to reference molecules cannot be retrieved because they disappear in the "background." By quantifying the difference in feature distribution using the Kullback-Leibler divergence and relating the divergence to compound recovery rates obtained for different benchmark classes, fingerprint search performance can be quantitatively predicted.

  14. Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Bruckner, Robert; DellaCorte, Christopher; Edmonds, Brian; Prahl, Joseph

    2008-01-01

    A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-top cycles are performed on the bearing at a temperature of 425 C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.

  15. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  16. Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Stephens, Chad L.; Milletich, Robert J.; Heinich, Christina M.; Last, Mary Carolyn; Napoli, Nicholas J.; Abraham, Nijo A.; Prinzel, Lawrence J.; Motter, Mark A.; Pope, Alan T.

    2017-01-01

    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.

  17. Simulation of a combined-cycle engine

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  18. Performing Like an Asylum Seeker: Paradoxes of Hyper-Authenticity

    ERIC Educational Resources Information Center

    Jestrovic, Silvija

    2008-01-01

    This essay investigates performance events that feature actual refugees, asylum seekers and immigrants, but in instances where presence and embodiment are mediated and made ambiguous. My focus is a fashion show by Catalan designer Antonio Miro, who uses refugees from Senegal as models, and Christoph Schlingensief's public art project…

  19. Dialect Usage as a Factor in Developmental Language Performance of Primary Grade School Children.

    ERIC Educational Resources Information Center

    Levine, Madlyn A.; Hanes, Michael L.

    This study investigated the relationship between dialect usage and performance on four language tasks designed to reflect features developmental in nature: articulation, grammatical closure, auditory discrimination, and sentence comprehension. Predictor and criterion language tasks were administered to 90 kindergarten, first-, and second-grade…

  20. Personnel Performance Assessment in Information Systems Outsourcing Environments

    ERIC Educational Resources Information Center

    Casado-Lumbreras, Cristina; Soto-Acosta, Pedro; Colomo-Palacios, Ricardo; de Pablos, Patricia Ordonez

    2011-01-01

    Purpose: The aim of this paper is to present a tool which uses semantic technologies for personnel performance and workplace learning assessment in outsourced information technology environments. Design/methodology/approach: The paper presents the tool from a technical perspective and introduces a use case that depicts the main features related to…

  1. Long life 80Ah standard IPV NiH2 battery cell

    NASA Technical Reports Server (NTRS)

    Armantrout, Jon D.; Waller, J. S.

    1995-01-01

    A standard Nickel-Hydrogen (NiH2) Individual Pressure Vessel (IPV) battery cell is needed to meet future low cost, high performance mission requirements for NASA, military, and civil space programs. A common or standard cell design has evolved from the heritage of HST, Milstar, and other Air Force Mantech cell designs with substantial flight experience, while incorporating some of the historical COMSAT cell design features described in a previous NASA publication. Key features include slurry process nickel electrodes having high strength, long life and high yield (lower cost), and dual layer zircar separators for improved KOH retention, uniformality, and longer life. The cell design will have a zirconium oxide wall wick inside the pressure vessel to redistribute electrolyte and extend life. The slurry electrode will be 35 mils thick to take advantage of qualified cell mechanical configurations and proven assembly and activation techniques developed by Eagle Picher Industries (EPI) for the Hubble Space Telescope (HST) RNH-90-3 and 'Generic HST' RNH-90-5 cell designs with back-to-back nickel electrodes produced by the dry sinter process. The 80Ah common cell design can be scaled to meet capacity requirements from 60Ah to 100Ah. Producibility, commonality, and long life performance will be enhanced with the robust cell design described herein.

  2. Design and Verification of Space Station EVA-Operated Truss Attachment System

    NASA Technical Reports Server (NTRS)

    Katell, Gabriel

    2001-01-01

    This paper describes the design and verification of a system used to attach two segments of the International Space Station (ISS). This system was first used in space to mate the P6 and Z1 trusses together in December 2000, through a combination of robotic and extravehicular tasks. Features that provided capture, coarse alignment, and fine alignment during the berthing process are described. Attachment of this high value hardware was critical to the ISS's sequential assembly, necessitating the inclusion of backup design and operational features. Astronauts checked for the proper performance of the alignment and bolting features during on-orbit operations. During berthing, the system accommodates truss-to-truss relative displacements that are caused by manufacturing tolerances and on-orbit thermal gradients. After bolt installation, the truss interface becomes statically determinate with respect to in-plane shear loads and isolates attach bolts from bending moments. The approach used to estimate relative displacements and the means of accommodating them is explained. Confidence in system performance was achieved through a cost-effective collection of tests and analyses, including thermal, structural, vibration, misalignment, contact dynamics, underwater simulation, and full-scale functional testing. Design considerations that have potential application to other mechanisms include accommodating variations of friction coefficients in the on-orbit joints, wrench torque tolerances, joint preload, moving element clearances at temperature extremes, and bolt-nut torque reaction.

  3. Reusable Launch Vehicle Tank/Intertank Sizing Trade Study

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Myers, David E.; Martin, Carl J.

    2000-01-01

    A tank and intertank sizing tool that includes effects of major design drivers, and which allows parametric studies to be performed, has been developed and calibrated against independent representative results. Although additional design features, such as bulkheads and field joints, are not currently included in the process, the improved level of fidelity has allowed parametric studies to be performed which have resulted in understanding of key tank and intertank design drivers, design sensitivities, and definition of preferred design spaces. The sizing results demonstrated that there were many interactions between the configuration parameters of internal/external payload, vehicle fineness ratio (half body angle), fuel arrangement (LOX-forward/LOX-aft), number of tanks, and tank shape/arrangement (number of lobes).

  4. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  5. Improving mechanical properties of maxillary complete dentures through a bioinspired engineering design.

    PubMed

    White, James A P; Bond, Ian P; Jagger, Daryll C

    2011-01-01

    This study investigated how ribbed design features, including palatal rugae, may be used to significantly improve the structural performance of a maxillary denture under load. A computer-aided design model of a generic maxillary denture, incorporating various rib features, was created and imported into a finite element analysis program. The denture and ribbed features were assigned the material properties of standard denture acrylic resin, and load was applied in two different ways: the first simulating a three-point flexural bend of the posterior section and the second simulating loading of the entire palatal region. To investigate the combined use of ribbing and reinforcement, the same simulations were repeated with the ribbed features having a Young modulus two orders of magnitude greater than denture acrylic resin. For a prescribed load, total displacements of tracking nodes were compared to those of a control denture (without ribbing) to assess relative denture rigidity. When subjected to flexural loading, an increase in rib depth was seen to result in a reduction of both the transverse displacement of the last molar and vertical displacement at the centerline. However, ribbed features assigned the material properties of denture acrylic resin require a depth that may impose on speech and bolus propulsion before significant improvements are observed. The use of ribbed features, when made from a significantly stiffer material (eg, fiber-reinforced polymer) and designed to mimic palatal rugae, offer an acceptable method of providing significant improvements in rigidity to a maxillary denture under flexural load.

  6. Best Practices Guide for PPGs and the States

    EPA Pesticide Factsheets

    The guide is designed to help the U.S. Environmental Protection Agency (EPA) and stateofficials understand and take full advantage of the features and benefits of PerformancePartnership Grants (PPGs).

  7. Evaluation of the Aurora Application Shade Measurement Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-01

    Aurora is an integrated, Web-based application that helps solar installers perform sales, engineering design, and financial analysis. One of Aurora's key features is its high-resolution remote shading analysis.

  8. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  9. High temperature, high intensity solar array. [for Venus Radar Mapper mission

    NASA Technical Reports Server (NTRS)

    Smith, B. S.; Brooks, G. R.; Pinkerton, R.

    1985-01-01

    The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.

  10. Laminar flow burner system with infrared heated spray chamber and condenser.

    PubMed

    Hell, A; Ulrich, W F; Shifrin, N; Ramírez-Muñoz, J

    1968-07-01

    A laminar flow burner is described that provides several advantages in atomic absorption flame photometry. Included in its design is a heated spray chamber followed by a condensing system. This combination improves the concentration level of the analyte in the flame and keeps solvent concentration low. Therefore, sensitivities are significantly improved for most elements relative to cold chamber burners. The burner also contains several safety features. These various design features are discussed in detail, and performance data are given on (a) signal size, (b) signal-to-noise ratio, (c) linearity, (d) working range, (e) precision, and (g) accuracy.

  11. The Geostationary Lightning Mapper: Its Performance and Calibration

    NASA Astrophysics Data System (ADS)

    Christian, H. J., Jr.

    2015-12-01

    The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have been resolved and will be discussed. Absolute calibration will be verified on-orbit using vicarious cloud reflections. In addition to details of the GLM calibration, the presentation will address the unique design of the GLM, its features, capabilities and performance.

  12. A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei

    2015-03-01

    A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.

  13. Habitat Utilization Assessment - Building in Behaviors

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Blume, Jennifer

    2004-01-01

    Habitability, and the associated architectural and design attributes of an environment, is a powerful performance shaping factor. By identifying how inhabitants use an area, we can draw conclusions about what design or architectural attributes cause what behaviors and systematically design in desired human performance. We are analyzing how a crew uses a long duration habitat and work environment during a four-day underwater mission and identifying certain architectural and design attributes that are related to, and potential enablers of, certain crew behaviors. By identifying how inhabitants use the habitat, we can draw conclusions about what habitability attributes cause what behaviors and systematically design in desired human performance (applicable to NASA's Bioastronautics Human Behavior and Performance Critical Path Roadmap question 6.12). This assessment replicates a methodology reported in a chapter titled "Sociokinetic Analysis as a Tool for Optimization of Environmental Design" by C. Adams.' That study collected video imagery of certain areas of a closed habitat during a 91 day test and from that data calculated time spent in different volumes during the mission, and characterized the behaviors occurring in certain habitat volumes thus concluding various rules for design of such habitats. This study assesses the utilization of the Aquarius Habitat, an underwater station, which will support six Aquanauts for a fourteen-day mission during which the crew will perform specific scientific and engineering studies. Video is recorded for long uninterrupted periods of time during the mission and from that data the time spent in each area is calculated. In addition, qualitative and descriptive analysis of the types of behaviors in each area is performed with the purpose of identifying any behaviors that are not typical of a certain area. If a participant uses an area in a way different from expected, a subsequent analysis of the features of that area may result in conclusions of performance shaping factors. With the addition of this study, we can make comparisons between the two different habitats and begin drawing correlation judgments about design features and behavior. Ideally, this methodology should be repeated in additional Aquarius missions and other analog environments because the real information will come from comparisons between habitats.

  14. Design study of wind turbines 50 kW to 3000 kW for electric utility applications. Volume 2: Analysis and design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    All possible overall system configurations, operating modes, and subsystem concepts for a wind turbine configuration for cost effective generation of electrical power were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The various design features and components evaluated are described, and the rationale employed to select the final design configuration is given. All pertinent technical performance data and component cost data is included. The costs of all major subassemblies are estimated and the resultant energy costs for both the 500 kW and 1500 kW units are calculated.

  15. Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure

    DOE PAGES

    Felice, H.; Rochepault, E.; Hafalia, R.; ...

    2014-12-05

    The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in themore » design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.« less

  16. [The influence of phychological features and learning styles on the academic performance of medical students].

    PubMed

    Bitran, Marcela; Lafuente, Montserrat; Zúñiga, Denisse; Viviani, Paola; Mena, Beltrán

    2004-09-01

    The degree of difficulty we experience while learning different concepts and skills depends, among other things, on our psychological features and learning style. This may be particularly true for medical students, whose formation involves the acquisition of multiple cognitive, affective and psychomotor skills. To assess whether the psychological features and learning styles of medical students are associated with their academic performance. The psychological preferences and learning styles of 66 students of the 2001-graduating cohort were determined with the Myers Briggs Type Inventory (MBTI) and the Kolb Learning Style Inventory (LSI), respectively. The academic performance was assessed by the Calificación Médica Nacional (CMN), Chile and by the marks obtained during the Basic (1st to 3rd), Preclinical (4th and 5th) and Clinical (6th and 7th) years of undergraduate training. The psychological features, together with the sex of students were found to be associated with the performance in the Preclinical and Clinical years, and to the CMN. In men, the interest and ability to communicate with people and the concern for harmony, and in women the tendency to function in a systematic and orderly way are the features associated to high academic performance. No associations were found between learning styles and academic performance. The finding that the psychological preferences of medical students are relevent to their academic performance opens a new perspective to analyze the medical education and to design programs aimed at improving learning.

  17. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    PubMed

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Waveform Optimization for Target Estimation by Cognitive Radar with Multiple Antennas.

    PubMed

    Yao, Yu; Zhao, Junhui; Wu, Lenan

    2018-05-29

    A new scheme based on Kalman filtering to optimize the waveforms of an adaptive multi-antenna radar system for target impulse response (TIR) estimation is presented. This work aims to improve the performance of TIR estimation by making use of the temporal correlation between successive received signals, and minimize the mean square error (MSE) of TIR estimation. The waveform design approach is based upon constant learning from the target feature at the receiver. Under the multiple antennas scenario, a dynamic feedback loop control system is established to real-time monitor the change in the target features extracted form received signals. The transmitter adapts its transmitted waveform to suit the time-invariant environment. Finally, the simulation results show that, as compared with the waveform design method based on the MAP criterion, the proposed waveform design algorithm is able to improve the performance of TIR estimation for extended targets with multiple iterations, and has a relatively lower level of complexity.

  19. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package.

    PubMed

    Wallace, Jonathan; Wang, Martha O; Thompson, Paul; Busso, Mallory; Belle, Vaijayantee; Mammoser, Nicole; Kim, Kyobum; Fisher, John P; Siblani, Ali; Xu, Yueshuo; Welter, Jean F; Lennon, Donald P; Sun, Jiayang; Caplan, Arnold I; Dean, David

    2014-03-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.

  20. Design and evaluation of low-cost stainless steel fiberglass foam blades for large wind driven generating systems

    NASA Technical Reports Server (NTRS)

    Eggert, W. S.

    1982-01-01

    A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.

  1. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  2. Design and evaluation of low-cost stainless steel fiberglass foam blades for large wind driven generating systems

    NASA Astrophysics Data System (ADS)

    Eggert, W. S.

    1982-10-01

    A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.

  3. Design of a High Thermal Gradient Bridgman Furnace

    NASA Technical Reports Server (NTRS)

    LeCroy, J. E.; Popok, D. P.

    1994-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) is a Bridgman-Stockbarger microgravity processing facility, designed and manifested to first fly aboard the second United States Microgravity Payload (USMP-2) Space Shuttle mission. The AADSF was principally designed to produce high axial thermal gradients, and is particularly suitable for metals solidification experiments, including non-dilute alloys. To accommodate a wider range of experimental conditions, the AADSF is equipped with a reconfigurable gradient zone. The overall design of the AADSF and the relationship between gradient zone design and furnace performance are described. Parametric thermal analysis was performed and used to select gradient zone design features that fulfill the high thermal gradient requirements of the USMP-2 experiment. The thermal model and analytical procedure, and parametric results leading to the first flight gradient zone configuration, are presented. Performance for the USMP-2 flight experiment is also predicted, and analysis results are compared to test data.

  4. Geopotential research mission, science, engineering and program summary

    NASA Technical Reports Server (NTRS)

    Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)

    1986-01-01

    This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos

    The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variablemore » objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.« less

  6. Insulated Concrete Homes Increase Durability and Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2001-05-01

    New houses designed by Mercedes Homes in Melbourne, Florida, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Oberlin Colleges Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Oberlin College's Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.

  9. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    NASA Technical Reports Server (NTRS)

    Suchezky, Mark; Cruzen, G. Scott

    2012-01-01

    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  10. Fault tolerant features and experiments of ANTS distributed real-time system

    NASA Astrophysics Data System (ADS)

    Dominic-Savio, Patrick; Lo, Jien-Chung; Tufts, Donald W.

    1995-01-01

    The ANTS project at the University of Rhode Island introduces the concept of Active Nodal Task Seeking (ANTS) as a way to efficiently design and implement dependable, high-performance, distributed computing. This paper presents the fault tolerant design features that have been incorporated in the ANTS experimental system implementation. The results of performance evaluations and fault injection experiments are reported. The fault-tolerant version of ANTS categorizes all computing nodes into three groups. They are: the up-and-running green group, the self-diagnosing yellow group and the failed red group. Each available computing node will be placed in the yellow group periodically for a routine diagnosis. In addition, for long-life missions, ANTS uses a monitoring scheme to identify faulty computing nodes. In this monitoring scheme, the communication pattern of each computing node is monitored by two other nodes.

  11. Brownian motion curve-based textural classification and its application in cancer diagnosis.

    PubMed

    Mookiah, Muthu Rama Krishnan; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K

    2011-06-01

    To develop an automated diagnostic methodology based on textural features of the oral mucosal epithelium to discriminate normal and oral submucous fibrosis (OSF). A total of 83 normal and 29 OSF images from histopathologic sections of the oral mucosa are considered. The proposed diagnostic mechanism consists of two parts: feature extraction using Brownian motion curve (BMC) and design ofa suitable classifier. The discrimination ability of the features has been substantiated by statistical tests. An error back-propagation neural network (BPNN) is used to classify OSF vs. normal. In development of an automated oral cancer diagnostic module, BMC has played an important role in characterizing textural features of the oral images. Fisher's linear discriminant analysis yields 100% sensitivity and 85% specificity, whereas BPNN leads to 92.31% sensitivity and 100% specificity, respectively. In addition to intensity and morphology-based features, textural features are also very important, especially in histopathologic diagnosis of oral cancer. In view of this, a set of textural features are extracted using the BMC for the diagnosis of OSF. Finally, a textural classifier is designed using BPNN, which leads to a diagnostic performance with 96.43% accuracy. (Anal Quant

  12. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  13. A Modified Rodrigues Parameter-based Nonlinear Observer Design for Spacecraft Gyroscope Parameters Estimation

    NASA Astrophysics Data System (ADS)

    Yong, Kilyuk; Jo, Sujang; Bang, Hyochoong

    This paper presents a modified Rodrigues parameter (MRP)-based nonlinear observer design to estimate bias, scale factor and misalignment of gyroscope measurements. A Lyapunov stability analysis is carried out for the nonlinear observer. Simulation is performed and results are presented illustrating the performance of the proposed nonlinear observer under the condition of persistent excitation maneuver. In addition, a comparison between the nonlinear observer and alignment Kalman filter (AKF) is made to highlight favorable features of the nonlinear observer.

  14. Concurrent design of quasi-random photonic nanostructures

    PubMed Central

    Lee, Won-Kyu; Yu, Shuangcheng; Engel, Clifford J.; Reese, Thaddeus; Rhee, Dongjoon; Chen, Wei

    2017-01-01

    Nanostructured surfaces with quasi-random geometries can manipulate light over broadband wavelengths and wide ranges of angles. Optimization and realization of stochastic patterns have typically relied on serial, direct-write fabrication methods combined with real-space design. However, this approach is not suitable for customizable features or scalable nanomanufacturing. Moreover, trial-and-error processing cannot guarantee fabrication feasibility because processing–structure relations are not included in conventional designs. Here, we report wrinkle lithography integrated with concurrent design to produce quasi-random nanostructures in amorphous silicon at wafer scales that achieved over 160% light absorption enhancement from 800 to 1,200 nm. The quasi-periodicity of patterns, materials filling ratio, and feature depths could be independently controlled. We statistically represented the quasi-random patterns by Fourier spectral density functions (SDFs) that could bridge the processing–structure and structure–performance relations. Iterative search of the optimal structure via the SDF representation enabled concurrent design of nanostructures and processing. PMID:28760975

  15. The effects of sign design features on bicycle pictorial symbols for bicycling facility signs.

    PubMed

    Oh, Kyunghui; Rogoff, Aaron; Smith-Jackson, Tonya

    2013-11-01

    The inanimate bicycle symbol has long been used to indicate the animate activity of bicycling facility signs. In contrast, either the inanimate bicycle symbol or the animate bicycle symbol has been used interchangeably for the standard pavement symbols in bike lanes. This has led to confusion among pedestrians and cyclists alike. The purpose of this study was to examine two different designs (inanimate symbol vs. animate symbol) involved in the evaluation of perceived preference and glance legibility, and investigate sign design features on bicycle pictorial symbols. Thirty-five participants compared current bicycle signs (inanimate symbols) to alternative designs (animate symbols) in a controlled laboratory setting. The results indicated that the alternative designs (animate symbols) showed better performance in both preference and glance legibility tests. Conceptual compatibility, familiarity, and perceptual affordances were found to be important factors as well. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Prediction of essential proteins based on gene expression programming.

    PubMed

    Zhong, Jiancheng; Wang, Jianxin; Peng, Wei; Zhang, Zhen; Pan, Yi

    2013-01-01

    Essential proteins are indispensable for cell survive. Identifying essential proteins is very important for improving our understanding the way of a cell working. There are various types of features related to the essentiality of proteins. Many methods have been proposed to combine some of them to predict essential proteins. However, it is still a big challenge for designing an effective method to predict them by integrating different features, and explaining how these selected features decide the essentiality of protein. Gene expression programming (GEP) is a learning algorithm and what it learns specifically is about relationships between variables in sets of data and then builds models to explain these relationships. In this work, we propose a GEP-based method to predict essential protein by combing some biological features and topological features. We carry out experiments on S. cerevisiae data. The experimental results show that the our method achieves better prediction performance than those methods using individual features. Moreover, our method outperforms some machine learning methods and performs as well as a method which is obtained by combining the outputs of eight machine learning methods. The accuracy of predicting essential proteins can been improved by using GEP method to combine some topological features and biological features.

  17. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    PubMed Central

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  18. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  19. Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks.

    PubMed

    Zhang, Jianhua; Li, Sunan; Wang, Rubin

    2017-01-01

    In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.

  20. Collaborate and share: an experimental study of the effects of task and reward interdependencies in online games.

    PubMed

    Choi, Boreum; Lee, Inseong; Choi, Dongseong; Kim, Jinwoo

    2007-08-01

    Today millions of players interact with one another in online games, especially massively multiplayer online role-playing games (MMORPGs). These games promote interaction among players by offering interdependency features, but to date few studies have asked what interdependency design factors of MMORPGs make them fun for players, produce experiences of flow, or enhance player performance. In this study, we focused on two game design features: task and reward interdependency. We conducted a controlled experiment that compared the interaction effects of low and high task-interdependency conditions and low and high reward-interdependency conditions on three dependent variables: fun, flow, and performance. We found that in a low task-interdependency condition, players had more fun, experienced higher levels of flow, and perceived better performance when a low reward-interdependency condition also obtained. In contrast, in a high task-interdependency condition, all of these measures were higher when a high reward-interdependency condition also obtained.

  1. High Stakes Testing in Lower-Performing High Schools: Mathematics Teachers' Perceptions of Burnout and Retention

    ERIC Educational Resources Information Center

    Kirtley, Karmen

    2012-01-01

    This dissertation grows from a concern that the current public school accountability model, designed ostensibly to increase achievement in lower-performing schools, may be creating unidentified negative consequences for teachers and students within those schools. This hermeneutical phenomenological study features the perceptions of seventeen…

  2. Conditioning for Dance: Training for Peak Performance in All Dance Forms.

    ERIC Educational Resources Information Center

    Franklin, Eric

    This book is designed to help dancers improve their technique and performance in all dance forms by strengthening the body's core while improving coordination, balance, alignment, and flexibility. It features 170 imagery illustrations paired with 160 dance-specific exercises to help maximize body-mind conditioning. It culminates with a 20-minute,…

  3. Constructing Domain-Specific Knowledge in Kindergarten: Relations among Knowledge, Intelligence, and Strategic Performance

    ERIC Educational Resources Information Center

    Alexander, Joyce M.; Johnson, Kathy E.; Leibham, Mary E.; DeBauge, Christiane

    2005-01-01

    Thirty kindergarten children from two classrooms participated in a 3-week curricular unit on dinosaurs designed to teach taxonomic relations and distinguishing features aligned with 15 dinosaur species. Both domain-specific learning and strategic performance on a Twenty Questions game were assessed twice throughout the curriculum, as well as…

  4. Mental sets in conduct problem youth with psychopathic features: entity versus incremental theories of intelligence.

    PubMed

    Salekin, Randall T; Lester, Whitney S; Sellers, Mary-Kate

    2012-08-01

    The purpose of the current study was to examine the effect of a motivational intervention on conduct problem youth with psychopathic features. Specifically, the current study examined conduct problem youths' mental set (or theory) regarding intelligence (entity vs. incremental) upon task performance. We assessed 36 juvenile offenders with psychopathic features and tested whether providing them with two different messages regarding intelligence would affect their functioning on a task related to academic performance. The study employed a MANOVA design with two motivational conditions and three outcomes including fluency, flexibility, and originality. Results showed that youth with psychopathic features who were given a message that intelligence grows over time, were more fluent and flexible than youth who were informed that intelligence is static. There were no significant differences between the groups in terms of originality. The implications of these findings are discussed including the possible benefits of interventions for adolescent offenders with conduct problems and psychopathic features. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  5. Automatic control design procedures for restructurable aircraft control

    NASA Technical Reports Server (NTRS)

    Looze, D. P.; Krolewski, S.; Weiss, J.; Barrett, N.; Eterno, J.

    1985-01-01

    A simple, reliable automatic redesign procedure for restructurable control is discussed. This procedure is based on Linear Quadratic (LQ) design methodologies. It employs a robust control system design for the unfailed aircraft to minimize the effects of failed surfaces and to extend the time available for restructuring the Flight Control System. The procedure uses the LQ design parameters for the unfailed system as a basis for choosing the design parameters of the failed system. This philosophy alloys the engineering trade-offs that were present in the nominal design to the inherited by the restructurable design. In particular, it alloys bandwidth limitations and performance trade-offs to be incorporated in the redesigned system. The procedure also has several other desirable features. It effectively redistributes authority among the available control effectors to maximize the system performance subject to actuator limitations and constraints. It provides a graceful performance degradation as the amount of control authority lessens. When given the parameters of the unfailed aircraft, the automatic redesign procedure reproduces the nominal control system design.

  6. Performance estimation for threat detection in CT systems

    NASA Astrophysics Data System (ADS)

    Montgomery, Trent; Karl, W. Clem; Castañón, David A.

    2017-05-01

    Detecting the presence of hazardous materials in suitcases and carry-on luggage is an important problem in aviation security. As the set of threats is expanding, there is a corresponding need to increase the capabilities of explosive detection systems to address these threats. However, there is a lack of principled tools for predicting the performance of alternative designs for detection systems. In this paper, we describe an approach for computing bounds on the achievable classification performance of material discrimination systems based on empirical statistics that estimate the f-divergence of the underlying features. Our approach can be used to examine alternative physical observation modalities and measurement configurations, as well as variations in reconstruction and feature extraction algorithms.

  7. Optimizing Railroad Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk

    ERIC Educational Resources Information Center

    Saat, Mohd Rapik

    2009-01-01

    The design of railroad tank cars is subject to structural and performance requirements and constrained by weight. They can be made safer by increasing tank thickness and adding various protective features, but these increase the weight and cost of the car and reduce its capacity and consequent transportation efficiency. Aircraft, automobiles and…

  8. 24 CFR 1000.162 - How will a recipient know that non-dwelling structures assisted under the IHBG program meet the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., design, features, amenities, performance or other factors. The standards for such structures must be able to support the reasonableness and necessity for these factors and to clearly identify the affordable... change; (vi) Cultural relevance of design; (vii) Size and scope supported by population and need; (viii...

  9. Rad-hard computer elements for space applications

    NASA Technical Reports Server (NTRS)

    Krishnan, G. S.; Longerot, Carl D.; Treece, R. Keith

    1993-01-01

    Space Hardened CMOS computer elements emulating a commercial microcontroller and microprocessor family have been designed, fabricated, qualified, and delivered for a variety of space programs including NASA's multiple launch International Solar-Terrestrial Physics (ISTP) program, Mars Observer, and government and commercial communication satellites. Design techniques and radiation performance of the 1.25 micron feature size products are described.

  10. On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    PubMed Central

    Calcagno, Cristina; Coppo, Mario

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327

  11. On designing multicore-aware simulators for systems biology endowed with OnLine statistics.

    PubMed

    Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.

  12. Validation of Underwater Sensor Package Using Feature Based SLAM

    PubMed Central

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  13. Data warehousing with Oracle

    NASA Astrophysics Data System (ADS)

    Shahzad, Muhammad A.

    1999-02-01

    With the emergence of data warehousing, Decision support systems have evolved to its best. At the core of these warehousing systems lies a good database management system. Database server, used for data warehousing, is responsible for providing robust data management, scalability, high performance query processing and integration with other servers. Oracle being the initiator in warehousing servers, provides a wide range of features for facilitating data warehousing. This paper is designed to review the features of data warehousing - conceptualizing the concept of data warehousing and, lastly, features of Oracle servers for implementing a data warehouse.

  14. Some design constraints required for the assembly of software components: The incorporation of atomic abstract types into generically structured abstract types

    NASA Technical Reports Server (NTRS)

    Johnson, Charles S.

    1986-01-01

    It is nearly axiomatic, that to take the greatest advantage of the useful features available in a development system, and to avoid the negative interactions of those features, requires the exercise of a design methodology which constrains their use. A major design support feature of the Ada language is abstraction: for data, functions processes, resources, and system elements in general. Atomic abstract types can be created in packages defining those private types and all of the overloaded operators, functions, and hidden data required for their use in an application. Generically structured abstract types can be created in generic packages defining those structured private types, as buildups from the user-defined data types which are input as parameters. A study is made of the design constraints required for software incorporating either atomic or generically structured abstract types, if the integration of software components based on them is to be subsequently performed. The impact of these techniques on the reusability of software and the creation of project-specific software support environments is also discussed.

  15. Processing technology for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.

    1985-01-01

    Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.

  16. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    PubMed

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  17. Computer-aided classification of breast microcalcification clusters: merging of features from image processing and radiologists

    NASA Astrophysics Data System (ADS)

    Lo, Joseph Y.; Gavrielides, Marios A.; Markey, Mia K.; Jesneck, Jonathan L.

    2003-05-01

    We developed an ensemble classifier for the task of computer-aided diagnosis of breast microcalcification clusters,which are very challenging to characterize for radiologists and computer models alike. The purpose of this study is to help radiologists identify whether suspicious calcification clusters are benign vs. malignant, such that they may potentially recommend fewer unnecessary biopsies for actually benign lesions. The data consists of mammographic features extracted by automated image processing algorithms as well as manually interpreted by radiologists according to a standardized lexicon. We used 292 cases from a publicly available mammography database. From each cases, we extracted 22 image processing features pertaining to lesion morphology, 5 radiologist features also pertaining to morphology, and the patient age. Linear discriminant analysis (LDA) models were designed using each of the three data types. Each local model performed poorly; the best was one based upon image processing features which yielded ROC area index AZ of 0.59 +/- 0.03 and partial AZ above 90% sensitivity of 0.08 +/- 0.03. We then developed ensemble models using different combinations of those data types, and these models all improved performance compared to the local models. The final ensemble model was based upon 5 features selected by stepwise LDA from all 28 available features. This ensemble performed with AZ of 0.69 +/- 0.03 and partial AZ of 0.21 +/- 0.04, which was statistically significantly better than the model based on the image processing features alone (p<0.001 and p=0.01 for full and partial AZ respectively). This demonstrated the value of the radiologist-extracted features as a source of information for this task. It also suggested there is potential for improved performance using this ensemble classifier approach to combine different sources of currently available data.

  18. Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features.

    PubMed

    Shi, Bibo; Grimm, Lars J; Mazurowski, Maciej A; Baker, Jay A; Marks, Jeffrey R; King, Lorraine M; Maley, Carlo C; Hwang, E Shelley; Lo, Joseph Y

    2018-03-01

    The aim of this study was to determine whether deep features extracted from digital mammograms using a pretrained deep convolutional neural network are prognostic of occult invasive disease for patients with ductal carcinoma in situ (DCIS) on core needle biopsy. In this retrospective study, digital mammographic magnification views were collected for 99 subjects with DCIS at biopsy, 25 of which were subsequently upstaged to invasive cancer. A deep convolutional neural network model that was pretrained on nonmedical images (eg, animals, plants, instruments) was used as the feature extractor. Through a statistical pooling strategy, deep features were extracted at different levels of convolutional layers from the lesion areas, without sacrificing the original resolution or distorting the underlying topology. A multivariate classifier was then trained to predict which tumors contain occult invasive disease. This was compared with the performance of traditional "handcrafted" computer vision (CV) features previously developed specifically to assess mammographic calcifications. The generalization performance was assessed using Monte Carlo cross-validation and receiver operating characteristic curve analysis. Deep features were able to distinguish DCIS with occult invasion from pure DCIS, with an area under the receiver operating characteristic curve of 0.70 (95% confidence interval, 0.68-0.73). This performance was comparable with the handcrafted CV features (area under the curve = 0.68; 95% confidence interval, 0.66-0.71) that were designed with prior domain knowledge. Despite being pretrained on only nonmedical images, the deep features extracted from digital mammograms demonstrated comparable performance with handcrafted CV features for the challenging task of predicting DCIS upstaging. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  20. Minimalist ensemble algorithms for genome-wide protein localization prediction.

    PubMed

    Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun

    2012-07-03

    Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.

  1. Minimalist ensemble algorithms for genome-wide protein localization prediction

    PubMed Central

    2012-01-01

    Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391

  2. Design and implementation of a remote UAV-based mobile health monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix

    2017-04-01

    Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.

  3. Investigation of REST-Class Hypersonic Inlet Designs

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan; Ferlemann, Paul G.

    2011-01-01

    Rectangular-to-elliptical shape-transition (REST) inlets are of interest for use on scramjet engines because they are efficient and integrate well with the forebody of a planar vehicle. The classic design technique by Smart for these inlets produces an efficient inlet but the complex three-dimensional viscous effects are only approximately included. Certain undesirable viscous features often occur in these inlets. In the present work, a design toolset has been developed which allows for rapid design of REST-class inlet geometries and the subsequent Navier-Stokes analysis of the inlet performance. This gives the designer feedback on the complex viscous effects at each design iteration. This new tool is applied to design an inlet for on-design operation at Mach 8. The tool allows for rapid investigation of design features that was previously not possible. The outcome is that the inlet shape can be modified to affect aspects of the flow field in a positive way. In one particular example, the boundary layer build-up on the bodyside of the inlet was reduced by 20% of the thickness associated with the classically designed inlet shape.

  4. Optimal control theory investigation of proprotor/wing response to vertical gust

    NASA Technical Reports Server (NTRS)

    Frick, J. K. D.; Johnson, W.

    1974-01-01

    Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.

  5. Serious games and blended learning; effects on performance and motivation in medical education.

    PubMed

    Dankbaar, Mary

    2017-02-01

    More efficient, flexible training models are needed in medical education. Information technology offers the tools to design and develop effective and more efficient training. The aims of this thesis were: 1) Compare the effectiveness of blended versus classroom training for the acquisition of knowledge; 2) Investigate the effectiveness and critical design features of serious games for performance improvement and motivation. Five empirical studies were conducted to answer the research questions and a descriptive study on an evaluation framework to assess serious games was performed. The results of the research studies indicated that: 1) For knowledge acquisition, blended learning is equally effective and attractive for learners as classroom learning; 2) A serious game with realistic, interactive cases improved complex cognitive skills for residents, with limited self-study time. Although the same game was motivating for inexperienced medical students and stimulated them to study longer, it did not improve their cognitive skills, compared with what they learned from an instructional e‑module. This indicates an 'expertise reversal effect', where a rich learning environment is effective for experts, but may be contra-productive for novices (interaction of prior knowledge and complexity of format). A blended design is equally effective and attractive as classroom training. Blended learning facilitates adaptation to the learners' knowledge level, flexibility in time and scalability of learning. Games may support skills learning, provided task complexity matches the learner's competency level. More design-based research is needed on the effects of task complexity and other design features on performance improvement, for both novices and experts.

  6. MindDigger: Feature Identification and Opinion Association for Chinese Movie Reviews

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Li, Chunping

    In this paper, we present a prototype system called MindDigger, which can be used to analyze the opinions in Chinese movie reviews. Different from previous research that employed techniques on product reviews, we focus on Chinese movie reviews, in which opinions are expressed in subtle and varied ways. The system designed in this work aims to extract the opinion expressions and assign them to the corresponding features. The core tasks include feature and opinion extraction, and feature-opinion association. To deal with Chinese effectively, several novel approaches based on syntactic analysis are proposed in this paper. Running results show the performance is satisfactory.

  7. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards

    PubMed Central

    Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.

    2015-01-01

    Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842

  8. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards.

    PubMed

    Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E

    2015-10-01

    Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.

  9. Compact Miniaturized Antenna for 210 MHz RFID

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  10. Effect of finite sample size on feature selection and classification: a simulation study.

    PubMed

    Way, Ted W; Sahiner, Berkman; Hadjiiski, Lubomir M; Chan, Heang-Ping

    2010-02-01

    The small number of samples available for training and testing is often the limiting factor in finding the most effective features and designing an optimal computer-aided diagnosis (CAD) system. Training on a limited set of samples introduces bias and variance in the performance of a CAD system relative to that trained with an infinite sample size. In this work, the authors conducted a simulation study to evaluate the performances of various combinations of classifiers and feature selection techniques and their dependence on the class distribution, dimensionality, and the training sample size. The understanding of these relationships will facilitate development of effective CAD systems under the constraint of limited available samples. Three feature selection techniques, the stepwise feature selection (SFS), sequential floating forward search (SFFS), and principal component analysis (PCA), and two commonly used classifiers, Fisher's linear discriminant analysis (LDA) and support vector machine (SVM), were investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian distributions with equal or unequal covariance matrices and unequal means, and with equal covariance matrices and unequal means estimated from a clinical data set. Classifier performance was quantified by the area under the receiver operating characteristic curve Az. The mean Az values obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging from 15 to 100 per class. The number of simulated features available for selection was chosen to be 50, 100, and 200. It was found that the relative performance of the different combinations of classifier and feature selection method depends on the feature space distributions, the dimensionality, and the available training sample sizes. The LDA and SVM with radial kernel performed similarly for most of the conditions evaluated in this study, although the SVM classifier showed a slightly higher hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show advantages over the other two feature selection methods. Under this condition, the SVM with radial kernel performed better than the LDA when few training samples were available, while LDA performed better when a large number of training samples were available. None of the investigated feature selection-classifier combinations provided consistently superior performance under the studied conditions for different sample sizes and feature space distributions. In general, the SFFS method was comparable to the SFS method while PCA may have an advantage for Gaussian feature spaces with unequal covariance matrices. The performance of the SVM with radial kernel was better than, or comparable to, that of the SVM with polynomial kernel under most conditions studied.

  11. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  12. Classification of clinically useful sentences in clinical evidence resources.

    PubMed

    Morid, Mohammad Amin; Fiszman, Marcelo; Raja, Kalpana; Jonnalagadda, Siddhartha R; Del Fiol, Guilherme

    2016-04-01

    Most patient care questions raised by clinicians can be answered by online clinical knowledge resources. However, important barriers still challenge the use of these resources at the point of care. To design and assess a method for extracting clinically useful sentences from synthesized online clinical resources that represent the most clinically useful information for directly answering clinicians' information needs. We developed a Kernel-based Bayesian Network classification model based on different domain-specific feature types extracted from sentences in a gold standard composed of 18 UpToDate documents. These features included UMLS concepts and their semantic groups, semantic predications extracted by SemRep, patient population identified by a pattern-based natural language processing (NLP) algorithm, and cue words extracted by a feature selection technique. Algorithm performance was measured in terms of precision, recall, and F-measure. The feature-rich approach yielded an F-measure of 74% versus 37% for a feature co-occurrence method (p<0.001). Excluding predication, population, semantic concept or text-based features reduced the F-measure to 62%, 66%, 58% and 69% respectively (p<0.01). The classifier applied to Medline sentences reached an F-measure of 73%, which is equivalent to the performance of the classifier on UpToDate sentences (p=0.62). The feature-rich approach significantly outperformed general baseline methods. This approach significantly outperformed classifiers based on a single type of feature. Different types of semantic features provided a unique contribution to overall classification performance. The classifier's model and features used for UpToDate generalized well to Medline abstracts. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    DOE PAGES

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; ...

    2015-02-10

    In this study, the design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memorymore » alloy to transcribe the "J-curve'' mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti 3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.« less

  14. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    PubMed Central

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-01-01

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the “J-curve” mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials. PMID:25665501

  15. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess.

    PubMed

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-02-10

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the "J-curve" mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.

  16. Whirl Flutter Studies for a SSTOL Transport Demonstrator

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Hoffman, Krishna

    2004-01-01

    A proposed new class of aircraft - the Advanced Theater Transport (ATT) will combine strategic range and high payload with 'Super-STOL' (short take-off and landing) capability. It is also proposed to modify a YC-15 into a technology demonstrator with a 20-deg tilt wing; four, eight-bladed propellers; cross-shafted gearboxes and V-22 engines. These constitute a unique combination of design features that potentially affect performance, loads and whirl-mode stability (whirl flutter). NASA Ames Research Center is working with Boeing and Hamilton Sundstrand on technology challenges presented by the concept; the purpose of NASA involvement is to establish requirements for the demonstrator and for early design guidance, with emphasis on whirl flutter. CAMRAD II is being used to study the effects of various design features on whirl flutter, with special attention to areas where such features differ from existing aircraft, notably tiltrotors. Although the stability margins appear to be more than adequate, the concept requires significantly different analytical methods, principally including far more blade modes, than typically used for tiltrotors.

  17. A Numerical Analysis on the Effects of Self-Excited Tip Flow Unsteadiness and Upstream Blade Row Interactions on the Performance Predictions of a Transonic Compressor

    NASA Astrophysics Data System (ADS)

    Heberling, Brian

    Computational fluid dynamics (CFD) simulations can offer a detailed view of the complex flow fields within an axial compressor and greatly aid the design process. However, the desire for quick turnaround times raises the question of how exact the model must be. At design conditions, steady CFD simulating an isolated blade row can accurately predict the performance of a rotor. However, as a compressor is throttled and mass flow rate decreased, axial flow becomes weaker making the capturing of unsteadiness, wakes, or other flow features more important. The unsteadiness of the tip clearance flow and upstream blade wake can have a significant impact on a rotor. At off-design conditions, time-accurate simulations or modeling multiple blade rows can become necessary in order to receive accurate performance predictions. Unsteady and multi- bladerow simulations are computationally expensive, especially when used in conjunction. It is important to understand which features are important to model in order to accurately capture a compressor's performance. CFD simulations of a transonic axial compressor throttling from the design point to stall are presented. The importance of capturing the unsteadiness of the rotor tip clearance flow versus capturing upstream blade-row interactions is examined through steady and unsteady, single- and multi-bladerow computations. It is shown that there are significant differences at near stall conditions between the different types of simulations.

  18. Blurred Palmprint Recognition Based on Stable-Feature Extraction Using a Vese–Osher Decomposition Model

    PubMed Central

    Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong

    2014-01-01

    As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese–Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred–PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition. PMID:24992328

  19. Blurred palmprint recognition based on stable-feature extraction using a Vese-Osher decomposition model.

    PubMed

    Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong

    2014-01-01

    As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese-Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred-PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition.

  20. Low-power hardware implementation of movement decoding for brain computer interface with reduced-resolution discrete cosine transform.

    PubMed

    Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E

    2014-01-01

    This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.

  1. Features of the solar array drive mechanism for the space telescope

    NASA Technical Reports Server (NTRS)

    Hostenkamp, R. G.

    1985-01-01

    The solar array drive mechanism for the Space Telescope embodies several features not customarily found on solar array drives. Power and signal transfer is achieved by means of a flexible wire harness for which the chosen solution, consisting of 168 standard wires, is described. The torque performance data of the harness over its temperature range are presented. The off load system which protects the bearings from the launch loads is released by a trigger made from Nitinol, the memory alloy. The benefits of memory alloy and the caveats for the design are briefly discussed. The design of the off load system is described and test experience is reported.

  2. Final design review summary report for the TN-WHC cask and transportation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kee, A.T.

    1997-01-17

    This document represents comments generated from a review of Transnuclear`s Final Design Package distributed on December 10, 1996 and a review of the Final Design Analysis Report meeting held on December 17 & 18, 1996. The Final design describes desicn features and presents final analyses @j performed to fabricate and operate the system while meeting the Cask/Transportation Functions and Requirements, WHC-SD-SNF-FRD-011, Rev. 0 and specification WHC-S-0396, Rev. 1.

  3. Framework for Flux Qubit Design

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Kamal, Archana; Krantz, Philip; Campbell, Daniel; Kim, David; Yoder, Jonilyn; Orlando, Terry; Gustavsson, Simon; Oliver, William; Engineering Quantum Systems Team

    A qubit design for higher performance relies on the understanding of how various qubit properties are related to design parameters. We construct a framework for understanding the qubit design in the flux regime. We explore different parameter regimes, looking for features desirable for certain purpose in the context of quantum computing. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.

  4. Evaluation of advanced high rate Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.

    1986-01-01

    Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.

  5. High Energy Lithium-Ion VES Cells And Batteries Performances

    NASA Astrophysics Data System (ADS)

    Castric, A.-F.; Lawson, S.; Borthomieu, Y.

    2011-10-01

    b Saft's Space VES range of lithium-ion cells have been designed specifically to meet the satellites on-board power need, while meeting the legitimate high levels of requirements for space products. The purpose of the paper is to develop how the VES batteries designs have progressively evolved in order to accommodate the needs, requirements and constraints evolutions. The following topics will be presented: - Description of the main design features of the VES Li- ion batteries. - How the optimised battery configuration is selected against the required EOL power need or other constraints. - Presentation of the batteries performances (electrical, mechanical, thermal, interface, weight, ...). - Measures implemented in order to maintain these performances, and to guarantee the best product quality as per space standards.

  6. State budget transfers to Health Insurance to expand coverage to people outside formal sector work in Latin America.

    PubMed

    Mathauer, Inke; Behrendt, Thorsten

    2017-02-16

    Contributory social health insurance for formal sector employees only has proven challenging for moving towards universal health coverage (UHC). This is because the informally employed and the poor usually remain excluded. One way to expand UHC is to fully or partially subsidize health insurance contributions for excluded population groups through government budget transfers. This paper analyses the institutional design features of such government subsidization arrangements in Latin America and assesses their performance with respect to UHC progress. The aim is to identify UHC conducive institutional design features of such arrangements. A literature search provided the information to analyse institutional design features, with a focus on the following aspects: eligibility/enrolment rules, financing and pooling arrangements, and purchasing and benefit package design. Based on secondary data analysis, UHC progress is assessed in terms of improved population coverage, financial protection and access to needed health care services. Such government subsidization arrangements currently exist in eight countries of Latin America (Bolivia, Chile, Colombia, Costa Rica, Dominican Republic, Mexico, Peru, Uruguay). Institutional design features and UHC related performance vary significantly. Notably, countries with a universalist approach or indirect targeting have higher population coverage rates. Separate pools for the subsidized maintain inequitable access. The relatively large scopes of the benefit packages had a positive impact on financial protection and access to care. In the long term, merging different schemes into one integrated health financing system without opt-out options for the better-off is desirable, while equally expanding eligibility to cover those so far excluded. In the short and medium term, the harmonization of benefit packages could be a priority. UHC progress also depends on substantial supply side investments to ensure the availability of quality services, particularly in rural areas. Future research should generate more evidence on the implementation process and impact of subsidization arrangements on UHC progress.

  7. Perspective: Materials Informatics and Big Data: Realization of the Fourth Paradigm of Science in Materials Science

    DTIC Science & Technology

    2016-08-17

    thereby opening up new avenues for accelerated materials discovery and design . The need for such data analytics has also been emphasized by the...and design . The construction of inverse models is typically formulated as an optimiza- tion problem wherein a property or performance metric of...discovery and design . extraction, feature selection, etc. Such data preprocessing can either be supervised or unsupervised, based on whether the

  8. Studies using single-subject designs in sport psychology: 30 years of research

    PubMed Central

    Martin, Garry L.; Thompson, Kendra; Regehr, Kaleigh

    2004-01-01

    A prominent feature of behavior-analytic research has been the use of single-subject designs. We examined sport psychology journals and behavioral journals published during the past 30 years, and located 40 studies using single-subject designs to assess interventions for enhancing the performance of athletes and coaches. In this paper, we summarize that body of research, discuss its strengths and limitations, and identify areas for future research. PMID:22478434

  9. Enhanced terahertz imaging system performance analysis and design tool for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.

    2011-11-01

    The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.

  10. Design for effective development and prototyping of the HL-20

    NASA Astrophysics Data System (ADS)

    Urie, David M.; Floreck, Paul A.; McMorris, John A.; Elvin, John D.

    1993-10-01

    A feasibility study of the HL-20 personnel launch system (PLS) concept was conducted by a team which focused on creating a PLS design approach and an accelerated development plan consistent with the historical 'Skunk Works' approach to rapid prototyping. Technical design, manufacturing, system testing, and operations and support elements of the predefined baseline concept were evaluated. An initial phase program, featuring a concurrent system test during design and development, leading to the orbital flight of an unmanned HL-20 prototype on a Titan III launch system, was prescribed. A second-phase development and manufacturing plan leading to system operational status was also formulated. Baseline design feature modifications were made when necessary, without compromise to performance, to satisfy the prototype development plan. Technical design details and off-the-shelf hardware candidates were also identified for several subsystems, including the launch-system interface adapter/emergency escape system. The technical feasibility of the system and applicability of the Skunk Works approach to development of the HL-20/PLS were verified.

  11. A high power ion thruster for deep space missions

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  12. A high power ion thruster for deep space missions.

    PubMed

    Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  13. Design and evaluation of a modular lower limb exoskeleton for rehabilitation.

    PubMed

    Dos Santos, Wilian M; Nogueira, Samuel L; de Oliveira, Gustavo C; Pena, Guido G; Siqueira, Adriano A G

    2017-07-01

    This paper deals with the evaluation of an exoskeleton designed for assisting individuals to rehabilitate compromised lower limb movements resulting from stroke or incomplete spinal cord injury. The exoskeleton is composed of lightweight tubular structures and six free joints that provide a modular feature to the system. This feature allows the exoskeleton to be adapted to assist the movement of one or more patient joints. The actuation of the exoskeleton is also modular, and can be performed passively, by means of springs and dampers, or actively through actuators. In addition, its telescopic tubular links, developed to adjust the size of the links in order to align the joints of the exoskeleton with patient joints, allows the exoskeleton to be adjustable to fit different patients. Experiments considering the interaction between a healthy subject and the exoskeleton are performed to evaluate the influence of the exoskeleton structure on kinematic and muscular activity profiles during walking.

  14. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  15. Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors

    PubMed Central

    Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.

    2014-01-01

    Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical ultrasound transducers. AE ultrasound detectors may also be useful for monitoring acoustic exposure during therapy or as receivers for photoacoustic imaging. PMID:24658721

  16. Transitioning to High Performance Homes: Successes and Lessons Learned From Seven Builders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Kora, Angela R.; Baechler, Michael C.

    2013-03-01

    As homebuyers are becoming increasingly concerned about rising energy costs and the impact of fossil fuels as a major source of greenhouse gases, the returning new home market is beginning to demand energy-efficient and comfortable high-performance homes. In response to this, some innovative builders are gaining market share because they are able to market their homes’ comfort, better indoor air quality, and aesthetics, in addition to energy efficiency. The success and marketability of these high-performance homes is creating a builder demand for house plans and information about how to design, build, and sell their own low-energy homes. To help makemore » these and other builders more successful in the transition to high-performance construction techniques, Pacific Northwest National Laboratory (PNNL) partnered with seven interested builders in the hot humid and mixed humid climates to provide technical and design assistance through two building science firms, Florida Home Energy and Resources Organization (FL HERO) and Calcs-Plus, and a designer that offers a line of stock plans designed specifically for energy efficiency, called Energy Smart Home Plans (ESHP). This report summarizes the findings of research on cost-effective high-performance whole-house solutions, focusing on real-world implementation and challenges and identifying effective solutions. The ensuing sections provide project background, profile each of the builders who participated in the program, and describe their houses’ construction characteristics, key challenges the builders encountered during the construction and transaction process); and present primary lessons learned to be applied to future projects. As a result of this technical assistance, 17 homes have been built featuring climate-appropriate efficient envelopes, ducts in conditioned space, and correctly sized and controlled heating, ventilation, and air-conditioning systems. In addition, most builders intend to integrate high-performance features into most or all their homes in the future. As these seven builders have demonstrated, affordable, high-performance homes are possible, but require attention to detail and flexibility in design to accommodate specific regional geographic or market-driven constraints that can increase cost. With better information regarding how energy-efficiency trade-offs or design choices affect overall home performance, builders can make informed decisions regarding home design and construction to minimize cost without sacrificing performance and energy savings.« less

  17. One Controller at a Time (1-CAT): A mimo design methodology

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Lucas, J. C.

    1987-01-01

    The One Controller at a Time (1-CAT) methodology for designing digital controllers for Large Space Structures (LSS's) is introduced and illustrated. The flexible mode problem is first discussed. Next, desirable features of a LSS control system design methodology are delineated. The 1-CAT approach is presented, along with an analytical technique for carrying out the 1-CAT process. Next, 1-CAT is used to design digital controllers for the proposed Space Based Laser (SBL). Finally, the SBL design is evaluated for dynamical performance, noise rejection, and robustness.

  18. 78 FR 14155 - Special Conditions: Learjet Inc., Model LJ-200-1A10 Airplane; Use of Automatic Power Reserve (APR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Automatic Power Reserve (APR), an Automatic Takeoff Thrust Control System (ATTCS), for Go-Around Performance... airplane will have novel or unusual design features associated with utilizing go-around performance credit...: Federal eRegulations Portal: Go to http://www.regulations.gov/ and follow the online instructions for...

  19. Discharge characteristics of 300 ampere-hour Ni-Zn traction cells

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1979-01-01

    Preliminary tests were performed on 300 amphere-hour nickel-zinc cells containing the Lewis improved inorganic-organic (I/O) separator. These cells also have other design features included to optimize performance and cycle life. The tests carried out were formation tests and characteristic discharge tests. Information obtained include case temperature and maximum power delivered.

  20. By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.

  1. A Comparison of Single Sample and Bootstrap Methods to Assess Mediation in Cluster Randomized Trials

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Stapleton, Laura M.; Kang, Joo Youn

    2006-01-01

    A Monte Carlo study examined the statistical performance of single sample and bootstrap methods that can be used to test and form confidence interval estimates of indirect effects in two cluster randomized experimental designs. The designs were similar in that they featured random assignment of clusters to one of two treatment conditions and…

  2. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system

    NASA Astrophysics Data System (ADS)

    Kostopoulos, S.; Sidiropoulos, K.; Glotsos, D.; Dimitropoulos, N.; Kalatzis, I.; Asvestas, P.; Cavouras, D.

    2014-03-01

    The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions.

  3. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  4. Design of the HELICS High-Performance Transmission-Distribution-Communication-Market Co-Simulation Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip

    This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less

  5. Design of the HELICS High-Performance Transmission-Distribution-Communication-Market Co-Simulation Framework: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip

    This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less

  6. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  7. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  8. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    NASA Technical Reports Server (NTRS)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  9. SP-100 Control System Design

    NASA Astrophysics Data System (ADS)

    Shukla, Jaikaran N.; Halfen, Frank J.; Brynsvold, Glen V.; Syed, Akbar; Jiang, Thomas J.; Wong, Kwok K.; Otwell, Robert L.

    1994-07-01

    Recent work in lower power generic early applications for the SP-100 have resulted in control system design simplification for a 20 kWe design with thermoelectric power conversion. This paper presents the non-mission-dependent control system features for this design. The control system includes a digital computer based controller, dual purpose control rods and drives, temperature sensors, and neutron flux monitors. The thaw system is mission dependent and can be either electrical or based on NaK trace lines. Key features of the control system and components are discussed. As was the case for higher power applications, the initial on-orbit approach to criticality involves the relatively fast withdrawal of the control-rods to a near-critical position followed by slower movement through critical and into the power range. The control system performs operating maneuvers as well as providing for automatic startup, shutdown, restart, and reactor protection.

  10. Persuasive Reminders for Health Self-Management

    PubMed Central

    O’Leary, Katie; Liu, Leslie; McClure, Jennifer B.; Ralston, James; Pratt, Wanda

    2016-01-01

    Abstract Health reminders are integral to self-managing chronic illness. However, to act on these health reminders, patients face many challenges, such as lack of motivation and ability to perform health tasks. As a result, patients experience negative consequences for their health. To investigate the design of health reminders that persuade patients to take action, we conducted six participatory design sessions with two cohorts: mothers of children with asthma, and older adults with type 2 diabetes. Participants used collages, storyboards, and photos to express design ideas for future health reminder systems. From their design artifacts, we identified four types of persuasive reminders for health self-management: introspective, socially supportive, adaptive, and symbolic. We contribute insights into desired features for persuasive reminder systems from the perspectives of patients and informal caregivers, including features that support users to understand why and how to complete health tasks ahead of time, and affordances for intra-familial and patient-provider collaboration. PMID:28269896

  11. Design of an Object-Oriented Turbomachinery Analysis Code: Initial Results

    NASA Technical Reports Server (NTRS)

    Jones, Scott

    2015-01-01

    Performance prediction of turbomachines is a significant part of aircraft propulsion design. In the conceptual design stage, there is an important need to quantify compressor and turbine aerodynamic performance and develop initial geometry parameters at the 2-D level prior to more extensive Computational Fluid Dynamics (CFD) analyses. The Object-oriented Turbomachinery Analysis Code (OTAC) is being developed to perform 2-D meridional flowthrough analysis of turbomachines using an implicit formulation of the governing equations to solve for the conditions at the exit of each blade row. OTAC is designed to perform meanline or streamline calculations; for streamline analyses simple radial equilibrium is used as a governing equation to solve for spanwise property variations. While the goal for OTAC is to allow simulation of physical effects and architectural features unavailable in other existing codes, it must first prove capable of performing calculations for conventional turbomachines.OTAC is being developed using the interpreted language features available in the Numerical Propulsion System Simulation (NPSS) code described by Claus et al (1991). Using the NPSS framework came with several distinct advantages, including access to the pre-existing NPSS thermodynamic property packages and the NPSS Newton-Raphson solver. The remaining objects necessary for OTAC were written in the NPSS framework interpreted language. These new objects form the core of OTAC and are the BladeRow, BladeSegment, TransitionSection, Expander, Reducer, and OTACstart Elements. The BladeRow and BladeSegment consumed the initial bulk of the development effort and required determining the equations applicable to flow through turbomachinery blade rows given specific assumptions about the nature of that flow. Once these objects were completed, OTAC was tested and found to agree with existing solutions from other codes; these tests included various meanline and streamline comparisons of axial compressors and turbines at design and off-design conditions.

  12. Design of an Object-Oriented Turbomachinery Analysis Code: Initial Results

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2015-01-01

    Performance prediction of turbomachines is a significant part of aircraft propulsion design. In the conceptual design stage, there is an important need to quantify compressor and turbine aerodynamic performance and develop initial geometry parameters at the 2-D level prior to more extensive Computational Fluid Dynamics (CFD) analyses. The Object-oriented Turbomachinery Analysis Code (OTAC) is being developed to perform 2-D meridional flowthrough analysis of turbomachines using an implicit formulation of the governing equations to solve for the conditions at the exit of each blade row. OTAC is designed to perform meanline or streamline calculations; for streamline analyses simple radial equilibrium is used as a governing equation to solve for spanwise property variations. While the goal for OTAC is to allow simulation of physical effects and architectural features unavailable in other existing codes, it must first prove capable of performing calculations for conventional turbomachines. OTAC is being developed using the interpreted language features available in the Numerical Propulsion System Simulation (NPSS) code described by Claus et al (1991). Using the NPSS framework came with several distinct advantages, including access to the pre-existing NPSS thermodynamic property packages and the NPSS Newton-Raphson solver. The remaining objects necessary for OTAC were written in the NPSS framework interpreted language. These new objects form the core of OTAC and are the BladeRow, BladeSegment, TransitionSection, Expander, Reducer, and OTACstart Elements. The BladeRow and BladeSegment consumed the initial bulk of the development effort and required determining the equations applicable to flow through turbomachinery blade rows given specific assumptions about the nature of that flow. Once these objects were completed, OTAC was tested and found to agree with existing solutions from other codes; these tests included various meanline and streamline comparisons of axial compressors and turbines at design and off-design conditions.

  13. Energy efficient engine high-pressure turbine supersonic cascade technology report

    NASA Technical Reports Server (NTRS)

    Kopper, F. C.; Milano, R.; Davis, R. L.; Dring, R. P.; Stoeffler, R. C.

    1981-01-01

    The performance of two vane endwall geometries and three blade sections for the high-pressure turbine was evaluated in terms of the efficiency requirements of the Energy Efficient Engine high-pressure turbine component. The van endwall designs featured a straight wall and S-wall configuration. The blade designs included a base blade, straightback blade, and overcambered blade. Test results indicated that the S-wall vane configuration and the base blade configuration offered the most promising performance characteristics for the Energy Efficient Engine high-pressure turbine component.

  14. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The results of pretesting and performance testing of Stack 564 are reported. The design features, progress in fabrication and plans for assembly of Stack 800 are given. The status of endurance testing of Stack 560 is reported. The design, fabrication, test procedures and preliminary tests of the 10 kW double counterflow reformer and the reformer test stand are described. Results of vendor contacts to define the performance and cost of fuel conditioning system components are reported. The results of burner tests and continuing development of the BOLTAR program are reported.

  15. Turbine Design and Analysis for the J-2X Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Tran, Ken; Dorney, Daniel J.; Schmauch, Preston

    2008-01-01

    Pratt and Whitney Rocketdyne and NASA Marshall Space Flight Center are developing the advanced upper stage J-2X engine based on the legacy design of the J-2/J-2S family of engines which powered the Apollo missions. The cryogenic propellant turbopumps have been denoted as Mark72-F and Mark72-0 for the fuel and oxidizer side, respectively. Special attention is focused on preserving the essential flight-proven design features while adapting the design to the new turbopump configuration. Advanced 3-D CFD analysis has been employed to verify turbine aero performance at current flow regime boundary conditions and to mitigate risks associated with stresses. A limited amount of redesign and overall configuration modifications allow for a robust design with performance level matching or exceeding requirement.

  16. Performance of a small annular turbojet combustor designed for low cost

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1972-01-01

    Performance investigations were conducted on a combustor utilizing several cost-reducing innovations and designed for use in a low-cost 4448-N thrust turbojet engine for commercial light aircraft. Low-cost features included simple, air-atomizing fuel injectors; combustor liners of perforated sheet; and the use of inexpensive type 304 stainless-steel material. Combustion efficiencies at the cruise and sea-level-takeoff design points were approximately 97 and 98 percent, respectively. The combustor isothermal pressure loss was 6.3 percent at the cruise-condition diffuser inlet Mach number of 0.34. The combustor exit temperature pattern factor was less than 0.24 at both the cruise and sea-level-takeoff design points. The combustor exit average radial temperature profiles at all conditions were in very good agreement with the design profile.

  17. Fifteen year performance review of Michigan's European concrete pavement.

    DOT National Transportation Integrated Search

    2010-02-01

    In 1993, a special pavement demonstration project was constructed in Detroit on NB I-75 to evaluate the design features of some highly acclaimed European rigid pavements. The Michigan Department of Transportation (MDOT) and the Federal Highway Admini...

  18. Twenty year performance review of Michigan's European concrete pavement.

    DOT National Transportation Integrated Search

    2013-10-01

    In 1993, a special pavement demonstration project was constructed in Detroit on NB I-75 to evaluate the design features of some highly acclaimed European rigid pavements. The Michigan Department of Transportation (MDOT) and the Federal Highway Admini...

  19. Work zone traffic management synthesis : work zone pedestrian protection

    DOT National Transportation Integrated Search

    1997-08-01

    This Long Term Pavement Performance (LTPP) data analysis was intended to examine, in a practical way, the LTPP database and to identify the site conditions and design features that significantly affect transverse joint faulting. Key products develope...

  20. Effects of pavement surface texture on noise and frictional characteristics.

    DOT National Transportation Integrated Search

    1987-02-01

    An experimental modification of the transverse groove : surface texture of a section of an urban interstate highway was : performed by the Iowa Department of Transportation. Transverse : groove texturing is a design feature required by the Federal : ...

  1. Sustainable urban stormwater management in the tropics: An evaluation of Singapore's ABC Waters Program

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Lu, X. X.

    2016-07-01

    The Active Beautiful Clean (ABC) Waters Program was implemented in 2006 as part of Singapore's stormwater management strategy and reflects the country's move towards Water Sensitive Urbanism through the adoption of Low-Impact Development (LID) ideology and practices. It is the first holistic and comprehensive LID program in the tropics and holds promise for extension to other tropical cities. This paper presents a comprehensive summary of the goals, LID practices (ABC design features) and design considerations as well as results of several monitored sites, including a constructed wetland, two rain gardens, green roofs and three canal restoration projects. We evaluate the ABC Waters Program based on these initial results and consider the challenges, issues and the research needs for it to meet its hydrological and water quality remediation goals. So far, the ABC design features evaluated perform well in removing particulates. Performance in nutrient removal is poor. With over 60 projects completed within 10 years, post-project monitoring and evaluation is necessary and complements on-going laboratory and modelling research projects conducted by local academic institutions.

  2. Cryogenic propellant management: Integration of design, performance and operational requirements

    NASA Technical Reports Server (NTRS)

    Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.

    1985-01-01

    The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.

  3. The 30/20 Gigahertz transponder study. [wideband multichannel transponders for a communications satellite

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Design features and performance parameters are described for three types of wideband multiple channel satellite transponders for use in a 30/20 GHz communications satellite, which provides high data rate trunking service to ten ground station terminals. The three types of transponder are frequency division multiplex (FDM), time division multiplex (TDM), and a hybrid transponder using a combination of FDM and TDM techniques. The wideband multiple beam trunking concept, the traffic distribution between the trunking terminals, and system design constraints are discussed. The receiver front end design, the frequency conversion scheme, and the local oscillator design are described including the thermal interface between the transponders and the satellite. The three designs are compared with regard to performance, weight, power, cost and initial technology. Simplified block diagrams of the baseline transponder designs are included.

  4. Apollo experience report: S-band system signal design and analysis

    NASA Technical Reports Server (NTRS)

    Rosenberg, H. R. (Editor)

    1972-01-01

    A description is given of the Apollo communications-system engineering-analysis effort that ensured the adequacy, performance, and interface compatibility of the unified S-band system elements for a successful lunar-landing mission. The evolution and conceptual design of the unified S-band system are briefly reviewed from a historical viewpoint. A comprehensive discussion of the unified S-band elements includes the salient design features of the system and serves as a basis for a better understanding of the design decisions and analyses. The significant design decisions concerning the Apollo communications-system signal design are discussed providing an insight into the role of systems analysis in arriving at the current configuration of the Apollo communications system. Analyses are presented concerning performance estimation (mathematical-model development through real-time mission support) and system deficiencies, modifications, and improvements.

  5. Search performance is better predicted by tileability than presence of a unique basic feature.

    PubMed

    Chang, Honghua; Rosenholtz, Ruth

    2016-08-01

    Traditional models of visual search such as feature integration theory (FIT; Treisman & Gelade, 1980), have suggested that a key factor determining task difficulty consists of whether or not the search target contains a "basic feature" not found in the other display items (distractors). Here we discriminate between such traditional models and our recent texture tiling model (TTM) of search (Rosenholtz, Huang, Raj, Balas, & Ilie, 2012b), by designing new experiments that directly pit these models against each other. Doing so is nontrivial, for two reasons. First, the visual representation in TTM is fully specified, and makes clear testable predictions, but its complexity makes getting intuitions difficult. Here we elucidate a rule of thumb for TTM, which enables us to easily design new and interesting search experiments. FIT, on the other hand, is somewhat ill-defined and hard to pin down. To get around this, rather than designing totally new search experiments, we start with five classic experiments that FIT already claims to explain: T among Ls, 2 among 5s, Q among Os, O among Qs, and an orientation/luminance-contrast conjunction search. We find that fairly subtle changes in these search tasks lead to significant changes in performance, in a direction predicted by TTM, providing definitive evidence in favor of the texture tiling model as opposed to traditional views of search.

  6. Updated Mars Mission Architectures Featuring Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Rodriguez, Mitchell A.; Percy, Thomas K.

    2017-01-01

    Nuclear thermal propulsion (NTP) can potentially enable routine human exploration of Mars and the solar system. By using nuclear fission instead of a chemical combustion process, and using hydrogen as the propellant, NTP systems promise rocket efficiencies roughly twice that of the best chemical rocket engines currently available. The most recent major Mars architecture study featuring NTP was the Design Reference Architecture 5.0 (DRA 5.0), performed in 2009. Currently, the predominant transportation options being considered are solar electric propulsion (SEP) and chemical propulsion; however, given NTP's capabilities, an updated architectural analysis is needed. This paper provides a top-level overview of several different architectures featuring updated NTP performance data. New architectures presented include a proposed update to the DRA 5.0 as well as an investigation of architectures based on the current Evolvable Mars Campaign, which is the focus of NASA's current analyses for the Journey to Mars. Architectures investigated leverage the latest information relating to NTP performance and design considerations and address new support elements not available at the time of DRA 5.0, most notably the Orion crew module and the Space Launch System (SLS). The paper provides a top level quantitative comparison of key performance metrics as well as a qualitative discussion of improvements and key challenges still to be addressed. Preliminary results indicate that the updated NTP architectures can significantly reduce the campaign mass and subsequently the costs for assembly and number of launches.

  7. Raytheon Stirling/pulse Tube Cryocooler Development

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  8. LARM PKM solutions for torso design in humanoid robots

    NASA Astrophysics Data System (ADS)

    Ceccarelli, Marco

    2014-12-01

    Human-like torso features are essential in humanoid robots. In this paper problems for design and operation of solutions for a robotic torso are discussed by referring to experiences and designs that have been developed at Laboratory of Robotics and Mechatronics (LARM) in Cassino, Italy. A new solution is presented with conceptual views as waist-trunk structure that makes a proper partition of the performance for walking and arm operations as sustained by a torso.

  9. Emollient product design: objective measurements of formulation structure, texture and performance, and subjective assessments of user acceptability.

    PubMed

    Antonijević, M D; Owusu-Ware, S; Sanchon-Lopez, B

    2018-06-01

    The choice of prescribed emollients is usually based on cost and patient preference. Differences in formulations can affect user acceptability. To compare the physical performance, user acceptability and various product design features of two emollient gels that are prescribed in the UK and alleged to be therapeutically interchangeable because their formulations are described as having the same contents of oily ingredients. We found that here are in fact significant measurable differences between the structure and performance of the two formulations, which materially affect their user acceptability. These differences are attributed to the use of different types of gelling agents and other ingredients of differing grades/quality and concentrations, and probably due to the formulations being made by different manufacturing processes. We also identified other product design features that are important to user appeal, including the type of container in which the formulations are presented, the type of dispensing devices provided, and the nature and form of the supplied user instructions. Patients and prescribers should be aware that there can be important differences in performance and user appeal between emollients, even between products that, superficially, may appear to be very similar. These important performance aspects should be characterized for new emollient introductions to encourage better informed product selection. © 2018 The Authors. Clinical and Experimental Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists, North American Clinical Dermatologic Society and St Johns Dermatological Society.

  10. Mechanical-Kinetic Modeling of a Molecular Walker from a Modular Design Principle

    NASA Astrophysics Data System (ADS)

    Hou, Ruizheng; Loh, Iong Ying; Li, Hongrong; Wang, Zhisong

    2017-02-01

    Artificial molecular walkers beyond burnt-bridge designs are complex nanomachines that potentially replicate biological walkers in mechanisms and functionalities. Improving the man-made walkers up to performance for widespread applications remains difficult, largely because their biomimetic design principles involve entangled kinetic and mechanical effects to complicate the link between a walker's construction and ultimate performance. Here, a synergic mechanical-kinetic model is developed for a recently reported DNA bipedal walker, which is based on a modular design principle, potentially enabling many directional walkers driven by a length-switching engine. The model reproduces the experimental data of the walker, and identifies its performance-limiting factors. The model also captures features common to the underlying design principle, including counterintuitive performance-construction relations that are explained by detailed balance, entropy production, and bias cancellation. While indicating a low directional fidelity for the present walker, the model suggests the possibility of improving the fidelity above 90% by a more powerful engine, which may be an improved version of the present engine or an entirely new engine motif, thanks to the flexible design principle. The model is readily adaptable to aid these experimental developments towards high-performance molecular walkers.

  11. Individual MRI and radiographic features of knee OA in subjects with unilateral knee pain: Health ABC study

    PubMed Central

    Javaid, MK; Kiran, A; Guermazi, A; Kwoh, K; Zaim, S; Carbone, L; Harris, T.; McCulloch, C.E.; Arden, NK; Lane, NE; Felson, D; Nevitt, M

    2012-01-01

    Strong associations between radiographic features of knee OA and pain have been demonstrated in persons with unilateral knee symptoms. Our objectives were to compare radiographic with MRI features of knee OA and assess the discrimination between painful and non-painful knees in persons with unilateral symptoms. 283 individuals with unilateral knee pain aged 71 to 80 years from Health ABC, a study of weight-related diseases and mobility, had bilateral knee radiographs, read for KL grade and individual radiographic features, and 1.5T MRIs, read using WORMS. The association of structural features with pain was assessed using a within-person case/control design and conditional logistic regression. Receiver operator characteristics (ROC) were then used to test the discriminatory performance of structural features. In conditional logistic analyses, knee pain was significantly associated with both radiographic (any JSN grade >=1: OR 3.20 (1.79 – 5.71) and MRI (any cartilage defect:>=2: OR 3.67 (1.49 – 9.04)) features. However, most subjects had MR detected osteophytes, cartilage and bone marrow lesions in both knees and no individual structural feature discriminated well between painful and non-painful knees using ROC. The best performing MRI feature (synovitis/effusion) was not significantly more informative than KL grade >=2 (p=0.42). In persons with unilateral knee pain, MR and radiographic features were associated with knee pain confirming an important role in the etiology of pain. However, no single MRI or radiographic finding performed well in discriminating painful from non-painful knees. Further work is needed to examine how structural and non-structural factors influence knee pain. PMID:22736267

  12. Statistical analysis of textural features for improved classification of oral histopathological images.

    PubMed

    Muthu Rama Krishnan, M; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K

    2012-04-01

    The objective of this paper is to provide an improved technique, which can assist oncopathologists in correct screening of oral precancerous conditions specially oral submucous fibrosis (OSF) with significant accuracy on the basis of collagen fibres in the sub-epithelial connective tissue. The proposed scheme is composed of collagen fibres segmentation, its textural feature extraction and selection, screening perfomance enhancement under Gaussian transformation and finally classification. In this study, collagen fibres are segmented on R,G,B color channels using back-probagation neural network from 60 normal and 59 OSF histological images followed by histogram specification for reducing the stain intensity variation. Henceforth, textural features of collgen area are extracted using fractal approaches viz., differential box counting and brownian motion curve . Feature selection is done using Kullback-Leibler (KL) divergence criterion and the screening performance is evaluated based on various statistical tests to conform Gaussian nature. Here, the screening performance is enhanced under Gaussian transformation of the non-Gaussian features using hybrid distribution. Moreover, the routine screening is designed based on two statistical classifiers viz., Bayesian classification and support vector machines (SVM) to classify normal and OSF. It is observed that SVM with linear kernel function provides better classification accuracy (91.64%) as compared to Bayesian classifier. The addition of fractal features of collagen under Gaussian transformation improves Bayesian classifier's performance from 80.69% to 90.75%. Results are here studied and discussed.

  13. Collective feature selection to identify crucial epistatic variants.

    PubMed

    Verma, Shefali S; Lucas, Anastasia; Zhang, Xinyuan; Veturi, Yogasudha; Dudek, Scott; Li, Binglan; Li, Ruowang; Urbanowicz, Ryan; Moore, Jason H; Kim, Dokyoon; Ritchie, Marylyn D

    2018-01-01

    Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample size as input, thus leading to the so-called "short fat data" problem. The efficiency of machine learning methods can be increased by limiting the number of input features. Thus, it is very important to perform variable selection before searching for epistasis. Many methods have been evaluated and proposed to perform feature selection, but no single method works best in all scenarios. We demonstrate this by conducting two separate simulation analyses to evaluate the proposed collective feature selection approach. Through our simulation study we propose a collective feature selection approach to select features that are in the "union" of the best performing methods. We explored various parametric, non-parametric, and data mining approaches to perform feature selection. We choose our top performing methods to select the union of the resulting variables based on a user-defined percentage of variants selected from each method to take to downstream analysis. Our simulation analysis shows that non-parametric data mining approaches, such as MDR, may work best under one simulation criteria for the high effect size (penetrance) datasets, while non-parametric methods designed for feature selection, such as Ranger and Gradient boosting, work best under other simulation criteria. Thus, using a collective approach proves to be more beneficial for selecting variables with epistatic effects also in low effect size datasets and different genetic architectures. Following this, we applied our proposed collective feature selection approach to select the top 1% of variables to identify potential interacting variables associated with Body Mass Index (BMI) in ~ 44,000 samples obtained from Geisinger's MyCode Community Health Initiative (on behalf of DiscovEHR collaboration). In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.

  14. VLSI Design of SVM-Based Seizure Detection System With On-Chip Learning Capability.

    PubMed

    Feng, Lichen; Li, Zunchao; Wang, Yuanfa

    2018-02-01

    Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties. The SVM module integrates the modified sequential minimal optimization algorithm with the table-driven-based Gaussian kernel to enable efficient on-chip learning. The presented design is verified on an Altera Cyclone II field-programmable gate array and tested using the two publicly available EEG datasets. Experiment results show that the designed VLSI system improves the detection accuracy and training efficiency.

  15. Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance of a Solar Hot Water System at a laundry in Fresno, California is described. The system features an integrated wastewater heat recovery subsystem and a solar preheating system designed to supply a part of the hot water requirements. Performance data for a six month period are projected to an annual savings of $18,703.

  16. Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2005-01-01

    Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.

  17. CRBR pump water test experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, M.E.; Huber, K.A.

    1983-01-01

    The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.

  18. Designing algorithm visualization on mobile platform: The proposed guidelines

    NASA Astrophysics Data System (ADS)

    Supli, A. A.; Shiratuddin, N.

    2017-09-01

    This paper entails an ongoing study about the design guidelines of algorithm visualization (AV) on mobile platform, helping students learning data structures and algorithm (DSA) subject effectively. Our previous review indicated that design guidelines of AV on mobile platform are still few. Mostly, previous guidelines of AV are developed for AV on desktop and website platform. In fact, mobile learning has been proved to enhance engagement in learning circumstances, and thus effect student's performance. In addition, the researchers highly recommend including UI design and Interactivity in designing effective AV system. However, the discussions of these two aspects in previous AV design guidelines are not comprehensive. The UI design in this paper describes the arrangement of AV features in mobile environment, whereas interactivity is about the active learning strategy features based on learning experiences (how to engage learners). Thus, this study main objective is to propose design guidelines of AV on mobile platform (AVOMP) that entails comprehensively UI design and interactivity aspects. These guidelines are developed through content analysis and comparative analysis from various related studies. These guidelines are useful for AV designers to help them constructing AVOMP for various topics on DSA.

  19. Fatigue and fail-safe design features of the DC-10 airplane

    NASA Technical Reports Server (NTRS)

    Stone, M. E.

    1972-01-01

    The philosophy and methods used in the design of the DC-10 aircraft to assure structural reliability against cracks under repeated service loads are described in detail. The approach consists of three complementary parts: (1) the structure is designed to be fatigue resistant for a crack-free life of 60,000 flight hours; (2) inasmuch as small undetected cracks could develop from other sources, such as material flaws and manufacturing preloads, the structure also is designed to arrest and control cracks within a reasonable service-inspection interval; and (3) a meaningful service-inspection program has been defined on the basis of analysis and test experience from the design development program. This service-inspection program closes the loop to assure the structural integrity of the DC-10 airframe. Selected materials, fasteners, and structural arrangements are used to achieve these design features with minimum structural weight and with economy in manufacturing and maintenance. Extensive analyses and testing were performed to develop and verify the design. The basic design considerations for fatigue-resistant structure are illustrated in terms of material selection, design loads spectra, methods for accurate stress and fatigue damage analysis, and proven concepts for efficient detail design.

  20. Feature Selection with Conjunctions of Decision Stumps and Learning from Microarray Data.

    PubMed

    Shah, M; Marchand, M; Corbeil, J

    2012-01-01

    One of the objectives of designing feature selection learning algorithms is to obtain classifiers that depend on a small number of attributes and have verifiable future performance guarantees. There are few, if any, approaches that successfully address the two goals simultaneously. To the best of our knowledge, such algorithms that give theoretical bounds on the future performance have not been proposed so far in the context of the classification of gene expression data. In this work, we investigate the premise of learning a conjunction (or disjunction) of decision stumps in Occam's Razor, Sample Compression, and PAC-Bayes learning settings for identifying a small subset of attributes that can be used to perform reliable classification tasks. We apply the proposed approaches for gene identification from DNA microarray data and compare our results to those of the well-known successful approaches proposed for the task. We show that our algorithm not only finds hypotheses with a much smaller number of genes while giving competitive classification accuracy but also having tight risk guarantees on future performance, unlike other approaches. The proposed approaches are general and extensible in terms of both designing novel algorithms and application to other domains.

  1. Australia’s Submarine Design Capabilities and Capacities: Challenges and Options for the Future Submarine

    DTIC Science & Technology

    2011-01-01

    stealth features requiring specialised noise and vibra- tion skills and propulsion plants requiring other unique skill sets. Personnel with these...analysis Acoustic, wake , thermal, electromagnetic, and other signature analysis Combat systems and ship control Combat system integration, combat system...to-diagnose flow-induced radiated noise Own-sensor performance degradation Note: Risks can be reduced for given designs using scale models

  2. Advanced Design Features of APR1400 and Realization in Shin Kori Construction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OH, S.J.; Park, K.C.; Kim, H.G.

    2006-07-01

    APR1400 adopted several advanced design features. To ensure their proper operation as a part of ShinKori 3,4 project, both experimental and analytical work are continuing. In this paper, work on the advanced design features related to enhanced safety is examined. APR1400 safety injection system consists of four independent trains which include four safety injection pump and tanks. A passive flow regulating device called fluidic device is installed in the safety injection tanks. Separate effect tests including a full scale fluidic device tests have been conducted. Integral system tests are in progress. Combination of these work with the analytical work usingmore » RELAP5/Mod3 would ensure the proper operation of the new safety injection systems. To mitigate severe accidents, hydrogen mitigation system using PARs and igniters is adopted. Also, active injection system and the streamlined insulation design are adopted to enhance the in-vessel retention capability with the external cooling of RPV strategy. Analytic work with supporting experiments is performed. We are certain that these preparatory work would help the successful adaptation of ADF in ShinKori project. (authors)« less

  3. A VLSI implementation of DCT using pass transistor technology

    NASA Technical Reports Server (NTRS)

    Kamath, S.; Lynn, Douglas; Whitaker, Sterling

    1992-01-01

    A VLSI design for performing the Discrete Cosine Transform (DCT) operation on image blocks of size 16 x 16 in a real time fashion operating at 34 MHz (worst case) is presented. The process used was Hewlett-Packard's CMOS26--A 3 metal CMOS process with a minimum feature size of 0.75 micron. The design is based on Multiply-Accumulate (MAC) cells which make use of a modified Booth recoding algorithm for performing multiplication. The design of these cells is straight forward, and the layouts are regular with no complex routing. Two versions of these MAC cells were designed and their layouts completed. Both versions were simulated using SPICE to estimate their performance. One version is slightly faster at the cost of larger silicon area and higher power consumption. An improvement in speed of almost 20 percent is achieved after several iterations of simulation and re-sizing.

  4. Robust optimization of front members in a full frontal car impact

    NASA Astrophysics Data System (ADS)

    Aspenberg (né Lönn), David; Jergeus, Johan; Nilsson, Larsgunnar

    2013-03-01

    In the search for lightweight automobile designs, it is necessary to assure that robust crashworthiness performance is achieved. Structures that are optimized to handle a finite number of load cases may perform poorly when subjected to various dispersions. Thus, uncertainties must be accounted for in the optimization process. This article presents an approach to optimization where all design evaluations include an evaluation of the robustness. Metamodel approximations are applied both to the design space and the robustness evaluations, using artifical neural networks and polynomials, respectively. The features of the robust optimization approach are displayed in an analytical example, and further demonstrated in a large-scale design example of front side members of a car. Different optimization formulations are applied and it is shown that the proposed approach works well. It is also concluded that a robust optimization puts higher demands on the finite element model performance than normally.

  5. Shuttle freezer conceptual design

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Russell, D. J.

    1975-01-01

    A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.

  6. Scale Issues in Air Quality Modeling Policy Support

    EPA Science Inventory

    This study examines the issues relating to the use of regional photochemical air quality models for evaluating their performance in reproducing the spatio-temporal features embedded in the observations and for designing emission control strategies needed to achieve compliance wit...

  7. Individual strategy ratings improve the control for task difficulty effects in arithmetic problem solving paradigms.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2015-01-01

    Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants' strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research.

  8. Individual strategy ratings improve the control for task difficulty effects in arithmetic problem solving paradigms

    PubMed Central

    Tschentscher, Nadja; Hauk, Olaf

    2015-01-01

    Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants’ strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research. PMID:26321997

  9. Improving Diaper Performance for Extremely Low-Birth-Weight Infants.

    PubMed

    Sanchez, Veronica; Maladen-Percy, Michelle; Gustin, Jennifer; Tally, Amy; Gibb, Roger; Ogle, Julie; Kenneally, Dianna C; Carr, Andrew N

    2018-06-01

    Extremely low-birth-weight (ELBW) infants face significant diapering challenges compared with their full-term peers, due to immature musculature, nervous system, and skin development. Advances in medical care has increased an ELBW infant's rate of survival, which creates a growing need for diapers to better serve these infants. Aim of research. The objective of this study was to identify and confirm the requirements for optimal diaper performance from the neonatal intensive care unit nurses' perspective, as well as to assess in-hospital performance to determine if new features improved key developmental care parameters. Two surveys were shared among nurses to address study objectives. Study 1 (N = 151) was designed for neonatal intensive care unit nurses to identify key requirements for ELBW diapers and rate the performance of existing ELBW diapers. Study 2 (N = 99) assessed in-hospital performance of the test diaper compared with the usual diaper, under normal usage conditions. Findings/results. The majority of nurses agreed that ELBW diapers must fit appropriately between the legs so that hips and legs are not spread apart and that ELBW diapers need to be flexible between the legs for positioning. Of the nurses-infant pair responses, 93% ( P < .0001) preferred the test ELBW diaper over their usual diaper. Findings suggest that nurses should be included in the product design process to ensure both their needs and the needs of an infant are being met. Nurses are considering how diaper features may affect both acute and long-term medical outcomes, and this information provides necessary guidance to diaper manufacturers and designers when developing better-performing diapers.

  10. ICAN: Integrated composites analyzer

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components.

  11. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    PubMed Central

    Wang, Changjian; Liu, Xiaohui; Jin, Shiyao

    2018-01-01

    Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227

  12. An Individual Finger Gesture Recognition System Based on Motion-Intent Analysis Using Mechanomyogram Signal

    PubMed Central

    Ding, Huijun; He, Qing; Zhou, Yongjin; Dan, Guo; Cui, Song

    2017-01-01

    Motion-intent-based finger gesture recognition systems are crucial for many applications such as prosthesis control, sign language recognition, wearable rehabilitation system, and human–computer interaction. In this article, a motion-intent-based finger gesture recognition system is designed to correctly identify the tapping of every finger for the first time. Two auto-event annotation algorithms are firstly applied and evaluated for detecting the finger tapping frame. Based on the truncated signals, the Wavelet packet transform (WPT) coefficients are calculated and compressed as the features, followed by a feature selection method that is able to improve the performance by optimizing the feature set. Finally, three popular classifiers including naive Bayes (NBC), K-nearest neighbor (KNN), and support vector machine (SVM) are applied and evaluated. The recognition accuracy can be achieved up to 94%. The design and the architecture of the system are presented with full system characterization results. PMID:29167655

  13. Vocal Features of Song and Speech: Insights from Schoenberg's Pierrot Lunaire.

    PubMed

    Merrill, Julia; Larrouy-Maestri, Pauline

    2017-01-01

    Similarities and differences between speech and song are often examined. However, the perceptual definition of these two types of vocalization is challenging. Indeed, the prototypical characteristics of speech or song support top-down processes, which influence listeners' perception of acoustic information. In order to examine vocal features associated with speaking and singing, we propose an innovative approach designed to facilitate bottom-up mechanisms in perceiving vocalizations by using material situated between speech and song: Speechsong. 25 participants were asked to evaluate 20 performances of a speechsong composition by Arnold Schoenberg, "Pierrot lunaire" op. 21 from 1912, evaluating 20 features of vocal-articulatory expression. Raters provided reliable judgments concerning the vocal features used by the performers and did not show strong appeal or specific expectations in reference to Schoenberg's piece. By examining the relationship between the vocal features and the impression of song or speech, the results confirm the importance of pitch (height, contour, range), but also point to the relevance of register, timbre, tension and faucal distance. Besides highlighting vocal features associated with speech and song, this study supports the relevance of the present approach of focusing on a theoretical middle category in order to better understand vocal expression in song and speech.

  14. Hazardous-Materials Robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Edmonds, Gary O.

    1995-01-01

    Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.

  15. A malware detection scheme based on mining format information.

    PubMed

    Bai, Jinrong; Wang, Junfeng; Zou, Guozhong

    2014-01-01

    Malware has become one of the most serious threats to computer information system and the current malware detection technology still has very significant limitations. In this paper, we proposed a malware detection approach by mining format information of PE (portable executable) files. Based on in-depth analysis of the static format information of the PE files, we extracted 197 features from format information of PE files and applied feature selection methods to reduce the dimensionality of the features and achieve acceptable high performance. When the selected features were trained using classification algorithms, the results of our experiments indicate that the accuracy of the top classification algorithm is 99.1% and the value of the AUC is 0.998. We designed three experiments to evaluate the performance of our detection scheme and the ability of detecting unknown and new malware. Although the experimental results of identifying new malware are not perfect, our method is still able to identify 97.6% of new malware with 1.3% false positive rates.

  16. A Malware Detection Scheme Based on Mining Format Information

    PubMed Central

    Bai, Jinrong; Wang, Junfeng; Zou, Guozhong

    2014-01-01

    Malware has become one of the most serious threats to computer information system and the current malware detection technology still has very significant limitations. In this paper, we proposed a malware detection approach by mining format information of PE (portable executable) files. Based on in-depth analysis of the static format information of the PE files, we extracted 197 features from format information of PE files and applied feature selection methods to reduce the dimensionality of the features and achieve acceptable high performance. When the selected features were trained using classification algorithms, the results of our experiments indicate that the accuracy of the top classification algorithm is 99.1% and the value of the AUC is 0.998. We designed three experiments to evaluate the performance of our detection scheme and the ability of detecting unknown and new malware. Although the experimental results of identifying new malware are not perfect, our method is still able to identify 97.6% of new malware with 1.3% false positive rates. PMID:24991639

  17. Effective Fingerprint Quality Estimation for Diverse Capture Sensors

    PubMed Central

    Xie, Shan Juan; Yoon, Sook; Shin, Jinwook; Park, Dong Sun

    2010-01-01

    Recognizing the quality of fingerprints in advance can be beneficial for improving the performance of fingerprint recognition systems. The representative features to assess the quality of fingerprint images from different types of capture sensors are known to vary. In this paper, an effective quality estimation system that can be adapted for different types of capture sensors is designed by modifying and combining a set of features including orientation certainty, local orientation quality and consistency. The proposed system extracts basic features, and generates next level features which are applicable for various types of capture sensors. The system then uses the Support Vector Machine (SVM) classifier to determine whether or not an image should be accepted as input to the recognition system. The experimental results show that the proposed method can perform better than previous methods in terms of accuracy. In the meanwhile, the proposed method has an ability to eliminate residue images from the optical and capacitive sensors, and the coarse images from thermal sensors. PMID:22163632

  18. Neural Network Target Identification System for False Alarm Reduction

    NASA Technical Reports Server (NTRS)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  19. A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series

    NASA Astrophysics Data System (ADS)

    Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz

    2014-03-01

    Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.

  20. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.

    PubMed

    Ozcift, Akin; Gulten, Arif

    2011-12-01

    Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Radiomics for ultrafast dynamic contrast-enhanced breast MRI in the diagnosis of breast cancer: a pilot study

    NASA Astrophysics Data System (ADS)

    Drukker, Karen; Anderson, Rachel; Edwards, Alexandra; Papaioannou, John; Pineda, Fred; Abe, Hiroyuke; Karzcmar, Gregory; Giger, Maryellen L.

    2018-02-01

    Radiomics for dynamic contrast-enhanced (DCE) breast MRI have shown promise in the diagnosis of breast cancer as applied to conventional DCE-MRI protocols. Here, we investigate the potential of using such radiomic features in the diagnosis of breast cancer applied on ultrafast breast MRI in which images are acquired every few seconds. The dataset consisted of 64 lesions (33 malignant and 31 benign) imaged with both `conventional' and ultrafast DCE-MRI. After automated lesion segmentation in each image sequence, we calculated 38 radiomic features categorized as describing size, shape, margin, enhancement-texture, kinetics, and enhancement variance kinetics. For each feature, we calculated the 95% confidence interval of the area under the ROC curve (AUC) to determine whether the performance of each feature in the task of distinguishing between malignant and benign lesions was better than random guessing. Subsequently, we assessed performance of radiomic signatures in 10-fold cross-validation repeated 10 times using a support vector machine with as input all the features as well as features by category. We found that many of the features remained useful (AUC>0.5) for the ultrafast protocol, with the exception of some features, e.g., those designed for latephase kinetics such as the washout rate. For ultrafast MRI, the radiomics enhancement-texture signature achieved the best performance, which was comparable to that of the kinetics signature for `conventional' DCE-MRI, both achieving AUC values of 0.71. Radiomic developed for `conventional' DCE-MRI shows promise for translation to the ultrafast protocol, where enhancement texture appears to play a dominant role.

  2. Bearing performance degradation assessment based on time-frequency code features and SOM network

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei

    2017-04-01

    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.

  3. QUAD+ BWR Fuel Assembly demonstration program at Browns Ferry plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doshi, P.K.; Mayhue, L.T.; Robert, J.T.

    1984-04-01

    The QUAD+ fuel assembly is an improved BWR fuel assembly designed and manufactured by Westinghouse Electric Corporation. The design features a water cross separating four fuel minibundles in an integral channel. A demonstration program for this fuel design is planned for late 1984 in cycle 6 of Browns Ferry 2, a TVA plant. Objectives for the design of the QUAD+ demonstration assemblies are compatibility in performance and transparency in safety analysis with the feed fuel. These objectives are met. Inspections of the QUAD+ demonstration assemblies are planned at each refueling outage.

  4. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications.

    PubMed

    Wiggins, Graham C; Brown, Ryan; Lakshmanan, Karthik

    2016-02-01

    (23)Na RF coil design for brain and MSK applications presents a number of challenges, including poor coil loading for arrays of small coils and SNR penalties associated with providing (1)H capability with the same coil. The basics of RF coil design are described, as well as a review of historical approaches to dual tuning. There follows a review of published high performance coil designs for MSK and brain imaging. Several coil designs have been demonstrated at 7T and 3T which incorporate close-fitting receive arrays and in some cases design features which provide (1)H imaging with little penalty to (23)Na sensitivity. The "nested coplanar loop" approach is examined, in which small transmit-receive (1)H elements are placed within each (23)Na loop, presenting only a small perturbation to (23)Na performance and minimizing RF shielding issues. Other designs incorporating transmit-receive arrays for (23)Na and (1)H are discussed including a 9.4 T (23)Na/(1)H brain coil. Great gains in (23)Na SNR have been made with many of these designs, but simultaneously achieving high performance for 1H remains elusive. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1 - guideword applicability and method description.

    PubMed

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design.

  6. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  7. Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan

    2017-09-01

    It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.

  8. Real-time acquisition and tracking system with multiple Kalman filters

    NASA Astrophysics Data System (ADS)

    Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.

    1994-07-01

    The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.

  9. Random Combinatorial Gradient Metasurface for Broadband, Wide-Angle and Polarization-Independent Diffusion Scattering.

    PubMed

    Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Tang, Xiao-Lan; Guo, Tongfeng; Zhang, Qingfeng

    2017-11-29

    This paper proposes an easy, efficient strategy for designing broadband, wide-angle and polarization-independent diffusion metasurface for radar cross section (RCS) reduction. A dual-resonance unit cell, composed of a cross wire and cross loop (CWCL), is employed to enhance the phase bandwidth covering the 2π range. Both oblique-gradient and horizontal-gradient phase supercells are designed for illustration. The numerical results agree well with the theoretical ones. To significantly reduce backward scattering, the random combinatorial gradient metasurface (RCGM) is subsequently constructed by collecting eight supercells with randomly distributed gradient directions. The proposed metasurface features an enhanced specular RCS reduction performance and less design complexity compared to other candidates. Both simulated and measured results show that the proposed RCGM can significantly suppress RCS and exhibits broadband, wide-angle and polarization independence features.

  10. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  11. Analytical study of beam handling and emittance control

    NASA Astrophysics Data System (ADS)

    Thompson, James R.; Sloan, M. L.

    1993-12-01

    The thrust of our research on beam handling and emittance control was to explore how one might design high current electron accelerators, with the preservation of high beam quality designed as the primary design consideration. We considered high current, induction linacs in the parameter class of the ETA/ATA accelerators at LLNL, but with improvements to the accelerator gap design and other features to permit a significant increase in the deliverable beam brightness. Our approach for beam quality control centered on the use of solenoidal magnetic focusing through such induction accelerators, together with gently-shaped (adiabatic) acceleration gaps. This approach offers several tools for the control of beam quality. The strength and axial variation in the solenoidal magnetic field may be designed, as may the length and shape of the acceleration gaps, the loading of the gaps, and the axial spacing from gap to gap. This research showed that each of these design features may individually be optimized to contribute to improved beam quality control, and by exploiting these features, it appears feasible to produce high current, high energy electron beams possessing breakthrough beam quality and brightness. Applications which have been technologically unachievable may for the first time become possible. One such application is the production of high performance free electron lasers at very short wavelengths, extending down to the optical (less than 1 micron) regime.

  12. Inverse design engineering of all-silicon polarization beam splitters

    NASA Astrophysics Data System (ADS)

    Frandsen, Lars H.; Sigmund, Ole

    2016-03-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.

  13. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-07-25

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  14. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials

    PubMed Central

    Zadpoor, Amir A.

    2017-01-01

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes. PMID:28757572

  15. Rapid-Scanning Fourier Transform Spectrometer for Studies of Propagation of Near-Millimeter-Wave Radiation through Clear Air and Fog.

    DTIC Science & Technology

    1988-03-01

    parallel in the output beam . ’ , However, as will be seen, this function can be performed by auxiliary, non -moving mirrors. Our . design for a rapid... splitter used in our design is shown in Fig. 2. The mirror drive is somewhat novel for this type of interferometer in that one mirror in each beam . M3...features: * High interferometric efficiency, due to the Martin-Puplett type design 0 Ruggedness in photolithographically produced beam splitters

  16. MOCVD Process Technology for Affordable, High-Yield, High-Performance MESFET Structures. MIMIC Phase 3

    DTIC Science & Technology

    1993-01-26

    by an optical pyrometer that views the inside of the susceptor through a sapphire light pipe. The gas delivery system is of standard commercial design ...of the operating conditions for MESFET growth. 2.2.2 Modifications to the Apparatus for MIMIC Spire designed and installed a bell jar capable of...withstanding, without water cooling, the 500 to 1 100’C temperatures needed for MOCVD growth. The bell jar features a flow disrupter of proprietary design

  17. An audiovisual emotion recognition system

    NASA Astrophysics Data System (ADS)

    Han, Yi; Wang, Guoyin; Yang, Yong; He, Kun

    2007-12-01

    Human emotions could be expressed by many bio-symbols. Speech and facial expression are two of them. They are both regarded as emotional information which is playing an important role in human-computer interaction. Based on our previous studies on emotion recognition, an audiovisual emotion recognition system is developed and represented in this paper. The system is designed for real-time practice, and is guaranteed by some integrated modules. These modules include speech enhancement for eliminating noises, rapid face detection for locating face from background image, example based shape learning for facial feature alignment, and optical flow based tracking algorithm for facial feature tracking. It is known that irrelevant features and high dimensionality of the data can hurt the performance of classifier. Rough set-based feature selection is a good method for dimension reduction. So 13 speech features out of 37 ones and 10 facial features out of 33 ones are selected to represent emotional information, and 52 audiovisual features are selected due to the synchronization when speech and video fused together. The experiment results have demonstrated that this system performs well in real-time practice and has high recognition rate. Our results also show that the work in multimodules fused recognition will become the trend of emotion recognition in the future.

  18. IMMAN: free software for information theory-based chemometric analysis.

    PubMed

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA supervised algorithms. Graphic representation for Shannon's distribution of MD calculating software.

  19. Aerodynamic Shape Optimization of a Dual-Stream Supersonic Plug Nozzle

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.; Park, Michael A.; Nielsen, Eric J.; Carlson, Jan-Renee

    2015-01-01

    Aerodynamic shape optimization was performed on an isolated axisymmetric plug nozzle sized for a supersonic business jet. The dual-stream concept was tailored to attenuate nearfield pressure disturbances without compromising nozzle performance. Adjoint-based anisotropic mesh refinement was applied to resolve nearfield compression and expansion features in the baseline viscous grid. Deformed versions of the adapted grid were used for subsequent adjoint-driven shape optimization. For design, a nonlinear gradient-based optimizer was coupled to the discrete adjoint formulation of the Reynolds-averaged Navier- Stokes equations. All nozzle surfaces were parameterized using 3rd order B-spline interpolants and perturbed axisymmetrically via free-form deformation. Geometry deformations were performed using 20 design variables shared between the outer cowl, shroud and centerbody nozzle surfaces. Interior volume grid deformation during design was accomplished using linear elastic mesh morphing. The nozzle optimization was performed at a design cruise speed of Mach 1.6, assuming core and bypass pressure ratios of 6.19 and 3.24, respectively. Ambient flight conditions at design were commensurate with 45,000-ft standard day atmosphere.

  20. Asynchronous Runtimes in Action: An Introspective Framework for a Next Gen Runtime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suetterlein, Joshua D.; Landwehr, Joshua B.; Marquez, Andres

    2016-05-23

    One of the most critical challenges that new high performance systems face is the lack of system software support for these large scale systems. Investment on system stack components is essential in the development, debugging and optimization of the new emerging programming models. These emerging models have the promise to better utilize the vast hardware resources available in current and future systems. To aid in the development of applications and new system stacks, runtimes, as instances of their respective execution models, need to produce facilities to introspect their inner workings and allow an indepth attribution of performance bottlenecks and computationalmore » patterns. In other words, the runtime systems need to reduce their opacity to observers so that users of a novel program execution model can adapt their designs to fit the intended model usage, regardless of the layer that they are working on. This design/development loop (akin to co-design) enables synergistic opportunities across the entire computational stack. This paper presents the design and implementation of a simple “gray” box performance attribution harness running inside a fine grain runtime system: the Open Community Runtime (OCR). We showcase what such a framework can indicate regarding the runtime behavior while running at scale. To this end, we have designed a set of synthetic scenarios aimed to test the runtime at their best and worst cases. We present an analysis of the most important runtime features, properties and idiosyncrasies that will affect the development of new runtime features, algorithmic selection, and application development.« less

  1. A Conceptual Design Study of a High Temperature Solar Thermal Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C. S.; Ehde, C. L.; Stacy, L. E.; Abujawdeh, S. S.; Narayanan, R.; Mccreight, L. R.; Gatti, A.; Rauch, H. W., Sr.

    1980-01-01

    A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production.

  2. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.

    1993-01-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  3. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Swift, Walter L.

    1993-12-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  4. Characterizing the flow field around ballutes of various geometries

    NASA Astrophysics Data System (ADS)

    Panko, Jeffrey; Carnasciali, Maria-Isabel

    2016-11-01

    A ballute combines the performance of large parachutes with the rigidity and design flexibility of aeroshells. Such designs, when optimized, could drastically increase the allowable payload for interplanetary missions associated with high reentry velocities, for which, the current capabilities of thermal protection systems are being reached. Using commercially available software, a CFD investigation into the flow phenomena and performance characteristics of various such designs was conducted in order to determine features which may prove conducive for use in aerocapture missions, a primary application of such technology. Concerns around current ballute designs stem from the aerodynamic heating loads and flow instabilities at reentry velocities and as such, the study revolved around geometries which would provide favorable performance under such environments. Design parameters included: blunt versus sharp bodies, boundary layer control, and turbulence model. Results were monitored for changes in lift to drag ratios (L/D), separation point, vortex shedding, and control authority. Funding for this work, in part, provided by the CT Space Grant Consortium.

  5. Design and performance of the VLT 8-m coating unit

    NASA Astrophysics Data System (ADS)

    Schneermann, Michael W.; Groessl, M.; Nienaber, U.; Ettlinger, E.; Spiteri, J. A.; Clow, H.

    1997-03-01

    The 8 m coating unit for the VLT mirrors is designed for the deposition of high reflective, homogeneous aluminum coatings. For the process of the film deposition the sputter technology is utilized. The design of the following major subsystems is completed: the vacuum vessel and the vacuum generation system, the thin film deposition equipment and the glow discharge cleaning device, the substrate support and rotation system as well as the supporting framework and the auxiliary equipment. Manufacturing of the coating unit has started. The pre- assembly and testing activities, which will take place prior to the shipment to the site, are defined. This paper describes the design features and the major performance requirements of the 8 m coating unit. The performance of the sputter source design has been verified in a qualification test. The deposition rate, the film thickness and reflectance, as well as the film purity have been measured. The test set-up and the results of the qualification tests of the selected magnetron type are presented and discussed.

  6. Factors Influencing uUniversity Research Performance

    ERIC Educational Resources Information Center

    Edgar, Fiona; Geare, Alan

    2013-01-01

    This research extends our understanding of research productivity by examining features of managerial practice and culture within university departments. Adopting a robust comparative research design, capturing both interview and survey data sourced from multiple stakeholders from New Zealand universities, we seek to identify factors associated…

  7. 46 CFR 71.50-1 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a combination of underwater surveys, internal examinations, and annual hull condition assessment... Charge, Marine Inspection (OCMI), to have the appropriate training and experience to perform the survey... the AHE; (4) Possessing the knowledge of vessel structures, design features, nomenclature, and the...

  8. 46 CFR 71.50-1 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a combination of underwater surveys, internal examinations, and annual hull condition assessment... Charge, Marine Inspection (OCMI), to have the appropriate training and experience to perform the survey... the AHE; (4) Possessing the knowledge of vessel structures, design features, nomenclature, and the...

  9. MSUSTAT.

    ERIC Educational Resources Information Center

    Mauriello, David

    1984-01-01

    Reviews an interactive statistical analysis package (designed to run on 8- and 16-bit machines that utilize CP/M 80 and MS-DOS operating systems), considering its features and uses, documentation, operation, and performance. The package consists of 40 general purpose statistical procedures derived from the classic textbook "Statistical…

  10. Energy Performance Techniques and Technologies: Preserving Historic Homes – Volume 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    2011-02-01

    Following Building America-sponsored research, this guide focuses on planning energy-efficient improvements for historic houses while preserving the home’s historic features, being aware of and adhering to regulations related to historic designations, and addressing health and safety issues.

  11. Grant programs : design features shape flexibility, accountability, and performance information

    DOT National Transportation Integrated Search

    1998-06-01

    Flexible grants--block grants and similar programs that give state or local governments the flexibility to adapt funded activities to fit the state or local context--are an adaptable policy tool and are found in fields from urban transit to community...

  12. Progress In Fresnel-Köhler Concentrators

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan

    2011-12-01

    The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).

  13. A study of optical design of power-saving backlight module with external illuminance

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Tzeng, Yih-Fong

    2014-05-01

    In backlight modules, the light guide plate (LGP) is a key component for performance and also facilitates access to develop LGPs on its own. In this research, we propose a newly developed method: LEDs with freeform as a lighting source, are employed to integrate and manipulate the specially designed and optimized 3D-like pattern distribution of the micro features in order to obtain the required optical characteristics at maximal performance. In this research propose the concept of Light Guide Film(LGF) at the back side of Back Light Unit(BLU). This new design may induce the exterior light ,then improve the power-saving of existent BLU. Two design models are reseated: One is design for 14 inch LCD monitor of notebook computer, which might improve 21% compared to traditional one. Another is designed for 3.5 inch LCD for mobile phone display ,which might improve 15% compared to traditional one.

  14. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.

    PubMed

    Ordóñez, Francisco Javier; Roggen, Daniel

    2016-01-18

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters' influence on performance to provide insights about their optimisation.

  15. An efficient micro control unit with a reconfigurable filter design for wireless body sensor networks (WBSNs).

    PubMed

    Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing

    2012-11-22

    In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.

  16. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less

  17. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  18. Improving deep convolutional neural networks with mixed maxout units.

    PubMed

    Zhao, Hui-Zhen; Liu, Fu-Xian; Li, Long-Yue

    2017-01-01

    Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

  19. The e-beam sustained CO2 laser amplifier

    NASA Technical Reports Server (NTRS)

    Brown, M. J.; Shaw, S. R.; Evans, M. H.; Smith, I. M.; Holman, W.

    1990-01-01

    The design features of an e-beam sustained CO2 amplifier are described. The amplifier is designed specifically as a catalyst test-bed to study the performance of room temperature precious metal CO-oxidation catalysts under e-beam sustained operation. The amplifier has been designed to provide pulse durations of 30 microseconds in a discharge volume of 2 litres. With a gas flow velocity of 2 metres per second, operation at repetition rates of 10 Hz is accommodated. The system is designed for sealed-off operation and a catalyst bed is housed in the gas circulation system downstream from the discharge region. CO and oxygen monitors are used for diagnosis of gas composition in the amplifier so that catalyst performance can be monitored in situ during sealed lifetests.

  20. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, James P., E-mail: james.tonks@awe.co.uk; AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR; Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systemsmore » designed for only one of these techniques.« less

  1. The Light Microscopy Module Design and Performance Demonstrations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.; Griffin, DeVon W.; Hovenac, Edward A.

    2003-01-01

    The Light Microscopy Module (LMM) is a state-of-the-art space station payload to provide investigations in the fields of fluids, condensed matter physics, and biological sciences. The LMM hardware will reside inside the Fluids Integrated Rack (FIR), a multi-user facility class payload that will provide fundamental services for the LMM and future payloads. LMM and FIR will be launched in 2005 and both will reside in the Destiny module of the International Space Station (ISS). There are five experiments to be performed within the LMM. This paper will provide a description of the initial five experiments: the supporting FIR subsystems; LMM design; capabilities and key features; and a summary of performance demonstrations.

  2. Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task.

    PubMed

    Hegarty, Mary; Canham, Matt S; Fabrikant, Sara I

    2010-01-01

    Three experiments examined how bottom-up and top-down processes interact when people view and make inferences from complex visual displays (weather maps). Bottom-up effects of display design were investigated by manipulating the relative visual salience of task-relevant and task-irrelevant information across different maps. Top-down effects of domain knowledge were investigated by examining performance and eye fixations before and after participants learned relevant meteorological principles. Map design and knowledge interacted such that salience had no effect on performance before participants learned the meteorological principles; however, after learning, participants were more accurate if they viewed maps that made task-relevant information more visually salient. Effects of display design on task performance were somewhat dissociated from effects of display design on eye fixations. The results support a model in which eye fixations are directed primarily by top-down factors (task and domain knowledge). They suggest that good display design facilitates performance not just by guiding where viewers look in a complex display but also by facilitating processing of the visual features that represent task-relevant information at a given display location. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  3. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  4. Large area silicon sheet by EFG

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Some hypotheses to explain both of these features are advanced and the possible implications for solar cell performance are touched upon. The multiple ribbon growth system has shown a number of flaws with respect to the reliability of the basic furnace design. These definitely need to be rectified before any significant demonstration of multiple ribbon growth can proceed. The cartridges, however, have performed quite well. The work on 3" cartridge design and automatic controls has proceeded nearly on schedule and the report contains a detailed description of the approach and the equipment to be used for automatic control of ribbon growth.

  5. Evaluation of Physiological and Psychological Impairment of Human Performance in Cold Stressed Subjects

    DTIC Science & Technology

    1990-03-23

    defined (personal communciation between R. Pozos and Simon, 1985). In summary, there have been studies dealing with shivering which indicate that the...microcomputer (IBM PS/2, Model 30/286). The Firearms Training System combines features of several technologies, notably: interactive video-disc/ computer ...technology and laser designator/camera/ computer /target-hit generation, which provides for immediate visual performance feedback. The subject is

  6. Resolving Phase Ambiguities In OQPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1991-01-01

    Improved design for modulator and demodulator in offset-quaternary-phase-key-shifting (OQPSK) communication system enables receiver to resolve ambiguity in estimated phase of received signal. Features include unique-code-word modulation and detection and digital implementation of Costas loop in carrier-recovery subsystem. Enchances performance of carrier-recovery subsystem, reduces complexity of receiver by removing redundant circuits from previous design, and eliminates dependence of timing in receiver upon parallel-to-serial-conversion clock.

  7. Design and simulation of a new bidirectional actuator for haptic systems featuring MR fluid

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quoc; Tri, Diep Bao; Cuong, Vo Van; Choi, Seung-Bok

    2017-04-01

    In this research, a new configuration of bidirectional actuator featuring MR fluid (BMRA) is proposed for haptic application. The proposed BMRA consists of a driving disc, a driving housing and a driven disc. The driving disc is placed inside the driving housing and rotates counter to each other by a servo DC motor and a bevel gear system. The driven shaft is also placed inside the housing and next to the driving disc. The gap between the two disc and the gap between the discs and the housing are filled with MR fluid. On the driven disc, two mutual magnetic coils are placed. By applying currents to the two coils mutually, the torque at the output shaft, which is fixed to the driven disc, can be controlled with positive, zero or negative value. This make the actuator be suitable for haptic application. After a review of MR fluid and its application, configuration of the proposed BMRA is presented. The modeling of the actuator is then derived based on Bingham rheological model of MRF and magnetic finite element analysis (FEA). The optimal design of the actuator is then performed to minimize the mass of the BMRA. From the optimal design result, performance characteristics of the actuator is simulated and detailed design of a prototype actuator is conducted.

  8. Detecting Pilot's Engagement Using fNIRS Connectivity Features in an Automated vs. Manual Landing Scenario

    PubMed Central

    Verdière, Kevin J.; Roy, Raphaëlle N.; Dehais, Frédéric

    2018-01-01

    Monitoring pilot's mental states is a relevant approach to mitigate human error and enhance human machine interaction. A promising brain imaging technique to perform such a continuous measure of human mental state under ecological settings is Functional Near-InfraRed Spectroscopy (fNIRS). However, to our knowledge no study has yet assessed the potential of fNIRS connectivity metrics as long as passive Brain Computer Interfaces (BCI) are concerned. Therefore, we designed an experimental scenario in a realistic simulator in which 12 pilots had to perform landings under two contrasted levels of engagement (manual vs. automated). The collected data were used to benchmark the performance of classical oxygenation features (i.e., Average, Peak, Variance, Skewness, Kurtosis, Area Under the Curve, and Slope) and connectivity features (i.e., Covariance, Pearson's, and Spearman's Correlation, Spectral Coherence, and Wavelet Coherence) to discriminate these two landing conditions. Classification performance was obtained by using a shrinkage Linear Discriminant Analysis (sLDA) and a stratified cross validation using each feature alone or by combining them. Our findings disclosed that the connectivity features performed significantly better than the classical concentration metrics with a higher accuracy for the wavelet coherence (average: 65.3/59.9 %, min: 45.3/45.0, max: 80.5/74.7 computed for HbO/HbR signals respectively). A maximum classification performance was obtained by combining the area under the curve with the wavelet coherence (average: 66.9/61.6 %, min: 57.3/44.8, max: 80.0/81.3 computed for HbO/HbR signals respectively). In a general manner all connectivity measures allowed an efficient classification when computed over HbO signals. Those promising results provide methodological cues for further implementation of fNIRS-based passive BCIs. PMID:29422841

  9. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  10. A biomechanical and subjective assessment and comparison of three ambulance cot design configurations.

    PubMed

    Sommerich, Carolyn M; Lavender, Steven A; Radin Umar, Radin Zaid; Le, Peter; Mehta, Jay; Ko, Pei-Ling; Farfan, Rafael; Dutt, Mohini; Park, SangHyun

    2012-01-01

    Effects of ambulance cot design features (handle design and leg folding mechanism) were evaluated. Experienced ambulance workers performed tasks simulating loading and unloading a cot to and from an ambulance, and a cot raising task. Muscle activity, ratings of perceived exertion, and performance style were significantly affected by cot condition (p < 0.05). Erector Spinae activity was significantly less when using Cot-2's stretcher-style handles. Shoulder muscle activity was significantly less when using Cot-2's loop handle. During loading and unloading, operators allowed the cot to support its own weight most often with Cot-2's stretcher-style handles. Preference for Cot-2 (either handles) over Cot-1 (with loop handle) was consistent across tasks. Handle effects were influenced by operator stature; taller participants received more benefit from Cot-2's stretcher-style handles; shoulder muscles' demands were greater for shorter participants due to handle location. Providing handle options and automatic leg folding/unfolding operation can reduce cot operator's effort and physical strain. Practitioner Summary: Paramedics frequently incur musculoskeletal injuries associated with patient-handling tasks. A controlled experiment was conducted to assess effects of ambulance cot design features on physical stress of operators, as seen through muscle activity and operator's perceptions. Differences between cots were found, signalling that intentional design can reduce operator's physical stress.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmony, S.C.; Steiner, J.L.; Stumpf, H.J.

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. As part of the preapplication and eventual design certification process, advanced reactor applicants are required to submit neutronic and thermal-hydraulic safety analyses over a sufficient range of normal operation, transient conditions, and specified accident sequences. Los Alamos is supporting the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. A fully one-dimensional modelmore » of the PIUS reactor has been developed for the Transient Reactor Analysis Code, TRACPF1/MOD2. Early in 1992, ABB submitted a Supplemental Information Package describing recent design modifications. An important feature of the PIUS Supplement design was the addition of an active scram system that will function for most transient and accident conditions. A one-dimensional Transient Reactor Analysis Code baseline calculation of the PIUS Supplement design were performed for a break in the main steam line at the outlet nozzle of the loop 3 steam generator. Sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions following a main steam line break. The sensitivity study results provide insights into the robustness of the design.« less

  12. Space station prototype Sabatier reactor design verification testing

    NASA Technical Reports Server (NTRS)

    Cusick, R. J.

    1974-01-01

    A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.

  13. Measurements with an airborne, autotracking, external-head sunphotometer

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Matsumoto, T.; Banta, V. J.; Mina, C.; Colburn, D. S.; Pueschel, R. F.; Livingston, J. M.

    1986-01-01

    Design and performance features and sample results from use of a NASA airborne tracking sunphotometer (ATS) are described. The ATS was devised to obtain continuous vertical profiles of the optical depth and transmissivity, first from a CV-990 aircraft and then from a modified DC-8 aircraft. Sample results are presented from a 1985 flight as part of the SAGE-II calibration mission, which featured detectors frequencies of 380, 450, 600, 860, 940, and 1020 microns and covered flight altitudes from ground to 10 km.

  14. Biomimetics: determining engineering opportunities from nature

    NASA Astrophysics Data System (ADS)

    Fish, Frank E.

    2009-08-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  15. Temporal and spatial adaptation of transient responses to local features

    PubMed Central

    O'Carroll, David C.; Barnett, Paul D.; Nordström, Karin

    2012-01-01

    Interpreting visual motion within the natural environment is a challenging task, particularly considering that natural scenes vary enormously in brightness, contrast and spatial structure. The performance of current models for the detection of self-generated optic flow depends critically on these very parameters, but despite this, animals manage to successfully navigate within a broad range of scenes. Within global scenes local areas with more salient features are common. Recent work has highlighted the influence that local, salient features have on the encoding of optic flow, but it has been difficult to quantify how local transient responses affect responses to subsequent features and thus contribute to the global neural response. To investigate this in more detail we used experimenter-designed stimuli and recorded intracellularly from motion-sensitive neurons. We limited the stimulus to a small vertically elongated strip, to investigate local and global neural responses to pairs of local “doublet” features that were designed to interact with each other in the temporal and spatial domain. We show that the passage of a high-contrast doublet feature produces a complex transient response from local motion detectors consistent with predictions of a simple computational model. In the neuron, the passage of a high-contrast feature induces a local reduction in responses to subsequent low-contrast features. However, this neural contrast gain reduction appears to be recruited only when features stretch vertically (i.e., orthogonal to the direction of motion) across at least several aligned neighboring ommatidia. Horizontal displacement of the components of elongated features abolishes the local adaptation effect. It is thus likely that features in natural scenes with vertically aligned edges, such as tree trunks, recruit the greatest amount of response suppression. This property could emphasize the local responses to such features vs. those in nearby texture within the scene. PMID:23087617

  16. Designing learning environments to promote student learning: ergonomics in all but name.

    PubMed

    Smith, Thomas J

    2013-01-01

    This report introduces evidence for the conclusion that a common theme underlies almost all proposed solutions for improving the performance of K-12 students, namely their reliance on the design of educational system environments, features and operations. Two categories of design factors impacting such performance are addressed: (1) 9 factors reliably shown to have a strong influence - namely environmental design of classroom and building facilities, longer exposure to learning, cooperative learning designs, early childhood education, teaching quality, nutritional adequacy, participation in physical activity, good physical fitness, and school-community integration; and (2) 11 factors with an equivocal, varied or weak influence - classroom technology, online learning environments, smaller class size, school choice, school funding, school size, school start times, teacher training level, amount of homework, student self-confidence and informal learning. It is concluded that: (1) student learning outcomes, and more broadly the edifice of education itself, are largely defined in terms of an extensive system of design factors and conditions; (2) the time is long overdue for the educational system to acknowledge the central role of E/HF design as the major influence on student performance and learning; and (3) K-12 educators and administrators should emphasize allocation of resources to design factors reliably shown to have a strongly positive impact on student performance, but should treat expenditure on factors with equivocal, varied or weak influence on such performance with more caution and/or skepticism.

  17. PIPER: Performance Insight for Programmers and Exascale Runtimes: Guiding the Development of the Exascale Software Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellor-Crummey, John

    The PIPER project set out to develop methodologies and software for measurement, analysis, attribution, and presentation of performance data for extreme-scale systems. Goals of the project were to support analysis of massive multi-scale parallelism, heterogeneous architectures, multi-faceted performance concerns, and to support both post-mortem performance analysis to identify program features that contribute to problematic performance and on-line performance analysis to drive adaptation. This final report summarizes the research and development activity at Rice University as part of the PIPER project. Producing a complete suite of performance tools for exascale platforms during the course of this project was impossible since bothmore » hardware and software for exascale systems is still a moving target. For that reason, the project focused broadly on the development of new techniques for measurement and analysis of performance on modern parallel architectures, enhancements to HPCToolkit’s software infrastructure to support our research goals or use on sophisticated applications, engaging developers of multithreaded runtimes to explore how support for tools should be integrated into their designs, engaging operating system developers with feature requests for enhanced monitoring support, engaging vendors with requests that they add hardware measure- ment capabilities and software interfaces needed by tools as they design new components of HPC platforms including processors, accelerators and networks, and finally collaborations with partners interested in using HPCToolkit to analyze and tune scalable parallel applications.« less

  18. Decoding natural images from evoked brain activities using encoding models with invertible mapping.

    PubMed

    Li, Chao; Xu, Junhai; Liu, Baolin

    2018-05-21

    Recent studies have built encoding models in the early visual cortex, and reliable mappings have been made between the low-level visual features of stimuli and brain activities. However, these mappings are irreversible, so that the features cannot be directly decoded. To solve this problem, we designed a sparse framework-based encoding model that predicted brain activities from a complete feature representation. Moreover, according to the distribution and activation rules of neurons in the primary visual cortex (V1), three key transformations were introduced into the basic feature to improve the model performance. In this setting, the mapping was simple enough that it could be inverted using a closed-form formula. Using this mapping, we designed a hybrid identification method based on the support vector machine (SVM), and tested it on a published functional magnetic resonance imaging (fMRI) dataset. The experiments confirmed the rationality of our encoding model, and the identification accuracies for 2 subjects increased from 92% and 72% to 98% and 92% with the chance level only 0.8%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.H.; Ellis, J.R.; Montague, S.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less

  20. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  1. Gender differences in knee morphology and the prospects for implant design in total knee replacement.

    PubMed

    Asseln, Malte; Hänisch, Christoph; Schick, Fabian; Radermacher, Klaus

    2018-05-14

    Morphological differences between female and male knees have been reported in the literature, which led to the development of so-called gender-specific implants. However, detailed morphological descriptions covering the entire joint are rare and little is known regarding whether gender differences are real sexual dimorphisms or can be explained by overall differences in size. We comprehensively analysed knee morphology using 33 features of the femur and 21 features of the tibia to quantify knee shape. The landmark recognition and feature extraction based on three-dimensional surface data were fully automatically applied to 412 pathological (248 female and 164 male) knees undergoing total knee arthroplasty. Subsequently, an exploratory statistical analysis was performed and linear correlation analysis was used to investigate normalization factors and gender-specific differences. Statistically significant differences between genders were observed. These were pronounced for distance measurements and negligible for angular (relative) measurements. Female knees were significantly narrower at the same depth compared to male knees. The correlation analysis showed that linear correlations were higher for distance measurements defined in the same direction. After normalizing the distance features according to overall dimensions in the direction of their definition, gender-specific differences disappeared or were smaller than the related confidence intervals. Implants should not be linearly scaled according to one dimension. Instead, features in medial/lateral and anterior/posterior directions should be normalized separately (non-isotropic scaling). However, large inter-individual variations of the features remain after normalization, suggesting that patient-specific design solutions are required for an improved implant design, regardless of gender. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Description of the L1C signal

    USGS Publications Warehouse

    Betz, J.W.; Blanco, M.A.; Cahn, C.R.; Dafesh, P.A.; Hegarty, C.J.; Hudnut, K.W.; Kasemsri, V.; Keegan, R.; Kovach, K.; Lenahan, L.S.; Ma, H.H.; Rushanan, J.J.; Sklar, D.; Stansell, T.A.; Wang, C.C.; Yi, S.K.

    2006-01-01

    Detailed design of the modernized LI civil signal (L1C) signal has been completed, and the resulting draft Interface Specification IS-GPS-800 was released in Spring 2006. The novel characteristics of the optimized L1C signal design provide advanced capabilities while offering to receiver designers considerable flexibility in how to use these capabilities. L1C provides a number of advanced features, including: 75% of power in a pilot component for enhanced signal tracking, advanced Weilbased spreading codes, an overlay code on the pilot that provides data message synchronization, support for improved reading of clock and ephemeris by combining message symbols across messages, advanced forward error control coding, and data symbol interleaving to combat fading. The resulting design offers receiver designers the opportunity to obtain unmatched performance in many ways. This paper describes the design of L1C. A summary of LIC's background and history is provided. The signal description then proceeds with the overall signal structure consisting of a pilot component and a carrier component. The new L1C spreading code family is described, along with the logic used for generating these spreading codes. Overlay codes on the pilot channel are also described, as is the logic used for generating the overlay codes. Spreading modulation characteristics are summarized. The data message structure is also presented, showing the format for providing time, ephemeris, and system data to users, along with features that enable receivers to perform code combining. Encoding of rapidly changing time bits is described, as are the Low Density Parity Check codes used for forward error control of slowly changing time bits, clock, ephemeris, and system data. The structure of the interleaver is also presented. A summary of L 1C's unique features and their benefits is provided, along with a discussion of the plan for L1C implementation.

  3. 46 CFR 71.50-1 - Definitions relating to hull examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a combination of underwater surveys, internal examinations, and annual hull condition assessment..., Marine Inspection (OCMI), to have the appropriate training and experience to perform the survey and to... the AHE; (4) Possessing the knowledge of vessel structures, design features, nomenclature, and the...

  4. 14 CFR 171.27 - Performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...” (Annex 10 to the Convention on International Civil Aviation), except that identification by on-off keying... electronic engineering practices for the desired service. (c) Ground inspection consists of an examination of the design features of the equipment to determine (based on recognized and accepted good engineering...

  5. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    NASA Astrophysics Data System (ADS)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  6. Design options for reducing the impact of the fill-tube in ICF implosion experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Weber, Christopher R.; Berzak Hopkins, L. F.; Casey, D. T.; Clark, D. S.; Hammel, B. A.; Le Pape, S.; Macphee, A.; Milovich, J.; Pickworth, L. A.; Robey, H. F.; Smalyuk, V. A.; Stadermann, M.; Felker, S. J.; Nikroo, A.; Thomas, C. A.; Crippen, J.; Rice, N.

    2017-10-01

    Inertial Confinement Fusion (ICF) capsules on the National Ignition Facility (NIF) are filled with thermonuclear fuel through a fill-tube. When the capsule implodes, perturbations caused by the fill-tube allow ablator material to mix into the hot spot and reduce fusion performance. This talk will explore several design options that attempt to reduce this damaging effect. Reducing the diameter of the fill-tube and its entrance hole is the obvious course and has been tested in experiments. Simulations also show sensitivity to the amount of glue holding the fill-tube to the capsule and suggest that careful control of this feature can limit the amount of injected mass. Finally, an off-axis fill-tube reduces the initial squirt of material into the fuel and may be a way of further optimizing this engineering feature. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  7. Enhanced modeling features within TREETOPS

    NASA Technical Reports Server (NTRS)

    Vandervoort, R. J.; Kumar, Manoj N.

    1989-01-01

    The original motivation for TREETOPS was to build a generic multi-body simulation and remove the burden of writing multi-body equations from the engineers. The motivation of the enhancement was twofold: (1) to extend the menu of built-in features (sensors, actuators, constraints, etc.) that did not require user code; and (2) to extend the control system design capabilities by linking with other government funded software (NASTRAN and MATLAB). These enhancements also serve to bridge the gap between structures and control groups. It is common on large space programs for the structures groups to build hi-fidelity models of the structure using NASTRAN and for the controls group to build lower order models because they lack the tools to incorporate the former into their analysis. Now the controls engineers can accept the hi-fidelity NASTRAN models into TREETOPS, add sensors and actuators, perform model reduction and couple the result directly into MATLAB to perform their design. The controller can then be imported directly into TREETOPS for non-linear, time-history simulation.

  8. A high performance parallel computing architecture for robust image features

    NASA Astrophysics Data System (ADS)

    Zhou, Renyan; Liu, Leibo; Wei, Shaojun

    2014-03-01

    A design of parallel architecture for image feature detection and description is proposed in this article. The major component of this architecture is a 2D cellular network composed of simple reprogrammable processors, enabling the Hessian Blob Detector and Haar Response Calculation, which are the most computing-intensive stage of the Speeded Up Robust Features (SURF) algorithm. Combining this 2D cellular network and dedicated hardware for SURF descriptors, this architecture achieves real-time image feature detection with minimal software in the host processor. A prototype FPGA implementation of the proposed architecture achieves 1318.9 GOPS general pixel processing @ 100 MHz clock and achieves up to 118 fps in VGA (640 × 480) image feature detection. The proposed architecture is stand-alone and scalable so it is easy to be migrated into VLSI implementation.

  9. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  10. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  11. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  12. High-Performance Schools: Affordable Green Design for K-12 Schools; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plympton, P.; Brown, J.; Stevens, K.

    2004-08-01

    Schools in the United States spend $7.8 billion on energy each year-more than the cost of computers and textbooks combined, according to a 2003 report from the National Center for Education Statistics. The U.S. Department of Energy (DOE) estimates that these high utility bills could be reduced as much as 25% if schools adopt readily available high performance design principles and technologies. Accordingly, hundreds of K-12 schools across the country have made a commitment to improve the learning and teaching environment of schools while saving money and energy and protecting the environment. DOE and its public- and private-sector partners havemore » developed Energy Design Guidelines for High Performance Schools, customized for nine climate zones in U.S. states and territories. These design guidelines provide information for school decision makers and design professionals on the advantages of energy efficiency and renewable energy designs and technologies. With such features as natural day lighting, efficient electric lights, water conservation, and renewable energy, schools in all types of climates are proving that school buildings, and the students and teachers who occupy them, are indeed high performers. This paper describes high performance schools from each of the nine climate zones associated with the Energy Design Guidelines. The nine case studies focus on the high performance design strategies implemented in each school, as well as the cost savings and benefits realized by students, faculty, the community, and the environment.« less

  13. Advanced space engine preliminary design. [liquid hydrogen/liquid oxygen upper stage engine for space tug application

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1973-01-01

    Analysis and design of an optimum LO2/LH2, combustion topping cycle, 88,964 Newtons (20,000-pound) thrust, liquid rocket engine was conducted. The design selected is well suited to high-energy, upper-stage engine applications such as the Space Tug and embodies features directed toward optimization of vehicle performance. A configuration selection was conducted based on prior Air Force Contracts, and additional criteria for optimum stage performance. Following configuration selection, analyses and design of the major components and engine systems were conducted to sufficient depth to provide layout drawings suitable for subsequent detailing. In addition, engine packaging to a common interface and a retractable nozzle concept were defined. Alternative development plans and related costs were also established. The design embodies high-performance, low-weight, low NPSH requirements (saturated propellant inlet conditions at start), idle-mode operation, and autogenous pressurization. The design is the result of the significant past and current LO2/LH2 technology efforts of the NASA centers and the Air Force, as well as company-funded programs.

  14. Validation of the CQU-DTU-LN1 series of airfoils

    NASA Astrophysics Data System (ADS)

    Shen, W. Z.; Zhu, W. J.; Fischer, A.; Garcia, N. R.; Cheng, J. T.; Chen, J.; Madsen, J.

    2014-12-01

    The CQU-DTU-LN1 series of airfoils were designed with an objective of high lift and low noise emission. In the design process, the aerodynamic performance is obtained using XFOIL while noise emission is obtained with the BPM model. In this paper we present some validations of the designed CQU-DTU-LN118 airfoil by using wind tunnel measurements in the acoustic wind tunnel located at Virginia Tech and numerical computations with the inhouse Q3uic and EllipSys 2D/3D codes. To show the superiority of the new airfoils, comparisons with a NACA64618 airfoil are made. For the aerodynamic features, the designed Cl and Cl/Cd agrees well with the experiment and are in general higher than those of the NACA airfoil. For the acoustic features, the noise emission of the LN118 airfoil is compared with the acoustic measurements and that of the NACA airfoil. Comparisons show that the BPM model can predict correctly the noise changes.

  15. Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.

  16. Are green building features safe for preventive maintenance workers? Examining the evidence.

    PubMed

    Omar, Mohamed Shamun; Quinn, Margaret M; Buchholz, Bryan; Geiser, Ken

    2013-04-01

    Many newly constructed green buildings (GB) are certified using the United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED) rating system for new construction and major renovation which focuses on architectural and mechanical design to conserve energy, reduce environmental harm, and enhance indoor quality for occupants. This study evaluated the preventive maintenance (PM) worker occupational safety and health (OSH) risks related to the design of GB. PM job hazard analyses (JHA) were performed on the tasks required to operate and maintain five GB features selected from 13 LEED certified GB. A 22-item JHA and OSH risk scoring system were developed. Potentially serious OSH hazards included: green roofs made of slippery material without fall protection; energy recovery wheels and storm water harvesting systems in confined spaces; skylights without guard rails; and tight geothermal well mechanical rooms constraining safe preventive practices. GB can present PM OSH risks and these should be eliminated in the building design phase. Copyright © 2013 Wiley Periodicals, Inc.

  17. Real-Time Sensor Validation, Signal Reconstruction, and Feature Detection for an RLV Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy L.; Fulton, Christopher E.; Binder, Michael P.; Maul, William A., III; Meyer, Claudia M.

    1998-01-01

    A real-time system for validating sensor health has been developed in support of the reusable launch vehicle program. This system was designed for use in a propulsion testbed as part of an overall effort to improve the safety, diagnostic capability, and cost of operation of the testbed. The sensor validation system was designed and developed at the NASA Lewis Research Center and integrated into a propulsion checkout and control system as part of an industry-NASA partnership, led by Rockwell International for the Marshall Space Flight Center. The system includes modules for sensor validation, signal reconstruction, and feature detection and was designed to maximize portability to other applications. Review of test data from initial integration testing verified real-time operation and showed the system to perform correctly on both hard and soft sensor failure test cases. This paper discusses the design of the sensor validation and supporting modules developed at LeRC and reviews results obtained from initial test cases.

  18. Development of the Brican TD100 Small Uas and Payload Trials

    NASA Astrophysics Data System (ADS)

    Eggleston, B.; McLuckie, B.; Koski, W. R.; Bird, D.; Patterson, C.; Bohdanov, D.; Liu, H.; Mathews, T.; Gamage, G.

    2015-08-01

    The Brican TD100 is a high performance, small UAS designed and made in Brampton Ontario Canada. The concept was defined in late 2009 and it is designed for a maximum weight of 25 kg which is now the accepted cut-off defining small civil UASs. A very clean tractor propeller layout is used with a lightweight composite structure and a high aspect ratio wing to obtain good range and endurance. The design features and performance of the initial electrically powered version are discussed and progress with developing a multifuel engine version is described. The system includes features enabling operation beyond line of sight (BLOS) and the proving missions are described. The vehicle has been used for aerial photography and low cost mapping using a professional grade Nikon DSLR camera. For forest fire research a FLIR A65 IR camera was used, while for georeferenced mapping a new Applanix AP20 system was calibrated with the Nikon camera. The sorties to be described include forest fire research, wildlife photography of bowhead whales in the Arctic and surveys of endangered caribou in a remote area of Labrador, with all these applications including the DSLR camera.

  19. Toward Eco Product Development with Qualitative and CAE Design Process - Case Study of Flame Guiding Module

    NASA Astrophysics Data System (ADS)

    Chen, W. L.; Chao, F. L.

    2018-04-01

    Sustainable products become increasingly important for company in addressing eco-performance to satisfy global environmental regulations. Case study of flame guiding module reviewed design process and concerns related to the torch design. For enhancing flame height, the torch was embedded with an airflow guidance structure. The design process and design methodologies were investigated as an eco-design case study. Combine qualitative and CAE simulation were proposed to fulfil its main and auxiliary functions including reduction of impact during use. The design guidelines help prevent mistake arrangements, CAE helps understand combustion phenomenon. The flow field simulation enables fine tune of geometric design. Functional test and measurement are carried out to confirm the product features. On Eco-performance, we choose 5 items for evaluation the status of previous and redesign module, namely function need, low impact material, few manufacturing steps, low energy consumption, and safety. The radar diagram indicates that eco-performance of redesign module is better. Life cycle assessment calculated the carbon footprint of the manufacturing and processing stage with Eco-it. By using recycled steel in the flame module, it reduces raw material stage carbon footprint significantly.

  20. Defeating feature fatigue.

    PubMed

    Rust, Roland T; Thompson, Debora Viana; Hamilton, Rebecca W

    2006-02-01

    Consider a coffeemaker that offers 12 drink options, a car with more than 700 features on the dashboard, and a mouse pad that's also a clock, calculator, and FM radio. All are examples of "feature bloat", or "featuritis", the result of an almost irresistible temptation to load products with lots of bells and whistles. The problem is that the more features a product boasts, the harder it is to use. Manufacturers that increase a product's capability--the number of useful functions it can perform--at the expense of its usability are exposing their customers to feature fatigue. The authors have conducted three studies to gain a better understanding of how consumers weigh a product's capability relative to its usability. They found that even though consumers know that products with more features are harder to use, they initially choose high-feature models. They also pile on more features when given the chance to customize a product for their needs. Once consumers have actually worked with a product, however, usability starts to matter more to them than capability. For managers in consumer products companies, these findings present a dilemma: Should they maximize initial sales by designing high-feature models, which consumers consistently choose, or should they limit the number of features in order to enhance the lifetime value of their customers? The authors' analytical model guides companies toward a happy middle ground: maximizing the net present value of the typical customer's profit stream. The authors also advise companies to build simpler products, help consumers learn which products suit their needs, develop products that do one thing very well, and design market research in which consumers use actual products or prototypes.

  1. Optical ensemble analysis of intraocular lens performance through a simulated clinical trial with ZEMAX.

    PubMed

    Zhao, Huawei

    2009-01-01

    A ZEMAX model was constructed to simulate a clinical trial of intraocular lenses (IOLs) based on a clinically oriented Monte Carlo ensemble analysis using postoperative ocular parameters. The purpose of this model is to test the feasibility of streamlining and optimizing both the design process and the clinical testing of IOLs. This optical ensemble analysis (OEA) is also validated. Simulated pseudophakic eyes were generated by using the tolerancing and programming features of ZEMAX optical design software. OEA methodology was verified by demonstrating that the results of clinical performance simulations were consistent with previously published clinical performance data using the same types of IOLs. From these results we conclude that the OEA method can objectively simulate the potential clinical trial performance of IOLs.

  2. Design, analysis, fabrication and test of the Space Shuttle solid rocket booster motor case

    NASA Technical Reports Server (NTRS)

    Kapp, J. R.

    1978-01-01

    The motor case used in the solid propellant booster for the Space Shuttle is unique in many respects, most of which are indigenous to size and special design requirements. The evolution of the case design from initial requirements to finished product is discussed, with increased emphasis of reuse capability, special design features, fracture mechanics and corrosion control. Case fabrication history and the resulting procedure are briefly reviewed with respect to material development, processing techniques and special problem areas. Case assembly, behavior and performance during the DM-1 static firing are reviewed, with appropriate comments and conclusions.

  3. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  4. Improvements in Mixing Time and Mixing Uniformity in Devices Designed for Studies of Protein Folding Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shuhuai; Bakajin, Olgica

    2007-08-01

    Using a microfluidic laminar flow mixer designed for studies of protein folding kinetics, we demonstrate a mixing time of 1 +/- 1 micros with sample consumption on the order of femtomoles. We recognize two limitations of previously proposed designs: (1) size and shape of the mixing region, which limits mixing uniformity and (2) the formation of Dean vortices at high flow rates, which limits the mixing time. We address these limitations by using a narrow shape-optimized nozzle and by reducing the bend of the side channel streamlines. The final design, which combines both of these features, achieves the best performance.more » We quantified the mixing performance of the different designs by numerical simulation of coupled Navier-Stokes and convection-diffusion equations and experiments using fluorescence resonance energy-transfer (FRET)-labeled DNA.« less

  5. Long-term monitoring of experimental features, subtask 2 : Alexandria-Ashland highway (KY 9) pavement performance monitoring

    DOT National Transportation Integrated Search

    2000-06-01

    Construction on the AA Highway began in late 1985 and was completed in late 1990. Prior to construction, 30 different test sections had been designed into the highway for evaluation. The test sections contain 23 different characteristic qualities and...

  6. Insulated Concrete Homes Increase Durability and Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building America; Hendron, B.; Poole, L.

    2001-06-05

    New houses designed by Mercedes Homes in Melbourne, Florida, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

  7. Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum

    ERIC Educational Resources Information Center

    Smith, S. C.; Al-Assadi, W. K.; Di, J.

    2010-01-01

    As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…

  8. Automatic Detection of Whole Night Snoring Events Using Non-Contact Microphone

    PubMed Central

    Dafna, Eliran; Tarasiuk, Ariel; Zigel, Yaniv

    2013-01-01

    Objective Although awareness of sleep disorders is increasing, limited information is available on whole night detection of snoring. Our study aimed to develop and validate a robust, high performance, and sensitive whole-night snore detector based on non-contact technology. Design Sounds during polysomnography (PSG) were recorded using a directional condenser microphone placed 1 m above the bed. An AdaBoost classifier was trained and validated on manually labeled snoring and non-snoring acoustic events. Patients Sixty-seven subjects (age 52.5±13.5 years, BMI 30.8±4.7 kg/m2, m/f 40/27) referred for PSG for obstructive sleep apnea diagnoses were prospectively and consecutively recruited. Twenty-five subjects were used for the design study; the validation study was blindly performed on the remaining forty-two subjects. Measurements and Results To train the proposed sound detector, >76,600 acoustic episodes collected in the design study were manually classified by three scorers into snore and non-snore episodes (e.g., bedding noise, coughing, environmental). A feature selection process was applied to select the most discriminative features extracted from time and spectral domains. The average snore/non-snore detection rate (accuracy) for the design group was 98.4% based on a ten-fold cross-validation technique. When tested on the validation group, the average detection rate was 98.2% with sensitivity of 98.0% (snore as a snore) and specificity of 98.3% (noise as noise). Conclusions Audio-based features extracted from time and spectral domains can accurately discriminate between snore and non-snore acoustic events. This audio analysis approach enables detection and analysis of snoring sounds from a full night in order to produce quantified measures for objective follow-up of patients. PMID:24391903

  9. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  10. Vocal Features of Song and Speech: Insights from Schoenberg's Pierrot Lunaire

    PubMed Central

    Merrill, Julia; Larrouy-Maestri, Pauline

    2017-01-01

    Similarities and differences between speech and song are often examined. However, the perceptual definition of these two types of vocalization is challenging. Indeed, the prototypical characteristics of speech or song support top-down processes, which influence listeners' perception of acoustic information. In order to examine vocal features associated with speaking and singing, we propose an innovative approach designed to facilitate bottom-up mechanisms in perceiving vocalizations by using material situated between speech and song: Speechsong. 25 participants were asked to evaluate 20 performances of a speechsong composition by Arnold Schoenberg, “Pierrot lunaire” op. 21 from 1912, evaluating 20 features of vocal-articulatory expression. Raters provided reliable judgments concerning the vocal features used by the performers and did not show strong appeal or specific expectations in reference to Schoenberg's piece. By examining the relationship between the vocal features and the impression of song or speech, the results confirm the importance of pitch (height, contour, range), but also point to the relevance of register, timbre, tension and faucal distance. Besides highlighting vocal features associated with speech and song, this study supports the relevance of the present approach of focusing on a theoretical middle category in order to better understand vocal expression in song and speech. PMID:28744233

  11. Computerized detection of breast cancer using resonance-frequency-based electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Fan, Ming; Zhao, Weijie; Zheng, Bin; Li, Lihua

    2017-03-01

    This study developed and tested a multi-probe resonance-frequency-based electrical impedance spectroscopy (REIS) system aimed at detection of breast cancer. The REIS system consists of specially designed mechanical supporting device that can be easily lifted to fit women of different height, a seven probe sensor cup, and a computer providing software for system control and management. The sensor cup includes one central probe for direct contact with the nipple, and other six probes uniformly distributed at a distance of 35mm away from the center probe to enable contact with breast skin surface. It takes about 18 seconds for this system to complete a data acquisition process. We utilized this system for examination of breast cancer, collecting a dataset of 289 cases including biopsy verified 74 malignant and 215 benign tumors. After that, 23 REIS based features, including seven frequency, fifteen magnitude features were extracted, and an age feature. To reduce redundancy we selected 6 features using the evolutionary algorithm for classification. The area under a receiver operating characteristic curve (AUC) was computed to assess classifier performance. A multivariable logistic regression method was performed for detection of the tumors. The results of our study showed for the 23 REIS features AUC and ACC, Sensitivity and Specificity of 0.796, 0.727, 0.731 and 0.726, respectively. The AUC and ACC, Sensitivity and Specificity for the 6 REIS features of 0.840, 0.80, 0.703 and 0.833, respectively, and AUC of 0.662 and 0.619 for the frequency and magnitude based REIS features, respectively. The performance of the classifiers using all the 6 features was significantly better than solely using magnitude features (p=3.29e-08) and frequency features (5.61e-07). Smote algorithm was used to expand small samples to balance the dataset, the AUC after data balance of 0.846 increased than the original data classification performance. The results indicated that the REIS system is a promising tool for detection of breast cancer and may be acceptable for clinical implementation.

  12. Hardware demonstration of flexible beam control

    NASA Technical Reports Server (NTRS)

    Schaechter, D. B.

    1980-01-01

    An experiment employing a pinned-free flexible beam has been constructed to demonstrate and verify several facets of the control of flexible structures. The desired features of the experiment are to demonstrate active shape control, active dynamic control, adaptive control, various control law design approaches, and associated hardware requirements and mechanization difficulties. This paper contains the analytical work performed in support of the facility development, the final design specifications, control law synthesis, and some preliminary results.

  13. Complexity of Illustrations in PISA 2009 Science Items and Its Relationship to the Performance of Students from Shanghai-China, the United States, and Mexico

    ERIC Educational Resources Information Center

    Solano-Flores, Guillermo; Wang, Chao

    2015-01-01

    Background: While illustrations are widely used in international test comparisons, very scant research has been conducted on their design and on their influence on student performance. It is not clear how the features of illustration act in combination supporting students' access to the content of items or increasing their interpretation demands.…

  14. Comparative study on different types of segmented micro deformable mirrors

    NASA Astrophysics Data System (ADS)

    Qiao, Dayong; Yuan, Weizheng; Li, Kaicheng; Li, Xiaoying; Rao, Fubo

    2006-02-01

    In an adaptive-optical (AO) system, the wavefront of optical beam can be corrected with deformable mirror (DM). Based on MicroElectroMechanical System (MEMS) technology, segmented micro deformable mirrors can be built with denser actuator spacing than continuous face-sheet designs and have been widely researched. But the influence of the segment structure has not been thoroughly discussed until now. In this paper, the design, performance and fabrication of several micromachined, segmented deformable mirror for AO were investigated. The wavefront distorted by atmospheric turbulence was simulated in the frame of Kolmogorov turbulence model. Position function was used to describe the surfaces of the micro deformable mirrors in working state. The performances of deformable mirrors featuring square, brick, hexagonal and ring segment structures were evaluated in criteria of phase fitting error, the Strehl ratio after wavefront correction and the design considerations. Then the micro fabrication process and mask layout were designed and the fabrication of micro deformable mirrors was implemented. The results show that the micro deformable mirror with ring segments performs the best, but it is very difficult in terms of layout design. The micro deformable mirrors with square and brick segments are easy to design, but their performances are not good. The micro deformable mirror with hexagonal segments has not only good performance in terms of phase fitting error, the Strehl ratio and actuation voltage, but also no overwhelming difficulty in layout design.

  15. Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2014-02-01

    Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.

  16. Imbalance aware lithography hotspot detection: a deep learning approach

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei

    2017-03-01

    With the advancement of VLSI technology nodes, light diffraction caused lithographic hotspots have become a serious problem affecting manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with extreme scaling of transistor feature size and more and more complicated layout patterns, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. In this paper, we present a deep convolutional neural network (CNN) targeting representative feature learning in lithography hotspot detection. We carefully analyze impact and effectiveness of different CNN hyper-parameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always minorities in VLSI mask design, the training data set is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from high false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply minority upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves highly comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.

  17. Performance of 350kW concentrating photovoltaic power system after two years

    NASA Astrophysics Data System (ADS)

    Khoshaim, B.; Huraib, F.; Al-Sani, A.; Salim, A.

    This paper summarizes the continuing performance of the world's largest concentrating Photovoltaic Power System (PVPS) which began supplying electrical power to the three remote villages in Saudi Arabia in September 1981. The paper reviews the system performance to date and concentrates mainly on the performance of the most important part of the PVPS that is the photovoltaic array field. Problems and failures experienced with the system so far are reviewed and analyzed. Also, a brief history of the project including its design features is given in this paper.

  18. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans

    NASA Astrophysics Data System (ADS)

    Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming

    2016-04-01

    This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.

  19. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans.

    PubMed

    Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming

    2016-04-15

    This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.

  20. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans

    PubMed Central

    Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming

    2016-01-01

    This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features. PMID:27079888

Top