Science.gov

Sample records for design rational snake

  1. Bioinformatics and Multiepitope DNA Immunization to Design Rational Snake Antivenom

    PubMed Central

    Wagstaff, Simon C; Laing, Gavin D; Theakston, R. David G; Papaspyridis, Christina; Harrison, Robert A

    2006-01-01

    Background Snake venom is a potentially lethal and complex mixture of hundreds of functionally diverse proteins that are difficult to purify and hence difficult to characterize. These difficulties have inhibited the development of toxin-targeted therapy, and conventional antivenom is still generated from the sera of horses or sheep immunized with whole venom. Although life-saving, antivenoms contain an immunoglobulin pool of unknown antigen specificity and known redundancy, which necessitates the delivery of large volumes of heterologous immunoglobulin to the envenomed victim, thus increasing the risk of anaphylactoid and serum sickness adverse effects. Here we exploit recent molecular sequence analysis and DNA immunization tools to design more rational toxin-targeted antivenom. Methods and Findings We developed a novel bioinformatic strategy that identified sequences encoding immunogenic and structurally significant epitopes from an expressed sequence tag database of a venom gland cDNA library of Echis ocellatus, the most medically important viper in Africa. Focusing upon snake venom metalloproteinases (SVMPs) that are responsible for the severe and frequently lethal hemorrhage in envenomed victims, we identified seven epitopes that we predicted would be represented in all isomers of this multimeric toxin and that we engineered into a single synthetic multiepitope DNA immunogen (epitope string). We compared the specificity and toxin-neutralizing efficacy of antiserum raised against the string to antisera raised against a single SVMP toxin (or domains) or antiserum raised by conventional (whole venom) immunization protocols. The SVMP string antiserum, as predicted in silico, contained antibody specificities to numerous SVMPs in E. ocellatus venom and venoms of several other African vipers. More significantly, the antiserum cross-specifically neutralized hemorrhage induced by E. ocellatus and Cerastes cerastes cerastes venoms. Conclusions These data provide valuable

  2. Snakes! Snakes! Snakes!

    ERIC Educational Resources Information Center

    Nature Naturally, 1983

    1983-01-01

    Designed for students in grades 4-6, the teaching unit presents illustrations and facts about snakes. Topics include common snakes found in the United States, how snakes eat, how snakes shed their skin, poisonous snakes, the Eastern Indigo snake, and the anatomy of a snake. A student page includes a crossword puzzle and surprising snake facts. A…

  3. Snakes! Snakes! Snakes!

    ERIC Educational Resources Information Center

    Nature Naturally, 1983

    1983-01-01

    Designed for students in grades 4-6, the teaching unit presents illustrations and facts about snakes. Topics include common snakes found in the United States, how snakes eat, how snakes shed their skin, poisonous snakes, the Eastern Indigo snake, and the anatomy of a snake. A student page includes a crossword puzzle and surprising snake facts. A…

  4. Rational drug design.

    PubMed

    Mandal, Soma; Moudgil, Mee'nal; Mandal, Sanat K

    2009-12-25

    In this article, current knowledge of drug design is reviewed and an approach of rational drug design is presented. The process of drug development is challenging, expensive, and time consuming, although this process has been accelerated due to the development of computational tools and methodologies. The current target based drug design approach is incomplete because most of the drugs developed by structure guided approaches have been shown to have serious toxic side effects. Otherwise these drugs would have been an ideal choice for the treatment of diseases. Hence, rational drug design would require a multidisciplinary approach. In this regard, incorporation of gene expression technology and bioinformatics tools would be indispensable in the structure based drug design. Global gene expression data and analysis of such data using bioinformatics tools will have numerous benefits such as efficiency, cost effectiveness, time saving, and will provide strategies for combination therapy in addition to overcoming toxic side effects. As a result of incorporation of gene expression data, partial benefit of the structure based drug design is slowly emerging and rapidly changing the approach of the drug development process. To achieve the full benefit of developing a successful drug, multidisciplinary approaches (approaches such as computational chemistry and gene expression analysis, as discussed in this article) would be necessary. In the future, there is adequate room for the development of more sophisticated methodologies.

  5. Rational drug design applied to myeloperoxidase inhibition.

    PubMed

    Van Antwerpen, P; Zouaoui Boudjeltia, K

    2015-06-01

    Rational drug design is a general approach using protein-structure technique in which the discovery of a ligand can be driven either by chance, screening, or rational theory. Myeloperoxidase (MPO) was rapidly identified as a therapeutical target because of its involvement in chronic inflammatory syndromes. In this context, the research of MPO inhibitors was intensified and development of new chemical entities was rationally driven by the research of ligands that enter into the MPO catalytic pocket. Actually, as soon as crystallography data of MPO have become available and its structure was virtually designed, the rational drug design has been applied to this peroxidase. Pharmaceutical industries and academic laboratories apply rational drug design on MPO by either optimizing known inhibitors or searching new molecules by high-throughput virtual screening. By these ways, they were able to find efficient MPO inhibitors and understand their interactions with the enzyme. During this quest of MPO inhibition, it appears that Glu268 is a crucial residue in order to optimize ligand-target interaction. This amino acid should be carefully considered by medicinal chemist when they design inhibitors interfering with MPO activity.

  6. Rational design of nanomaterials for water treatment

    NASA Astrophysics Data System (ADS)

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-10-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on `design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.

  7. Rational design of nanomaterials for water treatment.

    PubMed

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-11-07

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on 'design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.

  8. Vaccines: From Empirical Development to Rational Design

    PubMed Central

    Rueckert, Christine; Guzmán, Carlos A.

    2012-01-01

    Infectious diseases are responsible for an overwhelming number of deaths worldwide and their clinical management is often hampered by the emergence of multi-drug-resistant strains. Therefore, prevention through vaccination currently represents the best course of action to combat them. However, immune escape and evasion by pathogens often render vaccine development difficult. Furthermore, most currently available vaccines were empirically designed. In this review, we discuss why rational design of vaccines is not only desirable but also necessary. We introduce recent developments towards specifically tailored antigens, adjuvants, and delivery systems, and discuss the methodological gaps and lack of knowledge still hampering true rational vaccine design. Finally, we address the potential and limitations of different strategies and technologies for advancing vaccine development. PMID:23144616

  9. Rationally designed multitarget anti-HIV agents.

    PubMed

    Zhan, P; Liu, X

    2013-01-01

    Multitarget-directed ligands (MTDLs), an emerging and appealing drug discovery strategy, utilizing a single chemical entity to inhibit multitargets, was confirmed to be effective in reducing the likelihood of drug resistance, diminishing problems of dosing complexity, drug-drug interactions and toxicities, as well as improving patient compliance. The exploration of MTDL strategy should be valuable in anti-HIV drug discovery. In this article, current knowledge and strategies for the rational design of the multitarget and selective anti-HIV agents are described and a number of illustrative examples are given. Moreover, the challenges, limitations and outlook of such novel drug design strategies are also presented, with a goal to highlight the representative paradigms in the rational design of MTDLs, and to help medicinal chemists discover the next generation of multitarget anti-HIV agents.

  10. Computational Methods Applied to Rational Drug Design.

    PubMed

    Ramírez, David

    2016-01-01

    Due to the synergic relationship between medical chemistry, bioinformatics and molecular simulation, the development of new accurate computational tools for small molecules drug design has been rising over the last years. The main result is the increased number of publications where computational techniques such as molecular docking, de novo design as well as virtual screening have been used to estimate the binding mode, site and energy of novel small molecules. In this work I review some tools, which enable the study of biological systems at the atomistic level, providing relevant information and thereby, enhancing the process of rational drug design.

  11. Computational Methods Applied to Rational Drug Design

    PubMed Central

    Ramírez, David

    2016-01-01

    Due to the synergic relationship between medical chemistry, bioinformatics and molecular simulation, the development of new accurate computational tools for small molecules drug design has been rising over the last years. The main result is the increased number of publications where computational techniques such as molecular docking, de novo design as well as virtual screening have been used to estimate the binding mode, site and energy of novel small molecules. In this work I review some tools, which enable the study of biological systems at the atomistic level, providing relevant information and thereby, enhancing the process of rational drug design. PMID:27708723

  12. Rational design of fluorescent phosgene sensors.

    PubMed

    Kundu, Pradip; Hwang, Kuo Chu

    2012-05-15

    Phosgene is a very toxic gas, which was used as a chemical weapon in World War I, and is currently widely used in industrial processes. So far, no any phosgene fluorescent sensor has been reported. In this study, we report rational design of unimolecular fluorescent phosgene sensors for the first time. Phosgene was used to initiate intramolecular cyclization and convert nonfluorescent molecules to highly fluorescent products. Bright blue fluorescence of phosgene reaction products can be easily visualized by naked eye. The detection limit for phosgene is as low as 1 nM in solutions at room temperature.

  13. Rational design and synthesis of Janus composites.

    PubMed

    Liang, Fuxin; Zhang, Chengliang; Yang, Zhenzhong

    2014-10-29

    Janus composites with two different components divided on the same object have gained growing interest in many fields, such as solid emulsion stabilizers, sensors, optical probes and self-propellers. Over the past twenty years, various synthesis methods have been developed including Pickering emulsion interfacial modification, block copolymer self-assembly, microfluidics, electro co-jetting, and swelling emulsion polymerization. Anisotropic shape and asymmetric spatial distribution of compositions and functionalities determine their unique performances. Rational design and large scale synthesis of functional Janus materials are crucial for the systematical characterization of performance and exploitation of practical applications.

  14. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  15. Snake resonances

    SciTech Connect

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs.

  16. Geology and Design: Formal and Rational Connections

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  17. Rational Design of Biobetters with Enhanced Stability.

    PubMed

    Courtois, Fabienne; Schneider, Curtiss P; Agrawal, Neeraj J; Trout, Bernhardt L

    2015-08-01

    Biotherapeutics are the fastest growing class of pharmaceutical with a rapidly evolving market facing the rise of biosimilar and biobetter products. In contrast to a biosimilar, which is derived from the same gene sequence as the innovator product, a biobetter has enhanced properties, such as enhanced efficacy or reduced immunogenicity. Little work has been carried out so far to increase the intrinsic stability of biotherapeutics via sequence changes, even though, aggregation, the primary degradation pathway of proteins, leads to issues ranging from manufacturing failure to immunological response and to loss of therapeutic activity. Using our spatial aggregation propensity tool as a first step to a rational design approach to identify aggregation-prone regions, biobetters of rituximab have been produced with enhanced stability by introducing site-specific mutations. Significant stabilization against aggregation was achieved for rituximab with no decrease in its binding affinity to the antigen.

  18. A successful trap design for capturing large terrestrial snakes

    Treesearch

    Shirley J. Burgdorf; D. Craig Rudolph; Richard N. Conner; Daniel Saenz; Richard R. Schaefer

    2005-01-01

    Large scale trapping protocols for snakes can be expensive and require large investments of personnel and time. Typical methods, such as pitfall and small funnel traps, are not useful or suitable for capturing large snakes. A method was needed to survey multiple blocks of habitat for the Louisiana Pine Snake (Pituophis ruthveni), throughout its...

  19. Chemogenomic approaches to rational drug design

    PubMed Central

    Rognan, D

    2007-01-01

    Paradigms in drug design and discovery are changing at a significant pace. Concomitant to the sequencing of over 180 several genomes, the high-throughput miniaturization of chemical synthesis and biological evaluation of a multiple compounds on gene/protein expression and function opens the way to global drug-discovery approaches, no more focused on a single target but on an entire family of related proteins or on a full metabolic pathway. Chemogenomics is this emerging research field aimed at systematically studying the biological effect of a wide array of small molecular-weight ligands on a wide array of macromolecular targets. Since the quantity of existing data (compounds, targets and assays) and of produced information (gene/protein expression levels and binding constants) are too large for manual manipulation, information technologies play a crucial role in planning, analysing and predicting chemogenomic data. The present review will focus on predictive in silico chemogenomic approaches to foster rational drug design and derive information from the simultaneous biological evaluation of multiple compounds on multiple targets. State-of-the-art methods for navigating in either ligand or target space will be presented and concrete drug design applications will be mentioned. PMID:17533416

  20. Rational design of new bifunctional inhibitors of type II dehydroquinase.

    PubMed

    Toscano, Miguel D; Stewart, Kirsty A; Coggins, John R; Lapthorn, Adrian J; Abell, Chris

    2005-09-07

    Selective inhibitors of type II dehydroquinase were rationally designed to explore a second binding-pocket in the active-site. The molecular modelling, synthesis, inhibition studies and crystal structure determination are described.

  1. The relationship between rational drug design and drug side effects.

    PubMed

    Wang, Juan; Li, Zhi-xin; Qiu, Cheng-xiang; Wang, Dong; Cui, Qing-hua

    2012-05-01

    Previous analysis of systems pharmacology has revealed a tendency of rational drug design in the pharmaceutical industry. The targets of new drugs tend to be close with the corresponding disease genes in the biological networks. However, it remains unclear whether the rational drug design introduces disadvantages, i.e. side effects. Therefore, it is important to dissect the relationship between rational drug design and drug side effects. Based on a recently released drug side effect database, SIDER, here we analyzed the relationship between drug side effects and the rational drug design. We revealed that the incidence drug side effect is significantly associated with the network distance of drug targets and diseases genes. Drugs with the distances of three or four have the smallest incidence of side effects, whereas drugs with the distances of more than four or smaller than three show significantly greater incidence of side effects. Furthermore, protein drugs and small molecule drugs show significant differences. Drugs hitting membrane targets and drugs hitting cytoplasm targets also show differences. Failure drugs because of severe side effects show smaller network distances than approved drugs. These results suggest that researchers should be prudent on rationalizing the drug design. Too small distances between drug targets and diseases genes may not always be advantageous for rational design for drug discovery.

  2. Rational drug design paradigms: the odyssey for designing better drugs.

    PubMed

    Kellici, Tahsin; Ntountaniotis, Dimitrios; Vrontaki, Eleni; Liapakis, George; Moutevelis-Minakakis, Panagiota; Kokotos, George; Hadjikakou, Sotiris; Tzakos, Andreas G; Afantitis, Antreas; Melagraki, Georgia; Bryant, Sharon; Langer, Thierry; Di Marzo, Vincenzo; Mavromoustakos, Thomas

    2015-01-01

    Due to the time and effort requirements for the development of a new drug, and the high attrition rates associated with this developmental process, there is an intense effort by academic and industrial researchers to find novel ways for more effective drug development schemes. The first step in the discovery process of a new drug is the identification of the lead compound. The modern research tendency is to avoid the synthesis of new molecules based on chemical intuition, which is time and cost consuming, and instead to apply in silico rational drug design. This approach reduces the consumables and human personnel involved in the initial steps of the drug design. In this review real examples from our research activity aiming to discover new leads will be given for various dire warnings diseases. There is no recipe to follow for discovering new leads. The strategy to be followed depends on the knowledge of the studied system and the experience of the researchers. The described examples constitute successful and unsuccessful efforts and reflect the reality which medicinal chemists have to face in drug design and development. The drug stability is also discussed in both organic molecules and metallotherapeutics. This is an important issue in drug discovery as drug metabolism in the body can lead to various toxic and undesired molecules.

  3. Variational Particle Number Approach for Rational Compound Design

    NASA Astrophysics Data System (ADS)

    von Lilienfeld, O. Anatole; Lins, Roberto D.; Rothlisberger, Ursula

    2005-10-01

    Within density functional theory, a variational particle number approach for rational compound design (RCD) is presented. An expression for RCD is obtained in terms of minimization of a suitably defined energy penalty functional whose gradients are the nuclear and the electronic chemical potential. Using combined quantum and molecular mechanics, a nonpeptidic anticancer drug candidate is designed.

  4. Machine learning in the rational design of antimicrobial peptides.

    PubMed

    Rondón-Villarreal, Paola; Sierra, Daniel A; Torres, Rodrigo

    2014-01-01

    One of the most important public health issues is the microbial and bacterial resistance to conventional antibiotics by pathogen microorganisms. In recent years, many researches have been focused on the development of new antibiotics. Among these, antimicrobial peptides (AMPs) have raised as a promising alternative to combat antibioticresistant microorganisms. For this reason, many theoretical efforts have been done in the development of new computational tools for the rational design of both better and effective AMPs. In this review, we present an overview of the rational design of AMPs using machine learning techniques and new research fields.

  5. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  6. Rational design of reconfigurable prismatic architected materials.

    PubMed

    Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia

    2017-01-18

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  7. Rational design of reconfigurable prismatic architected materials

    NASA Astrophysics Data System (ADS)

    Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia

    2017-01-01

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  8. Rational design of efficient modular cells.

    PubMed

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  9. Design of a new therapy to treat snake envenomation

    PubMed Central

    Shahidi Bonjar, Leyla

    2014-01-01

    The prospective removal of snake venoms from the blood of snake-bitten patients is discussed here. Opportune neutralization of killer antigens from the blood of poisoned victims is a vital treatment step. Delays may lead to death, or cripple the patient permanently. The present procedure describes the elimination of venom antigens of a wide range of snakes from the blood of such patients. Compared to conventional treatments, the treatment is administrable in the lack of proper antivenoms, expected to be more effective with less side effects, covers a vast range of snake venoms, minimizes contact of venoms with internal tissues and organs, is applicable in patients sensitive to serum injections, has a high chance of effectiveness because there is no need to identity the snake involved to administer its specific antibody, and is capable of universal application. The principal component to this approach is a “polyvalent venom antibody column” (PVAC), which selectively traps venom antigens from blood in an extracorporeal circuit while detoxified blood returns back to the patient’s body. The PVAC is intended for removal of numerous snake venom antigens in a relatively simple procedure. Detoxification is performed under the supervision of trained personnel using simple blood-circulating machines in which blood circulates from patient to PVAC and back to the patient aseptically. The device acts as a biological filter that selectively immobilizes harmful venom antigens from poisoned blood. For effective neutralization, the PVAC provides a large contact surface area with blood. The PVAC’s reactive sites would consist of carbon nanotubes, on which a vast spectra of venoms’ antibodies are bonded to. In this extracorporeal detoxification process, nocent antigens conjugate with their antibodies and become immobilized, and are eliminated from the poisoned patient blood. Detoxification resuscitation is expected to take 2–3 hours, when the titers of venom antigens in

  10. Object design using blending of rational Timmer

    NASA Astrophysics Data System (ADS)

    Ramli, Norhidayah; Ali, Jamaludin Md.

    2014-07-01

    Timmer function was introduced by Harry Timmer but the function did not get enough exposure since it did not satisfy the convex hull property. This function is an advance of Bezier function. The function is used in this paper as it produce a curve that near the control polygon and it easier to use as blending function. This function is being started with Timmer cubic function. This study is carried out to extend the previous research which using the Timmer function by deriving the higher order Timmer blending function such as quartic and quantic function. The design of object using Timmer quintic blending function derivation is implemented. The usage of quintic Timmer function is to make the manipulation of control points easier and will produce the higher order blending design.

  11. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  12. Rational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Raymond, Kenneth N.

    2000-09-30

    The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal

  13. The construction of metal centers in proteins by rational design.

    PubMed

    Hellinga, H W

    1998-01-01

    Metalloprotein properties result from the interplay between coordination requirements of the metal center, protein stability, and modulation of the metal center by the surrounding protein matrix. Simple metal centers, which exercise control over the protein by affecting stability or enzyme activity, have been created by rational design. Complex centers, which require control by the protein matrix, have also been constructed.

  14. Prodrugs--from serendipity to rational design.

    PubMed

    Huttunen, Kristiina M; Raunio, Hannu; Rautio, Jarkko

    2011-09-01

    The prodrug concept has been used to improve undesirable properties of drugs since the late 19th century, although it was only at the end of the 1950s that the actual term prodrug was introduced for the first time. Prodrugs are inactive, bioreversible derivatives of active drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then elicit its desired pharmacological effect in the body. In most cases, prodrugs are simple chemical derivatives that are only one or two chemical or enzymatic steps away from the active parent drug. However, some prodrugs lack an obvious carrier or promoiety but instead result from a molecular modification of the prodrug itself, which generates a new active compound. Numerous prodrugs designed to overcome formulation, delivery, and toxicity barriers to drug utilization have reached the market. In fact, approximately 20% of all small molecular drugs approved during the period 2000 to 2008 were prodrugs. Although the development of a prodrug can be very challenging, the prodrug approach represents a feasible way to improve the erratic properties of investigational drugs or drugs already on the market. This review introduces in depth the rationale behind the use of the prodrug approach from past to present, and also considers the possible problems that can arise from inadequate activation of prodrugs.

  15. Refolding of proteins from inclusion bodies: rational design and recipes.

    PubMed

    Basu, Anindya; Li, Xiang; Leong, Susanna Su Jan

    2011-10-01

    The need to develop protein biomanufacturing platforms that can deliver proteins quickly and cost-effectively is ever more pressing. The rapid rate at which genomes can now be sequenced demands efficient protein production platforms for gene function identification. There is a continued need for the biotech industry to deliver new and more effective protein-based drugs to address new diseases. Bacterial production platforms have the advantage of high expression yields, but insoluble expression of many proteins necessitates the development of diverse and optimised refolding-based processes. Strategies employed to eliminate insoluble expression are reviewed, where it is concluded that inclusion bodies are difficult to eliminate for various reasons. Rational design of refolding systems and recipes are therefore needed to expedite production of recombinant proteins. This review article discusses efforts towards rational design of refolding systems and recipes, which can be guided by the development of refolding screening platforms that yield both qualitative and quantitative information on the progression of a given refolding process. The new opportunities presented by light scattering technologies for developing rational protein refolding buffer systems which in turn can be used to develop new process designs armed with better monitoring and controlling functionalities are discussed. The coupling of dynamic and static light scattering methodologies for incorporation into future bioprocess designs to ensure delivery of high-quality refolded proteins at faster rates is also discussed.

  16. Rational molecular design of complementary self-assembling peptide hydrogels.

    PubMed

    Kyle, Stuart; Felton, Susan H; McPherson, Michael J; Aggeli, Amalia; Ingham, Eileen

    2012-09-01

    Rational molecular design of self- assembling peptide-based materials that spontaneously form self-supporting hydrogels shows potential in many healthcare applications. Binary peptides based on complementary charged sequences are developed, and the use of biophysical analysis and cell-based studies highlights that the charged interactions can influence the properties of peptide materials and ultimately affect biomaterial applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Rational Approach to the Optimal Design of Drugs.

    DTIC Science & Technology

    1986-07-16

    Recent advances in the rational design of drug molecules based on a graph-theoretical approach are briefly reviewed. Graph theory has not been widely recognized to date as an effective alternative to the empirical procedures currently prevailing in the development of new drugs . Moreover, the problems confronting researchers in this field are daunting in their great complexity. We advocate here a novel yet simple mathematical formalism which opens up a promising

  18. Rational design of inorganic dielectric materials with expected permittivity.

    PubMed

    Xie, Congwei; Oganov, Artem R; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-11-30

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up.

  19. Rational design of inorganic dielectric materials with expected permittivity

    PubMed Central

    Xie, Congwei; Oganov, Artem R.; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-01-01

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up. PMID:26617342

  20. Halogen bonding for rational drug design and new drug discovery.

    PubMed

    Lu, Yunxiang; Liu, Yingtao; Xu, Zhijian; Li, Haiying; Liu, Honglai; Zhu, Weiliang

    2012-05-01

    A large number of drugs and drug candidates in clinical development contain halogen substituents. For a long time, only the steric and lipophilic contributions of halogens were considered when trying to exploit their effects on ligand binding. However, the ability of halogens to form stabilizing interactions, such as halogen bonding, hydrogen bonding and multipolar interactions, in biomolecular systems was revealed recently. Halogen bonding, the non-covalent interaction in which covalently bound halogens interact with Lewis bases, has now been utilized in the context of rational drug design. The purpose of this review is to show how halogen bonding could be used in drug design, and in particular, to stimulate researchers to apply halogen bonding in lead optimization. This review article covers the recent advances relevant to halogen bonding in drug discovery and biological design over the past decade, including database survey of this interaction in protein-ligand complexes, molecular mechanical investigations of halogen bonding in drug discovery and applications of this interaction in the development of halogenated ligands as inhibitors and drugs for protein kinases, serine protease factor Xa, HIV reverse transcriptase and so on. Halogen bonding should intentionally be used as a powerful tool, comparable with hydrogen bonding, to enhance the binding affinity and also influence the binding selectivity. Rational design of new and potent inhibitors against therapeutic targets through halogen bonding continues to be an exciting area, which will be further elucidated with the combination of various experimental techniques and theoretical calculations in the forthcoming years.

  1. Natural infection as a blueprint for rational HIV vaccine design.

    PubMed

    van Haaren, Marlies M; van den Kerkhof, Tom L G M; van Gils, Marit J

    2017-01-02

    So far, the development of a human immunodeficiency virus (HIV) vaccine has been unsuccessful. However, recent progress in the field of broadly neutralizing antibodies (bNAbs) has reinvigorated the search for an HIV vaccine. bNAbs develop in a minority of HIV infected individuals and passive transfer of these bNAbs to non-human primates provides protection from HIV infection. Studies in a number of HIV infected individuals on bNAb maturation alongside viral evolution and escape have shed light on the features important for bNAb elicitation. Here we review the observations from these studies, and how they influence the rational design of HIV vaccines.

  2. Recent trends in library design: 'rational design' revisited.

    PubMed

    Schnur, Dora M

    2008-05-01

    Diversity has historically played a critical role in the design of combinatorial libraries, screening sets and corporate collections for lead discovery. Large library design dominated the field of lead discovery in the 1990s, with design methods ranging from arbitrary and property-based reagent selection to product-based approaches. Over time, however, there has been a downward trend in library size as the genomics revolution and the increasing availability of target protein structures from X-ray crystallography and homology modeling have increased the volume of information concerning desired targets. Concurrently, computing grids and CPU clusters have facilitated the development of structure-based tools that are able to screen hundreds of thousands of molecules. Smaller, 'smarter' combinatorial and focused parallel libraries have replaced the unfocused large libraries in the drug design paradigm of the 21st century. While diversity continues to play a role in lead discovery, the focus of current library design methods has shifted to scaffold design and bio-isostere searching, with a greatly needed emphasis on synthetic feasibility.

  3. Functional DNA switches: rational design and electrochemical signaling.

    PubMed

    Tang, Yiting; Ge, Bixia; Sen, Dipankar; Yu, Hua-Zhong

    2014-01-21

    Recent developments in nanoscience research have demonstrated that DNA switches (rationally designed DNA nanostructures) constitute a class of versatile building blocks for the fabrication and assembly of electronic devices and sensors at the nanoscale. Functional DNA sequences and structures such as aptamers, DNAzymes, G-quadruplexes, and i-motifs can be readily prepared in vitro, and subsequently adapted to an electrochemical platform by coupling with redox reporters. The conformational or conduction switching of such electrode-bound DNA modules in response to an external stimulus can then be monitored by conventional voltammetric measurements. In this review, we describe how we are able to design and examine functional DNA switches, particularly those systems that utilize electrochemical signaling. We also discuss different available options for labeling functional DNA with redox reporters, and comment on the function-oriented signaling pathways.

  4. Rational Design of Competitive Electrocatalysts for Hydrogen Fuel Cells.

    PubMed

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-16

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure, and reactivity, we solve that trimetallic sandwich-like structures are an excellent choice for optimization. Their constituting species are expected to couple synergistically yielding reaction-environment stability, cost-effectiveness, and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts: Pd/Fe/W(110) and Au/Ru/W(110). Density functional theory calculations of the reaction free-energy diagrams suggest that these materials are more active toward ORR than the so-far best Pt-based catalysts. Our designing concept advances also a general approach for engineering advanced materials.

  5. Using Fitness Landscapes for Rational Hepatitis C Immunogen Design

    NASA Astrophysics Data System (ADS)

    Hart, Gregory; Ferguson, Andrew

    2015-03-01

    Hepatitis C virus afflicts 170 million people worldwide, 2-3% of the global population. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic, particularly in the developing world where expensive drug therapies are unavailable. Despite 20 years of research, the high mutability of the virus, and lack of knowledge of what constitutes effective immune responses, have impeded development of an effective vaccine. Coupling data mining of sequence databases with the Potts model, we have developed a computational approach to systematically identify viral vulnerabilities and perform rational design of vaccine immunogens. We applied our approach to the nonstructural proteins NS3, NSA, NSA, and NSB which are crucial for viral replication.The predictions of our model are in good accord with experimental measurements and clinical observations, and we have used our model to design immunogen candidates to elicit T-cell responses against vulnerable regions of theseviral proteins.

  6. Vaccine technologies: From whole organisms to rationally designed protein assemblies.

    PubMed

    Karch, Christopher P; Burkhard, Peter

    2016-11-15

    Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Jameson, Bradford A.; McDonnell, James M.; Marini, Joseph C.; Korngold, Robert

    1994-04-01

    EXPERIMENTAL allergic encephalomyelitis (EAE) is an acute inflammatory autoimmune disease of the central nervous system that can be elicited in rodents and is the major animal model for the study of multiple sclerosis (MS)1,2. The pathogenesis of both EAE and MS directly involves the CD4+ helper T-cell subset3-5. Anti-CD4 monoclonal antibodies inhibit the development of EAE in rodents6-9, and are currently being used in human clinical trials for MS. We report here that similar therapeutic effects can be achieved in mice using a small (rationally designed) synthetic analogue of the CD4 protein surface. It greatly inhibits both clinical incidence and severity of EAE with a single injection, but does so without depletion of the CD4+ subset and without the inherent immunogenicity of an antibody. Furthermore, this analogue is capable of exerting its effects on disease even after the onset of symptoms.

  8. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  9. Rational clinical trial design for antibody mediated renal allograft injury

    PubMed Central

    Sandal, Shaifali; Zand, Martin S.

    2015-01-01

    Antibody mediated renal allograft rejection is a significant cause of acute and chronic graft loss. Recent work has revealed that AMR is a complex processes, involving B and plasma cells, donor-specific antibodies, complement, vascular endothelial cells, NK cells, Fc receptors, cytokines and chemokines. These insights have led to the development of numerous new therapies, and adaptation of others originally developed for treatment of hemetologic malignancies, autoimmune and complement mediated conditions. Here we review emerging insights into the pathophysiology of AMR as well as current and emerging therapies for both acute and chronic AMR. Finally, we discuss rational clinical trial design in light of antibody and B cell immunobiology, as well as appropriate efficacy metrics to identify robust protocols and therapeutic agents. PMID:25553476

  10. Rational design of functional and tunable oscillating enzymatic networks

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  11. Artificial intelligence approaches for rational drug design and discovery.

    PubMed

    Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław

    2007-01-01

    Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.

  12. Rational design of the exchange-spring permanent magnet.

    PubMed

    Jiang, J S; Bader, S D

    2014-02-12

    The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)max, while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)max. The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication.

  13. New generation adjuvants--from empiricism to rational design.

    PubMed

    O'Hagan, Derek T; Fox, Christopher B

    2015-06-08

    Adjuvants are an essential component of modern vaccine development. Despite many decades of development, only a few types of adjuvants are currently included in vaccines approved for human use. In order to better understand the reasons that development of some adjuvants succeeded while many others failed, we discuss some of the common attributes of successful first generation adjuvants. Next, we evaluate current trends in the development of second generation adjuvants, including the potential advantages of rationally designed synthetic immune potentiators appropriately formulated. Finally, we discuss desirable attributes of next generation adjuvants. Throughout, we emphasize that the importance of formulation and analytical characterization in all aspects of vaccine adjuvant development is often underappreciated. We highlight the formulation factors that must be evaluated in order to optimize interactions between vaccine antigens, immune potentiators, and particulate formulations, and the resulting effects on safety, biological activity, manufacturability, and stability.

  14. Rational Co-Design of Polymer Dielectrics for Energy Storage.

    PubMed

    Mannodi-Kanakkithodi, Arun; Treich, Gregory M; Huan, Tran Doan; Ma, Rui; Tefferi, Mattewos; Cao, Yang; Sotzing, Gregory A; Ramprasad, Rampi

    2016-08-01

    Although traditional materials discovery has historically benefited from intuition-driven experimental approaches and serendipity, computational strategies have risen in prominence and proven to be a powerful complement to experiments in the modern materials research environment. It is illustrated here how one may harness a rational co-design approach-involving synergies between high-throughput computational screening and experimental synthesis and testing-with the example of polymer dielectrics design for electrostatic energy storage applications. Recent co-design efforts that can potentially enable going beyond present-day "standard" polymer dielectrics (such as biaxially oriented polypropylene) are highlighted. These efforts have led to the identification of several new organic polymer dielectrics within known generic polymer subclasses (e.g., polyurea, polythiourea, polyimide), and the recognition of the untapped potential inherent in entirely new and unanticipated chemical subspaces offered by organometallic polymers. The challenges that remain and the need for additional methodological developments necessary to further strengthen the co-design concept are then presented.

  15. Potential of fragment recombination for rational design of proteins.

    PubMed

    Eisenbeis, Simone; Proffitt, William; Coles, Murray; Truffault, Vincent; Shanmugaratnam, Sooruban; Meiler, Jens; Höcker, Birte

    2012-03-07

    It is hypothesized that protein domains evolved from smaller intrinsically stable subunits via combinatorial assembly. Illegitimate recombination of fragments that encode protein subunits could have quickly led to diversification of protein folds and their functionality. This evolutionary concept presents an attractive strategy to protein engineering, e.g., to create new scaffolds for enzyme design. We previously combined structurally similar parts from two ancient protein folds, the (βα)(8)-barrel and the flavodoxin-like fold. The resulting "hopeful monster" differed significantly from the intended (βα)(8)-barrel fold by an extra β-strand in the core. In this study, we ask what modifications are necessary to form the intended structure and what potential this approach has for the rational design of functional proteins. Guided by computational design, we optimized the interface between the fragments with five targeted mutations yielding a stable, monomeric protein whose predicted structure was verified experimentally. We further tested binding of a phosphorylated compound and detected that some affinity was already present due to an intact phosphate-binding site provided by one fragment. The affinity could be improved quickly to the level of natural proteins by introducing two additional mutations. The study illustrates the potential of recombining protein fragments with unique properties to design new and functional proteins, offering both a possible pathway of protein evolution and a protocol to rapidly engineer proteins for new applications.

  16. Rational design of MMP degradable peptide-based supramolecular filaments.

    PubMed

    Lin, Yi-An; Ou, Yu-Chuan; Cheetham, Andrew G; Cui, Honggang

    2014-04-14

    One-dimensional nanostructures formed by self-assembly of small molecule peptides have been extensively explored for use as biomaterials in various biomedical contexts. However, unlike individual peptides that can be designed to be specifically degradable by enzymes/proteases of interest, their self-assembled nanostructures, particularly those rich in β-sheets, are generally resistant to enzymatic degradation because the specific cleavage sites are often embedded inside the nanostructures. We report here on the rational design of β-sheet rich supramolecular filaments that can specifically dissociate into less stable micellar assemblies and monomers upon treatment with matrix metalloproteases-2 (MMP-2). Through linkage of an oligoproline segment to an amyloid-derived peptide sequence, we first synthesized an amphiphilic peptide that can undergo a rapid morphological transition in response to pH variations. We then used MMP-2 specific peptide substrates as multivalent cross-linkers to covalently fix the amyloid-like filaments in the self-assembled state at pH 4.5. Our results show that the cross-linked filaments are stable at pH 7.5 but gradually break down into much shorter filaments upon cleavage of the peptidic cross-linkers by MMP-2. We believe that the reported work presents a new design platform for the creation of amyloid-like supramolecular filaments responsive to enzymatic degradation.

  17. Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy

    NASA Astrophysics Data System (ADS)

    Paraskar, Abhimanyu; Soni, Shivani; Roy, Bhaskar; Papa, Anne-Laure; Sengupta, Shiladitya

    2012-02-01

    Nanoscale drug delivery vehicles have been extensively studied as carriers for cancer chemotherapeutics. However, the formulation of platinum chemotherapeutics in nanoparticles has been a challenge arising from their physicochemical properties. There are only a few reports describing oxaliplatin nanoparticles. In this study, we derivatized the monomeric units of a polyisobutylene maleic acid copolymer with glucosamine, which chelates trans-1,2-diaminocyclohexane (DACH) platinum (II) through a novel monocarboxylato and O → Pt coordination linkage. At a specific polymer to platinum ratio, the complex self-assembled into a nanoparticle, where the polymeric units act as the leaving group, releasing DACH-platinum in a sustained pH-dependent manner. Sizing was done using dynamic light scatter and electron microscopy. The nanoparticles were evaluated for efficacy in vitro and in vivo. Biodistribution was quantified using inductively coupled plasma atomic absorption spectroscopy (ICP-AAS). The PIMA-GA-DACH-platinum nanoparticle was found to be more active than free oxaliplatin in vitro. In vivo, the nanoparticles resulted in greater tumor inhibition than oxaliplatin (equivalent to 5 mg kg-1 platinum dose) with minimal nephrotoxicity or body weight loss. ICP-AAS revealed significant preferential tumor accumulation of platinum with reduced biodistribution to the kidney or liver following PIMA-GA-DACH-platinum nanoparticle administration as compared with free oxaliplatin. These results indicate that the rational engineering of a novel polymeric nanoparticle inspired by the bioactivation of oxaliplatin results in increased antitumor potency with reduced systemic toxicity compared with the parent cytotoxic. Rational design can emerge as an exciting strategy in the synthesis of nanomedicines for cancer chemotherapy.

  18. Rational Co-Design of Polymer Dielectrics for Energy Storage

    NASA Astrophysics Data System (ADS)

    Mannodi-Kanakkithodi, Arun; Tran, Huan; Pilania, Ghanshyam; Lookman, Turab; Ramprasad, Rampi

    While intuition-driven experiments and serendipity have guided traditional materials discovery, computational strategies have become increasingly important and a powerful complement to experiments in modern day materials research. With the example of polymer dielectrics for electrostatic energy storage applications, we demonstrate how a rational co-design approach--involving synergies between high-throughput computational screening and experimental synthesis and testing--can be harnessed for quick and efficient discovery. We highlight recent co-design efforts that can potentially lead to replacement of present-day ``standard'' polymer dielectrics (such as biaxially oriented polypropylene) not only by new organic polymer candidates within known generic polymer subclasses (e.g., polyurea, polythiourea, polyimide), but also by organometallic polymers, a hitherto untapped but promising chemical subspace. We also discuss the utilization of vast computational data (generated in the aforementioned process) towards the development of statistical learning models for relevant properties of dielectric polymers, which can further accelerate the guidance to experiments and thus the successful discovery of new materials.

  19. Tailoring recombinant protein quality by rational media design.

    PubMed

    Brühlmann, David; Jordan, Martin; Hemberger, Jürgen; Sauer, Markus; Stettler, Matthieu; Broly, Hervé

    2015-01-01

    Clinical efficacy and safety of recombinant proteins are closely associated with their structural characteristics. The major quality attributes comprise glycosylation, charge variants (oxidation, deamidation, and C- & N-terminal modifications), aggregates, low-molecular-weight species (LMW), and misincorporation of amino acids in the protein backbone. Cell culture media design has a great potential to modulate these quality attributes due to the vital role of medium in mammalian cell culture. The purpose of this review is to provide an overview of the way both classical cell culture medium components and novel supplements affect the quality attributes of recombinant therapeutic proteins expressed in mammalian hosts, allowing rational and high-throughput optimization of mammalian cell culture media. A selection of specific and/or potent inhibitors and activators of oligosaccharide processing as well as components affecting multiple quality attributes are presented. Extensive research efforts in this field show the feasibility of quality engineering through media design, allowing to significantly modulate the protein function. © 2015 American Institute of Chemical Engineers.

  20. Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.

    PubMed

    Arganda-Carreras, Ignacio; Andrey, Philippe

    2017-01-01

    With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

  1. Automated design of two-zero rational Chebychev filters

    NASA Astrophysics Data System (ADS)

    Le, K. H.

    1981-10-01

    The Rational Chebychev function is used to design elliptic-characteristic filters. The filter has N/2 ripples in the passband but only one ripple in the stopband for all orders. As N increases from three, the result is a substantial saving in number of capacitors in the passive ladder realization of the above function as compared to that of traditional elliptic filters of the same order N. The ladder's element values can be expressed as explicit involving only the coefficients of the transfer function. These expressions can also be used for other types of filters. Numerically, the design can be carried out by a Fortran program or a set of programs on a programmable calculator. The user needs only to give the three specifications: the filter order N, the stopband zeros Z, and the passband ripple amount R sub p. The program automatically selects the starting point for the given case and proceeds. The numerical results of the above programs over a range of specifications relate the above specifications to the minimum stopband attenuation.

  2. Robust control for snake maneuver design of missile

    NASA Astrophysics Data System (ADS)

    Kun, Ya; Chen, Xin; Li, Chuntao

    2017-01-01

    For the performance of missile with high Mach number and strongly nonlinear dynamics, this paper uses robust control to design maneuver controller. Robust servomechanism linear quadratic regulator (RSLQR) control is used to form the inner loop and proportional-plus-integral (PI) control is used to provide yawing tracking with no error. Contrast simulations under three types of deviation have been done to confirm robustness of the RSLQR-plus-PI control. Simulation results shows that RSLQR-plus-PI control would resist the disturbance and maintain the properties of the controller, guarantee the robustness and stability of missile more effectively than pure PI control.

  3. Systems vaccinology: Enabling rational vaccine design with systems biological approaches.

    PubMed

    Hagan, Thomas; Nakaya, Helder I; Subramaniam, Shankar; Pulendran, Bali

    2015-09-29

    Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines.

  4. Rational design of protamine nanocapsules as antigen delivery carriers.

    PubMed

    González-Aramundiz, José Vicente; Presas, Elena; Dalmau-Mena, Inmaculada; Martínez-Pulgarín, Susana; Alonso, Covadonga; Escribano, José M; Alonso, María J; Csaba, Noemi Stefánia

    2017-01-10

    Current challenges in global immunization indicate the demand for new delivery strategies, which could be applied to the development of new vaccines against emerging diseases, as well as to improve safety and efficacy of currently existing vaccine formulations. Here, we report a novel antigen nanocarrier consisting of an oily core and a protamine shell, further stabilized with pegylated surfactants. These nanocarriers, named protamine nanocapsules, were rationally designed to promote the intracellular delivery of antigens to immunocompetent cells and to trigger an efficient and long-lasting immune response. Protamine nanocapsules have nanometric size, positive zeta potential and high association capacity for H1N1 influenza hemagglutinin, a protein that was used here as a model antigen. The new formulation shows an attractive stability profile both, as an aqueous suspension or a freeze-dried powder formulation. In vitro studies showed that protamine nanocapsules were efficiently internalized by macrophages without eliciting significant toxicity. In vivo studies indicate that antigen-loaded nanocapsules trigger immune responses comparable to those achieved with alum, even when using significantly lower antigen doses, thus indicating their adjuvant properties. These promising in vivo data, alongside with their versatility for the loading of different antigens and oily immunomodulators and their excellent stability profile, make these nanocapsules a promising platform for the delivery of antigens.

  5. In silico ADME/T modelling for rational drug design.

    PubMed

    Wang, Yulan; Xing, Jing; Xu, Yuan; Zhou, Nannan; Peng, Jianlong; Xiong, Zhaoping; Liu, Xian; Luo, Xiaomin; Luo, Cheng; Chen, Kaixian; Zheng, Mingyue; Jiang, Hualiang

    2015-11-01

    In recent decades, in silico absorption, distribution, metabolism, excretion (ADME), and toxicity (T) modelling as a tool for rational drug design has received considerable attention from pharmaceutical scientists, and various ADME/T-related prediction models have been reported. The high-throughput and low-cost nature of these models permits a more streamlined drug development process in which the identification of hits or their structural optimization can be guided based on a parallel investigation of bioavailability and safety, along with activity. However, the effectiveness of these tools is highly dependent on their capacity to cope with needs at different stages, e.g. their use in candidate selection has been limited due to their lack of the required predictability. For some events or endpoints involving more complex mechanisms, the current in silico approaches still need further improvement. In this review, we will briefly introduce the development of in silico models for some physicochemical parameters, ADME properties and toxicity evaluation, with an emphasis on the modelling approaches thereof, their application in drug discovery, and the potential merits or deficiencies of these models. Finally, the outlook for future ADME/T modelling based on big data analysis and systems sciences will be discussed.

  6. Rational design of enhanced photoresistance in a photoswitchable fluorescent protein

    NASA Astrophysics Data System (ADS)

    Duan, Chenxi; Byrdin, Martin; El Khatib, Mariam; Henry, Xavier; Adam, Virgile; Bourgeois, Dominique

    2015-03-01

    Fluorescent proteins are particularly susceptible to photobleaching, the permanent loss of fluorescence emission resulting from photodestruction of the chromophore. In the case of Reversibly Switchable Fluorescent Proteins (RSFPs), which can be switched back and forth between a non-fluorescent and a fluorescent state, the achievable number of switching cycles is limited by photobleaching, a process known as photofatigue. Photofatigue has become a crucial limitation in a number of advanced applications based on repeated photoswitching of RSFPs, notably in the field of super-resolution fluorescence microscopy. Here, based on our previous structural investigation of photobleaching mechanisms in IrisFP, an RSFP also capable of green-to-red photoconversion, we present the rational design of a single-mutant IrisFP-M159A that displays considerably enhanced photostability. The results suggest that, under moderate illumination intensities, photobleaching of IrisFP-like Anthozoan fluorescent proteins such as EosFP, Dendra or Dronpa derivatives is mainly driven by an oxygen-dependent mechanism resulting in the irreversible sulfoxidation of methionine 159. The photofatigue decay profiles of IrisFP and its photoresistant mutant IrisFP-M159A were investigated in different experimental conditions, in vitro and in cellulo. Although the performance of the mutant was found to be always superior, the results showed switching behaviors strongly dependent on the nanoenvironment. Thus, in general, assessment of photostability and switching properties of RSFPs should be carried out in real experimental conditions.

  7. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria.

    PubMed

    Pinkner, Jerome S; Remaut, Han; Buelens, Floris; Miller, Eric; Aberg, Veronica; Pemberton, Nils; Hedenström, Mattias; Larsson, Andreas; Seed, Patrick; Waksman, Gabriel; Hultgren, Scott J; Almqvist, Fredrik

    2006-11-21

    A chemical synthesis platform with broad applications and flexibility was rationally designed to inhibit biogenesis of adhesive pili assembled by the chaperone-usher pathway in Gram-negative pathogens. The activity of a family of bicyclic 2-pyridones, termed pilicides, was evaluated in two different pilus biogenesis systems in uropathogenic Escherichia coli. Hemagglutination mediated by either type 1 or P pili, adherence to bladder cells, and biofilm formation mediated by type 1 pili were all reduced by approximately 90% in laboratory and clinical E. coli strains. The structure of the pilicide bound to the P pilus chaperone PapD revealed that the pilicide bound to the surface of the chaperone known to interact with the usher, the outer-membrane assembly platform where pili are assembled. Point mutations in the pilicide-binding site dramatically reduced pilus formation but did not block the ability of PapD to bind subunits and mediate their folding. Surface plasmon resonance experiments confirmed that the pilicide interfered with the binding of chaperone-subunit complexes to the usher. These pilicides thus target key virulence factors in pathogenic bacteria and represent a promising proof of concept for developing drugs that function by targeting virulence factors.

  8. Systems Vaccinology: Enabling rational vaccine design with systems biological approaches

    PubMed Central

    Hagan, Thomas; Nakaya, Helder I.; Subramaniam, Shankar; Pulendran, Bali

    2015-01-01

    Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines. PMID:25858860

  9. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.

    PubMed

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5' transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5'UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5'end can modulate protein levels up to 160%-300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for

  10. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants

    PubMed Central

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5′ transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5′UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5′end can modulate protein levels up to 160%–300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple

  11. Snake bites

    MedlinePlus

    Bites - snakes ... Snake bites can be deadly if not treated quickly. Because of their smaller body size, children are ... risk for death or serious complications due to snake bites. The right antivenom can save a person's ...

  12. Harvesting bioenergy with rationally designed complex functional materials

    NASA Astrophysics Data System (ADS)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  13. Achieving nano-gold stability through rational design.

    PubMed

    Barrett, Dean H; Scurrell, Michael S; Rodella, Cristiane B; Diaz, Beatriz; Billing, David G; Franklyn, Paul J

    2016-11-18

    When Au is subdivided to the nanoscale its reactivity changes from an inert nature to one of incredible reactivity which is not replicated by other catalysts. When dispersed onto metal oxides such as TiO2, nano-Au has shown high reactivities for a multitude of reduction and oxidation reactions of industrial importance with potential and current uses such as, CO oxidation, NO x reduction, purification of hydrogen for fuel cells, water gas shift reactions, abatement of volatile organic compounds (VOC's) as well as pollution and emission control systems such as autocatalysts. However, many industrially important reactions and applications operate under harsh conditions where the catalyst is exposed to high temperatures and further needs to operate for extended periods of time. These conditions cause Au nanoparticle sintering whereby small, highly active clusters form large clusters which are catalytically inactive. For this reason, research into stabilizing Au nanoparticles has abounded with a goal of producing durable, thermally stable catalysts for industrial applications. Here we show a durable, thermally stable Au-TiO2 catalyst which has been developed by rational design. The catalyst exhibits a 3-dimensional, radially aligned nanorod structure, already locked into the thermodynamically stable polymorph, via a scalable and facile synthesis, with Au nanoparticles isolated on the support structure. As the Au nanoparticles are highly stable the new catalyst is able to maintain light-off for CO oxidation below 115 °C even after multiple cycles at 800 °C. This ability of the catalyst to resist multiple thermal cycles to high temperature while remaining active at low temperatures shows promise for various industrial applications. The thermal stability of the catalyst is investigated and characterized through morphological and structural studies.

  14. Rational design of single-molecule magnets: a supramolecular approach.

    PubMed

    Glaser, Thorsten

    2011-01-07

    Since the discovery that Mn(12)OAc acts as a single-molecule magnet (SMM), an increasing number of transition metal complexes have been demonstrated to behave as SMMs. The signature of a SMM is a slow relaxation of the magnetization at low temperatures accompanied by a magnetic hysteresis. The origin of SMM behaviour is the existence of an appreciable thermal barrier U for spin-reversal called magnetic anisotropy barrier which is related to the combination of a large total spin ground state (S(t)) and an easy-axis magnetic anisotropy. The extensive research on Mn(12)OAc and other SMMs has established more prerequisites for a rational development of new SMMs besides the high-spin ground state and the magnetic anisotropy: the symmetry should be at least C(3) to minimize the quantum tunneling of the magnetization through the anisotropy barrier but lower than cubic to avoid the cancellation of the local anisotropies upon projection onto the spin ground state. Based on these prerequisites, we have designed the ligand triplesalen which combines the phloroglucinol bridging unit for high spin ground states by the spin-polarization mechanism with a salen-like ligand environment for single-site magnetic anisotropies by a strong tetragonal ligand field. The C(3) symmetric, trinuclear complexes of the triplesalen ligand (talen(t-Bu(2)))(6-) exhibit a strong ligand folding resulting in an overall bowl-shaped molecular structure. This ligand folding preorganizes the axial coordination sites of the metal salen subunits for the complementary binding of three facial nitrogen atoms of a hexacyanometallate unit. This leads to a high driving force for the formation of heptanuclear complexes [M(t)(6)M(c)](n+) by the assembly of three molecular building blocks. Attractive van der Waals interactions of the tert-butyl phenyl units of two triplesalen trinuclear building blocks increase the driving force. In this respect, we have been able to synthesize the isostructural series [Mn(III)(6

  15. Snake bite: coral snakes.

    PubMed

    Peterson, Michael E

    2006-11-01

    North American coral snakes are distinctively colored beginning with a black snout and an alternating pattern of black, yellow, and red. They have fixed front fangs and a poorly developed system for venom delivery, requiring a chewing action to inject the venom. The severity of a coral snake bite is related to the volume of venom injected and the size of the victim. The length of the snake correlates positively with the snakes venom yield. Coral snake venom is primarily neurotoxic with little local tissue reaction or pain at the bite site. The net effect of the neurotoxins is a curare like syndrome. In canine victims there have been reports of marked hemolysis with severe anemia and hemoglobinuria. The onset of clinical signs may be delayed for as much as 10 to 18 hours. The victim begins to have alterations in mental status and develops generalized weakness and muscle fasciculations. Progression to paralysis of the limbs and respiratory muscles then follows. The best flied response to coral snake envenomation is rapid transport to a veterinary medical facility capable of 24 hour critical care and assisted ventilation. First aid treatment advocated in Australia for Elapid bites is the immediate use of a compression bandage. The victim should be hospitalized for a minimum of 48 hours for continuous monitoring. The only definitive treatment for coral snake envenomation is the administration of antivenin (M. fulvius). Once clinical signs of coral snake envenomation become manifest they progress with alarming rapidity and are difficult to reverse. If antivenin is not available or if its administration is delayed, supportive care includes respiratory support. Assisted mechanical ventilation can be used but may have to be employed for up to 48 to 72 hours.

  16. Rational design of metal-organic frameworks with anticipated porosities and functionalities

    SciTech Connect

    Zhang, MW; Bosch, M; Gentle, T; Zhou, HC

    2014-01-01

    Metal-organic frameworks have emerged as a new category of porous materials that have intriguing structures and diverse applications. Even though the early discovery of new MOFs appears to be serendipitous, much effort has been made to reveal their structure-property relationships for the purpose of rationally designing novel frameworks with expected properties. Until now, much progress has been made to rationalize the design and synthesis of MOFs. This highlight review will outline the recent advances on this topic from both our and other groups and provide a systematic overview of different methods for the rational design of MOFs with desired porosities and functionalities. In this review, we will categorize the recent efforts for rational MOF design into two different approaches: a structural approach and a functional approach.

  17. Innovative clinical trial designs to rationalize TB vaccine development.

    PubMed

    Ellis, R D; Hatherill, M; Tait, D; Snowden, M; Churchyard, G; Hanekom, W; Evans, T; Ginsberg, A M

    2015-05-01

    A recent trial of a leading tuberculosis (TB) vaccine candidate in 3000 South African infants failed to show protection over that from BCG alone, and highlights the difficulties in clinical development of TB vaccines. Progression of vaccine candidates to efficacy trials against TB disease rests on demonstration of safety and immunogenicity in target populations and protection against challenge in preclinical models, but immunologic correlates of protection are unknown, and animal models may not be predictive of results in humans. Even in populations most heavily affected by TB the sample sizes required for Phase 2b efficacy trials using TB disease as an endpoint are in the thousands. Novel clinical trial models have been developed to evaluate candidate TB vaccines in selected populations using biologically relevant outcomes and innovative statistical approaches. Such proof of concept studies can be used to more rationally select vaccine candidates for advancement to large scale trials against TB disease.

  18. [Animal toxins and human disease: from single component to venomics, from biochemical characterization to disease mechanisms, from crude venom utilization to rational drug design].

    PubMed

    Lu, Qiu-Min; Lai, Ren; Zhang, Yun

    2010-02-01

    Many animals produced a diversity of venoms and secretions to adapt the changes of environments through the long history of evolution. The components including a large quantity of specific and highly active peptides and proteins have become good research models for protein structure-function and also served as tools and novel clues for illustration of human disease mechanisms. At the same time, they are rich natural resources for new drug development. Through the valuable venomous animal resources of China, researchers at the Kunming Institute of Zoology, CAS have carried out animal toxin research over 30 years. This paper reviews the main work conducted on snake venoms, amphibian and insect secretions, and the development from single component to venomics, from biochemical characterization to human disease mechanisms, from crude venom to rational drug design along with a short perspective on future studies.

  19. A rational design change methodology based on experimental and analytical modal analysis

    SciTech Connect

    Weinacht, D.J.; Bennett, J.G.

    1993-08-01

    A design methodology that integrates analytical modeling and experimental characterization is presented. This methodology represents a powerful tool for making rational design decisions and changes. An example of its implementation in the design, analysis, and testing of a precisions machine tool support structure is given.

  20. Sidewinding snakes on sand

    NASA Astrophysics Data System (ADS)

    Marvi, Hamidreza; Dimenichi, Dante; Chrystal, Robert; Mendelson, Joseph; Goldman, Daniel; Hu, David; Georgia Tech and Zoo Atlanta Collaboration

    2012-11-01

    Desert snakes such as the rattlesnake Crotalus cerastes propel themselves over sand using sidewinding, a mode of locomotion relying upon helical traveling waves. While sidewinding on hard ground has been described, the mechanics of movement on more natural substrates such as granular media remain poorly understood. In this experimental study, we use 3-D high speed video to characterize the motion of a sidewinder rattlesnake as it moves on a granular bed. We study the movement both on natural desert sand and in an air-fluidized bed trackway which we use to challenge the animal on different compactions of granular media. Particular attention is paid to rationalizing the snake's thrust on this media using friction and normal forces on the piles of sand created by the snake's body. The authors thank the NSF (PHY-0848894), Georgia Tech, and the Elizabeth Smithgall Watts endowment for support. We would also like to thank Zoo Atlanta staff for their generous help with this project.

  1. Rational Design of Molecular Ferroelectric Materials and Nanostructures

    SciTech Connect

    Ducharme, Stephen

    2012-09-25

    The purpose of this project was to gain insight into the properties of molecular ferroelectrics through the detailed study of oligomer analogs of polyvinylidene fluoride (PVDF). By focusing on interactions at both the molecular level and the nanoscale level, we expect to gain improved understanding about the fundamental mechanism of ferroelectricity and its key properties. The research consisted of three complementary components: 1) Rational synthesis of VDF oligomers by Prof. Takacs' group; 2) Detailed structural and electrical studies of thin by Prof. Ducharme's Group; and 3) First-principles computational studies by DOE Lab Partner Dr. Serge Nakhman-son at Argonne National Laboratory. The main results of the work was a detailed understanding of the relationships between the molecular interactions and macroscopic phenomenology of fer-roelectricity VDF oligomers. This is valuable information supporting the development of im-proved electromechanical materials for, e.g., sonar, ultrasonic imaging, artificial muscles, and compliant actuators. Other potential applications include nonvolatile ferroelectric memories, heat-sensing imaging arrays, photovoltaic devices, and functional biomimetic materials. The pro-ject contributed to the training and professional development of undergraduate students and graduate students, post-doctoral assistants, and a high-school teacher. Project personnel took part in several outreach and education activities each year.

  2. From bricolage to BioBricks™: Synthetic biology and rational design.

    PubMed

    Lewens, Tim

    2013-12-01

    Synthetic biology is often described as a project that applies rational design methods to the organic world. Although humans have influenced organic lineages in many ways, it is nonetheless reasonable to place synthetic biology towards one end of a continuum between purely 'blind' processes of organic modification at one extreme, and wholly rational, design-led processes at the other. An example from evolutionary electronics illustrates some of the constraints imposed by the rational design methodology itself. These constraints reinforce the limitations of the synthetic biology ideal, limitations that are often freely acknowledged by synthetic biology's own practitioners. The synthetic biology methodology reflects a series of constraints imposed on finite human designers who wish, as far as is practicable, to communicate with each other and to intervene in nature in reasonably targeted and well-understood ways. This is better understood as indicative of an underlying awareness of human limitations, rather than as expressive of an objectionable impulse to mastery over nature.

  3. Application of Absorption Modeling in Rational Design of Drug Product Under Quality-by-Design Paradigm.

    PubMed

    Kesisoglou, Filippos; Mitra, Amitava

    2015-09-01

    Physiologically based absorption models can be an important tool in understanding product performance and hence implementation of Quality by Design (QbD) in drug product development. In this report, we show several case studies to demonstrate the potential application of absorption modeling in rational design of drug product under the QbD paradigm. The examples include application of absorption modeling—(1) prior to first-in-human studies to guide development of a formulation with minimal sensitivity to higher gastric pH and hence reduced interaction when co-administered with PPIs and/or H2RAs, (2) design of a controlled release formulation with optimal release rate to meet trough plasma concentrations and enable QD dosing, (3) understanding the impact of API particle size distribution on tablet bioavailability and guide formulation design in late-stage development, (4) assess impact of API phase change on product performance to guide specification setting, and (5) investigate the effect of dissolution rate changes on formulation bioperformance and enable appropriate specification setting. These case studies are meant to highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of the product performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients.

  4. Rational design of orthogonal libraries of protein coding genes.

    PubMed

    Ryan, Daniel; Papamichail, Dimitris

    2013-05-17

    Array-based oligonucleotide synthesis technologies provide access to thousands of custom-designed sequence variants at low cost. Large-scale synthesis and high-throughput assays have become valuable experimental tools to study in detail the interplay between sequence and function. We have developed a methodology and corresponding algorithms for the design of diverse protein coding gene libraries, to exploit the potential of multiplex synthesis and help elucidate the effects of codon utilization and other factors in gene expression. Using our algorithm, we have computationally designed gene libraries with hundreds to thousands of orthogonal codon usage variants, uniformly exploring the design space of codon utilization, while demanding only a small fraction of the synthesis cost that would be required if these variants were synthesized independently.

  5. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions.

    PubMed

    Diller, David J; Swanson, Jon; Bayden, Alexander S; Jarosinski, Mark; Audie, Joseph

    2015-01-01

    Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.

  6. Development of a Rational Design Procedure for Overland Flow Systems,

    DTIC Science & Technology

    1982-02-01

    precipitation and evaporation. TSS is 40 minutes. Since BOD removal is the limiting The land area calculated by this procedure is parameter, the design is based...0.078 (50) volume of 667,750 m3 which includes 567,750 m3 (0.04)1/3 60 for storing wastewater and 100,000 m3 for storing precipitation during winter...loading rate. For example, it the precipitation minus evaporation volume from would be reasonable to assume that the designer the holding pond is 0.15

  7. Rational design of mirror-like peptides with alanine regulation.

    PubMed

    Li, Weizhong; Tan, Tingting; Xu, Wei; Xu, Lin; Dong, Na; Ma, Deying; Shan, Anshan

    2016-02-01

    To generate effective antimicrobial peptides (AMPs) with good antimicrobial activities and cell selectivity, many synthetic strategies have been implemented to facilitate the development of AMPs. However, these synthetic strategies represent only a small proportion of the methods used for the development of AMPs and are not optimal with the requirements needed for the design of AMPs. In this investigation, we designed a mirror-like structure with a lower charge and a higher number of hydrophobic amino acids. The amino acid sequence of the designed mirror-like peptides was XXYXXXYXXXYXX [X represents L (Leu) and/or A (Ala); Y represents K (Lys)]. These mirror-like peptides displayed antimicrobial activity against both Gram-positive and Gram-negative bacteria. Hemolysis activity and cytotoxicity, detected by using human red blood cells (hRBCs) and human embryonic kidney cells (HEK293), respectively, demonstrated that the frequency of Ala residues in this structure had a regulatory effect on the high hydrophobic region. In particular, KL4A6 showed a greater antimicrobial potency than the other three mirror-like peptides, folded into an α-helical structure, and displayed the highest therapeutic index, suggesting its good cell selectivity. Observations from fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that KL4A6 exhibited good membrane penetration potential by inducing membrane blebbing, disruption and lysis. Therefore, generating mirror-like peptides is a promising strategy for designing effective AMPs with regions of high hydrophobicity.

  8. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  9. Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    NASA Astrophysics Data System (ADS)

    Ulery, Bret D.; Petersen, Latrisha K.; Phanse, Yashdeep; Kong, Chang Sun; Broderick, Scott R.; Kumar, Devender; Ramer-Tait, Amanda E.; Carrillo-Conde, Brenda; Rajan, Krishna; Wannemuehler, Michael J.; Bellaire, Bryan H.; Metzger, Dennis W.; Narasimhan, Balaji

    2011-12-01

    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens.

  10. Experimental Design and Evaluation of Bounded Rationality Using Dimensional Analysis

    DTIC Science & Technology

    1989-05-01

    dimensional analysis; experimental design; cognitive s ork load. pressure is very high), decisionmakers are likely to make INTRODUCION mistakes so...Homogeneity, the following will be shown. The following procedure was used to analyze set of simultaneous algebraic equations must be satisfied. the data...Information theory. H is constant for the by solving the set of algebraic equations, we obtain: experiment, and G depends on the algorithm used by a

  11. On the rational design of compressible flow ejectors

    NASA Technical Reports Server (NTRS)

    Ortwerth, P. J.

    1979-01-01

    A fluid mechanics review of chemical laser ejectors is presented. The characteristics of ejectors with single and multiple driver nozzles are discussed. Methods to compute an optimized performance map in which secondary Mach number and performance are computed versus mass ratio, to compute the flow distortion at each optimized condition, and to determine the thrust area for the design point to match diffuser impedence are examined.

  12. Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    PubMed Central

    Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.

    2017-01-01

    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand. PMID:28181591

  13. Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    NASA Astrophysics Data System (ADS)

    Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.

    2017-02-01

    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.

  14. Rational Design of Glucose-Responsive Insulin Using Pharmacokinetic Modeling.

    PubMed

    Bakh, Naveed A; Bisker, Gili; Lee, Michael A; Gong, Xun; Strano, Michael S

    2017-08-25

    A glucose responsive insulin (GRI) is a therapeutic that modulates its potency, concentration, or dosing of insulin in relation to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. Current GRI design lacks a theoretical basis on which to base fundamental design parameters such as glucose reactivity, dissociation constant or potency, and in vivo efficacy. In this work, an approach to mathematically model the relevant parameter space for effective GRIs is induced, and design rules for linking GRI performance to therapeutic benefit are developed. Well-developed pharmacokinetic models of human glucose and insulin metabolism coupled to a kinetic model representation of a freely circulating GRI are used to determine the desired kinetic parameters and dosing for optimal glycemic control. The model examines a subcutaneous dose of GRI with kinetic parameters in an optimal range that results in successful glycemic control within prescribed constraints over a 24 h period. Additionally, it is demonstrated that the modeling approach can find GRI parameters that enable stable glucose levels that persist through a skipped meal. The results provide a framework for exploring the parameter space of GRIs, potentially without extensive, iterative in vivo animal testing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Numerical simulation and rational design of optically anisotropic columnar films

    NASA Astrophysics Data System (ADS)

    Leontyev, Viktor A.; Hawkeye, Matthew M.; Wakefield, Nicholas G.; Tabunshchyk, Kyrylo; Sit, Jeremy C.; Kovalenko, Andriy; Brett, Michael J.

    2011-03-01

    Optical anisotropy is an inherent property of columnar dielectric films, such as those fabricated by the glancing angle deposition (GLAD) technique. This process utilizes physical vapor deposition combined with computer-controlled substrate motion to finely tune the direction of column growth and vital morphological parameters such as column cross-section and inter-columnar spacing. Control over the anisotropic properties of the porous film provides an opportunity to design polarization-selective photonic devices and films with improved band gap properties. Anisotropic defects in multilayer films also result in a polarization-sensitive position of resonant transmission modes. We employed the finite-difference time-domain and frequency-domain methods to theoretically analyze and design columnar films with unique band-gap properties. The following morphologies were considered: (i) S-shaped columnar films with polarization-dependent band-gap position and width. Using numerical simulations we have shown that the competitive effect of different sources of anisotropy can be used to engineer photonic band gaps with strong selectivity to linearly-polarized light; (ii) Rugate thin films with an anisotropic defect, which exhibit resonant mode splitting. Optical devices were fabricated using titanium dioxide because it has good transparency in the visible range of the optical spectrum and a large bulk refractive index. Experimental results were compared to simulations to verify the designs and understand the limitations of the fabrication process.

  16. Rational Vehicle Design Ensures Targeted Cutaneous Steroid Delivery

    PubMed Central

    Kircik, Leon; Okumu, Franklin; Sugarman, Jeffrey

    2017-01-01

    Objective: To design a topical vehicle that provided the optimal balance of betamethasone dipropionate penetration and retention in the skin, with minimal systemic absorption. Design: Six test formulations of betamethasone dipropionate 0.05% in vehicles contained the following penetration enhancers: elaidyl alcohol (Formulation-1), hexanol (Formulation-2), dodecanol (Formulation-3), octadecanol (Formulation-4), docosanol (Formulation-5), or oleyl alcohol (Formulation-6). Test agents were applied to human cadaver skin in static Franz-cell chambers containing receptor fluid. Measurements: Betamethasone absorption into the receptor fluid was measured over 24 hours. The distribution of betamethasone and its metabolites in the stratum corneum, epidermis, and dermis was analyzed using LC-MS/MS. The formulation with the optimal balance of penetration, permeation, retention, and minimal absorption was selected for a similar study comparing its penetration and absorption versus several commercially available betamethasone formulations. Results: Formulation-3 resulted in the highest retention of betamethasone in the skin as well as the highest steroid levels in the receptor fluid at 12 and 24 hours. Formulation-6 had the second highest retention of betamethasone in total skin, with relatively low absorption into the receptor fluid. All other variants had both lower steroid retention in the skin and lower absorption into the receptor fluid, with the exception of Formulation-2 which had higher absorption at 24 hours. Formulation-6/DFD-01 was selected for further development. Comparison of Formulation-6/DFD-01 with commercially available formulations of betamethasone dipropionate showed it had the highest steroid levels in the epidermis and dermis combined, with relatively low levels in the receptor fluid. Conclusion: Formulation-6/DFD-01 had the optimal balance of betamethasone retention in the skin, with low systemic absorption. This designed vehicle ensured retention of the

  17. Rational Vehicle Design Ensures Targeted Cutaneous Steroid Delivery.

    PubMed

    Kircik, Leon; Okumu, Franklin; Kandavilli, Sateesh; Sugarman, Jeffrey

    2017-02-01

    Objective: To design a topical vehicle that provided the optimal balance of betamethasone dipropionate penetration and retention in the skin, with minimal systemic absorption. Design: Six test formulations of betamethasone dipropionate 0.05% in vehicles contained the following penetration enhancers: elaidyl alcohol (Formulation-1), hexanol (Formulation-2), dodecanol (Formulation-3), octadecanol (Formulation-4), docosanol (Formulation-5), or oleyl alcohol (Formulation-6). Test agents were applied to human cadaver skin in static Franz-cell chambers containing receptor fluid. Measurements: Betamethasone absorption into the receptor fluid was measured over 24 hours. The distribution of betamethasone and its metabolites in the stratum corneum, epidermis, and dermis was analyzed using LC-MS/MS. The formulation with the optimal balance of penetration, permeation, retention, and minimal absorption was selected for a similar study comparing its penetration and absorption versus several commercially available betamethasone formulations. Results: Formulation-3 resulted in the highest retention of betamethasone in the skin as well as the highest steroid levels in the receptor fluid at 12 and 24 hours. Formulation-6 had the second highest retention of betamethasone in total skin, with relatively low absorption into the receptor fluid. All other variants had both lower steroid retention in the skin and lower absorption into the receptor fluid, with the exception of Formulation-2 which had higher absorption at 24 hours. Formulation-6/DFD-01 was selected for further development. Comparison of Formulation-6/DFD-01 with commercially available formulations of betamethasone dipropionate showed it had the highest steroid levels in the epidermis and dermis combined, with relatively low levels in the receptor fluid. Conclusion: Formulation-6/DFD-01 had the optimal balance of betamethasone retention in the skin, with low systemic absorption. This designed vehicle ensured retention of the

  18. Rational design of fluorophores for in vivo applications.

    PubMed

    Ptaszek, Marcin

    2013-01-01

    Several classes of small organic molecules exhibit properties that make them suitable for fluorescence in vivo imaging. The most promising candidates are cyanines, squaraines, boron dipyrromethenes, porphyrin derivatives, hydroporphyrins, and phthalocyanines. The recent designing and synthetic efforts have been dedicated to improving their optical properties (shift the absorption and emission maxima toward longer wavelengths and increase the brightness) as well as increasing their stability and water solubility. The most notable advances include development of encapsulated cyanine dyes with increased stability and water solubility, squaraine rotaxanes with increased stability, long-wavelength-absorbing boron dipyrromethenes, long-wavelength-absorbing porphyrin and hydroporphyrin derivatives, and water-soluble phthalocyanines. Recent advances in luminescence and bioluminescence have made self-illuminating fluorophores available for in vivo applications. Development of new types of hydroporphyrin energy-transfer dyads gives the promise for further advances in in vivo multicolor imaging.

  19. Intestinal targeting of drugs: rational design approaches and challenges.

    PubMed

    Filipski, Kevin J; Varma, Manthena V; El-Kattan, Ayman F; Ambler, Catherine M; Ruggeri, Roger B; Goosen, Theunis C; Cameron, Kimberly O

    2013-01-01

    Targeting drugs to the gastrointestinal tract has been and continues to be an active area of research. Gut-targeting is an effective means of increasing the local concentration of active substance at the desired site of action while minimizing concentrations elsewhere in the body that could lead to unwanted side-effects. Several approaches to intestinal targeting exist. Physicochemical property manipulation can drive molecules to large, polar, low absorption space or alternatively to lipophilic, high clearance space in order to minimize systemic exposure. Design of compounds that are substrates for transporters within the gastrointestinal tract, either uptake or efflux, or at the hepato-biliary interface, may help to increase intestinal concentration. Prodrug strategies have been shown to be effective particularly for colon targeting, and several different technology formulation approaches are currently being researched. This review provides examples of various approaches to intestinal targeting, and discusses challenges and areas in need of future scientific advances.

  20. Rational design of novel CYP2A6 inhibitors.

    PubMed

    Tani, Niina; Juvonen, Risto O; Raunio, Hannu; Fashe, Muluneh; Leppänen, Jukka; Zhao, Bin; Tyndale, Rachel F; Rahnasto-Rilla, Minna

    2014-12-01

    Inhibition of CYP2A6-mediated nicotine metabolism can reduce cigarette smoking. We sought potent and selective CYP2A6 inhibitors to be used as leads for drugs useful in smoking reduction therapy, by evaluating CYP2A6 inhibitory effect of novel formyl, alkyl amine or carbonitrile substituted aromatic core structures. The most potent CYP2A6 inhibitors were thienopyridine-2-carbaldehyde, benzothienophene-3-ylmethanamine, benzofuran-5-carbaldehyde and indole-5-carbaldehyde, with IC50 values below 0.5 μM for coumarin 7-hydroxylation. Nicotine oxidation was effectively inhibited in vitro by two alkyl amine compounds and benzofuran-5-carbonitrile. Some of these molecules could serve as potential lead molecules when designing CYP2A6 inhibitory drugs for smoking reduction therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. DNA vaccines: a rational design against parasitic diseases.

    PubMed

    Carvalho, Joana A; Rodgers, Jean; Atouguia, Jorge; Prazeres, Duarte M F; Monteiro, Gabriel A

    2010-02-01

    Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.

  2. Rational experiment design for sequencing-based RNA structure mapping.

    PubMed

    Aviran, Sharon; Pachter, Lior

    2014-12-01

    Structure mapping is a classic experimental approach for determining nucleic acid structure that has gained renewed interest in recent years following advances in chemistry, genomics, and informatics. The approach encompasses numerous techniques that use different means to introduce nucleotide-level modifications in a structure-dependent manner. Modifications are assayed via cDNA fragment analysis, using electrophoresis or next-generation sequencing (NGS). The recent advent of NGS has dramatically increased the throughput, multiplexing capacity, and scope of RNA structure mapping assays, thereby opening new possibilities for genome-scale, de novo, and in vivo studies. From an informatics standpoint, NGS is more informative than prior technologies by virtue of delivering direct molecular measurements in the form of digital sequence counts. Motivated by these new capabilities, we introduce a novel model-based in silico approach for quantitative design of large-scale multiplexed NGS structure mapping assays, which takes advantage of the direct and digital nature of NGS readouts. We use it to characterize the relationship between controllable experimental parameters and the precision of mapping measurements. Our results highlight the complexity of these dependencies and shed light on relevant tradeoffs and pitfalls, which can be difficult to discern by intuition alone. We demonstrate our approach by quantitatively assessing the robustness of SHAPE-Seq measurements, obtained by multiplexing SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemistry in conjunction with NGS. We then utilize it to elucidate design considerations in advanced genome-wide approaches for probing the transcriptome, which recently obtained in vivo information using dimethyl sulfate (DMS) chemistry.

  3. Multiresolution Subdivision Snakes.

    PubMed

    Badoual, Anais; Schmitter, Daniel; Uhlmann, Virginie; Unser, Michael

    2017-03-01

    We present a new family of snakes that satisfy the property of multiresolution by exploiting subdivision schemes. We show in a generic way how to construct such snakes based on an admissible subdivision mask. We derive the necessary energy formulations and provide the formulas for their efficient computation. Depending on the choice of the mask, such models have the ability to reproduce trigonometric or polynomial curves. They can also be designed to be interpolating, a property that is useful in user-interactive applications. We provide explicit examples of subdivision snakes and illustrate their use for the segmentation of bioimages. We show that they are robust in the presence of noise and provide a multiresolution algorithm to enlarge their basin of attraction, which decreases their dependence on initialization compared to singleresolution snakes. We show the advantages of the proposed model in terms of computation and segmentation of structures with different sizes.

  4. A decade of vaccines: Integrating immunology and vaccinology for rational vaccine design.

    PubMed

    D'Argenio, David A; Wilson, Christopher B

    2010-10-29

    Vaccination stands as one of the most successful public health measures of the last century. New approaches will be needed, however, to develop highly effective vaccines to prevent tuberculosis, HIV-AIDS, and malaria and to eradicate polio. Current advances in immunology and technology have set the stage for rational vaccine design to begin a "Decade of Vaccines."

  5. Experiences with the shikimate-pathway enzymes as targets for rational drug design.

    PubMed

    Coggins, J R; Abell, C; Evans, L B; Frederickson, M; Robinson, D A; Roszak, A W; Lapthorn, A P

    2003-06-01

    The background and current context of work on the shikimate-pathway enzymes as potential targets for anti-bacterial, anti-fungal and anti-parasitic drugs is reviewed. Recent work on the third enzyme of the pathway, dehydroquinase, which occurs in two structurally and mechanistically distinct forms, is used to illustrate the present state of studies into rational drug design.

  6. Rational design and interaction studies of combilexins towards duplex DNA.

    PubMed

    Dileep, K V; Vijeesh, V; Remya, C

    2016-03-01

    DNA, which is the genetic material, plays a predominant role in all living organisms. Alterations in the structure and function of this genetic material correlate with complex diseases such as cancer. A number of anticancer drugs exert their action by binding to DNA. Although DNA binding compounds exert genotoxicity, there is a high demand for novel DNA binding molecules because they can be further developed into anticancer drugs. In the present study, the mode of interaction of two compounds, 2,4-D and tacrine, has been determined to be minor groove binding and intercalation, respectively. Subsequently, from their binding modes, novel combilexin molecules were designed using computational tools and their mode of binding and affinities towards DNA were determined through a series of molecular modeling experiments such as molecular docking, molecular dynamics and binding free energy calculations. The entire study focuses on the potential effects of combilexins compared to intercalators and minor groove binders. The combilexins deduced from the current study may be considered as lead compounds for the development of better anticancer drugs.

  7. Rationally Designed Peptidomimetic Modulators of Aβ Toxicity in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Rajasekhar, K.; Suresh, S. N.; Manjithaya, Ravi; Govindaraju, T.

    2015-01-01

    Alzheimer's disease is one of the devastating illnesses mankind is facing in the 21st century. The main pathogenic event in Alzheimer's disease is believed to be the aggregation of the β-amyloid (Aβ) peptides into toxic aggregates. Molecules that interfere with this process may act as therapeutic agents for the treatment of the disease. Use of recognition unit based peptidomimetics as inhibitors are a promising approach, as they exhibit greater protease stability compared to natural peptides. Here, we present peptidomimetic inhibitors of Aβ aggregation designed based on the KLVFF (P1) sequence that is known to bind Aβ aggregates. We improved inhibition efficiency of P1 by introducing multiple hydrogen bond donor-acceptor moieties (thymine/barbiturate) at the N-terminal (P2 and P3), and blood serum stability by modifying the backbone by incorporating sarcosine (N-methylglycine) units at alternate positions (P4 and P5). The peptidomimetics showed moderate to good activity in both inhibition and dissolution of Aβ aggregates as depicted by thioflavin assay, circular dichroism (CD) measurements and microscopy (TEM). The activity of P4 and P5 were studied in a yeast cell model showing Aβ toxicity. P4 and P5 could rescue yeast cells from Aβ toxicity and Aβ aggregates were cleared by the process of autophagy.

  8. Toward the rational design of macrolide antibiotics to combat resistance

    DOE PAGES

    Pavlova, Anna; Parks, Jerry M.; Oyelere, Adegboyega K.; ...

    2017-04-17

    Here, macrolides, one of the most prescribed classes of antibiotics, bind in the bacterial ribosome's polypeptide exit tunnel and inhibit translation. However, mutations and other ribosomal modifications, especially to the base A2058 of the 23S rRNA, have led to a growing resistance problem. Here, we have used molecular dynamics simulations to study the macrolides erythromycin and azithromycin in wild-type, A2058G-mutated, and singly or doubly A2058-methylated Escherichia coli ribosomes. We find that the ribosomal modifications result in less favorable interactions between the base 2058 and the desosamine sugar of the macrolides, as well as greater displacement of the macrolides from theirmore » crystal structure position, illuminating the causes of resistance. We have also examined four azithromycin derivatives containing aromatic indole-analog moieties, which were previously designed based on simulations of the stalling peptide SecM in the ribosome. Surprisingly, we found that the studied moieties could adopt very different geometries when interacting with a key base in the tunnel, A751, possibly explaining their distinct activities. Based on our simulations, we propose modifications to the indole-analog moieties that should increase their interactions with A751 and, consequently, enhance the potency of future azithromycin derivatives.« less

  9. Rational design of a split-Cas9 enzyme complex

    DOE PAGES

    Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; ...

    2015-02-23

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interactmore » on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.« less

  10. Rational Design of Potent, Small, Synthetic Allosteric Inhibitors of Thrombin

    PubMed Central

    Sidhu, Preetpal Singh; Liang, Aiye; Mehta, Akul Y.; Abdel Aziz, May H.; Zhou, Qibing; Desai, Umesh R.

    2011-01-01

    Thrombin is a key enzyme targeted by the majority of current anticoagulants that are direct inhibitors. Allosteric inhibition of thrombin may offer a major advantage of finely tuned regulation. We present here sulfated benzofurans as the first examples of potent, small allosteric inhibitors of thrombin. A sulfated benzofuran library of 15 sulfated monomers and 13 sulfated dimers with different charged, polar and hydrophobic substituents was studied in this work. Synthesis of the sulfated benzofurans was achieved through a multiple step, highly branched strategy, which culminated with microwave-assisted chemical sulfation. Of the 28 potential inhibitors, eleven exhibited reasonable inhibition of human α-thrombin at pH 7.4. Structure activity relationship analysis indicated that sulfation at the 5-position of the benzofuran scaffold was essential for targeting thrombin. A t-butyl 5-sulfated benzofuran derivative was found to be the most potent thrombin inhibitor with an IC50 of 7.3 μM under physiologically relevant conditions. Michaelis-Menten studies showed an allosteric inhibition phenomenon. Plasma clotting assays indicate that the sulfated benzofurans prolong both the activated partial thromboplastin time and prothrombin time. Overall, this work puts forward sulfated benzofurans as the first small, synthetic molecules as powerful lead compounds for the design of a new class of allosteric inhibitors of thrombin. PMID:21714536

  11. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.

    PubMed

    Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha

    2016-12-28

    Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

  12. Rational design of a split-Cas9 enzyme complex.

    PubMed

    Wright, Addison V; Sternberg, Samuel H; Taylor, David W; Staahl, Brett T; Bardales, Jorge A; Kornfeld, Jack E; Doudna, Jennifer A

    2015-03-10

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.

  13. Rational design of a split-Cas9 enzyme complex

    SciTech Connect

    Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; Staahl, Brett T.; Bardales, Jorge A.; Kornfeld, Jack E.; Doudna, Jennifer A.

    2015-02-23

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.

  14. A rational approach in the design of selective mesoporous adsorbents.

    PubMed

    Lam, Koon Fung; Yeung, King Lun; McKay, Gordon

    2006-11-07

    Two MCM-41 derived adsorbents have been tailor-made for the separation of silver and copper ions using the hard-soft, acid-base (HSAB) principle as the design guideline. NH2-MCM-41 containing "hard" Lewis base adsorption sites (i.e., RNH2) was prepared for the adsorption of the "hard" Lewis acid, Cu2+, and SH-MCM-41 with a grafted "soft" thiolpropyl base was prepared for the selective removal of Ag+, a "soft" Lewis acid. Single- and binary-component adsorption studies were conducted at different metal concentrations, solution compositions, and pH values. The experimental results showed that SH-MCM-41 has excellent affinity and capacity for silver adsorption and adsorbed only the silver ions with copper remaining in the solution. The selectivity was not affected by the metal concentration and composition, anion, and pH. Under similar experimental conditions, NH2-MCM-41 selectively adsorbed copper from the binary solution. The selectivity of NH2-MCM-41 remained for the copper at different pH values, although the adsorption capacity diminished at lower pH values. The type of anions used affected copper adsorption on NH2-MCM-41 with an increased copper uptake in the presence of the sulfate ions. A simple Freundlich adsorption model was sufficient to describe metal adsorption on SH-MCM-41 and NH2-MCM-41, and the LeVan and Vermeulen model was successfully used to predict the adsorption capacity and selectivity for binary-component adsorptions.

  15. In silico pathway analysis: the final frontier towards completely rational drug design.

    PubMed

    Yuryev, Anton

    2008-08-01

    Pathway and network analyses are rapidly becoming the mainstream tools for functional interpretation of high-throughput data and for drug discovery. Current scientific literature has plenty of examples on how pathway analysis tools are used across all steps of drug development pipeline. Pathway and network analyses already enable rational selection of drug targets based on the knowledge about disease biology. Pathway analysis tools are also popular for the analysis of drug action and validation of drug efficacy and toxicity. This article overviews current achievements of pathway analysis and suggests future directions for its application in drug development such as rational design of combinatorial therapy and personalized medicine.

  16. Siberian snakes for the Fermilab Main Injector

    SciTech Connect

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-04-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near {+-}45{degrees} are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field.

  17. Rational design of new electrolyte materials for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  18. A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction

    PubMed Central

    Halim, Udayabagya; Zheng, Chu Ran; Chen, Yu; Lin, Zhaoyang; Jiang, Shan; Cheng, Rui; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Exfoliation of layered materials such as graphite and transition metal dichalcogenides into mono- or few-layers is of significant interest for both the fundamental studies and potential applications. Here we report a systematic investigation of the fundamental factors governing the liquid exfoliation process and the rational design of a cosolvent approach for the exfoliation of layered materials. We show that Young’s equation can be used to predict the optimal cosolvent concentration for the effective exfoliation of graphite and molybdenum disulphide in water mixtures with methanol, ethanol, isopropanol and t-butyl alcohol. Moreover, we find that the cosolvent molecular size has an important role in the exfoliation yield, attributed to the larger steric repulsion provided by the larger cosolvent molecules. Our study provides critical insight into the exfoliation of layered materials, and defines a rational strategy for the design of an environmentally friendly pathway to the high yield exfoliation of layered materials. PMID:23896793

  19. Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design.

    PubMed

    Saalfrank, Rolf W; Maid, Harald; Scheurer, Andreas

    2008-01-01

    Supramolecular coordination compounds bear exceptional advantages over their organic counterparts. They are available in one-pot reactions and in high yields and display physical properties that are generally inaccessible with organic species. Moreover, their weak, reversible, noncovalent bonding interactions facilitate error checking and self-correction. This Review emphasizes the achievements in supramolecular coordination chemistry initiated by serendipity and their materialization based on rational design. The recognition of similarities in the synthesis of different supramolecular assemblies allows prediction of potential results in related cases. Supramolecular synthesis obeys guidelines comparable to the "lead sheet" used by small jazz ensembles for improvisation and therefore more often leads to unpredicted results. The combination of detailed symmetry considerations with the basic rules of coordination chemistry has only recently allowed for the design of rational strategies for the construction of a variety of nanosized systems with specified size and shape.

  20. Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules.

    PubMed

    Jakobs, Sebastian; Narayan, Awadhesh; Stadtmüller, Benjamin; Droghetti, Andrea; Rungger, Ivan; Hor, Yew S; Klyatskaya, Svetlana; Jungkenn, Dominik; Stöckl, Johannes; Laux, Martin; Monti, Oliver L A; Aeschlimann, Martin; Cava, Robert J; Ruben, Mario; Mathias, Stefan; Sanvito, Stefano; Cinchetti, Mirko

    2015-09-09

    We present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3. The theoretical predictions are then verified in angular-resolved photoemission experiments. We show that, by tuning the strength of molecule-TI interaction, the surface of the TI can be passivated, the Dirac point can energetically be shifted at will, and Rashba-split quantum-well interface states can be created. These tailored interface properties-passivation, spin-texture tuning, and creation of hybrid interface states-lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.

  1. Residualization Rates of Near Infrared Dyes for the Rational Design of Molecular Imaging Agents

    PubMed Central

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M.

    2016-01-01

    Purpose Near infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. Procedures In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, BODIPY, and oxazine/thiazine/carbopyronin). Results We identify residualizing (half-life > 24 hrs) and non-residualizing dyes (half-life < 24 hrs) in both the far red (~650-680 nm) and near infrared (~740-800 nm) regions. Conclusions This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design. PMID:25869081

  2. Targeting protein–protein interactions by rational design: mimicry of protein surfaces

    PubMed Central

    Fletcher, Steven; Hamilton, Andrew D

    2006-01-01

    Protein–protein interactions play key roles in a range of biological processes, and are therefore important targets for the design of novel therapeutics. Unlike in the design of enzyme active site inhibitors, the disruption of protein–protein interactions is far more challenging, due to such factors as the large interfacial areas involved and the relatively flat and featureless topologies of these surfaces. Nevertheless, in spite of such challenges, there has been considerable progress in recent years. In this review, we discuss this progress in the context of mimicry of protein surfaces: targeting protein–protein interactions by rational design. PMID:16849232

  3. Kinetic resolution of oxazinones: rational exploration of chemical space through the design of experiments.

    PubMed

    Renzi, Polyssena; Kronig, Christel; Carlone, Armando; Eröksüz, Serap; Berkessel, Albrecht; Bella, Marco

    2014-09-08

    The organocatalytic kinetic resolution of 4-substituted oxazinones has been optimised (selectivity factor S up to 98, chiral oxazinone ee values up to 99.6 % (1 a-g) and product ee values up to 90 % (3 a-g)) in a rational way by applying the Design of Experiments (DoE) approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Schlücker, Sebastian

    2014-11-01

    Rationally designed multifunctional plasmonic nanostructures efficiently integrate two or more functionalities into a single entity, for example, with both plasmonic and catalytic activity. This review article is focused on their synthesis and use in surface-enhanced Raman scattering (SERS) as a molecular spectroscopic technique with high sensitivity, fingerprint specificity, and surface selectivity. After a short tutorial on the fundamentals of Raman scattering and SERS in particular, applications ranging from chemistry (heterogeneous catalysis) to biology and medicine (diagnostics/imaging, therapy) are summarized.

  5. Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review.

    PubMed

    Xie, Wei; Schlücker, Sebastian

    2014-11-01

    Rationally designed multifunctional plasmonic nanostructures efficiently integrate two or more functionalities into a single entity, for example, with both plasmonic and catalytic activity. This review article is focused on their synthesis and use in surface-enhanced Raman scattering (SERS) as a molecular spectroscopic technique with high sensitivity, fingerprint specificity, and surface selectivity. After a short tutorial on the fundamentals of Raman scattering and SERS in particular, applications ranging from chemistry (heterogeneous catalysis) to biology and medicine (diagnostics/imaging, therapy) are summarized.

  6. Quantum Dot Superlattice Enabled Rational Design in Optoelectronics and Hydrogen Generation

    DTIC Science & Technology

    2014-11-25

    in Optoelectronics and Hydrogen Generation 5a. CONTRACT NUMBER FA2386-13-1-4074 5b. GRANT NUMBER Grant AOARD-134074 5c. PROGRAM ELEMENT...FA2386-13-1-4074 “Quantum Dot Superlattice Enabled Rational Design in Optoelectronics and Hydrogen Generation” April 21, 2014 PI and Co-PI...impacts on optoelectronic devices, and hydrogen generation under sunlight. Introduction: Intensive research works have been made on inorganic

  7. Rational Canonical Form of Polyphase Matrices with Applications to Designing Paraunitary Filter Banks

    DTIC Science & Technology

    2009-04-01

    Multirate Systems and Filter Banks , Prentice Hall, NJ, 1993. [4] A. Tkacenko and P. P. Vaidyanathan, “Iterative Greedy Algorithm for Solving the FIR...RATIONAL CANONICAL FORM OF POLYPHASE MATRICES WITH APPLICATIONS TO DESIGNING PARAUNITARY FILTER BANKS Peter Vouras, Trac Tran, Michael Ching...arbitrary polyphase matrices and use it to derive a simple implementation of paraunitary filter banks (PUFBs) based on a cascade of elementary building

  8. Tailored immunogens for rationally designed antibody-based HIV-1 vaccines.

    PubMed

    Mouquet, Hugo

    2015-08-01

    Protective HIV-1 vaccines would require the induction of broadly neutralizing antibodies (bNAbs) to be effective against the vast diversity of circulating viral strains. Three new studies provide in vivo demonstration that rational design of vaccine strategies using engineered and native-like HIV-1 immunogens can be exploited for guiding B-cell evolution towards the genesis of HIV-1 bNAbs.

  9. The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design

    PubMed Central

    Cozza, Giorgio

    2017-01-01

    Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial and error testing”. In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising. PMID:28230762

  10. The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design.

    PubMed

    Cozza, Giorgio

    2017-02-20

    Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by "trial and error testing". In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.

  11. Rational peptide design for functional materials via molecular self-assembly

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikan

    Supra-molecular self-assembly of rationally designed peptides is a promising approach to construct functional materials. This thesis specifically focuses on hydrogels, an important class of materials with potential for applications in tissue engineering, drug delivery and micro-fluidic systems. The objective is to design short peptides that would specifically adopt a stimulus dependent conformation that is strongly amenable to self-assembly resulting in material formation. With this concept the rational design of a 20 amino acid peptide (MAX1) that folds into an amphiphilic beta-hairpin structure and then self-assembles to form a rigid hydrogel under alkaline conditions is presented. The molecular level conformation of MAX1 was characterized using circular dichroism and FTIR spectroscopies. The mesoscale structure of the hydrogel assessed using confocal and transmission electron micron microscopies and neutron scattering techniques shows that peptide self-assembly results in the formation of fibrils that are homogeneously 3 nm in diameter. The mechanical properties of the hydrogel probed using oscillatory rheology shows that MAX1 forms a stiff hydrogel. Since the self-assembly process is coupled to the intra-molecularly folded state of the peptide, stimulus responsiveness can be specifically engineered into the sequence by rational design. This was demonstrated in the design of peptides that form hydrogels in response to a specific stimulus such as temperature, pH or ionic strength. The significance of peptide design in the context of self-assembly and its relationship to the nanostructure was studied by designing a series of peptides derived from MAX1. Evolving from these studies is an understanding of the relationship between molecular level peptide structure and the nanoscale supra-molecular morphology. Based on this, it has been shown that alternate morphologies distinct from those observed with the gel forming peptides, such as non-twisting laminates or tube

  12. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites

    PubMed Central

    Lau, Vincent Wing-hei; Moudrakovski, Igor; Botari, Tiago; Weinberger, Simon; Mesch, Maria B.; Duppel, Viola; Senker, Jürgen; Blum, Volker; Lotsch, Bettina V.

    2016-01-01

    The heptazine-based polymer melon (also known as graphitic carbon nitride, g-C3N4) is a promising photocatalyst for hydrogen evolution. Nonetheless, attempts to improve its inherently low activity are rarely based on rational approaches because of a lack of fundamental understanding of its mechanistic operation. Here we employ molecular heptazine-based model catalysts to identify the cyanamide moiety as a photocatalytically relevant ‘defect'. We exploit this knowledge for the rational design of a carbon nitride polymer populated with cyanamide groups, yielding a material with 12 and 16 times the hydrogen evolution rate and apparent quantum efficiency (400 nm), respectively, compared with the unmodified melon. Computational modelling and material characterization suggest that this moiety improves coordination (and, in turn, charge transfer kinetics) to the platinum co-catalyst and enhances the separation of the photogenerated charge carriers. The demonstrated knowledge transfer for rational catalyst design presented here provides the conceptual framework for engineering high-performance heptazine-based photocatalysts. PMID:27387536

  13. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites

    NASA Astrophysics Data System (ADS)

    Lau, Vincent Wing-Hei; Moudrakovski, Igor; Botari, Tiago; Weinberger, Simon; Mesch, Maria B.; Duppel, Viola; Senker, Jürgen; Blum, Volker; Lotsch, Bettina V.

    2016-07-01

    The heptazine-based polymer melon (also known as graphitic carbon nitride, g-C3N4) is a promising photocatalyst for hydrogen evolution. Nonetheless, attempts to improve its inherently low activity are rarely based on rational approaches because of a lack of fundamental understanding of its mechanistic operation. Here we employ molecular heptazine-based model catalysts to identify the cyanamide moiety as a photocatalytically relevant `defect'. We exploit this knowledge for the rational design of a carbon nitride polymer populated with cyanamide groups, yielding a material with 12 and 16 times the hydrogen evolution rate and apparent quantum efficiency (400 nm), respectively, compared with the unmodified melon. Computational modelling and material characterization suggest that this moiety improves coordination (and, in turn, charge transfer kinetics) to the platinum co-catalyst and enhances the separation of the photogenerated charge carriers. The demonstrated knowledge transfer for rational catalyst design presented here provides the conceptual framework for engineering high-performance heptazine-based photocatalysts.

  14. Inactivation of TNF Signaling by Rationally Designed Dominant-Negative TNF Variants

    NASA Astrophysics Data System (ADS)

    Steed, Paul M.; Tansey, Malú G.; Zalevsky, Jonathan; Zhukovsky, Eugene A.; Desjarlais, John R.; Szymkowski, David E.; Abbott, Christina; Carmichael, David; Chan, Cheryl; Cherry, Lisa; Cheung, Peter; Chirino, Arthur J.; Chung, Hyo H.; Doberstein, Stephen K.; Eivazi, Araz; Filikov, Anton V.; Gao, Sarah X.; Hubert, René S.; Hwang, Marian; Hyun, Linus; Kashi, Sandhya; Kim, Alice; Kim, Esther; Kung, James; Martinez, Sabrina P.; Muchhal, Umesh S.; Nguyen, Duc-Hanh T.; O'Brien, Christopher; O'Keefe, Donald; Singer, Karen; Vafa, Omid; Vielmetter, Jost; Yoder, Sean C.; Dahiyat, Bassil I.

    2003-09-01

    Tumor necrosis factor (TNF) is a key regulator of inflammatory responses and has been implicated in many pathological conditions. We used structure-based design to engineer variant TNF proteins that rapidly form heterotrimers with native TNF to give complexes that neither bind to nor stimulate signaling through TNF receptors. Thus, TNF is inactivated by sequestration. Dominant-negative TNFs represent a possible approach to anti-inflammatory biotherapeutics, and experiments in animal models show that the strategy can attenuate TNF-mediated pathology. Similar rational design could be used to engineer inhibitors of additional TNF superfamily cytokines as well as other multimeric ligands.

  15. Inventing and improving ribozyme function: rational design versus iterative selection methods

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    Two major strategies for generating novel biological catalysts exist. One relies on our knowledge of biopolymer structure and function to aid in the 'rational design' of new enzymes. The other, often called 'irrational design', aims to generate new catalysts, in the absence of detailed physicochemical knowledge, by using selection methods to search a library of molecules for functional variants. Both strategies have been applied, with considerable success, to the remodeling of existing ribozymes and the development of ribozymes with novel catalytic function. The two strategies are by no means mutually exclusive, and are best applied in a complementary fashion to obtain ribozymes with the desired catalytic properties.

  16. Inventing and improving ribozyme function: rational design versus iterative selection methods

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    Two major strategies for generating novel biological catalysts exist. One relies on our knowledge of biopolymer structure and function to aid in the 'rational design' of new enzymes. The other, often called 'irrational design', aims to generate new catalysts, in the absence of detailed physicochemical knowledge, by using selection methods to search a library of molecules for functional variants. Both strategies have been applied, with considerable success, to the remodeling of existing ribozymes and the development of ribozymes with novel catalytic function. The two strategies are by no means mutually exclusive, and are best applied in a complementary fashion to obtain ribozymes with the desired catalytic properties.

  17. Rational drug design of antineoplastic agents using 3D-QSAR, cheminformatic, and virtual screening approaches.

    PubMed

    Vucicevic, Jelica; Nikolic, Katarina; Mitchell, John B O

    2017-07-12

    Computer-Aided Drug Design has strongly accelerated the development of novel antineoplastic agents by helping in the hit identification, optimization, and evaluation. Computational approaches such as cheminformatic search, virtual screening, pharmacophore modeling, molecular docking and dynamics have been developed and applied to explain the activity of bioactive molecules, design novel agents, increase the success rate of drug research, and decrease the total costs of drug discovery. Similarity searches and virtual screening are used to identify molecules with an increased probability to interact with drug targets of interest, while the other computational approaches are applied for the design and evaluation of molecules with enhanced activity and improved safety profile. In this review are described the main in silico techniques used in rational drug design of antineoplastic agents and presented optimal combinations of computational methods for design of more efficient antineoplastic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Multi-step usage of in vivo models during rational drug design and discovery.

    PubMed

    Williams, Charles H; Hong, Charles C

    2011-01-01

    In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET) properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design.

  19. Recent Advances in the Rational Design and Optimization of Antibacterial Agents.

    PubMed

    Jones, Jesse A; Virga, Kristopher G; Gumina, Giuseppe; Hevener, Kirk E

    2016-09-01

    This review discusses next-generation antibacterial agents developed using rational, or targeted, drug design strategies. The focus of this review is on small-molecule compounds that have been designed to bypass developing bacterial resistance, improve the antibacterial spectrum of activity, and/or to optimize other properties, including physicochemical and pharmacokinetic properties. Agents are discussed that affect known antibacterial targets, such as the bacterial ribosome, nucleic acid binding proteins, and proteins involved in cell-wall biosynthesis; as well as some affecting novel bacterial targets which do not have currently marketed agents. The discussion of the agents focuses on the rational design strategies employed and the synthetic medicinal chemistry and structure-based design techniques utilized by the scientists involved in the discoveries, including such methods as ligand- and structure-based strategies, structure-activity relationship (SAR) expansion strategies, and novel synthetic organic chemistry methods. As such, the discussion is limited to small-molecule therapeutics that have confirmed macromolecular targets and encompasses only a fraction of all antibacterial agents recently approved or in late-stage clinical trials. The antibacterial agents selected have been recently approved for use on the U.S. or European markets or have shown promising results in phase 2 or phase 3 U.S.

  20. Rational design of soft mechanical metamaterials: Independent tailoring of elastic properties with randomness

    NASA Astrophysics Data System (ADS)

    Mirzaali, M. J.; Hedayati, R.; Vena, P.; Vergani, L.; Strano, M.; Zadpoor, A. A.

    2017-07-01

    The elastic properties of mechanical metamaterials are direct functions of their topological designs. Rational design approaches based on computational models could, therefore, be used to devise topological designs that result in the desired properties. It is of particular importance to independently tailor the elastic modulus and Poisson's ratio of metamaterials. Here, we present patterned randomness as a strategy for independent tailoring of both properties. Soft mechanical metamaterials incorporating various types of patterned randomness were fabricated using an indirect additive manufacturing technique and mechanically tested. Computational models were also developed to predict the topology-property relationship in a wide range of proposed topologies. The results of this study show that patterned randomness allows for independent tailoring of the elastic properties and covering a broad area of the elastic modulus-Poisson's ratio plane. The uniform and homogenous topologies constitute the boundaries of the covered area, while topological designs with patterned randomness fill the enclosed area.

  1. Rational design and application of a redox-active, photoresponsive, discrete metallogelator.

    PubMed

    Afrasiabi, Rouzbeh; Kraatz, Heinz-Bernhard

    2015-05-18

    A photoresponsive discrete metallogelator was rationally designed by incorporating a photochromic azobenzene subunit in the structure of a redox-active ferrocene-peptide conjugate. The target molecule was purposefully equipped with a dipeptide unit capable of self-assembly in response to sonication. The designed molecule was shown to undergo supramolecular self-assembly and achieve organogelation in response to ultrasound, light, heat, and redox signals. The sol-gel phase transition of the designed gelator was found to be sensitive to a plethora of input stimuli, allowing the application of the sol-gel transition behavior in basic logic gate operations. A gel-based NOT logic gate operation was realized when the redox-active property of the organogel was examined by using different oxidizing agents. The smart response of the gelator was further exploited in designing XOR operations under oxidizing or non-oxidizing conditions.

  2. Control over Catenation in Metal−Organic Frameworks via Rational Design of the Organic Building Block

    SciTech Connect

    Farha, Omar K.; Malliakas, Christos D.; Kanatzidis, Mercouri G.; Hupp, Joseph T.

    2010-02-19

    Metal-organic frameworks (MOFs), a hybrid class of materials comprising inorganic nodes and organic struts, have potential application in many areas due to their high surface areas and uniform pores and channels. One of the key challenges to be overcome in MOF synthesis is the strong propensity for catenation (growth of multiple independent networks within a given crystal), as catenation reduces cavity sizes and diminishes porosity. Here we demonstrate that rational design of organic building blocks, which act as strut-impervious scaffolds, can be exploited to generate highly desired noncatenated materials in a controlled fashion.

  3. Recent advances in the rational design of silica-based nanoparticles for gene therapy.

    PubMed

    Niut, Yuting; Popatt, Amirali; Yu, Meihua; Karmakar, Surajit; Gu, Wenyi; Yu, Chengzhong

    2012-10-01

    Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.

  4. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  5. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy.

    PubMed

    Yang, Xian-Zhu; Du, Xiao-Jiao; Liu, Yang; Zhu, Yan-Hua; Liu, Yang-Zhong; Li, Ya-Ping; Wang, Jun

    2014-02-12

    Rationally designed PIC nanoparticles as next-generation delivery system: we have developed a core-shell-corona PIC nanoparticle (⊕) NP/Pt@PPC-DA as a next-generation delivery system. (⊕) NP/Pt@PPC-DA exhibits prolonged circulation and enhanced drug accumulation in tumors. Subsequently, tumor pH leads to the release of (⊕) NP/Pt, which facilitates cellular uptake followed by rapid intracellular cisplatin release. Using this delivery strategy cisplatin-resistant tumor growth in a murine xenograft model has been successfully suppressed.

  6. Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    PubMed Central

    Chen, Ing-Chien; Lee, Yu-Ching; Chen, Jun-Bo; Tsai, Keng-Chang; Chen, Ching-Tai; Chang, Jeng-Yih; Yang, Ei-Wen; Hsu, Po-Chiang; Jian, Jhih-Wei; Hsu, Hung-Ju; Chang, Hung-Ju; Hsu, Wen-Lian; Huang, Kai-Fa; Ma, Alex Che; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes. PMID:22457753

  7. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration

    PubMed Central

    Ma, Bing; Xie, Jingwei; Jiang, Jiang; Shuler, Franklin D; Bartlett, David E

    2013-01-01

    This article reviews recent significant advances in the design of nanofiber scaffolds for orthopedic tissue repair and regeneration. It begins with a brief introduction on the limitations of current approaches for orthopedic tissue repair and regeneration. It then illustrates that rationally designed scaffolds made up of electrospun nanofibers could be a promising solution to overcome the problems that current approaches encounter. The article also discusses the intriguing properties of electrospun nanofibers, including control of composition, structures, orders, alignments and mechanical properties, use as carriers for topical drug and/or gene sustained delivery, and serving as substrates for the regulation of cell behaviors, which could benefit musculoskeletal tissue repair and regeneration. It further highlights a few of the many recent applications of electrospun nanofiber scaffolds in repairing and regenerating various orthopedic tissues. Finally, the article concludes with perspectives on the challenges and future directions for better design, fabrication and utilization of nanofiber scaffolds for orthopedic tissue engineering. PMID:23987110

  8. Rational design of mass diffusion metamaterial concentrators based on coordinate transformations

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-08-01

    Recent advances in coordinate transformations of Fick's equation have paved the way for the design of metamaterial devices that can manipulate mass diffusion flux. The control of diffusion paths has a great potential for the design of novel catalytic and separation systems in chemical and biomolecular engineering. In order to explore these new applications, it is necessary to understand mass diffusion in coordinate transformation metamaterial devices. In this work, we present a comprehensive study on the impact of structure and material properties on the resultant physical properties of mass concentrator metamaterial shells. The concentration gradient at the core, the total mass flow rate towards the core, and the disturbance of the external concentration field are systematically examined in order to provide guidelines for the rational design and fabrication of metamaterial mass concentrators. A practical case is also presented where the concentration of oxygen diffusing in a polymeric system is studied.

  9. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration.

    PubMed

    Ma, Bing; Xie, Jingwei; Jiang, Jiang; Shuler, Franklin D; Bartlett, David E

    2013-09-01

    This article reviews recent significant advances in the design of nanofiber scaffolds for orthopedic tissue repair and regeneration. It begins with a brief introduction on the limitations of current approaches for orthopedic tissue repair and regeneration. It then illustrates that rationally designed scaffolds made up of electrospun nanofibers could be a promising solution to overcome the problems that current approaches encounter. The article also discusses the intriguing properties of electrospun nanofibers, including control of composition, structures, orders, alignments and mechanical properties, use as carriers for topical drug and/or gene sustained delivery, and serving as substrates for the regulation of cell behaviors, which could benefit musculoskeletal tissue repair and regeneration. It further highlights a few of the many recent applications of electrospun nanofiber scaffolds in repairing and regenerating various orthopedic tissues. Finally, the article concludes with perspectives on the challenges and future directions for better design, fabrication and utilization of nanofiber scaffolds for orthopedic tissue engineering.

  10. Rational design of the column of a heavy multipurpose machining center

    NASA Astrophysics Data System (ADS)

    Atapin, V. V.; Kurlaev, N. V.

    2016-04-01

    The main purpose in the design of supporting constructions of heavy multipurpose machining center is the reduction of mass at the given precision and productivity of machining. Accomplish these ends the technology of rational design of supporting constructions is offered. This technology is based on the decomposition method and the finite elements method in the combination with optimization methods. The technology has four stages: 1) calculation of external forces and loads, 2) as a result the boundary conditions (force, kinematics) for individual supporting constructions are formed, 3) a problem about final optimal distribution of a material by the individual supporting constructions with the real cross-section is solved; 4) dynamic analysis. By the example of design of the column of a heavy multipurpose machining center the main stages of rational design of the individual supporting constructions are shown. At a design stage of the carrying system consisting of load-bearing structures with simplified geometry, optimum overall dimensions of the column are identified. For the admitted system of preferences, it is necessary to accept the fact that the carrying system with the column with the sizes of cross section of 1.8 m (along x axis) and 2.6 m (along y axis) is the best. The analysis of the work of the column under the torsion condition with the use of method of mechanics shows that the column with square cross sections = 2.46·2.46 m which rigidity on torsion is 26 % higher in comparison with a production version is the best. The results of calculation show that a production-release design of the column with longitudinal and transverse edges of rigidity is 24 % heavier than the column with the edges located on a diagonally at equal rigidity.

  11. Rational design of metal nitride redox materials for solar-driven ammonia synthesis

    PubMed Central

    Michalsky, Ronald; Pfromm, Peter H.; Steinfeld, Aldo

    2015-01-01

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700–1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia. PMID:26052421

  12. Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts.

    PubMed

    Qu, Yongquan; Liao, Lei; Cheng, Rui; Wang, Yue; Lin, Yung-Chen; Huang, Yu; Duan, Xiangfeng

    2010-05-12

    Photocatalysts are of significant interest in solar energy harvesting and conversion into chemical energy. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here we report the rational design of a new generation of freestanding photoelectric nanodevices as highly efficient and stable photocatalysts by integrating a nanoscale photodiode with two redox catalysts in a single nanowire heterostructure. We show that a platinum-silicon-silver nanowire heterostructure can be synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. We further demonstrated that the Schottky diodes exhibited a pronounced photovoltaic effect with nearly unity internal quantum efficiency and that the integrated nanowire heterostructures could be used as highly efficient photocatalysts for a wide range of thermodynamically downhill and uphill reactions including the photocatalytic degradation of organic dyes and the reduction of metal ions and carbon dioxide using visible light. Our studies for the first time demonstrated the integration of multiple distinct functional components into a single nanostructure to form a standalone active nanosystem and for the first time successfully realized a photoelectric nanodevice that is both highly efficient and highly stable throughout the entire solar spectrum. It thus opens a rational avenue to the design and synthesis of a new generation of photoelectric nanosystems with unprecedented efficiency and stability and will have a broad impact in areas including environmental remediation, artificial photosynthesis and solar fuel production.

  13. Computer applications for prediction of protein–protein interactions and rational drug design

    PubMed Central

    Grosdidier, Solène; Totrov, Max; Fernández-Recio, Juan

    2009-01-01

    In recent years, protein–protein interactions are becoming the object of increasing attention in many different fields, such as structural biology, molecular biology, systems biology, and drug discovery. From a structural biology perspective, it would be desirable to integrate current efforts into the structural proteomics programs. Given that experimental determination of many protein–protein complex structures is highly challenging, and in the context of current high-performance computational capabilities, different computer tools are being developed to help in this task. Among them, computational docking aims to predict the structure of a protein–protein complex starting from the atomic coordinates of its individual components, and in recent years, a growing number of docking approaches are being reported with increased predictive capabilities. The improvement of speed and accuracy of these docking methods, together with the modeling of the interaction networks that regulate the most critical processes in a living organism, will be essential for computational proteomics. The ultimate goal is the rational design of drugs capable of specifically inhibiting or modifying protein–protein interactions of therapeutic significance. While rational design of protein–protein interaction inhibitors is at its very early stage, the first results are promising. PMID:21918619

  14. Rational design and application of responsive α-helical peptide hydrogels

    NASA Astrophysics Data System (ADS)

    Banwell, Eleanor F.; Abelardo, Edgardo S.; Adams, Dave J.; Birchall, Martin A.; Corrigan, Adam; Donald, Athene M.; Kirkland, Mark; Serpell, Louise C.; Butler, Michael F.; Woolfson, Derek N.

    2009-07-01

    Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs, and as supports for cell growth and tissue engineering. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials. Here, we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks of fibrils melt on heating, whereas those formed through hydrophobic fibril-fibril interactions strengthen when warmed. The hSAFs are dual-peptide systems that gel only on mixing, which gives tight control over assembly. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture.

  15. Rationally designed cyclic analogues of luteinizing hormone-releasing hormone: enhanced enzymatic stability and biological properties.

    PubMed

    Laimou, Despina; Katsila, Theodora; Matsoukas, John; Schally, Andrew; Gkountelias, Kostas; Liapakis, George; Tamvakopoulos, Constantin; Tselios, Theodore

    2012-12-01

    This article describes the rational design, synthesis and pharmacological properties of amide-linked cyclic analogues of Luteinizing Hormone-Releasing Hormone (LHRH) with substitutions at positions 1 (Pro), 6 (D-Leu/D-Trp), 9 (Aze) and 10 (BABA/Acp). These LHRH analogues fulfil the conformational requirements that are known in the literature (bend in the 5-8 segment) to be essential for receptor recognition and activation. Although, they are characterised by an overall low binding affinity to the LHRH-I receptor, the cyclic analogues that were studied and especially the cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH, exhibit a profoundly enhanced in vitro and in vivo stability and improved pharmacokinetics in comparison with their linear counterpart and leuprolide. Upon receptor binding, cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH causes testosterone release in C57/B16 mice (in vivo efficacy) that is comparable to that of leuprolide. Testosterone release is an acutely dose dependent effect that is blocked by the LHRH-I receptor antagonist, cetrorelix. The pharmacokinetic advantages and efficacy of cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH render this analogue a promising platform for future rational drug design studies towards the development of non-peptide LHRH mimetics.

  16. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.

    PubMed

    Wu, Tzu-Hui; Chen, Chun-Chi; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Lai, Hui-Lin; Huang, Ting-Yung; Liu, Je-Ruei; Guo, Rey-Ting

    2014-04-10

    Escherichia coli phytase (EcAppA) which hydrolyzes phytate has been widely applied in the feed industry, but the need to improve the enzyme activity and thermostability remains. Here, we conduct rational design with two strategies to enhance the EcAppA performance. First, residues near the substrate binding pocket of EcAppA were modified according to the consensus sequence of two highly active Citrobacter phytases. One out of the eleven mutants, V89T, exhibited 17.5% increase in catalytic activity, which might be a result of stabilized protein folding. Second, the EcAppA glycosylation pattern was modified in accordance with the Citrobacter phytases. An N-glycosylation motif near the substrate binding site was disrupted to remove spatial hindrance for phytate entry and product departure. The de-glycosylated mutants showed 9.6% increase in specific activity. On the other hand, the EcAppA mutants that adopt N-glycosylation motifs from CbAppA showed improved thermostability that three mutants carrying single N-glycosylation motif exhibited 5.6-9.5% residual activity after treatment at 80°C (1.8% for wild type). Furthermore, the mutant carrying all three glycosylation motifs exhibited 27% residual activity. In conclusion, a successful rational design was performed to obtain several useful EcAppA mutants with better properties for further applications.

  17. Rational Design and Synthesis of Freestanding Photoelectric Nanodevices as Highly Efficient Photocatalysts

    PubMed Central

    Qu, Yongquan; Liao, Lei; Cheng, Rui; Wang, Yue; Lin, Yung-chen; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Photocatalysts are of significant interest for solar energy harvesting and conversion into chemical energy. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here we report the rational design of a new generation of freestanding photoelectric nanodevices as highly efficient and stable photocatalysts by integrating a nanoscale photodiode with two redox catalysts in a single nanowire heterostructure. We show that a platinum-silicon-silver nanowire heterostructure can be synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. We further demonstrated that the Schottky diodes exhibited pronounced photovoltaic effect with nearly unity internal quantum efficiency, and that the integrated nanowire heterostructures could be used as highly efficient photocatalysts for a wide range of thermodynamically downhill and uphill reactions including photocatalytic degradation of organic dyes, reduction of metal ions and carbon dioxide using visible light. Our studies for the first time demonstrated the integration of multiple distinct functional components into a single nanostructure to form a standalone active nanosystem, and for the first time successfully realized a photoelectric nanodevice that is both highly efficient and highly stable throughout the entire solar spectrum. It thus opens a rational avenue to design and synthesize a new generation of photoelectric nanosystems with unprecedented efficiency and stability, and will impact broadly in areas including environmental remediation and solar fuel production. PMID:20373781

  18. Rational design of DNA motors: fuel optimization through single-molecule fluorescence.

    PubMed

    Tomov, Toma E; Tsukanov, Roman; Liber, Miran; Masoud, Rula; Plavner, Noa; Nir, Eyal

    2013-08-14

    While numerous DNA-based molecular machines have been developed in recent years, high operational yield and speed remain a major challenge. To understand the reasons for the limited performance, and to find rational solutions, we applied single-molecule fluorescence techniques and conducted a detailed study of the reactions involved in the operation of a model system comprised of a bipedal DNA walker that strides on a DNA origami track powered by interactions with fuel and antifuel strands. Analysis of the kinetic profiles of the leg-lifting reactions indicates a pseudo-first-order antifuel binding mechanism leading to a rapid and complete leg-lifting, indicating that the fuel-removal reaction is not responsible for the 1% operational yield observed after six steps. Analysis of the leg-placing reactions showed that although increased concentrations of fuel increase the reaction rate, they decrease the yield by consecutively binding the motor and leading to an undesirable trapped state. Recognizing this, we designed asymmetrical hairpin-fuels that by regulating the reaction hierarchy avoid consecutive binding. Motors operating with the improved fuels show 74% yield after 12 consecutive reactions, a dramatic increase over the 1% observed for motors operating with nonhairpin fuels. This work demonstrates that studying the mechanisms of the reactions involved in the operation of DNA-based molecular machines using single-molecule fluorescence can facilitate rationally designed improvements that increase yield and speed and promote the applicability of DNA-based machines.

  19. Simultaneous inhibition of aberrant cancer kinome using rationally designed polymer-protein core-shell nanomedicine.

    PubMed

    Chandran, Parwathy; Gupta, Neha; Retnakumari, Archana Payickattu; Malarvizhi, Giridharan Loghanathan; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2013-11-01

    Simultaneous inhibition of deregulated cancer kinome using rationally designed nanomedicine is an advanced therapeutic approach. Herein, we have developed a polymer-protein core-shell nanomedicine to inhibit critically aberrant pro-survival kinases (mTOR, MAPK and STAT5) in primitive (CD34(+)/CD38(-)) Acute Myeloid Leukemia (AML) cells. The nanomedicine consists of poly-lactide-co-glycolide core (~250 nm) loaded with mTOR inhibitor, everolimus, and albumin shell (~25 nm thick) loaded with MAPK/STAT5 inhibitor, sorafenib and the whole construct was surface conjugated with monoclonal antibody against CD33 receptor overexpressed in AML. Electron microscopy confirmed formation of core-shell nanostructure (~290 nm) and flow cytometry and confocal studies showed enhanced cellular uptake of targeted nanomedicine. Simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells, was demonstrated using immunoblotting, cytotoxicity and apoptosis assays. This cell receptor plus multi-kinase targeted core-shell nanomedicine was found better specific and tolerable compared to current clinical regime of cytarabine and daunorubicin. These authors demonstrate simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells by using rationally designed polymer-protein core-shell nanomedicine, provoding an advanced method to eliminate cancer cells, with the hope of future therapeutic use. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Rational design of metal nitride redox materials for solar-driven ammonia synthesis.

    PubMed

    Michalsky, Ronald; Pfromm, Peter H; Steinfeld, Aldo

    2015-06-06

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia.

  1. Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1.

    PubMed

    Nguyen, Lien; Luu, Long M; Peng, Shaohong; Serrano, Julio F; Chan, H Y Edwin; Zimmerman, Steven C

    2015-11-11

    Single-agent, single-target therapeutic approaches are often limited by a complex disease pathobiology. We report rationally designed, multi-target agents for myotonic dystrophy type 1 (DM1). DM1 originates in an abnormal expansion of CTG repeats (CTG(exp)) in the DMPK gene. The resultant expanded CUG transcript (CUG(exp)) identified as a toxic agent sequesters important proteins, such as muscleblind-like proteins (MBNL), undergoes repeat-associated non-ATG (RAN) translation, and potentially causes microRNA dysregulation. We report rationally designed small molecules that target the DM1 pathobiology in vitro in three distinct ways by acting simultaneously as transcription inhibitors, by inhibiting aberrant protein binding to the toxic RNA, and by acting as RNase mimics to degrade the toxic RNA. In vitro, the agents are shown to (1) bind CTG(exp) and inhibit formation of the CUG(exp) transcript, (2) bind CUG(exp) and inhibit sequestration of MBNL1, and (3) cleave CUG(exp) in an RNase-like manner. The most potent compounds are capable of reducing the levels of CUG(exp) in DM1 model cells, and one reverses two separate CUG(exp)-induced phenotypes in a DM1 Drosophila model.

  2. Rational Design of Chiral Nanostructures from Self-Assembly of a Ferrocene-Modified Dipeptide.

    PubMed

    Wang, Yuefei; Qi, Wei; Huang, Renliang; Yang, Xuejiao; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2015-06-24

    We report a new paradigm for the rational design of chiral nanostructures that is based on the hierarchical self-assembly of a ferrocene (Fc)-modified dipeptide, ferrocene-L-Phe-L-Phe-OH (Fc-FF). Compared to other chiral self-assembling systems, Fc-FF is unique because of its smaller size, biocompatibility, multiple functions (a redox center), and environmental responsiveness. X-ray and spectroscopic analyses showed that the incorporation of counterions during the hierarchical self-assembly of Fc-FF changed the conformations of the secondary structures from flat β sheets into twisted β sheets. This approach enables chiral self-assembly and the formation of well-defined chiral nanostructures composed of helical twisted β sheets. We identified two elementary forms for the helical twist of the β sheets, which allowed us to create a rich variety of rigid chiral nanostructures over a wide range of scales. Furthermore, through subtle modulations in the counterions, temperature, and solvent, we are able to precisely control the helical pitch, diameter, and handedness of the self-assembled chiral nanostructures. This unprecedented level of control not only offers insights into how rationally designed chiral nanostructures can be formed from simple molecular building blocks but also is of significant practical value for the use in chiroptics, templates, chiral sensing, and separations.

  3. The rational design and construction of a cuboidal iron–sulfur protein

    PubMed Central

    Coldren, Christopher D.; Hellinga, Homme W.; Caradonna, John P.

    1997-01-01

    Rational protein design is an emerging approach for testing general theories of protein chemistry through the creation of new structures and functions. Here we present the first successful introduction by rational design of a [Fe4S4] cuboidal cluster into the hydrophobic core of Escherichia coli thioredoxin, a protein normally devoid of metal centers. Cuboidal [Fe4S4] is one of the stable forms of self-assembled iron–sulfur clusters that are thought to represent some of the earliest evolved biological redox centers. [Fe4S4] clusters have been recruited for use in a variety of proteins whose functions are central to many of the major biochemical processes ranging from simple soluble electron-transfer agents, to membrane-bound components of electron-transfer chains, to electron reservoirs in complex metalloenzymes such as nitrogenase. By situating an [Fe4S4] cluster into a protein environment not previously adapted by evolution we can explore the factors by which their activity is modulated by the protein matrix. PMID:9192617

  4. Rational design and application of responsive alpha-helical peptide hydrogels.

    PubMed

    Banwell, Eleanor F; Abelardo, Edgardo S; Adams, Dave J; Birchall, Martin A; Corrigan, Adam; Donald, Athene M; Kirkland, Mark; Serpell, Louise C; Butler, Michael F; Woolfson, Derek N

    2009-07-01

    Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs, and as supports for cell growth and tissue engineering. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials. Here, we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely alpha-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of alpha-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks of fibrils melt on heating, whereas those formed through hydrophobic fibril-fibril interactions strengthen when warmed. The hSAFs are dual-peptide systems that gel only on mixing, which gives tight control over assembly. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture.

  5. Rational design and application of responsive α-helical peptide hydrogels

    PubMed Central

    Banwell, Eleanor F.; Abelardo, Edgardo S.; Adams, Dave J.; Birchall, Martin A.; Corrigan, Adam; Donald, Athene M.; Kirkland, Mark; Serpell, Louise C.; Butler, Michael F.; Woolfson, Derek N.

    2009-01-01

    Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs; and as supports for cell growth and tissue engineering1. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials2-4. Here we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks melt upon heating, whereas those formed via hydrophobic interactions strengthen when warmed. The hSAFs are dual-peptide systems that only gel on mixing, which gives tight control over assembly5. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture. PMID:19543314

  6. Rational design of ¹³C-labeling experiments for metabolic flux analysis in mammalian cells.

    PubMed

    Crown, Scott B; Ahn, Woo Suk; Antoniewicz, Maciek R

    2012-05-16

    ¹³C-Metabolic flux analysis (¹³C-MFA) is a standard technique to probe cellular metabolism and elucidate in vivo metabolic fluxes. 13C-Tracer selection is an important step in conducting ¹³C-MFA, however, current methods are restricted to trial-and-error approaches, which commonly focus on an arbitrary subset of the tracer design space. To systematically probe the complete tracer design space, especially for complex systems such as mammalian cells, there is a pressing need for new rational approaches to identify optimal tracers. Recently, we introduced a new framework for optimal ¹³C-tracer design based on elementary metabolite units (EMU) decomposition, in which a measured metabolite is decomposed into a linear combination of so-called EMU basis vectors. In this contribution, we applied the EMU method to a realistic network model of mammalian metabolism with lactate as the measured metabolite. The method was used to select optimal tracers for two free fluxes in the system, the oxidative pentose phosphate pathway (oxPPP) flux and anaplerosis by pyruvate carboxylase (PC). Our approach was based on sensitivity analysis of EMU basis vector coefficients with respect to free fluxes. Through efficient grouping of coefficient sensitivities, simple tracer selection rules were derived for high-resolution quantification of the fluxes in the mammalian network model. The approach resulted in a significant reduction of the number of possible tracers and the feasible tracers were evaluated using numerical simulations. Two optimal, novel tracers were identified that have not been previously considered for ¹³C-MFA of mammalian cells, specifically [2,3,4,5,6-¹³C]glucose for elucidating oxPPP flux and [3,4-¹³C]glucose for elucidating PC flux. We demonstrate that ¹³C-glutamine tracers perform poorly in this system in comparison to the optimal glucose tracers. In this work, we have demonstrated that optimal tracer design does not need to be a pure simulation

  7. A rational design approach for amino acid supplementation in hepatocyte culture.

    PubMed

    Yang, Hong; Roth, Charles M; Ierapetritou, Marianthi G

    2009-08-15

    Improvement of culture media for mammalian cells is conducted via empirical adjustments, sometimes aided by statistical design methodologies. Here, we demonstrate a proof of principle for the use of constraints-based modeling to achieve enhanced performance of liver-specific functions of cultured hepatocytes during plasma exposure by adjusting amino acid supplementation and hormone levels in the medium. Flux balance analysis (FBA) is used to determine an amino acid flux profile consistent with a desired output; this is used to design an amino acid supplementation. Under conditions of no supplementation, empirical supplementation, and designed supplementation, hepatocytes were exposed to plasma and their morphology, specific cell functions (urea, albumin production) and lipid metabolism were measured. Urea production under the designed amino acid supplementation was found to be increased compared with previously reported (empirical) amino acid supplementation. Not surprisingly, the urea production attained was less than the theoretical value, indicating the existence of pathways or constraints not present in the current model. Although not an explicit design objective, albumin production was also increased by designed amino acid supplementation, suggesting a functional linkage between these outputs. In conjunction with traditional approaches to improving culture conditions, the rational design approach described herein provides a novel means to tune the metabolic outputs of cultured hepatocytes. Copyright 2009 Wiley Periodicals, Inc.

  8. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies

    NASA Astrophysics Data System (ADS)

    Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin

    2015-07-01

    Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm-2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles.

  9. Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor.

    PubMed

    Losantos, Raúl; Funes-Ardoiz, Ignacio; Aguilera, José; Herrera-Ceballos, Enrique; García-Iriepa, Cristina; Campos, Pedro J; Sampedro, Diego

    2017-03-01

    Skin cancer incidence has been increasing in the last decades, but most of the commercial formulations used as sunscreens are designed to protect only against solar erythema. Many of the active components present in sunscreens show critical weaknesses, such as low stability and toxicity. Thus, the development of more efficient components is an urgent health necessity and an attractive industrial target. We have rationally designed core moieties with increased photoprotective capacities and a new energy dissipation mechanism. Using these scaffolds, we have synthesized a series of compounds with tunable properties suitable for their use in sunscreens, and enhanced properties in terms of stability, light energy dissipation, and toxicity. Moreover, some representative compounds were included in final sunscreen formulations and a relevant solar protection factor boost was measured.

  10. From G Protein-coupled Receptor Structure Resolution to Rational Drug Design.

    PubMed

    Jazayeri, Ali; Dias, Joao M; Marshall, Fiona H

    2015-08-07

    A number of recent technical solutions have led to significant advances in G protein-coupled receptor (GPCR) structural biology. Apart from a detailed mechanistic view of receptor activation, the new structures have revealed novel ligand binding sites. Together, these insights provide avenues for rational drug design to modulate the activities of these important drug targets. The application of structural data to GPCR drug discovery ushers in an exciting era with the potential to improve existing drugs and discover new ones. In this review, we focus on technical solutions that have accelerated GPCR crystallography as well as some of the salient findings from structures that are relevant to drug discovery. Finally, we outline some of the approaches used in GPCR structure based drug design.

  11. Rational Design of Polynuclear Organometallic Assemblies from a Simple Heteromultifunctional Ligand.

    PubMed

    Zhang, Long; Lin, Yue-Jian; Li, Zhen-Hua; Jin, Guo-Xin

    2015-10-28

    In modern coordination chemistry, supramolecular coordination complexes take advantage of ligand design to control the shapes and sizes of such architectures. Here we describe how to utilize starting building blocks and a multifunctional ligand to rationally design and synthesize different types of discrete assemblies. Using a hydroxamate ligand featuring two pair of chelating sites together with half-sandwich iridium and rhodium fragments, we were able to construct a series multinuclear organometallic macrocycles and cages through stepwise coordination-driven self-assembly. Experimental observations, supported by computational work, show that selective coordination modes were ascribed to the significant electronic density differences of the two chelating sites, (O,O') and (N,N'). The results underline the advantages of the discrimination between soft and hard binding sites, and suggest that hydroxamic acids can be used as a versatile class of facile multifunctional scaffold for the construction of novel two-dimensional and three-dimensional architectures.

  12. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies

    PubMed Central

    Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin

    2015-01-01

    Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm−2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles. PMID:26178865

  13. Rational Conversion of Affinity Reagents into Label-Free Sensors for Peptide Motifs by Designed Allostery

    SciTech Connect

    Huang, Jin; Koide, Shohei

    2010-05-25

    Optical biosensors for short peptide motifs, an important class of biomarkers, have been developed based on 'affinity clamps', a new class of recombinant affinity reagents. Affinity clamps are engineered by linking a peptide-binding domain and an antibody mimic domain based on the fibronectin type III scaffold, followed by optimization of the interface between the two. This two-domain architecture allows for the design of allosteric coupling of peptide binding to fluorescence energy transfer between two fluorescent proteins attached to the affinity clamp. Coupled with high affinity and specificity of the underlying affinity clamps and rationally designed mutants with different sensitivity, peptide concentrations in crude cell lysate were determined with a low nanomolar detection limit and over 3 orders of magnitude. Because diverse affinity clamps can be engineered, our strategy provides a general platform to generate a repertoire of genetically encoded, label-free sensors for peptide motifs.

  14. Rational design of capillary-driven flows for paper-based microfluidics.

    PubMed

    Elizalde, Emanuel; Urteaga, Raúl; Berli, Claudio L A

    2015-05-21

    The design of paper-based assays that integrate passive pumping requires a precise programming of the fluid transport, which has to be encoded in the geometrical shape of the substrate. This requirement becomes critical in multiple-step processes, where fluid handling must be accurate and reproducible for each operation. The present work theoretically investigates the capillary imbibition in paper-like substrates to better understand fluid transport in terms of the macroscopic geometry of the flow domain. A fluid dynamic model was derived for homogeneous porous substrates with arbitrary cross-sectional shapes, which allows one to determine the cross-sectional profile required for a prescribed fluid velocity or mass transport rate. An extension of the model to slit microchannels is also demonstrated. Calculations were validated by experiments with prototypes fabricated in our lab. The proposed method constitutes a valuable tool for the rational design of paper-based assays.

  15. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.

    PubMed

    McGill, Meghan; Coburn, Jeannine M; Partlow, Benjamin P; Mu, Xuan; Kaplan, David L

    2017-09-14

    Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods

  16. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    PubMed

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  17. Intrinsic disorder as a generalizable strategy for the rational design of highly responsive, allosterically cooperative receptors.

    PubMed

    Simon, Anna J; Vallée-Bélisle, Alexis; Ricci, Francesco; Plaxco, Kevin W

    2014-10-21

    Control over the sensitivity with which biomolecular receptors respond to small changes in the concentration of their target ligand is critical for the proper function of many cellular processes. Such control could likewise be of utility in artificial biotechnologies, such as biosensors, genetic logic gates, and "smart" materials, in which highly responsive behavior is of value. In nature, the control of molecular responsiveness is often achieved using "Hill-type" cooperativity, a mechanism in which sequential binding events on a multivalent receptor are coupled such that the first enhances the affinity of the next, producing a steep, higher-order dependence on target concentration. Here, we use an intrinsic-disorder-based mechanism that can be implemented without requiring detailed structural knowledge to rationally introduce this potentially useful property into several normally noncooperative biomolecules. To do so, we fabricate a tandem repeat of the receptor that is destabilized (unfolded) via the introduction of a long, unstructured loop. The first binding event requires the energetically unfavorable closing of this loop, reducing its affinity relative to that of the second binding event, which, in contrast occurs at a preformed site. Using this approach, we have rationally introduced cooperativity into three unrelated DNA aptamers, achieving in the best of these a Hill coefficient experimentally indistinguishable from the theoretically expected maximum. The extent of cooperativity and thus the steepness of the binding transition are, moreover, well modeled as simple functions of the energetic cost of binding-induced folding, speaking to the quantitative nature of this design strategy.

  18. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    PubMed

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.

    PubMed

    Mor, Marco; Rivara, Silvia; Lodola, Alessio; Lorenzi, Simone; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Duranti, Andrea; Tontini, Andrea; Tarzia, Giorgio

    2005-11-01

    Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.

  20. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins

    PubMed Central

    Sormanni, Pietro; Aprile, Francesco A.; Vendruscolo, Michele

    2015-01-01

    Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions. PMID:26216991

  1. Combining different design strategies for rational affinity maturation of the MICA-NKG2D interface

    PubMed Central

    Henager, Samuel H; Hale, Melissa A; Maurice, Nicholas J; Dunnington, Erin C; Swanson, Carter J; Peterson, Megan J; Ban, Joseph J; Culpepper, David J; Davies, Luke D; Sanders, Lisa K; McFarland, Benjamin J

    2012-01-01

    We redesigned residues on the surface of MICA, a protein that binds the homodimeric immunoreceptor NKG2D, to increase binding affinity with a series of rational, incremental changes. A fixed-backbone RosettaDesign protocol scored a set of initial mutations, which we tested by surface plasmon resonance for thermodynamics and kinetics of NKG2D binding, both singly and in combination. We combined the best four mutations at the surface with three affinity-enhancing mutations below the binding interface found with a previous design strategy. After curating design scores with three cross-validated tests, we found a linear relationship between free energy of binding and design score, and to a lesser extent, enthalpy and design score. Multiple mutants bound with substantial subadditivity, but in at least one case full additivity was observed when combining distant mutations. Altogether, combining the best mutations from the two strategies into a septuple mutant enhanced affinity by 50-fold, to 50 nM, demonstrating a simple, effective protocol for affinity enhancement. PMID:22761154

  2. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins.

    PubMed

    Sormanni, Pietro; Aprile, Francesco A; Vendruscolo, Michele

    2015-08-11

    Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aβ42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions.

  3. Towards the rational design of synthetic cells with prescribed population dynamics.

    PubMed

    Dalchau, Neil; Smith, Matthew J; Martin, Samuel; Brown, James R; Emmott, Stephen; Phillips, Andrew

    2012-11-07

    The rational design of synthetic cell populations with prescribed behaviours is a long-standing goal of synthetic biology, with the potential to greatly accelerate the development of biotechnological applications in areas ranging from medical research to energy production. Achieving this goal requires well-characterized components, modular implementation strategies, simulation across temporal and spatial scales and automatic compilation of high-level designs to low-level genetic parts that function reliably inside cells. Many of these steps are incomplete or only partially understood, and methods for integrating them within a common design framework have yet to be developed. Here, we address these challenges by developing a prototype framework for designing synthetic cells with prescribed population dynamics. We extend the genetic engineering of cells (GEC) language, originally developed for programming intracellular dynamics, with cell population factors such as cell growth, division and dormancy, together with spatio-temporal simulation methods. As a case study, we use our framework to design synthetic cells with predator-prey interactions that, when simulated, produce complex spatio-temporal behaviours such as travelling waves and spatio-temporal chaos. An analysis of our design reveals that environmental factors such as density-dependent dormancy and reduced extracellular space destabilize the population dynamics and increase the range of genetic variants for which complex spatio-temporal behaviours are possible. Our findings highlight the importance of considering such factors during the design process. We then use our analysis of population dynamics to inform the selection of genetic parts, which could be used to obtain the desired spatio-temporal behaviours. By identifying, integrating and automating key stages of the design process, we provide a computational framework for designing synthetic systems, which could be tested in future laboratory studies.

  4. 20% PARTIAL SIBERIAN SNAKE IN THE AGS.

    SciTech Connect

    Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H; Underwood, D

    2002-11-06

    An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

  5. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    PubMed Central

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-01-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria. PMID:27615705

  6. Rational design of a structure-switching DNA aptamer for potassium ions

    PubMed Central

    Catherine, Andrew T.; Shishido, Stephanie N.; Robbins-Welty, Gregg A.; Diegelman-Parente, Amy

    2014-01-01

    Structure-switching molecules provide a unique means for analyte detection, generating a response to analyte concentration through a binding-specific conformational change between non-binding and binding-competent states. While most ligand-binding molecules are not structure switching by default, many can be engineered to be so through the introduction of an alternative non-binding (and thus non-signalling) conformation. This population-shift mechanism is particularly effective with oligonucleotides and has led to the creation of structure-switching aptamers for many target ligands. Here, we report the rational design of structure-switching DNA aptamers, based on the thrombin binding aptamer (TBA), that bind potassium with affinities that bridge the gap between previously reported weak-binding and strong-binding aptamers. We also demonstrate a correlation between the free energy of the experimentally determined binding affinity for potassium and the computationally estimated free energy of the alternative (non-binding) structure. PMID:25352996

  7. In silico rational design of ionic liquids for the exfoliation and dispersion of boron nitride nanosheets.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2016-01-14

    A requirement for exploiting most of the unique properties of boron-nitride (BN) nanosheets is their isolation from the bulk material. A rational design of task-specific ionic liquids (ILs) through DFT simulations is reported in this work. The applied computational protocol allowed the screening of large IL families, which was carried out bearing in mind the achievement of strong π-π stacking between the anions and BN nanosheets as well as a negative charge transfer from the anion to the surface. The selected ionic liquids yielded strong interaction energies with BN nanosheets and high charge transfer values, while the main features of the ionic liquid are not affected in the presence of nanosheets. DFT simulations provided a detailed picture of the interaction mechanism and useful structure-property relationships in the search of a new ionic liquid for BN exfoliation.

  8. The CamSol method of rational design of protein mutants with enhanced solubility.

    PubMed

    Sormanni, Pietro; Aprile, Francesco A; Vendruscolo, Michele

    2015-01-30

    Protein solubility is often an essential requirement in biotechnological and biomedical applications. Great advances in understanding the principles that determine this specific property of proteins have been made during the past decade, in particular concerning the physicochemical characteristics of their constituent amino acids. By exploiting these advances, we present the CamSol method for the rational design of protein variants with enhanced solubility. The method works by performing a rapid computational screening of tens of thousand of mutations to identify those with the greatest impact on the solubility of the target protein while maintaining its native state and biological activity. The application to a single-domain antibody that targets the Alzheimer's Aβ peptide demonstrates that the method predicts with great accuracy solubility changes upon mutation, thus offering a cost-effective strategy to help the production of soluble proteins for academic and industrial purposes. Copyright © 2014. Published by Elsevier Ltd.

  9. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun; Kim, Yooseok; Jeon, Cheolho; Song, Wooseok; Myung, Sung; Lee, Sun Sook; An, Ki-Seok; Lim, Jongsun

    2017-01-01

    We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS2) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS2 and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS2-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS2-graphene were both fabricated. As a result, the extracted mobility for MoS2-graphene hybrid FETs was two times higher than that of MoS2 FETs. In addition, the MoS2-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  10. Engineering of isoamylase: improvement of protein stability and catalytic efficiency through semi-rational design.

    PubMed

    Li, Youran; Zhang, Liang; Ding, Zhongyang; Gu, Zhenghua; Shi, Guiyang

    2016-01-01

    Isoamylase catalyzes the hydrolysis of α-1,6-glycosidic linkages in glycogen, amylopectin and α/β-limit dextrins. A semi-rational design strategy was performed to improve catalytic properties of isoamylase from Bacillus lentus. Three residues in vicinity of the essential residues, Arg505, Asn513, and Gly608, were chosen as the mutation sites and were substituted by Ala, Pro, Glu, and Lys, respectively. Thermal stability of the mutant R505P and acidic stability of the mutant R505E were enhanced. The k cat /K m values of the mutant G608V have been promoted by 49%, and the specific activity increased by 33%. This work provides an effective strategy for improving the catalytic activity and stability of isoamylase, and the results obtained here may be useful for the improvement of catalytic properties of other α/β barrel enzymes.

  11. Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design.

    PubMed

    Ece, Selin; Evran, Serap; Janda, Jan-Oliver; Merkl, Rainer; Sterner, Reinhard

    2015-06-01

    Neopullulanase, a glycosyl hydrolase from Bacillus stearothermophilus (bsNpl), is a potentially valuable enzyme for starch and detergent industries. However, as the protein is not active at elevated temperatures and high surfactant concentrations, we aimed to increase its stability by rational enzyme design. Nine potentially destabilizing cavities were identified in the crystal structure of the enzyme. Based on computational predictions, these cavities were filled by residues with bulkier side chains. The five Asp46Glu, Val239Leu, Val404Leu, Ser407Thr and Ala566Leu exchanges resulted in a drastic stabilization of bsNpl against inactivation by heat and detergents. The catalytic activity of the variants was identical to the wild-type enzyme.

  12. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing.

    PubMed

    Almeida, Euclides; Prior, Yehiam

    2015-05-14

    Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell's equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed.

  13. Rational design of aggregation-resistant bioactive peptides: Reengineering human calcitonin

    PubMed Central

    Fowler, Susan B.; Poon, Stephen; Muff, Roman; Chiti, Fabrizio; Dobson, Christopher M.; Zurdo, Jesús

    2005-01-01

    A high propensity to aggregate into intractable deposits is a common problem limiting the production and use of many peptides and proteins in a wide range of biotechnological and pharmaceutical applications. Many therapeutic polypeptides are frequently abandoned at an early stage in their development because of problems with stability and aggregation. It has been shown recently that parameters describing the physicochemical properties of polypeptides can be used as predictors of protein aggregation. Here we demonstrate that these and similar tools can be applied to the rational redesign of bioactive molecules with a significantly reduced aggregation propensity without loss of physiological activity. This strategy has been exemplified by designing variants of the hormone calcitonin that show a significantly reduced aggregation propensity, yet maintain, or even increase, their potency when compared to the current therapeutic forms. The results suggest that this approach could be used successfully to enhance the solubility and efficacy of a wide range of other peptide and protein therapeutics. PMID:16006528

  14. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering.

    PubMed

    Voigt, Franka; Wiedemann, Lisa; Zuliani, Cecilia; Querques, Irma; Sebe, Attila; Mátés, Lajos; Izsvák, Zsuzsanna; Ivics, Zoltán; Barabas, Orsolya

    2016-03-30

    Sleeping Beauty (SB) is a prominent Tc1/mariner superfamily DNA transposon that provides a popular genome engineering tool in a broad range of organisms. It is mobilized by a transposase enzyme that catalyses DNA cleavage and integration at short specific sequences at the transposon ends. To facilitate SB's applications, here we determine the crystal structure of the transposase catalytic domain and use it to model the SB transposase/transposon end/target DNA complex. Together with biochemical and cell-based transposition assays, our structure reveals mechanistic insights into SB transposition and rationalizes previous hyperactive transposase mutations. Moreover, our data enables us to design two additional hyperactive transposase variants. Our work provides a useful resource and proof-of-concept for structure-based engineering of tailored SB transposases.

  15. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing

    PubMed Central

    Almeida, Euclides; Prior, Yehiam

    2015-01-01

    Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell’s equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed. PMID:25974175

  16. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-09-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.

  17. From empiricism to rational design: a personal perspective of the evolution of vaccine development.

    PubMed

    De Gregorio, Ennio; Rappuoli, Rino

    2014-07-01

    Vaccination, which is the most effective medical intervention that has ever been introduced, originated from the observation that individuals who survived a plague or smallpox would not get the disease twice. To mimic the protective effects of natural infection, Jenner - and later Pasteur - inoculated individuals with attenuated or killed disease-causing agents. This empirical approach inspired a century of vaccine development and the effective prophylaxis of many infectious diseases. From the 1980s, several waves of new technologies have enabled the development of novel vaccines that would not have been possible using the empirical approach. The technological revolution in the field of vaccination is now continuing, and it is delivering novel and safer vaccines. In this Timeline article, we provide our views on the transition from empiricism to rational vaccine design.

  18. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering

    PubMed Central

    Voigt, Franka; Wiedemann, Lisa; Zuliani, Cecilia; Querques, Irma; Sebe, Attila; Mátés, Lajos; Izsvák, Zsuzsanna; Ivics, Zoltán; Barabas, Orsolya

    2016-01-01

    Sleeping Beauty (SB) is a prominent Tc1/mariner superfamily DNA transposon that provides a popular genome engineering tool in a broad range of organisms. It is mobilized by a transposase enzyme that catalyses DNA cleavage and integration at short specific sequences at the transposon ends. To facilitate SB's applications, here we determine the crystal structure of the transposase catalytic domain and use it to model the SB transposase/transposon end/target DNA complex. Together with biochemical and cell-based transposition assays, our structure reveals mechanistic insights into SB transposition and rationalizes previous hyperactive transposase mutations. Moreover, our data enables us to design two additional hyperactive transposase variants. Our work provides a useful resource and proof-of-concept for structure-based engineering of tailored SB transposases. PMID:27025571

  19. Phenolic melanin precursors provide a rational approach to the design of antitumor agents for melanoma

    SciTech Connect

    Jimbow, K.; Miura, T.; Ito, S.; Ishikawa, K.

    1989-01-01

    A unique biological property of the melanocyte, melanin synthesis may permit a rational approach to design agents for better management of malignant melanoma. This in vivo and in vitro study examined the selective melanocytotoxicity and antimelanoma effects of phenolic compounds, cysteinylphenol (CP), cysteaminylphenol (CAP), and related compounds, and found (1) that both 4-S-CP and 4-S-CAP are melanin precursors, (2) that 4-S-CAP possesses a marked depigmenting potency with selective destruction of melanocytes in black follicles, and (3) a significant inhibition in the protein synthesis and tumor growth of B16 melanoma. Importantly, a whole body autoradiography indicated that these phenolic melanin precursors are selectively incorporated into melanoma tissues after i.p. administration.

  20. Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level

    PubMed Central

    Brown, Ashley C.; Barker, Thomas H.

    2013-01-01

    Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach can now be somewhat easily modified through alterations of molecular interactions key to the protein’s polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials. PMID:24056097

  1. Rational design and studies of excimer forming novel dual probes to target RNA.

    PubMed

    Krasheninina, O A; Lomzov, A A; Fishman, V S; Novopashina, D S; Venyaminova, A G

    2017-04-01

    In this paper, we report structure-based rational design and physico-chemical and biological studies of novel pyrene excimer forming dual probes for visualization of intracellular RNAs. Herein, the probes based on 2'-O-methyl RNA with linkers of different structure and length between pyrene moiety and ribose are studied with respect to their hybridization and spectral properties. We found optimal linkers that provide more intense excimer emission (at ∼480nm) of RNA-bound probes; particularly, the length of the linker arm of the 3'-component of dual probes plays a key role in formation of pyrene excimer. Calculated molecular dynamics trajectories and probability distributions of pyrene-pyrene dimer formation upon hybridization of the dual probes with RNA target are in agreement with the obtained fluorescence spectroscopy data for the corresponding duplexes. Our study demonstrates the excellent binding properties of new dual probes to structured RNA and their feasibility for the visualization of intracellular RNA targets.

  2. Surface design by blending rational Bézier curves and surfaces

    NASA Astrophysics Data System (ADS)

    Ismail, Solehah Jamilah; Ali, Jamaludin Md.

    2014-07-01

    Blending method can be used to design many interesting curves, surfaces and objects. Some types of blending methods are linear, quadratic and cubic blending. These methods have similar concept to Bézier because the blending method only touch the first and last curve or surface without touching the intermediate curves or surfaces. These methods produce a blended curve, surface or object by blending several selected curves or surfaces. Curve blending methods will generate some interesting blended curves, surfaces or objects. Surface blending methods can produce some blended surfaces or object. Rational Bézier curves will be used as a base curve. The positions of control points and the values of weights of the curves play an important role in generating the right shapes. The concept of blending functions with Cn continuity will be discussed. Blending function will be used and the blended curves or surfaces with Gn continuity will be generated.

  3. Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin.

    PubMed

    Fowler, Susan B; Poon, Stephen; Muff, Roman; Chiti, Fabrizio; Dobson, Christopher M; Zurdo, Jesús

    2005-07-19

    A high propensity to aggregate into intractable deposits is a common problem limiting the production and use of many peptides and proteins in a wide range of biotechnological and pharmaceutical applications. Many therapeutic polypeptides are frequently abandoned at an early stage in their development because of problems with stability and aggregation. It has been shown recently that parameters describing the physicochemical properties of polypeptides can be used as predictors of protein aggregation. Here we demonstrate that these and similar tools can be applied to the rational redesign of bioactive molecules with a significantly reduced aggregation propensity without loss of physiological activity. This strategy has been exemplified by designing variants of the hormone calcitonin that show a significantly reduced aggregation propensity, yet maintain, or even increase, their potency when compared to the current therapeutic forms. The results suggest that this approach could be used successfully to enhance the solubility and efficacy of a wide range of other peptide and protein therapeutics.

  4. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    PubMed

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  5. Novel rational drug design strategies with potential to revolutionize malaria chemotherapy.

    PubMed

    Muregi, F W; Kirira, P G; Ishih, A

    2011-01-01

    Efforts to develop an effective malaria vaccine are yet to be successful and thus chemotherapy remains the mainstay of malaria control strategy. Plasmodium falciparum, the parasite that causes about 90% of all global malaria cases is increasingly becoming resistant to most antimalarial drugs in clinical use. This dire situation is aggravated by reports from Southeast Asia, of the parasite becoming resistant to the "magic bullet" artemisinins, the last line of defense in malaria chemotherapy. Drug development is a laborious and time consuming process, and thus antimalarial drug discovery approaches currently being deployed largely include optimization of therapy with available drugs--including combination therapy and developing analogues of the existing drugs. However, the latter strategy may be hampered by crossresistance, since agents that are closely related chemically may share similar mechanisms of action and/or targets. This may render new drugs ineffective even before they are brought to clinical use. Evaluation of drug-resistance reversers (chemosensitizers) against quinoline-based drugs such as chloroquine and mefloquine is another approach that is being explored. Recently, evaluation of new chemotherapeutic targets is gaining new impetus as knowledge of malaria parasite biology expands. Also, single but hybrid molecules with dual functionality and/or targets have been developed through rational drug design approach, termed as "covalent bitherapy". Since desperate times call for radical measures, this review aims to explore novel rational drug-design strategies potentially capable of revolutionizing malaria therapy. We thus explore malaria apoptosis machinery as a novel drug target, and also discuss the potential of hybrid molecules as well as prodrugs and double prodrugs in malaria chemotherapy.

  6. Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science.

    PubMed

    Kostarelos, Kostas

    2003-12-01

    Engineering delivery systems of therapeutic agents has grown into an independent field, transcending the scope of traditional disciplines and capturing the interest of both academic and industrial research. At the same time, the acceleration in the discovery of new therapeutic moieties (chemical, biological, genetic and radiological) has led to an increasing demand for delivery systems capable of protecting, transporting, and selectively depositing those therapeutic agents to desired sites. The vast majority of delivery systems physically reside in the colloidal domain, while their surface properties and interfacial interactions with the biological milieu critically determine the pharmacological profiles of the delivered therapeutic agents. Interestingly though, the colloidal and surface properties of delivery systems are commonly overlooked in view of the predominant attention placed on the therapeutic effectiveness achieved. Moreover, the development and evaluation of novel delivery systems towards clinical use is often progressed by serendipity rather than a systematic design process, often leading to failure. The present article will attempt to illustrate the colloid and interfacial perspective of a delivery event, as well as exemplify the vast opportunities offered by treating, analysing and manipulating delivery systems as colloidal systems. Exploring and defining the colloid and surface nature of the interactions taking place between the biological moieties in the body and an administered delivery vehicle will allow for the rational engineering of effective delivery systems. A design scheme is also proposed on the way in which the engineering of advanced delivery systems should be practiced towards their transformation from laboratory inventions to clinically viable therapeutics. Lastly, three case studies are presented, demonstrating how rational manipulation of the colloidal and surface properties of delivery systems can lead to newly engineered systems

  7. Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment.

    PubMed

    Zheng, Qinmin; Durkin, David P; Elenewski, Justin E; Sun, Yingxue; Banek, Nathan A; Hua, Likun; Chen, Hanning; Wagner, Michael J; Zhang, Wen; Shuai, Danmeng

    2016-12-06

    Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3-10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.

  8. Physico-Chemical Evaluation of Rationally Designed Melanins as Novel Nature-Inspired Radioprotectors

    PubMed Central

    Schweitzer, Andrew D.; Howell, Robertha C.; Jiang, Zewei; Bryan, Ruth A.; Gerfen, Gary; Chen, Chin-Cheng; Mah, Dennis; Cahill, Sean

    2009-01-01

    Background Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown. Methodology/Principal Findings We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14·1018, 7.09·1018, and 9.05·1017 spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy (137Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies. Conclusions/Significance We propose that due to melanin's numerous aromatic oligomers containing multiple π-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species. PMID:19789711

  9. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-07-25

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  10. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials

    PubMed Central

    Zadpoor, Amir A.

    2017-01-01

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes. PMID:28757572

  11. Rational design of an enzyme mutant for anti-cocaine therapeutics

    NASA Astrophysics Data System (ADS)

    Zheng, Fang; Zhan, Chang-Guo

    2008-09-01

    (-)-Cocaine is a widely abused drug and there is no available anti-cocaine therapeutic. The disastrous medical and social consequences of cocaine addiction have made the development of an effective pharmacological treatment a high priority. An ideal anti-cocaine medication would be to accelerate (-)-cocaine metabolism producing biologically inactive metabolites. The main metabolic pathway of cocaine in body is the hydrolysis at its benzoyl ester group. Reviewed in this article is the state-of-the-art computational design of high-activity mutants of human butyrylcholinesterase (BChE) against (-)-cocaine. The computational design of BChE mutants have been based on not only the structure of the enzyme, but also the detailed catalytic mechanisms for BChE-catalyzed hydrolysis of (-)-cocaine and (+)-cocaine. Computational studies of the detailed catalytic mechanisms and the structure-and-mechanism-based computational design have been carried out through the combined use of a variety of state-of-the-art techniques of molecular modeling. By using the computational insights into the catalytic mechanisms, a recently developed unique computational design strategy based on the simulation of the rate-determining transition state has been employed to design high-activity mutants of human BChE for hydrolysis of (-)-cocaine, leading to the exciting discovery of BChE mutants with a considerably improved catalytic efficiency against (-)-cocaine. One of the discovered BChE mutants (i.e., A199S/S287G/A328W/Y332G) has a ˜456-fold improved catalytic efficiency against (-)-cocaine. The encouraging outcome of the computational design and discovery effort demonstrates that the unique computational design approach based on the transition-state simulation is promising for rational enzyme redesign and drug discovery.

  12. Snakes antibodies.

    PubMed

    Gambón-Deza, Francisco; Sánchez-Espinel, Christian; Mirete-Bachiller, Serafín; Magadán-Mompó, Susana

    2012-09-01

    Immunoglobulins are basic molecules of the immune system of vertebrates. In previous studies we described the immunoglobulins found in two squamata reptiles, Anolis carolinensis and Eublepharis macularius. Snakes are squamata reptiles too but they have undergone an extreme evolutionary process. We therefore wanted to know how these changes affected their immunoglobulin coding genes. To perform this analysis we studied five snake transcriptomes and two genome draft sequences. Sequences coding for immunoglobulin M (IgM), immunoglobulin D (IgD) and two classes of immunoglobulin Y (IgY - named IgYa and IgYb-) were found in all of them. Moreover, the Thamnophis elegans transcriptome and Python molurus genome draft sequences showed a third class of IgY, the IgYc, whose constant region only presents three domains and lacks the CH2. All data suggest that the IgYb is the evolutionary origin of this IgYc. An exhaustive search of the light chains were carried out, being lambda the only light chain found in snakes. The results provide a clear picture of the immunoglobulins present in the suborder Serpentes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Forced Snaking

    NASA Astrophysics Data System (ADS)

    Ponedel, Benjamin; Knobloch, Edgar

    2016-11-01

    We study spatial localization in the real subcritical Ginzburg-Landau equation ut =m0 u +m1 cos2/π l x u +uxx +d | u | 2 u -| u | 4 u with spatially periodic forcing. When d > 0 and m1 = 0 this equation exhibits bistability between the trivial state u = 0 and a homogeneous nontrivial state u =u0 with stationary localized structures which accumulate at the Maxwell point m0 = - 3d2 / 16 . When spatial forcing is included its wavelength is imprinted on u0 creating conditions favorable to front pinning and hence spatial localization. We use numerical continuation to show that under appropriate conditions such forcing generates a sequence of localized states organized within a snakes-and-ladders structure centered on the Maxwell point, and refer to this phenomenon as forced snaking. We determine the stability properties of these states and show that longer lengthscale forcing leads to stationary trains consisting of a finite number of strongly localized, weakly interacting pulses exhibiting foliated snaking.

  14. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.

    PubMed

    Yuan, Lin; Lin, Weiying; Zheng, Kaibo; Zhu, Sasa

    2013-07-16

    Fluorescence imaging has emerged as a powerful tool for monitoring biomolecules within the context of living systems with high spatial and temporal resolution. Researchers have constructed a large number of synthetic intensity-based fluorescent probes for bio-imaging. However, intensity-based fluorescent probes have some limitations: variations in probe concentration, probe environment, and excitation intensity may influence the fluorescence intensity measurements. In principle, the use of ratiometric fluorescent probes can alleviate this shortcoming. Förster resonance energy transfer (FRET) is one of the most widely used sensing mechanisms for ratiometric fluorescent probes. However, the development of synthetic FRET probes with favorable photophysical properties that are also suitable for biological imaging applications remains challenging. In this Account, we review the rational design and biological applications of synthetic FRET probes, focusing primarily on studies from our laboratory. To construct useful FRET probes, it is a pre-requisite to develop a FRET platform with favorable photophysical properties. The design criteria of a FRET platform include (1) well-resolved absorption spectra of the donor and acceptor, (2) well-separated emission spectra of the donor and acceptor, (3) donors and acceptors with comparable brightness, (4) rigid linkers, and (5) near-perfect efficiency in energy transfer. With an efficient FRET platform in hand, it is then necessary to modulate the donor-acceptor distance or spectral overlap integral in an analyte-dependent fashion for development of FRET probes. Herein, we emphasize our most recent progress on the development of FRET probes by spectral overlap integral, in particular by changing the molar absorption coefficient of the donor dyes such as rhodamine dyes, which undergo unique changes in the absorption profiles during the ring-opening and -closing processes. Although partial success has been obtained in design of

  15. Siberian Snake solenoid for the AGS

    SciTech Connect

    Ratner, L. G.

    1991-01-01

    Recent experiments at the Indiana University Cyclotron Facility (IUCF) have demonstrated that Siberian Snakes'' can be used to preserve the polarization of an accelerated polarized beam in a circular accelerator. Retrofitting full snakes into accelerators such as the Alternating Gradient Synchrotron (AGS) at Brookhaven is almost impossible due to space limitations, but a partial snake that can correct depolarization due to imperfection resonances with 1/20 to 1/30 of a full strength snake seems to present a viable option. We describe such a device for the AGS and give the design criteria in terms of simplicity of accelerator operation and level of achievable polarization. 2 refs., 5 figs., 1 tab.

  16. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis.

    PubMed

    Dhakal, Soma; Adendorff, Matthew R; Liu, Minghui; Yan, Hao; Bathe, Mark; Walter, Nils G

    2016-02-07

    The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies--incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.

  17. Theory and simulation of DNA-coated colloids: a guide for rational design.

    PubMed

    Angioletti-Uberti, Stefano; Mognetti, Bortolo M; Frenkel, Daan

    2016-03-07

    By exploiting the exquisite selectivity of DNA hybridization, DNA-coated colloids (DNACCs) can be made to self-assemble in a wide variety of structures. The beauty of this system stems largely from its exceptional versatility and from the fact that a proper choice of the grafted DNA sequences yields fine control over the colloidal interactions. Theory and simulations have an important role to play in the optimal design of self assembling DNACCs. At present, the powerful model-based design tools are not widely used, because the theoretical literature is fragmented and the connection between different theories is often not evident. In this Perspective, we aim to discuss the similarities and differences between the different models that have been described in the literature, their underlying assumptions, their strengths and their weaknesses. Using the tools described in the present Review, it should be possible to move towards a more rational design of novel self-assembling structures of DNACCs and, more generally, of systems where ligand-receptor are used to control interactions.

  18. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines

    PubMed Central

    Du, Lanying; Tai, Wanbo; Yang, Yang; Zhao, Guangyu; Zhu, Qing; Sun, Shihui; Liu, Chang; Tao, Xinrong; Tseng, Chien-Te K.; Perlman, Stanley; Jiang, Shibo; Zhou, Yusen; Li, Fang

    2016-01-01

    Viral subunit vaccines often contain immunodominant non-neutralizing epitopes that divert host immune responses. These epitopes should be eliminated in vaccine design, but there is no reliable method for evaluating an epitope's capacity to elicit neutralizing immune responses. Here we introduce a new concept ‘neutralizing immunogenicity index' (NII) to evaluate an epitope's neutralizing immunogenicity. To determine the NII, we mask the epitope with a glycan probe and then assess the epitope's contribution to the vaccine's overall neutralizing immunogenicity. As proof-of-concept, we measure the NII for different epitopes on an immunogen comprised of the receptor-binding domain from MERS coronavirus (MERS-CoV). Further, we design a variant form of this vaccine by masking an epitope that has a negative NII score. This engineered vaccine demonstrates significantly enhanced efficacy in protecting transgenic mice from lethal MERS-CoV challenge. Our study may guide the rational design of highly effective subunit vaccines to combat MERS-CoV and other life-threatening viruses. PMID:27874853

  19. Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma.

    PubMed

    Cardenas, Mariano G; Yu, Wenbo; Beguelin, Wendy; Teater, Matthew R; Geng, Huimin; Goldstein, Rebecca L; Oswald, Erin; Hatzi, Katerina; Yang, Shao-Ning; Cohen, Joanna; Shaknovich, Rita; Vanommeslaeghe, Kenno; Cheng, Huimin; Liang, Dongdong; Cho, Hyo Je; Abbott, Joshua; Tam, Wayne; Du, Wei; Leonard, John P; Elemento, Olivier; Cerchietti, Leandro; Cierpicki, Tomasz; Xue, Fengtian; MacKerell, Alexander D; Melnick, Ari M

    2016-09-01

    Diffuse large B cell lymphomas (DLBCLs) arise from proliferating B cells transiting different stages of the germinal center reaction. In activated B cell DLBCLs (ABC-DLBCLs), a class of DLBCLs that respond poorly to current therapies, chromosomal translocations and amplification lead to constitutive expression of the B cell lymphoma 6 (BCL6) oncogene. The role of BCL6 in maintaining these lymphomas has not been investigated. Here, we designed small-molecule inhibitors that display higher affinity for BCL6 than its endogenous corepressor ligands to evaluate their therapeutic efficacy for targeting ABC-DLBCL. We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor called FX1 that has 10-fold greater potency than endogenous corepressors and binds an essential region of the BCL6 lateral groove. FX1 disrupted formation of the BCL6 repression complex, reactivated BCL6 target genes, and mimicked the phenotype of mice engineered to express BCL6 with corepressor binding site mutations. Low doses of FX1 induced regression of established tumors in mice bearing DLBCL xenografts. Furthermore, FX1 suppressed ABC-DLBCL cells in vitro and in vivo, as well as primary human ABC-DLBCL specimens ex vivo. These findings indicate that ABC-DLBCL is a BCL6-dependent disease that can be targeted by rationally designed inhibitors that exceed the binding affinity of natural BCL6 ligands.

  20. Rational protein design: developing next-generation biological therapeutics and nanobiotechnological tools.

    PubMed

    Wilson, Corey J

    2015-01-01

    Proteins are the most functionally diverse macromolecules observed in nature, participating in a broad array of catalytic, biosensing, transport, scaffolding, and regulatory functions. Fittingly, proteins have become one of the most promising nanobiotechnological tools to date, and through the use of recombinant DNA and other laboratory methods we have produced a vast number of biological therapeutics derived from human genes. Our emerging ability to rationally design proteins (e.g., via computational methods) holds the promise of significantly expanding the number and diversity of protein therapies and has opened the gateway to realizing true and uncompromised personalized medicine. In the last decade computational protein design has been transformed from a set of fundamental strategies to stringently test our understanding of the protein structure-function relationship, to practical tools for developing useful biological processes, nano-devices, and novel therapeutics. As protein design strategies improve (i.e., in terms of accuracy and efficiency) clinicians will be able to leverage individual genetic data and biological metrics to develop and deliver personalized protein therapeutics with minimal delay. © 2014 Wiley Periodicals, Inc.

  1. Rationally designed squaryldiamides - a novel class of sugar-nucleotide mimics?

    PubMed

    Niewiadomski, Sven; Beebeejaun, Zeenat; Denton, Helen; Smith, Terry K; Morris, Richard J; Wagner, Gerd K

    2010-08-07

    Sugar-nucleotides such as GDP-mannose, GDP-fucose and UDP-glucose are important biomolecules with a central role in carbohydrate and glycoconjugate biosynthesis, metabolism and cell signalling. Analogues and mimics of naturally occurring sugar-nucleotides are sought after as chemical tools and inhibitor candidates for sugar-nucleotide-dependent enzymes including glycosyltransferases. Many sugar-nucleotides bind to their target glycosyltransferases via coordination of the diphosphate group to a divalent metal cofactor in the active site. The identification of uncharged, chemically stable surrogates for the diphosphate group, with the ability to coordinate to a divalent metal, is therefore an important design criteria for the development of sugar-nucleotide mimics. Here, we describe the rational design and synthesis of a novel class of sugar-nucleotide mimics based on a squaryldiamide scaffold, an uncharged phosphate isostere. We demonstrate by comprehensive NMR titration experiments that the new sugar-nucleotide mimics coordinate efficiently to Mg(2+), and provide results from biological studies with a therapeutically relevant mannosyltransferase from Trypanosoma brucei. Our findings suggest that squaryldiamides are a promising template for the development of sugar-nucleotide mimics, and illustrate the considerable potential of the squarylamide group as a fragment for inhibitor design.

  2. Rational design of Nd(3+)-sensitized multifunctional nanoparticles with highly dominant red emission.

    PubMed

    Xu, Xia; Lei, Pengpeng; Dong, Lile; Liu, Xiuling; Su, Yue; Song, Shuyan; Feng, Jing; Zhang, Hongjie

    2016-05-28

    Controlling excitation and emission wavelengths on demand is very significant in bioimaging. Up-conversion nanoparticles (UCNPs) emit visible light upon near-infrared (NIR) light excitation and are well studied in bioimaging. Red emission is usually preferred to green due to its higher tissue penetration depth in bioimaging. Herein, dominant red emission has been achieved under 808 nm excitation based on the designed α-NaYbF4:Mn(2+)/Er(3+)@NaLuF4:Mn(2+)/Yb(3+)@NaNdF4:Yb(3+)@NaGdF4 (C@S1@S2@S3) nanostructure. The rationally designed interlayer shell NaLuF4:Mn(2+)/Yb(3+) could efficiently filter unwanted energy back-transfer from Er(3+) to Nd(3+) and the outmost shell NaGdF4 could prevent excitation energy from surface-related quenching. The lifetime of (4)F9/2→(4)I15/2 transition of Er(3+) could be as high as 0.7 ms. Moreover, C@S1@S2@S3 UCNPs also possess effective contrast efficiency for both X-ray computed tomography (CT) and magnetic resonance (MR) imaging. The designed multifunctional UCNPs could be used as a potential multimodal bioprobe in bioimaging applications.

  3. Identification and rational design of novel antimicrobial peptides for plant protection.

    PubMed

    Marcos, Jose F; Muñoz, Alberto; Pérez-Payá, Enrique; Misra, Santosh; López-García, Belén

    2008-01-01

    Peptides and small proteins exhibiting antimicrobial activity have been isolated from many organisms ranging from insects to humans, including plants. Their role in defense is established, and their use in agriculture was already being proposed shortly after their discovery. However, some natural peptides have undesirable properties that complicate their application. Advances in peptide synthesis and high-throughput activity screening have made possible the de novo and rational design of novel peptides with improved properties. This review summarizes findings in the identification and design of short antimicrobial peptides with activity against plant pathogens, and will discuss alternatives for their heterologous production suited to plant disease control. Recent studies suggest that peptide antimicrobial action is not due solely to microbe permeation as previously described, but that more subtle factors might account for the specificity and absence of toxicity of some peptides. The elucidation of the mode of action and interaction with microbes will assist the improvement of peptide design with a view to targeting specific problems in agriculture and providing new tools for plant protection.

  4. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

    PubMed Central

    Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.

    2015-01-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495

  5. Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma

    PubMed Central

    Cardenas, Mariano G.; Yu, Wenbo; Beguelin, Wendy; Teater, Matthew R.; Geng, Huimin; Goldstein, Rebecca L.; Oswald, Erin; Hatzi, Katerina; Yang, Shao-Ning; Cohen, Joanna; Shaknovich, Rita; Vanommeslaeghe, Kenno; Cheng, Huimin; Liang, Dongdong; Cho, Hyo Je; Tam, Wayne; Du, Wei; Leonard, John P.; Elemento, Olivier; Cierpicki, Tomasz; Xue, Fengtian; MacKerell, Alexander D.; Melnick, Ari M.

    2016-01-01

    Diffuse large B cell lymphomas (DLBCLs) arise from proliferating B cells transiting different stages of the germinal center reaction. In activated B cell DLBCLs (ABC-DLBCLs), a class of DLBCLs that respond poorly to current therapies, chromosomal translocations and amplification lead to constitutive expression of the B cell lymphoma 6 (BCL6) oncogene. The role of BCL6 in maintaining these lymphomas has not been investigated. Here, we designed small-molecule inhibitors that display higher affinity for BCL6 than its endogenous corepressor ligands to evaluate their therapeutic efficacy for targeting ABC-DLBCL. We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor called FX1 that has 10-fold greater potency than endogenous corepressors and binds an essential region of the BCL6 lateral groove. FX1 disrupted formation of the BCL6 repression complex, reactivated BCL6 target genes, and mimicked the phenotype of mice engineered to express BCL6 with corepressor binding site mutations. Low doses of FX1 induced regression of established tumors in mice bearing DLBCL xenografts. Furthermore, FX1 suppressed ABC-DLBCL cells in vitro and in vivo, as well as primary human ABC-DLBCL specimens ex vivo. These findings indicate that ABC-DLBCL is a BCL6-dependent disease that can be targeted by rationally designed inhibitors that exceed the binding affinity of natural BCL6 ligands. PMID:27482887

  6. Computational approach to the rational design of molecularly imprinted polymers for voltammetric sensing of homovanillic acid.

    PubMed

    Diñeiro, Yolanda; Menéndez, M Isabel; Blanco-López, M Carmen; Lobo-Castañón, M Jesús; Miranda-Ordieres, Arturo J; Tuñón-Blanco, Paulino

    2005-10-15

    A methodology based on density functional theory calculations for the design of molecularly imprinted polymers (MIPs) is described. The method allows the rational choice of the most suitable monomer and polymerization solvent among a set of chemicals traditionally used in MIP formulations for the molecular imprinting of a given template. It is based on the comparison of the stabilization energies of the prepolymerization adducts between the template and different functional monomers. The effect of the polymerization solvent is included using the polarizable continuum model. A voltammetric sensor for homovanillic acid was constructed using different MIPs as recognition element, confirming that the solvent (toluene) and functional monomer (methacrylic acid) selected according to the theoretical predictions lead to the most efficient molecular recognition sensing phase. With the voltammetric sensor prepared using the MIP designed according to the theoretical predictions, a linear response for concentrations of homovanillic acid between 5 x 10(-8) and 1 x 10(-5) M can be obtained. The limit of detection is 7 x 10(-9) M. The selectivity obtained for homovanillic acid over other structurally related compounds buttresses the validity of this strategy of design.

  7. Rational design of cancer gene panels with OncoPaD.

    PubMed

    Rubio-Perez, Carlota; Deu-Pons, Jordi; Tamborero, David; Lopez-Bigas, Nuria; Gonzalez-Perez, Abel

    2016-10-03

    Profiling the somatic mutations of genes which may inform about tumor evolution, prognostics and treatment is becoming a standard tool in clinical oncology. Commercially available cancer gene panels rely on manually gathered cancer-related genes, in a "one-size-fits-many" solution. The design of new panels requires laborious search of literature and cancer genomics resources, with their performance on cohorts of patients difficult to estimate. We present OncoPaD, to our knowledge the first tool aimed at the rational design of cancer gene panels. OncoPaD estimates the cost-effectiveness of the designed panel on a cohort of tumors and provides reports on the importance of individual mutations for tumorigenesis or therapy. With a friendly interface and intuitive input, OncoPaD suggests researchers relevant sets of genes to be included in the panel, because prior knowledge or analyses indicate that their mutations either drive tumorigenesis or function as biomarkers of drug response. OncoPaD also provides reports on the importance of individual mutations for tumorigenesis or therapy that support the interpretation of the results obtained with the designed panel. We demonstrate in silico that OncoPaD designed panels are more cost-effective-i.e. detect a maximum fraction of tumors in the cohort by sequencing a minimum quantity of DNA-than available panels. With its unique features, OncoPaD will help clinicians and researchers design tailored next-generating sequencing (NGS) panels to detect circulating tumor DNA or biopsy specimens, thereby facilitating early and accurate detection of tumors, genomics informed therapeutic decisions, patient follow-up and timely identification of resistance mechanisms to targeted agents. OncoPaD may be accessed through http://www.intogen.org/oncopad.

  8. Rationally Designed Small Molecules Targeting the RNA That Causes Myotonic Dystrophy Type 1 Are Potently Bioactive

    PubMed Central

    Childs-Disney, Jessica L.; Hoskins, Jason; Rzuczek, Suzanne G.; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)exp, is present in the 3′ untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)exp folds into a hairpin with regularly repeating 5′CUG/3′GUC motifs and sequester muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1 including: (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)exp were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5′CUG/3′GUC motif in r(CUG)exp. Therefore, we designed multivalent ligands to bind multiple copies of this motif simultaneously in r(CUG)exp. Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence. PMID:22332923

  9. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

    PubMed

    Childs-Disney, Jessica L; Hoskins, Jason; Rzuczek, Suzanne G; Thornton, Charles A; Disney, Matthew D

    2012-05-18

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.

  10. Adapting Rational Unified Process (RUP) approach in designing a secure e-Tendering model

    NASA Astrophysics Data System (ADS)

    Mohd, Haslina; Robie, Muhammad Afdhal Muhammad; Baharom, Fauziah; Darus, Norida Muhd; Saip, Mohamed Ali; Yasin, Azman

    2016-08-01

    e-Tendering is an electronic processing of the tender document via internet and allow tenderer to publish, communicate, access, receive and submit all tender related information and documentation via internet. This study aims to design the e-Tendering system using Rational Unified Process approach. RUP provides a disciplined approach on how to assign tasks and responsibilities within the software development process. RUP has four phases that can assist researchers to adjust the requirements of various projects with different scope, problem and the size of projects. RUP is characterized as a use case driven, architecture centered, iterative and incremental process model. However the scope of this study only focusing on Inception and Elaboration phases as step to develop the model and perform only three of nine workflows (business modeling, requirements, analysis and design). RUP has a strong focus on documents and the activities in the inception and elaboration phases mainly concern the creation of diagrams and writing of textual descriptions. The UML notation and the software program, Star UML are used to support the design of e-Tendering. The e-Tendering design based on the RUP approach can contribute to e-Tendering developers and researchers in e-Tendering domain. In addition, this study also shows that the RUP is one of the best system development methodology that can be used as one of the research methodology in Software Engineering domain related to secured design of any observed application. This methodology has been tested in various studies in certain domains, such as in Simulation-based Decision Support, Security Requirement Engineering, Business Modeling and Secure System Requirement, and so forth. As a conclusion, these studies showed that the RUP one of a good research methodology that can be adapted in any Software Engineering (SE) research domain that required a few artifacts to be generated such as use case modeling, misuse case modeling, activity

  11. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel.

    PubMed

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-06-28

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S-S498F-L505T-Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular "glue" that bridges the S4-S5 linker to the S1-S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor.

  12. Structure-based rational design of streptavidin mutants with pseudo-catalytic activity.

    PubMed

    Pazy, Yael; Raboy, Bilha; Matto, Meirav; Bayer, Edward A; Wilchek, Meir; Livnah, Oded

    2003-02-28

    Introduction of enzymatic activity into proteins or other types of polymers by rational design is a major objective in the life sciences. To date, relatively low levels of enzymatic activity could be introduced into antibodies by using transition-state analogues of haptens. In the present study, we identify the structural elements that contribute to the observed hydrolytic activity in egg white avidin, which promote the cleavage of active biotin esters (notably biotinyl p-nitrophenyl ester). The latter elements were then incorporated into bacterial streptavidin via genetic engineering. The streptavidin molecule was thus converted from a protector to an enhancer of hydrolysis of biotin esters. The conversion was accomplished by the combined replacement of a "lid-like loop" (L3,4) and a leucine-to-arginine point mutation in streptavidin. Interestingly, neither of these elements play a direct role in the hydrolytic reaction. The latter features were thus shown to be responsible for enhanced substrate hydrolysis. This work indicates that structural and non-catalytic elements of a protein can be modified to promote the induced fit of a substrate for subsequent interaction with either a catalytic residue or water molecules. This approach complements the conventional design of active sites that involves direct modifications of catalytic residues.

  13. Rational design and adaptive management of combination therapies for Hepatitis C virus infection

    DOE PAGES

    Ke, Ruian; Loverdo, Claude; Qi, Hangfei; ...

    2015-06-30

    Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensatemore » when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.« less

  14. Rational design and adaptive management of combination therapies for Hepatitis C virus infection

    SciTech Connect

    Ke, Ruian; Loverdo, Claude; Qi, Hangfei; Sun, Ren; Lloyd-Smith, James O.; Kouyos, Roger Dimitri

    2015-06-30

    Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensate when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.

  15. SS-Stabilizing Proteins Rationally: Intrinsic Disorder-Based Design of Stabilizing Disulphide Bridges in GFP.

    PubMed

    Melnik, Bogdan S; Povarnitsyna, Tatiana V; Glukhov, Anatoly S; Melnik, Tatyana N; Uversky, Vladimir N; Sarma, Ramaswamy H

    2012-01-01

    Abstract The most attractive and methodologically convenient way to enhance protein stability is via the introduction of disulphide bond(s). However, the effect of the artificially introduced SS-bond on protein stability is often quite unpredictable. This raises the question of how to choose the protein sites in an intelligent manner, so that the 'fastening' of these sites by the SS-bond(s) would provide maximal protein stability. We hypothesize that the successful design of a stabilizing SS-bond requires finding highly mobile protein regions. Using GFP as an illustrative example, we demonstrate that the knowledge of the peculiarities of the intramolecular hydrophobic interactions, combined with the understanding of the local intrinsic disorder propensities (that can be evaluated by various disorder predictors, e.g., PONDRFIT), is sufficient to find the candidate sites for the introduction of stabilizing SS-bridge(s). In fact, our analysis revealed that the insertion of the engineered SS-bridge between two highly flexible regions of GFP noticeably increased the conformational stability of this protein toward the thermal and chemical unfolding. Therefore, our study represents a novel approach for the rational design of stabilizing disulphide bridges in proteins.

  16. Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers.

    PubMed

    Sun, Xue; Li, Ke; Chen, Sainan; Yao, Bing; Zhou, Yifa; Cui, Sisi; Hu, Junli; Liu, Yichun

    2016-10-15

    Particle preloading method by first loading proteins onto nano- or microparticles and then integrating these particles into electrospun polyester nanofibers has been widely used to encapsulate therapeutic proteins into polyester nanofibers. However, poor method design has resulted in unsatisfactory protein delivery performance. For example, the harsh conditions involved in preloading procedures damage the bioactivities of proteins, the improper integration leads to an uneven distribution of particles in nanofibers or insecure attachment of particles to nanofibers, producing uncontrolled protein release profiles. This study aimed to improve the protein delivery performance of polyester nanofibers by rationally designing a particle preloading method. Positively charged chitosan nanoparticles (CNPs) were used as carriers to adsorb negatively charged proteins in mild conditions and as primary barriers for protein release. The polar CNPs were then homogeneously dispersed in a polar polyester solution and subjected to electrospinning. Microscope observations indicated that CNPs were homogeneously embedded within polyester nanofibers. In vitro release behaviour and cell studies showed that proteins retained their bioactivity and could release from polyester nanofibers in a sustained manner for more than 4 weeks without any initial burst. Epidermal growth factor encapsulated in polyester nanofibers enhanced diabetic wound healing in vivo, demonstrating an application potential in biomedicine. Other properties of the nanofibers, including composition, wettability, cytotoxicity, and cell adhesion and spreading, were examined in detail as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Glycolipid-based TLR4 Modulators and Fluorescent Probes: Rational Design, Synthesis, and Biological Properties.

    PubMed

    Ciaramelli, Carlotta; Calabrese, Valentina; Sestito, Stefania E; Pérez-Regidor, Lucia; Klett, Javier; Oblak, Alja; Jerala, Roman; Piazza, Matteo; Martín-Santamaría, Sonsoles; Peri, Francesco

    2016-08-01

    The cationic glycolipid IAXO-102, a potent TLR4 antagonist targeting both MD-2 and CD14 co-receptors, has been used as scaffold to design new potential TLR4 modulators and fluorescent labels for the TLR4 receptor complex (membrane TLR4.MD-2 dimer and CD14). The primary amino group of IAXO-102, not involved in direct interaction with MD-2 and CD14 receptors, has been exploited to covalently attach a fluorescein (molecules 1 and 2) or to link two molecules of IAXO-102 through diamine and diammonium spacers, obtaining 'dimeric' molecules 3 and 4. The structure-based rational design of compounds 1-4 was guided by the optimization of MD-2 and CD14 binding. Compounds 1 and 2 inhibited TLR4 activation, in a concentration-dependent manner, and signaling in HEK-Blue TLR4 cells. The fluorescent labeling of murine macrophages by molecule 1 was inhibited by LPS and was also abrogated when cell surface proteins were digested by trypsin, thus suggesting an interaction of fluorescent probe 1 with membrane proteins of the TLR4 receptor system.

  18. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel

    PubMed Central

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-01-01

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S–S498F–L505T–Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular “glue” that bridges the S4–S5 linker to the S1–S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor. PMID:27298359

  19. Towards a rational design of solid drug nanoparticles with optimised pharmacological properties

    PubMed Central

    Martin, Phillip; Smith, Darren; Curley, Paul; McDonald, Tom; Giardiello, Marco; Liptrott, Neill; Rannard, Steve; Owen, Andrew

    2016-01-01

    Abstract Solid drug nanoparticles (SDNs) are a nanotechnology with favourable characteristics to enhance drug delivery and improve the treatment of several diseases, showing benefit for improved oral bioavailability and injectable long‐acting medicines. The physicochemical properties and composition of nanoformulations can influence the absorption, distribution, and elimination of nanoparticles; consequently, the development of nanoparticles for drug delivery should consider the potential role of nanoparticle characteristics in the definition of pharmacokinetics. The aim of this study was to investigate the pharmacological behaviour of efavirenz SDNs and the identification of optimal nanoparticle properties and composition. Seventy‐seven efavirenz SDNs were included in the analysis. Cellular accumulation was evaluated in HepG2 (hepatic) and Caco‐2 (intestinal), CEM (lymphocyte), THP1 (monocyte), and A‐THP1 (macrophage) cell lines. Apparent intestinal permeability (Papp) was measured using a monolayer of Caco‐2 cells. The Papp values were used to evaluate the potential benefit on pharmacokinetics using a physiologically based pharmacokinetic model. The generated SDNs had an enhanced intestinal permeability and accumulation in different cell lines compared to the traditional formulation of efavirenz. Nanoparticle size and excipient choice influenced efavirenz apparent permeability and cellular accumulation, and this appeared to be cell line dependent. These findings represent a valuable platform for the design of SDNs, giving an empirical background for the selection of optimal nanoparticle characteristics and composition. Understanding how nanoparticle components and physicochemical properties influence pharmacological patterns will enable the rational design of SDNs with desirable pharmacokinetics. PMID:27774308

  20. Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy.

    PubMed

    Liberman, Vladimir; Adato, Ronen; Jeys, Thomas H; Saar, Brian G; Erramilli, Shyamsunder; Altug, Hatice

    2012-05-21

    We present an approach for rational design and optimization of plasmonic arrays for ultrasensitive surface enhanced infrared absorption (SEIRA) spectroscopy of specific protein analytes. Motivated by our previous work that demonstrated sub-attomole detection of surface-bound silk fibroin [Proc. Natl. Acad. Sci. U.S.A. 106, 19227 (2009)], we introduce here a general framework that allows for the numerical optimization of metamaterial sensor designs in order to maximize the absorbance signal. A critical feature of our method is the explicit compensation for the perturbative effects of the analyte's refractive index which alters the resonance frequency and line-shape of the metamaterial response, thereby leading to spectral distortion in SEIRA signatures. As an example, we leverage our method to optimize the geometry of periodic arrays of plasmonic nanoparticles on both Si and CaF2 substrates. The optimal geometries result in a three-order of magnitude absorbance enhancement compared to an unstructured Au layer, with the CaF2 substrate offering an additional factor of three enhancement in absorbance over a traditional Si substrate. The latter improvement arises from increase of near-field intensity over the Au nanobar surface for the lower index substrate. Finally, we perform sensitivity analysis for our optimized arrays to predict the effects of fabrication imperfections. We find that <20% deviation from the optimized absorbance response is readily achievable over large areas with modern nanofabrication techniques.

  1. An approach to rational ligand-design based on a thermodynamic analysis.

    PubMed

    Ui, Mihoko; Tsumoto, Kouhei

    2010-11-01

    Thermodynamic analysis is an effective tool in screening of lead-compounds for development of potential drug candidates. In most cases, a ligand achieve high affinity and specificity to a target protein by means of both favorable enthalpy and entropy terms, which can be reflected in binding profiles of Isothermal Titration Calorimetry (ITC). A favorable enthalpy change suggests the contribution of noncovalent contacts such as hydrogen bonding and van der Waals interaction between a ligand and its target protein. In general, optimization of binding enthalpy is more difficult than that of entropies in ligand-design; therefore, it is desirable to choose firstly a lead-compound based on its binding enthalpic gain. In this paper, we demonstrate the utility of thermodynamic approach to ligand screening using anti-ciguatoxin antibody 10C9 as a model of a target protein which possesses a large hydrophobic pocket. As a result of this screening, we have identified three compounds that could bind to the antigen-binding pocket of 10C9 with a few kcal/mol of favorable binding enthalpy. Comparison of their structure with the proper antigen ciguatoxin CTX3C revealed that 10C9 rigorously identifies their cyclic structure and a characteristic hydroxyl group. ITC measurement might be useful and powerful for a rational ligand screening and the optimization of the ligand; the enthalpic gain is an effective index for ligand-design studies.

  2. Rationally Designed Self-Healing Hydrogel Electrolyte toward a Smart and Sustainable Supercapacitor.

    PubMed

    Wang, Jingchen; Liu, Fatang; Tao, Feng; Pan, Qinmin

    2017-08-23

    Excellent self-healability and renewability are crucial for the development of wearable/flexible energy-storage devices aiming for advanced personalized electronics. However, realizing low-temperature self-healing and harmless regeneration remains a big challenge for existing wearable/flexible energy-storage devices, which is fundamentally limited by conventional polymeric electrolytes that are intrinsically neither cryo-healable nor renewable. Here, we rationally design a multifunctional polymer electrolyte on the basis of the copolymer of vinylimidazole and hydroxypropyl acrylate, which exhibits all features solving the above-mentioned limitations. A supercapacitor comprising the electrolyte autonomously restores its electrochemical behaviors at temperatures ranging from 25 to -15 °C after multiple mechanical breakings. Interestingly, it is even able to regenerate for 5 cycles through a simple wetting process in the case of malfunction, while maintaining its capacitive properties and excellent self-healability. Our investigation provides a novel insight into designing smart and sustainable energy-storage devices that might be applied to intelligent apparel, electronic skin or flexible robot, and so on.

  3. Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine.

    PubMed

    Choi, Hyang; Kyeong, Hyun-Ho; Choi, Jung Min; Kim, Hak-Sung

    2014-09-01

    Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.

  4. Freeze concentration-induced PLGA and polystyrene nanoparticle aggregation: Imaging and rational design of lyoprotection.

    PubMed

    Niu, Lin; Panyam, Jayanth

    2017-02-28

    Long-term storage of stable nanoparticulate systems is critical to the utilization of nanotechnology in biomedical applications. Freeze-drying or lyophilization is the most commonly used approach to preparing stable injectable nano formulations. A detailed understanding of the freezing stress on nanoparticles is essential to the successful preservation of original particle attributes and to the development of reliable lyophilization processes. However, visualization of the freezing process and the underlying mechanisms that result in particle aggregation remains challenging. Here, we show a clear causal relationship between the freeze-concentration event and particle aggregation by employing correlative imaging techniques, encompassing both real-time dynamic visualization and super-resolution imaging for frozen systems. Direct evidence was obtained to corroborate the particle isolation hypothesis. Moreover, ice-ice, ice-air and ice-container interfaces were identified as hotspots for generating freezing stress on susceptible nanoparticles. In light of these observations, sphere close packing models were explored. Based on the relationship between jammed particles and void fraction within a confined interfacial space, we are able to define the boundary condition of the minimal 'cryoprotectant to particle ratio' required for effective design space of particle isolation and cryoprotection. These findings clearly demonstrated the utility of visualization techniques and modeling in elucidating the mechanism of freezing stress and protection, providing guiding tools to the rational design of cryoprotectant containing nano formulations and processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Controlling the rate of organic reactions: rational design of allosteric Diels-Alderase ribozymes.

    PubMed

    Amontov, Sergey; Jäschke, Andres

    2006-01-01

    Allosteric mechanisms are widely used in nature to control the rates of enzymatic reactions, but little is known about RNA catalysts controlled by these principles. The only natural allosteric ribozyme reported to date catalyzes an RNA cleavage reaction, and so do almost all artificial systems. RNA has, however, been shown to accelerate a much wider range of chemical reactions. Here we report that RNA catalysts for organic reactions can be put under the stringent control of effector molecules by straight-forward rational design. This approach uses known RNA sequences with catalytic and ligand-binding properties, and exploits weakly conserved sequence elements and available structural information to induce the formation of alternative, catalytically inactive structures. The potential and general applicability is demonstrated by the design of three different systems in which the rate of a catalytic carbon-carbon bond forming reaction is positively regulated up to 2100-fold by theophylline, tobramycin and a specific mRNA sequence, respectively. Although smaller in size than a tRNA, all three ribozymes show typical features of allosteric metabolic enzymes, namely high rate acceleration and tight allosteric regulation. Not only do these findings demonstrate RNA's power as a catalyst, but also highlight on RNA's capabilities as signaling components in regulatory networks.

  6. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells

    PubMed Central

    Zhong, Guocai; Wang, Haimin; Bailey, Charles C; Gao, Guangping; Farzan, Michael

    2016-01-01

    Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes’s activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules. DOI: http://dx.doi.org/10.7554/eLife.18858.001 PMID:27805569

  7. Controlling the rate of organic reactions: rational design of allosteric Diels-Alderase ribozymes

    PubMed Central

    Amontov, Sergey; Jäschke, Andres

    2006-01-01

    Allosteric mechanisms are widely used in nature to control the rates of enzymatic reactions, but little is known about RNA catalysts controlled by these principles. The only natural allosteric ribozyme reported to date catalyzes an RNA cleavage reaction, and so do almost all artificial systems. RNA has, however, been shown to accelerate a much wider range of chemical reactions. Here we report that RNA catalysts for organic reactions can be put under the stringent control of effector molecules by straight-forward rational design. This approach uses known RNA sequences with catalytic and ligand-binding properties, and exploits weakly conserved sequence elements and available structural information to induce the formation of alternative, catalytically inactive structures. The potential and general applicability is demonstrated by the design of three different systems in which the rate of a catalytic carbon–carbon bond forming reaction is positively regulated up to 2100-fold by theophylline, tobramycin and a specific mRNA sequence, respectively. Although smaller in size than a tRNA, all three ribozymes show typical features of allosteric metabolic enzymes, namely high rate acceleration and tight allosteric regulation. Not only do these findings demonstrate RNA's power as a catalyst, but also highlight on RNA's capabilities as signaling components in regulatory networks. PMID:16990253

  8. Snake Bite in South Asia: A Review

    PubMed Central

    Alirol, Emilie; Sharma, Sanjib Kumar; Bawaskar, Himmatrao Saluba; Kuch, Ulrich; Chappuis, François

    2010-01-01

    Snake bite is one of the most neglected public health issues in poor rural communities living in the tropics. Because of serious misreporting, the true worldwide burden of snake bite is not known. South Asia is the world's most heavily affected region, due to its high population density, widespread agricultural activities, numerous venomous snake species and lack of functional snake bite control programs. Despite increasing knowledge of snake venoms' composition and mode of action, good understanding of clinical features of envenoming and sufficient production of antivenom by Indian manufacturers, snake bite management remains unsatisfactory in this region. Field diagnostic tests for snake species identification do not exist and treatment mainly relies on the administration of antivenoms that do not cover all of the important venomous snakes of the region. Care-givers need better training and supervision, and national guidelines should be fed by evidence-based data generated by well-designed research studies. Poorly informed rural populations often apply inappropriate first-aid measures and vital time is lost before the victim is transported to a treatment centre, where cost of treatment can constitute an additional hurdle. The deficiency of snake bite management in South Asia is multi-causal and requires joint collaborative efforts from researchers, antivenom manufacturers, policy makers, public health authorities and international funders. PMID:20126271

  9. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.

    PubMed

    Disney, Matthew D; Angelbello, Alicia J

    2016-12-20

    The discovery of RNA catalysis in the 1980s and the dissemination of the human genome sequence at the start of this century inspired investigations of the regulatory roles of noncoding RNAs in biology. In fact, the Encyclopedia of DNA Elements (ENCODE) project has shown that only 1-2% of the human genome encodes protein, yet 75% is transcribed into RNA. Functional studies both preceding and following the ENCODE project have shown that these noncoding RNAs have important roles in regulating gene expression, developmental timing, and other critical functions. RNA's diverse roles are often a consequence of the various folds that it adopts. The single-stranded nature of the biopolymer enables it to adopt intramolecular folds with noncanonical pairings to lower its free energy. These folds can be scaffolds to bind proteins or to form frameworks to interact with other RNAs. Not surprisingly, dysregulation of certain noncoding RNAs has been shown to be causative of disease. Given this as the background, it is easy to see why it would be useful to develop methods that target RNA and manipulate its biology in rational and predictable ways. The antisense approach has afforded strategies to target RNAs via Watson-Crick base pairing and has typically focused on targeting partially unstructured regions of RNA. Small molecule strategies to target RNA would be desirable not only because compounds could be lead optimized via medicinal chemistry but also because structured regions within an RNA of interest could be targeted to directly interfere with RNA folds that contribute to disease. Additionally, small molecules have historically been the most successful drug candidates. Until recently, the ability to design small molecules that target non-ribosomal RNAs has been elusive, creating the perception that they are "undruggable". In this Account, approaches to demystify targeting RNA with small molecules are described. Rather than bulk screening for compounds that bind to singular

  10. Rationally designed fluorescence turn-on sensors: a new design strategy based on orbital control.

    PubMed

    Jung, Hyo Sung; Ko, Kyoung Chul; Lee, Jae Hong; Kim, Sang Hoon; Bhuniya, Sankarprasad; Lee, Jin Yong; Kim, Youngmee; Kim, Sung Jin; Kim, Jong Seung

    2010-09-20

    Herein, we explore a new strategy in the chemo-sensor field for fluorescence amplification upon binding with metal ions based on controlled participation of the nitrogen lone pair orbital. The basic architecture of the sensor entails a fluorophore, the sp(2) hybridized nitrogen lone pair (-C═N-), and a chelator site referred to as the control part. Though nonplanar and nonfluorescent, compound IC1 achieved pseudo planarity from binding with Zn(2+) as indicated by the increased fluorescence signal. Its other analogue (IC2) is also planar, and unlike IC1-Zn(2+) was fluorescent with a lack of binding affinity to metal ions. The time-dependent density functional theory (TDDFT) calculations revealed that the fluorescence amplification was due to the blocking of the nitrogen lone pair orbital; unlikely geometrical rearrangements were insignificant. This could indicate a breakthrough concept in the future design of fluorescent turn-on sensors.

  11. Creating parts that allow for rational design: synthetic biology and the problem of context-sensitivity.

    PubMed

    Güttinger, Stephan

    2013-06-01

    The parts-based engineering approach in synthetic biology aims to create pre-characterised biological parts that can be used for the rational design of novel functional systems. Given the context-sensitivity of biological entities, a key question synthetic biologists have to address is what properties these parts should have so that they give a predictable output even when they are used in different contexts. In the first part of this paper I will analyse some of the answers that synthetic biologists have given to this question and claim that the focus of these answers on parts and their properties does not allow us to tackle the problem of context-sensitivity. In the second part of the paper, I will argue that we might have to abandon the notions of parts and their properties in order to understand how independence in biology could be achieved. Using Robert Cummins' account of functional analysis, I will then develop the notion of a capacity and its condition space and show how these notions can help to tackle the problem of context-sensitivity in biology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Staphylococcus aureus in Continuous Culture: A Tool for the Rational Design of Antibiotic Treatment Protocols

    PubMed Central

    Udekwu, Klas I.; Levin, Bruce R.

    2012-01-01

    In vitro measures of the pharmacodynamics of antibiotics that account for the factors anticipated for bacteria in infected patients are central to the rational design of antibiotic treatment protocols. We consider whether or not continuous culture devices are a way to obtain these measures. Staphylococcus aureus PS80 in high-density continuous cultures were exposed to oxacillin, ciprofloxacin, vancomycin, gentamicin, daptomycin and linezolid. Contrary to results from low density retentostats as well as to predictions of traditional PK/MIC ratios, daily dosing with up to 100× MIC did not clear these cultures. The densities of S. aureus in these cultures oscillated with constant amplitude and never fell below 105 CFU per ml. Save for daptomycin “treated” populations, the densities of bacteria in these cultures remained significantly below that of similar antibiotic-free cultures. Although these antibiotics varied in their pharmacodynamic properties there were only modest differences in their mean densities. Mathematical models and experiments suggest that the dominant factor preventing clearance was wall-adhering subpopulations reseeding the planktonic population which can be estimated and corrected for. Continuous cultures provide a way to evaluate the potential efficacy of antibiotic treatment regimes in vitro under conditions that are more clinically realistic and comprehensive than traditional in vitro PK/PD indices. PMID:22911681

  13. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

    NASA Astrophysics Data System (ADS)

    Choi, YongMan; Lin, M. C.; Liu, Meilin

    The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.

  14. Rational design and controlled synthesis of Te/Bi2Te3 heterostructure nanostring composites

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhuo; Chen, Hong; Li, Zhiliang; Huang, Ting; Zheng, Shuqi

    2015-07-01

    Te/Bi2Te3 heterostructure nanostring composites composed of several Bi2Te3 nanoplates, which were perpendicularly strung together by Te nanorod, were rationally designed and synthesized via a facile solvothermal method on a large scale. The X-ray diffraction (XRD) characterization demonstrated that the Bi2Te3 nanoplates were rhombohedral phase and the Te nanorods were trigonal phase. The uniform nanostring morphologies were well characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Detailed heterostructures were proved via energy dispersive spectrometer (EDS) and high-resolution transmission electron microscope (HRTEM). The morphology transformation from Bi2Te3 nanoplates to Te/Bi2Te3 heterostructure nanostrings could be controlled by adjusting the ratio of bismuth oxide to tellurium oxide. NaOH, serving as catalytic reduction agent and morphology controlling agent, played an important role in the synthesis of Te/Bi2Te3 heterostructure nanostrings. The reaction mechanism was also proposed to explain the formation process of the composites and the specific function of reagents in this reaction system.

  15. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.

    2014-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life. PMID:24741694

  16. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers.

    PubMed

    Márquez-Miranda, Valeria; Camarada, María Belén; Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers.

  17. SMET: systematic multiple enzyme targeting - a method to rationally design optimal strains for target chemical overproduction.

    PubMed

    Flowers, David; Thompson, R Adam; Birdwell, Douglas; Wang, Tsewei; Trinh, Cong T

    2013-05-01

    Identifying multiple enzyme targets for metabolic engineering is very critical for redirecting cellular metabolism to achieve desirable phenotypes, e.g., overproduction of a target chemical. The challenge is to determine which enzymes and how much of these enzymes should be manipulated by adding, deleting, under-, and/or over-expressing associated genes. In this study, we report the development of a systematic multiple enzyme targeting method (SMET), to rationally design optimal strains for target chemical overproduction. The SMET method combines both elementary mode analysis and ensemble metabolic modeling to derive SMET metrics including l-values and c-values that can identify rate-limiting reaction steps and suggest which enzymes and how much of these enzymes to manipulate to enhance product yields, titers, and productivities. We illustrated, tested, and validated the SMET method by analyzing two networks, a simple network for concept demonstration and an Escherichia coli metabolic network for aromatic amino acid overproduction. The SMET method could systematically predict simultaneous multiple enzyme targets and their optimized expression levels, consistent with experimental data from the literature, without performing an iterative sequence of single-enzyme perturbation. The SMET method was much more efficient and effective than single-enzyme perturbation in terms of computation time and finding improved solutions.

  18. Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity.

    PubMed

    Ding, Kuiling; Du, Haifeng; Yuan, Yu; Long, Jiang

    2004-06-21

    An efficient asymmetric catalyst relies on the successful combination of a large number of interrelated variables, including rational design, intuition, persistence, and good fortune-not all of which are necessarily well-understood; this renders such practice largely empirical. As a result, the possibility of using combinatorial chemistry methods in asymmetric catalysis research has been widely recognized to be highly desirable. In this account, we attempt to show the principle and application of combinatorial approach in the discovery of chiral catalysts for enantioselective reactions. The concept focuses on the strategy for the creation of a modular chiral catalyst library by two-component ligand modification of metal ions on the basis of molecular recognition and assembly. The self-assembled chiral catalyst with two different ligands indeed exhibited synergistic effects in terms of both enantioselectivity and activity in comparison with its corresponding homocombinations in many reactions. The examples described in this paper demonstrated the powerfulness of combinatorial approach for the discovery of novel chiral catalyst systems, particularly for the development of highly efficient, enantioselective, and practical catalysts for enantioselective reactions. We hope this concept will stimulate further work on the discovery of more highly efficient and enantioselective catalysts, as well as unexpected classes of catalysts or catalytic enantioselective reactions in the future with the help of a combinatorial chemistry approach.

  19. A density functional theory insight towards the rational design of ionic liquids for SO2 capture.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-05-28

    A systematic density functional theory (DFT) analysis has been carried out to obtain information at the molecular level on the key parameters related to efficient SO2 capture by ionic liquids (ILs). A set of 55 ILs, for which high gas solubility is expected, has been selected. SO2 solubility of ILs was firstly predicted based on the COSMO-RS (Conductor-like Screening Model for Real Solvents) method, which provides a good prediction of gas solubility data in ILs without prior experimental knowledge of the compounds' features. Then, interactions between SO2 and ILs were deeply analyzed through DFT simulations. This work provides valuable information about required factors at the molecular level to provide high SO2 solubility in ILs, which is crucial for further implementation of these materials in the future. In our opinion, systematic research on ILs for SO2 capture increases our knowledge about those factors which could be controlled at the molecular level, providing an approach for the rational design of task-specific ILs.

  20. Rational Design of Cathode Structure for High Rate Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Hongwei; Wang, Changhong; Dai, Yafei; Qiu, Shengqiang; Yang, Jinlong; Lu, Wei; Chen, Liwei

    2015-08-12

    Practical applications of Li-S batteries require not only high specific capacities and long cycle lifetimes but also high rate performance. We report a rationally designed Li-S cathode, which consists of a freestanding composite thin film assembled from S nanoparticles, reduced graphene oxide (rGO), and a multifunctional additive poly(anthraquinonyl sulfide) (PAQS). The S nanoparticles provide a high initial specific capacity, and the layered and porous rGO structure provides electron and ion transport paths and restricts polysulfide shuttling. PAQS is not only a highly efficient sulfide trapping agent but also an excellent Li(+) conductor, which benefits the battery reaction kinetics at a high rate. The resulting cathode exhibits an initial specific capacity of 1255 mAh g(-1) with a decay rate as low as 0.046% per cycles over 1200 cycles. Importantly, it displays a reversible capacity of 615 mAh g(-1) when discharged at a high rate of 8 C (13.744 A g(-1)).

  1. A rationally designed agonist defines subfamily IIIA ABA receptors as critical targets for manipulating transpiration.

    PubMed

    Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R

    2017-09-26

    Increasing drought and diminishing freshwater supplies have stimulated interest in developing chemicals that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin resistance 1 (PYR1) with low nM potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C-6 methyl groups respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with wide-spectrum ABA-like activity that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

  2. Surface Termination of M1 Phase and Rational Design of Propane Ammoxidation Catalysts

    SciTech Connect

    Guliants, Vadim

    2015-02-16

    This final report describes major accomplishments in this research project which has demonstrated that the M1 phase is the only crystalline phase required for propane ammoxidation to acrylonitrile and that a surface monolayer terminating the ab planes of the M1 phase is responsible for their activity and selectivity in this reaction. Fundamental studies of the topmost surface chemistry and mechanism of propane ammoxidation over the Mo-V-(Te,Sb)-(Nb,Ta)-O M1 and M2 phases resulted in the development of quantitative understanding of the surface molecular structure – reactivity relationships for this unique catalytic system. These oxides possess unique catalytic properties among mixed metal oxides, because they selectively catalyze three alkane transformation reactions, namely propane ammoxidation to acrylonitrile, propane oxidation to acrylic acid and ethane oxidative dehydrogenation, all of considerable economic significance. Therefore, the larger goal of this research was to expand this catalysis to other alkanes of commercial interest, and more broadly, demonstrate successful approaches to rational design of improved catalysts that can be applied to other selective (amm)oxidation processes.

  3. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design.

    PubMed

    Zhou, P; Huang, J; Tian, F

    2012-01-01

    Specific noncovalent interactions that are indicative of attractive, directional intermolecular forces have always been of key interest to medicinal chemists in their search for the "glue" that holds drugs and their targets together. With the rapid increase in the number of solved biomolecular structures as well as the performance enhancement of computer hardware and software in recent years, it is now possible to give more comprehensive insight into the geometrical characteristics and energetic landscape of certain sophisticated noncovalent interactions present at the binding interface of protein receptors and small ligands based on accumulated knowledge gaining from the combination of two quite disparate but complementary approaches: crystallographic data analysis and quantum-mechanical ab initio calculation. In this perspective, we survey massive body of published works relating to structural characterization and theoretical investigation of three kinds of strong, specific, direct, enthalpy-driven intermolecular forces, including hydrogen bond, halogen bond and salt bridge, involved in the formation of protein-ligand complex architecture in order to characterize their biological functions in conferring affinity and specificity for ligand recognition by host protein. In particular, the biomedical implications of raised knowledge are discussed with respect to potential applications in rational drug design.

  4. Recovery of Red Fluorescent Protein Chromophore Maturation Deficiency through Rational Design

    PubMed Central

    Moore, Matthew M.; Oteng-Pabi, Samuel K.; Pandelieva, Antonia T.; Mayo, Stephen L.; Chica, Roberto A.

    2012-01-01

    Red fluorescent proteins (RFPs) derived from organisms in the class Anthozoa have found widespread application as imaging tools in biological research. For most imaging experiments, RFPs that mature quickly to the red chromophore and produce little or no green chromophore are most useful. In this study, we used rational design to convert a yellow fluorescent mPlum mutant to a red-emitting RFP without reverting any of the mutations causing the maturation deficiency and without altering the red chromophore’s covalent structure. We also created an optimized mPlum mutant (mPlum-E16P) that matures almost exclusively to the red chromophore. Analysis of the structure/function relationships in these proteins revealed two structural characteristics that are important for efficient red chromophore maturation in DsRed-derived RFPs. The first is the presence of a lysine residue at position 70 that is able to interact directly with the chromophore. The second is an absence of non-bonding interactions limiting the conformational flexibility at the peptide backbone that is oxidized during red chromophore formation. Satisfying or improving these structural features in other maturation-deficient RFPs may result in RFPs with faster and more complete maturation to the red chromophore. PMID:23285050

  5. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  6. Rational Design of Peptide-Functionalized Surface Plasmon Resonance Sensor for Specific Detection of TNT Explosive.

    PubMed

    Wang, Jin; Muto, Masaki; Yatabe, Rui; Onodera, Takeshi; Tanaka, Masayoshi; Okochi, Mina; Toko, Kiyoshi

    2017-09-30

    In this study, a rationally-designed 2,4,6-trinitrotoluene (TNT) binding peptide derived from an amino acid sequence of the complementarity-determining region (CDR) of an anti-TNT monoclonal antibody was used for TNT detection based on a maleimide-functionalized surface plasmon resonance (SPR) sensor. By antigen-docking simulation and screening, the TNT binding candidate peptides were obtained as TNTHCDR1 derived from the heavy chain of CDR1, TNTHCDR2 derived from CDR2, and TNTHCDR3 from CDR3 of an anti-TNT antibody. The binding events between candidate peptides and TNT were evaluated using the SPR sensor by direct determination based on the 3-aminopropyltriethoxysilane (APTES) surface. The TNT binding peptide was directly immobilized on the maleimide-functionalized sensor chip surface from N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). The results demonstrated that peptide TNTHCDR3 was identified and selected as a TNT binding peptide among the other two candidate peptides. Five kinds of TNT analogues were also investigated to testify the selectivity of TNT binding peptide TNTHCDR3. Furthermore, the results indicated that the APTES-GMBS-based SPR sensor chip procedure featured a great potential application for the direct detection of TNT.

  7. Phospholipid-based nonlamellar mesophases for delivery systems: bridging the gap between empirical and rational design.

    PubMed

    Martiel, Isabelle; Sagalowicz, Laurent; Mezzenga, Raffaele

    2014-07-01

    Phospholipids are ubiquitous cell membrane components and relatively well-accepted ingredients due to their natural origin. Phosphatidylcholine (PC) in particular offers a promising alternative to monoglycerides for lyotropic liquid crystalline (LLC) delivery system applications in the food, cosmetics and pharmaceutical industries, provided its strong tendency to form zero-mean curvature lamellar mesophases in water can be overcome. Higher negative curvatures are usually reached through the addition of a third lipid component, forming a ternary diagram phospholipid/water/oil. The initial part of this work summarizes the potential advantages and the challenges of phospholipid-based delivery system applications. In the next part, various ternary PC/water/oil systems are discussed, with a special emphasis on the PC/water/cyclohexane and PC/water/α-tocopherol systems. We report that R-(+)-limonene has a quantitatively similar effect as cyclohexane. The last part is devoted to the theoretical interpretation of the observed phase behaviors. A fruitful parallel is drawn with PC polymer-like reverse micelles, leading to a thermodynamic description in terms of interfacial bending energy. Investigations at the molecular level are reviewed to help in bridging the empirical and theoretical approaches. Predictive rules are finally derived from this wide-ranging overview, thereby opening the way to a future rational design of PC-based LLC delivery systems.

  8. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design.

    PubMed

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S; Lawson, Christopher P; Preus, Søren; Bood, Mattias; Gradén, Henrik; Wilhelmsson, L Marcus; Grøtli, Morten

    2015-07-31

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  9. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    SciTech Connect

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  10. Tuning RNA folding and function through rational design of junction topology.

    PubMed

    Daher, May; Mustoe, Anthony M; Morriss-Andrews, Alex; Brooks Iii, Charles L; Walter, Nils G

    2017-09-19

    Structured RNAs such as ribozymes must fold into specific 3D structures to carry out their biological functions. While it is well-known that architectural features such as flexible junctions between helices help guide RNA tertiary folding, the mechanisms through which junctions influence folding remain poorly understood. We combine computational modeling with single molecule Förster resonance energy transfer (smFRET) and catalytic activity measurements to investigate the influence of junction design on the folding and function of the hairpin ribozyme. Coarse-grained simulations of a wide range of junction topologies indicate that differences in sterics and connectivity, independent of stacking, significantly affect tertiary folding and appear to largely explain previously observed variations in hairpin ribozyme stability. We further use our simulations to identify stabilizing modifications of non-optimal junction topologies, and experimentally validate that a three-way junction variant of the hairpin ribozyme can be stabilized by specific insertion of a short single-stranded linker. Combined, our multi-disciplinary study further reinforces that junction sterics and connectivity are important determinants of RNA folding, and demonstrates the potential of coarse-grained simulations as a tool for rationally tuning and optimizing RNA folding and function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase.

    PubMed

    Arias, D G; Herrera, F E; Garay, A S; Rodrigues, D; Forastieri, P S; Luna, L E; Bürgi, M D L M; Prieto, C; Iglesias, A A; Cravero, R M; Guerrero, S A

    2017-01-05

    The rational design and synthesis of a series of 5-nitro-2-furoic acid analogues are presented. The trypanocidal activity against epimastigote forms of Trypanosoma cruzi and the toxic effects on human HeLa cells were tested. Between all synthetic compounds, three of thirteen had an IC50 value in the range of Nfx, but compound 13 exhibited an improved effect with an IC50 of 1.0 ± 0.1 μM and a selective index of 70 in its toxicity against HeLa cells. We analyzed the activity of compounds 8, 12 and 13 to interfere in the central redox metabolic pathway in trypanosomatids, which is dependent of reduced trypanothione as the major pivotal thiol. The three compounds behaved as better inhibitors of trypanothione reductase than Nfx (Ki values of 118 μM, 61 μM and 68 μM for 8, 12 and 13, respectively, compared with 245 μM for Nfx), all following an uncompetitive enzyme inhibition pattern. Docking analysis predicted a binding of inhibitors to the enzyme-substrate complex with binding energy calculated in-silico that supports such molecular interaction.

  12. Rational design of triazololipopeptides analogs of kisspeptin inducing a long-lasting increase of gonadotropins.

    PubMed

    Beltramo, Massimiliano; Robert, Vincent; Galibert, Mathieu; Madinier, Jean-Baptiste; Marceau, Philippe; Dardente, Hugues; Decourt, Caroline; De Roux, Nicolas; Lomet, Didier; Delmas, Agnès F; Caraty, Alain; Aucagne, Vincent

    2015-04-23

    New potent and selective KISS1R agonists were designed using a combination of rational chemical modifications of the endogenous neuropeptide kisspeptin 10 (KP10). Improved resistance to degradation and presumably reduced renal clearance were obtained by introducing a 1,4-disubstituted 1,2,3-triazole as a proteolysis-resistant amide mimic and a serum albumin-binding motif, respectively. These triazololipopeptides are highly potent full agonists of KISS1R and are >100 selective over the closely related NPFF1R. When injected in ewes with a quiescent reproductive system, the best compound of our series induced a much prolonged increase of luteinizing hormone release compared to KP10 and increased follicle-stimulating hormone plasma concentration. Hence, this KISS1R agonist is a new valuable pharmacological tool to explore the potential of KP system in reproduction control. Furthermore, it represents the first step to develop drugs treating reproductive system disorders due to a reduced activity of the hypothalamo-pituitary-gonadal axis such as delayed puberty, hypothalamic amenorrhea, and hypogonadotropic hypogonadism.

  13. Rational design of cyclic peptides to disrupt TGF-Β/SMAD7 signaling in heterotopic ossification.

    PubMed

    Zhong, Biao; Zhang, Chi; Guo, Shang; Zhang, Changqing

    2017-03-01

    The human TGF-β/SMAD7 signaling has been recognized as an attractive target of heterotopic ossification (HO). Here, we report a successful rational design of cyclic peptides to disrupt the signaling pathway by targeting TGF-β-receptor complex. The intermolecular interaction between TGF-β and its cognate receptor is characterized in detail using molecular dynamics simulation, binding energetic analysis, and alanine scanning. With the computational analysis a binding loop of receptor protein is identified that plays an essential role in the peptide-mediated TGF-β-receptor interaction. Subsequently, the loop is stripped from the protein context to generate a linear peptide segment, which possesses considerable flexibility and intrinsic disorder, and thus would incur a large entropy penalty upon binding to TGF-β. In order to minimize the unfavorable entropic effect, the linear peptide is cyclized by adding a disulfide bond between the N- and C-terminal cysteine residues of the peptide, resulting in a cyclic peptide. In vitro fluorescence anisotropy assays substantiate that the cyclic peptide can bind tightly to TGF-β with determined Kd value of 54μM. We also demonstrated that structural optimization can further improve the peptide affinity by site-directed mutagenesis of selected residues based on the computationally modeled complex structure of TGF-β with the cyclic peptide.

  14. Staphylococcus aureus in continuous culture: a tool for the rational design of antibiotic treatment protocols.

    PubMed

    Udekwu, Klas I; Levin, Bruce R

    2012-01-01

    In vitro measures of the pharmacodynamics of antibiotics that account for the factors anticipated for bacteria in infected patients are central to the rational design of antibiotic treatment protocols. We consider whether or not continuous culture devices are a way to obtain these measures. Staphylococcus aureus PS80 in high-density continuous cultures were exposed to oxacillin, ciprofloxacin, vancomycin, gentamicin, daptomycin and linezolid. Contrary to results from low density retentostats as well as to predictions of traditional PK/MIC ratios, daily dosing with up to 100× MIC did not clear these cultures. The densities of S. aureus in these cultures oscillated with constant amplitude and never fell below 10(5) CFU per ml. Save for daptomycin "treated" populations, the densities of bacteria in these cultures remained significantly below that of similar antibiotic-free cultures. Although these antibiotics varied in their pharmacodynamic properties there were only modest differences in their mean densities. Mathematical models and experiments suggest that the dominant factor preventing clearance was wall-adhering subpopulations reseeding the planktonic population which can be estimated and corrected for. Continuous cultures provide a way to evaluate the potential efficacy of antibiotic treatment regimes in vitro under conditions that are more clinically realistic and comprehensive than traditional in vitro PK/PD indices.

  15. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  16. Rational Design of Thermally Stable Novel Biocatalytic Nanomaterials: Enzyme Stability in Restricted Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Mudhivarthi, Vamsi K.

    Enzyme stability is of intense interest in bio-materials science as biocatalysts, and as sensing platforms. This is essentially because the unique properties of DNA, RNA, PAA can be coupled with the interesting and novel properties of proteins to produce systems with unprecedented control over their properties. In this article, the very first examples of enzyme/NA/inorganic hybrid nanomaterials and enzyme-Polyacrylic acid conjugates will be presented. The basic principles of design, synthesis and control of properties of these hybrid materials will be presented first, and this will be followed by a discussion of selected examples from our recent research findings. Data show that key properties of biological catalysts are improved by the inorganic framework especially when the catalyst is co-embedded with DNA. Several examples of such studies with various enzymes and proteins, including horseradish peroxidase (HRP), glucose oxidase (GO), cytochrome c (Cyt c), met-hemoglobin (Hb) and met-myoglobin (Mb) will be discussed. Additionally, key insights obtained by the standard methods of materials science including XRD, SEM and TEM as well as biochemical, calorimetric and spectroscopic methods will be discussed. Furthermore, improved structure and enhanced activities of the biocatalysts in specific cases will be demonstrated along with the potential stabilization mechanisms. Our hypothesis is that nucleic acids provide an excellent control over the enzyme-solid interactions as well as rational assembly of nanomaterials. These novel nanobiohybrid materials may aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.

  17. Rational Design of a Polymer with Robust Efficacy for Intracellular Protein and Peptide Delivery.

    PubMed

    Chang, Hong; Lv, Jia; Gao, Xin; Wang, Xing; Wang, Hui; Chen, Hui; He, Xu; Li, Lei; Cheng, Yiyun

    2017-03-08

    The efficient delivery of biopharmaceutical drugs such as proteins and peptides into the cytosol of target cells poses substantial challenges owing to their large size and susceptibility to degradation. Current protein delivery vehicles have limitations such as the need for protein modification, insufficient delivery of large-size proteins or small peptides, and loss of protein function after the delivery. Here, we adopted a rational approach to design a polymer with robust efficacy for intracellular protein and peptide delivery. The polymer is composed of a dendrimer scaffold, a hydrophobic membrane-disruptive region, and a multivalent protein binding surface. It allows efficient protein/peptide binding, endocytosis, and endosomal disruption and is capable of efficiently delivering various biomacromolecules including bovine serum albumin, R-phycoerythrin, p53, saporin, β-galactosidase, and peptides into the cytosol of living cells. Transduction of apoptotic proteins and peptides successfully induces apoptosis in cancer cells, suggesting that the activities of proteins and peptides are maintained during the delivery. This technology represents an efficient and useful tool for intracellular protein and peptide delivery and has broad applicability for basic research and clinical applications.

  18. Atomic force microscopy as a nanoscience tool in rational food design.

    PubMed

    Morris, Victor J; Woodward, Nicola C; Gunning, Allan P

    2011-09-01

    Atomic force microscopy (AFM) is a nanoscience tool that has been used to provide new information on the molecular structure of food materials. As an imaging tool it has led to solutions to previously intractable problems in food science. This type of information can provide a basis for tailoring food structures to optimise functional behaviour. Such an approach will be illustrated by indicating how a basic understanding of the role of interfacial stability in complex foods systems can be extended to understand how such interfacial structures behave on digestion, and how this in turn suggests routes for the rational design of processed food structures to modify lipolysis and control fat intake. As a force transducer AFM can be used to probe interactions between food structures such as emulsion droplets at the colloidal level. This use of force spectroscopy will be illustrated through showing how it allows the effect of the structural modification of interfacial structures on colloidal interactions to be probed in model emulsion systems. Direct studies on interactions between colliding soft, deformable droplets reveal new types of interactions unique to deformable particles that can be exploited to manipulate the behaviour of processed or natural emulsion structures involved in digestion processes. Force spectroscopy can be adapted to probe specific intermolecular interactions, and this application of the technique will be illustrated through its use to test molecular hypotheses for the bioactivity of modified pectin molecules.

  19. Engineering of genetic control tools in Synechocystis sp. PCC 6803 using rational design techniques.

    PubMed

    Albers, Stevan C; Gallegos, Victor A; Peebles, Christie A M

    2015-12-20

    Cyanobacteria show promise as photosynthetic microbial factories capable of harnessing sunlight and CO2 to produce valuable end products, but few genetic control tools have been characterized and utilized in these organisms. To develop a suite of control elements capable of gene control at a variety of expression strengths, a library of 10 promoter-constructs were developed and built via rational design techniques by adding individual nucleotides in a step-wise manner within the -10 and -35 cis-acting regions of the tac promoter. This suite produced a dynamic range of expression strength, exhibiting a 78 fold change between the lowest expressing promoter, Psca8- and the highest expressing promoter, Psca3-2 when tested within Synechocystis sp. PCC 6803. Additionally, this study details the construction of a chemically inducible construct for use in Synechocystis that is based on the tac repressor system most commonly used in Escherichia coli. This research demonstrates the construction of a highly expressed inducible promoter that is also capable of high levels of gene repression. Upon chemical induction with IPTG, this same mutant strain was capable of exhibiting an average 24X increase in GFP expression over that of the repressed state.

  20. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers

    PubMed Central

    Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers. PMID:26382062

  1. Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design.

    PubMed

    Ma, Chengwei; Zhang, Le; Dai, Jianying; Xiu, Zhilong

    2010-04-15

    1,3-Propanediol has wide applications for large volume markets, particularly in the polymer business. Microbial production of 1,3-propanediol has been considered as a competitor to the traditional petrochemical routes. However, the formation of 1,3-propanediol is limited by the amount of NADH supplied by the oxidative pathway of glycerol dismutation. Previous metabolic flux analysis revealed that relaxation of the coenzyme specificity of 1,3-propanediol oxidoreductase for both NADH and NADPH would increase the production of 1,3-propanediol as well as maintaining the NADH-NAD(+) circle. This work tried to accomplish such a relaxation by rational protein design. Overall binding free energy indicated that the electrostatic energy was the major force discriminating NADH from NADPH. Computational alanine-scanning mutagenesis of the active site residues illustrated that Asp41 was the key residue responsible for the coenzyme specificity. Compared with Asp41Ala, Asp41Gly could further weaken the repulsion between Asp41 and the phosphate group esterified to the 2'-hydroxyl group of the ribose at the adenine end of NADPH. Site-directed mutagenesis was conducted and the relaxation was successfully realized.

  2. Rational risk-based decision support for drinking water well managers by optimized monitoring designs

    NASA Astrophysics Data System (ADS)

    Enzenhöfer, R.; Geiges, A.; Nowak, W.

    2011-12-01

    Advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. Considering the insufficient knowledge about hazards and transport properties within the catchment, current Water Safety Plans recommend that catchment managers and stakeholders know, control and monitor all possible hazards within the catchments and perform rational risk-based decisions. Our goal is to supply catchment managers with the required probabilistic risk information, and to generate tools that allow for optimal and rational allocation of resources between improved monitoring versus extended safety margins and risk mitigation measures. To support risk managers with the indispensable information, we address the epistemic uncertainty of advective-dispersive solute transport and well vulnerability (Enzenhoefer et al., 2011) within a stochastic simulation framework. Our framework can separate between uncertainty of contaminant location and actual dilution of peak concentrations by resolving heterogeneity with high-resolution Monte-Carlo simulation. To keep computational costs low, we solve the reverse temporal moment transport equation. Only in post-processing, we recover the time-dependent solute breakthrough curves and the deduced well vulnerability criteria from temporal moments by non-linear optimization. Our first step towards optimal risk management is optimal positioning of sampling locations and optimal choice of data types to reduce best the epistemic prediction uncertainty for well-head delineation, using the cross-bred Likelihood Uncertainty Estimator (CLUE, Leube et al., 2011) for optimal sampling design. Better monitoring leads to more reliable and realistic protection zones and thus helps catchment managers to better justify smaller, yet conservative safety margins. In order to allow an optimal choice in sampling strategies, we compare the trade-off in monitoring versus the delineation costs by accounting for ill

  3. Rational design of metal-organic electronic devices: A computational perspective

    NASA Astrophysics Data System (ADS)

    Chilukuri, Bhaskar

    engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.

  4. Half-sandwich iridium- and rhodium-based organometallic architectures: rational design, synthesis, characterization, and applications.

    PubMed

    Han, Ying-Feng; Jin, Guo-Xin

    2014-12-16

    CONSPECTUS: Over the last two decades, researchers have focused on the design and synthesis of supramolecular coordination complexes, which contain discrete functional structures with particular shapes and sizes, and are similar to classic metal-organic frameworks. Chemists can regulate many of these systems by judiciously choosing the metal centers and their adjoining ligands. These resulting complexes have unusual properties and therefore many applications, including molecular recognition, supramolecular catalysis, and some applications as nanomaterials. In addition, researchers have extensively developed synthetic methodologies for the construction of discrete self-assemblies. One of the most important challenges for scientists in this area is to be able to synthesize target structures that can be controlled in both length and width. For this reason, it is important that we understand the factors leading to special shapes and sizes of such architectures, especially how starting building blocks and functional ligands affect the final conformations and cavity sizes of the resulting assemblies. Towards this goal, we have developed a wide range of different organometallic architectures by rationally designing metal-containing precursors and organic ligands. In this Account, we present our recent work, focusing on half-sandwich iridium- and rhodium-based organometallic assemblies that we obtained through rational design. We discuss their synthesis, structures, and applications for the encapsulation of guests and enzyme-mimicking catalysis. We first describe a series of self-assembled organometallic metallarectangles and metallacages, which we constructed from preorganized dinuclear half-sandwich molecular clips and suitable pyridyl ligands. We extended this strategy to tune the size of the obtained rectangles, creating large cavities by introduction of larger molecular clips. The cavity was found to exhibit selective and reversible CH2Cl2 adsorption properties while

  5. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes

    DOE PAGES

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; ...

    2015-08-19

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein–ligand complexes. Such fluorine–backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin–MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes withmore » menin. Here, we found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin–MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine–backbone interactions in protein–ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin–MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Lastly, considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine–backbone interactions may represent a particularly attractive approach to improve inhibitors of protein–protein interactions.« less

  6. Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals

    PubMed Central

    2011-01-01

    We address two aspects of general interest for the chemical synthesis of colloidal semiconductor nanocrystals: (1) the rational design of the synthesis protocol aiming at the optimization of the reaction parameters in a minimum number of experiments; (2) the transfer of the procedure to the gram scale, while maintaining a low size distribution and maximizing the reaction yield. Concerning the first point, the design-of-experiment (DOE) method has been applied to the synthesis of colloidal CdSe nanocrystals. We demonstrate that 16 experiments, analyzed by means of a Taguchi L16 table, are sufficient to optimize the reaction parameters for controlling the mean size of the nanocrystals in a large range while keeping the size distribution narrow (5-10%). The DOE method strongly reduces the number of experiments necessary for the optimization as compared to trial-and-error approaches. Furthermore, the Taguchi table analysis reveals the degree of influence of each reaction parameter investigated (e.g., the nature and concentration of reagents, the solvent, the reaction temperature) and indicates the interactions between them. On the basis of these results, the synthesis has been scaled up by a factor of 20. Using a 2-L batch reactor combined with a high-throughput peristaltic pump, different-sized samples of CdSe nanocrystals with yields of 2-3 g per synthesis have been produced without sacrificing the narrow size distribution. In a similar setup, the gram-scale synthesis of CdSe/CdS/ZnS core/shell/shell nanocrystals exhibiting a fluorescence quantum yield of 81% and excellent resistance of the photoluminescence in presence of a fluorescent quencher (aromatic thiol) has been achieved. PACS: 81.20.Ka, 81.07.Bc, 78.67.Bf PMID:21791060

  7. Adsorption of rationally designed "surf-tides" to a liquid-crystal interface.

    PubMed

    Badami, Joseph V; Bernstein, Chaim; Maldarelli, Charles; Tu, Raymond S

    2015-09-07

    The interfacial adsorption of proteins in surfactant laden systems occurs both in nature and industrial processing, yet much of the fundamental behavior behind these systems is still not well understood. We report the development of a system that monitors optical transitions of a liquid-crystalline/aqueous interface to examine the dynamics of adsorption of two rationally designed model peptide molecules. The two molecules synthesized in this study were both designed to become surface-active upon folding and contain the same net charge of +3, but one of the peptides, K-2.5, has its three charges separated by 2.5 amino acids as compared to K-6.0, which has its three charges separated by 6 amino acids. Our study examines the roles that surfactant adsorption, peptide charge distribution and secondary structure have on the relative adsorption dynamics of these two models peptides onto a fluid/fluid interface. Using the optical detection of molecular adsorption and image analysis of these events, we obtain quantitative information about the dynamics as a function of the charge spacing and initial peptide concentration. We show that both peptides initially follow a diffusion-limited adsorption model onto the interface. Additionally, our results suggest that the K-6.0 peptides demonstrate enhanced adsorption kinetics, where the enhanced rates are a consequence of the well-folded adsorbed state and spatial distribution on the surface. These findings provide further insights into the role that charge spacing has on secondary structure and subsequently the dynamics of adsorption, while developing a versatile system capable of extracting quantitative information from a simple inexpensive optical system.

  8. Rational design, synthesis, purification, and activation of metal-organic framework materials.

    PubMed

    Farha, Omar K; Hupp, Joseph T

    2010-08-17

    The emergence of metal-organic frameworks (MOFs) as functional ultrahigh surface area materials is one of the most exciting recent developments in solid-state chemistry. Now constituting thousands of distinct examples, MOFs are an intriguing class of hybrid materials that exist as infinite crystalline lattices with inorganic vertices and molecular-scale organic connectors. Useful properties such as large internal surface areas, ultralow densities, and the availability of uniformly structured cavities and portals of molecular dimensions characterize functional MOFs. Researchers have effectively exploited these unusual properties in applications such as hydrogen and methane storage, chemical separations, and selective chemical catalysis. In principle, one of the most attractive features of MOFs is the simplicity of their synthesis. Typically they are obtained via one-pot solvothermal preparations. However, with the simplicity come challenges. In particular, MOF materials, especially more complex ones, can be difficult to obtain in pure form and with the optimal degree of catenation, the interpenetration or interweaving of identical independent networks. Once these two issues are satisfied, the removal of the guest molecules (solvent from synthesis) without damaging the structural integrity of the material is often an additional challenge. In this Account, we review recent advances in the synthetic design, purification, and activation of metal-organic framework materials. We describe the rational design of a series of organic struts to limit framework catenation and thereby produce large pores. In addition, we demonstrate the rapid separation of desired MOFs from crystalline and amorphous contaminants cogenerated during synthesis based on their different densities. Finally, we discuss the mild and efficient activation of initially solvent-filled pores with supercritical carbon dioxide, yielding usable channels and high internal surface areas. We expect that the

  9. Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals.

    PubMed

    Protière, Myriam; Nerambourg, Nicolas; Renard, Olivier; Reiss, Peter

    2011-07-26

    We address two aspects of general interest for the chemical synthesis of colloidal semiconductor nanocrystals: (1) the rational design of the synthesis protocol aiming at the optimization of the reaction parameters in a minimum number of experiments; (2) the transfer of the procedure to the gram scale, while maintaining a low size distribution and maximizing the reaction yield. Concerning the first point, the design-of-experiment (DOE) method has been applied to the synthesis of colloidal CdSe nanocrystals. We demonstrate that 16 experiments, analyzed by means of a Taguchi L16 table, are sufficient to optimize the reaction parameters for controlling the mean size of the nanocrystals in a large range while keeping the size distribution narrow (5-10%). The DOE method strongly reduces the number of experiments necessary for the optimization as compared to trial-and-error approaches. Furthermore, the Taguchi table analysis reveals the degree of influence of each reaction parameter investigated (e.g., the nature and concentration of reagents, the solvent, the reaction temperature) and indicates the interactions between them. On the basis of these results, the synthesis has been scaled up by a factor of 20. Using a 2-L batch reactor combined with a high-throughput peristaltic pump, different-sized samples of CdSe nanocrystals with yields of 2-3 g per synthesis have been produced without sacrificing the narrow size distribution. In a similar setup, the gram-scale synthesis of CdSe/CdS/ZnS core/shell/shell nanocrystals exhibiting a fluorescence quantum yield of 81% and excellent resistance of the photoluminescence in presence of a fluorescent quencher (aromatic thiol) has been achieved.PACS: 81.20.Ka, 81.07.Bc, 78.67.Bf.

  10. Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Çelikbilek, Ӧzden; Jauffrès, David; Siebert, Elisabeth; Dessemond, Laurent; Burriel, Mónica; Martin, Christophe L.; Djurado, Elisabeth

    2016-11-01

    Understanding, controlling and optimizing the mechanisms of electrode reactions need to be addressed for high performance energy and storage conversion devices. Hierarchically structured porous films of mixed ionic electronic conductors (MIECs) and their composites with ionic conductors offer unique properties. However, correlating the intrinsic properties of electrode components to microstructural features remains a challenging task. Here, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ: Ce0.9Gd0.1O2-δ (LSCF:CGO) composite cathodes with hierarchical porosity from nano to micro range are fabricated. The LSCF film exhibits exceptional electrode performance with area specific resistance values of 0.021 and 0.065 Ω cm2 at 650 and 600 °C respectively, whereas LSCF:CGO composite is only slightly superior than pure LSCF below 450 °C. We report for the first time a numerical 3D Finite Element Model (FEM) comprising real micro/nanostructural parameters from 3D reconstructions into a simple geometry similar to experimentally observed columnar features. The model demonstrates that heterogeneities in porosity within the film thickness and percolation of the ionically conducting phase significantly impact bulk transport at low temperatures. Design guidelines relating performance to microstructure and bulk material properties in relation to experimental results are proposed. Our model has potential to be extended for rational design of larger, regular and heterogeneous microstructures.

  11. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes.

    PubMed

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; Purohit, Trupta; Dyguda-Kazimierowicz, Edyta; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-09-24

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein-ligand complexes. Such fluorine-backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin-MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. We found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin-MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine-backbone interactions in protein-ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin-MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine-backbone interactions may represent a particularly attractive approach to improve inhibitors of protein-protein interactions.

  12. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes

    PubMed Central

    2015-01-01

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein–ligand complexes. Such fluorine–backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin–MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. We found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin–MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine–backbone interactions in protein–ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin–MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine–backbone interactions may represent a particularly attractive approach to improve inhibitors of protein–protein interactions. PMID:26288158

  13. Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria.

    PubMed

    McKie, J H; Douglas, K T; Chan, C; Roser, S A; Yates, R; Read, M; Hyde, J E; Dascombe, M J; Yuthavong, Y; Sirawaraporn, W

    1998-04-23

    Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase (DHFR-TS). Resistance in the most important human parasite, Plasmodium falciparum, initially results from an S108N mutation in the DHFR domain, with additional mutation (most commonly C59R or N51I or both) imparting much greater resistance. From a homology model of the 3-D structure of DHFR-TS, rational drug design techniques have been used to design and subsequently synthesize inhibitors able to overcome malarial pyrimethamine resistance. Compared to pyrimethamine (Ki 1.5 nM) with purified recombinant DHFR fromP. falciparum, the Ki value of the m-methoxy analogue of pyrimethamine was 1.07 nM, but against the DHFR bearing the double mutation (C59R + S108N), the Ki values for pyrimethamine and the m-methoxy analogue were 71.7 and 14.0 nM, respectively. The m-chloro analogue of pyrimethamine was a stronger inhibitor of both wild-type DHFR (with Ki 0.30 nM) and the doubly mutant (C59R +S108N) purified enzyme (with Ki 2.40 nM). Growth of parasite cultures of P. falciparum in vitro was also strongly inhibited by these compounds with 50% inhibition of growth occurring at 3.7 microM for the m-methoxy and 0.6 microM for the m-chloro compounds with the K1 parasite line bearing the double mutation (S108N + C59R), compared to 10.2 microM for pyrimethamine. These inhibitors were also found in preliminary studies to retain antimalarial activity in vivo in P. berghei-infected mice.

  14. Rational design of didodecyldimethylammonium bromide-based nanoassemblies for gene delivery.

    PubMed

    Jin, Yiguang; Wang, Shuangmiao; Tong, Li; Du, Lina

    2015-02-01

    Nonviral gene vectors are a hot topic for gene delivery. High cost and low transfection efficiency hinder the application of them. The aim of this study was to find out the optimal gene vectors with lower cost and more effective gene delivery than commonly used gene vectors. A cheap cationic lipid, didodecyldimethylammonium bromide (DDAB) was the basic component and the other components included oleic acid (OA), cholesterol (Chol), cholesteryl succinyl poly(ethylene glycol) 1500 (CHS-PEG), poly(D,L-lactide-co-glycolide)-methoxy-poly(ethylene glycol) (PLGA-PEG). The combinations of DDAB/OA/Chol, DDAB/OA/CHS-PEG and DDAB/PLGA-PEG were adopted to prepare the nanoassemblies named CNA, CPNA and PPNA, respectively. The optimal component ratios were screened out according to their Langmuir monolayer behavior. The optimal preparation method of nanoassemblies involved firstly compressing DNA or siRNA with the cationic lipid (DDAB) and secondly being coated with the helper lipids (OA and CHS-PEG) or the helper polymer (PLGA-PEG). The complexes of genes and cationic lipids were encapsulated into the core of CPNA and PPNA. The optimal gene vectors (CPNA and PPNA) with small sizes, low negative surface charges and non-exposure of cationic lipids were achieved. They had the advantages of no cytotoxicity, high transfection efficiency and low cost. More importantly, CPNA and PPNA were not sensitive to serum and showed the similar or higher transfection efficiency of pDNA and siRNA compared to Lipofectamine 2000. CPNA could mainly enter cell plasma based on endocytosis. The rational design method is useful for the design and optimization of DDAB-based gene carriers and other cationic lipid-based carriers.

  15. Rational design of a minimal size sensor array for metal ion detection.

    PubMed

    Palacios, Manuel A; Wang, Zhuo; Montes, Victor A; Zyryanov, Grigory V; Anzenbacher, Pavel

    2008-08-06

    The focus of this study was to demonstrate that, in the luminescent sensors, the signal transduction may possibly be the most important part in the sensing process. Rational design of fluorescent sensor arrays for cations utilizing extended conjugated chromophores attached to 8-hydroxyquinoline is reported. All of the optical sensors utilized in the arrays comprise the same 8-hydroxyquinoline (8-HQ) receptor and various conjugated chromophores to yield a different response to various metal cations. This is because the conjugated chromophores attached to the receptor are partially quenched in their resting state, and upon the cation coordination by the 8-HQ, the resulting metalloquinolinolate complex displays a change in fluorescence. A delicate balance of conjugation, fluorescence enhancement, energy transfer, and a heavy metal quenching effect results in a fingerprint-like pattern of responses for each sensor-cation complex. Principal component analysis (PCA) and linear discriminant analysis (LDA) are used to demonstrate the contribution of individual sensors within the array, information that may be used to design sensor arrays with the smallest number of sensor elements. This approach allows discriminating between 10 cations by as few as two or even one sensor element. Examples of arrays comprising various numbers of sensor elements and their utility in qualitative identification of Ca(2+), Mg(2+), Cd(2+), Hg(2+), Co(2+), Zn(2+), Cu(2+), Ni(2+), Al(3+), and Ga(3+) ions are presented. A two-member array was found to identify 11 analytes with 100% accuracy. Also the best two of the sensors were tested alone and both were found to be able to discriminate among the samples with 99% and 96% accuracy, respectively. To illustrate the utility of this approach to a real-world application, identification of enhanced soft drinks based on their Ca(2+), Mg(2+), and Zn(2+) cation content was performed. The same approach to reducing array elements was used to construct three

  16. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes

    SciTech Connect

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; Purohit, Trupta; Dyguda-Kazimierowicz, Edyta; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-08-19

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein–ligand complexes. Such fluorine–backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin–MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. Here, we found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin–MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine–backbone interactions in protein–ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin–MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Lastly, considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine–backbone interactions may represent a particularly attractive approach to improve inhibitors of protein–protein interactions.

  17. Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Protière, Myriam; Nerambourg, Nicolas; Renard, Olivier; Reiss, Peter

    2011-07-01

    We address two aspects of general interest for the chemical synthesis of colloidal semiconductor nanocrystals: (1) the rational design of the synthesis protocol aiming at the optimization of the reaction parameters in a minimum number of experiments; (2) the transfer of the procedure to the gram scale, while maintaining a low size distribution and maximizing the reaction yield. Concerning the first point, the design-of-experiment (DOE) method has been applied to the synthesis of colloidal CdSe nanocrystals. We demonstrate that 16 experiments, analyzed by means of a Taguchi L16 table, are sufficient to optimize the reaction parameters for controlling the mean size of the nanocrystals in a large range while keeping the size distribution narrow (5-10%). The DOE method strongly reduces the number of experiments necessary for the optimization as compared to trial-and-error approaches. Furthermore, the Taguchi table analysis reveals the degree of influence of each reaction parameter investigated (e.g., the nature and concentration of reagents, the solvent, the reaction temperature) and indicates the interactions between them. On the basis of these results, the synthesis has been scaled up by a factor of 20. Using a 2-L batch reactor combined with a high-throughput peristaltic pump, different-sized samples of CdSe nanocrystals with yields of 2-3 g per synthesis have been produced without sacrificing the narrow size distribution. In a similar setup, the gram-scale synthesis of CdSe/CdS/ZnS core/shell/shell nanocrystals exhibiting a fluorescence quantum yield of 81% and excellent resistance of the photoluminescence in presence of a fluorescent quencher (aromatic thiol) has been achieved. PACS: 81.20.Ka, 81.07.Bc, 78.67.Bf

  18. Rational and modular design of potent ligands targeting the RNA that causes myotonic dystrophy 2.

    PubMed

    Lee, Melissa M; Pushechnikov, Alexei; Disney, Matthew D

    2009-05-15

    Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6'-N-5-hexynoate kanamycin A (1) prefers to bind 2x2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops are found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC(50) of 25 nM. This ligand has higher affinity and is more specific for binding the DM2 RNA than MBNL-1. It binds the DM2 RNA at least 30 times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6'-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable.

  19. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    SciTech Connect

    Chen, Yu; Ding, Dong; Wei, Tao; Liu, Meilin

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  20. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry.

    PubMed

    Zhang, Meining; Yu, Ping; Mao, Lanqun

    2012-04-17

    To understand the molecular basis of brain functions, researchers would like to be able to quantitatively monitor the levels of neurochemicals in the extracellular fluid in vivo. However, the chemical and physiological complexity of the central nervous system (CNS) presents challenges for the development of these analytical methods. This Account describes the rational design and careful construction of electrodes and nanoparticles with specific surface/interface chemistry for quantitative in vivo monitoring of brain chemistry. We used the redox nature of neurochemicals at the electrode/electrolyte interface to establish a basis for monitoring specific neurochemicals. Carbon nanotubes provide an electrode/electrolyte interface for the selective oxidation of ascorbate, and we have developed both in vivo voltammetry and an online electrochemical detecting system for continuously monitoring this molecule in the CNS. Although Ca(2+) and Mg(2+) are involved in a number of neurochemical signaling processes, they are still difficult to detect in the CNS. These divalent cations can enhance electrocatalytic oxidation of NADH at an electrode modified with toluidine blue O. We used this property to develop online electrochemical detection systems for simultaneous measurements of Ca(2+) and Mg(2+) and for continuous selective monitoring of Mg(2+) in the CNS. We have also harnessed biological schemes for neurosensing in the brain to design other monitoring systems. By taking advantage of the distinct reaction properties of dopamine (DA), we have developed a nonoxidative mechanism for DA sensing and a system that can potentially be used for continuously sensing of DA release. Using "artificial peroxidase" (Prussian blue) to replace a natural peroxidase (horseradish peroxidase, HRP), our online system can simultaneously detect basal levels of glucose and lactate. By substituting oxidases with dehydrogenases, we have used enzyme-based biosensing schemes to develop a physiologically

  1. Rational design of a flavivirus vaccine by abolishing viral RNA 2'-O methylation.

    PubMed

    Li, Shi-Hua; Dong, Hongping; Li, Xiao-Feng; Xie, Xuping; Zhao, Hui; Deng, Yong-Qiang; Wang, Xiao-Yu; Ye, Qing; Zhu, Shun-Ya; Wang, Hong-Jiang; Zhang, Bo; Leng, Qi-Bin; Zuest, Roland; Qin, E-De; Qin, Cheng-Feng; Shi, Pei-Yong

    2013-05-01

    Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they "snatch" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.

  2. Improving the Thermostability of Acidic Pullulanase from Bacillus naganoensis by Rational Design

    PubMed Central

    Lv, Jinzhi; Li, Qingbin; Tian, Jian; Wu, Ningfeng

    2016-01-01

    Pullulanase (EC 3.2.1.41) plays an important role in the specific hydrolysis of branch points in amylopectin. Enhancing its thermostability is required for its industrial application. In this study, rational protein design was used to improve the thermostability of PulB from Bacillus naganoensis (AB231790.1), which has strong enzymatic properties. Three positive single-site mutants (PulB-D328H, PulB-N387D, and PulB-A414P) were selected from six mutants. After incubation at 65°C for 5 min, the residual activities of PulB-D328H, PulB-N387D, and PulB-A414P were 4.5-, 1.7-, and 1.47-fold higher than PulB-WT, and their Tm values (the temperature at which half protein molecule denature) were 1.8°C, 0.4°C, and 0.9°C higher than PulB-WT, respectively. Then the final combined mutant PulB-328/387/414 was constructed. The t1/2 of it was 12.9-fold longer than that of PulB-WT at 65°C and the total increase in Tm of it (5.0°C) was almost 60% greater than the sum of individual increases (3.1°C). In addition, kinetic studies revealed that the kcat and the kcat/Km of PulB-328/387/414 increased by 38.8% and 12.9%. The remarkable improvement in thermostability and the high catalytic efficiency of PulB-328/387/414 make it suitable for industrial applications. PMID:27764201

  3. Rational Design of a Flavivirus Vaccine by Abolishing Viral RNA 2′-O Methylation

    PubMed Central

    Li, Shi-Hua; Dong, Hongping; Li, Xiao-Feng; Xie, Xuping; Zhao, Hui; Deng, Yong-Qiang; Wang, Xiao-Yu; Ye, Qing; Zhu, Shun-Ya; Wang, Hong-Jiang; Zhang, Bo; Leng, Qi-Bin; Zuest, Roland; Qin, E-De

    2013-01-01

    Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2′-O cap of their RNA; alternatively, they “snatch” host mRNA cap to form the 5′ end of viral RNA. The function of 2′-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2′-O methylation is replicative, but its viral RNA lacks 2′-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2′-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2′-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2′-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2′-O methyltransferases. PMID:23487465

  4. Organic single crystals as tools for the rational design of materials for organic electronics

    NASA Astrophysics Data System (ADS)

    Reese, Colin

    Organic electronic materials hold great promise for the development of technologies either technically impossible or economically unviable with traditional inorganic components. The ability to process them from solution in a grossly simplified manner through additive processes such as screen and inkjet printing has afforded the possibility of affordably fabricating circuits, displays, lighting, and even photovoltaics on large, flexible substrates. Furthermore, their diversity of composition and their unique solid-state properties have borne the concept of true rational material design for specific applications. By tuning light absorption and emission for photovoltaics and light-emitting diodes, for example, the solar absorption spectrum may be optimally harvested and the gamut of natural lighting colors covered with a small toolbox of organic building blocks. Similarly, chemical sensors' sensitivity and specificity may be chosen based on targeted analyte binding. In order to realize these functionalities, however, a fundamental understanding of several aspects of the relationship between molecular functionality and macroscopic optoelectronic properties must be further developed. In particular, the correlation between molecular proximity and orientation within the solid state organic thin film or single crystal and charge transport efficiency must be clearly understood. Furthermore, effective strategies for specifying packing motif based on molecular structure are essential to effect the desired intermolecular interactions. Here, we develop experimental techniques targeted at elucidating explicitly the relationship between molecular proximity and orientation in the solid state. We investigate the physics of the tool---the single-crystal field-effect transistor---in order to both aid the understanding of parasitic and scaling effects and also to ensure the results are free of experimental artifacts. We then explore the relationship between molecular structure and

  5. The management of snake bite*

    PubMed Central

    Reid, H. A.; Theakston, R. D. G.

    1983-01-01

    The present article reviews current knowledge on the epidemiology, pathophysiology, and treatment of snake bite, with particular reference to the situation in developing countries. There is little reliable information on the incidence of snake bite in many parts of the world, and epidemiological studies are needed, using enzyme-linked immunosorbent assay to identify and quantify serum levels of venom antigen and antibody. The pathophysiology and clinical features of envenoming by medically important snakes are discussed. Antivenom, if used correctly, can reverse systemic poisoning even if given days after the bite. It is therefore wise to wait for the appearance of signs of systemic poisoning before administering antivenom, rather than using it routinely. WHO has designated the Liverpool School of Tropical Medicine as a Collaborating Centre for the Control of Antivenoms, and this Centre now holds a collection of reference venoms from several important snake species. Characterization of these and of standard antivenoms should significantly improve the management of snake bite throughout the world. PMID:6609008

  6. Snake Genome Sequencing: Results and Future Prospects

    PubMed Central

    Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K.

    2016-01-01

    Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression. PMID:27916957

  7. Rational Design of Dual Active Sites in a Single Protein Scaffold: A Case Study of Heme Protein in Myoglobin.

    PubMed

    Shu, Xiao-Gang; Su, Ji-Hu; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Tan, Xiangshi; Lin, Ying-Wu

    2016-06-01

    Rational protein design has been proven to be a powerful tool for creating functional artificial proteins. Although many artificial metalloproteins with a single active site have been successfully created, those with dual active sites in a single protein scaffold are still relatively rare. In this study, we rationally designed dual active sites in a single heme protein scaffold, myoglobin (Mb), by retaining the native heme site and creating a copper-binding site remotely through a single mutation of Arg118 to His or Met. Isothermal titration calorimetry (ITC) and electron paramagnetic resonance (EPR) studies confirmed that a copper-binding site of [3-His] or [2-His-1-Met] motif was successfully created in the single mutant of R118H Mb and R118M Mb, respectively. UV/Vis kinetic spectroscopy and EPR studies further revealed that both the heme site and the designed copper site exhibited nitrite reductase activity. This study presents a new example for rational protein design with multiple active sites in a single protein scaffold, which also lays the groundwork for further investigation of the structure and function relationship of heme/non-heme proteins.

  8. Toward rational design of organic dye sensitized solar cells (DSSCs): an application to the TA-St-CA dye.

    PubMed

    Mohammadi, Narges; Mahon, Peter J; Wang, Feng

    2013-03-01

    A computer aided rational design has been performed on TA-St-CA dye sensitizer in order to improve the desirable properties for new organic dye sensitized solar cell (DSSC). A number of electron-donating (ED) and electron-withdrawing (EW) units based on Dewar's rules are substituted into the π-conjugated oligo-phenylenevinylene bridge of the reference TA-St-CA dye. The effects of these alternations on the molecular structures and the electron absorption spectra are calculated using time-dependant density functional theory (TDDFT). It is found that chemical modifications using electron donating (ED) substitutions exhibit advantages over the electron withdrawing (EW) substitutes to reduce the HOMO-LUMO energy gap as well as the electron distribution of the frontier orbitals of the new dyes. Dewar's rule is a useful guideline for rational design of new dye sensitizers with desired HOMO-LUMO gap. The impact on the optical spectra of new dyes are, however, less significant.

  9. Rational Ligand Design for U(VI) and Pu(IV)

    SciTech Connect

    Szigethy, Geza

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative

  10. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2012-10-01

    Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.

  11. Rational design and synthesis of an orally active indolopyridone as a novel conformationally constrained cannabinoid ligand possessing antiinflammatory properties.

    PubMed

    Wrobleski, Stephen T; Chen, Ping; Hynes, John; Lin, Shuqun; Norris, Derek J; Pandit, Chennagiri R; Spergel, Steven; Wu, Hong; Tokarski, John S; Chen, Xiaorong; Gillooly, Kathleen M; Kiener, Peter A; McIntyre, Kim W; Patil-Koota, Vina; Shuster, David J; Turk, Lori A; Yang, Guchen; Leftheris, Katerina

    2003-05-22

    A series of unique indazoles and pyridoindolones have been rationally designed and synthesized as novel classes of cannabinoid ligands based on a proposed bioactive amide conformation. This has led to the discovery of the novel indolopyridone 3a as a conformationally constrained cannabinoid ligand that displays high affinity for the CB2 receptor (K(i)(CB2) = 1.0 nM) and possesses antiinflammatory properties when administered orally in an in vivo murine inflammation model.

  12. Rational design and synthesis of substrate-product analogue inhibitors of α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis.

    PubMed

    Pal, Mohan; Khanal, Mandar; Marko, Ryan; Thirumalairajan, Srinath; Bearne, Stephen L

    2016-02-14

    2,2-Bis(4-isobutylphenyl)propanoyl-CoA and 2,2-bis(4-t-butylphenyl)propanoyl-CoA are rationally designed, gem-disubstituted substrate-product analogues that competitively inhibit α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis with Ki values of 16.9 ± 0.6 and 21 ± 4 μM, respectively, exceeding the enzyme's affinity for the substrate by approximately 5-fold.

  13. Reproductive Disorders in Snakes.

    PubMed

    Di Girolamo, Nicola; Selleri, Paolo

    2017-05-01

    Reproduction of snakes is one of the challenging aspects of herpetology medicine. Due to the complexity of reproduction, several disorders may present before, during, or after this process. This article describes the physical examination, and radiographic, ultrasonographic, and endoscopic findings associated with reproductive disorders in snakes. Surgical techniques used to resolve reproductive disorders in snakes are described. Finally, common reproductive disorders in snakes are individually discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. P-glycoprotein recognition of substrates and circumvention through rational drug design.

    PubMed

    Raub, Thomas J

    2006-01-01

    It is now well recognized that membrane efflux transporters, especially P-glycoprotein (P-gp; ABCB1), play a role in determining the absorption, distribution, metabolism, excretion, and toxicology behaviors of some drugs and molecules in development. An investment in screening structure-activity relationship (SAR) is warranted in early discovery when exposure and/or target activity in an in vivo efficacy model is not achieved and P-gp efflux is identified as a rate-limiting factor. However, the amount of investment in SAR must be placed into perspective by assessing the risks associated with the intended therapeutic target, the potency and margin of safety of the compound, the intended patient population(s), and the market competition. The task of rationally designing a chemistry strategy for circumventing a limiting P-gp interaction can be daunting. The necessity of retaining biological potency and metabolic stability places restrictions on what can be done, and the factors for P-gp recognition of substrates are complicated and poorly understood. The parameters within the assays that affect overall pump efficiency or net efflux, such as passive diffusion, membrane partitioning, and molecular interaction between pump and substrate, should be understood when interpreting data sets associated with chemistry around a scaffold. No single, functional group alone is often the cause, but one group can accentuate the recognition points existing within a scaffold. This can be likened to a rheostat, rather than an on/off switch, where addition or removal of a key group can increase or decrease the pumping efficiency. The most practical approach to de-emphasize the limiting effects of P-gp on a particular scaffold is to increase passive diffusion. Efflux pumping efficiency may be overcome when passive diffusion is fast enough. Eliminating, or substituting with fewer, groups that solvate in water, or decreasing their hydrogen bonding capacity, and adding halogen groups can

  15. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming.

    PubMed

    Zupančič, Eva; Curato, Caterina; Paisana, Maria; Rodrigues, Catarina; Porat, Ziv; Viana, Ana S; Afonso, Carlos A M; Pinto, João; Gaspar, Rogério; Moreira, João N; Satchi-Fainaro, Ronit; Jung, Steffen; Florindo, Helena F

    2017-07-28

    Vaccination is a promising strategy to trigger and boost immune responses against cancer or infectious disease. We have designed, synthesized and characterized aliphatic-polyester (poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to investigate how the nature of protein association (adsorbed versus entrapped) and polymer/surfactant concentrations impact on the generation and modulation of antigen-specific immune responses. The ability of the NP formulations to target dendritic cells (DC), be internalized and activate the T cells was characterized and optimized in vitro and in vivo using markers of DC activation and co-stimulatory molecules. Ovalbumin (OVA) was used as a model antigen in combination with the engraftment of CD4(+) and CD8(+) T cells, carrying a transgenic OVA-responding T cell receptor (TCR), to trace and characterize the activation of antigen-specific CD4(+) and CD8(+) lymph node T cells upon NP vaccination. Accordingly, the phenotype and frequency of immune cell stimulation induced by the NP loaded with OVA, isolated or in combination with synthetic unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) motifs, were characterized. DC-NP interactions increased with incubation time, presenting internalization values between 50 and 60% and 30-40%, in vitro and in vivo, respectively. Interestingly, animal immunization with antigen-adsorbed NP up-regulated major histocompatibility complex (MHC) class II (MHCII), while NP entrapping the antigen up-regulated MHCI, suggesting a more efficient cross-presentation. On the other hand, rather surprisingly, the surfactant used in the NP formulation had a major impact on the activation of antigen presenting cells (APC). In fact, DC collected from lymph nodes of animals immunized with NP prepared using poly(vinil alcohol) (PVA), as a surfactant, expressed significantly higher levels of CD86, MHCI and MHCII. In addition, those NP prepared with PVA and co-entrapping OVA and the toll

  16. FerriBRIGHT: a rationally designed fluorescent probe for redox active metals.

    PubMed

    Kennedy, Daniel P; Kormos, Chad M; Burdette, Shawn C

    2009-06-24

    The novel catechol-BODIPY dyad, 8-(3,4-dihydroxyphenyl)-2,6-bis(ethoxycarbonyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (FerriBRIGHT) was rationally designed with the aid of computational methods. FerriBRIGHT could be prepared by standard one-pot synthesis of BODIPY fluorophores from 3,4-bis(benzyloxy)benzaldehyde (1) and 3,5-dimethyl-4-(ethoxycarbonyl)pyrrole (3); however, isolating the dipyrrin intermediate 8-[3,4-bis(benzyloxy)phenyl]-2,6-bis(ethoxycarbonyl)-1,3,5,7-tetramethyl-4,4-diaza-s-indacene (7) prior to reaction with excess BF(3).OEt(2) led to marked improvements in the isolated overall yield of the desired compound. In addition to these improvements in fluorophore synthesis, microwave-assisted palladium-catalyzed hydrogenolysis of benzyl ethers was used to reduce reaction times and catalyst loading in preparation of the desired compound. When FerriBRIGHT is exposed to excess FeCl(3), CuCl(2), [Co(NH(3))(5)Cl]Cl(2), 2,3-dichloro-5,6-dicyanobenzoquinone, or ceric ammonium nitrate in methanol, a significant enhancement of fluorescence is observed. FerriBRIGHT-Q, the product resulting from the oxidation of the pendant catechol to the corresponding quinone, was found to be the emissive species. FerriBRIGHT-Q was synthesized independently, isolated, and fully characterized to allow for direct comparison with the spectroscopic data acquired in solution. Biologically relevant reactive oxygen species, such as H(2)O(2), (*)OH, (1)O(2), O(2)(*-), and bleach (NaOCl), failed to cause any changes in the emission intensity of FerriBRIGHT. In accordance with the quantum mechanical calculations, the quantum yield of fluorescence for FerriBRIGHT (Phi(fl) approximately 0) and FerriBRIGHT-Q (Phi(fl) = 0.026, lambda(ex)/lambda(em) = 490 nm/510 nm) suggests that photoinduced electron transfer between the catechol and the BODIPY dye is attenuated upon oxidation, which results in fluorescence enhancement. Binding studies of FerriBRIGHT with Ga(NO(3

  17. Dangerous snakes, deadly snakes and medically important snakes

    PubMed Central

    2013-01-01

    This correspondence argues that the dangerousness of a venomous snake species is not solely determined by the venom characteristics or the lethality of the snake, and recognizes that medical importance comprises a key variable as well. The medical importance of a snake is determined by several factors – including frequency of medical attention after a bite, local or systemic envenomation provoked by the bite, fatal bites, long term consequences, availability of antivenom therapy as well as the size of the population at risk – that may vary from one region to another. PMID:24099013

  18. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab

    PubMed Central

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions. PMID:26514585

  19. Study of spin resonances in the accelerators with snakes

    SciTech Connect

    Lee, S.Y.

    1988-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength epsilon/sub c/ as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that epsilon/sub c/ is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength epsilon/sub c/ is found to vary linearly with N/sub S/ as = (1/..pi..)sin/sup /minus/1/(/vert bar/cos ..pi nu../sub z//vert bar//sup /1/2//)N/sub S/, where ..nu../sub z/ and N/sub S/ are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., epsilonless than or equal to0.1 for two snakes case) to maintain proper polarization. 23 refs., 25 figs.

  20. Public perceptions of snakes and snakebite management: implications for conservation and human health in southern Nepal.

    PubMed

    Pandey, Deb Prasad; Subedi Pandey, Gita; Devkota, Kamal; Goode, Matt

    2016-06-02

    Venomous snakebite and its effects are a source of fear for people living in southern Nepal. As a result, people have developed a negative attitude towards snakes, which can lead to human-snake conflicts that result in killing of snakes. Attempting to kill snakes increases the risk of snakebite, and actual killing of snakes contributes to loss of biodiversity. Currently, snake populations in southern Nepal are thought to be declining, but more research is needed to evaluate the conservation status of snakes. Therefore, we assessed attitudes, knowledge, and awareness of snakes and snakebite by Chitwan National Park's (CNP) buffer zone (BZ) inhabitants in an effort to better understand challenges to snake conservation and snakebite management. The results of this study have the potential to promote biodiversity conservation and increase human health in southern Nepal and beyond. We carried out face-to-face interviews of 150 randomly selected CNP BZ inhabitants, adopting a cross-sectional mixed research design and structured and semi-structured questionnaires from January-February 2013. Results indicated that 43 % of respondents disliked snakes, 49 % would exterminate all venomous snakes, and 86 % feared snakes. Farmers were the most negative and teachers were the most ambivalent towards snakes. Respondents were generally unable to identify different snake species, and were almost completely unaware of the need of conserve snakes and how to prevent snakebites. Belief in a snake god, and the ability of snakes to absorb poisonous gases from the atmosphere were among many superstitions that appeared to predispose negativity towards snakes of BZ residents. People with predisposed negativity towards snakes were not proponents of snake conservation. Fear, negativity, ambivalence towards, and ignorance about, snakes and the need for snake conservation were strong indicators of the propensity to harm or kill snakes. It seems that if wanton killing of snakes continues

  1. Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation.

    PubMed

    Mitchell, Daniel E; Cameron, Neil R; Gibson, Matthew I

    2015-08-21

    Antifreeze (glyco) proteins AF(G)Ps are potent ice recrystallization inhibitors, which is a desirable property to enhance cryopreservation of donor tissue/cells. Here we present the rational synthesis of a new, biomimetic, ice-recrystallization inhibiting polymer derived from a cheap commodity polymer, based on an ampholyte structure. The polymer is used to enhance the cryopreservation of red blood cells, demonstrating a macromolecular solution to tissue storage.

  2. Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases.

    PubMed

    Howell, Stanley C; Inampudi, Krishna Kishore; Bean, Doyle P; Wilson, Corey J

    2014-02-04

    Careful balance between structural stability and flexibility is a hallmark of enzymatic function, and temperature can affect both properties. Canonical (fixed-backbone) enzyme design strategies currently do not consider the role of these properties. Herein, we describe the rational design of 100 temperature-adapted adenylate kinase enzymes using a multistate design strategy that incorporates the impact of conformational changes to backbone structure and stability, in addition to experimental analysis of thermostability and function. Comparison of the experimental temperature of maximum activity to the melting temperature across all 100 variants reveals a strong correlation between these two parameters. In turn, experimental stability data were used to produce accurate predictions of thermostability, providing the requisite complement for de novo temperature-adapted enzyme design. In principle, this level of design-based analysis can be applied to any protein, paving the way toward identifying and understanding the hallmarks of the thermodynamic and structural limits of function.

  3. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.

    PubMed

    Wiedman, Gregory; Wimley, William C; Hristova, Kalina

    2015-04-01

    In this work, we sought to rationally design membrane-active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane-active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6, by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macromolecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH sensitivity into its sequence. We conclude that the properties of pHlip, GALA, and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane-active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field.

  4. Abnormality, rationality, and sanity.

    PubMed

    Hertwig, Ralph; Volz, Kirsten G

    2013-11-01

    A growing body of studies suggests that neurological and mental abnormalities foster conformity to norms of rationality that are widely endorsed in economics and psychology, whereas normality stands in the way of rationality thus defined. Here, we outline the main findings of these studies, discuss their implications for experimental design, and consider how 'sane' some benchmarks of rationality really are. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Defeating Bacterial Resistance and Preventing Mammalian Cells Toxicity Through Rational Design of Antibiotic-Functionalized Nanoparticles.

    PubMed

    de Oliveira, Jessica Fernanda Affonso; Saito, Ângela; Bido, Ariadne Tuckmantel; Kobarg, Jörg; Stassen, Hubert Karl; Cardoso, Mateus Borba

    2017-05-02

    The rational synthesis of alternative materials is highly demanding due to the outbreak of infectious diseases and resistance to antibiotics. Herein, we report a tailored nanoantibiotic synthesis protocol where the antibiotic binding was optimized on the silver-silica core-shell nanoparticles surface to maximize biological responses. The obtained silver nanoparticles coated with mesoporous silica functionalized with ampicillin presented remarkable antimicrobial effects against susceptible and antibiotic-resistant Escherichia coli. In addition, these structures were not cell-death inducers and different steps of the mitotic cell cycle (prophase, anaphase and metaphase) were clearly identified. The superior biological results were attributed to a proper and tailored synthesis strategy.

  6. Snakes and spin rotators

    SciTech Connect

    Lee, S.Y.

    1990-06-18

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10{sup {minus}4} will be significant. 2 refs., 5 figs.

  7. A rational design for the nanoencapsulation of poisonous animal venoms in liposomes prepared with natural phospholipids.

    PubMed

    da Costa, Maria Helena Bueno; Sant'Anna, Osvaldo A; Quintilio, Wagner; Schwendener, Reto Albert; de Araujo, Pedro Soares

    2012-11-01

    Liposomes have been used since the 1970's to encapsulate drugs envisaging enhancement in efficacy and therapeutic index, avoidance of side effects and increase in the encapsulated agent stability. The major problem when encapsulating snake venoms is the liposomal membrane instability caused by venom phospholipases. Here the results obtained encapsulating Crotalus durissimus terrificus and a pool of Bothropic venoms within liposomes (LC and LB, respectively) used to produce anti-venom sera are presented. The strategy was to modify the immunization protocol to enhance antibody production and to minimize toxic effects by encapsulating inactivated venoms within stabilized liposomes. Chemically modified venoms were solubilized in a buffer containing an inhibitor and a chelating agent. The structures of the venoms were analyzed by UV, CD spectroscopy and ELISA. In spite of the differences in the helical content between natural and modified venoms, they were recognized by horse anti-sera. To maintain long-term stability, mannitol was used as a cryoprotectant. The encapsulation efficiencies were 59 % (LB) and 99 % (LC), as followed by filtration on Sephacryl S1000. Light scattering measurements led us to conclude that both, LB (119 ±47 nm) and LC (147±56 nm) were stable for 22 days at 4 °C, even after lyophilization. Genetically selected mice and mixed breed horses were immunized with these formulations. The animals did not show clinical symptoms of venom toxicity. Both, LB and LC enhanced by at least 30 % the antibody titers 25 days after injection and total IgG titers remained high 91 days after immunization. The liposomal formulation clearly exhibited adjuvant properties.

  8. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics

    PubMed Central

    Philipp, Jenny; Künze, Georg; Wodtke, Robert; Löser, Reik; Fahmy, Karim; Pisabarro, M. Teresa

    2016-01-01

    Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB) in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1), which are relevant for its interaction with interleukin-10 (IL-10) has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands. PMID:27123592

  9. A Rational Design Strategy for the Selective Activity Enhancement of a Molecular Chaperone toward a Target Substrate.

    PubMed

    Aprile, Francesco A; Sormanni, Pietro; Vendruscolo, Michele

    2015-08-18

    Molecular chaperones facilitate the folding and assembly of proteins and inhibit their aberrant aggregation. They thus offer several opportunities for biomedical and biotechnological applications, as for example they can often prevent protein aggregation more effectively than other therapeutic molecules, including small molecules and antibodies. Here we present a method of designing molecular chaperones with enhanced activity against specific amyloidogenic substrates while leaving unaltered their functions toward other substrates. The method consists of grafting onto a molecular chaperone a peptide designed to bind specifically an epitope in the target substrate. We illustrate this strategy by describing Hsp70 variants with increased affinities for α-synuclein and Aβ42 but otherwise unaltered affinities for other substrates. These designed variants inhibit protein aggregation and disaggregate preformed fibrils significantly more effectively than wild-type Hsp70 indicating that the strategy presented here provides a possible route for tailoring rationally molecular chaperones for specific purposes.

  10. An improved balloon snake for HIFU image-guided system.

    PubMed

    Li, Zhong-Bing; Xu, Xian-Ze; Le, Yi; Xu, Feng-Qiu

    2014-07-01

    Target segmentation in ultrasound images is a key step in the definition of the intro-operative planning of high-intensity focused ultrasound therapy. This paper presents an improvement for the balloon snake in segmentation. A sign function, designed by the edge map and the moving snake, is added to give the direction of the balloon force on the moving snake separately. Segmentation results are demonstrated on ultrasound images and the effectiveness and convenience shown in applications.

  11. Trapping the arboreal snake Boiga irregularis

    USGS Publications Warehouse

    Rodda, G.H.; Rondeau, R.J.; Fritts, T.H.; Maughan, O.E.

    1992-01-01

    The snake Boiga irregularis, an exotic on Guam, has eliminated the majority of the native vertebrates there. We tested traps designed to control this arboreal snake during three periods of 20-41 days in 1988 and 1989. The relative trapping successes with different baits and trap configurations indicated that this snake will not readily push through a visually obstructed entrance. However, under some conditions, 80% of the snakes escaped from traps lacking a physical blockage at the entrance. Live bait was more successful than odoriferous bait alone, and odoriferous guide ropes that led to trap entrances did not enhance capture rates. These findings corroborate laboratory experiments indicating an unusually strong dependence on visual cues in this highly successful nocturnal predator.

  12. [Hygienic characteristics of daily ration, designed for military servicemen doing call-up military service].

    PubMed

    Smagulov, N K; Mukhametzhanov, A M

    2016-01-01

    The article gives the hygienic characteristics of the daily diet of soldiers doing call-up military service. The object of study--military servicemen aged 18-22 years doing call-up military service. The material of the study data was obtained from a continuous cross-sectional study of dietary intake among military personnel. Investigation pointed out that consumption of nutrients and energy value of the surveyed military personnel was broadly in accordance with recommended physiological requirements for nutrients and energy for this age group. However; despite the adequacy of energy supply, showed signs of imbalance on the nutrients of rations provided in the military establishment. Structure of consumption of products is not in full compliance with the existing recommendations of the Kazakh academy of Nutrition.

  13. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification.

    PubMed

    Hu, Weixiong; Liu, Xiaoyun; Li, Yufeng; Liu, Daling; Kuang, Zhihe; Qian, Chuiwen; Yao, Dongsheng

    2017-02-01

    β-Mannanase has been widely used in industries such as food and feed processing and thus has been a target enzyme for biotechnological development. In this study, we sought to improve the stability and protease resistance of a recombinant β-mannanase, MAN47 from Armillariella tabescens, through rationally designed N-glycosylation. Based on homology modeling, molecular docking, secondary structure analysis and glycosylation feasibility analysis, an enhanced aromatic sequon sequence was introduced into specific MAN47 loop regions to facilitate N-glycosylation. The mutant enzymes were expressed in Pichia pastoris SMD1168, and their thermal stability, pH stability, trypsin resistance and pepsin resistance were determined. Two mutant MAN47 enzymes, g-123 and g-347, were glycosylated as expected when expressed in yeast, and their thermal stability, pH stability, and protease resistance were significantly improved compared to the wild-type enzyme. An enzyme with multiple stability characterizations has broad prospects in practical applications, and the rational design N-glycosylation strategy may have applications in simultaneously improving several properties of other biotechnological targets.

  14. Characterization of a Novel α-l-Arabinofuranosidase from Ruminococcus albus 7 and Rational Design for Its Thermostability.

    PubMed

    Yang, Ying; Sun, Jiaqi; Wu, Junjie; Zhang, Lujia; Du, Lei; Matsukawa, Shingo; Xie, Jingli; Wei, Dongzhi

    2016-10-12

    An α-l-arabinofuranosidase (Abf) encoding gene was obtained via genomic mining from a Ruminococcus albus strain. The specific activity of this GH 51 Abf was 73.3 U/mg at pH 6.0 and 50 °C. The modification of Abf, aimed at improving thermostability, was performed through different strategies. Structure-based rational design using the PoPMuSiC and the Enzyme Thermal Stability System (ETSS) predicted thermal stability of Abf and enhanced the half-life of thermal inactivation (t1/2) at 50 °C for K208W more than 11.1 times versus the wild-type (WT). Sequence-based rational design was also conducted by substituting histidine with lysine at various sites. Among eight mutants, the t1/2 at 50 °C of H337K was prolonged by 5.0-fold, and the specific activity of this mutant was increased to 121.8 U/mg. In addition, the mutant H337K was utilized with some enzymes to extract pectin from apple pomace. The enzymatically produced pectin got less moisture and ash, milder pH, and higher viscosity than its acid-extracted counterpart, indicating that Abf has an application prospect in pectin production.

  15. Virtual screening and rational drug design method using structure generation system based on 3D-QSAR and docking.

    PubMed

    Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T

    2003-08-01

    An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.

  16. Rational design of lipid molecular structure: a case study involving the C19:1c10 monoacylglycerol.

    PubMed Central

    Misquitta, Y; Caffrey, M

    2001-01-01

    The phase properties of lipids have far-reaching consequences in membrane biology. Their influence ranges from domain formation in intact biomembranes to membrane protein reconstitution and crystallization. To exploit phase behavior in the spirit of rational design, it is imperative that the rules relating lipid molecular structure and liquid crystal or mesophase behavior be established. Phase behavior is quantitatively and concisely represented in the form of temperature-composition phase diagrams. A somewhat limited number of phase diagrams exists for the monoacylglycerols. The objective of the current study was to determine the quality of phase behavior prediction for a specific monoacylglycerol based on an analysis of the existing phase diagrams for related chain homologs. To this end, a phase diagram for the monononadecenoin (19:1c10)/water system was predicted in the temperature range from -15 degrees C to 120 degrees C and from 0% to 80% (w/w) water. The prediction was tested by constructing the corresponding phase diagram using low- and wide-angle x-ray diffraction, differential scanning calorimetry, and polarized light microscopy. The results show that the predicted and experimental phase diagrams agree remarkably well. They also highlight the need for additional phase studies of the type described to enlarge the data bank of phase diagrams and to strengthen the foundations of the rational design approach. PMID:11463646

  17. The Rational Design of Allosteric Interactions in a Monomeric Protein and its Applications to the Construction of Biosensors

    NASA Astrophysics Data System (ADS)

    Marvin, J. S.; Corcoran, E. E.; Hattangadi, N. A.; Zhang, J. V.; Gere, S. A.; Hellinga, H. W.

    1997-04-01

    Rational protein design is an emerging approach for testing general theories of structure and function. The ability to manipulate function rationally also offers the possibility of creating new proteins of biotechnological value. Here we use the design approach to test the current understanding of the structural principles of allosteric interactions in proteins and demonstrate how a simple allosteric system can form the basis for the construction of a generic biosensor molecular engineering system. We have identified regions in Escherichia coli maltose-binding protein that are predicted to be allosterically linked to its maltose-binding site. Environmentally sensitive fluorophores were covalently attached to unique thiols introduced by cysteine mutations at specific sites within these regions. The fluorescence of such conjugates changes cooperatively with respect to maltose binding, as predicted. Spatial separation of the binding site and reporter groups allows the intrinsic properties of each to be manipulated independently. Provided allosteric linkage is maintained, ligand binding can therefore be altered without affecting transduction of the binding event by fluorescence. To demonstrate applicability to biosensor technology, we have introduced a series of point mutations in the maltose-binding site that lower the affinity of the protein for its ligand. These mutant proteins have been combined in a composite biosensor capable of measuring substrate concentration within 5% accuracy over a concentration range spanning five orders of magnitude.

  18. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice.

    PubMed

    Valetti, Sabrina; Mura, Simona; Stella, Barbara; Couvreur, Patrick

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.

  19. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors

    PubMed Central

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples. PMID:28035082

  20. Line width roughness reduction by rational design of photoacid generator for sub-millisecond laser post-exposure bake

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Thompson, Michael O.; Ober, Christopher K.

    2014-03-01

    Sub-millisecond laser post-exposure bake (PEB) is an alternative technology to address the excessive acid diffusion for chemically amplified photoresist systems. By rationally designing the resist, laser post-exposure bake is able to improve the resolution and reduce the line width roughness (LWR) compared to patterns exposed under the same conditions but using conventional hotplate PEB. It was found that only the resist with high deprotection activation energy and low diffusion activation energy showed improved performance using laser PEB. Accordingly, a PAG was designed to have low acid diffusivity by binding the counter ions to a molecular glass core while keeping photophysical properties and processing conditions similar to a conventional PAG. By reducing the diffusivity of the counter ions, the PAG was able to further reduce LWR by 60% using laser PEB.

  1. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice

    PubMed Central

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field. PMID:24564841

  2. The Web-Based DNA Vaccine Database DNAVaxDB and Its Usage for Rational DNA Vaccine Design.

    PubMed

    Racz, Rebecca; He, Yongqun

    2016-01-01

    A DNA vaccine is a vaccine that uses a mammalian expression vector to express one or more protein antigens and is administered in vivo to induce an adaptive immune response. Since the 1990s, a significant amount of research has been performed on DNA vaccines and the mechanisms behind them. To meet the needs of the DNA vaccine research community, we created DNAVaxDB ( http://www.violinet.org/dnavaxdb ), the first Web-based database and analysis resource of experimentally verified DNA vaccines. All the data in DNAVaxDB, which includes plasmids, antigens, vaccines, and sources, is manually curated and experimentally verified. This chapter goes over the detail of DNAVaxDB system and shows how the DNA vaccine database, combined with the Vaxign vaccine design tool, can be used for rational design of a DNA vaccine against a pathogen, such as Mycobacterium bovis.

  3. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.; AHRENS,L.; BAI,M.; COURANT,E.; GLENN,J.W.; GUPTA,R.C.; HUANG,H.; LUCCIO,A.U.; MACKAY,W.W.; TSOUPAS,N.; WILLEN,E.; OKAMURA,M.; TAKANO,J.

    2004-10-10

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction.

  4. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.AHRENS,L.BAI,M.ET AL.

    2004-07-05

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction.

  5. Acceleration of Polarized Beams Using Multiple Strong Partial Siberian Snakes

    NASA Astrophysics Data System (ADS)

    Roser, T.; Ahrens, L. A.; Bai, M.; Courant, E. D.; Glenn, J. W.; Gupta, R. C.; Huang, H.; Luccio, A. U.; Mackay, W. W.; Tsoupas, N.; Willen, E.; Okamura, M.; Takano, J.

    2005-08-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization, but full Siberian snakes cause intolerably large orbit excursions. Using a 20 - 30 % partial Siberian snake, both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical super-conducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction.

  6. A computational approach for the rational design of stable proteins and enzymes: optimization of surface charge-charge interactions.

    PubMed

    Schweiker, Katrina L; Makhatadze, George I

    2009-01-01

    The design of stable proteins and enzymes is not only of particular biotechnological importance, but also addresses some important fundamental questions. While there are a number of different options available for designing or engineering stable proteins, the field of computational design provides fast and universal methods for stabilizing proteins of interest. One of the successful computational design strategies focuses on stabilizing proteins through the optimization of charge-charge interactions on the protein surface. By optimizing surface interactions, it is possible to alleviate some of the challenges that accompany efforts to redesign the protein core. The rational design of surface charge-charge interactions also allows one to optimize only the interactions that are distant from binding sites or active sites, making it possible to increase stability without adversely affecting activity. The optimization of surface charge-charge interactions is discussed in detail along with the experimental evidence to demonstrate that this is a robust and universal approach to designing proteins with enhanced stability.

  7. A rational approach to the design and synthesis of a new bradykinin B(1) receptor antagonist.

    PubMed

    Bedos, P; Amblard, M; Subra, G; Dodey, P; Luccarini, J M; Paquet, J L; Pruneau, D; Aumelas, A; Martinez, J

    2000-06-15

    We have previously synthesized a potent and selective B(1) bradykinin receptor antagonist, JMV1645 (H-Lys-Arg-Pro-Hyp-Gly-Igl-Ser-D-BT-OH), containing a dipeptide mimetic ((3S)-amino-5-carbonylmethyl-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety) at the C-terminal. Analogues of this potent B(1) bradykinin receptor antagonist in which the central Pro(2)-Hyp(3)-Gly(4)-Igl(5) tetrapeptide has been replaced by constrained N-1-substituted-1,3,8-triazaspiro¿4. 5decan-4-one ring system were synthesized. Among these analogues, compound JMV1640 (1) was found to have an affinity of 24.10 +/- 9.48 nM for the human cloned B(1) receptor. It antagonized the ¿des-Arg(10)-kallidin-induced contraction of the human umbilical vein (pA(2) = 6.1 +/- 0.1). Compound 1 was devoid of agonist activity at the kinin B(1) receptor. Moreover, it did not bind to the human cloned B(2) receptor. Therefore, JMV1640 constitutes a lead compound for the rational search of nonpeptide B(1) receptor analogues based on the BK sequence.

  8. Rational design of MgB2 conductors toward practical applications

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; Motaman, Ashkan; Barua, Shaon; Shahabuddin, Mohammed; Kim, Jung Ho

    2014-09-01

    We report the research progress that has been made on developing rational MgB2 superconducting conductors toward practical applications. Owing to the poor performance of the critical current density (Jc) of bare MgB2, various techniques have been developed to overcome this obstacle. Among these, chemical doping has proved to be the most effective way to enhance the superconducting properties, such as Jc and the irreversibility field (Birr). More than a hundred different forms of dopants have been investigated over the past 13 years. Among these, the most effective dopants have been identified to be silicon carbide, carbon, and malic acid. The best results, Birr of 22 T and Jc of 40,000 A cm-2 at 4.2 K and 10 T, have been reported for malic acid treated MgB2 conductors, which have matched the benchmark performance of commercial low temperature superconductor wire such as Nb-Ti. This work will review and discuss the progress on MgB2 conductor development over the past few years at the University of Wollongong and Hyper Tech Research, Inc.

  9. Rational design of a small molecule-responsive intramer controlling transgene expression in mammalian cells

    PubMed Central

    Ausländer, David; Wieland, Markus; Ausländer, Simon; Tigges, Marcel; Fussenegger, Martin

    2011-01-01

    Aptamers binding proteins or small molecules have been shown to be versatile and powerful building blocks for the construction of artificial genetic switches. In this study, we present a novel aptamer-based construct regulating the Tet Off system in a tetracycline-independent manner thus achieving control of transgene expression. For this purpose, a TetR protein-inhibiting aptamer was engineered for use in mammalian cells, enabling the RNA-responsive control of the tetracycline-dependent transactivator (tTA). By rationally attaching the theophylline aptamer as a sensor, the inhibitory TetR aptamer and thus tTA activity became dependent on the ligand of the sensor aptamer. Addition of the small molecule theophylline resulted in enhanced binding to the corresponding protein in vitro and in inhibition of reporter gene expression in mammalian cell lines. By using aptamers as adaptors in order to control protein activity by a predetermined small molecule, we present a simple and straightforward approach for future applications in the field of Chemical Biology. Moreover, aptamer-based control of the widely used Tet system introduces a new layer of regulation thereby facilitating the construction of more complex gene networks. PMID:21984476

  10. Designing of skull defect implants using C1 rational cubic Bezier and offset curves

    NASA Astrophysics Data System (ADS)

    Mohamed, Najihah; Majid, Ahmad Abd; Piah, Abd Rahni Mt; Rajion, Zainul Ahmad

    2015-05-01

    Some of the reasons to construct skull implant are due to head trauma after an accident or an injury or an infection or because of tumor invasion or when autogenous bone is not suitable for replacement after a decompressive craniectomy (DC). The main objective of our study is to develop a simple method to redesign missing parts of the skull. The procedure begins with segmentation, data approximation, and estimation process of the outer wall by a C1 continuous curve. Its offset curve is used to generate the inner wall. A metaheuristic algorithm, called harmony search (HS) is a derivative-free real parameter optimization algorithm inspired from the musical improvisation process of searching for a perfect state of harmony. In this study, data approximation by a rational cubic Bézier function uses HS to optimize position of middle points and value of the weights. All the phases contribute significantly in making our proposed technique automated. Graphical examples of several postoperative skulls are displayed to show the effectiveness of our proposed method.

  11. Physics of icing and rational design of surfaces with extraordinary icephobicity.

    PubMed

    Schutzius, Thomas M; Jung, Stefan; Maitra, Tanmoy; Eberle, Patric; Antonini, Carlo; Stamatopoulos, Christos; Poulikakos, Dimos

    2015-05-05

    Icing of surfaces is commonplace in nature and technology, affecting everyday life and sometimes causing catastrophic events. Understanding (and counteracting) surface icing brings with it significant scientific challenges that requires interdisciplinary knowledge from diverse scientific fields such as nucleation thermodynamics and heat transfer, fluid dynamics, surface chemistry, and surface nanoengineering. Here we discuss key aspects and findings related to the physics of ice formation on surfaces and show how such knowledge could be employed to rationally develop surfaces with extreme resistance to icing (extraordinary icephobicity). Although superhydrophobic surfaces with micro-, nano-, or (often biomimetic) hierarchical roughnesses have shown in laboratory settings (under certain conditions) excellent repellency and low adhesion to water down to temperatures near or below the freezing point, extreme icephobicity necessitates additional important functionalities. Other approaches, such as lubricant-impregnated surfaces, exhibit both advantages and serious limitations with respect to icing. In all, a clear path toward passive surfaces with extreme resistance to ice formation remains a challenge, but it is one well worth undertaking. Equally important to potential applications is scalable surface manufacturing and the ability of icephobic surfaces to perform reliably and sustainably outside the laboratory under adverse conditions. Surfaces should possess mechanical and chemical stability, and they should be thermally resilient. Such issues and related research directions are also addressed in this article.

  12. Reviewing Ligand-Based Rational Drug Design: The Search for an ATP Synthase Inhibitor

    PubMed Central

    Lee, Chia-Hsien; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2011-01-01

    Following major advances in the field of medicinal chemistry, novel drugs can now be designed systematically, instead of relying on old trial and error approaches. Current drug design strategies can be classified as being either ligand- or structure-based depending on the design process. In this paper, by describing the search for an ATP synthase inhibitor, we review two frequently used approaches in ligand-based drug design: The pharmacophore model and the quantitative structure-activity relationship (QSAR) method. Moreover, since ATP synthase ligands are potentially useful drugs in cancer therapy, pharmacophore models were constructed to pave the way for novel inhibitor designs. PMID:21954360

  13. Rational Design of Broad Spectrum Antibacterial Activity Based on a Clinically Relevant Enoyl-Acyl Carrier Protein (ACP) Reductase Inhibitor*

    PubMed Central

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W.; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E.; Knudson, Susan E.; Bommineni, Gopal R.; Walker, Stephen G.; Slayden, Richard A.; Sotriffer, Christoph A.; Tonge, Peter J.; Kisker, Caroline

    2014-01-01

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. PMID:24739388

  14. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

    PubMed

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline

    2014-06-06

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions

    PubMed Central

    Wang, Guangchuan; Cao, Rui-Yuan; Chen, Rong; Mo, Lijuan; Han, Jian-Feng; Wang, Xiaoyu; Xu, Xurong; Jiang, Tao; Deng, Yong-Qiang; Lyu, Ke; Zhu, Shun-Ya; Tang, Ruikang; Qin, Cheng-Feng

    2013-01-01

    The development of vaccines against infectious diseases represents one of the most important contributions to medical science. However, vaccine-preventable diseases still cause millions of deaths each year due to the thermal instability and poor efficacy of vaccines. Using the human enterovirus type 71 vaccine strain as a model, we suggest a combined, rational design approach to improve the thermostability and immunogenicity of live vaccines by self-biomineralization. The biomimetic nucleating peptides are rationally integrated onto the capsid of enterovirus type 71 by reverse genetics so that calcium phosphate mineralization can be biologically induced onto vaccine surfaces under physiological conditions, generating a mineral exterior. This engineered self-biomineralized virus was characterized in detail for its unique structural, virological, and chemical properties. Analogous to many exteriors, the mineral coating confers some new properties on enclosed vaccines. The self-biomineralized vaccine can be stored at 26 °C for more than 9 d and at 37 °C for approximately 1 wk. Both in vitro and in vivo experiments demonstrate that this engineered vaccine can be used efficiently after heat treatment or ambient temperature storage, which reduces the dependence on a cold chain. Such a combination of genetic technology and biomineralization provides an economic solution for current vaccination programs, especially in developing countries that lack expensive refrigeration infrastructures. PMID:23589862

  16. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    ELBn12 is a lipase isolated from Enterobacter sp. Bn12 with potential application in biotechnology. Homology modeling and rational design were applied to improve thermal stability of the lipase. K173A substitution introduced an AXXXA motif on the lipase model and it may have role in dimerization and thermostability of the protein. Site-directed mutagenesis was performed to construct the lipase variant. The mutated lipase was expressed in Escherichia coli pLysS and partially purified. Thermostability of the mutated lipase after 1 h of incubation at 70°C was twice that of wild-type lipase under the same conditions. Catalytic activity of the variant was about 1.5-fold towards tricaprylin at 60°C and pH 8.0; moreover, the lipase variant preserved its stability within the pH range of 7.0-11.0. Substitution of superficial hydrophilic Lys with hydrophobic Ala residue increased stability of the mutated lipase in the presence of nonionic surfactants, but this substitution caused lower stability towards polar solvents. Analysis of circular dichroism spectroscopy showed that the K173A mutation altered the secondary structure of the lipase into a more helical one. In conclusion, results of this study demonstrate the positive role of generation of a stabilizing protein motif through rational protein engineering that improves the enzyme characteristics.

  17. Rationally Designed, "Stable-on-the-Table" NanoBiocatalysts Bound to Zr(IV) Phosphate Nanosheets.

    PubMed

    Deshapriya, I K; Kumar, C V

    2016-01-01

    Rational approaches for the control of nano-bio interfaces for enzyme stabilization are vital for engineering advanced, functional nanobiocatalysts, biosensors, implants, or "smart" drug delivery systems. This chapter presents an overview of our recent efforts on structural, functional, and mechanistic details of enzyme nanomaterials design, and describes how progress is being made by hypothesis-driven rational approaches. Interactions of a number of enzymes having wide ranges of surface charges, sizes, and functional groups with α-Zr(IV)phosphate (α-ZrP) nanosheets are carefully controlled to achieve high enzyme binding affinities, excellent loadings, significant retention of the bound enzyme structure, and high enzymatic activities. In specific cases, catalytic activities and selectivities of the nanobiocatalysts are improved over those of the corresponding pristine enzymes. Maximal enzyme structure retention has been obtained by coating the nanosheets with appropriate proteinaceous materials to soften the enzyme-nanosheet interface. These systematic manipulations are of significant importance to understand the complex behavior of enzymes at inorganic surfaces. © 2016 Elsevier Inc. All rights reserved.

  18. Rational design of small molecule inhibitors targeting the Rac GTPase - p67phox signaling axis in inflammation

    PubMed Central

    Bosco, Emily E.; Kumar, Sachin; Marchioni, Filippo; Biesiada, Jacek; Kordos, Miroslaw; Szczur, Kathleen; Meller, Jarek; Seibel, William; Mizrahi, Ariel; Pick, Edgar; Filippi, Marie-Dominique; Zheng, Yi

    2012-01-01

    Summary The NADPH oxidase enzyme complex, NOX2, is responsible for reactive oxygen species (ROS) production in neutrophils and has been recognized as a key mediator of inflammation. Here, we have performed rational design and in silico screen to identify a small molecule inhibitor, Phox-I1, targeting the interactive site of p67phox with Rac GTPase that is a necessary step of the signaling leading to NOX2 activation. Phox-I1 binds to p67phox with a submicromolar affinity and abrogates Rac1 binding, and is effective in inhibiting NOX2-mediated superoxide production dose-dependently in human and murine neutrophils without detectable toxicity. Medicinal chemistry characterizations have yielded promising analogs and initial information of the structure-activity relationship of Phox-I1. Our studies suggest the potential utility of Phox-I class inhibitors in NOX2 oxidase inhibition and present the first application of rational targeting of a small GTPase - effector interface. PMID:22365606

  19. A Prospective Study in the Rational Design of Efficient Antisense Oligonucleotides for Exon Skipping in the DMD Gene

    PubMed Central

    Wee, Keng Boon; Wang, Jian Li; Chen, Yi Jun; Xiong, Qian Bin; Lai, Poh San; Yee, Woon Chee

    2012-01-01

    Abstract Antisense oligonucleotide (AON)-mediated exon skipping to restore dystrophin expression in Duchenne muscular dystrophy (DMD) therapy shown promise in a number of human clinical trials. Current AON design methods are semi-empirical, involving either trial-and-error and/or preliminary experimentations. Therefore, a rational approach to design efficient AONs to address the wide spectrum of patients' mutations is desirable. Retrospective studies have extracted many AON design variables, but they were not tested prospectively to design AONs for skipping DMD exons. Not only did the variables differ among the various studies, no numerical cutoff for each variable was inferred, which makes their use in AON design difficult. The challenge is to thus select a minimal set of key independent variables that can consistently design efficient AONs. In this prospective study, a novel set of design variables with respective cutoff values was used to design 23 novel AONs, each to skip one of nine DMD exons. Nineteen AONs were found to be efficacious in inducing specific exon skipping (83% of total), of which 14 were considered efficient (61% of total), i.e., they induced exon skipping in >25% of total transcripts. Notably, the satisfactory success rates were achieved by using only three design variables; namely, co-transcriptional binding accessibility of target site, presence of exonic splicing enhancers, and target length. Retrospective analyses revealed that the most efficient AON in every exon targeted has the lowest average cumulative position (ACP) score. Taking the prospective and retrospective studies together, we propose that design guidelines recommend using the ACP score to select the most efficient AON for each exon. PMID:22486275

  20. Rationally designed aberrant kinase-targeted endogenous protein nanomedicine against oncogene mutated/amplified refractory chronic myeloid leukemia.

    PubMed

    Retnakumari, Archana P; Hanumanthu, Prasanna Lakshmi; Malarvizhi, Giridharan L; Prabhu, Raghuveer; Sidharthan, Neeraj; Thampi, Madhavan V; Menon, Deepthy; Mony, Ullas; Menon, Krishnakumar; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2012-11-05

    Deregulated protein kinases play a very critical role in tumorigenesis, metastasis, and drug resistance of cancer. Although molecularly targeted small molecule kinase inhibitors (SMI) are effective against many types of cancer, point mutations in the kinase domain impart drug resistance, a major challenge in the clinic. A classic example is chronic myeloid leukemia (CML) caused by BCR-ABL fusion protein, wherein a BCR-ABL kinase inhibitor, imatinib (IM), was highly successful in the early chronic phase of the disease, but failed in the advanced stages due to amplification of oncogene or point mutations in the drug-binding site of kinase domain. Here, by identifying critical molecular pathways responsible for the drug-resistance in refractory CML patient samples and a model cell line, we have rationally designed an endogenous protein nanomedicine targeted to both cell surface receptors and aberrantly activated secondary kinase in the oncogenic network. Molecular diagnosis revealed that, in addition to point mutations and amplification of oncogenic BCR-ABL kinase, relapsed/refractory patients exhibited significant activation of STAT5 signaling with correlative overexpression of transferrin receptors (TfR) on the cell membrane. Accordingly, we have developed a human serum albumin (HSA) based nanomedicine, loaded with STAT5 inhibitor (sorafenib), and surface conjugated the same with holo-transferrin (Tf) ligands for TfR specific delivery. This dual-targeted "transferrin conjugated albumin bound sorafenib" nanomedicine (Tf-nAlb-Soraf), prepared using aqueous nanoprecipitation method, displayed uniform spherical morphology with average size of ∼150 nm and drug encapsulation efficiency of ∼74%. TfR specific uptake and enhanced antileukemic activity of the nanomedicine was found maximum in the most drug resistant patient sample having the highest level of STAT5 and TfR expression, thereby confirming the accuracy of our rational design and potential of dual

  1. The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion

    SciTech Connect

    Makabe, Koki; Koide, Shohei

    2009-06-17

    Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success of the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.

  2. Rational Design of a New Trypanosoma rangeli Trans-Sialidase for Efficient Sialylation of Glycans

    PubMed Central

    Jers, Carsten; Michalak, Malwina; Larsen, Dorte M.; Kepp, Kasper P.; Li, Haiying; Guo, Yao; Kirpekar, Finn; Meyer, Anne S.; Mikkelsen, Jørn D.

    2014-01-01

    This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used to investigate the structural requirements for trans-sialidase activity. We observed that the T. cruzi trans-sialidase has a seven-amino-acid motif (197–203) at the border of the substrate binding cleft. The motif differs substantially in chemical properties and substitution probability from the homologous sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197–203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli sialidase mutant, Tr13. Conditions for efficient trans-sialylation were determined, and Tr13's acceptor specificity demonstrated promiscuity with respect to the acceptor molecule enabling sialylation of glycans containing terminal galactose and glucose and even monomers of glucose and fucose. Sialic acid is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197–203 motif stands out in the native trans-sialidase, is markedly different from the wild-type sialidase compared to previous mutants, and is shown here to confer efficient and broad trans-sialidase activity, we suggest that this motif can serve as a framework for future optimization of trans-sialylation towards prebiotic production. PMID:24404142

  3. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans.

    PubMed

    Jers, Carsten; Michalak, Malwina; Larsen, Dorte M; Kepp, Kasper P; Li, Haiying; Guo, Yao; Kirpekar, Finn; Meyer, Anne S; Mikkelsen, Jørn D

    2014-01-01

    This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used to investigate the structural requirements for trans-sialidase activity. We observed that the T. cruzi trans-sialidase has a seven-amino-acid motif (197-203) at the border of the substrate binding cleft. The motif differs substantially in chemical properties and substitution probability from the homologous sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197-203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli sialidase mutant, Tr13. Conditions for efficient trans-sialylation were determined, and Tr13's acceptor specificity demonstrated promiscuity with respect to the acceptor molecule enabling sialylation of glycans containing terminal galactose and glucose and even monomers of glucose and fucose. Sialic acid is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197-203 motif stands out in the native trans-sialidase, is markedly different from the wild-type sialidase compared to previous mutants, and is shown here to confer efficient and broad trans-sialidase activity, we suggest that this motif can serve as a framework for future optimization of trans-sialylation towards prebiotic production.

  4. Snake fungal disease: An emerging threat to wild snakes

    USGS Publications Warehouse

    Lorch, Jeffrey M.

    2016-01-01

    Snake fungal disease (SFD) is an emerging disease of wild snakes in eastern North America caused by the fungus Ophidiomyces ophiodiicola. The data presented here describe: 1) the types of fungi recovered in culture from the skin of snakes with and without fungal skin infections, 2) the presence or absence of skin lesions in populations of snakes surveyed at several sites in Wisconsin and Minnesota, and 3) the various species of snakes that have been found to harbor O. ophiodiicola.

  5. Controlling resistant bacteria with a novel class of β-lactamase inhibitor peptides: from rational design to in vivo analyses

    PubMed Central

    Mandal, Santi M.; Migliolo, Ludovico; Silva, Osmar N.; Fensterseifer, Isabel C. M.; Faria-Junior, Celio; Dias, Simoni C.; Basak, Amit; Hazra, Tapas K.; Franco, Octávio L.

    2014-01-01

    Peptide rational design was used here to guide the creation of two novel short β-lactamase inhibitors, here named dBLIP-1 and -2, with length of five amino acid residues. Molecular modeling associated with peptide synthesis improved bactericidal efficacy in addition to amoxicillin, ampicillin and cefotaxime. Docked structures were consistent with calorimetric analyses against bacterial β-lactamases. These two compounds were further tested in mice. Whereas commercial antibiotics alone failed to cure mice infected with Staphylococcus aureus and Escherichia coli expressing β-lactamases, infection was cleared when treated with antibiotics in combination with dBLIPs, clearly suggesting that peptides were able to neutralize bacterial resistance. Moreover, immunological assays were also performed showing that dBLIPs were unable to modify mammalian immune response in both models, reducing the risks of collateral effects. In summary, the unusual peptides here described provide leads to overcome β-lactamase-based resistance, a remarkable clinical challenge. PMID:25109311

  6. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent

    SciTech Connect

    Luo, Helen Y.; Michaelis, Vladimir K.; Hodges, Sydney; Griffin, Robert G.; Roman-Leshkov, Yuriy

    2015-07-22

    A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is synthesized in one-pot using a rationally designed organic structure-directing agent (OSDA). The OSDA is comprised of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor MCM22(P), a hydrophobic tail segment that resembles the swelling agent used to swell MCM22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features high crystallinity and surface areas exceeding 500 m2g-1, and can be synthesized over a wide synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal high mesoporosity and acid strength with no detectable amorphous silica phases. In conclusion, compared to MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel-Crafts alkylation of benzene with benzyl alcohol.

  7. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent

    DOE PAGES

    Luo, Helen Y.; Michaelis, Vladimir K.; Hodges, Sydney; ...

    2015-07-22

    A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is synthesized in one-pot using a rationally designed organic structure-directing agent (OSDA). The OSDA is comprised of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor MCM22(P), a hydrophobic tail segment that resembles the swelling agent used to swell MCM22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features high crystallinity and surface areas exceeding 500 m2g-1, and can be synthesized over a wide synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal high mesoporosity and acid strengthmore » with no detectable amorphous silica phases. In conclusion, compared to MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel-Crafts alkylation of benzene with benzyl alcohol.« less

  8. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    SciTech Connect

    Lordi, Vincenzo

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  9. Rational Design Synthesis and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc Dependent) Fructose Bis-phosphate Aldolases

    SciTech Connect

    R Daher; M Coincon; M Fonvielle; P Gest; M Guerin; M Jackson; J Sygusch; M Therisod

    2011-12-31

    We report the synthesis and biochemical evaluation of several selective inhibitors of class II (zinc dependent) fructose bis-phosphate aldolases (Fba). The products were designed as transition-state analogues of the catalyzed reaction, structurally related to the substrate fructose bis-phosphate (or sedoheptulose bis-phosphate) and based on an N-substituted hydroxamic acid, as a chelator of the zinc ion present in active site. The compounds synthesized were tested on class II Fbas from various pathogenic microorganisms and, by comparison, on a mammalian class I Fba. The best inhibitor shows Ki against class II Fbas from various pathogens in the nM range, with very high selectivity (up to 105). Structural analyses of inhibitors in complex with aldolases rationalize and corroborate the enzymatic kinetics results. These inhibitors represent lead compounds for the preparation of new synthetic antibiotics, notably for tuberculosis prophylaxis.

  10. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design.

    PubMed

    Ogi, Soichiro; Fukui, Tomoya; Jue, Melinda L; Takeuchi, Masayuki; Sugiyasu, Kazunori

    2014-12-22

    Far-from-equilibrium thermodynamic systems that are established as a consequence of coupled equilibria are the origin of the complex behavior of biological systems. Therefore, research in supramolecular chemistry has recently been shifting emphasis from a thermodynamic standpoint to a kinetic one; however, control over the complex kinetic processes is still in its infancy. Herein, we report our attempt to control the time evolution of supramolecular assembly in a process in which the supramolecular assembly transforms from a J-aggregate to an H-aggregate over time. The transformation proceeds through a delicate interplay of these two aggregation pathways. We have succeeded in modulating the energy landscape of the respective aggregates by a rational molecular design. On the basis of this understanding of the energy landscape, programming of the time evolution was achieved through adjusting the balance between the coupled equilibria. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative study of singlet oxygen production by photosensitiser dyes encapsulated in silicone: towards rational design of anti-microbial surfaces.

    PubMed

    Noimark, Sacha; Salvadori, Enrico; Gómez-Bombarelli, Rafael; MacRobert, Alexander J; Parkin, Ivan P; Kay, Christopher W M

    2016-10-12

    Surfaces with built-in antimicrobial activity have the potential to reduce hospital-acquired infections. One promising strategy is to create functionalised surfaces which, following illumination with visible light, are able to generate singlet oxygen under aerobic conditions. In contrast to antibiotics, the mechanism of bacterial kill by species derived from reactions with singlet oxygen is completely unselective, therefore offering little room for evolutionary adaptation. Here we consider five commercially available organic photosensitiser dyes encapsulated in silicone polymer that show varied antimicrobial activity. We correlate density functional theory calculations with UV-Vis spectroscopy, electron paramagnetic resonance spectroscopy and singlet oxygen production measurements in order to define and test the elements required for efficacious antimicrobial activity. Our approach forms the basis for the rational in silico design and spectroscopic screening of simple and efficient self-sterilising surfaces made from cheap, low toxicity photosensitiser dyes encapsulated in silicone.

  12. Rational designed bipolar, conjugated polymer-DNA composite beacon for the sensitive detection of proteins and ions.

    PubMed

    Jia, Yongmei; Zuo, Xiaolei; Lou, Xiaoding; Miao, Mao; Cheng, Yong; Min, Xuehong; Li, Xinchun; Xia, Fan

    2015-04-07

    Nature owns remarkable capabilities in sensing target molecules, while the artificial biosensor lags far behind nature. Inspired by nature, we devise a new sensing platform that can specifically bind the molecules and synchronously initiate a specific signal response. We rationally designed a type of bipolar probe that is comprised of a hydrophilic DNA part and a hydrophobic conjugated polymer (CP) unit. In aqueous solution, they can form micelles with a hydrophobic CP core and a hydrophilic DNA shell. The aggregation-caused quenching suppresses the fluorescence of CP. Adding telomerase, the hydropathical profile of the bipolar probes is drastically regulated that results in the collapse of micelles and liberates fluorescence simultaneously. The probe has been used in both mimic systems and real urine samples (38 samples). We achieve sensitive and specific detection of telomerase and obtain clearly classification for normal people and cancer patients. It can also be used in a signal off sensor that is used to detect mercury ions.

  13. Rational Design of a Dephosphorylation-Resistant Reporter Enables Single-Cell Measurement of Tyrosine Kinase Activity.

    PubMed

    Turner, Abigail H; Lebhar, Michael S; Proctor, Angela; Wang, Qunzhao; Lawrence, David S; Allbritton, Nancy L

    2016-02-19

    Although peptide-based reporters of protein tyrosine kinase (PTK) activity have been used to study PTK enzymology in vitro, the application of these reporters to intracellular conditions is compromised by their dephosphorylation, preventing PTK activity measurements. Nonproteinogenic amino acids may be utilized to rationally design selective peptidic ligands by accessing greater chemical and structural diversity than is available using the native amino acids. We describe a peptidic reporter that, upon phosphorylation by the epidermal growth factor receptor (EGFR), is resistant to dephosphorylation both in vitro and in cellulo. The reporter contains a conformationally constrained phosphorylatable moiety (7-(S)-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) in the place of L-tyrosine and is efficiently phosphorylated in A431 epidermoid carcinoma cells. Dephosphorylation of the reporter occurs 3 orders of magnitude more slowly compared with that of the conventional tyrosine-containing reporter.

  14. Joint Experimental, in Silico, and NMR Studies toward the Rational Design of Iminium-Based Organocatalyst Derived from Renewable Sources.

    PubMed

    Gerosa, Gabriela G; Spanevello, Rolando A; Suárez, Alejandra G; Sarotti, Ariel M

    2015-08-07

    An efficient organocatalyst for iminium-ion based asymmetric Diels-Alder (DA) reactions has been rationally designed. The most influential structure-activity relationships were determined experimentally, while DFT calculations and NMR studies provided further mechanistic insight. This knowledge guided an in silico screening of 62 different catalysts using an ONIOM(B3LYP/6-31G*:AM1) transition-state modeling, which showed good correlation between theory and experiment. The top-scored compound was easily synthesized from levoglucosenone, a biomass-derived chiral enone, and evaluated in the DA reaction between (E)-cinnamaldehyde and cyclopentadiene. In line with the computational finding, excellent results (up to 97% ee) were obtained. In addition, the catalyst could be easily recovered and reused with no loss in its catalytic activity.

  15. Rational Design of an Anticalin-Type Sugar-Binding Protein Using a Genetically Encoded Boronate Side Chain.

    PubMed

    Edwardraja, Selvakumar; Eichinger, Andreas; Theobald, Ina; Sommer, Carina Andrea; Reichert, Andreas J; Skerra, Arne

    2017-09-22

    The molecular recognition of carbohydrates plays a fundamental role in many biological processes. However, the development of carbohydrate-binding reagents for biomedical research and use poses a challenge due to the generally poor affinity of proteins towards sugars in aqueous solution. Here, we describe the effective molecular recognition of pyranose monosaccharides (in particular, galactose and mannose) by a rationally designed protein receptor based on the human lipocalin scaffold (Anticalin). Complexation relies on reversible covalent cis-diol boronate diester formation with a genetically encoded L-boronophenylalanine (Bpa) residue which was incorporated as a non-natural amino acid at a sterically permissive position in the binding site of the Anticalin, as confirmed by X-ray crystallography. Com-pared with the metal-ion and/or avidity-dependent oligovalent lectins that prevail in nature, our approach offers a novel and promising route to generate tight sugar-binding reagents both as research reagents and for biomedical applications.

  16. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent

    PubMed Central

    Luo, Helen Y.; Michaelis, Vladimir K.; Hodges, Sydney; Griffin, Robert G.

    2015-01-01

    A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is synthesized in one-pot using a rationally designed organic structure-directing agent (OSDA). The OSDA is comprised of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor MCM22(P), a hydrophobic tail segment that resembles the swelling agent used to swell MCM22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features high crystallinity and surface areas exceeding 500 m2g−1, and can be synthesized over a wide synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal high mesoporosity and acid strength with no detectable amorphous silica phases. Compared to MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel-Crafts alkylation of benzene with benzyl alcohol. PMID:26478803

  17. Annual incidence of snake bite in rural bangladesh.

    PubMed

    Rahman, Ridwanur; Faiz, M Abul; Selim, Shahjada; Rahman, Bayzidur; Basher, Ariful; Jones, Alison; d'Este, Catherine; Hossain, Moazzem; Islam, Ziaul; Ahmed, Habib; Milton, Abul Hasnat

    2010-10-26

    Snake bite is a neglected public health problem in the world and one of the major causes of mortality and morbidity in many areas, particularly in the rural tropics. It also poses substantial economic burdens on the snake bite victims due to treatment related expenditure and loss of productivity. An accurate estimate of the risk of snake bite is largely unknown for most countries in the developing world, especially South-East Asia. We undertook a national epidemiological survey to determine the annual incidence density of snake bite among the rural Bangladeshi population. Information on frequency of snake bite and individuals' length of stay in selected households over the preceding twelve months was rigorously collected from the respondents through an interviewer administered questionnaire. Point estimates and confidence intervals of the incidence density of snake bite, weighted and adjusted for the multi-stage cluster sampling design, were obtained. Out of 18,857 study participants, over one year a total of 98 snake bites, including one death were reported in rural Bangladesh. The estimated incidence density of snake bite is 623.4/100,000 person years (95% C I 513.4-789.2/100,000 person years). Biting occurs mostly when individuals are at work. The majority of the victims (71%) receive snake bites to their lower extremities. Eighty-six percent of the victims received some form of management within two hours of snake bite, although only three percent of the victims went directly to either a medical doctor or a hospital. Incidence density of snake bite in rural Bangladesh is substantially higher than previously estimated. This is likely due to better ascertainment of the incidence through a population based survey. Poor access to health services increases snake bite related morbidity and mortality; therefore, effective public health actions are warranted.

  18. Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells

    PubMed Central

    Jin, Ruifa; Wang, Kai

    2015-01-01

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell (OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths. The designed molecules own the large longest wavelength of absorption spectra, the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs. PMID:26343640

  19. Rational Design of Diketopyrrolopyrrole-Based Small Moleculesas Donating Materials for Organic Solar Cells.

    PubMed

    Jin, Ruifa; Wang, Kai

    2015-08-27

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell(OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths.The designed molecules own the large longest wavelength of absorption spectra,the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs.

  20. A retrospective study of use of polyvalent anti-snake venom and risk factors for mortality from snake bite in a tertiary care setting

    PubMed Central

    Pore, Shraddha M.; Ramanand, Sunita J.; Patil, Praveenkumar T.; Gore, Alka D.; Pawar, Mayur P.; Gaidhankar, Smita L.; Ghanghas, Ravi R.

    2015-01-01

    Aims: Envenomation with poisonous snakes is associated with considerable morbidity and mortality. The present study was undertaken with the objectives of assessing anti-snake venom (ASV) use, early adverse reactions to ASV, premedication and clinical outcomes in snake bite patients. Association of various risk factors (age, gender, dose of ASV, time gap between snake bite and ASV administration, use of mechanical ventilation and type of snake bite) with mortality was also assessed. Settings and Design: This retrospective study was conducted at two Tertiary Care Teaching Hospitals. Subjects and Methods: The medical records of 176 patients of snake bite with documented use of ASV were retrospectively analyzed to retrieve relevant data. Statistical Analysis: Descriptive statistics was used to express results about ASV use, early adverse reactions to ASV, premedication and clinical outcomes. Univariate and multivariate analysis was performed to find out significant risk factors associated with mortality. Results: The main indication for ASV was vasculotoxic snake bite (75%) followed by neurotoxic snake bite (16%). Mean dose of ASV was 18.63 ± 14.52 vials. Prophylactic premedication with corticosteroids alone or in combination with antihistaminic was used in more than 70% patients. Early adverse reactions to ASV were seen in 4% patients. Neurotoxic snake bite was a significant risk factor associated with mortality in multivariate analysis. Conclusions: Neurotoxic snake bite is an independent predictor of mortality in snake bite patients. Currently used polyvalent ASV may be less effective in treating neurotoxic snake bite. PMID:26069363

  1. Rational design and one-step formation of multifunctional gel transducer for simple fabrication of integrated electrochemical biosensors.

    PubMed

    Yu, Ping; Zhou, Heng; Cheng, Hanjun; Qian, Qin; Mao, Lanqun

    2011-07-15

    This study demonstrates a new strategy to simplify the biosensor fabrication and thus minimize the biosensor-to-biosensor deviation through rational design and one-step formation of a multifunctional gel electronic transducer integrating all elements necessitated for efficiently transducing the biorecognition events to signal readout, by using glucose dehydrogenase (GDH) based electrochemical biosensor as an example. To meet the requirements for preparing integrated biosensors and retaining electronic and ionic conductivities for electronically transducing process, ionic liquids (ILs) with enzyme cofactor (i.e., oxidized form of nicotinamide adenine dinucleotide) as the anion were synthesized and used to form a bucky gel with single-walled carbon nanotubes, in which methylene green electrocatalyst was stably encapsulated for the oxidation of nicotinamide adenine dinucleotide. With such kind of rationally designed and one-step-formed multifunctional gel as the electronic transducer, the GDH-based electrochemical biosensors were simply fabricated by polishing the electrodes onto the gel followed by enzyme immobilization. This capability greatly simplifies the biosensor fabrication, prolongs the stability of the biosensors, and, more remarkably, minimizes the biosensor-to-biosensor deviation. The relative standard deviations obtained both with one electrode for the repeated measurements of glucose and with the different electrodes prepared with the same method for the concurrent measurements of glucose with the same concentration were 3.30% (n = 7) and 4.70% (n = 6), respectively. These excellent properties of the multifunctional gel-based biosensors substantially enable them to well-satisfy the pressing need of rapid measurements, for example, environmental monitoring, food analysis, and clinical diagnoses.

  2. A general approach for rational design of fluorescent DNA aptazyme sensors based on target-induced unfolding of DNA hairpins.

    PubMed

    Zhou, Zhaojuan; Xiao, Lu; Xiang, Yu; Zhou, Jun; Tong, Aijun

    2015-08-19

    DNA aptazymes are allosteric DNAzymes activated by the targets of DNA aptamers. They take the advantages of both aptamers and DNAzymes, which can recognize specific targets with high selectivity and catalyze multiple-turnover reactions for signal amplification, respectively, and have shown their great promise in many analytical applications. So far, however, the available examples of DNA aptazyme sensors are still limited in utilizing only several DNAzymes and DNA aptamers, most likely due to the lack of a general and simple approach for rational design. Herein, we have developed such a general approach for designing fluorescent DNA aptazyme sensors. In this approach, aptamers and DNAzymes are connected at the ends to avoid any change in their original sequences, therefore enabling the general use of different aptamers and DNAzymes in the design. Upon activation of the aptazymes by the targets of interest, the rate of fluorescence enhancement via the cleavage of a dually labeled substrate by the active aptazymes is then monitored for target quantification. Two DNAzymes and two aptamers are used as examples for the design of three fluorescent aptazyme sensors, and they all show high selectivity and sensitivity for the detection of their targets. More DNA aptazyme sensors for a broader range of targets could be developed by this general approach as long as suitable DNAzymes and aptamers are used. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Insights into the Rational Design of Multi-Functional Fullerene Systems for Application in Blended Heterojunction Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Cowart, John S., Jr.

    Elucidating the structure-function relationships of organic semiconductors has been central to the advancement of organic photovoltaics (OPVs). In particular, enhancing the performance of p-type materials in disordered heterojunctions is broadly acknowledged as the principal factor leading to current trends of improved power conversion efficiencies (PCEs). However, two additional factors are crucially important for the next step forward in improving PCEs. First, investigating the influence, design and synthesis of new n-type materials, specifically fullerene acceptors, is of high importance. Second, because fullerene performance is often compromised by the morphological disorder of bulk heterojunctions, developing fullerenes systems that retain fidelity within disordered blends is also of broad interest. In light of these challenges, the field has witnessed a notable shift towards developing a comprehensive understanding of the design rules needed to advance the performance of fullerene acceptors in bulk heterojunctions. This work spotlights two multi-functional fullerene systems designed for blended heterojunctions. First, the synthesis of several novel fullerene-dye adducts with enhanced photon absorption will be presented. The ability of these adducts to absorb visible light in their pure state was evaluated and systematically examined versus their capacity to complement the absorption of low band gap donors and mediate charge transport in bulk heterojunctions. Second, mixed fullerene ternary blends were introduced as a strategy to stabilize the morphology in bulk heterojunctions and prolong operational lifetimes of OPV devices. Combined, these two systems offer unique insight into the rational design of fullerenes for their application in blended systems.

  4. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis

    PubMed Central

    Pearson, C. Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj

    2016-01-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of “database filtering” bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created. PMID:26902758

  5. Rational mutagenesis to support structure-based drug design: MAPKAP kinase 2 as a case study

    PubMed Central

    Argiriadi, Maria A; Sousa, Silvino; Banach, David; Marcotte, Douglas; Xiang, Tao; Tomlinson, Medha J; Demers, Megan; Harris, Christopher; Kwak, Silvia; Hardman, Jennifer; Pietras, Margaret; Quinn, Lisa; DiMauro, Jennifer; Ni, Baofu; Mankovich, John; Borhani, David W; Talanian, Robert V; Sadhukhan, Ramkrishna

    2009-01-01

    Background Structure-based drug design (SBDD) can provide valuable guidance to drug discovery programs. Robust construct design and expression, protein purification and characterization, protein crystallization, and high-resolution diffraction are all needed for rapid, iterative inhibitor design. We describe here robust methods to support SBDD on an oral anti-cytokine drug target, human MAPKAP kinase 2 (MK2). Our goal was to obtain useful diffraction data with a large number of chemically diverse lead compounds. Although MK2 structures and structural methods have been reported previously, reproducibility was low and improved methods were needed. Results Our construct design strategy had four tactics: N- and C-terminal variations; entropy-reducing surface mutations; activation loop deletions; and pseudoactivation mutations. Generic, high-throughput methods for cloning and expression were coupled with automated liquid dispensing for the rapid testing of crystallization conditions with minimal sample requirements. Initial results led to development of a novel, customized robotic crystallization screen that yielded MK2/inhibitor complex crystals under many conditions in seven crystal forms. In all, 44 MK2 constructs were generated, ~500 crystals were tested for diffraction, and ~30 structures were determined, delivering high-impact structural data to support our MK2 drug design effort. Conclusion Key lessons included setting reasonable criteria for construct performance and prioritization, a willingness to design and use customized crystallization screens, and, crucially, initiation of high-throughput construct exploration very early in the drug discovery process. PMID:19296855

  6. Biophysically inspired rational design of structured chimeric substrates for DNAzyme cascade engineering.

    PubMed

    Lakin, Matthew R; Brown, Carl W; Horwitz, Eli K; Fanning, M Leigh; West, Hannah E; Stefanovic, Darko; Graves, Steven W

    2014-01-01

    The development of large-scale molecular computational networks is a promising approach to implementing logical decision making at the nanoscale, analogous to cellular signaling and regulatory cascades. DNA strands with catalytic activity (DNAzymes) are one means of systematically constructing molecular computation networks with inherent signal amplification. Linking multiple DNAzymes into a computational circuit requires the design of substrate molecules that allow a signal to be passed from one DNAzyme to another through programmed biochemical interactions. In this paper, we chronicle an iterative design process guided by biophysical and kinetic constraints on the desired reaction pathways and use the resulting substrate design to implement heterogeneous DNAzyme signaling cascades. A key aspect of our design process is the use of secondary structure in the substrate molecule to sequester a downstream effector sequence prior to cleavage by an upstream DNAzyme. Our goal was to develop a concrete substrate molecule design to achieve efficient signal propagation with maximal activation and minimal leakage. We have previously employed the resulting design to develop high-performance DNAzyme-based signaling systems with applications in pathogen detection and autonomous theranostics.

  7. Rational Mutagenesis to Support Structure-based Drug Design: MAPKAP Kinase 2 as a Case Study

    SciTech Connect

    M Argiriadi; S Sousa; D Banach; D Marcotte; T Xiang; M Tomlinson; M Demers; C Harris; S Kwak; et al.

    2011-12-31

    Structure-based drug design (SBDD) can provide valuable guidance to drug discovery programs. Robust construct design and expression, protein purification and characterization, protein crystallization, and high-resolution diffraction are all needed for rapid, iterative inhibitor design. We describe here robust methods to support SBDD on an oral anti-cytokine drug target, human MAPKAP kinase 2 (MK2). Our goal was to obtain useful diffraction data with a large number of chemically diverse lead compounds. Although MK2 structures and structural methods have been reported previously, reproducibility was low and improved methods were needed. Our construct design strategy had four tactics: N- and C-terminal variations; entropy-reducing surface mutations; activation loop deletions; and pseudoactivation mutations. Generic, high-throughput methods for cloning and expression were coupled with automated liquid dispensing for the rapid testing of crystallization conditions with minimal sample requirements. Initial results led to development of a novel, customized robotic crystallization screen that yielded MK2/inhibitor complex crystals under many conditions in seven crystal forms. In all, 44 MK2 constructs were generated, {approx}500 crystals were tested for diffraction, and {approx}30 structures were determined, delivering high-impact structural data to support our MK2 drug design effort. Key lessons included setting reasonable criteria for construct performance and prioritization, a willingness to design and use customized crystallization screens, and, crucially, initiation of high-throughput construct exploration very early in the drug discovery process.

  8. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin

    SciTech Connect

    Lin, Y.W.; Robinson, H.; Yeung, N.; Gao, Y.-G.; Miner, K. D.; Tian, S.; Lu, Y.

    2010-05-11

    A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative FeB site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by {approx}110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a {approx}100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the FeB site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.

  9. Roles of Glutamates and Metal ions in a Rationally Designed Nitric Oxide Reductase Based on Myoglobin

    SciTech Connect

    Y Lin; N Yeung; Y Gao; K Miner; S Tian; H Robinson; Y Lu

    2011-12-31

    A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative FeB site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by {approx}110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a {approx}100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the FeB site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.

  10. Standby Gasoline Rationing Plan

    SciTech Connect

    1980-06-01

    The final rules adopted by the President for a Standby Gasoline Rationing Plan are presented. The plan provides that eligibility for ration allotments will be determined primarily on the basis of motor vehicle registrations, taking into account historical differences in the use of gasoline among states. The regulations also provide authority for supplemental allotments to firms so that their allotment will equal a specified percentage of gasoline use during a base period. Priority classifications, i.e., agriculture, defense, etc., are established to assure adequate gasoline supplies for designated essential services. Ration rights must be provided by end-users to their suppliers for each gallon sold. DOE will regulate the distribution of gasoline at the wholesale level according to the transfer by suppliers of redeemed ration rights and the gasoline allocation regulations. Ration rights are transferable. A ration banking system is created to facilitate transfers of ration rights. Each state will be provided with a reserve of ration rights to provide for hardship needs and to alleviate inequities. (DC)

  11. A minimal length rigid helical peptide motif allows rational design of modular surfactants

    PubMed Central

    Mondal, Sudipta; Varenik, Maxim; Bloch, Daniel Nir; Atsmon-Raz, Yoav; Jacoby, Guy; Adler-Abramovich, Lihi; Shimon, Linda J.W.; Beck, Roy; Miller, Yifat; Regev, Oren; Gazit, Ehud

    2017-01-01

    Extensive work has been invested in the design of bio-inspired peptide emulsifiers. Yet, none of the formulated surfactants were based on the utilization of the robust conformation and self-assembly tendencies presented by the hydrophobins, which exhibited highest surface activity among all known proteins. Here we show that a minimalist design scheme could be employed to fabricate rigid helical peptides to mimic the rigid conformation and the helical amphipathic organization. These designer building blocks, containing natural non-coded α-aminoisobutyric acid (Aib), form superhelical assemblies as confirmed by crystallography and microscopy. The peptide sequence is amenable to structural modularity and provides the highest stable emulsions reported so far for peptide and protein emulsifiers. Moreover, we establish the ability of short peptides to perform the dual functions of emulsifiers and thickeners, a feature that typically requires synergistic effects of surfactants and polysaccharides. This work provides a different paradigm for the molecular engineering of bioemulsifiers. PMID:28084315

  12. A minimal length rigid helical peptide motif allows rational design of modular surfactants

    NASA Astrophysics Data System (ADS)

    Mondal, Sudipta; Varenik, Maxim; Bloch, Daniel Nir; Atsmon-Raz, Yoav; Jacoby, Guy; Adler-Abramovich, Lihi; Shimon, Linda J. W.; Beck, Roy; Miller, Yifat; Regev, Oren; Gazit, Ehud

    2017-01-01

    Extensive work has been invested in the design of bio-inspired peptide emulsifiers. Yet, none of the formulated surfactants were based on the utilization of the robust conformation and self-assembly tendencies presented by the hydrophobins, which exhibited highest surface activity among all known proteins. Here we show that a minimalist design scheme could be employed to fabricate rigid helical peptides to mimic the rigid conformation and the helical amphipathic organization. These designer building blocks, containing natural non-coded α-aminoisobutyric acid (Aib), form superhelical assemblies as confirmed by crystallography and microscopy. The peptide sequence is amenable to structural modularity and provides the highest stable emulsions reported so far for peptide and protein emulsifiers. Moreover, we establish the ability of short peptides to perform the dual functions of emulsifiers and thickeners, a feature that typically requires synergistic effects of surfactants and polysaccharides. This work provides a different paradigm for the molecular engineering of bioemulsifiers.

  13. Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts.

    PubMed

    Disney, Matthew D

    2013-12-01

    RNA is an important yet vastly underexploited target for small molecule chemical probes or lead therapeutics. Small molecules have been used successfully to modulate the function of the bacterial ribosome, viral RNAs and riboswitches. These RNAs are either highly expressed or can be targeted using substrate mimicry, a mainstay in the design of enzyme inhibitors. However, most cellular RNAs are neither highly expressed nor have a lead small molecule inhibitor, a significant challenge for drug discovery efforts. Herein, I describe the design of small molecules targeting expanded repeating transcripts that cause myotonic muscular dystrophy (DM). These test cases illustrate the challenges of designing small molecules that target RNA and the advantages of targeting repeating transcripts. Lastly, I discuss how small molecules might be more advantageous than oligonucleotides for targeting RNA.

  14. Development of a rational design procedure for a pressure recovery system for HPCL

    NASA Astrophysics Data System (ADS)

    Kim, Sehoon; Jin, Jungkun; Kwon, Hyuckmo; Kwon, Sejin

    2005-03-01

    From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 200g/s air was entrained satisfying the design secondary pressure, 40 ~ 50torr. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 100 g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.

  15. Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts

    PubMed Central

    Disney, Matthew D.

    2013-01-01

    RNA is an important yet vastly underexploited target for small molecule chemical probes or lead therapeutics. Small molecules have been used successfully to modulate the function of the bacterial ribosome, viral RNAs and riboswitches. These RNAs are either highly expressed or can be targeted using substrate mimicry, a mainstay in the design of enzyme inhibitors. However, most cellular RNAs are neither highly expressed nor have a lead small molecule inhibitor, a significant challenge for drug discovery efforts. Herein, I describe the design of small molecules targeting expanded repeating transcripts that cause myotonic muscular dystrophy (DM). These test cases illustrate the challenges of designing small molecules that target RNA and the advantages of targeting repeating transcripts. Lastly, I discuss how small molecules might be more advantageous than oligonucleotides for targeting RNA. PMID:23939337

  16. Rational design of FRET sensor proteins based on mutually exclusive domain interactions.

    PubMed

    Merkx, Maarten; Golynskiy, Misha V; Lindenburg, Laurens H; Vinkenborg, Jan L

    2013-10-01

    Proteins that switch between distinct conformational states are ideal to monitor and control molecular processes within the complexity of biological systems. Inspired by the modular architecture of natural signalling proteins, our group explores generic design strategies for the construction of FRET-based sensor proteins and other protein switches. In the present article, I show that designing FRET sensors based on mutually exclusive domain interactions provides a robust method to engineer sensors with predictable properties and an inherently large change in emission ratio. The modularity of this approach should make it easily transferable to other applications of protein switches in fields ranging from synthetic biology, optogenetics and molecular diagnostics.

  17. Computational Protein Engineering: Bridging the Gap between Rational Design and Laboratory Evolution

    PubMed Central

    Barrozo, Alexandre; Borstnar, Rok; Marloie, Gaël; Kamerlin, Shina Caroline Lynn

    2012-01-01

    Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies. PMID:23202907

  18. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

    NASA Astrophysics Data System (ADS)

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang

    2015-08-01

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.

  19. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

    PubMed Central

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang

    2015-01-01

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314–324) and E2 (residues 412–423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo. PMID:26238798

  20. Rational Design of Regulators of Programmed Cell Death in Human Breast Cancer

    DTIC Science & Technology

    2000-07-01

    The purpose of this research is to develop a better understanding of the intricate pathways of cell death and their contributions to breast cancers...basis for a set of molecular interactions that regulate programmed cell death , and allow the design of novel interventional agents that have investigative and therapeutic potential.

  1. Peer Mentoring in Long-Term Care: Rational, Design, and Retention

    ERIC Educational Resources Information Center

    Hegeman, Carol; Hoskinson, Debi; Munro, Heather; Maiden, Patricia; Pillemer, Karl

    2007-01-01

    This article describes two successful peer-mentoring programs designed to improve the quality of care in nursing homes and retention rates among direct care staff. The first program, "Growing Strong Roots," examined CNA retention rates and the second program, "Peer Mentoring for Long Term Charge Nurses," examined RN and LPN retention rates. These…

  2. Rational design of a non-canonical "sticky-ended" collagen triple helix.

    PubMed

    Jalan, Abhishek A; Jochim, Katherine A; Hartgerink, Jeffrey D

    2014-05-28

    In a canonical collagen triple helix, three peptides self-assemble into a supercoiled motif with a one-amino-acid offset between the peptide chains. Design of triple helices that contain more than one residue offset is lucrative, as it leaves the non-covalent interactions unsatisfied at the termini and renders the termini "sticky" to further self-assemble into collagen-like nanofibers. Here we use lysine-glutamate axial salt-bridges to design a heterotrimeric collagen triple helix, ABC-1, containing a non-canonical offset of four residues between the peptide chains. The four-residue offset is necessary to prevent aggregation, which would prevent characterization of the non-canonical chain arrangement at the molecular level by NMR spectroscopy. A second heterotrimer, ABC-2, also stabilized by axial salt-bridges, is designed containing a canonical one-amino-acid offset to facilitate comparison of structure and stability by CD and NMR. ABC-1 and ABC-2 demonstrate our ability to modulate chain offset in a collagen triple helix. This lays the groundwork to design longer, and therefore stickier, offsets allowing access to a new class of collagen-related nanostructures.

  3. Peer Mentoring in Long-Term Care: Rational, Design, and Retention

    ERIC Educational Resources Information Center

    Hegeman, Carol; Hoskinson, Debi; Munro, Heather; Maiden, Patricia; Pillemer, Karl

    2007-01-01

    This article describes two successful peer-mentoring programs designed to improve the quality of care in nursing homes and retention rates among direct care staff. The first program, "Growing Strong Roots," examined CNA retention rates and the second program, "Peer Mentoring for Long Term Charge Nurses," examined RN and LPN retention rates. These…

  4. Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins.

    PubMed

    Wang, Weixun; Hecht, Michael H

    2002-03-05

    Amyloid fibrils are associated with a variety of neurodegenerative maladies including Alzheimer's disease and the prion diseases. The structures of amyloid fibrils are composed of beta-strands oriented orthogonal to the fibril axis ("cross beta" structure). We previously reported the design and characterization of a combinatorial library of de novo beta-sheet proteins that self-assemble into fibrillar structures resembling amyloid. The libraries were designed by using a "binary code" strategy, in which the locations of polar and nonpolar residues are specified explicitly, but the identities of these residues are not specified and are varied combinatorially. The initial libraries were designed to encode proteins containing amphiphilic beta-strands separated by reverse turns. Each beta-strand was designed to be seven residues long, with polar (open circle) and nonpolar (shaded circle) amino acids arranged with an alternating periodicity ([see text]). The initial design specified the identical polar/nonpolar pattern for all of the beta-strands; no strand was explicitly designated to form the edges of the resulting beta-sheets. With all beta-strands preferring to occupy interior (as opposed to edge) locations, intermolecular oligomerization was favored, and the proteins assembled into amyloid-like fibrils. To assess whether explicit design of edge-favoring strands might tip the balance in favor of monomeric beta-sheet proteins, we have now redesigned the first and/or last beta-strands of several sequences from the original library. In the redesigned beta-strands, the binary pattern is changed from [see text] (K denotes lysine). The presence of a lysine on the nonpolar face of a beta-strand should disfavor fibrillar structures because such structures would bury an uncompensated charge. The nonpolar right arrow lysine mutations, therefore, would be expected to favor monomeric structures in which the [see text] sequences form edge strands with the charged lysine side

  5. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm

    PubMed Central

    El Khatib, Mariam; Martins, Alexandre; Bourgeois, Dominique; Colletier, Jacques-Philippe; Adam, Virgile

    2016-01-01

    Phototransformable fluorescent proteins are central to several nanoscopy approaches. As yet however, there is no available variant allowing super-resolution imaging in cell compartments that maintain oxidative conditions. Here, we report the rational design of two reversibly switchable fluorescent proteins able to fold and photoswitch in the bacterial periplasm, rsFolder and rsFolder2. rsFolder was designed by hybridisation of Superfolder-GFP with rsEGFP2, and inherited the fast folding properties of the former together with the rapid switching of the latter, but at the cost of a reduced switching contrast. Structural characterisation of the switching mechanisms of rsFolder and rsEGFP2 revealed different scenarios for chromophore cis-trans isomerisation and allowed designing rsFolder2, a variant of rsFolder that exhibits improved switching contrast and is amenable to RESOLFT nanoscopy. The rsFolders can be efficiently expressed in the E. coli periplasm, opening the door to the nanoscale investigation of proteins localised in hitherto non-observable cellular compartments. PMID:26732634

  6. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids.

    PubMed

    Nepali, Kunal; Sharma, Sahil; Sharma, Manmohan; Bedi, P M S; Dhar, K L

    2014-04-22

    A Hybrid drug which comprises the incorporation of two drug pharmacophores in one single molecule are basically designed to interact with multiple targets or to amplify its effect through action on another bio target as one single molecule or to counterbalance the known side effects associated with the other hybrid part(.) The present review article offers a detailed account of the design strategies employed for the synthesis of anticancer agents via molecular hybridization techniques. Over the years, the researchers have employed this technique to discover some promising chemical architectures displaying significant anticancer profiles. Molecular hybridization as a tool has been particularly utilized for targeting tubulin protein as exemplified through the number of research papers. The microtubule inhibitors such as taxol, colchicine, chalcones, combretasatin, phenstatins and vinca alkaloids have been utilized as one of the functionality of the hybrids and promising results have been obtained in most of the cases with some of the tubulin based hybrids exhibiting anticancer activity at nanomolar level. Linkage with steroids as biological carrier vector for anticancer drugs and the inclusion of pyrrolo [2,1-c] [1,4]benzodiazepines (PBDs), a family of DNA interactive antitumor antibiotics derived from Streptomyces species in hybrid structure based drug design has also emerged as a potential strategy. Various heteroaryl based hybrids in particular isatin and coumarins have also been designed and reported to posses' remarkable inhibitory potential. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the hybrids. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Rational design of α-helical tandem repeat proteins with closed architectures.

    PubMed

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L; Bradley, Philip

    2015-12-24

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks. The overall architecture of tandem repeat protein structures--which is dictated by the internal geometry and local packing of the repeat building blocks--is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed α-solenoid repeat structures (α-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the amino (N) and carboxy (C) termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed α-solenoid repeats with a left-handed helical architecture that--to our knowledge--is not yet present in the protein structure database.

  8. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  9. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-06-01

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m

  10. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate.

    PubMed

    Shrestha, Suresh; Salins, Lyndon L E; Mark Ensor, C; Daunert, Sylvia

    2002-06-05

    Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the

  11. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate

    NASA Technical Reports Server (NTRS)

    Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia

    2002-01-01

    Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the

  12. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe.

    PubMed

    Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung

    2017-09-15

    The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ((306)VQIVYK(311)) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.

  13. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate

    NASA Technical Reports Server (NTRS)

    Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia

    2002-01-01

    Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the

  14. Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design.

    PubMed

    Ferguson, Andrew L; Mann, Jaclyn K; Omarjee, Saleha; Ndung'u, Thumbi; Walker, Bruce D; Chakraborty, Arup K

    2013-03-21

    A prophylactic or therapeutic vaccine offers the best hope to curb the HIV-AIDS epidemic gripping sub-Saharan Africa, but it remains elusive. A major challenge is the extreme viral sequence variability among strains. Systematic means to guide immunogen design for highly variable pathogens like HIV are not available. Using computational models, we have developed an approach to translate available viral sequence data into quantitative landscapes of viral fitness as a function of the amino acid sequences of its constituent proteins. Predictions emerging from our computationally defined landscapes for the proteins of HIV-1 clade B Gag were positively tested against new in vitro fitness measurements and were consistent with previously defined in vitro measurements and clinical observations. These landscapes chart the peaks and valleys of viral fitness as protein sequences change and inform the design of immunogens and therapies that can target regions of the virus most vulnerable to selection pressure.

  15. Rational design of metal ion sequestering agents. 1998 annual progress report

    SciTech Connect

    Raymond, K.N.

    1998-06-01

    'This project addresses fundamental issues and requirements in developing hazardous metal ion separation technologies needed in the treatment and disposal of radioactive and chemical toxic waste. It encompasses the synthesis of new agents, followed by their characterization and evaluation, with the aim to optimize their metal ion sequestering properties for use in applied technologies. This research is focused on the following key areas: (1) basic design and synthesis of new metal ion specific sequestering ligands; (2) structural and thermodynamic investigations of these ligands and their complexes formed with the targeted metal ions; and (3) development of sequestering agents and their incorporation into systems designed to be prototypes of inexpensive and highly effective materials for hazardous metal ion decontamination. Basic studies of the sequestration of relevant toxic metals are required in order to develop processes that will treat effluents sufficiently well to allow direct release into the environment and minimize the production of secondary wastes.'

  16. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.

    PubMed

    Cao, Fengren; Xiong, Jie; Wu, Fangli; Liu, Qiong; Shi, Zhiwei; Yu, Yanhao; Wang, Xudong; Li, Liang

    2016-05-18

    In a photoelectrochemical (PEC) cell for water splitting, the critical issue is charge separation and transport, which is usually completed by designing semiconductor heterojunctions. TiO2 anatase-rutile mixed junctions could largely improve photocatalytic properties, but impairs PEC water splitting performance. We designed and prepared two types of TiO2 heterostructures with the anatase thin film and rutile nanowire phases organized in different sequences. The two types of heterostructures were used as PEC photoanodes for water splitting and demonstrated completely opposite results. Rutile nanowires on anatase film demonstrated enhanced photocurrent density and onset potential, whereas strong negative performance was obtained from anatase film on rutile nanowire structures. The mechanism was investigated by photoresponse, light absorption and reflectance, and electrochemical impedance spectra. This work revealed the significant role of phase sequence in performance gain of anatase-rutile TiO2 heterostructured PEC photoanodes.

  17. Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo

    PubMed Central

    Piggott, Beverly J.; Makhijani, Kalpana; Yu, Dan; Jan, Yuh Nung; Shu, Xiaokun

    2015-01-01

    Fluorescence resonance energy transfer-based reporters have been widely used in imaging cell signaling; however, their in vivo application has been handicapped because of poor signal. Although fluorogenic reporters overcome this problem, no such reporter of proteases has been demonstrated for in vivo imaging. Now we have redesigned an infrared fluorescent protein so that its chromophore incorporation is regulated by protease activity. Upon protease activation, the infrared fluorogenic protease reporter becomes fluorescent with no requirement of exogenous cofactor. To demonstrate biological applications, we have designed an infrared fluorogenic executioner-caspase reporter, which reveals spatiotemporal coordination between cell apoptosis and embryonic morphogenesis, as well as dynamics of apoptosis during tumorigenesis in Drosophila. The designed scaffold may be used to engineer reporters of other proteases with specific cleavage sequence. PMID:25733847

  18. Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design

    PubMed Central

    Ferguson, Andrew L.; Mann, Jaclyn K.; Omarjee, Saleha; Ndung’u, Thumbi; Walker, Bruce D.; Chakraborty, Arup K.

    2013-01-01

    Summary A prophylactic or therapeutic vaccine offers the best hope to curb the HIV-AIDS epidemic gripping sub-Saharan Africa, but remains elusive. A major challenge is the extreme viral sequence variability among strains. Systematic means to guide immunogen design for highly variable pathogens like HIV are not available. Using computational models, we have developed an approach to translate available viral sequence data into quantitative landscapes of viral fitness as a function of the amino acid sequences of its constituent proteins. Predictions emerging from our computationally defined landscapes for the proteins of HIV-1 clade B Gag were positively tested against new in vitro fitness measurements, and were consistent with previously defined in vitro measurements and clinical observations. These landscapes chart the peaks and valleys of viral fitness as protein sequences change, and inform the design of immunogens and therapies that can target regions of the virus most vulnerable to selection pressure. PMID:23521886

  19. Rational use of plasma protein and tissue binding data in drug design.

    PubMed

    Liu, Xingrong; Wright, Matthew; Hop, Cornelis E C A

    2014-10-23

    It is a commonly accepted assumption that only unbound drug molecules are available to interact with their targets. Therefore, one of the objectives in drug design is to optimize the compound structure to increase in vivo unbound drug concentration. In this review, theoretical analyses and experimental observations are presented to illustrate that low plasma protein binding does not necessarily lead to high in vivo unbound plasma concentration. Similarly, low brain tissue binding does not lead to high in vivo unbound brain tissue concentration. Instead, low intrinsic clearance leads to high in vivo unbound plasma concentration, and low efflux transport activity at the blood-brain barrier leads to high unbound brain concentration. Plasma protein and brain tissue binding are very important parameters in understanding pharmacokinetics, pharmacodynamics, and toxicities of drugs, but these parameters should not be targeted for optimization in drug design.

  20. Rational design of substituted diarylureas: a scaffold for binding to G-quadruplex motifs

    PubMed Central

    Drewe, William C.; Nanjunda, Rupesh; Gunaratnam, Mekala; Beltran, Monica; Parkinson, Gary N.; Reszka, Anthony P.; Wilson, W. David; Neidle, Stephen

    2014-01-01

    The design and synthesis of a series of urea-based non-polycyclic aromatic ligands with alkylaminoanilino side chains as telomeric and genomic G-quadruplex DNA interacting agents is described. Their interactions with quadruplexes have been examined by means of Fluorescent Resonance Energy Transfer melting, circular dichroism and surface plasmon resonance-based assays. These validate the design concept for such urea-based ligands and also show that they have significant selectivity for compared to duplex DNA, as well as for particular G-quadruplexes. The ligand-quadruplex complexes were investigated by computational molecular modeling, providing further information on structure activity relationships. Preliminary biological studies using short-term cell growth inhibition assays show that some of the ligands have cancer cell selectivity, although they appear to have low potency for intracellular telomeric G-quadruplex structures, suggesting that their cellular targets may be other, possibly oncogene-related quadruplexes. PMID:19053833

  1. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A.

    PubMed

    Butler, Kyle V; Kalin, Jay; Brochier, Camille; Vistoli, Guilio; Langley, Brett; Kozikowski, Alan P

    2010-08-11

    Structure-based drug design combined with homology modeling techniques were used to develop potent inhibitors of HDAC6 that display superior selectivity for the HDAC6 isozyme compared to other inhibitors. These inhibitors can be assembled in a few synthetic steps, and thus are readily scaled up for in vivo studies. An optimized compound from this series, designated Tubastatin A, was tested in primary cortical neuron cultures in which it was found to induce elevated levels of acetylated alpha-tubulin, but not histone, consistent with its HDAC6 selectivity. Tubastatin A also conferred dose-dependent protection in primary cortical neuron cultures against glutathione depletion-induced oxidative stress. Importantly, when given alone at all concentrations tested, this hydroxamate-containing HDAC6-selective compound displayed no neuronal toxicity, thus, forecasting the potential application of this agent and its analogues to neurodegenerative conditions.

  2. A unique peptide deformylase platform to rationally design and challenge novel active compounds

    PubMed Central

    Fieulaine, Sonia; Alves de Sousa, Rodolphe; Maigre, Laure; Hamiche, Karim; Alimi, Mickael; Bolla, Jean-Michel; Taleb, Abbass; Denis, Alexis; Pagès, Jean-Marie; Artaud, Isabelle; Meinnel, Thierry; Giglione, Carmela

    2016-01-01

    Peptide deformylase (PDF) is considered an excellent target to develop antibiotics. We have performed an extensive characterization of a new PDF from the pathogen Streptococcus agalactiae, showing properties similar to other known PDFs. S. agalactiae PDF could be used as PDF prototype as it allowed to get complete sets of 3-dimensional, biophysical and kinetic data with virtually any inhibitor compound. Structure-activity relationship analysis with this single reference system allowed us to reveal distinct binding modes for different PDF inhibitors and the key role of a hydrogen bond in potentiating the interaction between ligand and target. We propose this protein as an irreplaceable tool, allowing easy and relevant fine comparisons between series, to design, challenge and validate novel series of inhibitors. As proof-of-concept, we report here the design and synthesis of effective specific bacterial PDF inhibitors of an oxadiazole series with potent antimicrobial activity against a multidrug resistant clinical isolate. PMID:27762275

  3. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  4. Rational design of dynamic ammonium salt catalysts towards more flexible and selective function

    PubMed Central

    Ishihara, Kazuaki

    2009-01-01

    This review focuses on the development of dynamic ammonium salt catalysis for selective organic transformations conducted in our laboratory since 2002. Several important concepts in designing of catalysts are described with some examples. In particular, the practial synthesis of chiral 1,1′-binaphthyl-2,2′-disulfonic acid (BINSA) and its application in chiral ammonium salt catalysis for the enantioselective direct Mannich-type reaction are described. PMID:19838010

  5. Systematic generation of chemical structures for rational drug design based on QSAR models.

    PubMed

    Funatsu, Kimito; Miyao, Tomoyuki; Arakawa, Masamoto

    2011-03-01

    The first step in the process of drug development is to determine those lead compounds that demonstrate significant biological activity with regard to a target protein. Because this process is often costly and time consuming, there is a need to develop efficient methodologies for the generation of lead compounds for practical drug design. One promising approach for determining a potent lead compound is computational virtual screening. The biological activities of candidate structures found in virtual libraries are estimated by using quantitative structure activity relationship (QSAR) models and/or computational docking simulations. In virtual screening studies, databases of existing drugs or natural products are commonly used as a source of lead candidates. However, these databases are not sufficient for the purpose of finding lead candidates having novel scaffolds. Therefore, a method must be developed to generate novel molecular structures to indicate high activity for efficient lead discovery. In this paper, we review current trends in structure generation methods for drug design and discuss future directions. First, we present an overview of lead discovery and drug design, and then, we review structure generation methods. Here, the structure generation methods are classified on the basis of whether or not they employ QSAR models for generating structures. We conclude that the use of QSAR models for structure generation is an effective method for computational lead discovery. Finally, we discuss the problems regarding the applicability domain of QSAR models and future directions in this field.

  6. Rational Design, Preparation, and Characterization of a Therapeutic Enzyme Mutant with Improved Stability and Function for Cocaine Detoxification

    PubMed Central

    2015-01-01

    Cocaine esterase (CocE) is known as the most efficient natural enzyme for cocaine hydrolysis. The major obstacle to the clinical application of wild-type CocE is the thermoinstability with a half-life of only ∼12 min at 37 °C. The previously designed T172R/G173Q mutant (denoted as enzyme E172–173) with an improved in vitro half-life of ∼6 h at 37 °C is currently in clinical trial Phase II for cocaine overdose treatment. Through molecular modeling and dynamics simulation, we designed and characterized a promising new mutant of E172–173 with extra L196C/I301C mutations (denoted as enzyme E196–301) to produce cross-subunit disulfide bonds that stabilize the dimer structure. The cross-subunit disulfide bonds were confirmed by X-ray diffraction. The designed L196C/I301C mutations have not only considerably extended the in vitro half-life at 37 °C to >100 days, but also significantly improved the catalytic efficiency against cocaine by ∼150%. In addition, the thermostable E196–301 can be PEGylated to significantly prolong the residence time in mice. The PEGylated E196–301 can fully protect mice from a lethal dose of cocaine (180 mg/kg, LD100) for at least 3 days, with an average protection time of ∼94h. This is the longest in vivo protection of mice from the lethal dose of cocaine demonstrated within all studies using an exogenous enzyme reported so far. Hence, E196–301 may be developed to become a more valuable therapeutic enzyme for cocaine abuse treatment, and it demonstrates that a general design strategy and protocol to simultaneously improve both the stability and function are feasible for rational protein drug design. PMID:24919140

  7. [Modeling of protein-ligand interaction complexes as a basic of the rational design of drugs

    PubMed

    Folkers, Gerd

    1995-01-01

    Most of our today"s drugs have been discovered by the lucky coincidences called serendipity. The drugs itself however, have tremendously changed since the ancient times. From the herbal teas as the remedies of our ancestors, we have switched to modern therapeutics, mostly containing only one, very high active compound. Modern analytical methods and the approaches of recent molecular biology have revealed the molecular mechanisms of a lot of this high active drugs. In most of the cases, interaction of the drug molecule with a special protein in the body, located on the surface of the cell releases the biological response. This may lead to the idea, that knowledge of the structure of the protein-ligand complex enables us to design a drug with certain properties on the computer screen. If successful, serendipity could be considerably reduced as well as animal testing. As a matter of fact, it can be shown, that the combination of biophysics, modeling, and biological in vitro methods brings us very close to that goal. However, basic problems, for instance in the handling of complex systems are opposed to the reductionistic approach in the drug research. They prevent the simple application of the lock and key principle in making a drug by fitting a putative drug molecule into the binding site of a receptor. Nevertheless, whenever a biologically active compound has been discovered, be it by pure chance, serendipity, design or ethnological pharmacy, molecular modeling or drug design will be of great help in optimizing the active compounds and enrichment of the whole new class of therapeutics.

  8. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks

    SciTech Connect

    Barkholtz, Heather M.; Liu, Di -Jia

    2016-11-14

    Over the past several years, metal-organic framework (MOF)-derived platinum group metal free (PGM-free) electrocatalysts have gained considerable attention due to their high efficiency and low cost as potential replacement for platinum in catalyzing oxygen reduction reaction (ORR). In this review, we summarize the recent advancements in design, synthesis and characterization of MOF-derived ORR catalysts and their performances in acidic and alkaline media. As a result, we also discuss the key challenges such as durability and activity enhancement critical in moving forward this emerging electrocatalyst science.

  9. Rational materials design of sorbent coatings for explosives: applications with chemical sensors.

    PubMed

    Houser, E J; Mlsna, T E; Nguyen, V K; Chung, R; Mowery, R L; Andrew McGill, R

    2001-05-10

    A series of chemoselective polymers had been designed and synthesized to enhance the sorption properties of polymer coated chemical sensors for polynitroaromatic analytes. To evaluate the effectiveness of the chemoselective coatings, a polynitroaromatic vapor test bed was utilized to challenge polymer coated surface acoustic wave (SAW) devices with different explosive vapors. Dinitrotoluene detection limits were determined to be in the <100 parts per trillion ranges. ATR-FTIR studies were used to determine the nature of the polymer-polynitroaromatic analyte interactions, and confirm the presence of hydrogen-bonding between polymer pendant groups and the nitro functional groups of polynitroaromatic explosive materials.

  10. Toward Rational Design of Palladium Nanoparticles with Plasmonically Enhanced Catalytic Performance

    SciTech Connect

    Klinkova, Anna; Ahmed, Aftab; Choueiri, Rachelle M.; Guest, Jeffrey R.; Kumacheva, Eugenia

    2016-01-01

    Palladium is a plasmonic metal, however plasmonically mediated enhancement of catalytic performance of Pd nanoparticles is underexplored. We report plasmonically mediated enhancement of catalytic performance of Pd-based nanoparticles with different shapes and internal structure. We found that Pd-only nanoparticles with geometry promoting plasmonic light concentration show stronger effect on light-induced catalytic performance than hybrid Pd-based nanoparticles with a ‘canonic’ plasmonic metal (Au) core. Our findings pave the way for the design, synthesis and fabrication of Pd nanocatalysts with enhanced performance under visible light illumination.

  11. Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

    PubMed Central

    Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu

    2014-01-01

    Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709

  12. The rational design of polymeric EUV resist materials by QSPR modelling

    NASA Astrophysics Data System (ADS)

    Jack, Kevin; Liu, Heping; Blakey, Idriss; Hill, David; Yueh, Wang; Cao, Heidi; Leeson, Michael; Denbeaux, Greg; Waterman, Justin; Whittaker, Andrew

    2007-03-01

    We present the initial results of the development of a qualitative structure property relationship (QSPR) model to guide in the design and synthesis of high-sensitivity, non-CAR materials for EUV lithography. The model was developed using the fragmentation data of low molecular weight species at 70 eV using a mass spectrometer (MS) with an electron ionization source as the input parameter. The preliminary model has highlighted a number of structural elements which will be important in the future design of resists, however, limitations with the current set of input data for molecules which fragment readily have been identified and these are currently being addressed. Additionally, a correlation between γ (1 MeV) and EUV (92 eV) radiolysis of selected polymers has been established and it is proposed that the higher energy (1 MeV) irradiation source is a suitable model process for EUV and can, therefore, be used in the future screening of polymeric materials.

  13. Modular dispensability of dysferlin C2 domains reveals rational design for mini-dysferlin molecules.

    PubMed

    Azakir, Bilal A; Di Fulvio, Sabrina; Salomon, Steven; Brockhoff, Marielle; Therrien, Christian; Sinnreich, Michael

    2012-08-10

    Dysferlin is a large transmembrane protein composed of a C-terminal transmembrane domain, two DysF domains, and seven C2 domains that mediate lipid- and protein-binding interactions. Recessive loss-of-function mutations in dysferlin lead to muscular dystrophies, for which no treatment is currently available. The large size of dysferlin precludes its encapsulation into an adeno-associated virus (AAV), the vector of choice for gene delivery to muscle. To design mini-dysferlin molecules suitable for AAV-mediated gene transfer, we tested internally truncated dysferlin constructs, each lacking one of the seven C2 domains, for their ability to localize to the plasma membrane and to repair laser-induced plasmalemmal wounds in dysferlin-deficient human myoblasts. We demonstrate that the dysferlin C2B, C2C, C2D, and C2E domains are dispensable for correct plasmalemmal localization. Furthermore, we show that the C2B, C2C, and C2E domains and, to a lesser extent, the C2D domain are dispensable for dysferlin membrane repair function. On the basis of these results, we designed small dysferlin molecules that can localize to the plasma membrane and reseal laser-induced plasmalemmal injuries and that are small enough to be incorporated into AAV. These results lay the groundwork for AAV-mediated gene therapy experiments in dysferlin-deficient mouse models.

  14. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery.

    PubMed

    Lounnas, Valère; Ritschel, Tina; Kelder, Jan; McGuire, Ross; Bywater, Robert P; Foloppe, Nicolas

    2013-01-01

    The past decade has witnessed a paradigm shift in preclinical drug discovery with structure-based drug design (SBDD) making a comeback while high-throughput screening (HTS) methods have continued to generate disappointing results. There is a deficit of information between identified hits and the many criteria that must be fulfilled in parallel to convert them into preclinical candidates that have a real chance to become a drug. This gap can be bridged by investigating the interactions between the ligands and their receptors. Accurate calculations of the free energy of binding are still elusive; however progresses were made with respect to how one may deal with the versatile role of water. A corpus of knowledge combining X-ray structures, bioinformatics and molecular modeling techniques now allows drug designers to routinely produce receptor homology models of increasing quality. These models serve as a basis to establish and validate efficient rationales used to tailor and/or screen virtual libraries with enhanced chances of obtaining hits. Many case reports of successful SBDD show how synergy can be gained from the combined use of several techniques. The role of SBDD with respect to two different classes of widely investigated pharmaceutical targets: (a) protein kinases (PK) and (b) G-protein coupled receptors (GPCR) is discussed. Throughout these examples prototypical situations covering the current possibilities and limitations of SBDD are presented.

  15. Hairpin Ribozyme Genes Curtail Alcohol Drinking: from Rational Design to in vivo Effects in the Rat

    PubMed Central

    Sapag, Amalia; Irrazábal, Thergiory; Lobos-González, Lorena; Muñoz-Brauning, Carlos R; Quintanilla, María Elena; Tampier, Lutske

    2016-01-01

    Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism. PMID:27404720

  16. Spectromicroscopic insights for rational design of redox-based memristive devices

    PubMed Central

    Baeumer, Christoph; Schmitz, Christoph; Ramadan, Amr H. H.; Du, Hongchu; Skaja, Katharina; Feyer, Vitaliy; Müller, Philipp; Arndt, Benedikt; Jia, Chun-Lin; Mayer, Joachim; De Souza, Roger A.; Michael Schneider, Claus; Waser, Rainer; Dittmann, Regina

    2015-01-01

    The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti4+ and Ti3+. While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably. PMID:26477940

  17. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs.

    PubMed

    Ferry, Quentin R V; Lyutova, Radostina; Fulga, Tudor A

    2017-03-03

    CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5' end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this 'plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies.

  18. Rational design of self-assembly pathways for complex multicomponent structures.

    PubMed

    Jacobs, William M; Reinhardt, Aleks; Frenkel, Daan

    2015-05-19

    The field of complex self-assembly is moving toward the design of multiparticle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such "addressable complexity," we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in nonclassical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate 3D structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity.

  19. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation.

    PubMed

    Doench, John G; Hartenian, Ella; Graham, Daniel B; Tothova, Zuzana; Hegde, Mudra; Smith, Ian; Sullender, Meagan; Ebert, Benjamin L; Xavier, Ramnik J; Root, David E

    2014-12-01

    Components of the prokaryotic clustered, regularly interspaced, short palindromic repeats (CRISPR) loci have recently been repurposed for use in mammalian cells. The CRISPR-associated (Cas)9 can be programmed with a single guide RNA (sgRNA) to generate site-specific DNA breaks, but there are few known rules governing on-target efficacy of this system. We created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. We discovered sequence features that improved activity, including a further optimization of the protospacer-adjacent motif (PAM) of Streptococcus pyogenes Cas9. The results from 1,841 sgRNAs were used to construct a predictive model of sgRNA activity to improve sgRNA design for gene editing and genetic screens. We provide an online tool for the design of highly active sgRNAs for any gene of interest.

  20. Rationally Designed Redox-Sensitive Protein Hydrogels with Tunable Mechanical Properties.

    PubMed

    Zhou, Ming-Liang; Qian, Zhi-Gang; Chen, Liang; Kaplan, David L; Xia, Xiao-Xia

    2016-11-14

    Protein hydrogels are an important class of materials for applications in biotechnology and medicine. The fine-tuning of their sequence, molecular weight, and stereochemistry offers unique opportunities to engineer biofunctionality, biocompatibility, and biodegradability into these materials. Here we report a new family of redox-sensitive protein hydrogels with controllable mechanical properties composed of recombinant silk-elastin-like protein polymers (SELPs). The SELPs were designed and synthesized with different ratios of silk-to-elastin blocks that incorporated periodic cysteine residues. The cysteine-containing SELPs were thermally responsive in solution and rapidly formed hydrogels at body temperature under physiologically relevant, mild oxidative conditions. Upon addition of a low concentration of hydrogen peroxide at 0.05% (w/v), gelation occurred within minutes for the SELPs with a protein concentration of approximately 4% (w/v). The gelation time and mechanical properties of the hydrogels were dependent on the ratio of silk to elastin. These polymer designs also significantly affected redox-sensitive release of a highly polar model drug from the hydrogels in vitro. Furthermore, oxidative gelation was performed at other physiologically relevant temperatures, and this resulted in hydrogels with tunable mechanical properties, thus, providing a secondary level of control over hydrogel stiffness. These newly developed injectable SELP hydrogels with redox-sensitive features and tunable mechanical properties may be potentially useful as biomaterials with broad applications in controlled drug delivery and tissue engineering.

  1. Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria.

    PubMed

    Nguyen, Thuy-Khanh; Lam, Shu Jie; Ho, Kitty K K; Kumar, Naresh; Qiao, Greg G; Egan, Suhelen; Boyer, Cyrille; Wong, Edgar H H

    2017-02-08

    Infections caused by multidrug-resistant bacteria are on the rise and, therefore, new antimicrobial agents are required to prevent the onset of a postantibiotic era. In this study, we develop new antimicrobial compounds in the form of single-chain polymeric nanoparticles (SCPNs) that exhibit excellent antimicrobial activity against Gram-negative bacteria (e.g., Pseudomonas aeruginosa) at micromolar concentrations (e.g., 1.4 μM) and remarkably kill ≥99.99% of both planktonic cells and biofilm within an hour. Linear random copolymers, which comprise oligoethylene glycol (OEG), hydrophobic, and amine groups, undergo self-folding in aqueous systems due to intramolecular hydrophobic interactions to yield these SCPNs. By systematically varying the hydrophobicity of the polymer, we can tune the extent of cell membrane wall disruption, which in turn governs the antimicrobial activity and rate of resistance acquisition in bacteria. We also show that the incorporation of OEG groups into the polymer design is essential in preventing complexation with proteins in biological medium, thereby maintaining the antimicrobial efficacy of the compound even in in vivo mimicking conditions. In comparison to the last-resort antibiotic colistin, our lead agents have a higher therapeutic index (by ca. 2-3 times) and hence better biocompatibility. We believe that the SCPNs developed here have potential for clinical applications and the information pertaining to their structure-activity relationship will be valuable toward the general design of synthetic antimicrobial (macro)molecules.

  2. Development of a novel rationally designed antibiotic to inhibit a nontraditional bacterial target.

    PubMed

    Dibrov, Pavel; Dibrov, Elena; Maddaford, Thane G; Kenneth, Melissa; Nelson, Jordan; Resch, Craig; Pierce, Grant N

    2017-05-01

    The search for new nontraditional targets is a high priority in antibiotic design today. Bacterial membrane energetics based on sodium ion circulation offers potential alternative targets. The present work identifies the Na(+)-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), a key respiratory enzyme in many microbial pathogens, as indispensible for the Chlamydia trachomatis infectious process. Infection by Chlamydia trachomatis significantly increased first H(+) and then Na(+) levels within the host mammalian cell. A newly designed furanone Na(+)-NQR inhibitor, PEG-2S, blocked the changes in both H(+) and Na(+) levels induced by Chlamydia trachomatis infection. It also inhibited intracellular proliferation of Chlamydia trachomatis with a half-minimal inhibitory concentration in the submicromolar range but did not affect the viability of mammalian cells or bacterial species representing benign intestinal microflora. At low nanomolar concentrations (IC50 value = 1.76 nmol/L), PEG-2S inhibited the Na(+)-NQR activity in sub-bacterial membrane vesicles isolated from Vibrio cholerae. Taken together, these results show, for the first time, that Na(+)-NQR is critical for the bacterial infectious process and is susceptible to a precisely targeted bactericidal compound in situ. The obtained data have immediate relevance for many different diseases caused by pathogenic bacteria that rely on Na(+)-NQR activity for growth, including sexually transmitted, pulmonary, oral, gum, and ocular infections.

  3. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery

    PubMed Central

    Lounnas, Valère; Ritschel, Tina; Kelder, Jan; McGuire, Ross; Bywater, Robert P.; Foloppe, Nicolas

    2013-01-01

    The past decade has witnessed a paradigm shift in preclinical drug discovery with structure-based drug design (SBDD) making a comeback while high-throughput screening (HTS) methods have continued to generate disappointing results. There is a deficit of information between identified hits and the many criteria that must be fulfilled in parallel to convert them into preclinical candidates that have a real chance to become a drug. This gap can be bridged by investigating the interactions between the ligands and their receptors. Accurate calculations of the free energy of binding are still elusive; however progresses were made with respect to how one may deal with the versatile role of water. A corpus of knowledge combining X-ray structures, bioinformatics and molecular modeling techniques now allows drug designers to routinely produce receptor homology models of increasing quality. These models serve as a basis to establish and validate efficient rationales used to tailor and/or screen virtual libraries with enhanced chances of obtaining hits. Many case reports of successful SBDD show how synergy can be gained from the combined use of several techniques. The role of SBDD with respect to two different classes of widely investigated pharmaceutical targets: (a) protein kinases (PK) and (b) G-protein coupled receptors (GPCR) is discussed. Throughout these examples prototypical situations covering the current possibilities and limitations of SBDD are presented. PMID:24688704

  4. Modular Dispensability of Dysferlin C2 Domains Reveals Rational Design for Mini-dysferlin Molecules*

    PubMed Central

    Azakir, Bilal A.; Di Fulvio, Sabrina; Salomon, Steven; Brockhoff, Marielle; Therrien, Christian; Sinnreich, Michael

    2012-01-01

    Dysferlin is a large transmembrane protein composed of a C-terminal transmembrane domain, two DysF domains, and seven C2 domains that mediate lipid- and protein-binding interactions. Recessive loss-of-function mutations in dysferlin lead to muscular dystrophies, for which no treatment is currently available. The large size of dysferlin precludes its encapsulation into an adeno-associated virus (AAV), the vector of choice for gene delivery to muscle. To design mini-dysferlin molecules suitable for AAV-mediated gene transfer, we tested internally truncated dysferlin constructs, each lacking one of the seven C2 domains, for their ability to localize to the plasma membrane and to repair laser-induced plasmalemmal wounds in dysferlin-deficient human myoblasts. We demonstrate that the dysferlin C2B, C2C, C2D, and C2E domains are dispensable for correct plasmalemmal localization. Furthermore, we show that the C2B, C2C, and C2E domains and, to a lesser extent, the C2D domain are dispensable for dysferlin membrane repair function. On the basis of these results, we designed small dysferlin molecules that can localize to the plasma membrane and reseal laser-induced plasmalemmal injuries and that are small enough to be incorporated into AAV. These results lay the groundwork for AAV-mediated gene therapy experiments in dysferlin-deficient mouse models. PMID:22736764

  5. Rational drug design of indazole-based diarylurea derivatives as anticancer agents.

    PubMed

    Chu, Yan-Yan; Cheng, He-Juan; Tian, Zhen-Hua; Zhao, Jian-Chun; Li, Gang; Chu, Yang-Yang; Sun, Chang-Jun; Li, Wen-Bao

    2017-10-01

    A series of novel indazole-based diarylurea derivatives targeting c-kit were designed by structure-based drug design. The derivatives were prepared, and their antiproliferative activities were evaluated against human colon cancer HCT-116 cell line and hepatocellular carcinoma PLC/PRF/5 cell line. The antiproliferative activities demonstrated that six of nine compounds exhibited comparable activities with sorafenib against HCT-116. The structure-activity relationship (SAR) analysis indicated that the indazole ring part tolerated different kinds of substituents, and the N position of the central pyridine ring played key roles in antiproliferative activity. The SAR and interaction mechanisms were further explored using molecular docking method. Compound 1i with N-(2-(pyrrolidin-1-yl)ethyl)-carboxamide possessed improved solubility, 596.1 ng/ml and best activities, IC50 at 1.0 μm against HCT-116, and 3.48 μm against PLC/PRF/5. It is a promising anticancer agent for further development. © 2017 John Wiley & Sons A/S.

  6. Rational design of potent and selective inhibitors of an epoxide hydrolase virulence factor from Pseudomonas aeruginosa

    PubMed Central

    Kitamura, Seiya; Hvorecny, Kelli L.; Niu, Jun; Hammock, Bruce D.; Madden, Dean R.; Morisseau, Christophe

    2016-01-01

    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. Based on these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif, and have the potential for clinical application. PMID:27120257

  7. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa.

    PubMed

    Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun; Hammock, Bruce D; Madden, Dean R; Morisseau, Christophe

    2016-05-26

    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application.

  8. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs

    PubMed Central

    Ferry, Quentin R. V.; Lyutova, Radostina; Fulga, Tudor A.

    2017-01-01

    CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5′ end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this ‘plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies. PMID:28256578

  9. Structural similarity between defense peptide from wheat and scorpion neurotoxin permits rational functional design.

    PubMed

    Berkut, Antonina A; Usmanova, Dinara R; Peigneur, Steve; Oparin, Peter B; Mineev, Konstantin S; Odintsova, Tatyana I; Tytgat, Jan; Arseniev, Alexander S; Grishin, Eugene V; Vassilevski, Alexander A

    2014-05-16

    In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 μm) to κ-hefutoxin 1 (IC50 ∼ 40 μm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structural Similarity between Defense Peptide from Wheat and Scorpion Neurotoxin Permits Rational Functional Design*

    PubMed Central

    Berkut, Antonina A.; Usmanova, Dinara R.; Peigneur, Steve; Oparin, Peter B.; Mineev, Konstantin S.; Odintsova, Tatyana I.; Tytgat, Jan; Arseniev, Alexander S.; Grishin, Eugene V.; Vassilevski, Alexander A.

    2014-01-01

    In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 μm) to κ-hefutoxin 1 (IC50 ∼ 40 μm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design. PMID:24671422

  11. Hairpin Ribozyme Genes Curtail Alcohol Drinking: from Rational Design to in vivo Effects in the Rat.

    PubMed

    Sapag, Amalia; Irrazábal, Thergiory; Lobos-González, Lorena; Muñoz-Brauning, Carlos R; Quintanilla, María Elena; Tampier, Lutske

    2016-07-12

    Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism.

  12. A mathematical model for the rational design of chimeric ligands in selective drug therapies.

    PubMed

    Doldán-Martelli, V; Guantes, R; Míguez, D G

    2013-02-13

    Chimeric drugs with selective potential toward specific cell types constitute one of the most promising forefronts of modern Pharmacology. We present a mathematical model to test and optimize these synthetic constructs, as an alternative to conventional empirical design. We take as a case study a chimeric construct composed of epidermal growth factor (EGF) linked to different mutants of interferon (IFN). Our model quantitatively reproduces all the experimental results, illustrating how chimeras using mutants of IFN with reduced affinity exhibit enhanced selectivity against cell overexpressing EGF receptor. We also investigate how chimeric selectivity can be improved based on the balance between affinity rates, receptor abundance, activity of ligand subunits, and linker length between subunits. The simplicity and generality of the model facilitate a straightforward application to other chimeric constructs, providing a quantitative systematic design and optimization of these selective drugs against certain cell-based diseases, such as Alzheimer's and cancer.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e26; doi:10.1038/psp.2013.2; advance online publication 13 February 2013.

  13. Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2.

    PubMed

    Won, Da Hye; Choi, Chang Hyuck; Chung, Jaehoon; Chung, Min Wook; Kim, Eun-Hee; Woo, Seong Ihl

    2015-09-21

    Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx /Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 (.-) intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h(-1)  cm(-2) ) at -1.36 VRHE without any considerable catalytic degradation over 18 h of operation.

  14. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen.

    PubMed

    Pallesen, Jesper; Wang, Nianshuang; Corbett, Kizzmekia S; Wrapp, Daniel; Kirchdoerfer, Robert N; Turner, Hannah L; Cottrell, Christopher A; Becker, Michelle M; Wang, Lingshu; Shi, Wei; Kong, Wing-Pui; Andres, Erica L; Kettenbach, Arminja N; Denison, Mark R; Chappell, James D; Graham, Barney S; Ward, Andrew B; McLellan, Jason S

    2017-08-29

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines.

  15. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen

    PubMed Central

    Pallesen, Jesper; Wang, Nianshuang; Corbett, Kizzmekia S.; Wrapp, Daniel; Kirchdoerfer, Robert N.; Turner, Hannah L.; Cottrell, Christopher A.; Becker, Michelle M.; Wang, Lingshu; Shi, Wei; Kong, Wing-Pui; Andres, Erica L.; Kettenbach, Arminja N.; Denison, Mark R.; Chappell, James D.; Graham, Barney S.; Ward, Andrew B.

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines. PMID:28807998

  16. Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts.

    PubMed

    Shin, Kihyun; Zhang, Liang; An, Hyesung; Ha, Hyunwoo; Yoo, Mi; Lee, Hyuck Mo; Henkelman, Graeme; Kim, Hyun You

    2017-04-20

    We use density functional theory calculations of Pt@Cu core@shell nanoparticles (NPs) to design bifunctional poison-free CO oxidation catalysts. By calculating the adsorption chemistry under CO oxidation conditions, we find that the Pt@Cu NPs will be active for CO oxidation with resistance to CO-poisoning. The CO oxidation pathway at the Pt-Cu interface is determined on the Pt NP covered with a full- and partial-shell of Cu. The exposed portion of the Pt core preferentially binds CO and the Cu shell binds O2, supplying oxygen for the reaction. The Pt-Cu interface provides CO-oxidation sites that are not poisoned by either CO or O2. Additional computational screening shows that this separation of reactant binding sites is possible for several other core@shell NPs. Our results indicate that the metal-metal interface within a single NP can be optimized for design of bifunctional catalytic systems with improved performance.

  17. Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery

    SciTech Connect

    Chen,J.; Wong,S.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; and Ojima, I.

    2008-11-14

    A novel single-walled carbon nanotube (SWNT)-based tumor-targeted drug delivery system (DDS) has been developed, which consists of a functionalized SWNT linked to tumor-targeting modules as well as prodrug modules. There are three key features of this nanoscale DDS: (a) use of functionalized SWNTs as a biocompatible platform for the delivery of therapeutic drugs or diagnostics, (b) conjugation of prodrug modules of an anticancer agent (taxoid with a cleavable linker) that is activated to its cytotoxic form inside the tumor cells upon internalization and in situ drug release, and (c) attachment of tumor-recognition modules (biotin and a spacer) to the nanotube surface. To prove the efficacy of this DDS, three fluorescent and fluorogenic molecular probes were designed, synthesized, characterized, and subjected to the analysis of the receptor-mediated endocytosis and drug release inside the cancer cells (L1210FR leukemia cell line) by means of confocal fluorescence microscopy. The specificity and cytotoxicity of the conjugate have also been assessed and compared with L1210 and human noncancerous cell lines. Then, it has unambiguously been proven that this tumor-targeting DDS works exactly as designed and shows high potency toward specific cancer cell lines, thereby forming a solid foundation for further development.

  18. Snake Filament Eruption

    NASA Image and Video Library

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  19. Design rules for rational control of polymer glass formation behavior and mechanical properties with small molecular additives

    NASA Astrophysics Data System (ADS)

    Mangalara, Jayachandra Hari; Simmons, David

    Small molecule additives have long been employed to tune polymers' glass formation, mechanical and transport properties. For example, plasticizers are commonly employed to suppress polymer Tg and soften the glassy state, while antiplasticizers, which stiffen the glassy state of a polymer while suppressing its Tg, are employed to enhance protein and tissue preservation in sugar glasses. Recent literature indicates that additives can have a wide range of possible effects, but all of these have not been clearly understood and well appreciated. Here we employ molecular dynamics simulations to establish design rules for the selection of small molecule additives with size, molecular stiffness, and interaction energy chosen to achieve targeted effects on polymer properties. We furthermore find that a given additive's effect on a polymer's Tg can be predicted from its Debye-Waller factor via a function previously found to describe nanoconfinement effects on the glass transition. These results emphasize the potential for a new generation of targeted molecular additives to contribute to more targeted rational design of polymers. We acknowledge the Keck Foundation and the Ohio Supercomputing Center for financial and computational support of this effort, respectively.

  20. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors.

    PubMed

    Kellici, Tahsin F; Tzakos, Andreas G; Mavromoustakos, Thomas

    2015-03-02

    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.

  1. Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing

    PubMed Central

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-01-01

    The rational design of improved electrode–electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ∼0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (∼0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage. PMID:27097686

  2. Rational design of efficient electrode-electrolyte interfaces for solid-state energy storage using ion soft landing

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-04-01

    The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ~0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (~0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.

  3. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.

    PubMed

    Aslan, Aşkın Sevinç; Birmingham, William R; Karagüler, Nevin Gül; Turner, Nicholas J; Binay, Barış

    2016-06-01

    Chiral α-hydroxy acids (AHAs) are rapidly becoming important synthetic building blocks, in particular for the production of pharmaceuticals and other fine chemicals. Chiral compounds of a variety of functionalities are now often derived using enzymes, and L-lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (bsLDH) has the potential to be employed for the industrial synthesis of chiral α-hydroxy acids. Despite the thorough characterization of this enzyme, generation of variants with high activity on non-natural substrates has remained difficult and therefore limits the use of bsLDH in industry. Here, we present the engineering of bsLDH using semi-rational design as a method of focusing screening in a small and smart library for novel biocatalysts. In this study, six mutant libraries were designed in an effort to expand the substrate range of bsLDH. The eight variants identified as having enhanced activity toward the selected α-keto acids belonged to the same library, which targeted two positions simultaneously. These new variants now may be useful biocatalysts for chiral synthesis of α-hydroxy acids.

  4. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine.

    PubMed

    McComb, Ryan C; Martchenko, Mikhail

    2016-01-02

    Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin.

  5. Rational design of a low-affinity peptide for the detection of cystatin C in a fast homogeneous immunoassay.

    PubMed

    Dobslaff, Kristin; Zscharnack, Kristin; Kreisig, Thomas; Zuchner, Thole

    2016-02-01

    Immunoassays play an essential role in current research and diagnostics resulting in a variety of detection principles. Thereby, homogeneous assays are often used for a fast signal response as demanded for example in point-of-care diagnostics. These systems often rely on a competitive assay design where the sample analyte and the corresponding dye-labeled substance are competing for binding sites on an antibody present in limited amounts. Due to the similar affinities of the antibody towards the sample analyte and the competitor, both sensitivity and assay time are limited. As a consequence, a competitor with a slightly reduced affinity towards the antibody can potentially overcome these drawbacks. Here, we present the rational design of a low-affinity peptide (donor peptide) as a specific analyte competitor for a FRET-based homogeneous immunoassay for the analysis of the protein cystatin C. Thereby, the strategy of peptide-induced antibody generation was combined with the selective variation of the immunization sequence in order to achieve a lower affinity towards the antibody. We could show that shortened donor peptides improved the resulting quenching efficiency in the immunoassay. In addition, the substitution of small hydrophobic amino acids by those with a higher steric demand appeared to be the most promising strategy providing a fast assay response for cystatin C of only 90 s.

  6. Rational approach for design and evaluation of anti-aggregation agents for protein stabilization: A case study of trehalose phenylalaninate.

    PubMed

    Kale, Smita S; Akamanchi, Krishnacharya G

    2017-03-30

    The present work introduces new anti-aggregation agent (AAA) derived through our new approach for design and evaluation of anti-aggregation agent as a multi-purpose excipient to combat protein aggregation. Therapeutic proteins undergo aggregation due to even minor changes in environmental conditions like temperature, pH, shear and stress. Excipients play a vital role in prevention of aggregation. To stabilize a protein formulation different classes of excipients are used in combination after carefully selecting through laborious and time consuming trial and error experiments. To resolve these concerns, we have developed a rational approach based on molecular docking analysis and have designed, synthesized AAAs, and validated the approach by experimental studies. Trehalose phenylalaninate (TPA) has been synthesized and evaluated for stabilization of Bovine serum albumin (BSA). TPA was found to be non-toxic with a LC50 of >80μg/ml. BSA solutions with and without TPA were subjected to thermal and agitation stress and aggregation was monitored using sophisticated analytical techniques. The helical structure of BSA was completely retained in stressed samples at 0.1% concentration of TPA. SEC-HPLC clearly demonstrated the absence of aggregates in presence of TPA. Although aggregation was not seen in fluorescence spectra but quenching due to TPA was evident. Moreover, molecular dynamics study on BSA-TPA complex showed lower RMSD.

  7. Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing

    DOE PAGES

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; ...

    2016-04-21

    Here, the rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly-dispersed discrete redox-active cluster anions (50 ng of pure ~0.7 nm size molybdenum polyoxometalate anions (POM) anions on 25 mg (≈ 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft-landingmore » (SL). For the first time, electron microscopy provides atomically-resolved images of individual POM species directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.« less

  8. Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing

    SciTech Connect

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-04-21

    Here, the rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly-dispersed discrete redox-active cluster anions (50 ng of pure ~0.7 nm size molybdenum polyoxometalate anions (POM) anions on 25 mg (≈ 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft-landing (SL). For the first time, electron microscopy provides atomically-resolved images of individual POM species directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.

  9. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents

    NASA Astrophysics Data System (ADS)

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological

  10. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents.

    PubMed

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔG(bind, pred)) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔG(bind, expt) (calculated from the Kd value) are consistent with the predicted value of ΔG(bind, pred) calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further

  11. Synthetic mimetics of actin-binding macrolides: rational design of actin-targeted drugs.

    PubMed

    Perrins, Richard D; Cecere, Giuseppe; Paterson, Ian; Marriott, Gerard

    2008-03-01

    Actin polymerization and dynamics are involved in a wide range of cellular processes such as cell division and migration of tumor cells. At sites of cell lysis, such as those occurring during a stroke or inflammatory lung diseases, actin is released into the serum where it polymerizes, leading to problems with clot dissolution and sputum viscosity. Therefore, drugs that target these actin-mediated processes may provide one mechanism to treat these conditions. Marine-organism-derived macrolides, such as reidispongiolide A, can bind to, sever, and inhibit polymerization of actin. Our studies show that the function of these complex macrolides resides in their tail region, whereas the head group stabilizes the actin-drug complex. Synthetic compounds derived from this tail region could therefore be used as a mimetic of the natural product, providing a range of designer compounds to treat actin-associated diseases or as probes to study actin polymerization.

  12. Biobased building blocks for the rational design of renewable block polymers.

    PubMed

    Holmberg, Angela L; Reno, Kaleigh H; Wool, Richard P; Epps, Thomas H

    2014-10-14

    Block polymers (BPs) derived from biomass (biobased) are necessary components of a sustainable future that relies minimally on petroleum-based plastics for applications ranging from thermoplastic elastomers and pressure-sensitive adhesives to blend compatibilizers. To facilitate their adoption, renewable BPs must be affordable, durable, processable, versatile, and reasonably benign. Their desirability further depends on the relative sustainability of the renewable resources and the methods employed in the monomer and polymer syntheses. Various strategies allow these BPs' characteristics to be tuned and enhanced for commercial applications, and many of these techniques also can be applied to manipulate the wide-ranging mechanical and thermal properties of biobased and self-assembling block polymers. From feedstock to application, this review article highlights promising renewable BPs, plus their material and assembly properties, in support of de novo design strategies that could revolutionize material sustainability.

  13. Quantum Chemical-Based Protocol for the Rational Design of Covalent Inhibitors.

    PubMed

    Schirmeister, Tanja; Kesselring, Jochen; Jung, Sascha; Schneider, Thomas H; Weickert, Anastasia; Becker, Johannes; Lee, Wook; Bamberger, Denise; Wich, Peter R; Distler, Ute; Tenzer, Stefan; Johé, Patrick; Hellmich, Ute A; Engels, Bernd

    2016-07-13

    We propose a structure-based protocol for the development of customized covalent inhibitors. Starting from a known inhibitor, in the first and second steps appropriate substituents of the warhead are selected on the basis of quantum mechanical (QM) computations and hybrid approaches combining QM with molecular mechanics (QM/MM). In the third step the recognition unit is optimized using docking approaches for the noncovalent complex. These predictions are finally verified by QM/MM or molecular dynamic simulations. The applicability of our approach is successfully demonstrated by the design of reversible covalent vinylsulfone-based inhibitors for rhodesain. The examples show that our approach is sufficiently accurate to identify compounds with the desired properties but also to exclude nonpromising ones.

  14. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    PubMed

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  15. Rational Design of Glycomimetic Compounds Targeting the Saccharomyces cerevisiae Transglycosylase Gas2.

    PubMed

    Delso, Ignacio; Valero-González, Jessika; Marca, Eduardo; Tejero, Tomás; Hurtado-Guerrero, Ramón; Merino, Pedro

    2016-02-01

    The transglycosylase Saccharomyces cerevisiae Gas2 (ScGas2) belongs to a large family of enzymes that are key players in yeast cell wall remodeling. Despite its biologic importance, no studies on the synthesis of substrate-based compounds as potential inhibitors have been reported. We have synthesized a series of docking-guided glycomimetics that were evaluated by fluorescence spectroscopy and saturation-transfer difference (STD) NMR experiments, revealing that a minimum of three glucose units linked via a β-(1,3) linkage are required for achieving molecular recognition at the binding donor site. The binding mode of our compounds is further supported by STD-NMR experiments using the active site-mutants Y107Q and Y244Q. Our results are important for both understanding of ScGas2-substrate interactions and setting up the basis for future design of glycomimetics as new antifungal agents. © 2015 John Wiley & Sons A/S.

  16. The rational design of a peptide-based hydrogel responsive to H2S.

    PubMed

    Peltier, Raoul; Chen, Ganchao; Lei, Haipeng; Zhang, Mei; Gao, Liqian; Lee, Su Seong; Wang, Zuankai; Sun, Hongyan

    2015-12-18

    The development of hydrogels that are responsive to external stimuli in a well-controlled manner is important for numerous biomedical applications. Herein we reported the first example of a hydrogel responsive to hydrogen sulphide (H2S). H2S is an important gasotransmitter whose deregulation has been associated with a number of pathological conditions. Our hydrogel design is based on the functionalization of an ultrashort hydrogelating peptide sequence with an azidobenzyl moiety, which was reported to react with H2S selectively under physiological conditions. The resulting peptide was able to produce hydrogels at a concentration as low as 0.1 wt%. It could then be fully degraded in the presence of excess H2S. We envision that the novel hydrogel developed in this study may provide useful tools for biomedical research.

  17. Rational design of fluorescent membrane probes for apoptosis based on 3-hydroxyflavone

    NASA Astrophysics Data System (ADS)

    Darwich, Zeinab; Kucherak, Oleksandr A.; Kreder, Rémy; Richert, Ludovic; Vauchelles, Romain; Mély, Yves; Klymchenko, Andrey S.

    2013-06-01

    Environment-sensitive probes constitute powerful tools for monitoring changes in the physico-chemical properties of cell plasma membranes. Among these probes, 3-hydroxyflavone probes are of great interest due to their dual emission and ratiometric response. Here, three probes derived from the parent F2N12S were designed, characterized and applied to monitor the membrane changes occurring during apoptosis. These three probes were designed to orient the dye vertically in the membrane. They differ by the length of their alkyl chains (from 4 to 8 carbons), which were included to optimize their affinity to the lipid membranes. Among these three probes, the one with medium chain length (hexyl) showed the best affinity to model and cell membranes, while the one with the longest alkyl chains (octyl) did not efficiently stain the membranes, probably due to aggregation. The new probes were found to be more sensitive than F2N12S to both the lipid phase and surface charge in lipid vesicles and to loss of lipid order in cell plasma membranes after cholesterol extraction. The one with the shortest (butyl) chains was found to be the most sensitive to apoptosis, while the one with medium-length (hexyl) chains was the brightest. Interestingly, apoptosis induced by different agents led to similar spectroscopic effects to those produced by the loss of lipid order and change in the surface charge, confirming that apoptosis decreases the lipid order and increases the negative surface charge in the outer leaflet of cell membranes. In conclusion, these studies report the relationship between the probe structures and their sensitivity to lipid order, surface charge and apoptosis and propose new probes for membrane research.

  18. Rational design of peptide vaccines for autoimmune disease: harnessing molecular recognition to fix a broken network.

    PubMed

    Weathington, Nathaniel M; Blalock, J Edwin

    2003-02-01

    Autoreactive T-cells and antibodies are found at low levels in normal individuals and are thought to be kept at bay by regulatory T-cells and a network of idiotypic and anti-idiotype-bearing antigen receptors on lymphocytes as well as idiotypic anti-idiotypic antibodies. Disruption of this network by genetic, environmental and unknown factors is thought to result in autoimmune diseases. An obvious, ideal and specific therapy for such disorders would be to harness this regulatory network to re-establish immunologic homeostasis. In practice, however, this is not an easy task as most autoimmune diseases involve polyclonal responses to self antigen. Thus, we are faced with the conundrum of not knowing which autoreactive idiotype-bearing antibody or antigen receptor(s) to target in order to restore or induce network regulatory function. The thesis of this review is that understanding a fundamental property governing peptide/protein shape can be used in part to circumvent the problems of self reactivity and polyclonality in autoimmune disorders. More specifically, an algorithm has been developed to design peptide vaccines with shapes that are thought to be complementary in contour to self epitopes which seem to be the focus of autoimmunity. In theory, such complementary shapes should be engendered in certain autoreactive antigen receptors--these complementary constructs consequently represent receptor mimetics. By targeting an immune response against such mimetics, one generates a polyclonal anti-idiotype response that matches the complexity of the autoimmune response itself. This article will describe the algorithm for vaccine design, summarize the in vitro and in vivo evidence for its efficacy and discuss possible therapeutic utility in human autoimmune diseases.

  19. Rational design of potent and selective EGFR tyrosine kinase inhibitors as anticancer agents.

    PubMed

    Ghosh, S; Liu, X P; Zheng, Y; Uckun, F M

    2001-08-01

    Increasing knowledge of the structure and function of the Epidermal Growth Factor Receptor (EGFR) subfamily of tyrosine kinases, and of their role in the initiation and progression of various cancers has led to the search for inhibitors of signaling molecules that may prove to be important in cancer therapy. The complex nature of EGFR biology allows for potential opportunities for EGFR inhibitors in a number of areas of cancer therapy, including proliferative, angiogenic, invasive, and metastatic aspects. Different approaches have been used to target either the extracellular ligand-binding domain of the EGFR or the intracellular tyrosine kinase region that results in interference with its signaling pathways that modulate cancer-promoting responses. Examples of these include a number of monoclonal antibodies, immunotoxins and ligand-binding cytotoxic agents that target the extracellular ligand binding region of EGFR, and small molecule inhibitors that target the intracellular kinase domain and act by interfering with ATP binding to the receptor. During the past 3 years, significant progress has been made towards the identification of new structural classes of small molecule inhibitors that show high potency and specificity towards EGFR. The search for new small molecules that inhibit kinases has included traditional approaches like the testing of natural products, random screening of chemical libraries, the use of classical structure-activity-relationship studies, and the incorporation of structure-based drug design and combinatorial chemistry techniques. There has been a significant improvement in the development of selective EGFR inhibitors with the use of a structure-based design approach employing a homology model of the EGFR kinase domain. Molecular modeling procedures have been used to generate novel molecules that are complementary in shape and electrostatics to the EGFR kinase domain topography. This review focuses on some examples of the successful use of

  20. Rational approaches, design strategies, structure activity relationship and mechanistic insights for esterase inhibitors.

    PubMed

    Singh, Harbinder; Singh, Jatinder Vir; Kaur, Navdeep; Sanduja, Mohit; Singh, Gurpreet; Bedi, Preet Mohinder Singh; Sharma, Sahil

    2017-08-07

    Esterase is an enzyme that splits esters into an acid and alcohol. Varieties of esterases are present in human body to control diverse set of cellular processes and execute their specific functions. It can be seen that any increase in metabolites produced by these enzymes lead to severe pathological conditions like Alzheimer disease, hypercholesterolemia etc. Numerous esterase inhibitors have been developed and reported by the researchers around the globe, but not systematically summarized yet. Therefore, this assemblage focuses on various reported esterase inhibitors during recent past with detailed account of the design strategies employed for the synthesis of novel drug entities. The article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of inhibitors as esterase inhibition. The interactions with the amino acid residues responsible for esterase inhibitory potential of molecules have also been discussed. This compilation will be of great interest for the researchers working in the area of esterase inhibitors. Rivastigmine derivatives (44-53), tacrine-piperazine hybrid (136), coumarin-benzofuran derivative (169), coumarin-benzylpiperidine hybrid (181) and phenylcinnamide derivative (220) found to be exerting cholinesterase inhibition with IC50 below the range of 1 nM. Whereas, flavone (258) has displayed anticholesterol esterase potential below 1 nM. Benzil like derivative, (273) has also been designed and reported to possess remarkable inhibitory potential (IC50 < 1 nM) against carboxylesterase. These representative results place them in forefront as potential future drug candidates to further develop potent and specific esterase inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. The role of flexibility in the rational design of modularly assembled ligands targeting the RNAs that cause the myotonic dystrophies.

    PubMed

    Disney, Matthew D; Lee, Melissa M; Pushechnikov, Alexei; Childs-Disney, Jessica L

    2010-02-15

    Modularly assembled ligands were designed to target the RNAs that cause two currently untreatable neuromuscular disorders, myotonic dystrophy types 1 (DM1) and 2 (DM2). DM1 is caused by an expanded repeating sequence of CUG, and DM2 is caused by expanded CCUG repeats. Both are present in noncoding regions and fold into hairpins with either repeating 1x1 nucleotide UU (DM1) or 2x2 nucleotide 5'-CU/3'-UC (DM2) internal loops separated by two GC pairs. The repeats are toxic because they sequester the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Rational design of ligands targeting these RNAs was enabled by a database of RNA motif-ligand partners compiled by using two-dimensional combinatorial screening (2DCS). One 2DCS study found that the 6''-azido-kanamycin A module binds internal loops similar to those found in DM1 and DM2. In order to further enhance affinity and specificity, the ligand was assembled on a peptoid backbone to precisely control valency and the distance between ligand modules. Designed compounds are more potent and specific binders to the toxic RNAs than MBNL1 and inhibit the formation of the RNA-protein complexes with nanomolar IC(50) values. This study shows that three important factors govern potent inhibition: 1) the surface area sequestered by the assembled ligands; 2) the spacing between ligand modules since a longer distance is required to target DM2 RNAs than DM1 RNAs; and 3) flexibility in the modular assembly scaffold used to display the RNA-binding module. These results have impacts on the general design of assembled ligands targeting RNAs present in genomic sequence.

  2. Rational Catalyst Design of Titanium-Silica Materials Aided by Site-Specific Titration Tools

    NASA Astrophysics Data System (ADS)

    Eaton, Todd Robert

    between particle and crystal size, as obtained from XRD. In the course of establishing these relationships we've gained the knowledge of how to control TiO x structure, which enables the design of new and better catalysts. Understanding the synthesis-structure-function relationships allow for the design of a tandem photo/thermocatalytic reaction system for producing and consuming H2O2. By partially overcoating a TiO 2 photocatalyst with a ˜2 nm silica layer we observe a 56-fold rate improvement compared to bare-TiO2 for H2O2 synthesis from the proton-assisted reduction of O2. Addition of metal-SiO2 thermocatalysts (metal=Ti, Nb, or Ta) with sites needed for H2O2 activation creates a tandem system wherein the H2O2 produced in situ is utilized for alkene epoxidation. Compared to a thermocatalytic-only system, the tandem system accelerates epoxidation for cis-cyclooctene(11x faster), styrene(20x) and 1-octene(30x). This approach demonstrates a means for epoxidation with O2 that avoids H2O2 purification and transport, simplifies the total process, provides new opportunities for control by independent H2O2 production and consumption in the same reactor, and enhances rates relative to thermocatalytic-only epoxidation by intimately coupling H2O2 generation and consumption. Critically, establishment of titanium-silica synthesis-structure-function relationships enables the design of new catalysts and systems that are less energy- and material-intensive, leading towards more sustainable chemistry.

  3. Electromagnetic modelling and rational design of GLAD thin films for optical applications

    NASA Astrophysics Data System (ADS)

    Leontyev, Viktor A.

    This thesis presents a theoretical study of columnar films, fabricated by glancing angle deposition (GLAD), as photonic bandgap structures and metamaterials with predictable dielectric and magnetic response. Glancing angle deposition (GLAD) employs extremely oblique vapour incidence and computerized substrate motion to produce nanocolumns with a variety of shapes. Columns grow in random or periodic arrays and may be periodic in one, two, or three dimensions. The films' optical properties were studied using finite-difference time-domain and finite-difference frequency-domain methods, as well as effective medium theories, with support from experimental research. A large part of the thesis is devoted to column arrays with subwavelength intercolumnar distance and periodically modulated column shape. Among them, s-shaped columns were designed as polarizers for linearly polarized light. Simulations have shown a competitive effect from two structural anisotropy sources, causing a band gap suppression for one of two linear polarizations, and high polarizing ability. Simulations were compared to the measurements with a very good agreement in spectral response. Subwavelength column arrays were further explored as anisotropic interference mirrors with omnidirectional reflection bands. Index graded vertical post films were designed, having up to four times wider reflection bands than in the isotropic analogs. Band gap properties of 3D periodic GLAD columns were studied on the example of square-spiral photonic crystals. A significant influence of column cross-section was shown, that currently prevents fabrication of square spirals with a 3D band gap in the visible range. Inverted square-spiral films have better performance, which is further improved by material redistribution along the spiral. Lastly, this work studies the effective dielectric response of porous columnar films with metal particles. Characteristic matrix formalism was combined with finite-difference modelling to

  4. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    PubMed

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that

  5. Rational design of multifunctional micelles against doxorubicin-sensitive and doxorubicin-resistant MCF-7 human breast cancer cells

    PubMed Central

    Hong, Wei; Shi, Hong; Qiao, Mingxi; Gao, Xiang; Yang, Jie; Tian, Chunlian; Zhang, Dexian; Niu, Shengli; Liu, Mingchun

    2017-01-01

    Even though a tremendous number of multifunctional nanocarriers have been developed to tackle heterogeneous cancer cells, little attention has been paid to elucidate how to rationally design a multifunctional nanocarrier. In this study, three individual functions (active targeting, stimuli-triggered release and endo-lysosomal escape) were evaluated in doxorubicin (DOX)-sensitive MCF-7 cells and DOX-resistant MCF-7/ADR cells by constructing four kinds of micelles with active-targeting (AT-M), passive targeting, pH-triggered release (pHT-M) and endo-lysosomal escape (endoE-M) function, respectively. AT-M demonstrated the strongest cytotoxicity against MCF-7 cells and the highest cellular uptake of DOX due to the folate-mediated endocytosis. However, AT-M failed to exhibit the best efficacy against MCF-7/ADR cells, while endoE-M exhibited the strongest cytotoxicity against MCF-7/ADR cells and the highest cellular uptake of DOX due to the lowest elimination of DOX from the cells. This was attributed to the carrier-facilitated endo-lysosomal escape of DOX, which avoided exocytosis by lysosome secretion, resulting in an effective accumulation of DOX in the cytoplasm. The enhanced elimination of DOX from the MCF-7/ADR cells also accounted for the remarkable decrease in cytotoxicity against the cells of AT-M. Three micelles were further evaluated with MCF-7 cells and MCF-7/ADR-resistant cells xenografted mice model. In accordance with the in vitro results, AT-M and endoE-M demonstrated the strongest inhibition on the MCF-7 and MCF-7/ADR xenografted tumor, respectively. Active targeting and active targeting in combination with endo-lysosomal escape have been demonstrated to be the primary function for a nanocarrier against doxorubicin-sensitive and doxorubicin-resistant MCF-7 cells, respectively. These results indicate that the rational design of multifunctional nanocarriers for cancer therapy needs to consider the heterogeneous cancer cells and the primary function needs

  6. Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters

    NASA Astrophysics Data System (ADS)

    Zhang, Qingrui; Du, Qing; Jiao, Tifeng; Zhang, Zhaoxiang; Wang, Sufeng; Sun, Qina; Gao, Faming

    2013-08-01

    Fluoride pollution in waters has engulfed worldwide regions and an excess of fluoride intake always causes skeletal fluorosis. Herein, a novel hybrid nanomaterial ZrP-MPN was fabricated for fluoride retention by encapsulating nano-ZrP onto macroporous polystyrene materials modified with quaternary ammonium groups. The as-obtained materials exhibited favorable removal of fluoride ions from aqueous solution in presence of common anions (SO42-/NO3-/Cl-) at high contents. Moreover outstanding sorption properties were also detected by involving series of commercial adsorbents (AA/magnetite/GFH/manganese sands) as references. Such satisfactory performances might be ascribed to the structural design of nanocomposite. (1) the CH2N+(CH3)3Cl groups enhances sorption diffusion and preconcentration in sorbent phase theoretically based on Donnan membrane principle; (2) the embedded ZrP nanoparticles also devotes to the efficient adsorption capacities due to its size-dependent specific properties. Additionally, the exhausted ZrP-MPN could be regenerated readily by alkaline solution. Thus, ZrP-MPN was a promising material for fluoride retention in waters.

  7. Rational design of a fusion partner for membrane protein expression in E. coli

    PubMed Central

    Luo, Jianying; Choulet, Julie; Samuelson, James C

    2009-01-01

    We have designed a novel protein fusion partner (P8CBD) to utilize the co-translational SRP pathway in order to target heterologous proteins to the E. coli inner membrane. SRP-dependence was demonstrated by analyzing the membrane translocation of P8CBD-PhoA fusion proteins in wt and SRP-ffh77 mutant cells. We also demonstrate that the P8CBD N-terminal fusion partner promotes over-expression of a Thermotoga maritima polytopic membrane protein by replacement of the native signal anchor sequence. Furthermore, the yeast mitochondrial inner membrane protein Oxa1p was expressed as a P8CBD fusion and shown to function within the E. coli inner membrane. In this example, the mitochondrial targeting peptide was replaced by P8CBD. Several practical features were incorporated into the P8CBD expression system to aid in protein detection, purification, and optional in vitro processing by enterokinase. The basis of membrane protein over-expression toxicity is discussed and solutions to this problem are presented. We anticipate that this optimized expression system will aid in the isolation and study of various recombinant forms of membrane-associated protein. PMID:19530231

  8. Rational design and validation of a Tip60 histone acetyltransferase inhibitor

    NASA Astrophysics Data System (ADS)

    Gao, Chunxia; Bourke, Emer; Scobie, Martin; Famme, Melina Arcos; Koolmeister, Tobias; Helleday, Thomas; Eriksson, Leif A.; Lowndes, Noel F.; Brown, James A. L.

    2014-06-01

    Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer.

  9. Rational design of dendrimer/lipid nanoassemblies in drug delivery for cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Sun, Qihang

    Nanocarriers can minimize the side effects and improve therapeutic efficacy of anticancer drugs. Although some success has been achieved via active or passive drug delivery to tumor cells, the known nanocarriers are far from satisfying therapeutic efficacy expectations. This is because they usually fail in one of the four crucial requirements, that is, to retain drug in blood circulation but release it reliably in tumor cells and to be stealthy in transport in circulation and tumor tissue but sticky upon arrival at the tumor cell. Therefore, the goal of this work is to fabricate nanoassemblies of dendrimers and lipids to address all these challenges. Particularly, nanoassemblies designed and prepared in this work are illustrated to improve the tumor tissue penetration. Examples of dendrimers synthesized in this work are water-insoluble, pH-dependent water-insoluble and water-soluble biodegradable polyester dendrimers. These dendrimers are shown to be encapsulated by commonly used fusogenic and long-circulating lipids to form reliable nanoassemblies. The dendrimer/lipid nanocarriers are used to demonstrate a cascade drug delivery. They are expected to be stable in circulation, due to their appropriately large size, but to release the drug-loaded dendrimers in tumor tissue. The released dendrimers carrying drugs are much smaller and hence expected to have a much deeper penetration throughout the tumor tissue.

  10. Rationally designed coiled-coil DNA looping peptides control DNA topology

    PubMed Central

    Gowetski, Daniel B.; Kodis, Erin J.; Kahn, Jason D.

    2013-01-01

    Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative orientations of DNA bound at each end. Electrophoretic mobility shift assays verified formation of a sandwich complex containing two DNAs and one peptide. Ring closure experiments demonstrated that looping requires a DNA-binding site separation of 310 bp, much longer than the length needed for natural loops. Systematic variation of binding site separation over a series of 10 constructs that cyclize to form 862-bp minicircles yielded positive and negative topoisomers because of two possible writhed geometries. Periodic variation in topoisomer abundance could be modeled using canonical DNA persistence length and torsional modulus values. The results confirm that the LZD peptides are stiffer than natural DNA looping protei