Peterson, Erin L; Carlson, Susan A; Schmid, Thomas L; Brown, David R; Galuska, Deborah A
2018-01-01
The purpose of this study was to examine the association between the presence of supportive community planning documents in US municipalities with design standards and requirements supportive of active living. Cross-sectional study using data from the 2014 National Survey of Community-Based Policy and Environmental Supports for Healthy Eating and Active Living. Nationally representative sample of US municipalities. Respondents are 2005 local officials. Assessed: (1) The presence of design standards and feature requirements and (2) the association between planning documents and design standards and feature requirements supportive of active living in policies for development. Using logistic regression, significant trends were identified in the presence of design standards and feature requirements by plan and number of supportive objectives present. Prevalence of design standards ranged from 19% (developer dedicated right-of-way for bicycle infrastructure development) to 50% (traffic-calming features in areas with high pedestrian and bicycle volume). Features required in policies for development ranged from 14% (short/medium pedestrian-scale block sizes) to 44% (minimum sidewalk widths of 5 feet) of municipalities. As the number of objectives in municipal plans increased, there was a significant and positive trend ( P < .05) in the prevalence of each design standard and requirement. Municipal planning documents containing objectives supportive of physical activity are associated with design standards and feature requirements supportive of activity-friendly communities.
GATOR: Requirements capturing of telephony features
NASA Technical Reports Server (NTRS)
Dankel, Douglas D., II; Walker, Wayne; Schmalz, Mark
1992-01-01
We are developing a natural language-based, requirements gathering system called GATOR (for the GATherer Of Requirements). GATOR assists in the development of more accurate and complete specifications of new telephony features. GATOR interacts with a feature designer who describes a new feature, set of features, or capability to be implemented. The system aids this individual in the specification process by asking for clarifications when potential ambiguities are present, by identifying potential conflicts with other existing features, and by presenting its understanding of the feature to the designer. Through user interaction with a model of the existing telephony feature set, GATOR constructs a formal representation of the new, 'to be implemented' feature. Ultimately GATOR will produce a requirements document and will maintain an internal representation of this feature to aid in future design and specification. This paper consists of three sections that describe (1) the structure of GATOR, (2) POND, GATOR's internal knowledge representation language, and (3) current research issues.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... have novel or unusual design features when compared to the state of technology envisioned in the... standards. Additional special conditions will be issued for other novel or unusual design features of the... 747-8/-8F because of a novel or unusual design feature, special conditions are prescribed under the...
Clean access platform for orbiter
NASA Technical Reports Server (NTRS)
Morrison, H.; Harris, J.
1990-01-01
The design of the Clean Access Platform at the Kennedy Space Center, beginning with the design requirements and tracing the effort throughout development and manufacturing is described. Also examined are: (1) A system description; (2) Testing requirements and conclusions; (3) Safety and reliability features; (4) Major problems experienced during the project; and (5) Lessons learned, including features necessary for the effective design of mechanisms used in clean systems.
Hooper, Paula; Knuiman, Matthew; Foster, Sarah; Giles-Corti, Billie
2015-11-01
Planning policy makers are requesting clearer guidance on the key design features required to build neighbourhoods that promote active living. Using a backwards stepwise elimination procedure (logistic regression with generalised estimating equations adjusting for demographic characteristics, self-selection factors, stage of construction and scale of development) this study identified specific design features (n=16) from an operational planning policy ("Liveable Neighbourhoods") that showed the strongest associations with walking behaviours (measured using the Neighbourhood Physical Activity Questionnaire). The interacting effects of design features on walking behaviours were also investigated. The urban design features identified were grouped into the "building blocks of a Liveable Neighbourhood", reflecting the scale, importance and sequencing of the design and implementation phases required to create walkable, pedestrian friendly developments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Requirements' Role in Mobilizing and Enabling Design Conversation
NASA Astrophysics Data System (ADS)
Bergman, Mark
Requirements play a critical role in a design conversation of systems and products. Product and system design exists at the crossroads of problems, solutions and requirements. Requirements contextualize problems and solutions, pointing the way to feasible outcomes. These are captured with models and detailed specifications. Still, stakeholders need to be able to understand one-another using shared design representations in order to mobilize bias and transform knowledge towards legitimized, desired results. Many modern modeling languages, including UML, as well as detailed, logic-based specifications are beyond the comprehension of key stakeholders. Hence, they inhibit, rather than promote design conversation. Improved design boundary objects (DBO), especially design requirements boundary objects (DRBO), need to be created and refined to improve the communications between principals. Four key features of design boundary objects that improve and promote design conversation are discussed in detail. A systems analysis and design case study is presented which demonstrates these features in action. It describes how a small team of analysts worked with key stakeholders to mobilize and guide a complex system design discussion towards an unexpected, yet desired outcome within a short time frame.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... design features include an electronic flight control system that provides roll control of the airplane... Design Features The GVI is equipped with an electronic flight control system that provides roll control... condition at design maneuvering speed (V A ), in which the cockpit roll control is returned to neutral...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
...) Protection, Limit Engine Torque Loads for Sudden Engine Stoppage, and Design Roll Maneuver Requirement AGENCY... design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. These design features include limit engine torque loads for sudden engine...
Mkpojiogu, Emmanuel O C; Hashim, Nor Laily
2016-01-01
Customer satisfaction is the result of product quality and viability. The place of the perceived satisfaction of users/customers for a software product cannot be neglected especially in today competitive market environment as it drives the loyalty of customers and promotes high profitability and return on investment. Therefore understanding the importance of requirements as it is associated with the satisfaction of users/customers when their requirements are met is worth the pain considering. It is necessary to know the relationship between customer satisfactions when their requirements are met (or their dissatisfaction when their requirements are unmet) and the importance of such requirement. So many works have been carried out on customer satisfaction in connection with the importance of requirements but the relationship between customer satisfaction scores (coefficients) of the Kano model and users/customers self-stated requirements importance have not been sufficiently explored. In this study, an attempt is made to unravel the underlying relationship existing between Kano model's customer satisfaction indexes and users/customers self reported requirements importance. The results of the study indicate some interesting associations between these considered variables. These bivariate associations reveal that customer satisfaction index (SI), and average satisfaction coefficient (ASC) and customer dissatisfaction index (DI) and average satisfaction coefficient (ASC) are highly correlated (r = 96 %) and thus ASC can be used in place of either SI or DI in representing customer satisfaction scores. Also, these Kano model's customer satisfaction variables (SI, DI, and ASC) are each associated with self-stated requirements importance (IMP). Further analysis indicates that the value customers or users place on requirements that are met or on features that are incorporated into a product influences the level of satisfaction such customers derive from the product. The worth of a product feature is indicated by the perceived satisfaction customers get from the inclusion of such feature in the product design and development. The satisfaction users/customers derive when a requirement is fulfilled or when a feature is placed in the product (SI or ASC) is strongly influenced by the value the users/customers place on such requirements/features when met (IMP). However, the dissatisfaction users/customers received when a requirement is not met or when a feature is not incorporated into the product (DI), even though related to self-stated requirements importance (IMP), does not have a strong effect on the importance/worth (IMP) of that given requirement/feature as perceived by the users or customers. Therefore, since customer satisfaction is proportionally related to the perceived requirements importance (worth), it is then necessary to give adequate attention to user/customer satisfying requirements (features) from elicitation to design and to the final implementation of the design. Incorporating user or customer satisfying requirements in product design is of great worth or value to the future users or customers of the product.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... appropriate safety standards for the C-series airplanes because of a novel or unusual design feature, special... Features The C-series airplanes will incorporate the following novel or unusual design features: new... Series Airplanes; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation...
Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board
NASA Technical Reports Server (NTRS)
Breeding, Shawn; Khodabandeh, Julia
2002-01-01
Contents include the following: Quench Module Insert (QMI) science requirements. QMI interfaces. QMI design layout. QMI thermal analysis and design methodology. QMI bread board testing and instrumentation approach. QMI thermal probe design parameters. Design features for gradient measurement. Design features for heated zone measurements. Thermal gradient analysis results. Heated zone analysis results. Bread board thermal probe layout. QMI bread board correlation and performance. Summary and conclusions.
NASA Technical Reports Server (NTRS)
Johnson, Charles S.
1986-01-01
It is nearly axiomatic, that to take the greatest advantage of the useful features available in a development system, and to avoid the negative interactions of those features, requires the exercise of a design methodology which constrains their use. A major design support feature of the Ada language is abstraction: for data, functions processes, resources, and system elements in general. Atomic abstract types can be created in packages defining those private types and all of the overloaded operators, functions, and hidden data required for their use in an application. Generically structured abstract types can be created in generic packages defining those structured private types, as buildups from the user-defined data types which are input as parameters. A study is made of the design constraints required for software incorporating either atomic or generically structured abstract types, if the integration of software components based on them is to be subsequently performed. The impact of these techniques on the reusability of software and the creation of project-specific software support environments is also discussed.
49 CFR 229.215 - Retention and inspection of designs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness... crashworthiness features required by this subpart. These records must be retained for the lesser period of: (1... this subpart shall retain all records of repair or modification to crashworthiness features required by...
49 CFR 229.215 - Retention and inspection of designs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness... crashworthiness features required by this subpart. These records must be retained for the lesser period of: (1... this subpart shall retain all records of repair or modification to crashworthiness features required by...
49 CFR 229.215 - Retention and inspection of designs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness... crashworthiness features required by this subpart. These records must be retained for the lesser period of: (1... this subpart shall retain all records of repair or modification to crashworthiness features required by...
49 CFR 229.215 - Retention and inspection of designs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness... crashworthiness features required by this subpart. These records must be retained for the lesser period of: (1... this subpart shall retain all records of repair or modification to crashworthiness features required by...
49 CFR 229.215 - Retention and inspection of designs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness... crashworthiness features required by this subpart. These records must be retained for the lesser period of: (1... this subpart shall retain all records of repair or modification to crashworthiness features required by...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable to the facility. Except for air emission control equipment design documentation and information... the operating record for a minimum of 3 years. Air emission control equipment design documentation... explain: How use of the required air emission controls on the tanks would affect the tank design features...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicable to the facility. Except for air emission control equipment design documentation and information... the operating record for a minimum of 3 years. Air emission control equipment design documentation... explain: How use of the required air emission controls on the tanks would affect the tank design features...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicable to the facility. Except for air emission control equipment design documentation and information... the operating record for a minimum of 3 years. Air emission control equipment design documentation... explain: How use of the required air emission controls on the tanks would affect the tank design features...
29 CFR 1910.217 - Mechanical power presses.
Code of Federal Regulations, 2012 CFR
2012-07-01
... against unintentional operation and have the individual operator's hand controls arranged by design and... trip the press. (b) The control system shall be designed to permit an adjustment which will require... shall incorporate an antirepeat feature. (d) The control systems shall be designed to require release of...
29 CFR 1910.217 - Mechanical power presses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... against unintentional operation and have the individual operator's hand controls arranged by design and... trip the press. (b) The control system shall be designed to permit an adjustment which will require... shall incorporate an antirepeat feature. (d) The control systems shall be designed to require release of...
29 CFR 1910.217 - Mechanical power presses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... against unintentional operation and have the individual operator's hand controls arranged by design and... trip the press. (b) The control system shall be designed to permit an adjustment which will require... shall incorporate an antirepeat feature. (d) The control systems shall be designed to require release of...
29 CFR 1910.217 - Mechanical power presses.
Code of Federal Regulations, 2014 CFR
2014-07-01
... against unintentional operation and have the individual operator's hand controls arranged by design and... trip the press. (b) The control system shall be designed to permit an adjustment which will require... shall incorporate an antirepeat feature. (d) The control systems shall be designed to require release of...
29 CFR 1910.217 - Mechanical power presses.
Code of Federal Regulations, 2013 CFR
2013-07-01
... against unintentional operation and have the individual operator's hand controls arranged by design and... trip the press. (b) The control system shall be designed to permit an adjustment which will require... shall incorporate an antirepeat feature. (d) The control systems shall be designed to require release of...
7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...
7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...
7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...
7 CFR 1755.910 - RUS specification for outside plant housings and serving area interface systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... requirements are interrelated to several tests designed to determine the performance aspects of terminals and... environments. Included are the mechanical, electrical, and environmental requirements, desired design features, and test methods for evaluation of the product. (2) The housing and terminal requirements reflect the...
NASA Technical Reports Server (NTRS)
Garrocq, C. A.; Hurley, M. J.
1973-01-01
System requirements, software elements, and hardware equipment required for an IPAD system are defined. An IPAD conceptual design was evolved, a potential user survey was conducted, and work loads for various types of interactive terminals were projected. Various features of major host computing systems were compared, and target systems were selected in order to identify the various elements of software required.
National Combustion Code: Parallel Performance
NASA Technical Reports Server (NTRS)
Babrauckas, Theresa
2001-01-01
This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.
Revenäs, Åsa; Opava, Christina H; Martin, Cathrin; Demmelmaier, Ingrid; Keller, Christina; Åsenlöf, Pernilla
2015-02-09
Long-term adherence to physical activity recommendations remains challenging for most individuals with rheumatoid arthritis (RA) despite evidence for its health benefits. The aim of this study was to provide basic data on system requirement specifications for a Web-based and mobile app to self-manage physical activity. More specifically, we explored the target user group, features of the future app, and correlations between the system requirements and the established behavior change techniques (BCTs). We used a participatory action research design. Qualitative data were collected using multiple methods in four workshops. Participants were 5 individuals with RA, a clinical physiotherapist, an officer from the Swedish Rheumatism Association, a Web designer, and 2 physiotherapy researchers. A taxonomy was used to determine the degree of correlation between the system requirements and established BCTs. Participants agreed that the future Web-based and mobile app should be based on two major components important for maintaining physical activity: (1) a calendar feature for goal setting, planning, and recording of physical activity performance and progress, and (2) a small community feature for positive feedback and support from peers. All system requirements correlated with established BCTs, which were coded as 24 different BCTs. To our knowledge, this study is the first to involve individuals with RA as co-designers, in collaboration with clinicians, researchers, and Web designers, to produce basic data to generate system requirement specifications for an eHealth service. The system requirements correlated to the BCTs, making specifications of content and future evaluation of effectiveness possible.
Design concept definition study for an improved shuttle waste collection subsystem
NASA Technical Reports Server (NTRS)
1984-01-01
A no-risk approach for developing an Improved Waste Collection Subsystem (WCS) for the shuttle orbiter is described. The GE Improved WCS Concept builds on the experience of 14 Shuttle missions with over 400 man-days of service. This concept employs the methods of the existing flight-proven mature design, augmenting them to eliminate foreseen difficulties and to fully comply with the design requirements. The GE Improved WCS Concept includes separate storage for used wipes. Compaction of the wipes provides a solution to the capacity problem, fully satisfying the 210 man-day storage requirement. The added feature of in-flight serviceable storage space for the wipes creates a variable capacity feature which affords redundancy in the event of wipes compaction system failure. Addition of features permitting in-flight servicing of the feces storage tank creates a variable capacity WCS with easier post-flight servicing to support rapid turnaround of the Shuttle orbiter. When these features are combined with a vacuum pump to evacuate wipes and fecal storage tanks through replaceable odor/bacteria filters to the cabin, the GE Improved WCS satisfies the known requirements for Space Station use, including no venting to space.
NASA Technical Reports Server (NTRS)
Buden, D.
1991-01-01
Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.
7 CFR 1724.51 - Design requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Transmission lines. (1) All transmission line design data must be approved by RUS. (2) Design data consists of all significant design features, including, but not limited to, transmission line design data summary..., or steel towers, in which load information will be used to purchase the structures, the design data...
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
The baseline SRM design for the space shuttle employs proven technology based on actual motor firings. Supporting research and technology are therefore required only to address system technology that is specific to the shuttle requirements, and that is needed for optimization of design features. Eight programs are recommended to meet these requirements.
Triana Hoyos, Ana Maria; Alakörkkö, Tuomas; Kaski, Kimmo; Saramäki, Jari; Isometsä, Erkki; Darst, Richard K
2017-01-01
Background Mental and behavioral disorders are the main cause of disability worldwide. However, their diagnosis is challenging due to a lack of reliable biomarkers; current detection is based on structured clinical interviews which can be biased by the patient’s recall ability, affective state, changing in temporal frames, etc. While digital platforms have been introduced as a possible solution to this complex problem, there is little evidence on the extent of usability and usefulness of these platforms. Therefore, more studies where digital data is collected in larger scales are needed to collect scientific evidence on the capacities of these platforms. Most of the existing platforms for digital psychiatry studies are designed as monolithic systems for a certain type of study; publications from these studies focus on their results, rather than the design features of the data collection platform. Inevitably, more tools and platforms will emerge in the near future to fulfill the need for digital data collection for psychiatry. Currently little knowledge is available from existing digital platforms for future data collection platforms to build upon. Objective The objective of this work was to identify the most important features for designing a digital platform for data collection for mental health studies, and to demonstrate a prototype platform that we built based on these design features. Methods We worked closely in a multidisciplinary collaboration with psychiatrists, software developers, and data scientists and identified the key features which could guarantee short-term and long-term stability and usefulness of the platform from the designing stage to data collection and analysis of collected data. Results The key design features that we identified were flexibility of access control, flexibility of data sources, and first-order privacy protection. We also designed the prototype platform Non-Intrusive Individual Monitoring Architecture (Niima), where we implemented these key design features. We described why each of these features are important for digital data collection for psychiatry, gave examples of projects where Niima was used or is going to be used in the future, and demonstrated how incorporating these design principles opens new possibilities for studies. Conclusions The new methods of digital psychiatry are still immature and need further research. The design features we suggested are a first step to design platforms which can adapt to the upcoming requirements of digital psychiatry. PMID:28600276
Earth Observing Scanning Polarimeter (EOSP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1979-01-01
Volume 7 of the Satellite Power Systems (SPS) Concept Definition Study final report summarizes the basic requirements used as a guide to systems analysis and is a basis for the selection of candidate SPS point design(s). Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point design(s). The identified subsystem/systems requirements are defined, and where appropriate, recommendations for alternate approaches which may represent improved design features are presented. A more detailed discussion of the selected point design(s) will be found in Volume 2 of this report.
A Design Rationale Capture Tool to Support Design Verification and Re-use
NASA Technical Reports Server (NTRS)
Hooey, Becky Lee; Da Silva, Jonny C.; Foyle, David C.
2012-01-01
A design rationale tool (DR tool) was developed to capture design knowledge to support design verification and design knowledge re-use. The design rationale tool captures design drivers and requirements, and documents the design solution including: intent (why it is included in the overall design); features (why it is designed the way it is); information about how the design components support design drivers and requirements; and, design alternatives considered but rejected. For design verification purposes, the tool identifies how specific design requirements were met and instantiated within the final design, and which requirements have not been met. To support design re-use, the tool identifies which design decisions are affected when design drivers and requirements are modified. To validate the design tool, the design knowledge from the Taxiway Navigation and Situation Awareness (T-NASA; Foyle et al., 1996) system was captured and the DR tool was exercised to demonstrate its utility for validation and re-use.
AP1000{sup R} nuclear power plant safety overview for spent fuel cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorgemans, J.; Mulhollem, L.; Glavin, J.
2012-07-01
The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first levelmore » of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)« less
Optical design of the ATMOS Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.
1979-01-01
The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.
The Structured Intuitive Model for Product Line Economics (SIMPLE)
2005-02-01
units are features and use cases. A feature is just as nebulous as a requirement, but techniques such as feature-oriented domain analysis ( FODA ) [Kang 90...cost avoidance DM design modified DOCU degree of documentation GQM Goal Question Metric FODA feature-oriented domain analysis IM integration effort...Hess, J.; Novak, W.; & Peterson, A. Feature- Oriented Domain Analysis ( FODA ) Feasibility Study (CMU/SEI- 90-TR-02 1, ADA235785). Pittsburgh, PA
Recent developments in BWR fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Noble, L.D.; Wood, J.E.
1991-11-01
Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less
Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification
NASA Technical Reports Server (NTRS)
Miller, A. N.; Linden, A. W.
1972-01-01
The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.
High-speed civil transport flight- and propulsion-control technological issues
NASA Technical Reports Server (NTRS)
Ray, J. K.; Carlin, C. M.; Lambregts, A. A.
1992-01-01
Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team.
Designing a Robust Micromixer Based on Fluid Stretching
NASA Astrophysics Data System (ADS)
Mott, David; Gautam, Dipesh; Voth, Greg; Oran, Elaine
2010-11-01
A metric for measuring fluid stretching based on finite-time Lyapunov exponents is described, and the use of this metric for optimizing mixing in microfluidic components is explored. The metric is implemented within an automated design approach called the Computational Toolbox (CTB). The CTB designs components by adding geometric features, such a grooves of various shapes, to a microchannel. The transport produced by each of these features in isolation was pre-computed and stored as an "advection map" for that feature, and the flow through a composite geometry that combines these features is calculated rapidly by applying the corresponding maps in sequence. A genetic algorithm search then chooses the feature combination that optimizes a user-specified metric. Metrics based on the variance of concentration generally require the user to specify the fluid distributions at inflow, which leads to different mixer designs for different inflow arrangements. The stretching metric is independent of the fluid arrangement at inflow. Mixers designed using the stretching metric are compared to those designed using a variance of concentration metric and show excellent performance across a variety of inflow distributions and diffusivities.
NASA Technical Reports Server (NTRS)
Garrocq, C. A.; Hurley, M. J.
1973-01-01
Viable designs are presented of various elements of the IPAD framework software, data base management system, and required new languages in relation to the capabilities of operating systems software. A thorough evaluation was made of the basic systems functions to be provide by each software element, its requirements defined in the conceptual design, the operating systems features affecting its design, and the engineering/design functions which it was intended to enhance.
47 CFR 79.109 - Activating accessibility features.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.109 Activating accessibility features. (a) Requirements... video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in digital format using Internet protocol, with...
ERIC Educational Resources Information Center
Soares, S. N.; Wagner, F. R.
2011-01-01
Teaching and Design Workbench (T&D-Bench) is a framework aimed at education and research in the areas of computer architecture and embedded systems. It includes a set of features not found in other educational environments. This set of features is the result of an original combination of design requirements for T&D-Bench: that the…
Escalator design features evaluation
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Deshpande, G. K.
1982-01-01
Escalators are available with design features such as dual speed (90 and 120 fpm), mat operation and flat steps. These design features were evaluated based on the impact of each on capital and operating costs, traffic flow, and safety. A human factors engineering model was developed to analyze the need for flat steps at various speeds. Mat operation of escalators was found to be cost effective in terms of energy savings. Dual speed operation of escalators with the higher speed used during peak hours allows for efficient operation. A minimum number of flat steps required as a function of escalator speed was developed to ensure safety for the elderly.
NASA Technical Reports Server (NTRS)
Brush, A. S.; Phillips, R. L.
1991-01-01
NASA Lewis Research Center and associated contractors have conducted a program to assess the potential requirements for a high-current switch to conceptually design a switch using the best existing technology, and to build and demonstrate a breadboard which meets the requirements. The result is the high current remote bus isolator (HRBI). The HRBI is rated at 180 V dc, 335 A continuous with a 1200 A interrupt rating. It also incorporates remote-control and protective features called for by the Space Station Freedom PMAD dc test bed design. Two breadboard 335 A circuit breakers were built and tested that demonstrate a promising concept of paralleled current-limiting modules. The units incorporated all control and protective features required by advanced aerospace power systems. Component stresses in each unit were determined by design, and are consistent with a life of many thousands of fault operations.
ERIC Educational Resources Information Center
Robertson, Michelle M.
1992-01-01
Discusses ergonomic design considerations for library media centers. Specific design variables, including temperature and humidity, noise, illumination, color, and windows are discussed; and computer workstation design requirements are presented that address furniture and keyboard design, monitor and display features, software issues, and…
Joint Feature Extraction and Classifier Design for ECG-Based Biometric Recognition.
Gutta, Sandeep; Cheng, Qi
2016-03-01
Traditional biometric recognition systems often utilize physiological traits such as fingerprint, face, iris, etc. Recent years have seen a growing interest in electrocardiogram (ECG)-based biometric recognition techniques, especially in the field of clinical medicine. In existing ECG-based biometric recognition methods, feature extraction and classifier design are usually performed separately. In this paper, a multitask learning approach is proposed, in which feature extraction and classifier design are carried out simultaneously. Weights are assigned to the features within the kernel of each task. We decompose the matrix consisting of all the feature weights into sparse and low-rank components. The sparse component determines the features that are relevant to identify each individual, and the low-rank component determines the common feature subspace that is relevant to identify all the subjects. A fast optimization algorithm is developed, which requires only the first-order information. The performance of the proposed approach is demonstrated through experiments using the MIT-BIH Normal Sinus Rhythm database.
Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design
NASA Astrophysics Data System (ADS)
Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio
2015-10-01
This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.
Passive solar water heating: breadbox design for the Fred Young Farm Labor Center in Indio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melzer, B; Maeda, B
1979-10-01
An appropriate passive solar preheater for multifamily housing units in the Fred Young Farm Labor Center in Indio, California, was designed and analyzed. A brief summary of passive preheater systems and the key design features used in current designs is presented. The design features necessary for the site requirements are described. The eight preliminary preheater designs reviewed for the project are presented. The results of thermal performance simulation for the eight prototype systems are discussed. Alternative monitoring systems for the installation are described and evaluated. The consultants' recommendations, working drawings, and performance estimates of the system selected are presented. (MHR)
Text feature extraction based on deep learning: a review.
Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan
2017-01-01
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
American Association of University Women: Branch Operations Data Modeling Case
ERIC Educational Resources Information Center
Harris, Ranida B.; Wedel, Thomas L.
2015-01-01
A nationally prominent woman's advocacy organization is featured in this case study. The scenario may be used as a teaching case, an assignment, or a project in systems analysis and design as well as database design classes. Students are required to document the system operations and requirements, apply logical data modeling concepts, and design…
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Type design. 21.31 Section 21.31... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.31 Type design. The type design consists of— (a) The... configuration and the design features of the product shown to comply with the requirements of that part of this...
Aledavood, Talayeh; Triana Hoyos, Ana Maria; Alakörkkö, Tuomas; Kaski, Kimmo; Saramäki, Jari; Isometsä, Erkki; Darst, Richard K
2017-06-09
Mental and behavioral disorders are the main cause of disability worldwide. However, their diagnosis is challenging due to a lack of reliable biomarkers; current detection is based on structured clinical interviews which can be biased by the patient's recall ability, affective state, changing in temporal frames, etc. While digital platforms have been introduced as a possible solution to this complex problem, there is little evidence on the extent of usability and usefulness of these platforms. Therefore, more studies where digital data is collected in larger scales are needed to collect scientific evidence on the capacities of these platforms. Most of the existing platforms for digital psychiatry studies are designed as monolithic systems for a certain type of study; publications from these studies focus on their results, rather than the design features of the data collection platform. Inevitably, more tools and platforms will emerge in the near future to fulfill the need for digital data collection for psychiatry. Currently little knowledge is available from existing digital platforms for future data collection platforms to build upon. The objective of this work was to identify the most important features for designing a digital platform for data collection for mental health studies, and to demonstrate a prototype platform that we built based on these design features. We worked closely in a multidisciplinary collaboration with psychiatrists, software developers, and data scientists and identified the key features which could guarantee short-term and long-term stability and usefulness of the platform from the designing stage to data collection and analysis of collected data. The key design features that we identified were flexibility of access control, flexibility of data sources, and first-order privacy protection. We also designed the prototype platform Non-Intrusive Individual Monitoring Architecture (Niima), where we implemented these key design features. We described why each of these features are important for digital data collection for psychiatry, gave examples of projects where Niima was used or is going to be used in the future, and demonstrated how incorporating these design principles opens new possibilities for studies. The new methods of digital psychiatry are still immature and need further research. The design features we suggested are a first step to design platforms which can adapt to the upcoming requirements of digital psychiatry. ©Talayeh Aledavood, Ana Maria Triana Hoyos, Tuomas Alakörkkö, Kimmo Kaski, Jari Saramäki, Erkki Isometsä, Richard K Darst. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 09.06.2017.
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., software source code, design methodology, engineering analysis or manufacturing know-how such as that... underlying engineering methods and design philosophy utilized (i.e., the “why” or information that explains the rationale for particular design decision, engineering feature, or performance requirement...
76 FR 10269 - AP1000 Design Certification Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... design control document proposals. For the final rule, the NRC will complete the review of the CIs and... control requirement includes the descriptions of the design features and functional capabilities... objective of the change controls is to determine whether the design of the facility, as changed or modified...
Whirl Flutter Studies for a SSTOL Transport Demonstrator
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Hoffman, Krishna
2004-01-01
A proposed new class of aircraft - the Advanced Theater Transport (ATT) will combine strategic range and high payload with 'Super-STOL' (short take-off and landing) capability. It is also proposed to modify a YC-15 into a technology demonstrator with a 20-deg tilt wing; four, eight-bladed propellers; cross-shafted gearboxes and V-22 engines. These constitute a unique combination of design features that potentially affect performance, loads and whirl-mode stability (whirl flutter). NASA Ames Research Center is working with Boeing and Hamilton Sundstrand on technology challenges presented by the concept; the purpose of NASA involvement is to establish requirements for the demonstrator and for early design guidance, with emphasis on whirl flutter. CAMRAD II is being used to study the effects of various design features on whirl flutter, with special attention to areas where such features differ from existing aircraft, notably tiltrotors. Although the stability margins appear to be more than adequate, the concept requires significantly different analytical methods, principally including far more blade modes, than typically used for tiltrotors.
Field Guide for Designing Human Interaction with Intelligent Systems
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Thronesbery, Carroll G.
1998-01-01
The characteristics of this Field Guide approach address the problems of designing innovative software to support user tasks. The requirements for novel software are difficult to specify a priori, because there is not sufficient understanding of how the users' tasks should be supported, and there are not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care must be taken to avoid rushing into detailed design, requirements specification, or implementation of the wrong product. The challenge is to get the right design and requirements in an efficient, cost-effective manner. This document's purpose is to describe the methods we are using to design human interactions with intelligent systems which support Space Shuttle flight controllers in the Mission Control Center at NASA/Johnson Space Center. Although these software systems usually have some intelligent features, the design challenges arise primarily from the innovation needed in the software design. While these methods are tailored to our specific context, they should be extensible, and helpful to designers of human interaction with other types of automated systems. We review the unique features of this context so that you can determine how to apply these methods to your project Throughout this Field Guide, goals of the design methods are discussed. This should help designers understand how a specific method might need to be adapted to the project at hand.
MultiLIS: A Description of the System Design and Operational Features.
ERIC Educational Resources Information Center
Kelly, Glen J.; And Others
1988-01-01
Describes development, hardware requirements, and features of the MultiLIS integrated library software package. A system profile provides pricing information, operational characteristics, and technical specifications. Sidebars discuss MultiLIS integration structure, incremental architecture, and NCR Tower Computers. (4 references) (MES)
SKL algorithm based fabric image matching and retrieval
NASA Astrophysics Data System (ADS)
Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping
2017-07-01
Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.
QMI: Rising to the Space Station Design Challenge
NASA Astrophysics Data System (ADS)
Carswell, W. E.; Farmer, J.; Coppens, C.; Breeding, S.; Rose, F.
2002-01-01
The Quench Module Insert (QMI) materials processing furnace is being designed to operate for 8000 hours over four years on the International Space Station as part of the first Materials Science Research Rack of the Materials Science Research Facility. The Bridgman-type furnace is being built for the directional solidification processing of metals and alloys in the microgravity environment of space. Most notably it will be used for processing aluminum and related alloys. Designing for the space station environment presents intriguing design challenges in the form of a ten-year life requirement coupled with both limited opportunities for maintenance and resource constraints in the form of limited power and space. The long life requirement has driven the design of several features in the furnace, including the design of the heater core, the selection and placement of the thermocouples, overall performance monitoring, and the design of the chill block. The power and space limitations have been addressed through a compact furnace design using efficient vacuum insulation. Details on these design features, as well as development test performance results to date, are presented.
QMI: Rising to the Space Station Design Challenge
NASA Technical Reports Server (NTRS)
Carswell, W. E.; Farmer, J.; Coppens, C.; Breeding, S.; Rose, F.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The Quench Module Insert (QMI) materials processing furnace is being designed to operate for 8000 hours over four years on the International Space Station (ISS) as part of the first Materials Science Research Rack (MSRR-1) of the Materials Science Research Facility (MSRF). The Bridgman-type furnace is being built for the directional solidification processing of metals and alloys in the microgravity environment of space. Most notably it will be used for processing aluminum and related alloys. Designing for the space station environment presents intriguing design challenges in the form of a ten-year life requirement coupled with both limited opportunities for maintenance and resource constraints in the form of limited power and space. The long life requirement has driven the design of several features in the furnace, including the design of the heater core, the selection and placement of the thermocouples, overall performance monitoring, and the design of the chill block. The power and space limitations have been addressed through a compact furnace design using efficient vacuum insulation. Details on these design features, as well as development test performance results to date, are presented.
10 CFR 50.48 - Fire protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... from the date it was superseded. (4) Each applicant for a design approval, design certification, or... design features for the standard plant necessary to demonstrate compliance with Criterion 3 of appendix A.... (v) Existing cables. In lieu of installing cables meeting flame propagation tests as required by...
Design and Development of a Two-Axis Thruster Gimbal with Xenon Propellant Lines
NASA Technical Reports Server (NTRS)
Asadurian, Armond
2010-01-01
A Two-Axis Thruster Gimbal was developed for a two degree-of-freedom tip-tilt gimbal application. This light weight gimbal mechanism is equipped with flexible xenon propellant lines and features numerous thermal control features for all its critical components. Unique thermal profiles and operating environments have been the key design drivers for this mechanism which is fully tolerant of extreme space environmental conditions. Providing thermal controls that are compatible with flexible components and are also capable of surviving launch vibration within this gimbal mechanism has proven to be especially demanding, requiring creativity and significant development effort. Some of these features, design drivers, and lessons learned will be examined herein.
Automated selection of synthetic biology parts for genetic regulatory networks.
Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob
2012-08-17
Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip
This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip
This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less
AP1000{sup R} severe accident features and post-Fukushima considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scobel, J. H.; Schulz, T. L.; Williams, M. G.
2012-07-01
The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, themore » AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)« less
Policy Driven Development: Flexible Policy Insertion for Large Scale Systems.
Demchak, Barry; Krüger, Ingolf
2012-07-01
The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime , thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... airplane will have a novel or unusual design feature associated with an electronic flight control system... load condition at design maneuvering speed (V A ), in which the cockpit roll control is returned to... positive maneuvering factor used in design. In determining the resulting control surface deflections, the...
NASA Astrophysics Data System (ADS)
Mariscal, Jean-François; Bruneau, Didier; Pelon, Jacques; Van Haecke, Mathilde; Blouzon, Frédéric; Montmessin, Franck; Chepfer, Hélène
2018-04-01
We present the measurement principle and the optical design of a Quad Mach Zehnder (QMZ) interferometer as HSRL technique, allowing simultaneous measurements of particle backscattering and wind velocity. Key features of this concept is to operate with a multimodal laser and do not require any frequency stabilization. These features are relevant especially for space applications for which high technical readiness level is required.
Development of Thomson scattering system on Shenguang-III prototype laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Li, Zhichao
2015-02-15
A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.
78 FR 59866 - New Car Assessment Program (NCAP)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... because ESC is now required for all light vehicles. For many years, NCAP has provided comparative... site, www.safercar.gov . NCAP provides comparative information on the safety performance and features... Features on www.safercar.gov are designed to assist drivers in avoiding backover crashes. After considering...
10 CFR 50.35 - Issuance of construction permits. 1
Code of Federal Regulations, 2011 CFR
2011-01-01
... principal architectural and engineering criteria for the design, and has identified the major features or... features or components, if any, which require research and development have been described by the applicant and the applicant has identified, and there will be conducted, a research and development program...
10 CFR 50.35 - Issuance of construction permits. 1
Code of Federal Regulations, 2010 CFR
2010-01-01
... principal architectural and engineering criteria for the design, and has identified the major features or... features or components, if any, which require research and development have been described by the applicant and the applicant has identified, and there will be conducted, a research and development program...
Requirements for Space Settlement Design
NASA Astrophysics Data System (ADS)
Gale, Anita E.; Edwards, Richard P.
2004-02-01
When large space settlements are finally built, inevitably the customers who pay for them will start the process by specifying requirements with a Request for Proposal (RFP). Although we are decades away from seeing the first of these documents, some of their contents can be anticipated now, and provide insight into the variety of elements that must be researched and developed before space settlements can happen. Space Settlement Design Competitions for High School students present design challenges in the form of RFPs, which predict basic requirements for space settlement attributes in the future, including structural features, infrastructure, living conveniences, computers, business areas, and safety. These requirements are generically summarized, and unique requirements are noted for specific space settlement locations and applications.
Chapter 9: The FTU Machine - Design Construction and Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzuto, A.; Annino, C.; Baldarelli, M.
2004-05-15
The main design features and guidelines for the construction of the 8-T cryogenically cooled Frascati Tokamak Upgrade (FTU) are presented. The main features include the very compact toroidal magnets based on the concept of the 'Bitter' type of coil with wedge-shaped turns, utilized for the first time for the Alcator A and C magnets, and the original configuration of the vacuum vessel (VV) structure, which is fully welded in order to achieve the required high strength and electric resistivity. The present toroidal limiter has been installed following several years of operation, and this installation has required the development of specificmore » remote-handling tools. The toroidal limiter consists of 12 independent sectors made of stainless steel carriers and molybdenum alloy (TZM) tiles. The main fabrication processes developed for the toroidal and poloidal coils as well as for the VV are described. It is to be noted that the assembly procedure has required very accurate machining of all the structures requiring several trials and steps. The machine has shown no problem in operating routinely at its maximum design values (8 T, 1.6 MA)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad
Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fullymore » integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may lead to more proliferation resistant and physically secure design features for SMRs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
..., Dynamic Test Requirements for Side-Facing, Single-Occupant Seats AGENCY: Federal Aviation Administration... or unusual design feature associated with dynamic test requirements for side-facing, single-occupant..., Aircraft Certification Service, 1601 Lind Avenue, SW., Renton, Washington 98057- 3356; telephone (425) 227...
Executive system software design and expert system implementation
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1992-01-01
The topics are presented in viewgraph form and include: software requirements; design layout of the automated assembly system; menu display for automated composite command; expert system features; complete robot arm state diagram and logic; and expert system benefits.
Secondary School Design: Workshop Crafts.
ERIC Educational Resources Information Center
Department of Education and Science, London (England).
Design features are described for school shop facilities. Some general requirements common to most workshops are discussed; and specific design information is provided for general woodwork, general metalwork, and combined wood and metalwork facilities. The grouping of the workshop crafts and their relation to other parts of the school are also…
Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Price, Laura L.
This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less
Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7
NASA Technical Reports Server (NTRS)
Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.
1988-01-01
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described.
A Flight Photon Counting Camera for the WFIRST Coronagraph
NASA Astrophysics Data System (ADS)
Morrissey, Patrick
2018-01-01
A photon counting camera based on the Teledyne-e2v CCD201-20 electron multiplying CCD (EMCCD) is being developed for the NASA WFIRST coronagraph, an exoplanet imaging technology development of the Jet Propulsion Laboratory (Pasadena, CA) that is scheduled to launch in 2026. The coronagraph is designed to directly image planets around nearby stars, and to characterize their spectra. The planets are exceedingly faint, providing signals similar to the detector dark current, and require the use of photon counting detectors. Red sensitivity (600-980nm) is preferred to capture spectral features of interest. Since radiation in space affects the ability of the EMCCD to transfer the required single electron signals, care has been taken to develop appropriate shielding that will protect the cameras during a five year mission. In this poster, consideration of the effects of space radiation on photon counting observations will be described with the mitigating features of the camera design. An overview of the current camera flight system electronics requirements and design will also be described.
2011-01-01
stealth features requiring specialised noise and vibra- tion skills and propulsion plants requiring other unique skill sets. Personnel with these...analysis Acoustic, wake , thermal, electromagnetic, and other signature analysis Combat systems and ship control Combat system integration, combat system...to-diagnose flow-induced radiated noise Own-sensor performance degradation Note: Risks can be reduced for given designs using scale models
Translating supportability requirements into design reality
NASA Astrophysics Data System (ADS)
Buche, J.; Cohen, I.
1986-10-01
This paper explores some of the principal issues in the integration of supportability into the design process. Roles of the contractor's design, supportability and management specialists and their government counterparts are discussed as they relate to logistics influence in design. Methods and processes by which weapon system logistics and readiness requirements are established, assessed, allocated to system elements and translated into specific design features are described. Tradeoff consideration, an approach to effective tradeoff criteria, and the progress of supportability issues through the program phases are identified with particular emphasis on the necessity for developing and maintaining an effective audit trail.
Impact and Crashworthiness Characteristics of Venera Type Landers for Future Venus Missions
NASA Technical Reports Server (NTRS)
Schroeder, Kevin; Bayandor, Javid; Samareh, Jamshid
2016-01-01
In this paper an in-depth investigation of the structural design of the Venera 9-14 landers is explored. A complete reverse engineering of the Venera lander was required. The lander was broken down into its fundamental components and analyzed. This provided in-sights into the hidden features of the design. A trade study was performed to find the sensitivity of the lander's overall mass to the variation of several key parameters. For the lander's legs, the location, length, configuration, and number are all parameterized. The size of the impact ring, the radius of the drag plate, and other design features are also parameterized, and all of these features were correlated to the change of mass of the lander. A multi-fidelity design tool used for further investigation of the parameterized lander was developed. As a design was passed down from one level to the next, the fidelity, complexity, accuracy, and run time of the model increased. The low-fidelity model was a highly nonlinear analytical model developed to rapidly predict the mass of each design. The medium and high fidelity models utilized an explicit finite element framework to investigate the performance of various landers upon impact with the surface under a range of landing conditions. This methodology allowed for a large variety of designs to be investigated by the analytical model, which identified designs with the optimum structural mass to payload ratio. As promising designs emerged, investigations in the following higher fidelity models were focused on establishing their reliability and crashworthiness. The developed design tool efficiently modelled and tested the best concepts for any scenario based on critical Venusian mission requirements and constraints. Through this program, the strengths and weaknesses inherent in the Venera-Type landers were thoroughly investigated. Key features identified for the design of robust landers will be used as foundations for the development of the next generation of landers for future exploration missions to Venus.
Buddy Tag CONOPS and Requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brotz, Jay Kristoffer; Deland, Sharon M.
2015-12-01
This document defines the concept of operations (CONOPS) and the requirements for the Buddy Tag, which is conceived and designed in collaboration between Sandia National Laboratories and Princeton University under the Department of State Key VerificationAssets Fund. The CONOPS describe how the tags are used to support verification of treaty limitations and is only defined to the extent necessary to support a tag design. The requirements define the necessary functions and desired non-functional features of the Buddy Tag at a high level
Semantics and technologies in modern design of interior stairs
NASA Astrophysics Data System (ADS)
Kukhta, M.; Sokolov, A.; Pelevin, E.
2015-10-01
Use of metal in the design of interior stairs presents new features for shaping, and can be implemented using different technologies. The article discusses the features of design and production technologies of forged metal spiral staircase considering the image semantics based on the historical and cultural heritage. To achieve the objective was applied structural- semantic method (to identify the organization of structure and semantic features of the artistic image), engineering methods (to justify the construction of the object), anthropometry method and ergonomics (to provide usability), methods of comparative analysis (to reveale the features of the way the ladder in different periods of culture). According to the research results are as follows. Was revealed the semantics influence on the design of interior staircase that is based on the World Tree image. Also was suggested rational calculation of steps to ensure the required strength. And finally was presented technology, providing the realization of the artistic image. In the practical part of the work is presented version of forged staircase.
Flight control system design factors for applying automated testing techniques
NASA Technical Reports Server (NTRS)
Sitz, Joel R.; Vernon, Todd H.
1990-01-01
The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.
Preliminary design features of the RASCAL - A NASA/Army rotorcraft in-flight simulator
NASA Technical Reports Server (NTRS)
Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.
1992-01-01
Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-latitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.
Preliminary design features of the RASCAL: A NASA /Army rotorcraft in-flight simulator
NASA Technical Reports Server (NTRS)
Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.
1993-01-01
Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-altitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.
Design and verification of mechanisms for a large foldable antenna
NASA Technical Reports Server (NTRS)
Luhmann, Hans Jurgen; Etzler, Carl Christian; Wagner, Rudolf
1989-01-01
The characteristics of the Synthetic Aperture Radar (SAR) antenna aboard the ESA Remote Sensing Satellite (ERS-1) are presented. The antenna is folded into a dense package for launch and is deployed in orbit. The design requirements and constraints, their impact on the design, and the resulting features of the mechanisms are discussed.
Master Classrooms: Classroom Design with Technology in Mind.
ERIC Educational Resources Information Center
Conway, Kathryn
Technology is changing the classroom requiring new design features and considerations to make the classroom flexible and interactive with the teaching process. The design of a Master Classroom, a product of the Classroom Improvement Project at the University of North Carolina at Chapel Hill, is described. These classrooms are specially-equipped to…
Large scale prop-fan structural design study. Volume 1: Initial concepts
NASA Technical Reports Server (NTRS)
Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.
1988-01-01
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2.
Requirements for satisfactory flying qualities of airplanes
NASA Technical Reports Server (NTRS)
Gilruth, R R
1943-01-01
Report discusses the results of an analysis of available data to determine what measured characteristics are significant in defining satisfactory flying qualities, what characteristics are reasonable to require of an airplane, and what influence the various design features have on the observed flying qualities.
Delta Clipper vehicle design for supportability
NASA Astrophysics Data System (ADS)
Smiljanic, Ray R.; Klevatt, Paul L.; Steinmeyer, Donald A.
1993-02-01
The paper describes the Single Stage Rocket Technology (SSRT) Delta Clipper vehicle design. As a means of reducing vehicle processing and turnaround times, the SSRT Delta Clipper design, contrary to past practices, incorporates support ability engineering features into its initial set of design requirements. The engineering process used to 'design-in' supportability into the Delta Clipper vehicle is described in detail and is illustrated using diagrams.
NASA Technical Reports Server (NTRS)
Baals, D. D. (Editor)
1977-01-01
Fundamental aerodynamic questions for which high Reynolds number experimental capability is required are discussed. The operational characteristics and design features of the National Transonic Facility are reviewed.
Accessible cell phone design: development and application of a needs analysis framework.
Smith-Jackson, Tonya; Nussbaum, Maury; Mooney, Aaron
2003-05-20
This research describes the development and use of the Needs Analysis and Requirements Acquisition (NARA) framework to elicit and construct user requirements for the design of cell phones (which are a type of assistive technology) that are both usable and accessible to persons with disabilities. Semi-structured interviews and a focus group were used to elicit information and a systematic approach was used to translation information into requirements (construct). Elicitation and construction are the first two stages of NARA. Requirements for general and feature-specific phone attributes were identified, and several requirements were found to match six of the seven universal design principles. The study demonstrated that NARA is both a straight-forward and cost-effective method to develop user requirements and can be used throughout the development cycle.
Martin, Cathrin; H. Opava, Christina; Brusewitz, Maria; Keller, Christina; Åsenlöf, Pernilla
2015-01-01
Background User involvement in the development of health care services is important for the viability, usability, and effectiveness of services. This study reports on the second step of the co-design process. Objective The aim was to explore the significant challenges in advancing the co-design process during the requirements specification phase of a mobile Internet service for the self-management of physical activity (PA) in rheumatoid arthritis (RA). Methods A participatory action research design was used to involve lead users and stakeholders as co-designers. Lead users (n=5), a clinical physiotherapist (n=1), researchers (n=2) with knowledge in PA in RA and behavioral learning theories, an eHealth strategist (n=1), and an officer from the patient organization (n=1) collaborated in 4 workshops. Data-collection methods included video recordings and naturalistic observations. Results The inductive qualitative video-based analysis resulted in 1 overarching theme, merging perspectives, and 2 subthemes reflecting different aspects of merging: (1) finding a common starting point and (2) deciding on design solutions. Seven categories illustrated the specific challenges: reaching shared understanding of goals, clarifying and handling the complexity of participants’ roles, clarifying terminology related to system development, establishing the rationale for features, negotiating features, transforming ideas into concrete features, and participants’ alignment with the agreed goal and task. Conclusions Co-designing the system requirements of a mobile Internet service including multiple stakeholders was a complex and extensive collaborative decision-making process. Considering, valuing, counterbalancing, and integrating different perspectives into agreements and solutions (ie, the merging of participants’ perspectives) were crucial for moving the process forward and were considered the core challenges of co-design. Further research is needed to replicate the results and to increase knowledge on key factors for a successful co-design of health care services. PMID:26381221
Revenäs, Åsa; Martin, Cathrin; H Opava, Christina; Brusewitz, Maria; Keller, Christina; Åsenlöf, Pernilla
2015-09-17
User involvement in the development of health care services is important for the viability, usability, and effectiveness of services. This study reports on the second step of the co-design process. The aim was to explore the significant challenges in advancing the co-design process during the requirements specification phase of a mobile Internet service for the self-management of physical activity (PA) in rheumatoid arthritis (RA). A participatory action research design was used to involve lead users and stakeholders as co-designers. Lead users (n=5), a clinical physiotherapist (n=1), researchers (n=2) with knowledge in PA in RA and behavioral learning theories, an eHealth strategist (n=1), and an officer from the patient organization (n=1) collaborated in 4 workshops. Data-collection methods included video recordings and naturalistic observations. The inductive qualitative video-based analysis resulted in 1 overarching theme, merging perspectives, and 2 subthemes reflecting different aspects of merging: (1) finding a common starting point and (2) deciding on design solutions. Seven categories illustrated the specific challenges: reaching shared understanding of goals, clarifying and handling the complexity of participants' roles, clarifying terminology related to system development, establishing the rationale for features, negotiating features, transforming ideas into concrete features, and participants' alignment with the agreed goal and task. Co-designing the system requirements of a mobile Internet service including multiple stakeholders was a complex and extensive collaborative decision-making process. Considering, valuing, counterbalancing, and integrating different perspectives into agreements and solutions (ie, the merging of participants' perspectives) were crucial for moving the process forward and were considered the core challenges of co-design. Further research is needed to replicate the results and to increase knowledge on key factors for a successful co-design of health care services.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... NCPC review required by law. The new Federal Urban Design Element provides policies that will guide the... Historic Features Element will be available online at http://www.ncpc.gov/compplan not later than November...
Achieving reutilization of scheduling software through abstraction and generalization
NASA Technical Reports Server (NTRS)
Wilkinson, George J.; Monteleone, Richard A.; Weinstein, Stuart M.; Mohler, Michael G.; Zoch, David R.; Tong, G. Michael
1995-01-01
Reutilization of software is a difficult goal to achieve particularly in complex environments that require advanced software systems. The Request-Oriented Scheduling Engine (ROSE) was developed to create a reusable scheduling system for the diverse scheduling needs of the National Aeronautics and Space Administration (NASA). ROSE is a data-driven scheduler that accepts inputs such as user activities, available resources, timing contraints, and user-defined events, and then produces a conflict-free schedule. To support reutilization, ROSE is designed to be flexible, extensible, and portable. With these design features, applying ROSE to a new scheduling application does not require changing the core scheduling engine, even if the new application requires significantly larger or smaller data sets, customized scheduling algorithms, or software portability. This paper includes a ROSE scheduling system description emphasizing its general-purpose features, reutilization techniques, and tasks for which ROSE reuse provided a low-risk solution with significant cost savings and reduced software development time.
Design, analysis, fabrication and test of the Space Shuttle solid rocket booster motor case
NASA Technical Reports Server (NTRS)
Kapp, J. R.
1978-01-01
The motor case used in the solid propellant booster for the Space Shuttle is unique in many respects, most of which are indigenous to size and special design requirements. The evolution of the case design from initial requirements to finished product is discussed, with increased emphasis of reuse capability, special design features, fracture mechanics and corrosion control. Case fabrication history and the resulting procedure are briefly reviewed with respect to material development, processing techniques and special problem areas. Case assembly, behavior and performance during the DM-1 static firing are reviewed, with appropriate comments and conclusions.
Mine Winder Drives in Integrated Copper Complex
NASA Astrophysics Data System (ADS)
Dey, Pranab Kumar
2018-04-01
This paper describes various features required to be evaluated before selecting mine winder drives. In handling such project, the selection of proper equipments is necessary at the initial design stage of planning and how the electrical system design considers all aspects to protect the grid from unwarranted influence of the connected loads and minimize the generation of harmonics due to network configurations adopted to keep it within the stipulated value dictated by the supply authorities has been discussed. The design should cover all aspects to provide quality power with effective braking system required as per the mining statute for operational safety. It also emphasizes on the requirement of quality maintenance.
ERIC Educational Resources Information Center
Laboratory Design Notes, 1966
1966-01-01
A collection of laboratory design notes to set forth minimum criteria required in the design of basic medical research laboratory buildings. Recommendations contained are primarily concerned with features of design which affect quality of performance and future flexibility of facility systems. Subjects of economy and safety are discussed where…
Pre-Modeling Ensures Accurate Solid Models
ERIC Educational Resources Information Center
Gow, George
2010-01-01
Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... the system design integrity, system design environmental, and test and analysis requirements) of these... novel or unusual design features when modified by installing the Hoh Aeronautics, Inc. (Hoh) complex..., Regulations and Policy Group (ASW-111), 2601 Meacham Blvd., Fort Worth, Texas 76137; telephone (817) 222-5167...
Supporting Scientific Analysis within Collaborative Problem Solving Environments
NASA Technical Reports Server (NTRS)
Watson, Velvin R.; Kwak, Dochan (Technical Monitor)
2000-01-01
Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.
Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.
1988-01-12
A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.
Design features and operational characteristics of the Langley pilot transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1974-01-01
A fan-driven transonic cryogenic tunnel was designed, and its purging, cooldown, and warmup times were determined satisfactory. Cooling with liquid nitrogen is at the power levels required for transonic testing. Good temperature distributions are obtained by using a simple nitrogen injection system.
The Development of Staging Mechanisms for the Japanese Satellite Launcher Mu-3SII
NASA Technical Reports Server (NTRS)
Onoda, J.
1985-01-01
The staging mechanisms of the Japanese satellite launch vehicle Mu-3SII involving a unique separation and jettison mechanism for the nose fairing are described. The design requirements, the design features and the development problems are presented together with their solutions.
Analytical study of electrical disconnect system for use on manned and unmanned missions
NASA Technical Reports Server (NTRS)
Rosener, A. A.; Lenda, J. A.; Trummer, R. O.; Jonkoniec, T. G.
1977-01-01
The program to survey existing electrical connector availability, and establish an optimum connector design for maintainable spacecraft substation interfaces is reported. Functional and operational requirements are given along with the results of the documentation survey, which disclosed that the MSFC series connectors have the preferred features of current connector technology. Optimum design concepts for EVA tasks, modules serviced by manipulators, and for manipulators independent of other servicing units are presented. It is concluded that separate connector designs are required for spacecraft replaceable modules, and for crewman EVA.
Mars rover/sample return mission requirements affecting space station
NASA Technical Reports Server (NTRS)
1988-01-01
The possible interfaces between the Space Station and the Mars Rover/Sample Return (MRSR) mission are defined. In order to constrain the scope of the report a series of seven design reference missions divided into three major types were assumed. These missions were defined to span the probable range of Space Station-MRSR interactions. The options were reduced, the MRSR sample handling requirements and baseline assumptions about the MRSR hardware and the key design features and requirements of the Space Station are summarized. Only the aspects of the design reference missions necessary to define the interfaces, hooks and scars, and other provisions on the Space Station are considered. An analysis of each of the three major design reference missions, is reported, presenting conceptual designs of key hardware to be mounted on the Space Station, a definition of weights, interfaces, and required hooks and scars.
Structural health monitoring feature design by genetic programming
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2014-09-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.
Designing for Temporal Awareness: The Role of Temporality in Time-Critical Medical Teamwork
Kusunoki, Diana S.; Sarcevic, Aleksandra
2016-01-01
This paper describes the role of temporal information in emergency medical teamwork and how time-based features can be designed to support the temporal awareness of clinicians in this fast-paced and dynamic environment. Engagement in iterative design activities with clinicians over the course of two years revealed a strong need for time-based features and mechanisms, including timestamps for tasks based on absolute time and automatic stopclocks measuring time by counting up since task performance. We describe in detail the aspects of temporal awareness central to clinicians’ awareness needs and then provide examples of how we addressed these needs through the design of a shared information display. As an outcome of this process, we define four types of time representation techniques to facilitate the design of time-based features: (1) timestamps based on absolute time, (2) timestamps relative to the process start time, (3) time since task performance, and (4) time until the next required task. PMID:27478880
SketchBio: a scientist's 3D interface for molecular modeling and animation.
Waldon, Shawn M; Thompson, Peter M; Hahn, Patrick J; Taylor, Russell M
2014-10-30
Because of the difficulties involved in learning and using 3D modeling and rendering software, many scientists hire programmers or animators to create models and animations. This both slows the discovery process and provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a set of design goals) to enable them to directly construct models and animations. SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example, pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular models. Design decisions and their consequences are presented, including cases where iterative design was required to produce effective approaches. The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve their effectiveness.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... consider all public comments on the relevant science and economics, including those comments that suggest... occupied at the time of listing and contain features essential to the conservation of the species such that they should be included in the designation and why; c. Whether these essential features may require...
Fiber optic sensor for measurement of pressure fluctuations at high temperatures
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Cuomo, Frank W.
1989-01-01
A fiber-optic sensor, based on the principle of the fiber-optic lever, is described which features small size, extended bandwidth, and capability to operate at high temeratures, as required for measurements in hypersonic flow. The principle of operation, design features peculiar to the intended application, and expected performance at high temperatures are described.
Engaging patients through your website.
Snyder, Kimberlee; Ornes, Lynne L; Paulson, Pat
2014-01-01
Legislation requires the healthcare industry to directly engage patients through technology. This paper proposes a model that can be used to review hospital websites for features that engage patients in their healthcare. The model describes four levels of patient engagement in website design. The sample consisted of 130 hospital websites from hospitals listed on 2010 and 2011 Most Wired Hospitals. Hospital websites were analyzed for features that encouraged patient interaction with their healthcare according to the levels in the model. Of the four levels identified in the model, websites ranged from "informing" to "collaborative" in website design. There was great variation of features offered on hospital websites with few being engaging and interactive. © 2012 National Association for Healthcare Quality.
Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.
Wang, Yubo; Veluvolu, Kalyana C
2017-01-01
The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.
Feasibility study of the Boeing Small Research Module (BSRM) concept
NASA Technical Reports Server (NTRS)
1975-01-01
The design, capabilities, and subsystem options for the Boeing Small Research Module (BSRM) are described. Specific scientific missions are defined based on NASA-Ames Research Center requirements and the BSRM capability to support these missions is discussed. Launch vehicle integration requirements and spacecraft operational features are also presented.
40 CFR 265.229 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.229 Section 265.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... qualified chemist or engineer that, to the best of his knowledge and opinion, the design features or...
47 CFR 2.1033 - Application for certification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... include a statement describing the methods used to comply with the design requirements of all parts of... vulnerability of the equipment to possible modification and describing the design features that prevent the...) Photographs (8″×10″) of the equipment of sufficient clarity to reveal equipment construction and layout...
47 CFR 2.1033 - Application for certification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... include a statement describing the methods used to comply with the design requirements of all parts of... vulnerability of the equipment to possible modification and describing the design features that prevent the...) Photographs (8″×10″) of the equipment of sufficient clarity to reveal equipment construction and layout...
47 CFR 2.1033 - Application for certification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... include a statement describing the methods used to comply with the design requirements of all parts of... vulnerability of the equipment to possible modification and describing the design features that prevent the...) Photographs (8″×10″) of the equipment of sufficient clarity to reveal equipment construction and layout...
47 CFR 2.1033 - Application for certification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... to comply with the design requirements of all parts of § 15.121 of this chapter. The application must... describing the design features that prevent the modification of the equipment by the user to receive... equipment construction and layout, including meters, if any, and labels for controls and meters and...
47 CFR 2.1033 - Application for certification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... include a statement describing the methods used to comply with the design requirements of all parts of... vulnerability of the equipment to possible modification and describing the design features that prevent the...) Photographs (8″ × 10″) of the equipment of sufficient clarity to reveal equipment construction and layout...
Bookkeeping and Accounting 1 & 2 Syllabus. 1977 Revision.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Occupational Education Curriculum Development.
The two syllabuses comprising this guide are designed to provide relevant instruction in competencies required by entry-level workers in bookkeeping and accounting. The introductory section covers such features as the objectives of bookkeeping and accounting courses; career opportunities; general objectives; and the design of the syllabuses in…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... engine design certification, and the certification requirements for engine control systems are driven by... following novel or unusual design features: Electronic engine control system. Discussion As discussed above...; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...
A GUIDE FOR PLANNING PHYSICAL EDUCATION AND ATHLETIC FACILITIES.
ERIC Educational Resources Information Center
New Jersey State Dept. of Education, Trenton.
THIS STUDY EXAMINES PHYSICAL EDUCATION FACILITIES, THEIR PHYSICAL NEEDS, AND RELATED DESIGN CONSIDERATIONS. A SYSTEM OF DETERMINING THE TOTAL NUMBER OF TEACHING STATIONS NEEDED IS GIVEN TO AID INITIAL REQUIREMENT ANALYSIS. INDOOR FACILITIES ANALYZED INCLUDE--(1) THE GYMNASIUM, IN TERMS OF LOCATION, SIZE, DESIGN FEATURES, AND RELATED COMPONENTS,…
Miller, Kristen; Mosby, Danielle; Capan, Muge; Kowalski, Rebecca; Ratwani, Raj; Noaiseh, Yaman; Kraft, Rachel; Schwartz, Sanford; Weintraub, William S; Arnold, Ryan
2018-05-01
Provider acceptance and associated patient outcomes are widely discussed in the evaluation of clinical decision support systems (CDSSs), but critical design criteria for tools have generally been overlooked. The objective of this work is to inform electronic health record alert optimization and clinical practice workflow by identifying, compiling, and reporting design recommendations for CDSS to support the efficient, effective, and timely delivery of high-quality care. A narrative review was conducted from 2000 to 2016 in PubMed and The Journal of Human Factors and Ergonomics Society to identify papers that discussed/recommended design features of CDSSs that are associated with the success of these systems. Fourteen papers were included as meeting the criteria and were found to have a total of 42 unique recommendations; 11 were classified as interface features, 10 as information features, and 21 as interaction features. Features are defined and described, providing actionable guidance that can be applied to CDSS development and policy. To our knowledge, no reviews have been completed that discuss/recommend design features of CDSS at this scale, and thus we found that this was important for the body of literature. The recommendations identified in this narrative review will help to optimize design, organization, management, presentation, and utilization of information through presentation, content, and function. The designation of 3 categories (interface, information, and interaction) should be further evaluated to determine the critical importance of the categories. Future work will determine how to prioritize them with limited resources for designers and developers in order to maximize the clinical utility of CDSS. This review will expand the field of knowledge and provide a novel organization structure to identify key recommendations for CDSS.
An Ada implementation of the network manager for the advanced information processing system
NASA Technical Reports Server (NTRS)
Nagle, Gail A.
1986-01-01
From an implementation standpoint, the Ada language provided many features which facilitated the data and procedure abstraction process. The language supported a design which was dynamically flexible (despite strong typing), modular, and self-documenting. Adequate training of programmers requires access to an efficient compiler which supports full Ada. When the performance issues for real time processing are finally addressed by more stringent requirements for tasking features and the development of efficient run-time environments for embedded systems, the full power of the language will be realized.
Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Vaidyanathan, Hari
1996-01-01
Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.
NASA Technical Reports Server (NTRS)
Miller, R. E., Jr.; Southall, J. W.; Kawaguchi, A. S.; Redhed, D. D.
1973-01-01
Reports on the design process, support of the design process, IPAD System design catalog of IPAD technical program elements, IPAD System development and operation, and IPAD benefits and impact are concisely reviewed. The approach used to define the design is described. Major activities performed during the product development cycle are identified. The computer system requirements necessary to support the design process are given as computational requirements of the host system, technical program elements and system features. The IPAD computer system design is presented as concepts, a functional description and an organizational diagram of its major components. The cost and schedules and a three phase plan for IPAD implementation are presented. The benefits and impact of IPAD technology are discussed.
Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability
NASA Astrophysics Data System (ADS)
Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar
2017-07-01
The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.
NASA Technical Reports Server (NTRS)
1976-01-01
The Atmospheric Cloud Physics Laboratory (ACPL) task flow is shown. Current progress is identified. The requirements generated in task 1 have been used to formulate an initial ACPL baseline design concept. ACPL design/functional features are illustrated. A timetable is presented of the routines for ACPL integration with the spacelab system.
OPC for curved designs in application to photonics on silicon
NASA Astrophysics Data System (ADS)
Orlando, Bastien; Farys, Vincent; Schneider, Loïc.; Cremer, Sébastien; Postnikov, Sergei V.; Millequant, Matthieu; Dirrenberger, Mathieu; Tiphine, Charles; Bayle, Sébastian; Tranquillin, Céline; Schiavone, Patrick
2016-03-01
Today's design for photonics devices on silicon relies on non-Manhattan features such as curves and a wide variety of angles with minimum feature size below 100nm. Industrial manufacturing of such devices requires optimized process window with 193nm lithography. Therefore, Resolution Enhancement Techniques (RET) that are commonly used for CMOS manufacturing are required. However, most RET algorithms are based on Manhattan fragmentation (0°, 45° and 90°) which can generate large CD dispersion on masks for photonic designs. Industrial implementation of RET solutions to photonic designs is challenging as most currently available OPC tools are CMOS-oriented. Discrepancy from design to final results induced by RET techniques can lead to lower photonic device performance. We propose a novel sizing algorithm allowing adjustment of design edge fragments while preserving the topology of the original structures. The results of the algorithm implementation in the rule based sizing, SRAF placement and model based correction will be discussed in this paper. Corrections based on this novel algorithm were applied and characterized on real photonics devices. The obtained results demonstrate the validity of the proposed correction method integrated in Inscale software of Aselta Nanographics.
VARED: Verification and Analysis of Requirements and Early Designs
NASA Technical Reports Server (NTRS)
Badger, Julia; Throop, David; Claunch, Charles
2014-01-01
Requirements are a part of every project life cycle; everything going forward in a project depends on them. Good requirements are hard to write, there are few useful tools to test, verify, or check them, and it is difficult to properly marry them to the subsequent design, especially if the requirements are written in natural language. In fact, the inconsistencies and errors in the requirements along with the difficulty in finding these errors contribute greatly to the cost of the testing and verification stage of flight software projects [1]. Large projects tend to have several thousand requirements written at various levels by different groups of people. The design process is distributed and a lack of widely accepted standards for requirements often results in a product that varies widely in style and quality. A simple way to improve this would be to standardize the design process using a set of tools and widely accepted requirements design constraints. The difficulty with this approach is finding the appropriate constraints and tools. Common complaints against the tools available include ease of use, functionality, and available features. Also, although preferable, it is rare that these tools are capable of testing the quality of the requirements.
Tools reference manual for a Requirements Specification Language (RSL), version 2.0
NASA Technical Reports Server (NTRS)
Fisher, Gene L.; Cohen, Gerald C.
1993-01-01
This report describes a general-purpose Requirements Specification Language, RSL. The purpose of RSL is to specify precisely the external structure of a mechanized system and to define requirements that the system must meet. A system can be comprised of a mixture of hardware, software, and human processing elements. RSL is a hybrid of features found in several popular requirements specification languages, such as SADT (Structured Analysis and Design Technique), PSL (Problem Statement Language), and RMF (Requirements Modeling Framework). While languages such as these have useful features for structuring a specification, they generally lack formality. To overcome the deficiencies of informal requirements languages, RSL has constructs for formal mathematical specification. These constructs are similar to those found in formal specification languages such as EHDM (Enhanced Hierarchical Development Methodology), Larch, and OBJ3.
Design of the software development and verification system (SWDVS) for shuttle NASA study task 35
NASA Technical Reports Server (NTRS)
Drane, L. W.; Mccoy, B. J.; Silver, L. W.
1973-01-01
An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified.
Advanced designs for IPV nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.; Manzo, M. A.; Gonzalez-Sanabria, O. D.
1984-01-01
Advanced designs for individual pressure vessel nickel-hydrogen cells have been concieved which should improve the cycle life at deep depths-of-discharge. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.
A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhao, Haocen; Ye, Zhifeng
2017-08-01
Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.
Guy cable design and damping for vertical axis wind turbines
NASA Technical Reports Server (NTRS)
Carne, T. G.
1981-01-01
Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honorio, J.; Goldstein, R.; Honorio, J.
We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statisticalmore » theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.« less
On the benefit of high resolution and low aberrations for in-die mask registration metrology
NASA Astrophysics Data System (ADS)
Beyer, Dirk; Seidel, Dirk; Heisig, Sven; Steinert, Steffen; Töpfer, Susanne; Scherübl, Thomas; Hetzler, Jochen
2014-10-01
With the introduction of complex lithography schemes like double and multi - patterning and new design principles like gridded designs with cut masks the requirements for mask to mask overlay have increased dramatically. Still, there are some good news too for the mask industry since more mask are needed and qualified. Although always confronted with throughput demands, latest writing tool developments are able to keep pace with ever increasing pattern placement specs not only for global signatures but for in-die features within the active area. Placement specs less than 3nm (max. 3 Sigma) are expected and needed in all cases in order to keep the mask contribution to the overall overlay budget at an accepted level. The qualification of these masks relies on high precision metrology tools which have to fulfill stringent metrology as well as resolution constrains at the same time. Furthermore, multi-patterning and gridded designs with pinhole type cut masks are drivers for a paradigm shift in registration metrology from classical registration crosses to in-die registration metrology on production features. These requirements result in several challenges for registration metrology tools. The resolution of the system must be sufficiently high to resolve small production features. At the same time tighter repeatability is required. Furthermore, tool induced shift (TIS) limit the accuracy of in-die measurements. This paper discusses and demonstrates the importance of low illumination wavelength together with low aberrations for best contrast imaging for in-die registration metrology. Typical effects like tool induced shift are analyzed and evaluated using the ZEISS PROVE® registration metrology tool. Additionally, we will address performance gains when going to higher resolution. The direct impact on repeatability for small features by registration measurements will be discussed as well.
A survey of aerobraking orbital transfer vehicle design concepts
NASA Technical Reports Server (NTRS)
Park, Chul
1987-01-01
The five existing design concepts of the aerobraking orbital transfer vehicle (namely, the raked sphere-cone designs, conical lifting-brake, raked elliptic-cone, lifting-body, and ballute) are reviewed and critiqued. Historical backgrounds, and the geometrical, aerothermal, and operational features of these designs are reviewed first. Then, the technological requirements for the vehicle (namely, navigation, aerodynamic stability and control, afterbody flow impingement, nonequilibrium radiation, convective heat-transfer rates, mission abort and multiple atmospheric passes, transportation and construction, and the payload-to-vehicle weight requirements) are delineated by summarizing the recent advancements made on these issues. Each of the five designs are critiqued and rated on these issues. The highest and the lowest ratings are given to the raked sphere-cone and the ballute design, respectively.
Fusion reactor blanket/shield design study
NASA Astrophysics Data System (ADS)
Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.
1979-07-01
A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.
High-rate lithium/manganese dioxide batteries; the double cell concept
NASA Astrophysics Data System (ADS)
Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland
An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) For ships required to be surveyed under § 151.17 of this chapter, the Commandant may, upon... operational methods to control the discharge of oil in place of those design and construction features...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (a) For ships required to be surveyed under § 151.17 of this chapter, the Commandant may, upon... operational methods to control the discharge of oil in place of those design and construction features...
38 CFR 39.31 - Preapplication requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... documentation, as needed). (4) A design concept describing the major features of the project including the... space, or functional layout; and it will not enter into a construction contract for the project or...
38 CFR 39.31 - Preapplication requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... documentation, as needed). (4) A design concept describing the major features of the project including the... space, or functional layout; and it will not enter into a construction contract for the project or...
30 CFR 18.68 - Tests for intrinsic safety.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements may be added at any time if features of construction or use or both indicate them to be necessary.... They shall be designed to withstand a test voltage of 1,500 volts. (4) Intrinsically safe circuits shall be so designed that after failure of a single component, and subsequent failures resulting from...
30 CFR 18.68 - Tests for intrinsic safety.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements may be added at any time if features of construction or use or both indicate them to be necessary.... They shall be designed to withstand a test voltage of 1,500 volts. (4) Intrinsically safe circuits shall be so designed that after failure of a single component, and subsequent failures resulting from...
30 CFR 18.68 - Tests for intrinsic safety.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements may be added at any time if features of construction or use or both indicate them to be necessary.... They shall be designed to withstand a test voltage of 1,500 volts. (4) Intrinsically safe circuits shall be so designed that after failure of a single component, and subsequent failures resulting from...
30 CFR 18.68 - Tests for intrinsic safety.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements may be added at any time if features of construction or use or both indicate them to be necessary.... They shall be designed to withstand a test voltage of 1,500 volts. (4) Intrinsically safe circuits shall be so designed that after failure of a single component, and subsequent failures resulting from...
NIF Rugby High Foot Campaign from the design side
NASA Astrophysics Data System (ADS)
Leidinger, J.-P.; Callahan, D. A.; Berzak-Hopkins, L. F.; Ralph, J. E.; Amendt, P.; Hinkel, D. E.; Michel, P.; Moody, J. D.; Ross, J. S.; Rygg, J. R.; Celliers, P.; Clouët, J.-F.; Dewald, E. L.; Kaiser, P.; Khan, S.; Kritcher, A. L.; Liberatore, S.; Marion, D.; Masson-Laborde, P.-E.; Milovich, J. L.; Morice, O.; Pak, A. E.; Poujade, O.; Strozzi, D.; Hurricane, O. A.
2016-05-01
The NIF Rugby High Foot campaign results, with 8 shots to date, are compared with the 2D FCI2 design simulations. A special emphasis is placed on the predictive features and on those areas where some work is still required to achieve the best possible modelling of these MJ-class experiments.
The Design of a Templated C++ Small Vector Class for Numerical Computing
NASA Technical Reports Server (NTRS)
Moran, Patrick J.
2000-01-01
We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.
Long life 80Ah standard IPV NiH2 battery cell
NASA Technical Reports Server (NTRS)
Armantrout, Jon D.; Waller, J. S.
1995-01-01
A standard Nickel-Hydrogen (NiH2) Individual Pressure Vessel (IPV) battery cell is needed to meet future low cost, high performance mission requirements for NASA, military, and civil space programs. A common or standard cell design has evolved from the heritage of HST, Milstar, and other Air Force Mantech cell designs with substantial flight experience, while incorporating some of the historical COMSAT cell design features described in a previous NASA publication. Key features include slurry process nickel electrodes having high strength, long life and high yield (lower cost), and dual layer zircar separators for improved KOH retention, uniformality, and longer life. The cell design will have a zirconium oxide wall wick inside the pressure vessel to redistribute electrolyte and extend life. The slurry electrode will be 35 mils thick to take advantage of qualified cell mechanical configurations and proven assembly and activation techniques developed by Eagle Picher Industries (EPI) for the Hubble Space Telescope (HST) RNH-90-3 and 'Generic HST' RNH-90-5 cell designs with back-to-back nickel electrodes produced by the dry sinter process. The 80Ah common cell design can be scaled to meet capacity requirements from 60Ah to 100Ah. Producibility, commonality, and long life performance will be enhanced with the robust cell design described herein.
Model-Driven Approach for Body Area Network Application Development.
Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata
2016-05-12
This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.
Model-Driven Approach for Body Area Network Application Development
Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata
2016-01-01
This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application. PMID:27187394
OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles
NASA Technical Reports Server (NTRS)
Wichmann, H.
1974-01-01
Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.
30 CFR 18.61 - Final inspection of complete machine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... substantially modified design of a previously approved one shall be inspected by a qualified representative(s... requirements of this part with respect to joints, lead entrances, and other pertinent features. (2) Wiring...
38 CFR 39.31 - Preapplication requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) A design concept describing the major features of the project including the number and types of... project, use of space, or functional layout; and it will not enter into a construction contract for the...
48 CFR 52.236-25 - Requirements for Registration of Designers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... engineers registered to practice in the particular professional field involved in a State, the District of... architectural, structural, mechanical, electrical, civil, or other engineering features of the work. (End of...
48 CFR 52.236-25 - Requirements for Registration of Designers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineers registered to practice in the particular professional field involved in a State, the District of... architectural, structural, mechanical, electrical, civil, or other engineering features of the work. (End of...
48 CFR 52.236-25 - Requirements for Registration of Designers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... engineers registered to practice in the particular professional field involved in a State, the District of... architectural, structural, mechanical, electrical, civil, or other engineering features of the work. (End of...
48 CFR 52.236-25 - Requirements for Registration of Designers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... engineers registered to practice in the particular professional field involved in a State, the District of... architectural, structural, mechanical, electrical, civil, or other engineering features of the work. (End of...
48 CFR 52.236-25 - Requirements for Registration of Designers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... engineers registered to practice in the particular professional field involved in a State, the District of... architectural, structural, mechanical, electrical, civil, or other engineering features of the work. (End of...
Structural Integrity and Aging-Related Issues of Helicopters
2000-10-01
inherently damage lolerant , any damage- inspection in critical locations where tests have indicated tolerant features in airframe design only enhances...required, so European Rotorcraft Forum. Marseilles, France, 15- that helicopters are equipped with such features as fly- 17 September 1998 . by-wire and...fatigue Evaluation of structural integrity issues of aging helicopters. The Structure," 29 April, 1998 . extended safe-life approach encompasses the best
[Current Knee Arthroplasty Designs and Kinematics: Differences in Radii, Conformity and Pivoting].
Calliess, Tilman; Savov, Peter; Ettinger, Max; Karkosch, Roman
2018-06-14
Today, there is an almost endless variety of knee prosthesis models on the market from which the surgeon can choose. Although the designs appear closer and closer to one another, the industry makes a great effort to emphasise different features as beneficial and a stand-alone. It is increasingly difficult to keep an overview and to assess the clinical relevance of the diverse features. There is a clear lack of independent comparative studies and evidence is low. Nevertheless, different design philosophies require special surgical techniques, so that the surgeon must be familiar with the peculiarity of his/her prosthesis. Also, a differentiated indication for different designs appears to be an interesting concept. The aim of this essay is to give a brief overview of the major design concepts of current unconstrained knee prosthesis designs and their differences regarding biomechanics and kinematics. Georg Thieme Verlag KG Stuttgart · New York.
Development Requirements for Spacesuit Elbow Joint
NASA Technical Reports Server (NTRS)
Peters, Benjamin
2017-01-01
Functional Requirements for spacesuit elbow joint:1) The system is a conformal, single-axis spacesuit pressurized joint that encloses the elbow joint of the suited user and uses a defined interface to connect to the suit systems on either side of the joint.2) The system shall be designed to bear the loads incurred from the internal pressure of the system, as well as the expected loads induced by the user while enabling the user move the joint through the required range of motion. The joint torque of the system experienced by the user shall remain at or below the required specification for the entire range of motion.3) The design shall be constructed, at a minimum, as a two-layer system. The internal, air-tight layer shall be referred to as the bladder, and the layer on the unpressurized side of the bladder shall be referred to as the restraint. The design of the system may include additional features or layers, such as axial webbing, to meet the overall requirements of the design.
High temperature, high intensity solar array. [for Venus Radar Mapper mission
NASA Technical Reports Server (NTRS)
Smith, B. S.; Brooks, G. R.; Pinkerton, R.
1985-01-01
The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.
Design Features and Capabilities of the First Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.
2003-01-01
The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.
Trinczek, B.; Köpcke, F.; Leusch, T.; Majeed, R.W.; Schreiweis, B.; Wenk, J.; Bergh, B.; Ohmann, C.; Röhrig, R.; Prokosch, H.U.; Dugas, M.
2014-01-01
Summary Objective (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Methods Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user’s request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. Results 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. Conclusion A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials. PMID:24734138
Trinczek, B; Köpcke, F; Leusch, T; Majeed, R W; Schreiweis, B; Wenk, J; Bergh, B; Ohmann, C; Röhrig, R; Prokosch, H U; Dugas, M
2014-01-01
(1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user's request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials.
User Requirements Analysis For Digital Library Application Using Quality Function Deployment.
NASA Astrophysics Data System (ADS)
Wulandari, Lily; Sularto, Lana; Yusnitasari, Tristyanti; Ikasari, Diana
2017-03-01
This study attemp to build Smart Digital Library to be used by the wider community wherever they are. The system is built in the form of Smart Digital Library portal which uses semantic similarity method (Semantic Similarity) to search journals, articles or books by title or author name. This method is also used to determine the recommended books to be read by visitors of Smart Digital Library based on testimony from a previous reader automatically. Steps being taken in the development of Smart Digital Library system is the analysis phase, design phase, testing and implementation phase. At this stage of the analysis using WebQual for the preparation of the instruments to be distributed to the respondents and the data obtained from the respondents will be processed using Quality Function Deployment. In the analysis phase has the purpose of identifying consumer needs and technical requirements. The analysis was performed to a digital library on the web digital library Gunadarma University, Bogor Institute of Agriculture, University of Indonesia, etc. The questionnaire was distributed to 200 respondents. The research methodology begins with the collection of user requirements and analyse it using QFD. Application design is funded by the government through a program of Featured Universities Research by the Directorate General of Higher Education (DIKTI). Conclusions from this research are identified which include the Consumer Requirements of digital library application. The elements of the consumers requirements consists of 13 elements and 25 elements of Engineering Characteristics digital library requirements. Therefore the design of digital library applications that will be built, is designed according to the findings by eliminating features that are not needed by restaurant based on QFD House of Quality.
High Energy Lithium-Ion VES Cells And Batteries Performances
NASA Astrophysics Data System (ADS)
Castric, A.-F.; Lawson, S.; Borthomieu, Y.
2011-10-01
b Saft's Space VES range of lithium-ion cells have been designed specifically to meet the satellites on-board power need, while meeting the legitimate high levels of requirements for space products. The purpose of the paper is to develop how the VES batteries designs have progressively evolved in order to accommodate the needs, requirements and constraints evolutions. The following topics will be presented: - Description of the main design features of the VES Li- ion batteries. - How the optimised battery configuration is selected against the required EOL power need or other constraints. - Presentation of the batteries performances (electrical, mechanical, thermal, interface, weight, ...). - Measures implemented in order to maintain these performances, and to guarantee the best product quality as per space standards.
Design and Preliminary Testing of the International Docking Adapter's Peripheral Docking Target
NASA Technical Reports Server (NTRS)
Foster, Christopher W.; Blaschak, Johnathan; Eldridge, Erin A.; Brazzel, Jack P.; Spehar, Peter T.
2015-01-01
The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.
Initial performance of advanced designs for IPV nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Smithrick, John J.
1986-01-01
Advanced designs for individual pressure vessel nickel-hydrogen cells have been conceived which should improve the cycle life at deep depths-of-discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.
Initial performance of advanced designs for IPV nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1985-01-01
Advanced designs for individual pressure vessel nickel hydrogen cells were conceived which should improve the life cycle at deep depths of discharge and improve thermal management. Features of the designs which are new and not incorporated in either of the contemporary cells (Air Force/Hughes, Comsat) are: (1) the use of alternate methods of oxygen recombination, (2) use of serrated edge separators to facilitate movement of gas within the cell while still maintaining required physical contact with the wall wick, and (3) use of an expandable stack to accommodate some of the nickel electrode expansion. The designs also consider electrolyte volume requirements over the life of the cells, and are fully compatible with the Air Force/Hughes design.
38 CFR 39.6 - Preapplication requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... documentation, as needed). (4) A design concept describing the major features of the project including the... that alter the costs of the project, use of space, or functional layout; and it will not enter into a...
Plutonium Immobilization Project System Design Description for Can Loading System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriikku, E.
2001-02-15
The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.
10 CFR 50.13 - Attacks and destructive acts by enemies of the United States; and defense activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Requirement of License, Exceptions § 50.13 Attacks and... construct and operate a production or utilization facility, or for an amendment to such license, is not required to provide for design features or other measures for the specific purpose of protection against...
ERIC Educational Resources Information Center
Semple, Clarence A.; And Others
Functional requirements for a highly automated, flexible, instructional support system for aircrew training simulators are presented. Automated support modes and associated features and capabilities are described, along with hardware and software functional requirements for implementing a baseline system in an operational flight training context.…
Air Brayton Solar Receiver, phase 1
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1979-01-01
A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
... the Critical Design Configuration Control Limitations (CDCCL) and in the Fuel System Limitations (FSL... necessary to maintain the design features required to preclude the existence or development of an ignition... amend this proposed AD based on those comments. We will post all comments we receive, without change, to...
Optimizing Railroad Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk
ERIC Educational Resources Information Center
Saat, Mohd Rapik
2009-01-01
The design of railroad tank cars is subject to structural and performance requirements and constrained by weight. They can be made safer by increasing tank thickness and adding various protective features, but these increase the weight and cost of the car and reduce its capacity and consequent transportation efficiency. Aircraft, automobiles and…
14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintenance errors that could result in an IFSD, loss of thrust control, or other power loss. (b) The design features of the engine must address problems shown to result in an IFSD, loss of thrust control, or other...-off, climb, cruise, descent, approach, and landing thrust or power and the use of thrust reverse (if...
14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.
Code of Federal Regulations, 2011 CFR
2011-01-01
... maintenance errors that could result in an IFSD, loss of thrust control, or other power loss. (b) The design features of the engine must address problems shown to result in an IFSD, loss of thrust control, or other...-off, climb, cruise, descent, approach, and landing thrust or power and the use of thrust reverse (if...
14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintenance errors that could result in an IFSD, loss of thrust control, or other power loss. (b) The design features of the engine must address problems shown to result in an IFSD, loss of thrust control, or other...-off, climb, cruise, descent, approach, and landing thrust or power and the use of thrust reverse (if...
ERIC Educational Resources Information Center
Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi
2012-01-01
In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…
ARIES: Acquisition of Requirements and Incremental Evolution of Specifications
NASA Technical Reports Server (NTRS)
Roberts, Nancy A.
1993-01-01
This paper describes a requirements/specification environment specifically designed for large-scale software systems. This environment is called ARIES (Acquisition of Requirements and Incremental Evolution of Specifications). ARIES provides assistance to requirements analysts for developing operational specifications of systems. This development begins with the acquisition of informal system requirements. The requirements are then formalized and gradually elaborated (transformed) into formal and complete specifications. ARIES provides guidance to the user in validating formal requirements by translating them into natural language representations and graphical diagrams. ARIES also provides ways of analyzing the specification to ensure that it is correct, e.g., testing the specification against a running simulation of the system to be built. Another important ARIES feature, especially when developing large systems, is the sharing and reuse of requirements knowledge. This leads to much less duplication of effort. ARIES combines all of its features in a single environment that makes the process of capturing a formal specification quicker and easier.
HDL to verification logic translator
NASA Technical Reports Server (NTRS)
Gambles, J. W.; Windley, P. J.
1992-01-01
The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.
Multi-sensor image registration based on algebraic projective invariants.
Li, Bin; Wang, Wei; Ye, Hao
2013-04-22
A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.
White, James A P; Bond, Ian P; Jagger, Daryll C
2011-01-01
This study investigated how ribbed design features, including palatal rugae, may be used to significantly improve the structural performance of a maxillary denture under load. A computer-aided design model of a generic maxillary denture, incorporating various rib features, was created and imported into a finite element analysis program. The denture and ribbed features were assigned the material properties of standard denture acrylic resin, and load was applied in two different ways: the first simulating a three-point flexural bend of the posterior section and the second simulating loading of the entire palatal region. To investigate the combined use of ribbing and reinforcement, the same simulations were repeated with the ribbed features having a Young modulus two orders of magnitude greater than denture acrylic resin. For a prescribed load, total displacements of tracking nodes were compared to those of a control denture (without ribbing) to assess relative denture rigidity. When subjected to flexural loading, an increase in rib depth was seen to result in a reduction of both the transverse displacement of the last molar and vertical displacement at the centerline. However, ribbed features assigned the material properties of denture acrylic resin require a depth that may impose on speech and bolus propulsion before significant improvements are observed. The use of ribbed features, when made from a significantly stiffer material (eg, fiber-reinforced polymer) and designed to mimic palatal rugae, offer an acceptable method of providing significant improvements in rigidity to a maxillary denture under flexural load.
Science requirements and optimization of the silicon pore optics design for the Athena mirror
NASA Astrophysics Data System (ADS)
Willingale, R.; Pareschi, G.; Christensen, F.; den Herder, J.-W.; Ferreira, D.; Jakobsen, A.; Ackermann, M.; Collon, M.; Bavdaz, M.
2014-07-01
The science requirements for the Athena X-ray mirror are to provide a collecting area of 2 m2 at 1 keV, an angular resolution of ~5 arc seconds half energy eidth (HEW) and a field of view of diameter 40-50 arc minutes. This combination of area and angular resolution over a wide field are possible because of unique features of the Silicon pore optics (SPO) technology used. Here we describe the optimization and modifications of the SPO technology required to achieve the Athena mirror specification and demonstrate how the optical design of the mirror system impacts on the scientific performance of Athena.
Environmental control system transducer development study. [for space shuttles
NASA Technical Reports Server (NTRS)
Brudnicki, M. J.
1974-01-01
A development test program of transducers for aerospace projects is described. Stability and performance of existing transducers, and improvements compatible with shuttle ECS requirements are investigated. These requirements incorporate design and development features into the transducers, and include the following: (1) improvement of overall transducer ruggedness and reliability; (2) common transducers for all ECS fluids that will be unaffected by long quiescent periods in the space environment, that will require no maintenance or refurbishing for at least 100 launches; and (3) appropriate self-check features that simplify checkout and maintenance. Models of three different transducers, a three-way valve for pressure transducers from closed liquid loops, surface-type platinum-wire resistance temperature sensors, and a nuclenics gaging system are evaluated. Tests and development improvements are described.
Language Design in the Processing of Non-Restrictive Relative Clauses in French as a Second Language
ERIC Educational Resources Information Center
Lorente Lapole, Amandine
2012-01-01
Recent years have witnessed a lively debate on the nature of learners' morphological competence and use. Some argue that a breakdown in acquisition of second-language (L2) is expected whenever features required for the analysis of L2 input are not present in the L1. Others argue that features have the same nature and etiology in first…
CIRCAL-2 - General-purpose on-line circuit design.
NASA Technical Reports Server (NTRS)
Dertouzos, M. L.; Jessel, G. P.; Stinger, J. R.
1972-01-01
CIRCAL-2 is a second-generation general-purpose on-line circuit-design program with the following main features: (1) multiple-analysis capability; (2) uniform and general data structures for handling text editing, network representations, and output results, regardless of analysis; (3) special techniques and structures for minimizing and controlling user-program interaction; (4) use of functionals for the description of hysteresis and heat effects; and (5) ability to define optimization procedures that 'replace' the user. The paper discusses the organization of CIRCAL-2, the aforementioned main features, and their consequences, such as a set of network elements and models general enough for most analyses and a set of functions tailored to circuit-design requirements. The presentation is descriptive, concentrating on conceptual rather than on program implementation details.
Design of virtual three-dimensional instruments for sound control
NASA Astrophysics Data System (ADS)
Mulder, Axel Gezienus Elith
An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object parameters. While the virtual instruments can be adapted to exploit many manipulation gestures, further work is required to reduce the need for technical expertise to realize adaptations. Better virtual object simulation techniques and faster sensor data acquisition will improve the performance of virtual instruments. The design environment which has been developed should prove useful as a (musical) instrument prototyping tool and as a tool for researching the optimal adaptation of machines to humans.
Space use as an indicator of enclosure appropriateness in African wild dogs (Lycaon pictus).
Hunter, Sally C; Gusset, Markus; Miller, Lance J; Somers, Michael J
2014-01-01
A clear understanding of space use is required to more fully understand biological requirements of nonhuman animals in zoos, aid the design of exhibits, and maximize the animals' welfare. This study used electivity indexes to assess space use of two packs of African wild dogs (Lycaon pictus) and the appropriateness of two naturalistic, outdoor enclosures at the San Diego Zoo and Bronx Zoo. The results identified enclosure features that were both underutilized and overutilized. They suggest that replacing underutilized areas with features similar to areas that were overutilized may provide more preferred opportunities for the animals. Assessing space use of animals in human care may serve as an indicator of enclosure appropriateness and could have welfare implications. By looking at the possible reasons for area preferences, animal managers can get an idea of where improvements could be made. Designing future exhibits accordingly thus can provide possible welfare benefits for the animals concerned.
Structure-Based Design of Highly Selective Inhibitors of the CREB Binding Protein Bromodomain.
Denny, R Aldrin; Flick, Andrew C; Coe, Jotham; Langille, Jonathan; Basak, Arindrajit; Liu, Shenping; Stock, Ingrid; Sahasrabudhe, Parag; Bonin, Paul; Hay, Duncan A; Brennan, Paul E; Pletcher, Mathew; Jones, Lyn H; Chekler, Eugene L Piatnitski
2017-07-13
Chemical probes are required for preclinical target validation to interrogate novel biological targets and pathways. Selective inhibitors of the CREB binding protein (CREBBP)/EP300 bromodomains are required to facilitate the elucidation of biology associated with these important epigenetic targets. Medicinal chemistry optimization that paid particular attention to physiochemical properties delivered chemical probes with desirable potency, selectivity, and permeability attributes. An important feature of the optimization process was the successful application of rational structure-based drug design to address bromodomain selectivity issues (particularly against the structurally related BRD4 protein).
NASA Technical Reports Server (NTRS)
Goochee, Charles F.
1987-01-01
The purpose is to review some of the physical/metabolic factors which must be considered in the development of an operating strategy for a mammalian cell bioreactor. Emphasis is placed on the dissolved oxygen and carbon dioxide requirements of growing mammalian epithelial cells. Literature reviews concerning oxygen and carbon dioxide requirements are discussed. A preliminary, dynamic model which encompasses the current features of the NASA bioreactor is presented. The implications of the literature survey and modeling effort on the design and operation of the NASA bioreactor are discussed.
Robust evaluation of time series classification algorithms for structural health monitoring
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.
2014-03-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.
User Requirements Gathering for 3d Geographic Information in the United Kingdom
NASA Astrophysics Data System (ADS)
Wong, K.; Ellul, C.
2017-10-01
Despite significant developments, 3D technologies are still not fully exploited in practice due to the lack of awareness as well as the lack of understanding of who the users of 3D will be and what the user requirements are. From a National Mapping & Cadastral Agency and data acquisition perspective, each new 3D feature type and element within a feature added (such as doors, windows, chimneys, street lights) requires additional processing and cost to create. There is therefore a need to understand the importance of different 3D features and components for different applications. This will allow the direction of capture effort towards items that will be relevant to a wide range of users, as well as to understand the current status of, and interest in, 3D at a national level. This paper reports the results of an initial requirements gathering exercise for 3D geographic information in the United Kingdom (UK). It describes a user-centred design approach where usability and user needs are given extensive attention at each stage of the design process. Web-based questionnaires and semi-structured face-to-face interviews were used as complementary data collection methods to understand the user needs. The results from this initial study showed that while some applications lead the field with a high adoption of 3D, others are laggards, predominantly from organisational inertia. While individuals may be positive about the use of 3D, many struggle to justify the value and business case for 3D GI. Further work is required to identify the specific geometric and semantic requirements for different applications and to repeat the study with a larger sample.
Structural Element Testing in Support of the Design of the NASA Composite Crew Module
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.
2012-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.
Final design review summary report for the TN-WHC cask and transportation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kee, A.T.
1997-01-17
This document represents comments generated from a review of Transnuclear`s Final Design Package distributed on December 10, 1996 and a review of the Final Design Analysis Report meeting held on December 17 & 18, 1996. The Final design describes desicn features and presents final analyses @j performed to fabricate and operate the system while meeting the Cask/Transportation Functions and Requirements, WHC-SD-SNF-FRD-011, Rev. 0 and specification WHC-S-0396, Rev. 1.
Current trends in the design of scaffolds for computer-aided tissue engineering.
Giannitelli, S M; Accoto, D; Trombetta, M; Rainer, A
2014-02-01
Advances introduced by additive manufacturing have significantly improved the ability to tailor scaffold architecture, enhancing the control over microstructural features. This has led to a growing interest in the development of innovative scaffold designs, as testified by the increasing amount of research activities devoted to the understanding of the correlation between topological features of scaffolds and their resulting properties, in order to find architectures capable of optimal trade-off between often conflicting requirements (such as biological and mechanical ones). The main aim of this paper is to provide a review and propose a classification of existing methodologies for scaffold design and optimization in order to address key issues and help in deciphering the complex link between design criteria and resulting scaffold properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mariner Jupiter/Saturn infrared instrument study
NASA Technical Reports Server (NTRS)
1972-01-01
The Mariner Jupiter/Saturn infrared instrumentation conceptual design study was conducted to determine the physical and operational characteristics of the instruments needed to satisfy the experiment science requirements. The design of the instruments is based on using as many proven concepts as possible. Many design features are taken from current developments such as the Mariner, Pioneer 10, Viking Orbiter radiometers, and Nimbus D spectrometer. Calibration techniques and error analysis for the instrument system are discussed.
1981-02-01
Continue on tevetee «Id* If necemtery mid Identify br black number) Battlefield automated systems Human- computer interaction. Design criteria System...Report (this report) In-Depth Analyses of Individual Systems A. Tactical Fire Direction System (TACFIRE) (RP 81-26) B. Tactical Computer Terminal...select the design features and operating procedures of the human- computer Interface which best match the require- ments and capabilities of anticipated
Global Sentry: NASA/USRA high altitude reconnaissance aircraft design, volume 2
NASA Technical Reports Server (NTRS)
Alexandru, Mona-Lisa; Martinez, Frank; Tsou, Jim; Do, Henry; Peters, Ashish; Chatsworth, Tom; Yu, YE; Dhillon, Jaskiran
1990-01-01
The Global Sentry is a high altitude reconnaissance aircraft design for the NASA/USRA design project. The Global Sentry uses proven technologies, light-weight composites, and meets the R.F.P. requirements. The mission requirements for the Global Sentry are described. The configuration option is discussed and a description of the final design is given. Preliminary sizing analyses and the mass properties of the design are presented. The aerodynamic features of the Global Sentry are described along with the stability and control characteristics designed into the flight control system. The performance characteristics are discussed as is the propulsion installation and system layout. The Global Sentry structural design is examined, including a wing structural analysis. The cockpit, controls and display layouts are covered. Manufacturing is covered and the life cost estimation. Reliability is discussed. Conclusions about the current Global Sentry design are presented, along with suggested areas for future engineering work.
Mobile Food Ordering Application using Android OS Platform
NASA Astrophysics Data System (ADS)
Yosep Ricky, Michael
2014-03-01
The purpose of this research is making an ordering food application based on Android with New Order, Order History, Restaurant Profile, Order Status, Tracking Order, and Setting Profile features. The research method used in this research is water model of System Development Life Cycle (SDLC) method with following phases: requirement definition, analyzing and determining the features needed in developing application and making the detail definition of each features, system and software design, designing the flow of developing application by using storyboard design, user experience design, Unified Modeling Language (UML) design, and database structure design, implementation an unit testing, making database and translating the result of designs to programming language code then doing unit testing, integration and System testing, integrating unit program to one unit system then doing system testing, operation and maintenance, operating the result of system testing and if any changes and reparations needed then the previous phases could be back. The result of this research is an ordering food application based on Android for customer and courier user, and a website for restaurant and admin user. The conclusion of this research is to help customer in making order easily, to give detail information needed by customer, to help restaurant in receiving order, and to help courier while doing delivery.
Design study of a continuously variable roller cone traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Mccoin, D. K.; Walker, R. D.
1980-01-01
Continuously variable ratio transmissions (CVT) featuring cone and roller traction elements and computerized controls are studied. The CVT meets or exceeds all requirements set forth in the design criteria. Further, a scalability analysis indicates the basic concept is applicable to lower and higher power units, with upward scaling for increased power being more readily accomplished.
10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor
Code of Federal Regulations, 2012 CFR
2012-01-01
...) of 10 CFR 50.34—Post-Accident Sampling for Boron, Chloride, and Dissolved Gases; and 3. Paragraph (f... affecting resolution of an ex-vessel severe accident design feature identified in the plant-specific DCD, requires a license amendment if: (1) There is a substantial increase in the probability of an ex-vessel...
Anticipating and controlling mask costs within EDA physical design
NASA Astrophysics Data System (ADS)
Rieger, Michael L.; Mayhew, Jeffrey P.; Melvin, Lawrence S.; Lugg, Robert M.; Beale, Daniel F.
2003-08-01
For low k1 lithography, more aggressive OPC is being applied to critical layers, and the number of mask layers with OPC treatments is growing rapidly. The 130 nm, process node required, on average, 8 layers containing rules- or model-based OPC. The 90 nm node will have 16 OPC layers, of which 14 layers contain aggressive model-based OPC. This escalation of mask pattern complexity, coupled with the predominant use of vector-scan e-beam (VSB) mask writers contributes to the rising costs of advanced mask sets. Writing times for OPC layouts are several times longer than for traditional layouts, making mask exposure the single largest cost component for OPC masks. Lower mask yields, another key factor in higher mask costs, is also aggravated by OPC. Historical mask set costs are plotted below. The initial cost of a 90 nm-node mask set will exceed one million dollars. The relative impact of mask cost on chip depends on how many total wafers are printed with each mask set. For many foundry chips, where unit production is often well below 1000 wafers, mask costs are larger than wafer processing costs. Further increases in NRE may begin to discourage these suppliers' adoption to 90 nm and smaller nodes. In this paper we will outline several alternatives for reducing mask costs by strategically leveraging dimensional margins. Dimensional specifications for a particular masking layer usually are applied uniformly to all features on that layer. As a practical matter, accuracy requirements on different features in the design may vary widely. Take a polysilicon layer, for example: global tolerance specifications for that layer are driven by the transistor-gate requirements; but these parameters over-specify interconnect feature requirements. By identifying features where dimensional accuracy requirements can be reduced, additional margin can be leveraged to reduce OPC complexity. Mask writing time on VSB tools will drop in nearly direct proportion to reduce shot count. By inspecting masks with reference to feature-dependent margins, instead of uniform specifications, mask yield can be effectively increased further reducing delivered mask expense.
Computer-Assisted Periodical Routing and Renewal Audit
ERIC Educational Resources Information Center
Yerkey, A. Neil
1973-01-01
A computer-assisted periodical control system was designed to reduce clerical time required to maintain records in three areas: renewal audit, routing, and records-keeping. The renewal audit features are unusual and are described in detail. (3 references) (Author/DH)
Effects of pavement surface texture on noise and frictional characteristics.
DOT National Transportation Integrated Search
1987-02-01
An experimental modification of the transverse groove : surface texture of a section of an urban interstate highway was : performed by the Iowa Department of Transportation. Transverse : groove texturing is a design feature required by the Federal : ...
Requirements for psychological models to support design: Towards ecological task analysis
NASA Technical Reports Server (NTRS)
Kirlik, Alex
1991-01-01
Cognitive engineering is largely concerned with creating environmental designs to support skillful and effective human activity. A set of necessary conditions are proposed for psychological models capable of supporting this enterprise. An analysis of the psychological nature of the design product is used to identify a set of constraints that models must meet if they can usefully guide design. It is concluded that cognitive engineering requires models with resources for describing the integrated human-environment system, and that these models must be capable of describing the activities underlying fluent and effective interaction. These features are required in order to be able to predict the cognitive activity that will be required given various design concepts, and to design systems that promote the acquisition of fluent, skilled behavior. These necessary conditions suggest that an ecological approach can provide valuable resources for psychological modeling to support design. Relying heavily on concepts from Brunswik's and Gibson's ecological theories, ecological task analysis is proposed as a framework in which to predict the types of cognitive activity required to achieve productive behavior, and to suggest how interfaces can be manipulated to alleviate certain types of cognitive demands. The framework is described in terms, and illustrated with an example from the previous research on modeling skilled human-environment interaction.
Solid propellant processing factor in rocket motor design
NASA Technical Reports Server (NTRS)
1971-01-01
The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.
The Operator Shell: A means of privilege distribution under Unix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuman, M.; Christoph, G.
1994-03-01
The Operator Shell (Osh) is a setuid root, security enhanced, restricted shell for providing fine-grain distribution of system privileges for a wide range of usages and requirements. Osh offers a marked improvement over other Unix privilege distribution systems in its ability to specify access to both commands and files, auditing features, and familiar interface. This paper describes the design, features, security considerations, internals, and applications of the Operator Shell.
NASA Technical Reports Server (NTRS)
Engelberg, N.; Shaw, C., III
1984-01-01
The design of a uniform command language to be used in a local area network of heterogeneous, autonomous nodes is considered. After examining the major characteristics of such a network, and after considering the profile of a scientist using the computers on the net as an investigative aid, a set of reasonable requirements for the command language are derived. Taking into account the possible inefficiencies in implementing a guest-layered network operating system and command language on a heterogeneous net, the authors examine command language naming, process/procedure invocation, parameter acquisition, help and response facilities, and other features found in single-node command languages, and conclude that some features may extend simply to the network case, others extend after some restrictions are imposed, and still others require modifications. In addition, it is noted that some requirements considered reasonable (user accounting reports, for example) demand further study before they can be efficiently implemented on a network of the sort described.
Human Rating Requirements for NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Berdich, Debbie
2008-01-01
NASA s Constellation Program (CxP) will conduct a series of human space expeditions of increasing scope, starting with missions supporting the International Space Station and expanding to encompass the Moon and Mars. Although human-rating is an integral part of all CxP activities throughout their life cycle, NASA Procedural Requirements document NPR 8705.2B, Human-Rating Requirements (HRR) for Space Flight Systems, defines the additional processes, procedures, and requirements necessary to produce human-rated space systems that protect the safety of crew members and passengers on these NASA missions. In order to be in compliance with 8705.2B the CxP must show appropriate implementation or progression toward the HRR, or justification for an exception. Compliance includes an explanation of how the CxP intends to meet the HRR, analyses to be performed to determine implementation; and a matrix to trace the HRR to CxP requirements. The HRR requires the CxP to establish a human system integration team (HSIT), consisting of astronauts, mission operations personnel, training personnel, ground processing personnel, human factors personnel, and human engineering experts, with clearly defined authority, responsibility, and accountability to lead the human-system integration. For example, per the HRR the HSIT is involved in the evaluation of crew workload, human-in-the-loop usability evaluations, determining associated criteria, and in assessment of how these activities influenced system design. In essence, the HSIT is invaluable in CxP s ability to meet the three fundamental tenets of human rating: the process of designing, evaluating, and assuring that the total system can safely conduct the required human missions; the incorporation of design features and capabilities that accommodate human interaction with the system to enhance overall safety and mission success; and the incorporation of design features and capabilities to enable safe recovery of the crew from hazardous situations.
Design of the Chicago Health and Aging Project (CHAP).
Bienias, Julia L; Beckett, Laurel A; Bennett, David A; Wilson, Robert S; Evans, Denis A
2003-10-01
The design of the Chicago Health and Aging Project (CHAP) is described. CHAP is a longitudinal population study of common chronic health problems of older persons, especially of risk factors for incident Alzheimer's disease, in a biracial neighborhood of the south side of Chicago. Special attention is given to three unusual design features of the study. One feature is that clinical evaluation for Alzheimer's disease is confined to a stratified random sample of all participants. This feature results in substantial cost savings and substantially less bias than screening approaches but has the disadvantages of adding analytic complexity and requiring the use of indirect means to identify a disease-free cohort for the development of incident Alzheimer's disease. The second unusual feature is efficiently combining in analyses the successive independent multiple samples that are drawn, one from each data collection cycle. The third unusual feature is entering successive age cohorts of community residents into the study as they attain 65 years of age. This has the advantages of enhancing direct investigation of the effect of age on the action of risk factors for Alzheimer's disease and direct examination of cohort effects. The interaction of these features is described, especially as they pertain to a study in which data are collected in successive waves. The results from these waves must be combined for effective analysis of the relation among risk factors and incident disease.
NASA Astrophysics Data System (ADS)
Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily
2017-10-01
Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.
Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M
2018-03-01
Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.
Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
Irwin, Zachary T; Thompson, David E; Schroeder, Karen E; Tat, Derek M; Hassani, Ali; Bullard, Autumn J; Woo, Shoshana L; Urbanchek, Melanie G; Sachs, Adam J; Cederna, Paul S; Stacey, William C; Patil, Parag G; Chestek, Cynthia A
2016-05-01
Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M. G.; Mouser, M. R.; Simon, J. B.
2012-07-01
The AP1000{sup R} plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditionsmore » in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been designed to be reliable in these conditions. The primary goal of any such actions is to maintain or refill the passive inventory available to cool the core, containment and spent fuel pool in the safety-related and seismically qualified Passive Containment Cooling Water Storage Tank (PCCWST). The seismically-qualified, ground-mounted Passive Containment Cooling Ancillary Water Storage Tank (PCCAWST) is also available for this function as appropriate. The primary effect of these actions would be to increase the coping time for the AP1000 during design basis events, as well as events such as those described above, from 72 hours without operator intervention to 7 days with minimal operator actions. These Operator actions necessary to protect the health and safety of the public are addressed in the Post-72 Hour procedures, as well as some EOPs, AOPs, ARPs and the Severe Accident Management Guidelines (SAMGs). Should the event continue to become more severe and plant conditions degrade further with indications of inadequate core cooling, the SAMGs provide guidance for strategies to address these hypothetical severe accident conditions. The AP1000 SAMG diagnoses and actions are prioritized to first utilize the AP1000 features that are expected to retain a damaged core inside the reactor vessel. Only one strategy is undertaken at any time. This strategy will be followed and its effectiveness evaluated before other strategies are undertaken. This is a key feature of both the symptom-oriented AP1000 EOPs and the AP1000 SAMGs which maximizes the probability of retaining a damaged core inside the reactor vessel and containment while minimizing the chances for confusion and human errors during implementation. The AP1000 SAMGs are simple and straight-forward and have been developed with considerable input from human factors and plant operations experts. Most importantly, and different from severe accident management strategies for other plants, the AP1000 SAMGs do not require diagnosis of the location of the core (i.e., whether reactor vessel failure has occurred). This is a fundamental consequence of the AP1000 In-Vessel Retention approach, which allows severe accident management to be based on fundamental principles (e.g. provide coolant as close as possible to the core) that do not change during a specific event. This eliminates the need for one of the more difficult diagnostic requirements, since reactor vessel failure does not directly relate to any measurable plant parameter, and differs from other designs in that an engineered failure of the pressure vessel' (e.g. core catcher) is never required. (authors)« less
ASTROS: A multidisciplinary automated structural design tool
NASA Technical Reports Server (NTRS)
Neill, D. J.
1989-01-01
ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.
Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.
2015-01-01
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211
Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D
2015-07-10
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.
Safety philosophy of gas turbine high temperature reactor (GTHTR300)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa
2002-07-01
Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Majormore » features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)« less
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
10 CFR 61.13 - Technical analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... characteristics and design features in isolating and segregating the wastes. The analyses must clearly demonstrate... inadvertent intrusion must include demonstration that there is reasonable assurance the waste classification...
A mobile robot system for ground servicing operations on the space shuttle
NASA Astrophysics Data System (ADS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-11-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
A mobile robot system for ground servicing operations on the space shuttle
NASA Technical Reports Server (NTRS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-01-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
Cryogenic propellant management: Integration of design, performance and operational requirements
NASA Technical Reports Server (NTRS)
Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.
1985-01-01
The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection
O’Halloran, Damien M.
2016-01-01
Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction. PMID:26853558
How a central bank perceives the (visual) communication of security features on its banknotes
NASA Astrophysics Data System (ADS)
Tornare, Roland
1998-04-01
The banknotes of earlier generations were protected by two or three security features with which the general public was familiar: watermark, security thread, intaglio printing. The remaining features pleased primarily printers and central banks, with little thought being given to public perception. The philosophy adopted two decades ago was based on a certain measure of discretion. It required patience and perseverance to discover the built-in security features of the banknotes. When colour photocopiers appeared on the scene in the mid- eighties we were compelled to take precautionary measures to protect our banknotes. One such measure consisted of an information campaign to prepare ourselves for this new potential threat. At this point, we actually became fully aware of the complex design of our banknotes and how difficult it is to communicate clearly the difference between a genuine and a counterfeit banknote. This difficult experience has nevertheless been a great benefit. It badgered us continually during the initial phase of designing the banknotes and preparing the information campaign.
Distributed operating system for NASA ground stations
NASA Technical Reports Server (NTRS)
Doyle, John F.
1987-01-01
NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.
The transportation depot: An orbiting vehicle support facility
NASA Technical Reports Server (NTRS)
Kaszubowski, Martin J.; Ayers, J. Kirk
1992-01-01
This paper describes the details of an effort to produce conceptual designs for an orbiting platform, called a transportation depot, to handle assembly and processing of lunar, Martian, and related vehicles. High-level requirements for such a facility were established, and several concepts were developed to meet those requirements. By showing that the critical rigid-body momentum characteristics of each concept are similar to those of the dual-keel space station, some insight was gained about the controllability and utility of this type of facility. Finally, several general observations were made that highlight the advantages and disadvantages of particular design features.
Rashid, Mahbub
2014-01-01
In 2006, Critical Care Nursing Quarterly published a study of the physical design features of a set of best practice example adult intensive care units (ICUs). These adult ICUs were awarded between 1993 and 2003 by the Society of Critical Care Medicine (SCCM), the American Association of Critical-Care Nurses, and the American Institute of Architects/Academy of Architecture for Health for their efforts to promote the critical care unit environment through design. Since 2003, several more adult ICUs were awarded by the same organizations for similar efforts. This study includes these newer ICUs along with those of the previous study to cover a period of 2 decades from 1993 to 2012. Like the 2006 study, this study conducts a systematic content analysis of the materials submitted by the award-winning adult ICUs. On the basis of the analysis, the study compares the 1993-2002 and 2003-2012 adult ICUs in relation to construction type, unit specialty, unit layout, unit size, patient room size and design, support and service area layout, and family space design. The study also compares its findings with the 2010 Guidelines for Design and Construction of Health Care Facilities of the Facility Guidelines Institute and the 2012 Guidelines for Intensive Care Unit Design of the SCCM. The study indicates that the award-winning ICUs of both decades used several design features that were associated with positive outcomes in research studies. The study also indicates that the award-winning ICUs of the second decade used more evidence-based design features than those of the first decades. In most cases, these ICUs exceeded the requirements of the Facility Guidelines Institute Guidelines to meet those of the SCCM Guidelines. Yet, the award-winning ICUs of both decades also used several features that had very little or no supporting research evidence. Since they all were able to create an optimal critical care environment for which they were awarded, having knowledge of the physical design of these award-winning ICUs may help design better ICUs.
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Hawthorne, E. I.; Weisman, Y. C.; Frisman, M.; Benson, G. C.; Mcgrath, R. J.; Martinelli, R. M.; Linsenbardt, T. L.; Beattie, J. R.
1977-01-01
Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentrator solar array concept and is designed to interface with the Space Shuttle.
Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Hawthorne, E. I.
1977-01-01
Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.
Design for waste-management system
NASA Technical Reports Server (NTRS)
Guarneri, C. A.; Reed, A.; Renman, R.
1973-01-01
Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.
Feasibility study of the Boeing Small Research Module (BSRM) concept
NASA Technical Reports Server (NTRS)
1975-01-01
The design, capabilities, and subsystem options are described for the Boeing Small Research Module (BSRM). Specific scientific missions are defined and the BSRM capability to support these missions is discussed. Launch vehicle integration requirements and spacecraft operational features are also presented.
[Development of a portable ambulatory ECG monitor based on embedded microprocessor unit].
Wang, Da-xiong; Wang, Guo-jun
2005-06-01
To develop a new kind of portable ambulatory ECG monitor. The hardware and software were designed based on RCA-CDP1802. New methods of ECG data compression and feature extraction of QRS complexes were applied to software design. A model for automatic arrhythmia analysis was established for real-time ambulatory ECG Data analysis. Compact, low power consumption and low cost were emphasized in the hardware design. This compact and light-weight monitor with low power consumption and high intelligence was capable of real-time monitoring arrhythmia for more than 48 h. More than ten types of arrhythmia could be detected, only the compressed abnormal ECG data was recorded and could be transmitted to the host if required. The monitor meets the design requirements and can be used for ambulatory ECG monitoring.
Modular and scalable RESTful API to sustain STAR collaboration's record keeping
NASA Astrophysics Data System (ADS)
Arkhipkin, D.; Lauret, J.; Shanmuganathan, P. V.
2015-12-01
STAR collaboration's record system is a collection of heterogeneous and sparse information associated to each members and institutions. In its original incarnation, only flat information was stored revealing many restrictions such as the lack of historical change information, the inability to keep track of members leaving and re-joining STAR, or the ability to easily extend the saved information as new requirements appeared. In mid-2013, a new project was launched covering an extensive set of revisited requirements. The requirements led us to a design based on a RESTful API, back-end storage engine relying on key/value pair data representation model coupled with a tiered architecture design. This design was motivated by the fact that unifying many STAR tools, relying on the same business logic and storage engine, was a key and central feature for the maintainability and presentation of records. This central service API would leave no ambiguities and provide easy service integration between STAR tools. The new design stores the changes in records dynamically and allows tracking the changes chronologically. The storage engine is extensible as new field of information emerges (member specific or general) without affecting the presentation or the business logic layers. The new record system features a convenient administrative interface, fuzzy algorithms for data entry and search, and provides basic statistics and graphs. Finally, this modular approach is supplemented with access control, allowing private information and administrative operations to be hidden away from public eyes.
Concept of Draft International Standard for a Unified Approach to Space Program Quality Assurance
NASA Astrophysics Data System (ADS)
Stryzhak, Y.; Vasilina, V.; Kurbatov, V.
2002-01-01
For want of the unified approach to guaranteed space project and product quality assurance, implementation of many international space programs has become a challenge. Globalization of aerospace industry and participation of various international ventures with diverse quality assurance requirements in big international space programs requires for urgent generation of unified international standards related to this field. To ensure successful fulfillment of space missions, aerospace companies should design and process reliable and safe products with properties complying or bettering User's (or Customer's) requirements. Quality of the products designed or processed by subcontractors (or other suppliers) should also be in compliance with the main user (customer)'s requirements. Implementation of this involved set of unified requirements will be made possible by creating and approving a system (series) of international standards under a generic title Space Product Quality Assurance based on a system consensus principle. Conceptual features of the baseline standard in this system (series) should comprise: - Procedures for ISO 9000, CEN and ECSS requirements adaptation and introduction into space product creation, design, manufacture, testing and operation; - Procedures for quality assurance at initial (design) phases of space programs, with a decision on the end product made based on the principle of independence; - Procedures to arrange incoming inspection of products delivered by subcontractors (including testing, audit of supplier's procedures, review of supplier's documentation), and space product certification; - Procedures to identify materials and primary products applied; - Procedures for quality system audit at the component part, primary product and materials supplier facilities; - Unified procedures to form a list of basic performances to be under configuration management; - Unified procedures to form a list of critical space product components, and unified procedures to define risks related to the specific component application and evaluate safety for the entire program implementation. In the eyes of the authors, those features together with a number of other conceptual proposals should constitute a unified standard-technical basis for implementing international space programs.
Lay out, test verification and in orbit performance of HELIOS a temperature control system
NASA Technical Reports Server (NTRS)
Brungs, W.
1975-01-01
HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.
Mars aerobrake assembly simulation
NASA Technical Reports Server (NTRS)
Filatovs, G. J.; Lee, Gordon K. F.; Garvey, John
1992-01-01
On-orbit assembly operation simulations in neutral buoyancy conditions are presently undertaken by a partial/full-scale Mars mission aerobrake mockup, whose design, conducted in the framework of an engineering senior students' design project, involved several levels of constraints for critical physical and operational features. Allowances had to be made for the auxiliary constraints introduced by underwater testing, as well as the subsegmenting required for overland shipment to the neutral-buoyancy testing facility. This mockup aerobrake's fidelity is determined by the numerous, competing design objectives.
Mechanical Design and Analysis of LCLS II 2 K Cold Box
NASA Astrophysics Data System (ADS)
Yang, S.; Dixon, K.; Laverdure, N.; Rath, D.; Bevins, M.; Bai, H.; Kaminski, S.; Ravindranath, V.
2017-12-01
The mechanical design and analysis of the LCLS II 2 K cold box are presented. Its feature and functionality are discussed. ASME B31.3 was used to design its internal piping, and compliance of the piping code was ensured through flexibility analysis. The 2 K cold box was analyzed using ANSYS 17.2; the requirements of the applicable codes—ASME Section VIII Division 2 and ASCE 7-10—were satisfied. Seismic load was explicitly considered in both analyses.
The cetaceopteryx: A global range military transport aircraft
NASA Technical Reports Server (NTRS)
Brivkalns, Chad; English, Nicole; Kazemi, Tahmineh; Kopel, Kim; Kroger, Seth; Ortega, ED
1993-01-01
This paper presents a design of a military transport aircraft capable of carrying 800,000 lbs of payload from any point in the United States to any other point in the world. Such massive airlift requires aggressive use of advanced technology and a unique configuration. The Cetaceopteyx features a joined wing, canard and six turbofan engines. The aircraft has a cost 1.07 billion (1993) dollars each. This paper presents in detail the mission description, preliminary sizing, aircraft configuration, wing design, fuselage design, empennage design, propulsion system, landing gear design, structures, drag, stability and control, systems layout, and cost analysis of the aircraft.
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Wang, Changjian; Liu, Xiaohui; Jin, Shiyao
2018-01-01
Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227
The design and assembly of aluminum mirrors of a three-mirror-anastigmat telescope
NASA Astrophysics Data System (ADS)
Chang, Shenq-Tsong; Lin, Yu-Chuan; Wu, Kun-Huan; Lien, Chun-Chieh; Huang, Ting-Ming; Tsay, Ho-Lin; Chan, Chia-Yen
2017-09-01
Better ground sampling distance (GSD) has been a trend for earth observation satellites. A long-focal-length telescope is required accordingly in systematic point of view. On the other hand, there is size constraint for such long-focal-length telescope especially in space projects. Three-mirror-anastigmat (TMA) was proven to have excellent features of correcting aberrations, wide spectral range and shorter physical requirement [1-3].
14 CFR 171.27 - Performance requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
...” (Annex 10 to the Convention on International Civil Aviation), except that identification by on-off keying... electronic engineering practices for the desired service. (c) Ground inspection consists of an examination of the design features of the equipment to determine (based on recognized and accepted good engineering...
ABSENTEE COMPUTATIONS IN A MULTIPLE-ACCESS COMPUTER SYSTEM.
require user interaction, and the user may therefore want to run these computations ’ absentee ’ (or, user not present). A mechanism is presented which...provides for the handling of absentee computations in a multiple-access computer system. The design is intended to be implementation-independent...Some novel features of the system’s design are: a user can switch computations from interactive to absentee (and vice versa), the system can
Electronic laboratory notebook: the academic point of view.
Rudolphi, Felix; Goossen, Lukas J
2012-02-27
Based on a requirement analysis and alternative design considerations, a platform-independent electronic laboratory notebook (ELN) has been developed that specifically targets academic users. Its intuitive design and numerous productivity features motivate chemical researchers and students to record their data electronically. The data are stored in a highly structured form that offers substantial benefits over laboratory notebooks written on paper with regard to data retrieval, data mining, and exchange of results.
System design of a 1 MW north-facing, solid particle receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, J.; Ho, C.
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
System design of a 1 MW north-facing, solid particle receiver
Christian, J.; Ho, C.
2015-05-01
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
A quick response four decade logarithmic high-voltage stepping supply
NASA Technical Reports Server (NTRS)
Doong, H.
1978-01-01
An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.
NASA Astrophysics Data System (ADS)
Wodecki, Jacek; Michalak, Anna; Zimroz, Radoslaw
2018-03-01
Harsh industrial conditions present in underground mining cause a lot of difficulties for local damage detection in heavy-duty machinery. For vibration signals one of the most intuitive approaches of obtaining signal with expected properties, such as clearly visible informative features, is prefiltration with appropriately prepared filter. Design of such filter is very broad field of research on its own. In this paper authors propose a novel approach to dedicated optimal filter design using progressive genetic algorithm. Presented method is fully data-driven and requires no prior knowledge of the signal. It has been tested against a set of real and simulated data. Effectiveness of operation has been proven for both healthy and damaged case. Termination criterion for evolution process was developed, and diagnostic decision making feature has been proposed for final result determinance.
An electrostatic autoresonant ion trap mass spectrometer.
Ermakov, A V; Hinch, B J
2010-01-01
A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution approximately 60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.
Space station power semiconductor package
NASA Technical Reports Server (NTRS)
Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee
1987-01-01
A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.
Energy Efficient Engine (E3) combustion system component technology performance report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.
NASA Astrophysics Data System (ADS)
Lestari, Brina Cindy; Dewi, Dyah Santhi; Widodo, Rusminto Tjatur
2017-11-01
The elderly who has a particular disease need to take some medicines in everyday with correct dosages and appropriate by time schedules. However, the elderly frequently forget to take medicines because of their memory weakened. Consequently, the product innovation of elderly healthcare is required for helping elderly takes some medicine more easily. This research aims to develop a smart medicine box by applying quality function deployment method. The first step is identifying elderly requirements through an ethnographic approach by interviewing thirty-two of elderly people as respondents. Then, the second step is translated elderly requirements to technical parameter for designing a smart medicine box. The smart box design is focused on two main requirements which have highest importance rating including alarm reminder for taking medicine and automatic medicine box. Finally, the prototype design has been created and tested by using usability method. The result shown that 90% from ten respondents have positive respond on the feature of smart medicine box. The voice of alarm reminder smart medicine box is easy to understand by elderly people for taking medicines.
Study of Civil Markets for Heavy-Lift Airships
NASA Technical Reports Server (NTRS)
Mettam, P. J.; Hansen, D.; Chabot, C.; Byrne, R.
1978-01-01
The civil markets for heavy lift airships (HLAs) were defined by first identifying areas of most likely application. The operational suitability of HLAs for the applications identified were then assessed. The operating economics of HLAs were established and the market size for HLA services estimated by comparing HLA operating and economic characteristics with those of competing modes. The sensitivities of the market size to HLA characteristics were evaluated and the number and sizes of the vehicles required to service the more promising markets were defined. Important characteristics for future HLAs are discussed that were derived from the study of each application, including operational requirements, features enhancing profitability, military compatibility, improved design requirements, approach to entry into service, and institutional implications for design and operation.
Effect of infrastructure design on commons dilemmas in social-ecological system dynamics.
Yu, David J; Qubbaj, Murad R; Muneepeerakul, Rachata; Anderies, John M; Aggarwal, Rimjhim M
2015-10-27
The use of shared infrastructure to direct natural processes for the benefit of humans has been a central feature of human social organization for millennia. Today, more than ever, people interact with one another and the environment through shared human-made infrastructure (the Internet, transportation, the energy grid, etc.). However, there has been relatively little work on how the design characteristics of shared infrastructure affect the dynamics of social-ecological systems (SESs) and the capacity of groups to solve social dilemmas associated with its provision. Developing such understanding is especially important in the context of global change where design criteria must consider how specific aspects of infrastructure affect the capacity of SESs to maintain vital functions in the face of shocks. Using small-scale irrigated agriculture (the most ancient and ubiquitous example of public infrastructure systems) as a model system, we show that two design features related to scale and the structure of benefit flows can induce fundamental changes in qualitative behavior, i.e., regime shifts. By relating the required maintenance threshold (a design feature related to infrastructure scale) to the incentives facing users under different regimes, our work also provides some general guidance on determinants of robustness of SESs under globalization-related stresses.
Mass support for global climate agreements depends on institutional design.
Bechtel, Michael M; Scheve, Kenneth F
2013-08-20
Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.
Effect of infrastructure design on commons dilemmas in social−ecological system dynamics
Yu, David J.; Qubbaj, Murad R.; Muneepeerakul, Rachata; Anderies, John M.; Aggarwal, Rimjhim M.
2015-01-01
The use of shared infrastructure to direct natural processes for the benefit of humans has been a central feature of human social organization for millennia. Today, more than ever, people interact with one another and the environment through shared human-made infrastructure (the Internet, transportation, the energy grid, etc.). However, there has been relatively little work on how the design characteristics of shared infrastructure affect the dynamics of social−ecological systems (SESs) and the capacity of groups to solve social dilemmas associated with its provision. Developing such understanding is especially important in the context of global change where design criteria must consider how specific aspects of infrastructure affect the capacity of SESs to maintain vital functions in the face of shocks. Using small-scale irrigated agriculture (the most ancient and ubiquitous example of public infrastructure systems) as a model system, we show that two design features related to scale and the structure of benefit flows can induce fundamental changes in qualitative behavior, i.e., regime shifts. By relating the required maintenance threshold (a design feature related to infrastructure scale) to the incentives facing users under different regimes, our work also provides some general guidance on determinants of robustness of SESs under globalization-related stresses. PMID:26460043
Advanced long term cryogenic storage systems
NASA Technical Reports Server (NTRS)
Brown, Norman S.
1987-01-01
Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.
Layout finishing of a 28nm, 3 billions transistors, multi-core processor
NASA Astrophysics Data System (ADS)
Morey-Chaisemartin, Philippe; Beisser, Eric
2013-06-01
Designing a fully new 256 cores processor is a great challenge for a fabless startup. In addition to all architecture, functionalities and timing issues, the layout by itself is a bottleneck due to all the process constraints of a 28nm technology. As developers of advanced layout finishing solutions, we were involved in the design flow of this huge chip with its 3 billions transistors. We had to face the issue of dummy patterns instantiation with respect to design constraints. All the design rules to generate the "dummies" are clearly defined in the Design Rule Manual, and some automatic procedures are provided by the foundry itself, but these routines don't take care of the designer requests. Such a chip, embeds both digital parts and analog modules for clock and power management. These two different type of designs have each their own set of constraints. In both cases, the insertion of dummies should not introduce unexpected variations leading to malfunctions. For example, on digital parts were signal race conditions are critical on long wires or bus, introduction of uncontrolled parasitic along these nets are highly critical. For analog devices such as high frequency and high sensitivity comparators, the exact symmetry of the two parts of a current mirror generator should be guaranteed. Thanks to the easily customizable features of our dummies insertion tool, we were able to configure it in order to meet all the designer requirements as well as the process constraints. This paper will present all these advanced key features as well as the layout tricks used to fulfill all requirements.
mIoT Slice for 5G Systems: Design and Performance Evaluation
Condoluci, Massimo; An, Xueli
2018-01-01
Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment. PMID:29466311
mIoT Slice for 5G Systems: Design and Performance Evaluation.
Trivisonno, Riccardo; Condoluci, Massimo; An, Xueli; Mahmoodi, Toktam
2018-02-21
Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment.
Bauer, S M; Lane, J P; Stone, V I; Unnikrishnan, N
1998-01-01
The Rehabilitation Engineering Research Center on Technology Evaluation and Transfer is exploring how the end users of assistive technology devices define the ideal device. This work is called the Consumer Ideal Product program. In this work, end users identify and establish the importance of a broad range of product design features, along with the related product support and service provided by manufacturers and vendors. This paper describes a method for systematically transforming end-user defined requirements into a form that is useful and accessible to product designers, manufacturers, and vendors. In particular, product requirements, importance weightings, and metrics are developed from the Consumer Ideal Product battery charger outcomes. Six battery charges are benchmarked against these product requirements using the metrics developed. The results suggest improvements for each product's design, service, and support. Overall, the six chargers meet roughly 45-75% of the ideal product's requirements. Many of the suggested improvements are low-cost changes that, if adopted, could provide companies a competitive advantage in the marketplace.
Design for pressure regulating components
NASA Technical Reports Server (NTRS)
Wichmann, H.
1973-01-01
The design development for Pressure Regulating Components included a regulator component trade-off study with analog computer performance verification to arrive at a final optimized regulator configuration for the Space Storable Propulsion Module, under development for a Jupiter Orbiter mission. This application requires the pressure regulator to be capable of long-term fluorine exposure. In addition, individual but basically identical (for purposes of commonality) units are required for separate oxidizer and fuel pressurization. The need for dual units requires improvement in the regulation accuracy over present designs. An advanced regulator concept was prepared featuring redundant bellows, all metallic/ceramic construction, friction-free guidance of moving parts, gas damping, and the elimination of coil springs normally used for reference forces. The activities included testing of actual size seat/poppet components to determine actual discharge coefficients and flow forces. The resulting data was inserted into the computer model of the regulator. Computer simulation of the propulsion module performance over two mission profiles indicated satisfactory minimization of propellant residual requirements imposed by regulator performance uncertainties.
Filleron, Thomas; Gal, Jocelyn; Kramar, Andrew
2012-10-01
A major and difficult task is the design of clinical trials with a time to event endpoint. In fact, it is necessary to compute the number of events and in a second step the required number of patients. Several commercial software packages are available for computing sample size in clinical trials with sequential designs and time to event endpoints, but there are a few R functions implemented. The purpose of this paper is to describe features and use of the R function. plansurvct.func, which is an add-on function to the package gsDesign which permits in one run of the program to calculate the number of events, and required sample size but also boundaries and corresponding p-values for a group sequential design. The use of the function plansurvct.func is illustrated by several examples and validated using East software. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.
1988-01-01
A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.
What makes an automated teller machine usable by blind users?
Manzke, J M; Egan, D H; Felix, D; Krueger, H
1998-07-01
Fifteen blind and sighted subjects, who featured as a control group for acceptance, were asked for their requirements for automated teller machines (ATMs). Both groups also tested the usability of a partially operational ATM mock-up. This machine was based on an existing cash dispenser, providing natural speech output, different function menus and different key arrangements. Performance and subjective evaluation data of blind and sighted subjects were collected. All blind subjects were able to operate the ATM successfully. The implemented speech output was the main usability factor for them. The different interface designs did not significantly affect performance and subjective evaluation. Nevertheless, design recommendations can be derived from the requirement assessment. The sighted subjects were rather open for design modifications, especially the implementation of speech output. However, there was also a mismatch of the requirements of the two subject groups, mainly concerning the key arrangement.
Intelligent power consumption with two-way shift able feature and its implementation
NASA Astrophysics Data System (ADS)
Xu, Jing; Liu, Youwei
2017-10-01
This paper proposes an intelligent power consumption system with two-way shift able feature and its implementation. Based on power consumption information of standby load and load in working state, a dispatching system decomposes load regulation demand top-down to smart appliances and makes them response orderly as required. It designs a code-based representation method for power consumption information and takes account of standby load, which lays the information foundation for load increment. It also presents a shift able index, which can be used to comprehensively reflect feature of electrical equipment and users and provides a basis for load priority.
Bruzaud, Jérôme; Tarrade, Jeanne; Celia, Elena; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Herry, Jean-Marie; Guilbaud, Morgan; Bellon-Fontaine, Marie-Noëlle
2017-04-01
Reducing bacterial adhesion on substrates is fundamental for various industries. In this work, new superhydrophobic surfaces are created by electrodeposition of hydrophobic polymers (PEDOT-F 4 or PEDOT-H 8 ) on stainless steel with controlled topographical features, especially at a nano-scale. Results show that anti-bioadhesive and anti-biofilm properties require the control of the surface topographical features, and should be associated with a low adhesion of water onto the surface (Cassie-Baxter state) with limited crevice features at the scale of bacterial cells (nano-scale structures). Copyright © 2016. Published by Elsevier B.V.
HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.
2010-01-01
High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157
Design of tracking and detecting lens system by diffractive optical method
NASA Astrophysics Data System (ADS)
Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei
2016-10-01
Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.
Occupant injury protection in automobile collisions.
Peters, G A; Peters, B J
1999-12-01
Modern technology has produced automotive vehicles that have become both a luxury and a necessity in modern civilization. They have become highly useful, even more varied in form and function, and capable of high speeds on crowded roadways. One unfortunate consequence is the high frequency of accidents and the greater severity of injuries when collisions do occur. In response, modern technology has produced a variety of safety and health features, devices and designs intended for better occupant protection on in high speed vehicles. Injury reduction has become a prime design objective, but there are residual risks, which, as technology evolves, require effective communication to those risk. There can be little risk avoidance behavior without awareness of the hazards and effective communication to the vehicle occupant, as to what could and should be done for self-protection. For example, one out of three drivers apparently fails to understand the function of head restraints, few understand the 'safe zone' posture required for air bags and many believe safety features should be adjusted only for comfort. Some of the current residual injury producing problems in occupant systems are specifically described here in order to illustrate what is needed in terms of both design remedies and health promotion activities.
Teaching Research Integrity and Bioethics to Science Undergraduates
ERIC Educational Resources Information Center
Turrens, Julio F.
2005-01-01
Undergraduate students in the Department of Biomedical Sciences at the University of South Alabama, Mobile, are required to take a course entitled "Issues in Biomedical Sciences," designed to increase students' awareness about bioethical questions and issues concerning research integrity. This paper describes the main features of this…
Accessibility Requirements Manual.
ERIC Educational Resources Information Center
Florida State Dept. of Community Affairs, Tallahassee. Board of Building Codes and Standards.
Accessibilty features of buildings and facilities provide the opportunity for handicapped persons in the community to become more self-reliant and independent; barrier-free design can enable a person with disabilities to achieve his or her potential for contributions to society. In 1989, the Florida Legislature passed a bill mandating changes to…
Beginning Teacher Handbook. Occupational Specialist I, II, III.
ERIC Educational Resources Information Center
Indiana State Univ., Terre Haute. School of Technology.
This handbook is designed to familiarize the beginning secondary vocational teacher with the legal requirements and guidelines for the Indiana assistantship program for vocational teacher licensing and to assist that teacher in satisfactorily completing the assistantship. The handbook includes a discussion of the features of the occupational…
More Mudpies to Magnets: Science for Young Children.
ERIC Educational Resources Information Center
Sherwood, Elizabeth A.; Williams, Robert A.; Rockwell, Robert E.
This book presents science activities designed for young children. The activities are divided into the following the content areas of chemistry, physics, earth explorations, weather watchers, flight and space, plants, animal adventures, and mathworks. Each activity features sections of language with science, required items, procedures, and…
The Geostationary Lightning Mapper: Its Performance and Calibration
NASA Astrophysics Data System (ADS)
Christian, H. J., Jr.
2015-12-01
The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have been resolved and will be discussed. Absolute calibration will be verified on-orbit using vicarious cloud reflections. In addition to details of the GLM calibration, the presentation will address the unique design of the GLM, its features, capabilities and performance.
Evaluation of fault-tolerant parallel-processor architectures over long space missions
NASA Technical Reports Server (NTRS)
Johnson, Sally C.
1989-01-01
The impact of a five year space mission environment on fault-tolerant parallel processor architectures is examined. The target application is a Strategic Defense Initiative (SDI) satellite requiring 256 parallel processors to provide the computation throughput. The reliability requirements are that the system still be operational after five years with .99 probability and that the probability of system failure during one-half hour of full operation be less than 10(-7). The fault tolerance features an architecture must possess to meet these reliability requirements are presented, many potential architectures are briefly evaluated, and one candidate architecture, the Charles Stark Draper Laboratory's Fault-Tolerant Parallel Processor (FTPP) is evaluated in detail. A methodology for designing a preliminary system configuration to meet the reliability and performance requirements of the mission is then presented and demonstrated by designing an FTPP configuration.
Forecast of the general aviation air traffic control environment for the 1980's
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.
1976-01-01
The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.
Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, M. A.; DeHart, M. D.; Morrell, S. R.
2015-03-01
Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less
Optimizing defect inspection strategy through the use of design-aware database control layers
NASA Astrophysics Data System (ADS)
Stoler, Dvori; Ruch, Wayne; Ma, Weimin; Chakravarty, Swapnajit; Liu, Steven; Morgan, Ray; Valadez, John; Moore, Bill; Burns, John
2007-10-01
Resolution limitations in the mask making process can cause differences between the features that appear in a database and those printed to a reticle. These differences may result from intentional or unintentional features in the database exceeding the resolution limit of the mask making process such as small gaps or lines in the data, line end shortening on small sub-resolution assist features etc creating challenges to both mask writing and mask inspection. Areas with high variance from design to mask, often referred to as high MEEF areas (mask error enhancement factor), become highly problematic and can directly impact mask and device yield, mask manufacturing cycle time and ultimately mask costs. Specific to mask inspection it may be desirable to inspect certain non-critical or non-relevant features at reduced sensitivity so as not to detect real, but less significant process defects. In contrast there may also be times where increased sensitivity is required for critical mask features or areas. Until recently, this process was extremely manual, creating added time and cost to the mask inspection cycle. Shifting to more intelligent and automated inspection flows is the key focus of this paper. A novel approach to importing design data directly into the mask inspection to include both MDP generated MRC errors files and LRC generated MEEF files. The results of recently developed inspection and review capability based upon controlling defect inspection using design aware data base control layers on a pixel basis are discussed. Typical mask shop applications and implementations will be shown.
Machine vision systems using machine learning for industrial product inspection
NASA Astrophysics Data System (ADS)
Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony
2002-02-01
Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.
NASA Astrophysics Data System (ADS)
Drews, Jürgen; Wolf, R.; Fehrmann, G.; Staub, R.
An implantable defibrillator battery has to provide pulse power capabilities as well as high energy density. Low self-discharge rates are mandatory and a way to check the remaining available capacity is necessary. These requirements are accomplished by a system consisting of a lithium/manganese dioxide 6 V battery, plus a lithium/iodine-cell. The use of a high rate 6 V double-cell design in combination with a high energy density cell reduces the total volume required by the power source within an implantable defibrillator. The design features and performance data of the hybrid system are described.
Design Principles of Bioresorbable Polymeric Scaffolds.
Kossuth, Mary Beth; Perkins, Laura E L; Rapoza, Richard J
2016-07-01
The concept for a bioresorbable vascular scaffold combines the best features of the first 3 generations of percutaneous coronary intervention (namely), balloon angioplasty, bare metallic stents, and drug-eluting stents, into a single device. The principles of operation of a BRS follow 3 phases of functionality that reflect the different physiologic requirements over time; revascularization, restoration, and resorption. Most BRS designs make use of the continuum of hydrolytic degradation in aliphatic polyesters, such as poly(l-lactide), in which molecular weight, strength, and mass decrease progressively in 3 distinct stages, consistent with the in vivo requirements of each performance phase. Copyright © 2016 Elsevier Inc. All rights reserved.
Shuttle ku-band communications/radar technical concepts
NASA Technical Reports Server (NTRS)
Griffin, J. W.; Kelley, J. S.; Steiner, A. W.; Vang, H. A.; Zrubek, W. E.; Huth, G. K.
1985-01-01
Technical data on the Shuttle Orbiter K sub u-band communications/radar system are presented. The more challenging aspects of the system design and development are emphasized. The technical problems encountered and the advancements made in solving them are discussed. The radar functions are presented first. Requirements and design/implementation approaches are discussed. Advanced features are explained, including Doppler measurement, frequency diversity, multiple pulse repetition frequencies and pulse widths, and multiple modes. The communications functions that are presented include advances made because of the requirements for multiple communications modes. Spread spectrum, quadrature phase shift keying (QPSK), variable bit rates, and other advanced techniques are discussed. Performance results and conclusions reached are outlined.
NASA Astrophysics Data System (ADS)
Buksa, John J.; Kirk, William L.; Cappiello, Michael W.
A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the Rover reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.
Serial multiplier arrays for parallel computation
NASA Technical Reports Server (NTRS)
Winters, Kel
1990-01-01
Arrays of systolic serial-parallel multiplier elements are proposed as an alternative to conventional SIMD mesh serial adder arrays for applications that are multiplication intensive and require few stored operands. The design and operation of a number of multiplier and array configurations featuring locality of connection, modularity, and regularity of structure are discussed. A design methodology combining top-down and bottom-up techniques is described to facilitate development of custom high-performance CMOS multiplier element arrays as well as rapid synthesis of simulation models and semicustom prototype CMOS components. Finally, a differential version of NORA dynamic circuits requiring a single-phase uncomplemented clock signal introduced for this application.
A digital control system for high level acoustic noise generation
NASA Technical Reports Server (NTRS)
Lee, John P.; Bosco, Jerry H.
1986-01-01
As part of the modernization of the Acoustic Test Facility at Lockheed Missiles and Space Company, Sunnyvale, a digital acoustic control system was designed and built. The requirements imposed by Lockheed on the control system and the degree to which those requirements were met are discussed. Acceptance test results as well as some of the features of the digital control system not found in traditional manual control systems are discussed.
NASA Technical Reports Server (NTRS)
1976-01-01
The mechanical design of the boiler plate nacelle and core exhaust nozzle for the QCSEE under the wing engine is presented. The nacelle, which features interchangeable hard-wall and acoustic panels, is to be utilized in the initial engine testing to establish acoustic requirements for the subsequent composite nacelle as well as in the QCSEE over the wing engine configuration.
Hardware demonstration of flexible beam control
NASA Technical Reports Server (NTRS)
Schaechter, D. B.
1980-01-01
An experiment employing a pinned-free flexible beam has been constructed to demonstrate and verify several facets of the control of flexible structures. The desired features of the experiment are to demonstrate active shape control, active dynamic control, adaptive control, various control law design approaches, and associated hardware requirements and mechanization difficulties. This paper contains the analytical work performed in support of the facility development, the final design specifications, control law synthesis, and some preliminary results.
Analyses of Oceanic Subsurface Features Using Space Based Radar Imagery
1982-07-01
The relationship of the history of the relative length, speed and height of waves as they approach shallow water is not as simple as indicated in...movement or geometric variation are not shown above and will generally make the construction of an image from collected doppler phase histories more 1...requirements. The design for a ocean mission will be very different from the design for a geologic , geographic or agricultural mission. Application arts
A drive unit for the instrument pointing system
NASA Technical Reports Server (NTRS)
Birner, R.; Roth, M.
1981-01-01
The requirements, capabilities, and unique design features of the instrument pointing system drive units (DU) are presented. The DU's are identical for all three gimbal axes (elevation, cross elevation, and azimuth) and provide alternating rotation of shaft versus the housing of + or - 180 deg. The design features include: two ball bearing cartridges using cemented carbide balls coated with TiC a layer; redundant brushless torque motors and resolvers; a load by-pass mechanism driven by a dc torque motor to off-load the bearings during ascent/descent, ground transportation, and to provide an emergency breaking capability; and cabling over each gimbal axis by means of cable follow-up consisting of 13 signal and 15 power flat band cable loops. Test results of disturbance torque characteristics are presented.
Human body as a set of biometric features identified by means of optoelectronics
NASA Astrophysics Data System (ADS)
Podbielska, Halina; Bauer, Joanna
2005-09-01
Human body posses many unique, singular features that are impossible to copy or forge. Nowadays, to establish and to ensure the public security requires specially designed devices and systems. Biometrics is a field of science and technology, exploiting human body characteristics for people recognition. It identifies the most characteristic and unique ones in order to design and construct systems capable to recognize people. In this paper some overview is given, presenting the achievements in biometrics. The verification and identification process is explained, along with the way of evaluation of biometric recognition systems. The most frequently human biometrics used in practice are shortly presented, including fingerprints, facial imaging (including thermal characteristic), hand geometry and iris patterns.
Zhang, L; Price, R; Aweeka, F; Bellibas, S E; Sheiner, L B
2001-02-01
A small-scale clinical investigation was done to quantify the penetration of stavudine (D4T) into cerebrospinal fluid (CSF). A model-based analysis estimates the steady-state ratio of AUCs of CSF and plasma concentrations (R(AUC)) to be 0.270, and the mean residence time of drug in the CSF to be 7.04 h. The analysis illustrates the advantages of a causal (scientific, predictive) model-based approach to analysis over a noncausal (empirical, descriptive) approach when the data, as here, demonstrate certain problematic features commonly encountered in clinical data, namely (i) few subjects, (ii) sparse sampling, (iii) repeated measures, (iv) imbalance, and (v) individual design variation. These features generally require special attention in data analysis. The causal-model-based analysis deals with features (i) and (ii), both of which reduce efficiency, by combining data from different studies and adding subject-matter prior information. It deals with features (iii)--(v), all of which prevent 'averaging' individual data points directly, first, by adjusting in the model for interindividual data differences due to design differences, secondly, by explicitly differentiating between interpatient, interoccasion, and measurement error variation, and lastly, by defining a scientifically meaningful estimand (R(AUC)) that is independent of design.
Concurrent Design used in the Design of Space Instruments
NASA Technical Reports Server (NTRS)
Oxnevad, Knut I.
1998-01-01
At the Project Design Center at the Jet Propulsion Laboratory, a concurrent design environment is under development for supporting development and analyses of space instruments in the early, conceptual design phases. This environment is being utilized by a Team I, a multidisciplinary group of experts. Team I is providing study and proposal support. To provide the required support, the Team I concurrent design environment features effectively interconnected high-end optics, CAD, and thermal design and analysis tools. Innovative approaches for linking tools, and for transferring files between applications have been implemented. These approaches together with effective sharing of geometry between the optics, CAD, and thermal tools are already showing significant timesavings.
Requirements and test results for the qualification of thermal control coatings
NASA Technical Reports Server (NTRS)
Brzuskiewicz, J. E.; Zerlaut, G. A.; Lauder, K.; Miller, G. M.
1988-01-01
Paint type coatings are often used as engineering materials in critical satellite temperature control applications. The functional features of coatings used for temperature control purposes must remain stable throughout the satellite manufacturing process and the satellite mission. The selection of a particular coating depends on matching coating characteristics to mission requirements. The use of paint coatings on satellites, although having an extensive history, requires that the paint be qualified to each application on an individual basis. Thus, the qualification process through testing serves to ensure that paint coatings as engineering materials will fulfill design requirements.
MAN-004 Design Standards Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Timothy L.
2014-07-01
At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire protection, mechanical, electrical, telecommunications, and security features is expected to ensure compatibility with planned functional equipment and to facilitate constructability. If portions of the design are subcontracted to specialists, delivery of the finished design documents must not be considered complete until the subcontracted portions are also submitted for review. You must, along with support consultants, perform functional analyses and programming in developing design solutions. These solutions must reflect coordination of the competing functional, budgetary, and physical requirements for the project. During design phases, meetings between you and the SNL/NM Project Team to discuss and resolve design issues are required. These meetings are a normal part of the design process. For specific design-review requirements, see the project-specific Design Criteria. In addition to the design requirements described in this manual, instructive information is provided to explain the sustainable building practice goals for design, construction, operation, and maintenance of SNL/NM facilities. Please notify SNL/NM personnel of design best practices not included in this manual, so they can be incorporated in future updates.« less
Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung
2018-01-01
Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases. PMID:29495417
Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung
2018-02-26
Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.
Energy Efficient Engine combustor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.
Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes
NASA Technical Reports Server (NTRS)
Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.
1996-01-01
The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.
Metric integration architecture for product development
NASA Astrophysics Data System (ADS)
Sieger, David B.
1997-06-01
Present-day product development endeavors utilize the concurrent engineering philosophy as a logical means for incorporating a variety of viewpoints into the design of products. Since this approach provides no explicit procedural provisions, it is necessary to establish at least a mental coupling with a known design process model. The central feature of all such models is the management and transformation of information. While these models assist in structuring the design process, characterizing the basic flow of operations that are involved, they provide no guidance facilities. The significance of this feature, and the role it plays in the time required to develop products, is increasing in importance due to the inherent process dynamics, system/component complexities, and competitive forces. The methodology presented in this paper involves the use of a hierarchical system structure, discrete event system specification (DEVS), and multidimensional state variable based metrics. This approach is unique in its capability to quantify designer's actions throughout product development, provide recommendations about subsequent activity selection, and coordinate distributed activities of designers and/or design teams across all design stages. Conceptual design tool implementation results are used to demonstrate the utility of this technique in improving the incremental decision making process.
Intelligence by design in an entropic power grid
NASA Astrophysics Data System (ADS)
Negrete-Pincetic, Matias Alejandro
In this work, the term Entropic Grid is coined to describe a power grid with increased levels of uncertainty and dynamics. These new features will require the reconsideration of well-established paradigms in the way of planning and operating the grid and its associated markets. New tools and models able to handle uncertainty and dynamics will form the required scaffolding to properly capture the behavior of the physical system, along with the value of new technologies and policies. The leverage of this knowledge will facilitate the design of new architectures to organize power and energy systems and their associated markets. This work presents several results, tools and models with the goal of contributing to that design objective. A central idea of this thesis is that the definition of products is critical in electricity markets. When markets are constructed with appropriate product definitions in mind, the interference between the physical and the market/financial systems seen in today's markets can be reduced. A key element of evaluating market designs is understanding the impact that salient features of an entropic grid---uncertainty, dynamics, constraints---can have on the electricity markets. Dynamic electricity market models tailored to capture such features are developed in this work. Using a multi-settlement dynamic electricity market, the impact of volatility is investigated. The results show the need to implement policies and technologies able to cope with the volatility of renewable sources. Similarly, using a dynamic electricity market model in which ramping costs are considered, the impacts of those costs on electricity markets are investigated. The key conclusion is that those additional ramping costs, in average terms, are not reflected in electricity prices. These results reveal several difficulties with today's real-time markets. Elements of an alternative architecture to organize these markets are also discussed.
Ong, Luvena L; Ke, Yonggang
2017-01-01
DNA nanostructures are a useful technology for precisely organizing and manipulating nanomaterials. The DNA bricks method is a modular and versatile platform for applications requiring discrete or periodic structures with complex three-dimensional features. Here, we describe how structures are designed from the fundamental strand architecture through assembly and characterization of the formed structures.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... Proposed Information Collection to OMB Manufactured Home Construction and Safety Standards Act Reporting... home producers to place labels and notices in and on manufactured homes and mandate State and Private...' interests by requiring certain features of design and construction. In addition, information collected...
Remote control flare stack igniter for combustible gases
NASA Technical Reports Server (NTRS)
Ray, W. L.
1972-01-01
Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.
Applications of cortical signals to neuroprosthetic control: a critical review.
Lauer, R T; Peckham, P H; Kilgore, K L; Heetderks, W J
2000-06-01
Cortical signals might provide a potential means of interfacing with a neuroprosthesis. Guidelines regarding the necessary control features in terms of both performance characteristics and user requirements are presented, and their implications for the design of a first generation cortical control interface for a neuroprosthesis are discussed.
[Multimag-M magnetotherapy system of the new generation].
Borisov, A G; Grigor'ev, E M; Gurzhin, S G; Zhulev, V I; Kriakov, V G; Proshin, E M
2007-01-01
The Multimag-M microprocessor chronomagne-totherapy system of the new generation is described. The system provides on-line diagnosis of the pulse parameters and the breathing rate during a biotechnical feedback session. The requirements to the system software, as well as its specific features and design principles, are considered.
High-density arrays of x-ray microcalorimeters for Constellation-X
NASA Astrophysics Data System (ADS)
Kilbourne, C. A.; Bandler, S. R.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Saab, T.; Sadleir, J.
2005-12-01
We have been developing x-ray microcalorimeters for the Constellation-X mission. Devices based on superconducting transition edge sensors (TES) have demonstrated the potential to meet the Constellation-X requirements for spectral resolution, speed, and array scale (> 1000 pixels) in a close-packed geometry. In our part of the GSFC/NIST collaboration on this technology development, we have been concentrating on the fabrication of arrays of pixels suitable for the Constellation-X reference configuration. We have fabricated 8x8 arrays with 0.25-mm pixels arranged with 92% fill factor. The pixels are based on Mo/Au TES and Bi/Cu absorbers. We have achieved a resolution of 4.9 eV FWHM at 6 keV in such devices. Studies of the thermal transport in our Bi/Cu absorbers have shown that, while there is room for improvement, for 0.25 mm pixels our existing absorber design is adequate to avoid line-broadening from position dependence caused by thermal diffusion. In order to push closer to the 4-eV requirement and 2-eV goal at 6 keV, we are refining the design of the TES and the interface to the absorber. For the 32x32 arrays ultimately needed for Constellation-X, signal lead routing and heatsinking will drive the design. We have had early successes with experiments in electroplating electrical vias and thermal busses into micro-machined features in silicon substrates. The next steps will be fabricating arrays that have all of the essential features of the required flight design, testing, and then engineering a prototype array for optimum performance.
Crossover Patterning by the Beam-Film Model: Analysis and Implications
Zhang, Liangran; Liang, Zhangyi; Hutchinson, John; Kleckner, Nancy
2014-01-01
Crossing-over is a central feature of meiosis. Meiotic crossover (CO) sites are spatially patterned along chromosomes. CO-designation at one position disfavors subsequent CO-designation(s) nearby, as described by the classical phenomenon of CO interference. If multiple designations occur, COs tend to be evenly spaced. We have previously proposed a mechanical model by which CO patterning could occur. The central feature of a mechanical mechanism is that communication along the chromosomes, as required for CO interference, can occur by redistribution of mechanical stress. Here we further explore the nature of the beam-film model, its ability to quantitatively explain CO patterns in detail in several organisms, and its implications for three important patterning-related phenomena: CO homeostasis, the fact that the level of zero-CO bivalents can be low (the “obligatory CO”), and the occurrence of non-interfering COs. Relationships to other models are discussed. PMID:24497834
Optical design and testing: introduction.
Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin
2014-10-10
Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.
Engineering Design of Safe Automobile Front Strut Tower Brace with Predetermined Destruction
NASA Astrophysics Data System (ADS)
Mironenko, R. Ye; Balaev, E. Yu; Blednova, Zh M.
2018-03-01
This paper shows the developed design of an automobile front strut tower brace instantly breakable on reaching a predetermined value impact load, which allows the impact load not to be transferred to the opposite strut. An automobile front strut tower brace with the directed destruction V-shaped element using the SolidWorks and SolidWorks Simulations software complex was developed, designed and analyzed. The obtained data were confirmed experimentally. By changing geometric features of the V-shaped element, it is possible to change the impact load value required for its destruction.
Are green building features safe for preventive maintenance workers? Examining the evidence.
Omar, Mohamed Shamun; Quinn, Margaret M; Buchholz, Bryan; Geiser, Ken
2013-04-01
Many newly constructed green buildings (GB) are certified using the United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED) rating system for new construction and major renovation which focuses on architectural and mechanical design to conserve energy, reduce environmental harm, and enhance indoor quality for occupants. This study evaluated the preventive maintenance (PM) worker occupational safety and health (OSH) risks related to the design of GB. PM job hazard analyses (JHA) were performed on the tasks required to operate and maintain five GB features selected from 13 LEED certified GB. A 22-item JHA and OSH risk scoring system were developed. Potentially serious OSH hazards included: green roofs made of slippery material without fall protection; energy recovery wheels and storm water harvesting systems in confined spaces; skylights without guard rails; and tight geothermal well mechanical rooms constraining safe preventive practices. GB can present PM OSH risks and these should be eliminated in the building design phase. Copyright © 2013 Wiley Periodicals, Inc.
The IRIS Spool-Type Reactor Coolant Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kujawski, J.M.; Kitch, D.M.; Conway, L.E.
2002-07-01
IRIS (International Reactor Innovative and Secure) is a light water cooled, 335 MWe power reactor which is being designed by an international consortium as part of the US DOE NERI Program. IRIS features an integral reactor vessel that contains all the major reactor coolant system components including the reactor core, the coolant pumps, the steam generators and the pressurizer. This integral design approach eliminates the large coolant loop piping, and thus eliminates large loss-of-coolant accidents (LOCAs) as well as the individual component pressure vessels and supports. In addition, IRIS is being designed with a long life core and enhanced safetymore » to address the requirements defined by the US DOE for Generation IV reactors. One of the innovative features of the IRIS design is the adoption of a reactor coolant pump (called 'spool' pump) which is completely contained inside the reactor vessel. Background, status and future developments of the IRIS spool pump are presented in this paper. (authors)« less
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1994-01-01
The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.
NASA Astrophysics Data System (ADS)
Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.
2016-03-01
A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.
Asseln, Malte; Hänisch, Christoph; Schick, Fabian; Radermacher, Klaus
2018-05-14
Morphological differences between female and male knees have been reported in the literature, which led to the development of so-called gender-specific implants. However, detailed morphological descriptions covering the entire joint are rare and little is known regarding whether gender differences are real sexual dimorphisms or can be explained by overall differences in size. We comprehensively analysed knee morphology using 33 features of the femur and 21 features of the tibia to quantify knee shape. The landmark recognition and feature extraction based on three-dimensional surface data were fully automatically applied to 412 pathological (248 female and 164 male) knees undergoing total knee arthroplasty. Subsequently, an exploratory statistical analysis was performed and linear correlation analysis was used to investigate normalization factors and gender-specific differences. Statistically significant differences between genders were observed. These were pronounced for distance measurements and negligible for angular (relative) measurements. Female knees were significantly narrower at the same depth compared to male knees. The correlation analysis showed that linear correlations were higher for distance measurements defined in the same direction. After normalizing the distance features according to overall dimensions in the direction of their definition, gender-specific differences disappeared or were smaller than the related confidence intervals. Implants should not be linearly scaled according to one dimension. Instead, features in medial/lateral and anterior/posterior directions should be normalized separately (non-isotropic scaling). However, large inter-individual variations of the features remain after normalization, suggesting that patient-specific design solutions are required for an improved implant design, regardless of gender. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, T.; Cai, Y.; Smellie, R.
1993-05-01
The basic features of the Superconducting Super Collider lattice are the two beamlines formed by superconducting dipoles (7736) and quadrupoles (1564). The dipoles constraint two 20 TeV proton beams into counterrotating closed orbits of 86.2 km. The quadrupoles (FODO) require cryogenic cooling the LHe temperatures. This requirement isolates the main magnets from the outside world. The interface required, the spool, is a crucial component of superconducting lattice design and machine operation. There are over 1588 spools in the Super Collider. We present hear SSCL spool designs which consist of (1) housing for superconducting closed orbit and multipole correction magnets, (2)more » cryogenic function, magnet quench protection, system power, and instrumentation interfaces, and (3) cold to warm transitions for ware magnet and warm instrumentation drift spaces.« less
Concurrent evolution of feature extractors and modular artificial neural networks
NASA Astrophysics Data System (ADS)
Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter
2009-05-01
This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.
Wright, Courtney J; Zeeman, Heidi; Kendall, Elizabeth; Whitty, Jennifer A
2017-07-01
Despite the recent emphasis in Australian political, academic, and legislative narratives to more actively promote real housing choice for people with high healthcare and support needs, there is a lack of understanding regarding the specific housing features that might constitute better housing solutions for this population. Inclusive housing provision in Australia rightly emphasises safety and accessibility issues but often fails to incorporate factors related to broader psychosocial elements of housing such as dwelling location, neighbourhood quality, and overall design. While the importance of these broader elements appears obvious, it is not yet clear what specific housing features relate to these elements and how they might contribute to housing solutions for people with high healthcare and support needs. For individuals with complex neurological conditions such as brain injury or cerebral palsy, who require maximum support on a daily basis yet want to live independently and away from a primary care hospital or health facility, a more detailed understanding of the housing features that might influence design and development is needed. Thus, in order to clarify the broader factors related to housing solutions for this population, a systematic review was conducted to identify and synthesise the current research evidence (post-2003) and guide future housing design and development opportunities. From the included studies (n=26), 198 unique housing features were identified. From the 198 features, 142 related to housing design (i.e., internal or external characteristics of the dwelling and its land), 12 related to the dwelling's location (i.e., its proximity to available resources), and 54 related to the nature of the surrounding neighbourhood (i.e., the physical, social, and economic conditions of the area). The findings of this review contribute significantly to the literature by reporting a broader scope of relevant housing features for people with neurological disability, presenting preliminary guiding principles for housing design and development for this population, and identifying opportunities for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using computed tomography and 3D printing to construct custom prosthetics attachments and devices.
Liacouras, Peter C; Sahajwalla, Divya; Beachler, Mark D; Sleeman, Todd; Ho, Vincent B; Lichtenberger, John P
2017-01-01
The prosthetic devices the military uses to restore function and mobility to our wounded warriors are highly advanced, and in many instances not publically available. There is considerable research aimed at this population of young patients who are extremely active and desire to take part in numerous complex activities. While prosthetists design and manufacture numerous devices with standard materials and limb assemblies, patients often require individualized prosthetic design and/or modifications to enable them to participate fully in complex activities. Prosthetists and engineers perform research and implement digitally designs in collaboration to generate equipment for their patient's rehabilitation needs. 3D printing allows for these devices to be manufactured from an array of materials ranging from plastic to titanium alloy. Many designs require form fitting to a prosthetic socket or a complex surface geometry. Specialty items can be scanned using computed tomography and digitally reconstructed to produce a virtual 3D model the engineer can use to design the necessary features of the desired prosthetic, device, or attachment. Completed devices are tested for fit and function. Numerous custom prostheses and attachments have been successfully translated from the research domain to clinical reality, in particular, those that feature the use of computed tomography (CT) reconstructions. The purpose of this project is to describe the research pathways to implementation for the following clinical designs: sets of bilateral hockey skates; custom weightlifting prosthetic hands; and a wine glass holder. This article will demonstrate how to incorporate CT imaging and 3D printing in the design and manufacturing process of custom attachments and assistive technology devices. Even though some of these prosthesis attachments may be relatively simple in design to an engineer, they have an enormous impact on the lives of our wounded warriors.
Design Considerations for a Launch Vehicle Development Flight Instrumentation System
NASA Technical Reports Server (NTRS)
Johnson, Martin L.; Crawford, Kevin
2011-01-01
When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.
Tachycardia detection in ICDs by Boston Scientific : Algorithms, pearls, and pitfalls.
Zanker, Norbert; Schuster, Diane; Gilkerson, James; Stein, Kenneth
2016-09-01
The aim of this study was to summarize how implantable cardioverter defibrillators (ICDs) by Boston Scientific sense, detect, discriminate rhythms, and classify episodes. Modern devices include multiple programming selections, diagnostic features, therapy options, memory functions, and device-related history features. Device operation includes logical steps from sensing, detection, discrimination, therapy delivery to history recording. The program is designed to facilitate the application of the device algorithms to the individual patient's clinical needs. Features and functions described in this article represent a selective excerpt by the authors from Boston Scientific publicly available product resources. Programming of ICDs may affect patient outcomes. Patient-adapted and optimized programming requires understanding of device operation and concepts.
Clustering-based Feature Learning on Variable Stars
NASA Astrophysics Data System (ADS)
Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos
2016-04-01
The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.
Operation and design selection of high temperature superconducting magnetic bearings
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Floegel-Delor, U.; Riedel, T.; Rothfeld, R.; Wippich, D.; Goebel, B.
2004-10-01
Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN2 for cooling down, and about 0.2 l LN2 h-1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings.
A Concept for a Mobile Remote Manipulator System
NASA Technical Reports Server (NTRS)
Mikulus, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.
1985-01-01
A conceptual design for a Mobile Remote Manipulator System (MRMS) is presented. This concept does not require continuous rails for mobility (only guide pins at truss hardpoints) and is very compact, being only one bay square. The MRMS proposed is highly maneuverable and is able to move in any direction along the orthogonal guide pin array under complete control at all times. The proposed concept would greatly enhance the safety and operational capabilities of astronauts performing EVA functions such as structural assembly, payload transport and attachment, space station maintenance, repair or modification, and future spacecraft construction or servicing. The MRMS drive system conceptual design presented is a reasonably simple mechanical device which can be designed to exhibit high reliability. Developmentally, all components of the proposed MRMS either exist or are considered to be completely state of the art designs requiring minimal development, features which should enhance reliability and minimize costs.
Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.
Kesner, Samuel B; Howe, Robert D
2011-07-21
Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.
Aerodynamic design of electric and hybrid vehicles: A guidebook
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1980-01-01
A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.
High performance flight computer developed for deep space applications
NASA Technical Reports Server (NTRS)
Bunker, Robert L.
1993-01-01
The development of an advanced space flight computer for real time embedded deep space applications which embodies the lessons learned on Galileo and modern computer technology is described. The requirements are listed and the design implementation that meets those requirements is described. The development of SPACE-16 (Spaceborne Advanced Computing Engine) (where 16 designates the databus width) was initiated to support the MM2 (Marine Mark 2) project. The computer is based on a radiation hardened emulation of a modern 32 bit microprocessor and its family of support devices including a high performance floating point accelerator. Additional custom devices which include a coprocessor to improve input/output capabilities, a memory interface chip, and an additional support chip that provide management of all fault tolerant features, are described. Detailed supporting analyses and rationale which justifies specific design and architectural decisions are provided. The six chip types were designed and fabricated. Testing and evaluation of a brass/board was initiated.
Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte
2016-02-01
There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.
NASA Astrophysics Data System (ADS)
Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte
2016-02-01
There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.
Bashir, Mohamed Ezzeldin A; Lee, Dong Gyu; Li, Meijing; Bae, Jang-Whan; Shon, Ho Sun; Cho, Myung Chan; Ryu, Keun Ho
2012-07-01
Coronary heart disease is being identified as the largest single cause of death along the world. The aim of a cardiac clinical information system is to achieve the best possible diagnosis of cardiac arrhythmias by electronic data processing. Cardiac information system that is designed to offer remote monitoring of patient who needed continues follow up is demanding. However, intra- and interpatient electrocardiogram (ECG) morphological descriptors are varying through the time as well as the computational limits pose significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is, therefore, a promising new intelligent diagnostic tool.
Abdel-Aal, Abu-Baker M; Zaman, Mehfuz; Fujita, Yoshio; Batzloff, Michael R; Good, Michael F; Toth, Istvan
2010-11-25
Immunological assessment of group A streptococcal (GAS) branched lipopeptides demonstrated the impact of spatial arrangement of vaccine components on both the quality and quantity of their immune responses. Each lipopeptide was composed of three components: a GAS B-cell epitope (J14), a universal CD4(+) T-cell helper epitope (P25), and an immunostimulant lipid moiety that differs only in its spatial arrangement. The best systemic immune responses were demonstrated by a lipopeptide featuring the lipid moiety at the lipopeptide C-terminus. However, this candidate did not achieve protection against bacterial challenge. The best protection (100%) was shown by a lipopeptide featuring a C-terminal J14, conjugated through a lysine residue to P25 at the N-terminus, and a lipid moiety on the lysine side chain. The former candidate features α-helical conformation required to produce protective J14-specific antibodies. Our results highlight the importance of epitope orientation and lipid position in the design of three-component synthetic vaccines.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
NASA Astrophysics Data System (ADS)
Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.
2005-11-01
Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.
SAR processing in the cloud for oil detection in the Arctic
NASA Astrophysics Data System (ADS)
Garron, J.; Stoner, C.; Meyer, F. J.
2016-12-01
A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.
ERIC Educational Resources Information Center
Grotzer, Tina A.; Solis, S. Lynneth; Tutwiler, M. Shane; Cuzzolino, Megan Powell
2017-01-01
Understanding complex systems requires reasoning about causal relationships that behave or appear to behave probabilistically. Features such as distributed agency, large spatial scales, and time delays obscure co-variation relationships and complex interactions can result in non-deterministic relationships between causes and effects that are best…
ERIC Educational Resources Information Center
Beech, Marty
This English-Spanish language booklet is designed to help parents understand two important features of special education services, accommodations and modifications for students with disabilities. Examples of accommodations and modifications are provided, federal laws requiring schools to provide accommodations and modifications are cited, and…
LSST camera grid structure made out of ceramic composite material, HB-Cesic
NASA Astrophysics Data System (ADS)
Kroedel, Matthias R.; Langton, J. Bryan
2016-08-01
In this paper we are presenting the ceramic design and the fabrication of the camera structure which is using the unique manufacturing features of the HB-Cesic technology and associated with a dedicated metrology device in order to ensure the challenging flatness requirement of 4 micron over the full array.
Perceptions of Business Students' Feature Requirements in Educational Web Sites
ERIC Educational Resources Information Center
Hazari, Sunil; Johnson, Barbara
2007-01-01
There is paucity of original research that explains phenomena related to content organization and site design of educational Web sites. Educational Web sites are often used to provide Web-based instruction, which itself is a relatively recent phenomenon for business schools, and additional research is needed in this area. Educational Web sites are…
ERIC Educational Resources Information Center
Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan
2016-01-01
New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…
Instructional Design for Advanced Learners: Training Recognition Skills to Hasten Expertise
ERIC Educational Resources Information Center
Fadde, Peter Jae
2009-01-01
Expertise in domains ranging from sports to surgery involves a process of recognition-primed decision-making (RPD) in which experts make rapid, intuitive decisions based on recognizing critical features of dynamic performance situations. While the development of expert RPD is assumed to require years of domain experience, the transition from…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... revision may be warranted, in part because in our judgment specific qualities were required to explain how... Rico. (iii) Water quality to support normal growth, reproduction, development, viability, and health... areas, rather than on any specific qualities of the physical and biological features of the habitat...
Trends in OMR Techniques and Equipment.
ERIC Educational Resources Information Center
Ward, Obie; Poulos, Cynthia
Various aspects of the Optical Mark Reader (OMR) used by the Atlanta Public School System are discussed. First considered are the required features of the OMR scanner. Following this, methods of motivating users to record data accurately are described. Finally, a description of how forms are designed for the convenience of users is provided. (PB)
Nuclear fuel performance: Trends, remedies and challenges
NASA Astrophysics Data System (ADS)
Rusch, C. A.
2008-12-01
It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E.« less
Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Lapshin, E.
2018-01-01
The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.
Design methodology of Dutch banknotes
NASA Astrophysics Data System (ADS)
de Heij, Hans A. M.
2000-04-01
Since the introduction of a design methodology for Dutch banknotes, the quality of Dutch paper currency has improved in more than one way. The methodology is question provides for (i) a design policy, which helps fix clear objectives; (ii) design management, to ensure a smooth cooperation between the graphic designer, printer, papermaker an central bank, (iii) a program of requirements, a banknote development guideline for all parties involved. This systematic approach enables an objective selection of design proposals, including security features. Furthermore, the project manager obtains regular feedback from the public by conducting market surveys. Each new design of a Netherlands Guilder banknote issued by the Nederlandsche Bank of the past 50 years has been an improvement on its predecessor in terms of value recognition, security and durability.
The European Spacelab structural design evolution
NASA Technical Reports Server (NTRS)
Thirkettle, A. J.
1982-01-01
Spacelab is a manned, reusable laboratory which is being developed for the European Space Agency (ESA). In its working mode it will fly in low earth orbit in the cargo bay of the Shuttle Transportation System (STS) Orbiter. A description is presented of the structural development of the various features of Spacelab. System requirements are considered along with structural requirements, quasi-static loads, acoustic loads, pressure loads, crash loads, ground loads, and the fatigue profile. Aspects of thermal environment generation are discussed, and questions regarding the design evolution of the pallet structure are examined. Details of pallet structure testing are reported, taking into account static strength tests, acoustic tests, the modal survey test, crash tests, and fatigue/fracture mechanics testing.
Incorporating metals into de novo proteins.
Peacock, Anna F A
2013-12-01
The de novo design of artificial metalloproteins from first-principles is a powerful strategy with which to establish the minimum structure required for function, as well as to identify the important design features for tuning the chemistry of the coordinated metal ion. Herein we describe recent contributions to this field, covering metallo-porphyrin, mononuclear and multinuclear metal ion sites engineered into de novo proteins. Using miniature artificial scaffolds these examples demonstrate that complex natural protein folds are not required to mimic naturally occurring metal ion sites in proteins. More importantly progress is being made to engineer de novo metalloproteins capable of performing functions not in the repertoire of biology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modular transportable superconducting magnetic energy systems
NASA Technical Reports Server (NTRS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-01-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Modular transportable superconducting magnetic energy systems
NASA Astrophysics Data System (ADS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-04-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Development of a Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)
NASA Technical Reports Server (NTRS)
Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce
2014-01-01
An invention of a new and novel space robotic manipulator is described. By using a combination of lightweight truss links, a novel hinge joint, tendon-articulation and passive tension stiffening, this new robotic manipulator architecture achieves compact packaging, high strength, stiffness and dexterity while being very lightweight compared to conventional manipulators. The manipulator is also very modular; easy to scale for different reach, load and stiffness requirements; enabling customization for a diverse set of applications. Novel features of the new manipulator concept are described as well as some of the approaches to implement these design features. Two diverse applications are presented to show the versatility of the concept. First generation prototype hardware was designed, manufactured and has been assembled into a working manipulator that is being used to refine and extend development efforts.
NASA Technical Reports Server (NTRS)
Leveson, Nancy G.; Heimdahl, Mats P. E.; Reese, Jon Damon
1999-01-01
Previously, we defined a blackbox formal system modeling language called RSML (Requirements State Machine Language). The language was developed over several years while specifying the system requirements for a collision avoidance system for commercial passenger aircraft. During the language development, we received continual feedback and evaluation by FAA employees and industry representatives, which helped us to produce a specification language that is easily learned and used by application experts. Since the completion of the PSML project, we have continued our research on specification languages. This research is part of a larger effort to investigate the more general problem of providing tools to assist in developing embedded systems. Our latest experimental toolset is called SpecTRM (Specification Tools and Requirements Methodology), and the formal specification language is SpecTRM-RL (SpecTRM Requirements Language). This paper describes what we have learned from our use of RSML and how those lessons were applied to the design of SpecTRM-RL. We discuss our goals for SpecTRM-RL and the design features that support each of these goals.
Design Challenges of a Rapid Cycling Synchrotron for Carbon/Proton Therapy
NASA Astrophysics Data System (ADS)
Cook, Nathan
2012-03-01
The growing interest in radiation therapy with protons and light ions has driven demand for new methods of ion acceleration and the delivery of ion beams. One exciting new platform for ion beam acceleration and delivery is the rapid cycling synchrotron. Operating at 15Hz, rapid cycling achieves faster treatment times by making beam extraction possible at any energy during the cycle. Moreover, risk to the patient is reduced by requiring fewer particles in the beam line at a given time, thus eliminating the need for passive filtering and reducing the consequences of a malfunction. Lastly, the ability to switch between carbon ion and proton beam therapy provides the machine with an unmatched flexibility. However, these features do stipulate challenges in accelerator design. Maintaining a compact lattice requires careful tuning of lattice functions, tight focusing combined function magnets, and fast injection and extraction systems. Providing the necessary acceleration over a short cycle time also necessitates a five-fold frequency swing for carbon ions, further burdening the design requirements of ferrite-driven radiofrequency cavities. We will consider these challenges as well as some solutions selected for our current design.
NASA Technical Reports Server (NTRS)
Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.
1988-01-01
Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.
Design of a flow perfusion bioreactor system for bone tissue-engineering applications.
Bancroft, Gregory N; Sikavitsas, Vassilios I; Mikos, Antonios G
2003-06-01
Several different bioreactors have been investigated for tissue-engineering applications. Among these bioreactors are the spinner flask and the rotating wall vessel reactor. In addition, a new type of culture system has been developed and investigated, the flow perfusion culture bioreactor. Flow perfusion culture offers several advantages, notably the ability to mitigate both external and internal diffusional limitations as well as to apply mechanical stress to the cultured cells. For such investigation, a flow perfusion culture system was designed and built. This design is the outgrowth of important design requirements and incorporates features crucial to successful experimentation with such a system.
Reliable optical card-edge (ROC) connector for avionics applications
NASA Astrophysics Data System (ADS)
Darden, Bruce V.; Pimpinella, Richard J.; Seals, John D.
1994-10-01
The Reliable Optical Card-Edge (ROC) Connector is a blind-mate backplane unit designed to meet military stress requirements for avionics applications. Its modular design represents the first significant advance in connector optics since the biconic butt-coupled connector was introduced twenty years ago. This multimode connector utilizes beam optics, micro-machined silicon, and a floating, low mass subassembly design to maintain low coupling loss under high levels of shock and vibration. The ROC connector also incorporates retracting doors to protect the unmated termini from environmental contamination and abusive handling. Design features and test results for the ROC connector are presented in this paper.
NASA Technical Reports Server (NTRS)
Young, Steve; UijtdeHaag, Maarten; Campbell, Jacob
2004-01-01
To enable safe use of Synthetic Vision Systems at low altitudes, real-time range-to-terrain measurements may be required to ensure the integrity of terrain models stored in the system. This paper reviews and extends previous work describing the application of x-band radar to terrain model integrity monitoring. A method of terrain feature extraction and a transformation of the features to a common reference domain are proposed. Expected error distributions for the extracted features are required to establish appropriate thresholds whereby a consistency-checking function can trigger an alert. A calibration-based approach is presented that can be used to obtain these distributions. To verify the approach, NASA's DC-8 airborne science platform was used to collect data from two mapping sensors. An Airborne Laser Terrain Mapping (ALTM) sensor was installed in the cargo bay of the DC-8. After processing, the ALTM produced a reference terrain model with a vertical accuracy of less than one meter. Also installed was a commercial-off-the-shelf x-band radar in the nose radome of the DC-8. Although primarily designed to measure precipitation, the radar also provides estimates of terrain reflectivity at low altitudes. Using the ALTM data as the reference, errors in features extracted from the radar are estimated. A method to estimate errors in features extracted from the terrain model is also presented.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Poteet, Carl C.; Chen, Roger R.; Wurster, Kathryn E.
2002-01-01
A technology development program was conducted to evolve an earlier metallic thermal protection system (TPS) panel design, with the goals of: improving operations features, increasing adaptability (ease of attaching to a variety of tank shapes and structural concepts), and reducing weight. The resulting Adaptable Robust Metallic Operable Reusable (ARMOR) TPS system incorporates a high degree of design flexibility (allowing weight and operability to be traded and balanced) and can also be easily integrated with a large variety of tank shapes, airframe structural arrangements and airframe structure/material concepts. An initial attempt has been made to establish a set of performance based TPS design requirements. A set of general (FARtype) requirements have been proposed, focusing on defining categories that must be included for a comprehensive design. Load cases required for TPS design must reflect the full flight envelope, including a comprehensive set of limit loads, However, including additional loads. such as ascent abort trajectories, as ultimate load cases, and on-orbit debris/micro-meteoroid hypervelocity impact, as one of the discrete -source -damage load cases, will have a significant impact on system design and resulting performance, reliability and operability. Although these load cases have not been established, they are of paramount importance for reusable vehicles, and until properly included, all sizing results and assessments of reliability and operability must be considered optimistic at a minimum.
Applications of CPL mask technology for sub-65nm gate imaging
NASA Astrophysics Data System (ADS)
Litt, Lloyd C.; Conley, Will; Wu, Wei; Peters, Richie; Parker, Colita; Cobb, Jonathan; Kasprowicz, Bryan S.; van den Broeke, Doug; Park, J. C.; Karur-Shanmugam, Ramkumar
2005-05-01
The requirements for critical dimension control on gate layer for high performance products are increasingly demanding. Phase shift techniques provide aerial image enhancement, which can translate into improved process window performance and greater critical dimension (CD) control if properly applied. Unfortunately, the application of hard shifter technology to production requires significant effort in layout and optical proximity correction (OPC) application. Chromeless Phase Lithography (CPL) has several advantages over complementary phase mask (c:PSM) such as use of a single mask, and lack of phase placement 'coloring' conflicts and phase imbalance issues. CPL does have implementation issues that must be resolved before it can be used in full-scale production. CPL mask designs can be approached by separating features into three zones based on several parameters, including size relative to the lithographic resolution of the stepper lens, wavelength, and illumination conditions defined. Features are placed into buckets for different treatment zones. Zone 1 features are constructed with 100% transmission phase shifted structures and Zone 3 features are chrome (binary) structures. Features that fall into Zone 2, which are too wide to be defined using the 100% transmission of pure CPL (i.e. have negative mask error factor, MEEF) are the most troublesome and can be approached in several ways. The authors have investigated the application of zebra structures of various sizes to product type layouts. Previous work to investigate CPL using test structures set the groundwork for the more difficult task of applying CPL rules to actual random logic design layouts, which include many zone transitions. Mask making limitations have been identified that play a role in the zebra sizing that can be applied to Zone 2 features. The elimination of Zone 2 regions was also investigated in an effort to simplify the application of CPL and improve manufacturability of reticle through data enhancements.
Application of sonic-boom minimization concepts in supersonic transport design
NASA Technical Reports Server (NTRS)
Carlson, H. W.; Barger, R. L.; Mack, R. J.
1973-01-01
The applicability of sonic boom minimization concepts in the design of large supersonic transport airplanes capable of a 2500-nautical-mile range at a cruise Mach number of 2.7 is considered. Aerodynamics, weight and balance, and mission performance as well as sonic boom factors, have been taken into account. The results indicate that shock-strength nominal values of somewhat less than 48 newtons/sq m during cruise are within the realm of possibility. Because many of the design features are in direct contradiction to presently accepted design practices, further study of qualified airplane design teams is required to ascertain sonic boom shock strength levels actually attainable for practical supersonic transports.
Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models
NASA Technical Reports Server (NTRS)
Jones, William T.; Lazzara, David; Haimes, Robert
2010-01-01
The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.
NASA Technical Reports Server (NTRS)
Willis, N. C., Jr.; Neel, J. M.
1972-01-01
Design concepts and test philosophies which may contribute to the development of a low-cost maintainable environmental control/life support system are examined. It is shown that the concept of producing flight prototype equipment during a developmental program can reduce the eventual cost of a flight system by incorporating realistic flight-type design requirements without imposing exacting design features and stringent controls. A flight prototype design is one that can be converted readily into an actual flight design without any conceptual change. Modularity of subsystems provides the system and the program a degree of flexibility relative to the eventual vehicle configuration and technological improvements.
Aerojet advanced engine concept
NASA Technical Reports Server (NTRS)
Schoenman, L.
1984-01-01
The future orbit transfer vehicle (OTV) requirements which dictate the need for a highly versatile, highly reliable, reusable propulsion module are discussed. To attain maximum operational economy, space-basing is essential. This requires a reusable, maintenance free engine. The design features of this space based engine are defined. A new engine cycle and its advantages allow all the maintenance goals to be attained. Rubbing contact and interpropellant seals and purges are eliminated when GO2 is used to drive the LO2 pump. The TPA design has only one moving part. The use of both GH2 and GO2 to drive the turbines lowers the turbine temperatures in addition lower GH2 temperatures and pressures improve chamber cooling and longer life. The use of GO2 as a turbine drive fluid is addressed. Space based engines require an integrated control and health monitoring system to improve system reliability and eliminate all scheduled maintenance. It is concluded that all OTV propulsion requirements can be fulfilled with a single engine. The technological developments required to demonstrate that engine are outlined.
Experience improves feature extraction in Drosophila.
Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike
2007-05-09
Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.
NASA Astrophysics Data System (ADS)
Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed
2017-12-01
This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.
Shahheidari, Marzieh; Homer, Caroline
2012-01-01
Newborn intensive care is for critically ill newborns requiring constant and continuous care and supervision. The survival rates of critically ill infants and hospitalization in neonatal intensive care units (NICUs) have improved over the past 2 decades because of technological advances in neonatology. The design of NICUs may also have implications for the health of babies, parents, and staff. It is important therefore to articulate the design features of NICU that are associated with improved outcomes. The aim of this study was to explore the main features of the NICU design and to determine the advantages and limitations of the designs in terms of outcomes for babies, parents, and staff, predominately nurses. A systematic review of English-language, peer-reviewed articles was conducted for a period of 10 years, up to January 2011. Four online library databases and a number of relevant professional Web sites were searched using key words. There were 2 main designs of NICUs: open bay and single-family room. The open-bay environment develops communication and interaction with medical staff and nurses and has the ability to monitor multiple infants simultaneously. The single-family rooms were deemed superior for patient care and parent satisfaction. Key factors associated with improved outcomes included increased privacy, increased parental involvement in patient care, assistance with infection control, noise control, improved sleep, decreased length of hospital stay, and reduced rehospitalization. The design of NICUs has implications for babies, parents, and staff. An understanding of the positive design features needs to be considered by health service planners, managers, and those who design such specialized units.
Cryogenic Propellant Management Device: Conceptual Design Study
NASA Technical Reports Server (NTRS)
Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher
2010-01-01
Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.
Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs
George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...
2014-12-01
Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less
Physics and Engineering Design of the ITER Electron Cyclotron Emission Diagnostic
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Austin, M. E.; Houshmandyar, S.; Phillips, P. E.; Beno, J. H.; Ouroua, A.; Weeks, D. A.; Hubbard, A. E.; Stillerman, J. A.; Feder, R. E.; Khodak, A.; Taylor, G.; Pandya, H. K.; Danani, S.; Kumar, R.
2015-11-01
Electron temperature (Te) measurements and consequent electron thermal transport inferences will be critical to the non-active phases of ITER operation and will take on added importance during the alpha heating phase. Here, we describe our design for the diagnostic that will measure spatial and temporal profiles of Te using electron cyclotron emission (ECE). Other measurement capability includes high frequency instabilities (e.g. ELMs, NTMs, and TAEs). Since results from TFTR and JET suggest that Thomson Scattering and ECE differ at high Te due to driven non-Maxwellian distributions, non-thermal features of the ITER electron distribution must be documented. The ITER environment presents other challenges including space limitations, vacuum requirements, and very high-neutron-fluence. Plasma control in ITER will require real-time Te. The diagnosic design that evolved from these sometimes-conflicting needs and requirements will be described component by component with special emphasis on the integration to form a single effective diagnostic system. Supported by PPPL/US-DA via subcontract S013464-C to UT Austin.
Real-time seam tracking control system based on line laser visions
NASA Astrophysics Data System (ADS)
Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi
2018-07-01
A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.
Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade
NASA Astrophysics Data System (ADS)
Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.
2016-09-01
ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.
NASA Technical Reports Server (NTRS)
1990-01-01
Evaluations are summarized directed towards defining optimal instrumentation for performing planetary polarization measurements from a spacecraft platform. An overview of the science rationale for polarimetric measurements is given to point out the importance of such measurements for future studies and exploration of the outer planets. The key instrument features required to perform the needed measurements are discussed and applied to the requirements for the Cassini mission to Saturn. The resultant conceptual design of a spectro-polarimeter photometer for Cassini is described in detail.
Conceptual Design of the TPF-O SC Buses
NASA Technical Reports Server (NTRS)
Purves, Lloyd R.
2007-01-01
The Terrestrial Planet Finder - Occulter (TPF-O) mission has two Spacecraft (SC) buses, one for a space telescope and the other for a formation-flying occulter. SC buses typically supply the utilities (support structures, propulsion, attitude control, power, communications, etc) required by the payloads. Unique requirements for the occulter SC bus are to provide the large delta V required for the slewing maneuvers of the occulter, and comunications for formation flying. The TPF-O telescope SC bus shares some key features of the one for the Hubble Space Telescope (HST): both support space telescopes designed to observe in the visible to near infrared range of wavelengths with comparable primary mirror apertures (2.4 m for HST, 2.4 - 4.0 m for TPF-O). However, TPF-O is expected to have a Wide Field Camera (WFC) with a Field of View (FOV) much larger than that of HST. Ths WFC is also expected to provide fine guidance. TPF-O is designed to operate in an orbit around the Sun-Earth Lagrange 2 (SEL2) point. The longer communications range to SEL2 and the large science FOV require higher performance communications than HST. Maintaining a SEL2 orbit requires TPF-O, unlike HST, to have a propulsion system. The velocity required for reachng SEL2 and the limited capabilities of affordable launch vehicles require both TPF-O elements to have compact, low-mass designs. Finally, it is possible that TPF-O may utilize a modular design derived fiom that of HST to allow servicing in the SEL2 orbit.
Natural Flood Management Plus: Scaling Up Nature Based Solutions to Larger Catchments
NASA Astrophysics Data System (ADS)
Quinn, Paul; Nicholson, Alex; Adams, Russ
2017-04-01
It has been established that networks NFM features, such as ponds and wetlands, can have a significant effect on flood flow and pollution at local scales (less than 10km2). However, it is much less certain that NFM and NBS can impact at larger scales and protect larger cities. This is especially true for recent storms in the UK such as storm Desmond that caused devastation across the north of England. It is possible using observed rainfall and runoff data to estimate the amounts of storage that would be required to impact on extreme flood events. Here we will how a toolkit that will estimate the amount of storage that can be accrued through a dense networks of NFM features. The analysis suggest that the use of many hundreds of small NFM features can have a significant impact on peak flow, however we still require more storage in order to address extreme events and to satisfy flood engineers who may propose more traditional flood defences. We will also show case studies of larger NFM feature positioned on flood plains that can store significantly more flood flow. Examples designs of NFM plus feature will be shown. The storage aggregation tool will then show the degree to which storing large amounts of flood flow in NFM plus features can contribute to flood management and estimate the likely costs. Together smaller and larger NFM features if used together can produce significant flood storage and at a much lower cost than traditional schemes.
The Hubble Space Telescope high speed photometer
NASA Technical Reports Server (NTRS)
Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.
1988-01-01
The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.
Grumman electric truck development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessler, J.C.; Ferdman, S.
1981-11-01
An electric truck development was undertaken to prepare for the markets of the 1980's. Grumman is using its aluminum truck bodies technology to create a light weight vehicle. A redesigned unitized, all aluminum body and a new propulsion system resulted in the desired vehicle. The vehicle meets the requirements of the US Postal Service and the DOE Demonstration program. The unitized chassisless structure is designed to take major driving loads. Design features and performance characteristics are enumerated. Safety and service considerations have been incorporated into the vehicle.
Spatial filters for high-peak-power multistage laser amplifiers.
Potemkin, A K; Barmashova, T V; Kirsanov, A V; Martyanov, M A; Khazanov, E A; Shaykin, A A
2007-07-10
We describe spatial filters used in a Nd:glass laser with an output pulse energy up to 300 J and a pulse duration of 1 ns. This laser is designed for pumping of a chirped-pulse optical parametric amplifier. We present data required to choose the shape and diameter of a spatial filter lens, taking into account aberrations caused by spherical surfaces. Calculation of the optimal pinhole diameter is presented. Design features of the spatial filters and the procedure of their alignment are discussed in detail.
Katz, Reuven
2015-01-01
The goal of the Agile Walker is to improve the outdoor mobility of healthy elderly people with some mobility limitations. It is a newly developed, all-terrain walker, equipped with an electric drive system and speed control that can assists elderly people to walk outdoors or to hike. The walker has a unique product design with an attractive look that will appeal to "active-agers" population. This paper describes product design requirements and the development process of the Agile Walker, its features and some preliminary testing results.
Solar energy heating system design package for a single-family residence at New Castle, Pennsylvania
NASA Technical Reports Server (NTRS)
1977-01-01
The design of a solar heating and hot water system for a single family dwelling is described. Cost trade studies on the energy conservation and architectural features of the solar house are discussed. The present status of verification for the single family heating system, i.e., proof that the components and the system meet applicable physical and functional requirements, is reported. The system integration drawings, the major subsystems drawings, and the architect's specifications and plans are included.
Fastrac Nozzle Design, Performance and Development
NASA Technical Reports Server (NTRS)
Peters, Warren; Rogers, Pat; Lawrence, Tim; Davis, Darrell; DAgostino, Mark; Brown, Andy
2000-01-01
With the goal of lowering the cost of payload to orbit, NASA/MSFC (Marshall Space Flight Center) researched ways to decrease the complexity and cost of an engine system and its components for a small two-stage booster vehicle. The composite nozzle for this Fastrac Engine was designed, built and tested by MSFC with fabrication support and engineering from Thiokol-SEHO (Science and Engineering Huntsville Operation). The Fastrac nozzle uses materials, fabrication processes and design features that are inexpensive, simple and easily manufactured. As the low cost nozzle (and injector) design matured through the subscale tests and into full scale hot fire testing, X-34 chose the Fastrac engine for the propulsion plant for the X-34. Modifications were made to nozzle design in order to meet the new flight requirements. The nozzle design has evolved through subscale testing and manufacturing demonstrations to full CFD (Computational Fluid Dynamics), thermal, thermomechanical and dynamic analysis and the required component and engine system tests to validate the design. The Fastrac nozzle is now in final development hot fire testing and has successfully accumulated 66 hot fire tests and 1804 seconds on 18 different nozzles.
Design features that affect the maneuverability of wheelchairs and scooters.
Koontz, Alicia M; Brindle, Eric D; Kankipati, Padmaja; Feathers, David; Cooper, Rory A
2010-05-01
To determine the minimum space required for wheeled mobility device users to perform 4 maneuverability tasks and to investigate the impact of selected design attributes on space. Case series. University laboratory, Veterans Affairs research facility, vocational training center, and a national wheelchair sport event. The sample of convenience included manual wheelchair (MWC; n=109), power wheelchair (PWC; n=100), and scooter users (n=14). A mock environment was constructed to create passageways to form an L-turn, 360 degrees -turn in place, and a U-turn with and without a barrier. Passageway openings were increased in 5-cm increments until the user could successfully perform each task without hitting the walls. Structural dimensions of the device and user were collected using an electromechanical probe. Mobility devices were grouped into categories based on design features and compared using 1-way analysis of variance and post hoc pairwise Bonferroni-corrected tests. Minimum passageway widths for the 4 maneuverability tasks. Ultralight MWCs with rear axles posterior to the shoulder had the shortest lengths and required the least amount of space compared with all other types of MWCs (P<.05). Mid-wheel-drive PWCs required the least space for the 360 degrees -turn in place compared with front-wheel-drive and rear-wheel-drive PWCs (P<.01) but performed equally as well as front-wheel-drive models on all other turning tasks. PWCs with seat functions required more space to perform the tasks. Between 10% and 100% of users would not be able to maneuver in spaces that meet current Accessibility Guidelines for Buildings and Facilities specifications. This study provides data that can be used to support wheelchair prescription and home modifications and to update standards to improve the accessibility of public areas.
Office of university affairs management information system: Users guide and documentation
NASA Technical Reports Server (NTRS)
Distin, J.; Goodwin, D.; Greene, W. A.
1977-01-01
Data on the NASA-University relationship are reported that encompass research in over 600 schools through several thousand grants and contracts. This user-driven system is capable of producing a variety of cyclical and query-type reports describing the total NASA-University profile. The capabilities, designed as part of the system, require a minimum of user maintenance in order to ensure system efficiency and data validity to meet the recurrent Statutory and Executive Branch information requirements as well as ad hoc inquiries from NASA general management, Congress, other Federal agencies, private sector organizations, universities and individuals. The data base contains information on each university, the individual projects and the financial details, current and historic, on all contracts and grants. Complete details are given on the system from its unique design features to the actual steps required for daily operation.
Enabling campus grids with open science grid technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, Derek; Bockelman, Brian; Swanson, David
2011-01-01
The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condormore » clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.« less
Impact of Hospital Information Systems on Emergency Patient Processing
Rusnak, James E.
1981-01-01
The Emergency Department offers the Hospital Information System's designer some unique problems to solve in the operational areas of patient registration, order entry, charge recording, and treatment processing. In a number of instances, Hospital Information Systems implementers have encountered serious difficulties in trying to design system components to support the requirements of the Emergency Services Department's operations. Washington Hospital has developed a very effective system for Emergency Services. The system's features are designed to meet the special requirements of the department and to maximize the use of the data captured by the Hospital Information System. The system supports accurate and timely charging for services. The treatment of the patient has been dramatically improved through the use of a computerized order processing and control. The installed systems resulted in a higher quality of care and cost effective operations.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; James, Arthur M.
1985-01-01
The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.
Segregation of the Brain into Gray and White Matter: A Design Minimizing Conduction Delays
Wen, Quan; Chklovskii, Dmitri B
2005-01-01
A ubiquitous feature of the vertebrate anatomy is the segregation of the brain into white and gray matter. Assuming that evolution maximized brain functionality, what is the reason for such segregation? To answer this question, we posit that brain functionality requires high interconnectivity and short conduction delays. Based on this assumption we searched for the optimal brain architecture by comparing different candidate designs. We found that the optimal design depends on the number of neurons, interneuronal connectivity, and axon diameter. In particular, the requirement to connect neurons with many fast axons drives the segregation of the brain into white and gray matter. These results provide a possible explanation for the structure of various regions of the vertebrate brain, such as the mammalian neocortex and neostriatum, the avian telencephalon, and the spinal cord. PMID:16389299
Special requirements for electronic health record systems in ophthalmology.
Chiang, Michael F; Boland, Michael V; Brewer, Allen; Epley, K David; Horton, Mark B; Lim, Michele C; McCannel, Colin A; Patel, Sayjal J; Silverstone, David E; Wedemeyer, Linda; Lum, Flora
2011-08-01
The field of ophthalmology has a number of unique features compared with other medical and surgical specialties regarding clinical workflow and data management. This has important implications for the design of electronic health record (EHR) systems that can be used intuitively and efficiently by ophthalmologists and that can promote improved quality of care. Ophthalmologists often lament the absence of these specialty-specific features in EHRs, particularly in systems that were developed originally for primary care physicians or other medical specialists. The purpose of this article is to summarize the special requirements of EHRs that are important for ophthalmology. The hope is that this will help ophthalmologists to identify important features when searching for EHR systems, to stimulate vendors to recognize and incorporate these functions into systems, and to assist federal agencies to develop future guidelines regarding meaningful use of EHRs. More broadly, the American Academy of Ophthalmology believes that these functions are elements of good system design that will improve access to relevant information at the point of care between the ophthalmologist and the patient, will enhance timely communications between primary care providers and ophthalmologists, will mitigate risk, and ultimately will improve the ability of physicians to deliver the highest-quality medical care. Proprietary or commercial interest disclosure may be found after the references. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
La Barbera, Selina; Vincent, Adrien F.; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien
2016-12-01
Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Design feasibility of an advanced technology supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Rowe, W. T.
1976-01-01
Research and development programs provide confidence that technology is in-hand to design an economically attractive, environmentally sound supersonic cruise aircraft for commercial operations. The principal results of studies and tests are described including those which define the selection of significant design features. These typically include the results of: (1) wind-tunnel tests, both subsonic and supersonic, (2) propulsion performance and acoustic tests on noise suppressors, including forward-flight effects, (3) studies of engine/airframe integration, which lead to the selection of engine cycles/sizes to meet future market, economic, and social requirements; and (4) structural testing.
Geopotential research mission, science, engineering and program summary
NASA Technical Reports Server (NTRS)
Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)
1986-01-01
This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.
Designing eHealth that Matters via a Multidisciplinary Requirements Development Approach.
Van Velsen, Lex; Wentzel, Jobke; Van Gemert-Pijnen, Julia Ewc
2013-06-24
Requirements development is a crucial part of eHealth design. It entails all the activities devoted to requirements identification, the communication of requirements to other developers, and their evaluation. Currently, a requirements development approach geared towards the specifics of the eHealth domain is lacking. This is likely to result in a mismatch between the developed technology and end user characteristics, physical surroundings, and the organizational context of use. It also makes it hard to judge the quality of eHealth design, since it makes it difficult to gear evaluations of eHealth to the main goals it is supposed to serve. In order to facilitate the creation of eHealth that matters, we present a practical, multidisciplinary requirements development approach which is embedded in a holistic design approach for eHealth (the Center for eHealth Research roadmap) that incorporates both human-centered design and business modeling. Our requirements development approach consists of five phases. In the first, preparatory, phase the project team is composed and the overall goal(s) of the eHealth intervention are decided upon. Second, primary end users and other stakeholders are identified by means of audience segmentation techniques and our stakeholder identification method. Third, the designated context of use is mapped and end users are profiled by means of requirements elicitation methods (eg, interviews, focus groups, or observations). Fourth, stakeholder values and eHealth intervention requirements are distilled from data transcripts, which leads to phase five, in which requirements are communicated to other developers using a requirements notation template we developed specifically for the context of eHealth technologies. The end result of our requirements development approach for eHealth interventions is a design document which includes functional and non-functional requirements, a list of stakeholder values, and end user profiles in the form of personas (fictitious end users, representative of a primary end user group). The requirements development approach presented in this article enables eHealth developers to apply a systematic and multi-disciplinary approach towards the creation of requirements. The cooperation between health, engineering, and social sciences creates a situation in which a mismatch between design, end users, and the organizational context can be avoided. Furthermore, we suggest to evaluate eHealth on a feature-specific level in order to learn exactly why such a technology does or does not live up to its expectations.
2D/3D Visual Tracker for Rover Mast
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria
2006-01-01
A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.
Systems for deep brain stimulation: review of technical features.
Amon, A; Alesch, F
2017-09-01
The use of deep brain stimulation (DBS) is an important treatment option for movement disorders and other medical conditions. Today, three major manufacturers provide implantable systems for DBS. Although the underlying principle is basically the same for all available systems, the differences in the technical features vary considerably. This article outlines aspects regarding the technical features of DBS systems. The differences between voltage and current sources are addressed and their effect on stimulation is shown. To maintain clinical benefit and minimize side effects the stimulation field has to be adapted to the requirements of the patient. Shaping of the stimulation field can be achieved by the electrode design and polarity configuration. Furthermore, the electric signal consisting of stimulation rate, stimulation amplitude and pulse width affect the stimulation field. Interleaving stimulation is an additional concept, which permits improved treatment outcomes. Therefore, the electrode design, the polarity, the electric signal, and the concept of interleaving stimulation are presented. The investigated systems can be also categorized as rechargeable and non-rechargeable, which is briefly discussed. Options for interconnecting different system components from various manufacturers are presented. The present paper summarizes the technical features and their combination possibilities, which can have a major impact on the therapeutic effect.
Toolkits and Libraries for Deep Learning.
Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy; Philbrick, Kenneth
2017-08-01
Deep learning is an important new area of machine learning which encompasses a wide range of neural network architectures designed to complete various tasks. In the medical imaging domain, example tasks include organ segmentation, lesion detection, and tumor classification. The most popular network architecture for deep learning for images is the convolutional neural network (CNN). Whereas traditional machine learning requires determination and calculation of features from which the algorithm learns, deep learning approaches learn the important features as well as the proper weighting of those features to make predictions for new data. In this paper, we will describe some of the libraries and tools that are available to aid in the construction and efficient execution of deep learning as applied to medical images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, Randolph C.; McLendon, William Clarence,
2013-01-01
Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report amore » preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.« less
NASA Technical Reports Server (NTRS)
Chien, Steve; Rabideau, Gregg; Tran, Daniel; Knight, Russell; Chouinard, Caroline; Estlin, Tara; Gaines, Daniel; Clement, Bradley; Barrett, Anthony
2007-01-01
CASPER is designed to perform automated planning of interdependent activities within a system subject to requirements, constraints, and limitations on resources. In contradistinction to the traditional concept of batch planning followed by execution, CASPER implements a concept of continuous planning and replanning in response to unanticipated changes (including failures), integrated with execution. Improvements over other, similar software that have been incorporated into CASPER version 2.0 include an enhanced executable interface to facilitate integration with a wide range of execution software systems and supporting software libraries; features to support execution while reasoning about urgency, importance, and impending deadlines; features that enable accommodation to a wide range of computing environments that include various central processing units and random- access-memory capacities; and improved generic time-server and time-control features.
Punchihewa, Himan K G; Gyi, Diane E
2015-01-01
Work-related Musculoskeletal Disorders (MSDs) affect the well-being of workers. Unfortunately, user requirements for design to reduce workplace risk factors for MSDs are not always effectively communicated to designers creating a mismatch between the user requirements and what is ultimately produced. To understand the views of practitioners of design and ergonomics regarding tools for participatory design and features they would like to see in such tools. An online questionnaire survey was conducted with a cohort of practitioners of ergonomics and design (n = 32). In-depth interviews were then conducted with a subset of these practitioners (n = 8). To facilitate discussion, a prototype integrated design tool was developed and demonstrated to practitioners using a verbalized walkthrough approach. According to the results of the questionnaire survey, the majority (70%) believed an integrated approach to participatory design would help reduce work-related MSDs and suggested ways to achieve this, for example, through sharing design information. The interviews showed the majority (n = 7) valued being provided with guidance on design activities and ways to manage and present information. It is believed that an integrated approach to design in order to help reduce work-related MSDs is highly important and a provision to evaluate design solutions would be desirable for practitioners of design and ergonomics.
New capacities and modifications for NASTRAN level 17.5 at DTNSRDC
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.
1980-01-01
Since 1970 DTNSRDC has been modifying NASTRAN to suite various Navy requirements. These modifications include capabilities as well as user conveniences and error corrections. The new features added to NASTRAN Level 17.5 are described. The subject areas of the additions include magnetostatics, piezoelectricity, fluid structure interactions, isoparametric finite elements, and shock design for shipboard equipment.
Knowledge Enriched Learning by Converging Knowledge Object & Learning Object
ERIC Educational Resources Information Center
Sabitha, Sai; Mehrotra, Deepti; Bansal, Abhay
2015-01-01
The most important dimension of learning is the content, and a Learning Management System (LMS) suffices this to a certain extent. The present day LMS are designed to primarily address issues like ease of use, search, content and performance. Many surveys had been conducted to identify the essential features required for the improvement of LMS,…
The Forest, the Trees, and the Leaves: Differences of Processing across Development
ERIC Educational Resources Information Center
Krakowski, Claire-Sara; Poirel, Nicolas; Vidal, Julie; Roëll, Margot; Pineau, Arlette; Borst, Grégoire; Houdé, Olivier
2016-01-01
To act and think, children and adults are continually required to ignore irrelevant visual information to focus on task-relevant items. As real-world visual information is organized into structures, we designed a feature visual search task containing 3-level hierarchical stimuli (i.e., local shapes that constituted intermediate shapes that formed…
STATE OF NEW YORK STANDARD PLAN TYPE A-1, ONE-STORY 14-21 CLASSROOM ELEMENTARY SCHOOL.
ERIC Educational Resources Information Center
King and King, Syracuse, NY.
THE PROGRAM FOR AN ELEMENTARY SCHOOL FACILITY REQUIRED 14 CLASSROOMS WITH THE POTENTIAL FOR ACCOMMODATING AN INCREASE OF SEVEN CLASSROOMS. THE EXPANSION POTENTIAL ALSO INVOLVED ADDITION OF A CONSIDERABLE NUMBER OF NON-TEACHING AREAS. THE DESIGN FEATURED A CENTRAL CORE CONTAINING ADMINISTRATION, PLAYROOM, CAFETERIA, AND KITCHEN FACILITIES WITH TWO…
The Next Generation Space Telescope (NGST): Science and technology
NASA Technical Reports Server (NTRS)
Mather, John C.; Seery, Bernard D.; Stockman, Hervey S.; Bely, Pierre, Y.
1997-01-01
The scientific requirements and implications for the instruments and telescope design for the Next Generation Space Telescope (NGST) are described. A candidate concept is a deployable, 8 m diameter telescope, optimized for the near infrared region, but featuring instruments capable of observing up to 30 micrometers. The observatory is radiatively cooled to approximately 30 K.
Supporting research and technology
NASA Technical Reports Server (NTRS)
1971-01-01
The development of definition of the modular space station is discussed. The modular approach was evaluated, the requirements were defined, and program definition and design were accomplished. The features of the program which significantly affect the initial development and early operating costs were identified and their impacts on the program were assessed. Specifications of various systems and components are included.
An improved maximum permissible exposure meter for safety assessments of laser radiation
NASA Astrophysics Data System (ADS)
Corder, D. A.; Evans, D. R.; Tyrer, J. R.
1997-12-01
Current interest in laser radiation safety requires demonstration that a laser system has been designed to prevent exposure to levels of laser radiation exceeding the Maximum Permissible Exposure. In some simple systems it is possible to prove this by calculation, but in most cases it is preferable to confirm calculated results with a measurement. This measurement may be made with commercially available equipment, but there are limitations with this approach. A custom designed instrument is presented in which the full range of measurement issues have been addressed. Important features of the instrument are the design and optimisation of detector heads for the measurement task, and consideration of user interface requirements. Three designs for detector head are presented, these cover the majority of common laser types. Detector heads are designed to optimise the performance of relatively low cost detector elements for this measurement task. The three detector head designs are suitable for interfacing to photodiodes, low power thermopiles and pyroelectric detectors. Design of the user interface was an important aspect of the work. A user interface which is designed for the specific application minimises the risk of user error or misinterpretation of the measurement results. A palmtop computer was used to provide an advanced user interface. User requirements were considered in order that the final implement was well matched to the task of laser radiation hazard audits.
Coal gasification systems engineering and analysis, volume 2
NASA Technical Reports Server (NTRS)
1980-01-01
The major design related features of each generic plant system were characterized in a catalog. Based on the catalog and requirements data, approximately 17 designs and cost estimates were developed for MBG and alternate products. A series of generic trade studies was conducted to support all of the design studies. A set of cost and programmatic analyses were conducted to supplement the designs. The cost methodology employed for the design and sensitivity studies was documented and implemented in a computer program. Plant design and construction schedules were developed for the K-T, Texaco, and B&W MBG plant designs. A generic work breakdown structure was prepared, based on the K-T design, to coincide with TVA's planned management approach. An extensive set of cost sensitivity analyses was completed for K-T, Texaco, and B&W design. Product price competitiveness was evaluated for MBG and the alternate products. A draft management policy and procedures manual was evaluated. A supporting technology development plan was developed to address high technology risk issues. The issues were identified and ranked in terms of importance and tractability, and a plan developed for obtaining data or developing technology required to mitigate the risk.
From Petascale to Exascale: Eight Focus Areas of R&D Challenges for HPC Simulation Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springmeyer, R; Still, C; Schulz, M
2011-03-17
Programming models bridge the gap between the underlying hardware architecture and the supporting layers of software available to applications. Programming models are different from both programming languages and application programming interfaces (APIs). Specifically, a programming model is an abstraction of the underlying computer system that allows for the expression of both algorithms and data structures. In comparison, languages and APIs provide implementations of these abstractions and allow the algorithms and data structures to be put into practice - a programming model exists independently of the choice of both the programming language and the supporting APIs. Programming models are typically focusedmore » on achieving increased developer productivity, performance, and portability to other system designs. The rapidly changing nature of processor architectures and the complexity of designing an exascale platform provide significant challenges for these goals. Several other factors are likely to impact the design of future programming models. In particular, the representation and management of increasing levels of parallelism, concurrency and memory hierarchies, combined with the ability to maintain a progressive level of interoperability with today's applications are of significant concern. Overall the design of a programming model is inherently tied not only to the underlying hardware architecture, but also to the requirements of applications and libraries including data analysis, visualization, and uncertainty quantification. Furthermore, the successful implementation of a programming model is dependent on exposed features of the runtime software layers and features of the operating system. Successful use of a programming model also requires effective presentation to the software developer within the context of traditional and new software development tools. Consideration must also be given to the impact of programming models on both languages and the associated compiler infrastructure. Exascale programming models must reflect several, often competing, design goals. These design goals include desirable features such as abstraction and separation of concerns. However, some aspects are unique to large-scale computing. For example, interoperability and composability with existing implementations will prove critical. In particular, performance is the essential underlying goal for large-scale systems. A key evaluation metric for exascale models will be the extent to which they support these goals rather than merely enable them.« less
Range 7 Scanner Integration with PaR Robot Scanning System
NASA Technical Reports Server (NTRS)
Schuler, Jason; Burns, Bradley; Carlson, Jeffrey; Minich, Mark
2011-01-01
An interface bracket and coordinate transformation matrices were designed to allow the Range 7 scanner to be mounted on the PaR Robot detector arm for scanning the heat shield or other object placed in the test cell. A process was designed for using Rapid Form XOR to stitch data from multiple scans together to provide an accurate 3D model of the object scanned. An accurate model was required for the design and verification of an existing heat shield. The large physical size and complex shape of the heat shield does not allow for direct measurement of certain features in relation to other features. Any imaging devices capable of imaging the entire heat shield in its entirety suffers a reduced resolution and cannot image sections that are blocked from view. Prior methods involved tools such as commercial measurement arms, taking images with cameras, then performing manual measurements. These prior methods were tedious and could not provide a 3D model of the object being scanned, and were typically limited to a few tens of measurement points at prominent locations. Integration of the scanner with the robot allows for large complex objects to be scanned at high resolution, and for 3D Computer Aided Design (CAD) models to be generated for verification of items to the original design, and to generate models of previously undocumented items. The main components are the mounting bracket for the scanner to the robot and the coordinate transformation matrices used for stitching the scanner data into a 3D model. The steps involve mounting the interface bracket to the robot's detector arm, mounting the scanner to the bracket, and then scanning sections of the object and recording the location of the tool tip (in this case the center of the scanner's focal point). A novel feature is the ability to stitch images together by coordinates instead of requiring each scan data set to have overlapping identifiable features. This setup allows models of complex objects to be developed even if the object is large and featureless, or has sections that don't have visibility to other parts of the object for use as a reference. In addition, millions of points can be used for creation of an accurate model [i.e. within 0.03 in. (=0.8 mm) over a span of 250 in. (=635 mm)].
Effect of Social Media in a mHealth Application.
Tufte, Trond; Babic, Ankica
2017-01-01
In this project the potential of social media has been reviewed in terms how it can promote a healthy lifestyle utilized in an app. A mHealth app for smartphones has been developed using Design Science methodology, where various features from social media have been implemented with the goal of increasing physical activity. The application has been evaluated extensively in order to meet usability requirements. In addition, a focus group has contributed towards the application's potential to increase physical. The data collected is suggesting that social features have a positive impact on promoting physical activity.
Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation
NASA Astrophysics Data System (ADS)
Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin
2018-04-01
Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.
Engineered Barrier System performance requirements systems study report. Revision 02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balady, M.A.
This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS includemore » the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.« less
Automatic programming of arc welding robots
NASA Astrophysics Data System (ADS)
Padmanabhan, Srikanth
Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.
The rationale and design features for the 40 by 80/80 by 120 foot wind tunnel
NASA Technical Reports Server (NTRS)
Mort, K. W.; Kelly, M. W.; Hickey, D. H.
1976-01-01
A substantial increase in the test capability of full scale wind tunnels is considered. In order to determine the most cost effective means for providing this desired increase in test capability, a series of design studies were conducted of various new facilities as well as of major modifications to the existing 40- by 80-foot wind tunnel. The most effective trade between test capability and facility cost was provided by repowering the existing 40 by 80 foot wind tunnel to increase the maximum speed from 200 knots to 300 knots and by the addition of a new 80- by 120-foot test section having a 110 knot maximum speed. The design of the facility is described with special emphasis on the unique features, such as the drive system which absorbs nearly four times the power without an increase in noise, and the large flow diversion devices required to interface the two test sections to a single drive.
Evolution of Biological Image Stabilization.
Hardcastle, Ben J; Krapp, Holger G
2016-10-24
The use of vision to coordinate behavior requires an efficient control design that stabilizes the world on the retina or directs the gaze towards salient features in the surroundings. With a level gaze, visual processing tasks are simplified and behaviorally relevant features from the visual environment can be extracted. No matter how simple or sophisticated the eye design, mechanisms have evolved across phyla to stabilize gaze. In this review, we describe functional similarities in eyes and gaze stabilization reflexes, emphasizing their fundamental role in transforming sensory information into motor commands that support postural and locomotor control. We then focus on gaze stabilization design in flying insects and detail some of the underlying principles. Systems analysis reveals that gaze stabilization often involves several sensory modalities, including vision itself, and makes use of feedback as well as feedforward signals. Independent of phylogenetic distance, the physical interaction between an animal and its natural environment - its available senses and how it moves - appears to shape the adaptation of all aspects of gaze stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Work/control stations in Space Station weightlessness
NASA Technical Reports Server (NTRS)
Willits, Charles
1990-01-01
An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.
Mass modeling for electrically powered space-based Yb:YAG lasers
NASA Astrophysics Data System (ADS)
Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.
2000-05-01
An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.
Modular transportable superconducting magnetic Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieurance, D.; Kimball, F.; Rix, C.
1994-12-31
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given applicationmore » should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.« less
Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, K.; Melendez, M.; Gonzales, J.
To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protectmore » against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.« less
Design and grayscale fabrication of beamfanners in a silicon substrate
NASA Astrophysics Data System (ADS)
Ellis, Arthur Cecil
2001-11-01
This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.
NASA Astrophysics Data System (ADS)
Spencer, Harvey
2002-09-01
Helicopter mounted optical systems require compact packaging, good image performance (approaching the diffraction-limit), and must survive and operate in a rugged shock and thermal environment. The always-present requirement for low weight in an airborne sensor is paramount when considering the optical configuration. In addition, the usual list of optical requirements which must be satisfied within narrow tolerances, including field-of-view, vignetting, boresight, stray light rejection, and transmittance drive the optical design. It must be determined early in the engineering process which internal optical alignment adjustment provisions must be included, which may be included, and which will have to be omitted, since adding alignment features often conflicts with the requirement for optical component stability during operation and of course adds weight. When the system is to be modular and mates with another optical system, a telescope designed by different contractor in this case, additional alignment requirements between the two systems must be specified and agreed upon. Final delivered cost is certainly critical and "touch labor" assembly time must be determined and controlled. A clear plan for the alignment and assembly steps must be devised before the optical design can even begin to ensure that an arrangement of optical components amenable to adjustment is reached. The optical specification document should be written contemporaneously with the alignment plan to insure compatibility. The optics decisions that led to the success of this project are described and the final optical design is presented. A description of some unique pupil alignment adjustments, never performed by us in the infrared, is described.
Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R
2017-10-01
Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.
REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography
NASA Astrophysics Data System (ADS)
McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.
2012-03-01
REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.
NASA Astrophysics Data System (ADS)
Smit, Jantien; Bakker, Arthur; van Eerde, Dolly; Kuijpers, Maggie
2016-09-01
The importance of language in mathematics learning has been widely acknowledged. However, little is known about how to make this insight productive in the design and enactment of language-oriented mathematics education. In a design-based research project, we explored how language-oriented mathematics education can be designed and enacted. We drew on genre pedagogy to promote student proficiency in the language required for interpreting line graphs. In the intervention, the teacher used scaffolding strategies to focus students' attention on the structure and linguistic features of the language involved in this particular domain. The research question addressed in this paper is how student proficiency in this language may be promoted. The study comprised nine lessons involving 22 students in grades 5 and 6 (aged 10-12); of these students, 19 had a migrant background. In light of the research aim, we first describe the rationale behind our design. Next, we illustrate how the design was enacted by means of a case study focusing on one student in the classroom practice of developing proficiency in the language required for interpreting line graphs. On the basis of pre- and posttest scores, we conclude that overall their proficiency has increased. Together, the results indicate that and how genre pedagogy may be used to help students become more proficient in the language required in a mathematical domain.
NASA Astrophysics Data System (ADS)
Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.
2016-03-01
In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.
Advanced life support control/monitor instrumentation concepts for flight application
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.
1986-01-01
Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.
NASA Astrophysics Data System (ADS)
Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md
2017-08-01
Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.
Water Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.
Karppinen, Pasi; Oinas-Kukkonen, Harri; Alahäivälä, Tuomas; Jokelainen, Terhi; Keränen, Anna-Maria; Salonurmi, Tuire; Savolainen, Markku
2016-12-01
Obesity has become a severe health problem in the world. Even a moderate 5% weight loss can significantly reduce the prevalence of metabolic syndrome, which can be vital for preventing comorbidities caused by the obesity. Health Behavior Change Support Systems (hBCSS) emphasize an autogenous approach, where an individual uses the system to influence one's own attitude or behavior to achieve his or her own goal. Regardless of promising results, such health interventions technology has often been considered merely as a tool for delivering content that has no effect or value of its own. More research on actual system features is required. The objective of this study is to describe how users perceive persuasive software features designed and implemented into a support system. The research medium in this study is a web-based information system designed as a lifestyle intervention for participants who are at risk of developing a metabolic syndrome or who are already suffering from it. The system was designed closely following the principles of the Persuasive Systems Design (PSD) model and the Behavior Change Support Systems (BCSS) framework. A total of 43 system users were interviewed for this study during and after a 52 week intervention period. In addition, the system's login data and subjects' Body Mass Index (BMI) measures were used to interpret the results. This study explains in detail how the users perceived using the system and its persuasive features. Self-monitoring, reminders, and tunneling were perceived as especially beneficial persuasive features. The need for social support appeared to grow along the duration of the intervention. Unobtrusiveness was found to be very important in all stages of the intervention rather than only at the beginning. Persuasive software features have power to affect individuals' health behaviors. Through their systematicity the PSD model and the BCSS framework provide effective support for the design and development of technological health interventions. Designers of such systems may choose, for instance, to implement more self-monitoring tools to help individuals to adjust their personal goals with the system's offerings better. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The design of real time infrared image generation software based on Creator and Vega
NASA Astrophysics Data System (ADS)
Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu
2013-09-01
Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.
Fundamental understanding and rational design of high energy structural microbatteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel
Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights inmore » designing the structural microbatteries for emerging technologies.« less
The moving-ring field-reversed mirror prototype reactor
NASA Astrophysics Data System (ADS)
Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.
1981-03-01
A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation,more » boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.« less
Cryogenic distribution box for Fermi National Accelerator Laboratory
NASA Astrophysics Data System (ADS)
Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.
2017-12-01
Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.
NEXUS/NASCAD- NASA ENGINEERING EXTENDIBLE UNIFIED SOFTWARE SYSTEM WITH NASA COMPUTER AIDED DESIGN
NASA Technical Reports Server (NTRS)
Purves, L. R.
1994-01-01
NEXUS, the NASA Engineering Extendible Unified Software system, is a research set of computer programs designed to support the full sequence of activities encountered in NASA engineering projects. This sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. NEXUS primarily addresses the process of prototype engineering, the task of getting a single or small number of copies of a product to work. Prototype engineering is a critical element of large scale industrial production. The time and cost needed to introduce a new product are heavily dependent on two factors: 1) how efficiently required product prototypes can be developed, and 2) how efficiently required production facilities, also a prototype engineering development, can be completed. NEXUS extendibility and unification are achieved by organizing the system as an arbitrarily large set of computer programs accessed in a common manner through a standard user interface. The NEXUS interface is a multipurpose interactive graphics interface called NASCAD (NASA Computer Aided Design). NASCAD can be used to build and display two and three-dimensional geometries, to annotate models with dimension lines, text strings, etc., and to store and retrieve design related information such as names, masses, and power requirements of components used in the design. From the user's standpoint, NASCAD allows the construction, viewing, modification, and other processing of data structures that represent the design. Four basic types of data structures are supported by NASCAD: 1) three-dimensional geometric models of the object being designed, 2) alphanumeric arrays to hold data ranging from numeric scalars to multidimensional arrays of numbers or characters, 3) tabular data sets that provide a relational data base capability, and 4) procedure definitions to combine groups of system commands or other user procedures to create more powerful functions. NASCAD has extensive abilities to handle IGES format data, including proposed solid geometry formats. This facilitates interfacing with other CAD systems. NEXUS/NASCAD supports the activities encountered in various engineering projects as follows: 1) Preliminary Design - Geometric models can be built from points, lines, arcs, splines, polygons, drive surfaces, ruled surfaces, and bicubic spline surfaces. Geometric models can be displayed in any view (including hidden line and hidden surface removal) to check design features, 2) Design Analysis - Geometric models and related data structures can be used to build a NASTRAN data deck. Calculated stress data can be added to model data structures and displayed as color variations on the geometric model, 3) Detailed Design - This phase consists of dimensioning and annotating the geometric model and generating manufacturing and assembly drawings, 4) Manufacturing - NASCAD developed geometric model and related data structures can be used to build input for the APT program which generates a cutter location (CL) file describing required tool motions, 5) Assembly - Generation of a robot plan for putting together or taking apart (repair) of a mechanical assembly based on an IGES solid geometry description, and 6) Testing - Correlation of test data can be made with predictions made during the design analysis phase. NEXUS/NASCAD is available by license for a period of ten (10) years to approved licensees. The licensed program product includes the source, executable code, command streams, and one set of documentation. Additional documentation may be purchased separately at any time. The NASTRAN and APT programs are distributed separately from the NEXUS/NASCAD system (contact COSMIC for details). The NEXUS/NASCAD system is written in FORTRAN 77 and PROLOG, with command streams in DEC Control Language (DCL), for interactive execution under VMS on a DEC VAX series computer. All of the PROLOG code deals with the robot strategy planner feature. A minimum recommended configuration is a DEC VAX with 1 megabyte of real memory, 100 megabytes of disk storage, and a floating point accelerator. For interactive graphics, NEXUS/NASCAD currently supports Tektronix 4114, 4016, 4115, & 4095 terminal, Lexidata Solidview terminals, and Ramtek 9400 terminals. Most features are supported on the VT 125, and the non-graphics features are available from any text terminal. The NEXUS/NASCAD system was first released in 1984 and was last updated in 1986.
Low-contrast underwater living fish recognition using PCANet
NASA Astrophysics Data System (ADS)
Sun, Xin; Yang, Jianping; Wang, Changgang; Dong, Junyu; Wang, Xinhua
2018-04-01
Quantitative and statistical analysis of ocean creatures is critical to ecological and environmental studies. And living fish recognition is one of the most essential requirements for fishery industry. However, light attenuation and scattering phenomenon are present in the underwater environment, which makes underwater images low-contrast and blurry. This paper tries to design a robust framework for accurate fish recognition. The framework introduces a two stage PCA Network to extract abstract features from fish images. On a real-world fish recognition dataset, we use a linear SVM classifier and set penalty coefficients to conquer data unbalanced issue. Feature visualization results show that our method can avoid the feature distortion in boundary regions of underwater image. Experiments results show that the PCA Network can extract discriminate features and achieve promising recognition accuracy. The framework improves the recognition accuracy of underwater living fishes and can be easily applied to marine fishery industry.
Factors which Limit the Value of Additional Redundancy in Human Rated Launch Vehicle Systems
NASA Technical Reports Server (NTRS)
Anderson, Joel M.; Stott, James E.; Ring, Robert W.; Hatfield, Spencer; Kaltz, Gregory M.
2008-01-01
The National Aeronautics and Space Administration (NASA) has embarked on an ambitious program to return humans to the moon and beyond. As NASA moves forward in the development and design of new launch vehicles for future space exploration, it must fully consider the implications that rule-based requirements of redundancy or fault tolerance have on system reliability/risk. These considerations include common cause failure, increased system complexity, combined serial and parallel configurations, and the impact of design features implemented to control premature activation. These factors and others must be considered in trade studies to support design decisions that balance safety, reliability, performance and system complexity to achieve a relatively simple, operable system that provides the safest and most reliable system within the specified performance requirements. This paper describes conditions under which additional functional redundancy can impede improved system reliability. Examples from current NASA programs including the Ares I Upper Stage will be shown.
NASA Technical Reports Server (NTRS)
Pepe, J. T.
1972-01-01
A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Advanced CO2 removal process control and monitor instrumentation development
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Dalhausen, M. J.; Klimes, R.
1982-01-01
A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.
Designing learning management system interoperability in semantic web
NASA Astrophysics Data System (ADS)
Anistyasari, Y.; Sarno, R.; Rochmawati, N.
2018-01-01
The extensive adoption of learning management system (LMS) has set the focus on the interoperability requirement. Interoperability is the ability of different computer systems, applications or services to communicate, share and exchange data, information, and knowledge in a precise, effective and consistent way. Semantic web technology and the use of ontologies are able to provide the required computational semantics and interoperability for the automation of tasks in LMS. The purpose of this study is to design learning management system interoperability in the semantic web which currently has not been investigated deeply. Moodle is utilized to design the interoperability. Several database tables of Moodle are enhanced and some features are added. The semantic web interoperability is provided by exploited ontology in content materials. The ontology is further utilized as a searching tool to match user’s queries and available courses. It is concluded that LMS interoperability in Semantic Web is possible to be performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devgun, Jas S.; Laraia, Michele; Pescatore, Claudio
Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimizemore » the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-line sharing of information and especially the creation of an on-line compendium of methods, tools, and techniques by which damaged fuel and other unique situations have been addressed can be addressed sooner and maintained as new problems and solutions arise and are resolved. The IAEA's new 'WEB 2.0 tool' CONNECT is expected to play a significant role in this and related information-sharing activities. The trend in some countries such as the United States has been to re-license the existing reactors for additional twenty years, beyond the original design life. Given the advances in technology over the past four decades, and considering that the newer designs incorporate significant improvements in safety systems, it may not be economical or technically feasible to retrofit enhancements into some of the older reactors. In such cases, the reactors may be retired from service and decommissioned. Overall, the energy demand in the world continues to rise, with sharp increases in the Asian countries, and nuclear power's role in the world's energy supply is expected to continue. Events at Fukushima have led to a re-examination on many fronts, including reactor design and regulatory requirements. Further changes may occur in these areas in the post-Fukushima era. These changes in turn will also impact the world-wide decommissioning scene and the decommissioning phase of the future reactors. (authors)« less
Characterization of sub-0.18-μm critical dimension pattern collapse for yield improvement
NASA Astrophysics Data System (ADS)
Zhong, Tom X.; Gurer, Emir; Lee, Ed C.; Bai, Hong; Gendron, Bill; Krishna, Murthy S.; Reynolds, Reese M.
1999-09-01
In this study, we demonstrate that surface-resist interface interactions are becoming more crucial in DUV lithography as we enter deep into the sub-wavelength era of smaller critical dimension (CD) size and high aspect ratio. This interaction reveals itself as an adhesion reduction of the resist film due to the smaller contact area between the feature and the substrate. Considerable yield improvements in a manufacturing environment can be realized if pattern collapsing of smaller features is prevented by means of proper priming. In addition, next generation photoresist processing equipments must be able to deliver excellent on-wafer results with minimum chemical consumption as environmental health and safety (EHS) requirements are better appreciated in the marketplace. HMDS is not only highly toxic but it is also a prime threat to CD control of most deep ultra violet (DUV) photoresists used for sub-0.18 micrometer design rules. The by-product NH3 created during priming process with HMDS can neutralize the photo-acid created during the exposure step. There are many technical opportunities in this usually neglected priming process step. In this study, we characterized sub-0.18 micrometer isolated line pattern collapse for UV5 resist on bare Si wafers by using a scanning electron microscope (SEM). The smallest line width printability on wafers primed with different contact angles was analyzed by using both top down and cross section SEM images. Our results show that there is a strong effect of substrate surface and film interface interaction on device yields. More specifically, there is a strong correlation between pattern integrity of features down to 115 nm and vapor prime process conditions. In general, wafers with higher contact angle can support smaller line widths. These results suggest that higher contact angle than the current specification will be required for sub-0.1 micrometer design rule for improved yield. An alternative material to HMDS will probably be needed due to more stringent future requirements and weak bonding characteristics of HMDS. Based on the result of this study, we propose an HMDS consumption reduction scheme for line-widths above 0.2 micrometer. There are many priming-related modular and system level technical enhancements that can be designed in the next generation photoresist processing tools in order to extend 248 nm lithography towards smaller feature sizes.
A Darwinian approach to control-structure design
NASA Technical Reports Server (NTRS)
Zimmerman, David C.
1993-01-01
Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.
Song, Hyuksoon S; Pusic, Martin; Nick, Michael W; Sarpel, Umut; Plass, Jan L; Kalet, Adina L
2014-02-01
To identify the most effective way for medical students to interact with a browser-based learning module on the symptoms and neurological underpinnings of stroke syndromes, this study manipulated the way in which subjects interacted with a graphical model of the brain and examined the impact of functional changes on learning outcomes. It was hypothesized that behavioral interactions that were behaviorally more engaging and which required deeper consideration of the model would result in heightened cognitive interaction and better learning than those whose manipulation required less deliberate behavioral and cognitive processing. One hundred forty four students were randomly assigned to four conditions whose model controls incorporated features that required different levels of behavioral and cognitive interaction: Movie (low behavioral/low cognitive, n = 40), Slider (high behavioral/low cognitive, n = 36), Click (low behavioral/high cognitive, n = 30), and Drag (high behavioral/high cognitive, n = 38). Analysis of Covariates (ANCOVA) showed that students who received the treatments associated with lower cognitive interactivity (Movie and Slider) performed better on a transfer task than those receiving the module associated with high cognitive interactivity (Click and Drag, partial eta squared = .03). In addition, the students in the high cognitive interactivity conditions spent significantly more time on the stroke locator activity than other conditions (partial eta squared = .36). The results suggest that interaction with controls that were tightly coupled with the model and whose manipulation required deliberate consideration of the model's features may have overtaxed subjects' cognitive resources. Cognitive effort that facilitated manipulation of content, though directed at the model, may have resulted in extraneous cognitive load, impeding subjects in recognizing the deeper, global relationships in the materials. Instructional designers must, therefore, keep in mind that the way in which functional affordances are integrated with the content can shape both behavioral and cognitive processing, and has significant cognitive load implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.
The PIUS reactor utilizes simplified, inherent, passive, or other innovative means to accomplish safety functions. Accordingly, the PIUS reactor is subject to the requirements of 10CFR52.47(b)(2)(i)(A). This regulation requires that the applicant adequately demonstrate the performance of each safety feature, interdependent effects among the safety features, and a sufficient data base on the safety features of the design to assess the analytical tools used for safety analysis. Los Alamos has assessed the quality and completeness of the existing and planned data bases used by Asea Brown Boveri to validate its safety analysis codes and other relevant data bases. Only amore » limited data base of separate effect and integral tests exist at present. This data base is not adequate to fulfill the requirements of 10CFR52.47(b)(2)(i)(A). Asea Brown Boveri has stated that it plans to conduct more separate effect and integral test programs. If appropriately designed and conducted, these test programs have the potential to satisfy most of the data base requirements of 10CFR52.47(b)(2)(i)(A) and remedy most of the deficiencies of the currently existing combined data base. However, the most important physical processes in PIUS are related to reactor shutdown because the PIUS reactor does not contain rodded shutdown and control systems. For safety-related reactor shutdown, PIUS relies on negative reactivity insertions from the moderator temperature coefficient and from boron entering the core from the reactor pool. Asea Brown Boveri has neither developed a direct experimental data base for these important processes nor provided a rationale for indirect testing of these key PIUS processes. This is assessed as a significant shortcoming. In preparing the conclusions of this report, test documentation and results have been reviewed for only one integral test program, the small-scale integral tests conducted in the ATLE facility.« less
Coding visual features extracted from video sequences.
Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2014-05-01
Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.
BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana
2006-01-01
Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.
Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2010-01-01
The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.
Advanced catalytic combustors for low pollutant emissions, phase 1
NASA Technical Reports Server (NTRS)
Dodds, W. J.
1979-01-01
The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.
A turbojet-boosted two-stage-to-orbit space transportation system design study
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W.; Scharf, W.
1979-01-01
The concept to use twin turbo-powered boosters for acceleration to supersonic staging speed followed by an all rocket powered orbiter stage was proposed. A follow-on design study was then made of the concept with the performance objective of placing a 29,483 Kg payload into a .2.6 X 195.3 km orbit. The study was performed in terms of analysis and trade studies, conceptual design, utility and economic analysis, and technology assessment. Design features of the final configuration included: strakes and area rule for improved take off and low transonic drag, variable area inlets, exits and turbine, and low profile fixed landing gear for turbojet booster stage. The payload required an estimated GLOW of 1,270,000 kg for injection in orbit. Each twin booster required afterburning turbojet engines each with a static sea level thrust rating of 444,800 N. Life cycle costs for this concept were comparable to a SSTO/SLED concept except for increased development cost due to the turbojet engine propulsion system.
Identifying sports videos using replay, text, and camera motion features
NASA Astrophysics Data System (ADS)
Kobla, Vikrant; DeMenthon, Daniel; Doermann, David S.
1999-12-01
Automated classification of digital video is emerging as an important piece of the puzzle in the design of content management systems for digital libraries. The ability to classify videos into various classes such as sports, news, movies, or documentaries, increases the efficiency of indexing, browsing, and retrieval of video in large databases. In this paper, we discuss the extraction of features that enable identification of sports videos directly from the compressed domain of MPEG video. These features include detecting the presence of action replays, determining the amount of scene text in vide, and calculating various statistics on camera and/or object motion. The features are derived from the macroblock, motion,and bit-rate information that is readily accessible from MPEG video with very minimal decoding, leading to substantial gains in processing speeds. Full-decoding of selective frames is required only for text analysis. A decision tree classifier built using these features is able to identify sports clips with an accuracy of about 93 percent.
Metrics for linear kinematic features in sea ice
NASA Astrophysics Data System (ADS)
Levy, G.; Coon, M.; Sulsky, D.
2006-12-01
The treatment of leads as cracks or discontinuities (see Coon et al. presentation) requires some shift in the procedure of evaluation and comparison of lead-resolving models and their validation against observations. Common metrics used to evaluate ice model skills are by and large an adaptation of a least square "metric" adopted from operational numerical weather prediction data assimilation systems and are most appropriate for continuous fields and Eilerian systems where the observations and predictions are commensurate. However, this class of metrics suffers from some flaws in areas of sharp gradients and discontinuities (e.g., leads) and when Lagrangian treatments are more natural. After a brief review of these metrics and their performance in areas of sharp gradients, we present two new metrics specifically designed to measure model accuracy in representing linear features (e.g., leads). The indices developed circumvent the requirement that both the observations and model variables be commensurate (i.e., measured with the same units) by considering the frequencies of the features of interest/importance. We illustrate the metrics by scoring several hypothetical "simulated" discontinuity fields against the lead interpreted from RGPS observations.
Wireless medical sensor networks: design requirements and enabling technologies.
Vallejos de Schatz, Cecilia H; Medeiros, Henry Ponti; Schneider, Fabio K; Abatti, Paulo J
2012-06-01
This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols-namely, Bluetooth(®) (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)-are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home.
Single-state electronic ballast with dimming feature and unity power factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.F.; Yu, T.H.; Chiang, M.C.
1998-05-01
Analysis, design, and practical consideration of a single-stage electronic ballast with dimming feature and unity power factor are presented in this paper. The proposed single-stage ballast is the combination of a boost converter and a half-bridge series-resonant parallel-loaded inverter. The boost semistage working in the discontinuous conduction mode functions as a power factor corrector and the inverter semistage operated above resonance are employed to ballast the lamp. Replacing the lamp with the plasma model, analysis of the ballast is fulfilled. The dimming feature is carried out by pulse-width modulation (PWM) and variable-frequency controls simultaneously. The proposed single-stage ballast is suitablemore » for applications with moderate power level and low-line voltage while requiring a high-output voltage. It can save a controller, an active switch and its driver, reduce size, and possibly increase system reliability while requiring two additional diodes over a conventional two-stage system. A prototype was implemented to verify the theoretical discussion. The hardware measurements have shown that the desired performance can be achieved feasibly.« less
Mitigating Motion Base Safety Issues: The NASA LaRC CMF Implementation
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Grupton, Lawrence E.; Martinez, Debbie; Carrelli, David J.
2005-01-01
The NASA Langley Research Center (LaRC), Cockpit Motion Facility (CMF) motion base design has taken advantage of inherent hydraulic characteristics to implement safety features using hardware solutions only. Motion system safety has always been a concern and its implementation is addressed differently by each organization. Some approaches rely heavily on software safety features. Software which performs safety functions is subject to more scrutiny making its approval, modification, and development time consuming and expensive. The NASA LaRC's CMF motion system is used for research and, as such, requires that the software be updated or modified frequently. The CMF's customers need the ability to update the simulation software frequently without the associated cost incurred with safety critical software. This paper describes the CMF engineering team's approach to achieving motion base safety by designing and implementing all safety features in hardware, resulting in applications software (including motion cueing and actuator dynamic control) being completely independent of the safety devices. This allows the CMF safety systems to remain intact and unaffected by frequent research system modifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos
The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variablemore » objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.« less
NASA Astrophysics Data System (ADS)
Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.
2012-01-01
Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.
NASA Technical Reports Server (NTRS)
Koopmann, Gary H.; Lesieutre, George A.; Yoshikawa, Shoko; Chen, Weicheng; Fahnline, John B.; Pai, Suresh; Dershem, Brian
1996-01-01
In this presentation, the authors describe the design and fabrication processes for a PZT strain actuator that evolved during the initial stages of a research effort to synthesize and process intelligent, cost effective structures (SPICES). The actuator performance requirements were similar to those of conventional actuators, e.g., it had to be robust, highly efficient with adequate force and stroke, as lightweight as possible, and most importantly, affordable. Further, since the actuator was to be integrated within a composite structure, it had to be compatible with the host material and easily embeddable during the fabrication process. In control applications employing strain devices as actuators, a good bond between this actuator and host material is critical to their successful operation. This criterion is often difficult to achieve when attempting to join ceramics with metals or polymers with dissimilar properties such as Young's moduli, thermal expansion coefficients, etc. One unique feature of the actuator design that evolved in this project is that the need for direct bonding between the PZT ceramic and polymers was circumvented, i.e. the strain transfer to the host material was achieved via a frame surrounding the ceramic. Consequently, the frame material could be selected (or coated) for compatibility with the host material. A second feature is that the frame enclosed a co-fired, multilayered, PZT stack that was used to minimize the voltage requirements while maximizing the output strain.
Photogrammetric Analysis of CPAS Main Parachutes
NASA Technical Reports Server (NTRS)
Ray, Eric; Bretz, David
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown with a cluster of two to three Main parachutes. The instantaneous rate of descent varies based on parachute fly-out angles and geometric inlet area. Parachutes in a cluster oscillate between significant fly-out angles and colliding into each other. The former presents a sub-optimal inlet area and the latter lowers the effective drag area as the parachutes interfere with each other. The fly-out angles are also important in meeting a twist torque requirement. Understanding cluster behavior necessitates measuring the Mains with photogrammetric analysis. Imagery from upward looking cameras is analyzed to determine parachute geometry. Fly-out angles are measured from each parachute vent to an axis determined from geometry. Determining the scale of the objects requires knowledge of camera and lens calibration as well as features of known size. Several points along the skirt are tracked to compute an effective circumference, diameter, and inlet area as a function of time. The effects of this geometry are clearly seen in the system drag coefficient time history. Photogrammetric analysis is key in evaluating the effects of design features such as an Over-Inflation Control Line (OICL), Main Line Length Ratio (MLLR), and geometric porosity, which are varied in an attempt to minimize cluster oscillations. The effects of these designs are evaluated through statistical analysis.
The pathology of the foreign body reaction against biomaterials.
Klopfleisch, R; Jung, F
2017-03-01
The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Yildiz, Kadir; Polat, Ercan; Güzel, Pinar
2018-01-01
The purpose of this study is to investigate sport center members' perceived service quality levels with a view to Kano customer expectations and requirements model. To that end, a descriptive approach and a correlational research design featuring survey method is adopted. Research group consists of 680 (300 women, 380 men) sport center members who…
Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California
NASA Technical Reports Server (NTRS)
1980-01-01
The performance of a Solar Hot Water System at a laundry in Fresno, California is described. The system features an integrated wastewater heat recovery subsystem and a solar preheating system designed to supply a part of the hot water requirements. Performance data for a six month period are projected to an annual savings of $18,703.
How To Be a Great Communicator: In Person, on Paper, and on the Podium.
ERIC Educational Resources Information Center
Qubein, Nido R.
Designed to help any person develop the communication skills required for the global business environment, this book teaches not only the basics but also many of the finer points of communication. The book features: (1) the five keys to successful communication; (2) how to use words and body language effectively; (3) how to communicate in the…
ERIC Educational Resources Information Center
Shaul, Marnie S.
To inform reauthorizations of Title I, the federal government's largest program for elementary and secondary education, the Congress has required the Department of Education to conduct national assessments of Title I. Two of these studies have gathered Title I data over several years: the Prospects study, completed in 1997; and the ongoing…
ERIC Educational Resources Information Center
Pino-Fan, Luis R.; Godino, Juan D.; Font, Vicenç
2018-01-01
In recent years, there has been a growing interest in studying the knowledge that mathematics teachers require in order for their teaching to be effective. However, only a few studies have focused on the design and application of instruments that are capable of exploring different aspects of teachers' didactic-mathematical knowledge about specific…
Liquid rocket booster integration study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1988-01-01
The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the executive summary of the five volume series.