46 CFR 61.40-3 - Design verification testing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Design verification testing. 61.40-3 Section 61.40-3... INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design verification testing. (a) Tests must verify that automated vital systems are designed, constructed, and operate in...
46 CFR 61.40-3 - Design verification testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design verification testing. (a) Tests must verify that automated vital systems are designed, constructed, and operate in...
NASA Technical Reports Server (NTRS)
Landano, M. R.; Easter, R. W.
1984-01-01
Aspects of Space Station automated systems testing and verification are discussed, taking into account several program requirements. It is found that these requirements lead to a number of issues of uncertainties which require study and resolution during the Space Station definition phase. Most, if not all, of the considered uncertainties have implications for the overall testing and verification strategy adopted by the Space Station Program. A description is given of the Galileo Orbiter fault protection design/verification approach. Attention is given to a mission description, an Orbiter description, the design approach and process, the fault protection design verification approach/process, and problems of 'stress' testing.
Dynamic testing for shuttle design verification
NASA Technical Reports Server (NTRS)
Green, C. E.; Leadbetter, S. A.; Rheinfurth, M. H.
1972-01-01
Space shuttle design verification requires dynamic data from full scale structural component and assembly tests. Wind tunnel and other scaled model tests are also required early in the development program to support the analytical models used in design verification. Presented is a design philosophy based on mathematical modeling of the structural system strongly supported by a comprehensive test program; some of the types of required tests are outlined.
Design for Verification: Enabling Verification of High Dependability Software-Intensive Systems
NASA Technical Reports Server (NTRS)
Mehlitz, Peter C.; Penix, John; Markosian, Lawrence Z.; Koga, Dennis (Technical Monitor)
2003-01-01
Strategies to achieve confidence that high-dependability applications are correctly implemented include testing and automated verification. Testing deals mainly with a limited number of expected execution paths. Verification usually attempts to deal with a larger number of possible execution paths. While the impact of architecture design on testing is well known, its impact on most verification methods is not as well understood. The Design for Verification approach considers verification from the application development perspective, in which system architecture is designed explicitly according to the application's key properties. The D4V-hypothesis is that the same general architecture and design principles that lead to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the constraints on verification tools, such as the production of hand-crafted models and the limits on dynamic and static analysis caused by state space explosion.
Design Authority in the Test Programme Definition: The Alenia Spazio Experience
NASA Astrophysics Data System (ADS)
Messidoro, P.; Sacchi, E.; Beruto, E.; Fleming, P.; Marucchi Chierro, P.-P.
2004-08-01
In addition, being the Verification and Test Programme a significant part of the spacecraft development life cycle in terms of cost and time, very often the subject of the mentioned discussion has the objective to optimize the verification campaign by possible deletion or limitation of some testing activities. The increased market pressure to reduce the project's schedule and cost is originating a dialecting process inside the project teams, involving program management and design authorities, in order to optimize the verification and testing programme. The paper introduces the Alenia Spazio experience in this context, coming from the real project life on different products and missions (science, TLC, EO, manned, transportation, military, commercial, recurrent and one-of-a-kind). Usually the applicable verification and testing standards (e.g. ECSS-E-10 part 2 "Verification" and ECSS-E-10 part 3 "Testing" [1]) are tailored to the specific project on the basis of its peculiar mission constraints. The Model Philosophy and the associated verification and test programme are defined following an iterative process which suitably combines several aspects (including for examples test requirements and facilities) as shown in Fig. 1 (from ECSS-E-10). The considered cases are mainly oriented to the thermal and mechanical verification, where the benefits of possible test programme optimizations are more significant. Considering the thermal qualification and acceptance testing (i.e. Thermal Balance and Thermal Vacuum) the lessons learned originated by the development of several satellites are presented together with the corresponding recommended approaches. In particular the cases are indicated in which a proper Thermal Balance Test is mandatory and others, in presence of more recurrent design, where a qualification by analysis could be envisaged. The importance of a proper Thermal Vacuum exposure for workmanship verification is also highlighted. Similar considerations are summarized for the mechanical testing with particular emphasis on the importance of Modal Survey, Static and Sine Vibration Tests in the qualification stage in combination with the effectiveness of Vibro-Acoustic Test in acceptance. The apparent relative importance of the Sine Vibration Test for workmanship verification in specific circumstances is also highlighted. Fig. 1. Model philosophy, Verification and Test Programme definition The verification of the project requirements is planned through a combination of suitable verification methods (in particular Analysis and Test) at the different verification levels (from System down to Equipment), in the proper verification stages (e.g. in Qualification and Acceptance).
WRAP-RIB antenna technology development
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Garcia, N. F.; Iwamoto, H.
1985-01-01
The wrap-rib deployable antenna concept development is based on a combination of hardware development and testing along with extensive supporting analysis. The proof-of-concept hardware models are large in size so they will address the same basic problems associated with the design fabrication, assembly and test as the full-scale systems which were selected to be 100 meters at the beginning of the program. The hardware evaluation program consists of functional performance tests, design verification tests and analytical model verification tests. Functional testing consists of kinematic deployment, mesh management and verification of mechanical packaging efficiencies. Design verification consists of rib contour precision measurement, rib cross-section variation evaluation, rib materials characterizations and manufacturing imperfections assessment. Analytical model verification and refinement include mesh stiffness measurement, rib static and dynamic testing, mass measurement, and rib cross-section characterization. This concept was considered for a number of potential applications that include mobile communications, VLBI, and aircraft surveillance. In fact, baseline system configurations were developed by JPL, using the appropriate wrap-rib antenna, for all three classes of applications.
NASA Technical Reports Server (NTRS)
1989-01-01
The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.
NASA Technical Reports Server (NTRS)
1986-01-01
Activities that will be conducted in support of the development and verification of the Block 2 Solid Rocket Motor (SRM) are described. Development includes design, fabrication, processing, and testing activities in which the results are fed back into the project. Verification includes analytical and test activities which demonstrate SRM component/subassembly/assembly capability to perform its intended function. The management organization responsible for formulating and implementing the verification program is introduced. It also identifies the controls which will monitor and track the verification program. Integral with the design and certification of the SRM are other pieces of equipment used in transportation, handling, and testing which influence the reliability and maintainability of the SRM configuration. The certification of this equipment is also discussed.
NASA Technical Reports Server (NTRS)
Windley, P. J.
1991-01-01
In this paper we explore the specification and verification of VLSI designs. The paper focuses on abstract specification and verification of functionality using mathematical logic as opposed to low-level boolean equivalence verification such as that done using BDD's and Model Checking. Specification and verification, sometimes called formal methods, is one tool for increasing computer dependability in the face of an exponentially increasing testing effort.
Ada(R) Test and Verification System (ATVS)
NASA Technical Reports Server (NTRS)
Strelich, Tom
1986-01-01
The Ada Test and Verification System (ATVS) functional description and high level design are completed and summarized. The ATVS will provide a comprehensive set of test and verification capabilities specifically addressing the features of the Ada language, support for embedded system development, distributed environments, and advanced user interface capabilities. Its design emphasis was on effective software development environment integration and flexibility to ensure its long-term use in the Ada software development community.
Simulation environment based on the Universal Verification Methodology
NASA Astrophysics Data System (ADS)
Fiergolski, A.
2017-01-01
Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC design; (2) the C3PD 180 nm HV-CMOS active sensor ASIC design; (3) the FPGA-based DAQ system of the CLICpix chip. This paper, based on the experience from the above projects, introduces briefly UVM and presents a set of tips and advices applicable at different stages of the verification process-cycle.
HDL to verification logic translator
NASA Technical Reports Server (NTRS)
Gambles, J. W.; Windley, P. J.
1992-01-01
The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.
Joint ETV/NOWATECH test plan for the Sorbisense GSW40 passive sampler
The joint test plan is the implementation of a test design developed for verification of the performance of an environmental technology following the NOWATECH ETV method. The verification is a joint verification with the US EPA ETV scheme and the Advanced Monitoring Systems Cent...
JPL control/structure interaction test bed real-time control computer architecture
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1989-01-01
The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.
CD volume design and verification
NASA Technical Reports Server (NTRS)
Li, Y. P.; Hughes, J. S.
1993-01-01
In this paper, we describe a prototype for CD-ROM volume design and verification. This prototype allows users to create their own model of CD volumes by modifying a prototypical model. Rule-based verification of the test volumes can then be performed later on against the volume definition. This working prototype has proven the concept of model-driven rule-based design and verification for large quantity of data. The model defined for the CD-ROM volumes becomes a data model as well as an executable specification.
Design and Verification of Critical Pressurised Windows for Manned Spaceflight
NASA Astrophysics Data System (ADS)
Lamoure, Richard; Busto, Lara; Novo, Francisco; Sinnema, Gerben; Leal, Mendes M.
2014-06-01
The Window Design for Manned Spaceflight (WDMS) project was tasked with establishing the state-of-art and explore possible improvements to the current structural integrity verification and fracture control methodologies for manned spacecraft windows.A critical review of the state-of-art in spacecraft window design, materials and verification practice was conducted. Shortcomings of the methodology in terms of analysis, inspection and testing were identified. Schemes for improving verification practices and reducing conservatism whilst maintaining the required safety levels were then proposed.An experimental materials characterisation programme was defined and carried out with the support of the 'Glass and Façade Technology Research Group', at the University of Cambridge. Results of the sample testing campaign were analysed, post-processed and subsequently applied to the design of a breadboard window demonstrator.Two Fused Silica glass window panes were procured and subjected to dedicated analyses, inspection and testing comprising both qualification and acceptance programmes specifically tailored to the objectives of the activity.Finally, main outcomes have been compiled into a Structural Verification Guide for Pressurised Windows in manned spacecraft, incorporating best practices and lessons learned throughout this project.
The paper discusses the test design for environmental technology verification (ETV) of add-0n nitrogen oxides (NOx) control utilizing ozone injection. (NOTE: ETV is an EPA-established program to enhance domestic and international market acceptance of new or improved commercially...
Seismic design verification of LMFBR structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-07-01
The report provides an assessment of the seismic design verification procedures currently used for nuclear power plant structures, a comparison of dynamic test methods available, and conclusions and recommendations for future LMFB structures.
NEXT Thruster Component Verification Testing
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Sovey, James S.
2007-01-01
Component testing is a critical part of thruster life validation activities under NASA s Evolutionary Xenon Thruster (NEXT) project testing. The high voltage propellant isolators were selected for design verification testing. Even though they are based on a heritage design, design changes were made because the isolators will be operated under different environmental conditions including temperature, voltage, and pressure. The life test of two NEXT isolators was therefore initiated and has accumulated more than 10,000 hr of operation. Measurements to date indicate only a negligibly small increase in leakage current. The cathode heaters were also selected for verification testing. The technology to fabricate these heaters, developed for the International Space Station plasma contactor hollow cathode assembly, was transferred to Aerojet for the fabrication of the NEXT prototype model ion thrusters. Testing the contractor-fabricated heaters is necessary to validate fabrication processes for high reliability heaters. This paper documents the status of the propellant isolator and cathode heater tests.
Integrated testing and verification system for research flight software design document
NASA Technical Reports Server (NTRS)
Taylor, R. N.; Merilatt, R. L.; Osterweil, L. J.
1979-01-01
The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically.
Space station prototype Sabatier reactor design verification testing
NASA Technical Reports Server (NTRS)
Cusick, R. J.
1974-01-01
A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.
A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems
2016-03-01
insights gleaned to DoD. The autonomy community has identified significant challenges associated with test, evaluation verification and validation of...licensure as a test, evaluation, verification , and validation (TEVV) framework that can address these challenges. IDA found that traditional...language requirements to testable (preferably machine testable) specifications • Design of architectures that treat development and verification of
Survey of Verification and Validation Techniques for Small Satellite Software Development
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
2015-01-01
The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2014-12-01
Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.
Space transportation system payload interface verification
NASA Technical Reports Server (NTRS)
Everline, R. T.
1977-01-01
The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).
Details on the verification test design, measurement test procedures, and Quality assurance/Quality Control (QA/QC) procedures can be found in the test plan titled Testing and Quality Assurance Plan, MIRATECH Corporation GECO 3100 Air/Fuel Ratio Controller (SRI 2001). It can be d...
Design and Realization of Controllable Ultrasonic Fault Detector Automatic Verification System
NASA Astrophysics Data System (ADS)
Sun, Jing-Feng; Liu, Hui-Ying; Guo, Hui-Juan; Shu, Rong; Wei, Kai-Li
The ultrasonic flaw detection equipment with remote control interface is researched and the automatic verification system is developed. According to use extensible markup language, the building of agreement instruction set and data analysis method database in the system software realizes the controllable designing and solves the diversification of unreleased device interfaces and agreements. By using the signal generator and a fixed attenuator cascading together, a dynamic error compensation method is proposed, completes what the fixed attenuator does in traditional verification and improves the accuracy of verification results. The automatic verification system operating results confirms that the feasibility of the system hardware and software architecture design and the correctness of the analysis method, while changes the status of traditional verification process cumbersome operations, and reduces labor intensity test personnel.
Integrated testing and verification system for research flight software
NASA Technical Reports Server (NTRS)
Taylor, R. N.
1979-01-01
The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.
Fabrication and verification testing of ETM 30 cm diameter ion thrusters
NASA Technical Reports Server (NTRS)
Collett, C.
1977-01-01
Engineering model designs and acceptance tests are described for the 800 and 900 series 30 cm electron bombardment thrustors. Modifications to the test console for a 1000 hr verification test were made. The 10,000 hr endurance test of the S/N 701 thruster is described, and post test analysis results are included.
Cyanide can be present in various forms in water. The cyanide test kit evaluated in this verification study (Industrial Test System, Inc. Cyanide Regent Strip ™ Test Kit) was designed to detect free cyanide in water. This is done by converting cyanide in water to cyanogen...
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2013-12-01
ADR equation describes many physical phenomena of interest in the field of water quality in natural streams and groundwater. In many cases such as: density driven flow, multiphase reactive transport, and sediment transport, either one or a number of terms in the ADR equation may become nonlinear. For that reason, numerical tools are the only practical choice to solve these PDEs. All numerical solvers developed for transport equation need to undergo code verification procedure before they are put in to practice. Code verification is a mathematical activity to uncover failures and check for rigorous discretization of PDEs and implementation of initial/boundary conditions. In the context computational PDE verification is not a well-defined procedure on a clear path. Thus, verification tests should be designed and implemented with in-depth knowledge of numerical algorithms and physics of the phenomena as well as mathematical behavior of the solution. Even test results need to be mathematically analyzed to distinguish between an inherent limitation of algorithm and a coding error. Therefore, it is well known that code verification is a state of the art, in which innovative methods and case-based tricks are very common. This study presents full verification of a general transport code. To that end, a complete test suite is designed to probe the ADR solver comprehensively and discover all possible imperfections. In this study we convey our experiences in finding several errors which were not detectable with routine verification techniques. We developed a test suit including hundreds of unit tests and system tests. The test package has gradual increment in complexity such that tests start from simple and increase to the most sophisticated level. Appropriate verification metrics are defined for the required capabilities of the solver as follows: mass conservation, convergence order, capabilities in handling stiff problems, nonnegative concentration, shape preservation, and spurious wiggles. Thereby, we provide objective, quantitative values as opposed to subjective qualitative descriptions as 'weak' or 'satisfactory' agreement with those metrics. We start testing from a simple case of unidirectional advection, then bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. For all of the mentioned cases we conduct mesh convergence tests. These tests compare the results' order of accuracy versus the formal order of accuracy of discretization. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available we utilize Symmetry, Complete Richardson Extrapolation and Method of False Injection to uncover bugs. Detailed discussions of capabilities of the mentioned code verification techniques are given. Auxiliary subroutines for automation of the test suit and report generation are designed. All in all, the test package is not only a robust tool for code verification but also it provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport.
Definition of ground test for Large Space Structure (LSS) control verification
NASA Technical Reports Server (NTRS)
Waites, H. B.; Doane, G. B., III; Tollison, D. K.
1984-01-01
An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.
2013-10-01
its Verification in the Design and Testing of W-band Dual-Aspheric Lenses A. Altintas and V. Yurchenko EEE Department, Bilkent University Ankara...Theory and Techn., Vol. 55, 239, 2007 [5] ZEMAX Development Corporation, Zemax- EE , http://www.zemax.com/ [6] Pasqualini D. and Maci S., ”High-Frequency
Design verification test matrix development for the STME thrust chamber assembly
NASA Technical Reports Server (NTRS)
Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.
1993-01-01
This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.
Predicted and tested performance of durable TPS
NASA Technical Reports Server (NTRS)
Shideler, John L.
1992-01-01
The development of thermal protection systems (TPS) for aerospace vehicles involves combining material selection, concept design, and verification tests to evaluate the effectiveness of the system. The present paper reviews verification tests of two metallic and one carbon-carbon thermal protection system. The test conditions are, in general, representative of Space Shuttle design flight conditions which may be more or less severe than conditions required for future space transportation systems. The results of this study are intended to help establish a preliminary data base from which the designers of future entry vehicles can evaluate the applicability of future concepts to their vehicles.
Electric power system test and verification program
NASA Technical Reports Server (NTRS)
Rylicki, Daniel S.; Robinson, Frank, Jr.
1994-01-01
Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.
NASA Astrophysics Data System (ADS)
Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji
Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.
Verification bias an underrecognized source of error in assessing the efficacy of medical imaging.
Petscavage, Jonelle M; Richardson, Michael L; Carr, Robert B
2011-03-01
Diagnostic tests are validated by comparison against a "gold standard" reference test. When the reference test is invasive or expensive, it may not be applied to all patients. This can result in biased estimates of the sensitivity and specificity of the diagnostic test. This type of bias is called "verification bias," and is a common problem in imaging research. The purpose of our study is to estimate the prevalence of verification bias in the recent radiology literature. All issues of the American Journal of Roentgenology (AJR), Academic Radiology, Radiology, and European Journal of Radiology (EJR) between November 2006 and October 2009 were reviewed for original research articles mentioning sensitivity or specificity as endpoints. Articles were read to determine whether verification bias was present and searched for author recognition of verification bias in the design. During 3 years, these journals published 2969 original research articles. A total of 776 articles used sensitivity or specificity as an outcome. Of these, 211 articles demonstrated potential verification bias. The fraction of articles with potential bias was respectively 36.4%, 23.4%, 29.5%, and 13.4% for AJR, Academic Radiology, Radiology, and EJR. The total fraction of papers with potential bias in which the authors acknowledged this bias was 17.1%. Verification bias is a common and frequently unacknowledged source of error in efficacy studies of diagnostic imaging. Bias can often be eliminated by proper study design. When it cannot be eliminated, it should be estimated and acknowledged. Published by Elsevier Inc.
This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...
Control/structure interaction design methodology
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.; Layman, William E.
1989-01-01
The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies.
The opto-mechanical design process: from vision to reality
NASA Astrophysics Data System (ADS)
Kvamme, E. Todd; Stubbs, David M.; Jacoby, Michael S.
2017-08-01
The design process for an opto-mechanical sub-system is discussed from requirements development through test. The process begins with a proper mission understanding and the development of requirements for the system. Preliminary design activities are then discussed with iterative analysis and design work being shared between the design, thermal, and structural engineering personnel. Readiness for preliminary review and the path to a final design review are considered. The value of prototyping and risk mitigation testing is examined with a focus on when it makes sense to execute a prototype test program. System level margin is discussed in general terms, and the practice of trading margin in one area of performance to meet another area is reviewed. Requirements verification and validation is briefly considered. Testing and its relationship to requirements verification concludes the design process.
Structural Element Testing in Support of the Design of the NASA Composite Crew Module
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.
2012-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.
Considerations in STS payload environmental verification
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1978-01-01
The current philosophy of the GSFS regarding environmental verification of Shuttle payloads is reviewed. In the structures area, increased emphasis will be placed on the use of analysis for design verification, with selective testing performed as necessary. Furthermore, as a result of recent cost optimization analysis, the multitier test program will presumably give way to a comprehensive test program at the major payload subassembly level after adequate workmanship at the component level has been verified. In the thermal vacuum area, thought is being given to modifying the approaches used for conventional spacecraft.
Automated biowaste sampling system urine subsystem operating model, part 1
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Rosen, F.
1973-01-01
The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.
Test load verification through strain data analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1995-01-01
A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DEVILBISS JGHV-531-46FF HVLP SPRAY GUN
This report presents the results of the verification test of the DeVilbiss JGHV-531-46FF high-volume, low-pressure pressure-feed spray gun, hereafter referred to as the DeVilbiss JGHV, which is designed for use in industrial finishing. The test coating chosen by ITW Industrial Fi...
Verification testing of the Hydro-Kleen(TM) Filtration System, a catch-basin filter designed to reduce hydrocarbon, sediment, and metals contamination from surface water flows, was conducted at NSF International in Ann Arbor, Michigan. A Hydro-Kleen(TM) system was fitted into a ...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design... tests and inspections to evaluate the operation and reliability of controls, alarms, safety features... designated by the owner of the vessel shall conduct all tests and the Design Verification and Periodic Safety...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design... tests and inspections to evaluate the operation and reliability of controls, alarms, safety features... designated by the owner of the vessel shall conduct all tests and the Design Verification and Periodic Safety...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design... tests and inspections to evaluate the operation and reliability of controls, alarms, safety features... designated by the owner of the vessel shall conduct all tests and the Design Verification and Periodic Safety...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design... tests and inspections to evaluate the operation and reliability of controls, alarms, safety features... designated by the owner of the vessel shall conduct all tests and the Design Verification and Periodic Safety...
Engineering of the LISA Pathfinder mission—making the experiment a practical reality
NASA Astrophysics Data System (ADS)
Warren, Carl; Dunbar, Neil; Backler, Mike
2009-05-01
LISA Pathfinder represents a unique challenge in the development of scientific spacecraft—not only is the LISA Test Package (LTP) payload a complex integrated development, placing stringent requirements on its developers and the spacecraft, but the payload also acts as the core sensor and actuator for the spacecraft, making the tasks of control design, software development and system verification unusually difficult. The micro-propulsion system which provides the remaining actuation also presents substantial development and verification challenges. As the mission approaches the system critical design review, flight hardware is completing verification and the process of verification using software and hardware simulators and test benches is underway. Preparation for operations has started, but critical milestones for LTP and field effect electric propulsion (FEEP) lie ahead. This paper summarizes the status of the present development and outlines the key challenges that must be overcome on the way to launch.
Design, analysis, and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Mardesich, N.; Minning, C.
1982-01-01
Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.
Aerospace Nickel-cadmium Cell Verification
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.
2001-01-01
During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.
Bias in estimating accuracy of a binary screening test with differential disease verification
Brinton, John T.; Ringham, Brandy M.; Glueck, Deborah H.
2011-01-01
SUMMARY Sensitivity, specificity, positive and negative predictive value are typically used to quantify the accuracy of a binary screening test. In some studies it may not be ethical or feasible to obtain definitive disease ascertainment for all subjects using a gold standard test. When a gold standard test cannot be used an imperfect reference test that is less than 100% sensitive and specific may be used instead. In breast cancer screening, for example, follow-up for cancer diagnosis is used as an imperfect reference test for women where it is not possible to obtain gold standard results. This incomplete ascertainment of true disease, or differential disease verification, can result in biased estimates of accuracy. In this paper, we derive the apparent accuracy values for studies subject to differential verification. We determine how the bias is affected by the accuracy of the imperfect reference test, the percent who receive the imperfect reference standard test not receiving the gold standard, the prevalence of the disease, and the correlation between the results for the screening test and the imperfect reference test. It is shown that designs with differential disease verification can yield biased estimates of accuracy. Estimates of sensitivity in cancer screening trials may be substantially biased. However, careful design decisions, including selection of the imperfect reference test, can help to minimize bias. A hypothetical breast cancer screening study is used to illustrate the problem. PMID:21495059
Design and Development of the Space Shuttle Tail Service Masts
NASA Technical Reports Server (NTRS)
Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.
1977-01-01
The results of the tail service masts (TSM) concept verification test are presented along with the resulting impact on prototype design. The design criteria are outlined, and the proposed prototype TSM tests are described.
NASA Technical Reports Server (NTRS)
Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.
1974-01-01
A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.
This report presents the results of the verification test of the DeVilbiss GTi-600G high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss GTi, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refinis...
This report presents the results of the verification test of the DeVilbiss FLG-631-318 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss FLG, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yong Joon; Yoo, Jun Soo; Smith, Curtis Lee
2015-09-01
This INL plan comprehensively describes the Requirements Traceability Matrix (RTM) on main physics and numerical method of the RELAP-7. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.
Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators
NASA Technical Reports Server (NTRS)
Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)
2002-01-01
Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A.; Minning, C.
1982-01-01
Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. Qualification testing, specimens of various types, and a finalized optimum design are projected.
Systematic Model-in-the-Loop Test of Embedded Control Systems
NASA Astrophysics Data System (ADS)
Krupp, Alexander; Müller, Wolfgang
Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.
Design verification and cold-flow modeling test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, andmore » TRW proprietary information has been excluded.« less
Firing Room Remote Application Software Development
NASA Technical Reports Server (NTRS)
Liu, Kan
2015-01-01
The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.
The Role of Integrated Modeling in the Design and Verification of the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mosier, Gary E.; Howard, Joseph M.; Johnston, John D.; Parrish, Keith A.; Hyde, T. Tupper; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.
2004-01-01
The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. System-level verification of critical optical performance requirements will rely on integrated modeling to a considerable degree. In turn, requirements for accuracy of the models are significant. The size of the lightweight observatory structure, coupled with the need to test at cryogenic temperatures, effectively precludes validation of the models and verification of optical performance with a single test in 1-g. Rather, a complex series of steps are planned by which the components of the end-to-end models are validated at various levels of subassembly, and the ultimate verification of optical performance is by analysis using the assembled models. This paper describes the critical optical performance requirements driving the integrated modeling activity, shows how the error budget is used to allocate and track contributions to total performance, and presents examples of integrated modeling methods and results that support the preliminary observatory design. Finally, the concepts for model validation and the role of integrated modeling in the ultimate verification of observatory are described.
Mutation Testing for Effective Verification of Digital Components of Physical Systems
NASA Astrophysics Data System (ADS)
Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.
2015-12-01
Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.
A digital flight control system verification laboratory
NASA Technical Reports Server (NTRS)
De Feo, P.; Saib, S.
1982-01-01
A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.
Verification of the Sentinel-4 focal plane subsystem
NASA Astrophysics Data System (ADS)
Williges, Christian; Uhlig, Mathias; Hilbert, Stefan; Rossmann, Hannes; Buchwinkler, Kevin; Babben, Steffen; Sebastian, Ilse; Hohn, Rüdiger; Reulke, Ralf
2017-09-01
The Sentinel-4 payload is a multi-spectral camera system, designed to monitor atmospheric conditions over Europe from a geostationary orbit. The German Aerospace Center, DLR Berlin, conducted the verification campaign of the Focal Plane Subsystem (FPS) during the second half of 2016. The FPS consists, of two Focal Plane Assemblies (FPAs), two Front End Electronics (FEEs), one Front End Support Electronic (FSE) and one Instrument Control Unit (ICU). The FPAs are designed for two spectral ranges: UV-VIS (305 nm - 500 nm) and NIR (750 nm - 775 nm). In this publication, we will present in detail the set-up of the verification campaign of the Sentinel-4 Qualification Model (QM). This set up will also be used for the upcoming Flight Model (FM) verification, planned for early 2018. The FPAs have to be operated at 215 K +/- 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. The test campaign consists mainly of radiometric tests. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Selected test analyses and results will be presented.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing for Automatic Auxiliary Boilers § 61.35-1 General. (a) All automatic... equipment must be tested and inspected to verify their proper design, construction, installation, and...
Design and verification of a turbofan swirl augmentor
NASA Technical Reports Server (NTRS)
Egan, W. J., Jr.; Shadowen, J. H.
1978-01-01
The paper discusses the details of the design and verification testing of a full-scale turbofan 'swirl' augmentor at sea level and altitude. No flameholders are required in the swirl augmentor since the radial motion of the hot pilot gases and subsequent combustion products provides a continuous ignition front across the stream. Results of rig testing of this full-scale swirl augmentor on an F100 engine, which are very encouraging, and future development plans are presented. The results validate the application of the centrifugal-force swirling flow concept to a turbofan augmentor.
The Maximal Oxygen Uptake Verification Phase: a Light at the End of the Tunnel?
Schaun, Gustavo Z
2017-12-08
Commonly performed during an incremental test to exhaustion, maximal oxygen uptake (V̇O 2max ) assessment has become a recurring practice in clinical and experimental settings. To validate the test, several criteria were proposed. In this context, the plateau in oxygen uptake (V̇O 2 ) is inconsistent in its frequency, reducing its usefulness as a robust method to determine "true" V̇O 2max . Moreover, secondary criteria previously suggested, such as expiratory exchange ratios or percentages of maximal heart rate, are highly dependent on protocol design and often are achieved at V̇O 2 percentages well below V̇O 2max . Thus, an alternative method termed verification phase was proposed. Currently, it is clear that the verification phase can be a practical and sensitive method to confirm V̇O 2max ; however, procedures to conduct it are not standardized across the literature and no previous research tried to summarize how it has been employed. Therefore, in this review the knowledge on the verification phase was updated, while suggestions on how it can be performed (e.g. intensity, duration, recovery) were provided according to population and protocol design. Future studies should focus to identify a verification protocol feasible for different populations and to compare square-wave and multistage verification phases. Additionally, studies assessing verification phases in different patient populations are still warranted.
NASA Astrophysics Data System (ADS)
McConkey, M. L.
1984-12-01
A complete CMOS/BULK design cycle has been implemented and fully tested to evaluate its effectiveness and a viable set of computer-aided design tools for the layout, verification, and simulation of CMOS/BULK integrated circuits. This design cycle is good for p-well, n-well, or twin-well structures, although current fabrication technique available limit this to p-well only. BANE, an integrated layout program from Stanford, is at the center of this design cycle and was shown to be simple to use in the layout of CMOS integrated circuits (it can be also used to layout NMOS integrated circuits). A flowchart was developed showing the design cycle from initial layout, through design verification, and to circuit simulation using NETLIST, PRESIM, and RNL from the University of Washington. A CMOS/BULK library was designed and includes logic gates that were designed and completely tested by following this flowchart. Also designed was an arithmetic logic unit as a more complex test of the CMOS/BULK design cycle.
Adjusting for partial verification or workup bias in meta-analyses of diagnostic accuracy studies.
de Groot, Joris A H; Dendukuri, Nandini; Janssen, Kristel J M; Reitsma, Johannes B; Brophy, James; Joseph, Lawrence; Bossuyt, Patrick M M; Moons, Karel G M
2012-04-15
A key requirement in the design of diagnostic accuracy studies is that all study participants receive both the test under evaluation and the reference standard test. For a variety of practical and ethical reasons, sometimes only a proportion of patients receive the reference standard, which can bias the accuracy estimates. Numerous methods have been described for correcting this partial verification bias or workup bias in individual studies. In this article, the authors describe a Bayesian method for obtaining adjusted results from a diagnostic meta-analysis when partial verification or workup bias is present in a subset of the primary studies. The method corrects for verification bias without having to exclude primary studies with verification bias, thus preserving the main advantages of a meta-analysis: increased precision and better generalizability. The results of this method are compared with the existing methods for dealing with verification bias in diagnostic meta-analyses. For illustration, the authors use empirical data from a systematic review of studies of the accuracy of the immunohistochemistry test for diagnosis of human epidermal growth factor receptor 2 status in breast cancer patients.
Verification of the Icarus Material Response Tool
NASA Technical Reports Server (NTRS)
Schroeder, Olivia; Palmer, Grant; Stern, Eric; Schulz, Joseph; Muppidi, Suman; Martin, Alexandre
2017-01-01
Due to the complex physics encountered during reentry, material response solvers are used for two main purposes: improve the understanding of the physical phenomena; and design and size thermal protection systems (TPS). Icarus, is a three dimensional, unstructured material response tool that is intended to be used for design while maintaining the flexibility to easily implement physical models as needed. Because TPS selection and sizing is critical, it is of the utmost importance that the design tools be extensively verified and validated before their use. Verification tests aim at insuring that the numerical schemes and equations are implemented correctly by comparison to analytical solutions and grid convergence tests.
In-Space Engine (ISE-100) Development - Design Verification Test
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Popp, Chris; Bullard, Brad
2017-01-01
In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F.
2011-12-01
Almost all natural phenomena on Earth are highly nonlinear. Even simplifications to the equations describing nature usually end up being nonlinear partial differential equations. Transport (ADR) equation is a pivotal equation in atmospheric sciences and water quality. This nonlinear equation needs to be solved numerically for practical purposes so academicians and engineers thoroughly rely on the assistance of numerical codes. Thus, numerical codes require verification before they are utilized for multiple applications in science and engineering. Model verification is a mathematical procedure whereby a numerical code is checked to assure the governing equation is properly solved as it is described in the design document. CFD verification is not a straightforward and well-defined course. Only a complete test suite can uncover all the limitations and bugs. Results are needed to be assessed to make a distinction between bug-induced-defect and innate limitation of a numerical scheme. As Roache (2009) said, numerical verification is a state-of-the-art procedure. Sometimes novel tricks work out. This study conveys the synopsis of the experiences we gained during a comprehensive verification process which was done for a transport solver. A test suite was designed including unit tests and algorithmic tests. Tests were layered in complexity in several dimensions from simple to complex. Acceptance criteria defined for the desirable capabilities of the transport code such as order of accuracy, mass conservation, handling stiff source term, spurious oscillation, and initial shape preservation. At the begining, mesh convergence study which is the main craft of the verification is performed. To that end, analytical solution of ADR equation gathered. Also a new solution was derived. In the more general cases, lack of analytical solution could be overcome through Richardson Extrapolation and Manufactured Solution. Then, two bugs which were concealed during the mesh convergence study uncovered with the method of false injection and visualization of the results. Symmetry had dual functionality: there was a bug, which was hidden due to the symmetric nature of a test (it was detected afterward utilizing artificial false injection), on the other hand self-symmetry was used to design a new test, and in a case the analytical solution of the ADR equation was unknown. Assisting subroutines designed to check and post-process conservation of mass and oscillatory behavior. Finally, capability of the solver also checked for stiff reaction source term. The above test suite not only was a decent tool of error detection but also it provided a thorough feedback on the ADR solvers limitations. Such information is the crux of any rigorous numerical modeling for a modeler who deals with surface/subsurface pollution transport.
Validation (not just verification) of Deep Space Missions
NASA Technical Reports Server (NTRS)
Duren, Riley M.
2006-01-01
ion & Validation (V&V) is a widely recognized and critical systems engineering function. However, the often used definition 'Verification proves the design is right; validation proves it is the right design' is rather vague. And while Verification is a reasonably well standardized systems engineering process, Validation is a far more abstract concept and the rigor and scope applied to it varies widely between organizations and individuals. This is reflected in the findings in recent Mishap Reports for several NASA missions, in which shortfalls in Validation (not just Verification) were cited as root- or contributing-factors in catastrophic mission loss. Furthermore, although there is strong agreement in the community that Test is the preferred method for V&V, many people equate 'V&V' with 'Test', such that Analysis and Modeling aren't given comparable attention. Another strong motivator is a realization that the rapid growth in complexity of deep-space missions (particularly Planetary Landers and Space Observatories given their inherent unknowns) is placing greater demands on systems engineers to 'get it right' with Validation.
Thermal/structural design verification strategies for large space structures
NASA Technical Reports Server (NTRS)
Benton, David
1988-01-01
Requirements for space structures of increasing size, complexity, and precision have engendered a search for thermal design verification methods that do not impose unreasonable costs, that fit within the capabilities of existing facilities, and that still adequately reduce technical risk. This requires a combination of analytical and testing methods. This requires two approaches. The first is to limit thermal testing to sub-elements of the total system only in a compact configuration (i.e., not fully deployed). The second approach is to use a simplified environment to correlate analytical models with test results. These models can then be used to predict flight performance. In practice, a combination of these approaches is needed to verify the thermal/structural design of future very large space systems.
Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.
Development tests for the 2.5 megawatt Mod-2 wind turbine generator
NASA Technical Reports Server (NTRS)
Andrews, J. S.; Baskin, J. M.
1982-01-01
The 2.5 megawatt MOD-2 wind turbine generator test program is discussed. The development of the 2.5 megawatt MOD-2 wind turbine generator included an extensive program of testing which encompassed verification of analytical procedures, component development, and integrated system verification. The test program was to assure achievement of the thirty year design operational life of the wind turbine system as well as to minimize costly design modifications which would otherwise have been required during on site system testing. Computer codes were modified, fatigue life of structure and dynamic components were verified, mechanical and electrical component and subsystems were functionally checked and modified where necessary to meet system specifications, and measured dynamic responses of coupled systems confirmed analytical predictions.
Software verification plan for GCS. [guidance and control software
NASA Technical Reports Server (NTRS)
Dent, Leslie A.; Shagnea, Anita M.; Hayhurst, Kelly J.
1990-01-01
This verification plan is written as part of an experiment designed to study the fundamental characteristics of the software failure process. The experiment will be conducted using several implementations of software that were produced according to industry-standard guidelines, namely the Radio Technical Commission for Aeronautics RTCA/DO-178A guidelines, Software Consideration in Airborne Systems and Equipment Certification, for the development of flight software. This plan fulfills the DO-178A requirements for providing instructions on the testing of each implementation of software. The plan details the verification activities to be performed at each phase in the development process, contains a step by step description of the testing procedures, and discusses all of the tools used throughout the verification process.
Universal Verification Methodology Based Register Test Automation Flow.
Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu
2016-05-01
In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers.
Verification testing of the Hydro International Up-Flo™ Filter with one filter module and CPZ Mix™ filter media was conducted at the Penn State Harrisburg Environmental Engineering Laboratory in Middletown, Pennsylvania. The Up-Flo™ Filter is designed as a passive, modular filtr...
Requirement Assurance: A Verification Process
NASA Technical Reports Server (NTRS)
Alexander, Michael G.
2011-01-01
Requirement Assurance is an act of requirement verification which assures the stakeholder or customer that a product requirement has produced its "as realized product" and has been verified with conclusive evidence. Product requirement verification answers the question, "did the product meet the stated specification, performance, or design documentation?". In order to ensure the system was built correctly, the practicing system engineer must verify each product requirement using verification methods of inspection, analysis, demonstration, or test. The products of these methods are the "verification artifacts" or "closure artifacts" which are the objective evidence needed to prove the product requirements meet the verification success criteria. Institutional direction is given to the System Engineer in NPR 7123.1A NASA Systems Engineering Processes and Requirements with regards to the requirement verification process. In response, the verification methodology offered in this report meets both the institutional process and requirement verification best practices.
LH2 on-orbit storage tank support trunnion design and verification
NASA Technical Reports Server (NTRS)
Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.
1985-01-01
A detailed fatigue analysis was conducted to provide verification of the trunnion design in the reusable Cryogenic Fluid Management Facility for Shuttle flights and to assess the performance capability of the trunnion E-glass/S-glass epoxy composite material. Basic material property data at ambient and liquid hydrogen temperatures support the adequacy of the epoxy composite for seven-mission requirement. Testing of trunnions fabricated to the flight design has verified adequate strength and fatigue properties of the design to meet the requirements of seven Shuttle flights.
Definition of ground test for verification of large space structure control
NASA Technical Reports Server (NTRS)
Doane, G. B., III; Glaese, J. R.; Tollison, D. K.; Howsman, T. G.; Curtis, S. (Editor); Banks, B.
1984-01-01
Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed.
Testing of Hand-Held Mine Detection Systems
2015-01-08
ITOP 04-2-5208 for guidance on software testing . Testing software is necessary to ensure that safety is designed into the software algorithm, and that...sensor verification areas or target lanes. F.2. TESTING OBJECTIVES. a. Testing objectives will impact on the test design . Some examples of...overall safety, performance, and reliability of the system. It describes activities necessary to ensure safety is designed into the system under test
NASA Technical Reports Server (NTRS)
Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.
1993-01-01
To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.
Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G
2014-08-01
In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system designed by Martin Machinery was evaluated. This paper provides test result...
Verification testing of the Vortechnics, Inc. Vortechs® System, Model 1000 was conducted on a 0.25 acre portion of an elevated highway near downtown Milwaukee, Wisconsin. The Vortechs is designed to remove settable and floatable pollutants from stormwater runoff. The Vortechs® ...
EPA‘s Environmental Technology Verification program is designed to further environmental protection by accelerating the acceptance and use of improved and cost effective technologies. This is done by providing high-quality, peer reviewed data on technology performance to those in...
Verification testing of the Hydro International Downstream Defender® was conducted at the Madison Water Utility in Madison, Wisconsin. The system was designed for a drainage basin estimated at 1.9 acres in size, but during intense storm events, the system received water from an a...
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
Landing System Development- Design and Test Prediction of a Lander Leg Using Nonlinear Analysis
NASA Astrophysics Data System (ADS)
Destefanis, Stefano; Buchwald, Robert; Pellegrino, Pasquale; Schroder, Silvio
2014-06-01
Several mission studies have been performed focusing on a soft and precision landing using landing legs. Examples for such missions are Mars Sample Return scenarios (MSR), Lunar landing scenarios (MoonNEXT, Lunar Lander) and small body sample return studies (Marco Polo, MMSR, Phootprint). Such missions foresee a soft landing on the planet surface for delivering payload in a controlled manner and limiting the landing loads.To ensure a successful final landing phase, a landing system is needed, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, and insuring a controlled attitude after landing. Such requirements can be fulfilled by using landing legs with adequate damping.The Landing System Development (LSD) study, currently in its phase 2, foresees the design, analysis, verification, manufacturing and testing of a representative landing leg breadboard based on the Phase B design of the ESA Lunar Lander. Drop tests of a single leg will be performed both on rigid and soft ground, at several impact angles. The activity is covered under ESA contract with TAS-I as Prime Contractor, responsible for analysis and verification, Astrium GmbH for design and test and QinetiQ Space for manufacturing. Drop tests will be performed at the Institute of Space Systems of the German Aerospace Center (DLR-RY) in Bremen.This paper presents an overview of the analytical simulations (test predictions and design verification) performed, comparing the results produced by Astrium made multi body model (rigid bodies, nonlinearities accounted for in mechanical joints and force definitions, based on development tests) and TAS-I made nonlinear explicit model (fully deformable bodies).
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth
2018-01-01
The United States government has identified that application specific integrated circuit (ASIC) and field programmable gate array (FPGA) hardware are at risk from a variety of adversary attacks. This finding affects system security and trust. Consequently, processes are being developed for system mitigation and countermeasure application. The scope of this tutorial pertains to potential vulnerabilities and countermeasures within the ASIC/FPGA design cycle. The presentation demonstrates how design practices can affect the risk for the adversary to: change circuitry, steal intellectual property, and listen to data operations. An important portion of the design cycle is assuring the design is working as specified or as expected. This is accomplished by exhaustive testing of the target design. Alternatively, it has been shown that well established schemes for test coverage enhancement (design-for-verification (DFV) and design-for-test (DFT)) can create conduits for adversary accessibility. As a result, it is essential to perform a trade between robust test coverage versus reliable design implementation. The goal of this tutorial is to explain the evolution of design practices; review adversary accessibility points due to DFV and DFT circuitry insertion (back door circuitry); and to describe common engineering trade-off considerations for test versus adversary threats.
A thermal scale modeling study for Apollo and Apollo applications, volume 1
NASA Technical Reports Server (NTRS)
Shannon, R. L.
1972-01-01
The program is reported for developing and demonstrating the capabilities of thermal scale modeling as a thermal design and verification tool for Apollo and Apollo Applications Projects. The work performed for thermal scale modeling of STB; cabin atmosphere/spacecraft cabin wall thermal interface; closed loop heat rejection radiator; and docked module/spacecraft thermal interface are discussed along with the test facility requirements for thermal scale model testing of AAP spacecraft. It is concluded that thermal scale modeling can be used as an effective thermal design and verification tool to provide data early in a spacecraft development program.
What is the Final Verification of Engineering Requirements?
NASA Technical Reports Server (NTRS)
Poole, Eric
2010-01-01
This slide presentation reviews the process of development through the final verification of engineering requirements. The definition of the requirements is driven by basic needs, and should be reviewed by both the supplier and the customer. All involved need to agree upon a formal requirements including changes to the original requirements document. After the requirements have ben developed, the engineering team begins to design the system. The final design is reviewed by other organizations. The final operational system must satisfy the original requirements, though many verifications should be performed during the process. The verification methods that are used are test, inspection, analysis and demonstration. The plan for verification should be created once the system requirements are documented. The plan should include assurances that every requirement is formally verified, that the methods and the responsible organizations are specified, and that the plan is reviewed by all parties. The options of having the engineering team involved in all phases of the development as opposed to having some other organization continue the process once the design has been complete is discussed.
Retrofit and acceptance test of 30-cm ion thrusters
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1981-01-01
Six 30 cm mercury thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification), and documentation (drawings, etc.) for the design is completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.
SMAP Verification and Validation Project - Final Report
NASA Technical Reports Server (NTRS)
Murry, Michael
2012-01-01
In 2007, the National Research Council (NRC) released the Decadal Survey of Earth science. In the future decade, the survey identified 15 new space missions of significant scientific and application value for the National Aeronautics and Space Administration (NASA) to undertake. One of these missions was the Soil Moisture Active Passive (SMAP) mission that NASA assigned to the Jet Propulsion Laboratory (JPL) in 2008. The goal of SMAP1 is to provide global, high resolution mapping of soil moisture and its freeze/thaw states. The SMAP project recently passed its Critical Design Review and is proceeding with its fabrication and testing phase.Verification and Validation (V&V) is widely recognized as a critical component in system engineering and is vital to the success of any space mission. V&V is a process that is used to check that a system meets its design requirements and specifications in order to fulfill its intended purpose. Verification often refers to the question "Have we built the system right?" whereas Validation asks "Have we built the right system?" Currently the SMAP V&V team is verifying design requirements through inspection, demonstration, analysis, or testing. An example of the SMAP V&V process is the verification of the antenna pointing accuracy with mathematical models since it is not possible to provide the appropriate micro-gravity environment for testing the antenna on Earth before launch.
NASA Astrophysics Data System (ADS)
Bańkowski, Wojciech; Król, Jan; Gałązka, Karol; Liphardt, Adam; Horodecka, Renata
2018-05-01
Recycling of bituminous pavements is an issue increasingly being discussed in Poland. The analysis of domestic and foreign experience indicates a need to develop this technology in our country, in particular the hot feeding and production technologies. Various steps are being taken in this direction, including research projects. One of them is the InnGA project entitled: “Reclaimed asphalt pavement: Innovative technology of bituminous mixtures using material from reclaimed asphalt pavement”. The paper presents the results of research involving the design of bituminous mixtures in accordance with the required properties and in excess of the content of reclaimed asphalt permitted by the technical guidelines. It presents selected bituminous mixtures with the content of RAP of up to 50% and the results of tests from verification of industrial production of those mixtures. The article discusses the details of the design process of mixtures with a high content of reclaimed asphalt, the carried out production tests and discusses the results of tests under the verification of industrial production. Testing included basic tests according to the Polish technical requirements of WT- 2 and the extended functional testing. The conducted tests and analyses helped to determine the usefulness of the developed bituminous mixtures for use in experimental sections and confirmed the possibility of using an increased amount of reclaimed asphalt up to 50% in mixtures intended for construction of national roads.
Assessment of Galileo modal test results for mathematical model verification
NASA Technical Reports Server (NTRS)
Trubert, M.
1984-01-01
The modal test program for the Galileo Spacecraft was completed at the Jet Propulsion Laboratory in the summer of 1983. The multiple sine dwell method was used for the baseline test. The Galileo Spacecraft is a rather complex 2433 kg structure made of a central core on which seven major appendages representing 30 percent of the total mass are attached, resulting in a high modal density structure. The test revealed a strong nonlinearity in several major modes. This nonlinearity discovered in the course of the test necessitated running additional tests at the unusually high response levels of up to about 21 g. The high levels of response were required to obtain a model verification valid at the level of loads for which the spacecraft was designed. Because of the high modal density and the nonlinearity, correlation between the dynamic mathematical model and the test results becomes a difficult task. Significant changes in the pre-test analytical model are necessary to establish confidence in the upgraded analytical model used for the final load verification. This verification, using a test verified model, is required by NASA to fly the Galileo Spacecraft on the Shuttle/Centaur launch vehicle in 1986.
Design and Development of the Space Shuttle Tail Service Masts
NASA Technical Reports Server (NTRS)
Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.
1977-01-01
The successful launch of a space shuttle vehicle depends on the proper operation of two tail service masts (TSMs). Reliable TSM operation is assured through a comprehensive design, development, and testing program. The results of the concept verification test (CVT) and the resulting impact on prototype TSM design are presented. The design criteria are outlined, and the proposed prototype TSM tests are described.
Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP
NASA Astrophysics Data System (ADS)
Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio
1988-09-01
This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.
2017-01-01
Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.
Dynamic (Vibration) Testing: Design-Certification of Aerospace System
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin K.
2010-01-01
Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.
Large - scale Rectangular Ruler Automated Verification Device
NASA Astrophysics Data System (ADS)
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
Submicron Systems Architecture Project
1981-11-01
This project is concerned with the architecture , design , and testing of VLSI Systems. The principal activities in this report period include: The Tree Machine; COPE, The Homogeneous Machine; Computational Arrays; Switch-Level Model for MOS Logic Design; Testing; Local Network and Designer Workstations; Self-timed Systems; Characterization of Deadlock Free Resource Contention; Concurrency Algebra; Language Design and Logic for Program Verification.
NASA Astrophysics Data System (ADS)
Magazzù, G.; Borgese, G.; Costantino, N.; Fanucci, L.; Incandela, J.; Saponara, S.
2013-02-01
In many research fields as high energy physics (HEP), astrophysics, nuclear medicine or space engineering with harsh operating conditions, the use of fast and flexible digital communication protocols is becoming more and more important. The possibility to have a smart and tested top-down design flow for the design of a new protocol for control/readout of front-end electronics is very useful. To this aim, and to reduce development time, costs and risks, this paper describes an innovative design/verification flow applied as example case study to a new communication protocol called FF-LYNX. After the description of the main FF-LYNX features, the paper presents: the definition of a parametric SystemC-based Integrated Simulation Environment (ISE) for high-level protocol definition and validation; the set up of figure of merits to drive the design space exploration; the use of ISE for early analysis of the achievable performances when adopting the new communication protocol and its interfaces for a new (or upgraded) physics experiment; the design of VHDL IP cores for the TX and RX protocol interfaces; their implementation on a FPGA-based emulator for functional verification and finally the modification of the FPGA-based emulator for testing the ASIC chipset which implements the rad-tolerant protocol interfaces. For every step, significant results will be shown to underline the usefulness of this design and verification approach that can be applied to any new digital protocol development for smart detectors in physics experiments.
The U.S. EPA has created the Environmental Technology Verification (ETV) program to provide high quality, peer reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. The Air Po...
Verification testing of the Hoffland Drag Screen and Clarifier was conducted at the North Carolina State University's Lake Wheeler Road Field Laboratory, in Raleigh, North Carolina. The farm is designed to operate as a research and teaching facility with the capacity for 250 so...
Cassini's Test Methodology for Flight Software Verification and Operations
NASA Technical Reports Server (NTRS)
Wang, Eric; Brown, Jay
2007-01-01
The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).
Exomars Mission Verification Approach
NASA Astrophysics Data System (ADS)
Cassi, Carlo; Gilardi, Franco; Bethge, Boris
According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests between the different levels (system, modules, subsystems, etc) and giving an overview of the main test defined at Spacecraft level. The paper is mainly focused on the verification aspects of the EDL Demonstrator Module and the Rover Module, for which an intense testing activity without previous heritage in Europe is foreseen. In particular the Descent Module has to survive to the Mars atmospheric entry and landing, its surface platform has to stay operational for 8 sols on Martian surface, transmitting scientific data to the Orbiter. The Rover Module has to perform 180 sols mission in Mars surface environment. These operative conditions cannot be verified only by analysis; consequently a test campaign is defined including mechanical tests to simulate the entry loads, thermal test in Mars environment and the simulation of Rover operations on a 'Mars like' terrain. Finally, the paper present an overview of the documentation flow defined to ensure the correct translation of the mission requirements in verification activities (test, analysis, review of design) until the final verification close-out of the above requirements with the final verification reports.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Precision segmented reflector, figure verification sensor
NASA Technical Reports Server (NTRS)
Manhart, Paul K.; Macenka, Steve A.
1989-01-01
The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed
21 CFR 812.35 - Supplemental applications.
Code of Federal Regulations, 2014 CFR
2014-04-01
... control procedures of § 820.30, preclinical/animal testing, peer reviewed published literature, or other... the verification and validation testing, as appropriate, demonstrated that the design outputs met the...
21 CFR 812.35 - Supplemental applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... control procedures of § 820.30, preclinical/animal testing, peer reviewed published literature, or other... the verification and validation testing, as appropriate, demonstrated that the design outputs met the...
21 CFR 812.35 - Supplemental applications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... control procedures of § 820.30, preclinical/animal testing, peer reviewed published literature, or other... the verification and validation testing, as appropriate, demonstrated that the design outputs met the...
21 CFR 812.35 - Supplemental applications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... control procedures of § 820.30, preclinical/animal testing, peer reviewed published literature, or other... the verification and validation testing, as appropriate, demonstrated that the design outputs met the...
Test bed design for evaluating the Space Station ECLSS Water Recovery System
NASA Technical Reports Server (NTRS)
Ezell, Timothy G.; Long, David A.
1990-01-01
The design of the Phase III Environmental Control and Life Support System (ECLSS) Water Recovery System (WRS) test bed is in progress at the Marshall Space Flight Center (MSFC), building 4755, in Huntsville, Alabama. The overall design for the ECLSS WRS test bed will be discussed. Described within this paper are the design, fabrication, placement, and testing of the supporting facility which will provide the test bed for the ECLSS subsystems. Topics to be included are sterilization system design, component selection, microbial design considerations, and verification of test bed design prior to initiating WRS testing.
CPAS Parachute Testing, Model Development, & Verification
NASA Technical Reports Server (NTRS)
Romero, Leah M.
2013-01-01
Capsule Parachute Assembly System (CPAS) is the human rated parachute system for the Orion vehicle used during re-entry. Similar to Apollo parachute design. Human rating requires additional system redundancy. A Government Furnished Equipment (GFE) project responsible for: Design; Development testing; Performance modeling; Fabrication; Qualification; Delivery
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
Concept Verification Test - Evaluation of Spacelab/Payload operation concepts
NASA Technical Reports Server (NTRS)
Mcbrayer, R. O.; Watters, H. H.
1977-01-01
The Concept Verification Test (CVT) procedure is used to study Spacelab operational concepts by conducting mission simulations in a General Purpose Laboratory (GPL) which represents a possible design of Spacelab. In conjunction with the laboratory a Mission Development Simulator, a Data Management System Simulator, a Spacelab Simulator, and Shuttle Interface Simulator have been designed. (The Spacelab Simulator is more functionally and physically representative of the Spacelab than the GPL.) Four simulations of Spacelab mission experimentation were performed, two involving several scientific disciplines, one involving life sciences, and the last involving material sciences. The purpose of the CVT project is to support the pre-design and development of payload carriers and payloads, and to coordinate hardware, software, and operational concepts of different developers and users.
NASA Astrophysics Data System (ADS)
Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich
2017-11-01
Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing.
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A., III; Kallis, J. M.; Trucker, D. C.
1983-01-01
Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.
NASA Technical Reports Server (NTRS)
1979-01-01
Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.
46 CFR 62.20-3 - Plans for information.
Code of Federal Regulations, 2011 CFR
2011-10-01
... detected by the crew, alternatives available to the crew, and possible design verification tests necessary... reliability of the design. It should be conducted to a level of detail necessary to demonstrate compliance... at an early stage of design. ...
Design, analysis and test verification of advanced encapsulation systems, phase 2 program results
NASA Astrophysics Data System (ADS)
Garcia, A.; Minning, C.; Breen, R. T.; Coakley, J. F.; Duncan, L. B.; Gllaspy, D. M.; Kiewert, R. H.; McKinney, F. G.; Taylor, W. E.; Vaughn, L. E.
1982-06-01
Optical, electrical isolation, thermal structural, structural deflection, and thermal tests are reported. The utility of the optical, series capacitance, and structural deflection models was verified.
Design, analysis and test verification of advanced encapsulation systems, phase 2 program results
NASA Technical Reports Server (NTRS)
Garcia, A.; Minning, C.; Breen, R. T.; Coakley, J. F.; Duncan, L. B.; Gllaspy, D. M.; Kiewert, R. H.; Mckinney, F. G.; Taylor, W. E.; Vaughn, L. E.
1982-01-01
Optical, electrical isolation, thermal structural, structural deflection, and thermal tests are reported. The utility of the optical, series capacitance, and structural deflection models was verified.
NASA Technical Reports Server (NTRS)
Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul
2011-01-01
This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.
Project W-314 specific test and evaluation plan for transfer line SN-633 (241-AX-B to 241-AY-02A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, W.H.
1998-03-20
The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-633 transfer line by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the addition of transfer line SN-633. The Project Design Specificationsmore » (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation.« less
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-11-01
Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-01-01
Background Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. Objective The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. Methods The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Results Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Conclusions Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. PMID:24906806
Verification of Ceramic Structures
NASA Astrophysics Data System (ADS)
Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit
2012-07-01
In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).
Ozone Contamination in Aircraft Cabins: Appendix B: Overview papers. Ozone destruction techniques
NASA Technical Reports Server (NTRS)
Wilder, R.
1979-01-01
Ozone filter test program and ozone instrumentation are presented. Tables on the flight tests, samll scale lab tests, and full scale lab tests were reviewed. Design verification, flammability, vibration, accelerated contamination, life cycle, and cabin air quality are described.
Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors
NASA Astrophysics Data System (ADS)
Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio
2013-09-01
The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.
Thermal design and test verification of GALAXY evolution explorer (GALEX)
NASA Technical Reports Server (NTRS)
Wu, P. S.; Lee, S. -C.
2002-01-01
This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
This paper describes the design considerations and experimental verification of an LIM rail brake armature. In order to generate power and maximize the braking force density despite the limited area between the armature and the rail and the limited space available for installation, we studied a design method that is suitable for designing an LIM rail brake armature; we considered adoption of a ring winding structure. To examine the validity of the proposed design method, we developed a prototype ring winding armature for the rail brakes and examined its electromagnetic characteristics in a dynamic test system with roller rigs. By repeating various tests, we confirmed that unnecessary magnetic field components, which were expected to be present under high speed running condition or when a ring winding armature was used, were not present. Further, the necessary magnetic field component and braking force attained the desired values. These studies have helped us to develop a basic design method that is suitable for designing the LIM rail brake armatures.
DOT National Transportation Integrated Search
2014-08-01
Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the : highway departments of Kansas, Iowa, and Missouri, has supported an accelerated : pavement testing (APT) project to validate several models incorporated in the NCHRP :...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-1 General. (a) All automatically or... tests and inspections to evaluate the operation and reliability of controls, alarms, safety features...
An effective combined environment test facility
NASA Technical Reports Server (NTRS)
Deitch, A.
1980-01-01
A critical missile component required operational verification while subjected to combined environments within and beyond flight parameters. The testing schedule necessitated the design and fabrication of a test facility in order to provide the specified temperatures combined with humidity, altitude and vibration.
DOT National Transportation Integrated Search
2014-08-01
The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway : departments of Kansas, Iowa, and Missouri, has supported an accelerated pavement testing (APT) project to : validate several models incorporated in the NCH...
Main propulsion system test requirements for the two-engine Shuttle-C
NASA Technical Reports Server (NTRS)
Lynn, E. E.; Platt, G. K.
1989-01-01
The Shuttle-C is an unmanned cargo carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test program objectives and test results and shuttle flight experience. It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad flight readiness firing.
RELAP-7 Software Verification and Validation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling
This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less
Generic Verification Protocol for Verification of Online Turbidimeters
This protocol provides generic procedures for implementing a verification test for the performance of online turbidimeters. The verification tests described in this document will be conducted under the Environmental Technology Verification (ETV) Program. Verification tests will...
46 CFR 61.40-10 - Test procedure details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Test procedure details. 61.40-10 Section 61.40-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-10 Test procedure...
46 CFR 61.40-10 - Test procedure details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Test procedure details. 61.40-10 Section 61.40-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-10 Test procedure...
Design for Verification: Using Design Patterns to Build Reliable Systems
NASA Technical Reports Server (NTRS)
Mehlitz, Peter C.; Penix, John; Koga, Dennis (Technical Monitor)
2003-01-01
Components so far have been mainly used in commercial software development to reduce time to market. While some effort has been spent on formal aspects of components, most of this was done in the context of programming language or operating system framework integration. As a consequence, increased reliability of composed systems is mainly regarded as a side effect of a more rigid testing of pre-fabricated components. In contrast to this, Design for Verification (D4V) puts the focus on component specific property guarantees, which are used to design systems with high reliability requirements. D4V components are domain specific design pattern instances with well-defined property guarantees and usage rules, which are suitable for automatic verification. The guaranteed properties are explicitly used to select components according to key system requirements. The D4V hypothesis is that the same general architecture and design principles leading to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the limitations of conventional reliability assurance measures, such as too large a state space or too many execution paths.
Space fabrication demonstration system: Executive summary. [for large space structures
NASA Technical Reports Server (NTRS)
1979-01-01
The results of analysis and tests conducted to define the basic 1-m beam configuration required, and the design, development, fabrication, and verification tests of the machine required to automatically produce these beams are presented.
Lay out, test verification and in orbit performance of HELIOS a temperature control system
NASA Technical Reports Server (NTRS)
Brungs, W.
1975-01-01
HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.
Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems
NASA Technical Reports Server (NTRS)
1978-01-01
A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.
NASA Technical Reports Server (NTRS)
Nicks, Oran W.; Korkan, Kenneth D.
1991-01-01
Two reports on student activities to determine the properties of a new laminar airfoil which were delivered at a conference on soaring technology are presented. The papers discuss a wind tunnel investigation and analysis of the SM701 airfoil and verification of the SM701 airfoil aerodynamic charcteristics utilizing theoretical techniques. The papers are based on a combination of analytical design, hands-on model fabrication, wind tunnel calibration and testing, data acquisition and analysis, and comparison of test results and theory.
Control structural interaction testbed: A model for multiple flexible body verification
NASA Technical Reports Server (NTRS)
Chory, M. A.; Cohen, A. L.; Manning, R. A.; Narigon, M. L.; Spector, V. A.
1993-01-01
Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment.
An Exploratory Analysis of Economic Factors in the Navy Total Force Strength Model (NTFSM)
2015-12-01
NTFSM is still in the testing phase and its overall behavior is largely unknown. In particular, the analysts that NTFSM was designed to help are...NTFSM is still in the testing phase and its overall behavior is largely unknown. In particular, the analysts that NTFSM was designed to help are...7 B. NTFSM VERIFICATION AND TESTING ......................................... 8 C
46 CFR 61.40-6 - Periodic safety tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...
46 CFR 61.40-6 - Periodic safety tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...
46 CFR 61.40-6 - Periodic safety tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...
46 CFR 61.40-6 - Periodic safety tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...
46 CFR 61.40-6 - Periodic safety tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...
Final Report - Regulatory Considerations for Adaptive Systems
NASA Technical Reports Server (NTRS)
Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj
2013-01-01
This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.
Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)
NASA Technical Reports Server (NTRS)
Murphy, Gloria A.
2010-01-01
This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test report. This flight test report serves as a complement to the course handbook presented here. This project was extremely ambitious, and achieving all of the design and test objectives was a daunting task. The schedule ran slightly longer than a single academic year with the complete design closure not occurring until early April. Integration and verification testing spilled over into late May and the first flight did not occur until mid to late June. The academic year at Utah State University ended on May 8, 2010. Following the end of the academic year, testing and integration was performed by the faculty advisor, paid research assistants, and volunteer student help
Verification of Wind Measurement with Mobile Laser Doppler System
DOT National Transportation Integrated Search
1977-09-01
The Lockheed Mobile Atmospheric Unit is a laser Doppler velocimeter system designed for the remote measurement of the three components of atmospheric wind. The unit was tested at the National Oceanic and Atmospheric Administration Table Mountain Test...
Specific test and evaluation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, W.H.
1998-03-20
The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AX-B Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), andmore » Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A partial acceptance test was conducted on the El Toro Library Solar Energy System, and the detailed results of the various mode acceptance tests are given. All the modes tested function as designed. Collector array efficiencies were calculated at approximately 40%. Chiller COP was estimated at .50, with chiller loop flow rates approximately 85 to 90% of design flow. The acceptance test included visual inspection, preoperational testing and procedure verification, operational mode checkout, and performance testing. (LEW)
A3 Subscale Diffuser Test Article Design
NASA Technical Reports Server (NTRS)
Saunders, G. P.
2009-01-01
This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here
DOT National Transportation Integrated Search
2016-08-01
The primary objectives of this research include: performing static and dynamic load tests on : newly instrumented test piles to better understand the set-up mechanism for individual soil : layers, verifying or recalibrating previously developed empir...
Application of additive laser technologies in the gas turbine blades design process
NASA Astrophysics Data System (ADS)
Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.
2017-11-01
An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.
Verification of Space Station Secondary Power System Stability Using Design of Experiment
NASA Technical Reports Server (NTRS)
Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce
1998-01-01
This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.
Retrofit and verification test of a 30-cm ion thruster
NASA Technical Reports Server (NTRS)
Dulgeroff, C. R.; Poeschel, R. L.
1980-01-01
Twenty modifications were found to be necessary and were approved by design review. These design modifications were incorporated in the thruster documents (drawings and procedures) to define the J series thruster. Sixteen of the design revisions were implemented in a 900 series thruster by retrofit modification. A standardized set of test procedures was formulated, and the retrofit J series thruster design was verified by test. Some difficulty was observed with the modification to the ion optics assembly, but the overall effect of the design modification satisfies the design objectives. The thruster was tested over a wide range of operating parameters to demonstrate its capabilities.
Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Andrews, Stephen F.; Morgenstern, Wendy M.; Bartholomew, Maureen O.; McComas, David C.; Bauer, Frank H. (Technical Monitor)
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, attitude control, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on previous missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the perceived benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
Space Shuttle Tail Service Mast Concept Verification
NASA Technical Reports Server (NTRS)
Uda, R. T.
1976-01-01
Design studies and analyses were performed to describe the loads and dynamics of the space shuttle tail service masts (TSMs). Of particular interest are the motion and interaction of the umbilical carrier plate, lanyard system, vacuum jacketed hoses, latches, links, and masthead. A development test rig was designed and fabricated to obtain experimental data. The test program is designed to (1) verify the theoretical dynamics calculations, (2) prove the soundness of design concepts, and (3) elucidate problem areas (if any) in the design of mechanisms and structural components. Design, fabrication, and initiation of TSM development testing at Kennedy Space Center are described.
NASA Technical Reports Server (NTRS)
Koumal, D. E.
1979-01-01
The design and evaluation of built-up attachments and bonded joint concepts for use at elevated temperatures is documented. Joint concept screening, verification of GR/PI material, fabrication of design allowables panels, definition of test matrices, and analysis of bonded and bolted joints are among the tasks completed. The results provide data for the design and fabrication of lightly loaded components for advanced space transportation systems and high speed aircraft.
Post-OPC verification using a full-chip pattern-based simulation verification method
NASA Astrophysics Data System (ADS)
Hung, Chi-Yuan; Wang, Ching-Heng; Ma, Cliff; Zhang, Gary
2005-11-01
In this paper, we evaluated and investigated techniques for performing fast full-chip post-OPC verification using a commercial product platform. A number of databases from several technology nodes, i.e. 0.13um, 0.11um and 90nm are used in the investigation. Although it has proven that for most cases, our OPC technology is robust in general, due to the variety of tape-outs with complicated design styles and technologies, it is difficult to develop a "complete or bullet-proof" OPC algorithm that would cover every possible layout patterns. In the evaluation, among dozens of databases, some OPC databases were found errors by Model-based post-OPC checking, which could cost significantly in manufacturing - reticle, wafer process, and more importantly the production delay. From such a full-chip OPC database verification, we have learned that optimizing OPC models and recipes on a limited set of test chip designs may not provide sufficient coverage across the range of designs to be produced in the process. And, fatal errors (such as pinch or bridge) or poor CD distribution and process-sensitive patterns may still occur. As a result, more than one reticle tape-out cycle is not uncommon to prove models and recipes that approach the center of process for a range of designs. So, we will describe a full-chip pattern-based simulation verification flow serves both OPC model and recipe development as well as post OPC verification after production release of the OPC. Lastly, we will discuss the differentiation of the new pattern-based and conventional edge-based verification tools and summarize the advantages of our new tool and methodology: 1). Accuracy: Superior inspection algorithms, down to 1nm accuracy with the new "pattern based" approach 2). High speed performance: Pattern-centric algorithms to give best full-chip inspection efficiency 3). Powerful analysis capability: Flexible error distribution, grouping, interactive viewing and hierarchical pattern extraction to narrow down to unique patterns/cells.
Validation and Verification of Composite Pressure Vessel Design
NASA Technical Reports Server (NTRS)
Kreger, Stephen T.; Ortyl, Nicholas; Grant, Joseph; Taylor, F. Tad
2006-01-01
Ten composite pressure vessels were instrumented with fiber Bragg grating sensors and pressure tested Through burst. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and also compare the fiber Bragg grating sensor data with data obtained against that obtained from foil strain gages.
Advanced manufacturing development of a composite empennage component for L-1011 aircraft
NASA Technical Reports Server (NTRS)
1979-01-01
Work on process verification and tooling development continued. The cover process development was completed with the decision to proceed with low resin content prepreg material (34 + or - 3% by weight) in the fabrication of production readiness verification test (PRVT) specimens and the full-scale covers. The structural integrity of the cover/joint design was verified with the successful test of the cover attachment to fuselage ancillary test specimen (H25). Failure occurred, as predicted, in the skin panel away from the fuselage joint at 141 percent of the design ultimate load. With the successful completion of the H25 test, the PRVT cover specimens, which are identical to the H25 ancillary test specimen, were cleared for production. Eight of the twenty cover specimens were fabricated and are in preparation for test. All twenty of the PRVT spar specimens were fabricated and also were prepared for test. The environmental chambers used in the durability test of ten cover and ten spar PRVT specimens were completed and installed in the load reaction frames.
DOT National Transportation Integrated Search
1978-03-01
This report deals with the selection of a test site, the design of a test installation, equipment selection, the installation and start-up of a pneumatic pipeline system for the transportation of tunnel muck. A review of prior pneumatic applications ...
Enzymatic test kits, generally designed to be handheld and portable, detect the presence of chemical agents, carbamate pesticides, and/or organophosphate pesticides by relying on the reaction of the cholinesterase enzyme. Under normal conditions, the enzyme reacts as expected wi...
1981-01-01
per-rev, ring weighting factor, etc.) and with compression system design . A detailed description of the SAE methodology is provided in Ref. 1...offers insights into the practical application of experimental aeromechanical procedures and establishes the process of valid design assessment, avoiding...considerations given to the total engine system. Design Verification in the Experimental Laboratory Certain key parameters are influencing the design of modern
Dynamic analysis for shuttle design verification
NASA Technical Reports Server (NTRS)
Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.
1972-01-01
Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.
Development and verification of a cementless novel tapered wedge stem for total hip arthroplasty.
Faizan, Ahmad; Wuestemann, Thies; Nevelos, Jim; Bastian, Adam C; Collopy, Dermot
2015-02-01
Most current tapered wedge hip stems were designed based upon the original Mueller straight stem design introduced in 1977. These stems were designed to have a single medial curvature and grew laterally to accommodate different sizes. In this preclinical study, the design and verification of a tapered wedge stem using computed tomography scans of 556 patients are presented. The computer simulation demonstrated that the novel stem, designed for proximal engagement, allowed for reduced distal fixation, particularly in the 40-60 year male population. Moreover, the physical micromotion testing and finite element analysis demonstrated that the novel stem allowed for reduced micromotion. In summary, preclinical data suggest that the computed tomography based stem design described here may offer enhanced implant fit and reduced micromotion. Copyright © 2014 Elsevier Inc. All rights reserved.
40 CFR 1065.330 - Exhaust-flow calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065.330... use other reference meters such as laminar flow elements, which are not commonly designed to withstand...
Speaker verification using committee neural networks.
Reddy, Narender P; Buch, Ojas A
2003-10-01
Security is a major problem in web based access or remote access to data bases. In the present study, the technique of committee neural networks was developed for speech based speaker verification. Speech data from the designated speaker and several imposters were obtained. Several parameters were extracted in the time and frequency domains, and fed to neural networks. Several neural networks were trained and the five best performing networks were recruited into the committee. The committee decision was based on majority voting of the member networks. The committee opinion was evaluated with further testing data. The committee correctly identified the designated speaker in (50 out of 50) 100% of the cases and rejected imposters in (150 out of 150) 100% of the cases. The committee decision was not unanimous in majority of the cases tested.
Environmental Verification Experiment for the Explorer Platform (EVEEP)
NASA Technical Reports Server (NTRS)
Norris, Bonnie; Lorentson, Chris
1992-01-01
Satellites and long-life spacecraft require effective contamination control measures to ensure data accuracy and maintain overall system performance margins. Satellite and spacecraft contamination can occur from either molecular or particulate matter. Some of the sources of the molecular species are as follows: mass loss from nonmetallic materials; venting of confined spacecraft or experiment volumes; exhaust effluents from attitude control systems; integration and test activities; and improper cleaning of surfaces. Some of the sources of particulates are as follows: leaks or purges which condense upon vacuum exposure; abrasion of movable surfaces; and micrometeoroid impacts. The Environmental Verification Experiment for the Explorer Platform (EVEEP) was designed to investigate the following aspects of spacecraft contamination control: materials selection; contamination modeling of existing designs; and thermal vacuum testing of a spacecraft with contamination monitors.
Man-rated flight software for the F-8 DFBW program
NASA Technical Reports Server (NTRS)
Bairnsfather, R. R.
1976-01-01
The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program assembly control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools are described, as well as the program test plans and their implementation on the various simulators. Failure effects analysis and the creation of special failure generating software for testing purposes are described.
EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis
NASA Technical Reports Server (NTRS)
Hagale, Thomas J.; Price, Larry R.
2000-01-01
The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.
Study of techniques for redundancy verification without disrupting systems, phases 1-3
NASA Technical Reports Server (NTRS)
1970-01-01
The problem of verifying the operational integrity of redundant equipment and the impact of a requirement for verification on such equipment are considered. Redundant circuits are examined and the characteristics which determine adaptability to verification are identified. Mutually exclusive and exhaustive categories for verification approaches are established. The range of applicability of these techniques is defined in terms of signal characteristics and redundancy features. Verification approaches are discussed and a methodology for the design of redundancy verification is developed. A case study is presented which involves the design of a verification system for a hypothetical communications system. Design criteria for redundant equipment are presented. Recommendations for the development of technological areas pertinent to the goal of increased verification capabilities are given.
A Verification Method for MASOES.
Perozo, N; Aguilar Perozo, J; Terán, O; Molina, H
2013-02-01
MASOES is a 3agent architecture for designing and modeling self-organizing and emergent systems. This architecture describes the elements, relationships, and mechanisms, both at the individual and the collective levels, that favor the analysis of the self-organizing and emergent phenomenon without mathematically modeling the system. In this paper, a method is proposed for verifying MASOES from the point of view of design in order to study the self-organizing and emergent behaviors of the modeled systems. The verification criteria are set according to what is proposed in MASOES for modeling self-organizing and emerging systems and the principles of the wisdom of crowd paradigm and the fuzzy cognitive map (FCM) theory. The verification method for MASOES has been implemented in a tool called FCM Designer and has been tested to model a community of free software developers that works under the bazaar style as well as a Wikipedia community in order to study their behavior and determine their self-organizing and emergent capacities.
Property-driven functional verification technique for high-speed vision system-on-chip processor
NASA Astrophysics Data System (ADS)
Nshunguyimfura, Victor; Yang, Jie; Liu, Liyuan; Wu, Nanjian
2017-04-01
The implementation of functional verification in a fast, reliable, and effective manner is a challenging task in a vision chip verification process. The main reason for this challenge is the stepwise nature of existing functional verification techniques. This vision chip verification complexity is also related to the fact that in most vision chip design cycles, extensive efforts are focused on how to optimize chip metrics such as performance, power, and area. Design functional verification is not explicitly considered at an earlier stage at which the most sound decisions are made. In this paper, we propose a semi-automatic property-driven verification technique. The implementation of all verification components is based on design properties. We introduce a low-dimension property space between the specification space and the implementation space. The aim of this technique is to speed up the verification process for high-performance parallel processing vision chips. Our experimentation results show that the proposed technique can effectively improve the verification effort up to 20% for the complex vision chip design while reducing the simulation and debugging overheads.
Shuttle passenger couch. [design and performance of engineering model
NASA Technical Reports Server (NTRS)
Rosener, A. A.; Stephenson, M. L.
1974-01-01
Conceptual design and fabrication of a full scale shuttle passenger couch engineering model are reported. The model was utilized to verify anthropometric dimensions, reach dimensions, ingress/egress, couch operation, storage space, restraint locations, and crew acceptability. These data were then incorported in the design of the passenger couch verification model that underwent performance tests.
A bibliography on formal methods for system specification, design and validation
NASA Technical Reports Server (NTRS)
Meyer, J. F.; Furchtgott, D. G.; Movaghar, A.
1982-01-01
Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed.
Active Member Design, Modeling, and Verification
NASA Technical Reports Server (NTRS)
Umland, Jeffrey W.; Webster, Mark; John, Bruce
1993-01-01
The design and development of active members intended for use in structural control applications is presented. The use of three different solid state actuation materials, namely, piezoelectric, electrostictive, and magnetostrictive, is discussed. Test data is given in order to illustrate the actuator and device characteristics and performance.
NASA Astrophysics Data System (ADS)
Rieben, James C., Jr.
This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the use of real world samples. In the organic chemistry experiment, results suggest that the discovery-based design improved student retention of the chain length differentiation by physical properties relative to the verification-based design.
Program Model Checking as a New Trend
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Visser, Willem; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper introduces a special section of STTT (International Journal on Software Tools for Technology Transfer) containing a selection of papers that were presented at the 7th International SPIN workshop, Stanford, August 30 - September 1, 2000. The workshop was named SPIN Model Checking and Software Verification, with an emphasis on model checking of programs. The paper outlines the motivation for stressing software verification, rather than only design and model verification, by presenting the work done in the Automated Software Engineering group at NASA Ames Research Center within the last 5 years. This includes work in software model checking, testing like technologies and static analysis.
Optimal Verification of Entangled States with Local Measurements
NASA Astrophysics Data System (ADS)
Pallister, Sam; Linden, Noah; Montanaro, Ashley
2018-04-01
Consider the task of verifying that a given quantum device, designed to produce a particular entangled state, does indeed produce that state. One natural approach would be to characterize the output state by quantum state tomography, or alternatively, to perform some kind of Bell test, tailored to the state of interest. We show here that neither approach is optimal among local verification strategies for 2-qubit states. We find the optimal strategy in this case and show that quadratically fewer total measurements are needed to verify to within a given fidelity than in published results for quantum state tomography, Bell test, or fidelity estimation protocols. We also give efficient verification protocols for any stabilizer state. Additionally, we show that requiring that the strategy be constructed from local, nonadaptive, and noncollective measurements only incurs a constant-factor penalty over a strategy without these restrictions.
VARED: Verification and Analysis of Requirements and Early Designs
NASA Technical Reports Server (NTRS)
Badger, Julia; Throop, David; Claunch, Charles
2014-01-01
Requirements are a part of every project life cycle; everything going forward in a project depends on them. Good requirements are hard to write, there are few useful tools to test, verify, or check them, and it is difficult to properly marry them to the subsequent design, especially if the requirements are written in natural language. In fact, the inconsistencies and errors in the requirements along with the difficulty in finding these errors contribute greatly to the cost of the testing and verification stage of flight software projects [1]. Large projects tend to have several thousand requirements written at various levels by different groups of people. The design process is distributed and a lack of widely accepted standards for requirements often results in a product that varies widely in style and quality. A simple way to improve this would be to standardize the design process using a set of tools and widely accepted requirements design constraints. The difficulty with this approach is finding the appropriate constraints and tools. Common complaints against the tools available include ease of use, functionality, and available features. Also, although preferable, it is rare that these tools are capable of testing the quality of the requirements.
Project W-314 specific test and evaluation plan for AZ tank farm upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, W.H.
1998-08-12
The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests andmore » inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This report presents the results of instrumentation measurements and observations made during construction of the North Ramp Starter Tunnel (NRST) of the Exploratory Studies Facility (ESF). The information in this report was developed as part of the Design Verification Study, Section 8.3.1.15.1.8 of the Yucca Mountain Site Characterization Plan (DOE 1988). The ESF is being constructed by the US Department of Energy (DOE) to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. The Design Verification Studies are performed to collect information during constructionmore » of the ESF that will be useful for design and construction of the potential repository. Four experiments make up the Design Verification Study: Evaluation of Mining Methods, Monitoring Drift Stability, Monitoring of Ground Support Systems, and The Air Quality and Ventilation Experiment. This report describes Sandia National Laboratories` (SNL) efforts in the first three of these experiments in the NRST.« less
46 CFR 62.20-1 - Plans for approval.
Code of Federal Regulations, 2013 CFR
2013-10-01
... console, panel, and enclosure layouts. (3) Schematic or logic diagrams including functional relationships... features. (6) A description of built-in test features and diagnostics. (7) Design Verification and Periodic...
46 CFR 62.20-1 - Plans for approval.
Code of Federal Regulations, 2011 CFR
2011-10-01
... console, panel, and enclosure layouts. (3) Schematic or logic diagrams including functional relationships... features. (6) A description of built-in test features and diagnostics. (7) Design Verification and Periodic...
46 CFR 62.20-1 - Plans for approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
... console, panel, and enclosure layouts. (3) Schematic or logic diagrams including functional relationships... features. (6) A description of built-in test features and diagnostics. (7) Design Verification and Periodic...
46 CFR 62.20-1 - Plans for approval.
Code of Federal Regulations, 2012 CFR
2012-10-01
... console, panel, and enclosure layouts. (3) Schematic or logic diagrams including functional relationships... features. (6) A description of built-in test features and diagnostics. (7) Design Verification and Periodic...
46 CFR 62.20-1 - Plans for approval.
Code of Federal Regulations, 2014 CFR
2014-10-01
... console, panel, and enclosure layouts. (3) Schematic or logic diagrams including functional relationships... programmable features. (6) A description of built-in test features and diagnostics. (7) Design Verification and...
NASA Technical Reports Server (NTRS)
Reichert, J. D.
1980-01-01
The Analog Design Verification System (ADVS), the largest single solar collector built, was tested. Referred to as the Solar Gridiron or Bowl Concept, it employs a stationary mirror, with tracking accomplished by the mirror.
Verification of the SENTINEL-4 Focal Plane Subsystem
NASA Astrophysics Data System (ADS)
Williges, C.; Hohn, R.; Rossmann, H.; Hilbert, S.; Uhlig, M.; Buchwinkler, K.; Reulke, R.
2017-05-01
The Sentinel-4 payload is a multi-spectral camera system which is designed to monitor atmospheric conditions over Europe. The German Aerospace Center (DLR) in Berlin, Germany conducted the verification campaign of the Focal Plane Subsystem (FPS) on behalf of Airbus Defense and Space GmbH, Ottobrunn, Germany. The FPS consists, inter alia, of two Focal Plane Assemblies (FPAs), one for the UV-VIS spectral range (305 nm … 500 nm), the second for NIR (750 nm … 775 nm). In this publication, we will present in detail the opto-mechanical laboratory set-up of the verification campaign of the Sentinel-4 Qualification Model (QM) which will also be used for the upcoming Flight Model (FM) verification. The test campaign consists mainly of radiometric tests performed with an integrating sphere as homogenous light source. The FPAs have mainly to be operated at 215 K ± 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Furthermore selected test analyses and results will be presented, showing that the Sentinel-4 FPS meets specifications.
Hyper-X Engine Design and Ground Test Program
NASA Technical Reports Server (NTRS)
Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.
1998-01-01
The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.
Progress in the planar CPn SOFC system design verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elangovan, S.; Hartvigsen, J.; Khandkar, A.
1996-04-01
SOFCo is developing a high efficiency, modular and scaleable planar SOFC module termed the CPn design. This design has been verified in a 1.4 kW module test operated directly on pipeline natural gas. The design features multistage oxidation of fuel wherein the fuel is consumed incrementally over several stages. High efficiency is achieved by uniform current density distribution per stage, which lowers the stack resistance. Additional benefits include thermal regulation and compactness. Test results from stack modules operating in pipeline natural gas are presented.
DOT National Transportation Integrated Search
2014-04-01
The main objective of this study was to develop a fast, reliable test method to determine the aggregate alkali-silica reactivity : (ASR) with respect to the overall alkalinity of the concrete. A volumetric change measuring device (VCMD) developed at ...
TOPEX Microwave Radiometer - Thermal design verification test and analytical model validation
NASA Technical Reports Server (NTRS)
Lin, Edward I.
1992-01-01
The testing of the TOPEX Microwave Radiometer (TMR) is described in terms of hardware development based on the modeling and thermal vacuum testing conducted. The TMR and the vacuum-test facility are described, and the thermal verification test includes a hot steady-state segment, a cold steady-state segment, and a cold survival mode segment totalling 65 hours. A graphic description is given of the test history which is related temperature tracking, and two multinode TMR test-chamber models are compared to the test results. Large discrepancies between the test data and the model predictions are attributed to contact conductance, effective emittance from the multilayer insulation, and heat leaks related to deviations from the flight configuration. The TMR thermal testing/modeling effort is shown to provide technical corrections for the procedure outlined, and the need for validating predictive models is underscored.
Crewed Space Vehicle Battery Safety Requirements
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Darcy, Eric C.
2014-01-01
This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.
Flight vehicle thermal testing with infrared lamps
NASA Technical Reports Server (NTRS)
Fields, Roger A.
1992-01-01
The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.
Electromechanical flight control actuator, volume 3
NASA Technical Reports Server (NTRS)
1978-01-01
The design verification tests which were conducted on the electromechanical actuator are described. A description is also given of the power components tests which were conducted to aid in selecting the power transistors for use in the single-channel power electronics breadboard and the results of tests which were conducted on the power electronics breadboard.
Design Details for the Aquantis 2.5 MW Ocean Current Generation Device
Banko, Rich; Coakley, David; Colegrove, Dana; Fleming, Alex; Zierke, William; Ebner, Stephen
2015-06-03
Items in this submission provide the detailed design of the Aquantis Ocean Current Turbine and accompanying analysis documents, including preliminary designs, verification of design reports, CAD drawings of the hydrostatic drivetrain, a test plan and an operating conditions simulation report. This dataset also contains analysis trade off studies of fixed vs. variable pitch and 2 vs. 3 blades.
Multibody modeling and verification
NASA Technical Reports Server (NTRS)
Wiens, Gloria J.
1989-01-01
A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development.
NASA Technical Reports Server (NTRS)
Miller, Rolf W.; Argrow, Brian M.; Center, Kenneth B.; Brauckmann, Gregory J.; Rhode, Matthew N.
1998-01-01
The NASA Langley Research Center Unitary Plan Wind Tunnel and the 20-Inch Mach 6 Tunnel were used to test two osculating cones waverider models. The Mach-4 and Mach-6 shapes were generated using the interactive design tool WIPAR. WIPAR performance predictions are compared to the experimental results. Vapor screen results for the Mach-4 model at the on- design Mach number provide visual verification that the shock is attached along the entire leading edge, within the limits of observation. WIPAR predictions of pressure distributions and aerodynamic coefficients show general agreement with the corresponding experimental values.
Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted
NASA Technical Reports Server (NTRS)
Krause, David L.; Halford, Gary R.; Bowman, Randy R.
2004-01-01
A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).
Z-2 Architecture Description and Requirements Verification Results
NASA Technical Reports Server (NTRS)
Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Hewes, Linda; Ross, Amy; Rhodes, Richard
2016-01-01
The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in NASA's technology development roadmap leading to human exploration of the Martian surface. The suit was designed for maximum mobility at 8.3 psid, reduced mass, and to have high fidelity life support interfaces. As Z-2 will be man-tested at full vacuum in NASA JSC's Chamber B, it was manufactured as Class II, making it the most flight-like planetary walking suit produced to date. The Z-2 suit architecture is an evolution of previous EVA suits, namely the ISS EMU, Mark III, Rear Entry I-Suit and Z-1 spacesuits. The suit is a hybrid hard and soft multi-bearing, rear entry spacesuit. The hard upper torso (HUT) is an all-composite structure and includes a 2-bearing rolling convolute shoulder with Vernier sizing mechanism, removable suit port interface plate (SIP), elliptical hemispherical helmet and self-don/doff shoulder harness. The hatch is a hybrid aluminum and composite construction with Apollo style gas connectors, custom water pass-thru, removable hatch cage and interfaces to primary and auxiliary life support feed water bags. The suit includes Z-1 style lower arms with cam brackets for Vernier sizing and government furnished equipment (GFE) Phase VI gloves. The lower torso includes a telescopic waist sizing system, waist bearing, rolling convolute waist joint, hard brief, 2 bearing soft hip thigh, Z-1 style legs with ISS EMU style cam brackets for sizing, and conformal walking boots with ankle bearings. The Z-2 Requirements Verification Plan includes the verification of more than 200 individual requirements. The verification methods include test, analysis, inspection, demonstration or a combination of methods. Examples of unmanned requirements include suit leakage, proof pressure testing, operational life, mass, isometric man-loads, sizing adjustment ranges, internal and external interfaces such as in-suit drink bag, partial pressure relief valve, purge valve, donning stand and ISS Body Restraint Tether (BRT). Examples of manned requirements include verification of anthropometric range, suit self-don/doff, secondary suit exit method, donning stand self-ingress/egress and manned mobility covering eight functional tasks. The eight functional tasks include kneeling with object pick-up, standing toe touch, cross-body reach, walking, reach to the SIP and helmet visor. This paper will provide an overview of the Z-2 design. Z-2 requirements verification testing was performed with NASA at the ILC Houston test facility. This paper will also discuss pre-delivery manned and unmanned test results as well as analysis performed in support of requirements verification.
Development and verification of an agent-based model of opinion leadership.
Anderson, Christine A; Titler, Marita G
2014-09-27
The use of opinion leaders is a strategy used to speed the process of translating research into practice. Much is still unknown about opinion leader attributes and activities and the context in which they are most effective. Agent-based modeling is a methodological tool that enables demonstration of the interactive and dynamic effects of individuals and their behaviors on other individuals in the environment. The purpose of this study was to develop and test an agent-based model of opinion leadership. The details of the design and verification of the model are presented. The agent-based model was developed by using a software development platform to translate an underlying conceptual model of opinion leadership into a computer model. Individual agent attributes (for example, motives and credibility) and behaviors (seeking or providing an opinion) were specified as variables in the model in the context of a fictitious patient care unit. The verification process was designed to test whether or not the agent-based model was capable of reproducing the conditions of the preliminary conceptual model. The verification methods included iterative programmatic testing ('debugging') and exploratory analysis of simulated data obtained from execution of the model. The simulation tests included a parameter sweep, in which the model input variables were adjusted systematically followed by an individual time series experiment. Statistical analysis of model output for the 288 possible simulation scenarios in the parameter sweep revealed that the agent-based model was performing, consistent with the posited relationships in the underlying model. Nurse opinion leaders act on the strength of their beliefs and as a result, become an opinion resource for their uncertain colleagues, depending on their perceived credibility. Over time, some nurses consistently act as this type of resource and have the potential to emerge as opinion leaders in a context where uncertainty exists. The development and testing of agent-based models is an iterative process. The opinion leader model presented here provides a basic structure for continued model development, ongoing verification, and the establishment of validation procedures, including empirical data collection.
Integrated Short Range, Low Bandwidth, Wearable Communications Networking Technologies
2012-04-30
Only (FOUO) Table of Contents Introduction 7 Research Discussions 7 1 Specifications 8 2 SAN Radio 9 2.1 R.F. Design Improvements 9 2.1.1 LNA...Characterization and Verification Testing 26 2.2 Digital Design Improvements 26 2.2.1 Improve Processor Access to Memory Resources 26 2.2.2...integrated and tested . A hybrid architecture of the automatic gain control (AGC) was designed to Page 7 of 116 For Official Use Only (FOUO
First Order Reliability Application and Verification Methods for Semistatic Structures
NASA Technical Reports Server (NTRS)
Verderaime, Vincent
1994-01-01
Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored by conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments, its stress audits are shown to be arbitrary and incomplete, and it compromises high strength materials performance. A reliability method is proposed which combines first order reliability principles with deterministic design variables and conventional test technique to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety index expression. The application is reduced to solving for a factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and with the pace of semistatic structural designs.
Urine sampling and collection system
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Reinhardt, C. G.
1971-01-01
This specification defines the performance and design requirements for the urine sampling and collection system engineering model and establishes requirements for its design, development, and test. The model shall provide conceptual verification of a system applicable to manned space flight which will automatically provide for collection, volume sensing, and sampling of urine.
49 CFR 179.16 - Tank-head puncture-resistance systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance...; and (3) The impacted tank car is pressurized to at least 6.9 Bar (100 psig). (b) Verification by... design and test requirements of the full-head protection (shields) or full tank-head jackets must meet...
Bistatic radar sea state monitoring system design
NASA Technical Reports Server (NTRS)
Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.
1975-01-01
Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.
Verification and validation of RADMODL Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimball, K.D.
1993-03-01
RADMODL is a system of linked computer codes designed to calculate the radiation environment following an accident in which nuclear materials are released. The RADMODL code and the corresponding Verification and Validation (V&V) calculations (Appendix A), were developed for Westinghouse Savannah River Company (WSRC) by EGS Corporation (EGS). Each module of RADMODL is an independent code and was verified separately. The full system was validated by comparing the output of the various modules with the corresponding output of a previously verified version of the modules. The results of the verification and validation tests show that RADMODL correctly calculates the transportmore » of radionuclides and radiation doses. As a result of this verification and validation effort, RADMODL Version 1.0 is certified for use in calculating the radiation environment following an accident.« less
Empirical testing of an analytical model predicting electrical isolation of photovoltaic models
NASA Astrophysics Data System (ADS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
A major design requirement for photovoltaic modules is that the encapsulation system be capable of withstanding large DC potentials without electrical breakdown. Presented is a simple analytical model which can be used to estimate material thickness to meet this requirement for a candidate encapsulation system or to predict the breakdown voltage of an existing module design. A series of electrical tests to verify the model are described in detail. The results of these verification tests confirmed the utility of the analytical model for preliminary design of photovoltaic modules.
Experiment S-191 visible and infrared spectrometer
NASA Technical Reports Server (NTRS)
Linnell, E. R.
1974-01-01
The design, development, fabrication test, and utilization of the visible and infrared spectrometer portion of the S-191 experiment, part of the Earth Resources Experiment Package, on board Skylab is discussed. The S-191 program is described, as well as conclusions and recommendations for improvement of this type of instrument for future applications. Design requirements, instrument design approaches, and the test verification program are presented along with test results, including flight hardware calibration data. A brief discussion of operation during the Skylab mission is included. Documentation associated with the program is listed.
Application of computer vision to automatic prescription verification in pharmaceutical mail order
NASA Astrophysics Data System (ADS)
Alouani, Ali T.
2005-05-01
In large volume pharmaceutical mail order, before shipping out prescriptions, licensed pharmacists ensure that the drug in the bottle matches the information provided in the patient prescription. Typically, the pharmacist has about 2 sec to complete the prescription verification process of one prescription. Performing about 1800 prescription verification per hour is tedious and can generate human errors as a result of visual and brain fatigue. Available automatic drug verification systems are limited to a single pill at a time. This is not suitable for large volume pharmaceutical mail order, where a prescription can have as many as 60 pills and where thousands of prescriptions are filled every day. In an attempt to reduce human fatigue, cost, and limit human error, the automatic prescription verification system (APVS) was invented to meet the need of large scale pharmaceutical mail order. This paper deals with the design and implementation of the first prototype online automatic prescription verification machine to perform the same task currently done by a pharmacist. The emphasis here is on the visual aspects of the machine. The system has been successfully tested on 43,000 prescriptions.
CSTI Earth-to-orbit propulsion research and technology program overview
NASA Technical Reports Server (NTRS)
Gentz, Steven J.
1993-01-01
NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.
Yamaoka, S
1995-06-01
Uniqueness theory explains that extremely high perceived similarity between self and others evokes negative emotional reactions and causes uniqueness seeking behavior. However, the theory conceptualizes similarity so ambiguously that it appears to suffer from low predictive validity. The purpose of the current article is to propose an alternative explanation of uniqueness seeking behavior. It posits that perceived uniqueness deprivation is a threat to self-concepts, and therefore causes self-verification behavior. Two levels of self verification are conceived: one based on personal categorization and the other on social categorization. The present approach regards uniqueness seeking behavior as the personal-level self verification. To test these propositions, a 2 (very high or moderate similarity information) x 2 (with or without outgroup information) x 2 (high or low need for uniqueness) between-subject factorial-design experiment was conducted with 95 university students. Results supported the self-verification approach, and were discussed in terms of effects of uniqueness deprivation, levels of self-categorization, and individual differences in need for uniqueness.
2014-11-06
Foc’sle Deck. Associated wiring, hvac and plumbing also going in. Minimal joiner work on other decks and pilot house. 6. Call-outs...TEST PROCEDURES ( MCCS Design Verification Test Procedure)(R/ASR) 173/0 AGOR27 A002 STD Report - DESIGN REVIEW AGENDAS AND MINUTES ( DR #17 DCI... HVAC Book 1 of 3)(DARC REV) 340/1 AGOR27 A055 TM Report - COMMERCIAL TECHNICAL MANUALS AND SUPPLEMENTAL DATA ( 512 Wilhelmsen HVAC Book 2 of 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darcy, Eric; Keyser, Matthew
The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.
Optimum structural design based on reliability and proof-load testing
NASA Technical Reports Server (NTRS)
Shinozuka, M.; Yang, J. N.
1969-01-01
Proof-load test eliminates structures with strength less than the proof load and improves the reliability value in analysis. It truncates the distribution function of strength at the proof load, thereby alleviating verification of a fitted distribution function at the lower tail portion where data are usually nonexistent.
The report presents results of a Phase I test of emissions packing technology offered by France Compressor Products which is designed to reduce methane leaks from compressor rod packing when a compressor is in a standby and pressurized state. This Phase I test was executed betwee...
AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report
2015-02-26
2 • Pilot House – Electrical and joiner work is ongoing, however carpenters are waiting for HVAC to finish before Norac...STD Report - TEST REPORT ( 320-001-2 MCCS Design Verification Test Report)(R/ASR) 108/0 AGOR27 A059 STD Report - STUDENT GUIDES ( DI-059 (Student
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John
2006-01-01
Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.
First-order reliability application and verification methods for semistatic structures
NASA Astrophysics Data System (ADS)
Verderaime, V.
1994-11-01
Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored in conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments; stress audits are shown to be arbitrary and incomplete, and the concept compromises the performance of high-strength materials. A reliability method is proposed that combines first-order reliability principles with deterministic design variables and conventional test techniques to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety-index expression. The application is reduced to solving for a design factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this design factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and the development of semistatic structural designs.
30 CFR 250.913 - When must I resubmit Platform Verification Program plans?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Structures Platform Verification Program § 250.913 When must I resubmit Platform Verification Program plans? (a) You must resubmit any design verification, fabrication verification, or installation verification... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When must I resubmit Platform Verification...
Towards the formal verification of the requirements and design of a processor interface unit
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
The formal verification of the design and partial requirements for a Processor Interface Unit (PIU) using the Higher Order Logic (HOL) theorem-proving system is described. The processor interface unit is a single-chip subsystem within a fault-tolerant embedded system under development within the Boeing Defense and Space Group. It provides the opportunity to investigate the specification and verification of a real-world subsystem within a commercially-developed fault-tolerant computer. An overview of the PIU verification effort is given. The actual HOL listing from the verification effort are documented in a companion NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit - HOL Listings' including the general-purpose HOL theories and definitions that support the PIU verification as well as tactics used in the proofs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, Adrienne M.; Ulrich, Timothy J. II; Menlove, Howard O.
Objective is to investigate the use of Passive Neutron Albedo Reactivity (PNAR) and Self-Interrogation Neutron Resonance Densitometry (SINRD) to quantify fissile content in FUGEN spent fuel assemblies (FAs). Methodology used is: (1) Detector was designed using fission chambers (FCs); (2) Optimized design via MCNPX simulations; and (3) Plan to build and field test instrument in FY13. Significance was to improve safeguards verification of spent fuel assemblies in water and increase sensitivity to partial defects. MCNPX simulations were performed to optimize the design of the SINRD+PNAR detector. PNAR ratio was less sensitive to FA positioning than SINRD and SINRD ratio wasmore » more sensitive to Pu fissile mass than PNAR. Significance was that the integration of these techniques can be used to improve verification of spent fuel assemblies in water.« less
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.
Design verification tests for an axial gap permanent magnet compressor motor
NASA Astrophysics Data System (ADS)
Hawsey, R. A.; Bailey, J. M.
1987-07-01
A 30-hp, direct-drive, permanent magnet motor (PMM) has been constructed. The motor is to operate at 15,000 rpm and is designed to drive a Worthington compressor at the US DOE-owned gaseous diffusion plants. The PMM prevents traditional dynamometer testing, including locked rotor current, voltage, and torque measurements. A test plan is presented for data acquisition on the dynamometer test stand in order to calculate the equivalent circuit for the motor. A description of the hardware required for these measurements is included in the plan.
Study for verification testing of the helmet-mounted display in the Japanese Experimental Module.
Nakajima, I; Yamamoto, I; Kato, H; Inokuchi, S; Nemoto, M
2000-02-01
Our purpose is to propose a research and development project in the field of telemedicine. The proposed Multimedia Telemedicine Experiment for Extra-Vehicular Activity will entail experiments designed to support astronaut health management during Extra-Vehicular Activity (EVA). Experiments will have relevant applications to the Japanese Experimental Module (JEM) operated by National Space Development Agency of Japan (NASDA) for the International Space Station (ISS). In essence, this is a proposal for verification testing of the Helmet-Mounted Display (HMD), which enables astronauts to verify their own blood pressures and electrocardiograms, and to view a display of instructions from the ground station and listings of work procedures. Specifically, HMD is a device designed to project images and data inside the astronaut's helmet. We consider this R&D proposal to be one of the most suitable projects under consideration in response to NASDA's open invitation calling for medical experiments to be conducted on JEM.
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1983-01-01
The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.
Integrated heat pipe-thermal storage system performance evaluation
NASA Technical Reports Server (NTRS)
Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary
1987-01-01
An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.
Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis
NASA Technical Reports Server (NTRS)
1973-01-01
System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.
A study of applications scribe frame data verifications using design rule check
NASA Astrophysics Data System (ADS)
Saito, Shoko; Miyazaki, Masaru; Sakurai, Mitsuo; Itoh, Takahisa; Doi, Kazumasa; Sakurai, Norioko; Okada, Tomoyuki
2013-06-01
In semiconductor manufacturing, scribe frame data generally is generated for each LSI product according to its specific process design. Scribe frame data is designed based on definition tables of scanner alignment, wafer inspection and customers specified marks. We check that scribe frame design is conforming to specification of alignment and inspection marks at the end. Recently, in COT (customer owned tooling) business or new technology development, there is no effective verification method for the scribe frame data, and we take a lot of time to work on verification. Therefore, we tried to establish new verification method of scribe frame data by applying pattern matching and DRC (Design Rule Check) which is used in device verification. We would like to show scheme of the scribe frame data verification using DRC which we tried to apply. First, verification rules are created based on specifications of scanner, inspection and others, and a mark library is also created for pattern matching. Next, DRC verification is performed to scribe frame data. Then the DRC verification includes pattern matching using mark library. As a result, our experiments demonstrated that by use of pattern matching and DRC verification our new method can yield speed improvements of more than 12 percent compared to the conventional mark checks by visual inspection and the inspection time can be reduced to less than 5 percent if multi-CPU processing is used. Our method delivers both short processing time and excellent accuracy when checking many marks. It is easy to maintain and provides an easy way for COT customers to use original marks. We believe that our new DRC verification method for scribe frame data is indispensable and mutually beneficial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen
Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administrationmore » (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.« less
The CHANDRA X-Ray Observatory: Thermal Design, Verification, and Early Orbit Experience
NASA Technical Reports Server (NTRS)
Boyd, David A.; Freeman, Mark D.; Lynch, Nicolie; Lavois, Anthony R. (Technical Monitor)
2000-01-01
The CHANDRA X-ray Observatory (formerly AXAF), one of NASA's "Great Observatories" was launched aboard the Shuttle in July 1999. CHANDRA comprises a grazing-incidence X-ray telescope of unprecedented focal-length, collecting area and angular resolution -- better than two orders of magnitude improvement in imaging performance over any previous soft X-ray (0.1-10 keV) mission. Two focal-plane instruments, one with a 150 K passively-cooled detector, provide celestial X-ray images and spectra. Thermal control of CHANDRA includes active systems for the telescope mirror and environment and the optical bench, and largely passive systems for the focal plans instruments. Performance testing of these thermal control systems required 1-1/2 years at increasing levels of integration, culminating in thermal-balance testing of the fully-configured observatory during the summer of 1998. This paper outlines details of thermal design tradeoffs and methods for both the Observatory and the two focal-plane instruments, the thermal verification philosophy of the Chandra program (what to test and at what level), and summarizes the results of the instrument, optical system and observatory testing.
Thermal testing by internal IR heating of the FEP module
NASA Technical Reports Server (NTRS)
Nathanson, D. M.; Efromson, R. A.; Lee, E. I.
1986-01-01
A spacecraft module, to be integrated with the FLTSATCOM spacecraft, was tested in a simulated orbit environment separate from the host spacecraft. Thermal vacuum testing of the module was accomplished using internal IR heating rather than conventional external heat sources. For this configuration, the technique produced boundary conditions expected for flight to enable verification of system performance and thermal design details.
Development of a preprototype vapor compression distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Johnson, K. L.
1978-01-01
The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.
40 CFR 1066.420 - Pre-test verification procedures and pre-test data collection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Pre-test verification procedures and pre-test data collection. 1066.420 Section 1066.420 Protection of Environment ENVIRONMENTAL PROTECTION... Test § 1066.420 Pre-test verification procedures and pre-test data collection. (a) Follow the...
40 CFR 1066.420 - Pre-test verification procedures and pre-test data collection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Pre-test verification procedures and pre-test data collection. 1066.420 Section 1066.420 Protection of Environment ENVIRONMENTAL PROTECTION... Test § 1066.420 Pre-test verification procedures and pre-test data collection. (a) Follow the...
Gas cooled fuel cell systems technology development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1983-01-01
The first phase of a planned multiphase program to develop a Phosphoric is addressed. This report describes the efforts performed that culminated in the: (1) Establishment of the preliminary design requirements and system conceptual design for the nominally rated 375 kW PAFC module and is interfacing power plant systems; (2) Establishment of PAFC component and stack performance, endurance, and design parameter data needed for design verification for power plant application; (3) Improvement of the existing PAFC materials data base and establishment of materials specifications and process procedes for the cell components; and (4) Testing of 122 subscale cell atmospheric test for 110,000 cumulative test hours, 12 subscale cell pressurized tests for 15,000 cumulative test hours, and 12 pressurized stack test for 10,000 cumulative test hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishbone, L.G.; Moussalli, G.; Naegele, G.
1994-04-01
An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations aboutmore » both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ``mailbox``. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant.« less
ENVIRONMENTAL TECHNOLOGY VERIFICATION TEST PROTOCOL, GENERAL VENTILATION FILTERS
The Environmental Technology Verification Test Protocol, General Ventilation Filters provides guidance for verification tests.
Reference is made in the protocol to the ASHRAE 52.2P "Method of Testing General Ventilation Air-cleaning Devices for Removal Efficiency by P...
The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...
Simulation-based MDP verification for leading-edge masks
NASA Astrophysics Data System (ADS)
Su, Bo; Syrel, Oleg; Pomerantsev, Michael; Hagiwara, Kazuyuki; Pearman, Ryan; Pang, Leo; Fujimara, Aki
2017-07-01
For IC design starts below the 20nm technology node, the assist features on photomasks shrink well below 60nm and the printed patterns of those features on masks written by VSB eBeam writers start to show a large deviation from the mask designs. Traditional geometry-based fracturing starts to show large errors for those small features. As a result, other mask data preparation (MDP) methods have become available and adopted, such as rule-based Mask Process Correction (MPC), model-based MPC and eventually model-based MDP. The new MDP methods may place shot edges slightly differently from target to compensate for mask process effects, so that the final patterns on a mask are much closer to the design (which can be viewed as the ideal mask), especially for those assist features. Such an alteration generally produces better masks that are closer to the intended mask design. Traditional XOR-based MDP verification cannot detect problems caused by eBeam effects. Much like model-based OPC verification which became a necessity for OPC a decade ago, we see the same trend in MDP today. Simulation-based MDP verification solution requires a GPU-accelerated computational geometry engine with simulation capabilities. To have a meaningful simulation-based mask check, a good mask process model is needed. The TrueModel® system is a field tested physical mask model developed by D2S. The GPU-accelerated D2S Computational Design Platform (CDP) is used to run simulation-based mask check, as well as model-based MDP. In addition to simulation-based checks such as mask EPE or dose margin, geometry-based rules are also available to detect quality issues such as slivers or CD splits. Dose margin related hotspots can also be detected by setting a correct detection threshold. In this paper, we will demonstrate GPU-acceleration for geometry processing, and give examples of mask check results and performance data. GPU-acceleration is necessary to make simulation-based mask MDP verification acceptable.
Process Sensitivity, Performance, and Direct Verification Testing of Adhesive Locking Features
NASA Technical Reports Server (NTRS)
Golden, Johnny L.; Leatherwood, Michael D.; Montoya, Michael D.; Kato, Ken A.; Akers, Ed
2012-01-01
Phase I: The use of adhesive locking features or liquid locking compounds (LLCs) (e.g., Loctite) as a means of providing a secondary locking feature has been used on NASA programs since the Apollo program. In many cases Loctite was used as a last resort when (a) self-locking fasteners were no longer functioning per their respective drawing specification, (b) access was limited for removal & replacement, or (c) replacement could not be accomplished without severe impact to schedule. Long-term use of Loctite became inevitable in cases where removal and replacement of worn hardware was not cost effective and Loctite was assumed to be fully cured and working. The NASA Engineering & Safety Center (NESC) and United Space Alliance (USA) recognized the need for more extensive testing of Loctite grades to better understand their capabilities and limitations as a secondary locking feature. These tests, identified as Phase I, were designed to identify processing sensitivities, to determine proper cure time, the correct primer to use on aerospace nutplate, insert and bolt materials such as A286 and MP35N, and the minimum amount of Loctite that is required to achieve optimum breakaway torque values. The .1900-32 was the fastener size tested, due to wide usage in the aerospace industry. Three different grades of Loctite were tested. Results indicate that, with proper controls, adhesive locking features can be successfully used in the repair of locking features and should be considered for design. Phase II: Threaded fastening systems used in aerospace programs typically have a requirement for a redundant locking feature. The primary locking method is the fastener preload and the traditional redundant locking feature is a self-locking mechanical device that may include deformed threads, non-metallic inserts, split beam features, or other methods that impede movement between threaded members. The self-locking resistance of traditional locking features can be directly verified during assembly by measuring the dynamic prevailing torque. Adhesive locking features or LLCs are another method of providing redundant locking, but a direct verification method has not been used in aerospace applications to verify proper installation when using LLCs because of concern for damage to the adhesive bond. The reliability of LLCs has also been questioned due to failures observed during testing with coupons for process verification, although the coupon failures have often been attributed to a lack of proper procedures. It is highly desirable to have a direct method of verifying the LLC cure or bond integrity. The purpose of the Phase II test program was to determine if the torque applied during direct verification of an adhesive locking feature degrades that locking feature. This report documents the test program used to investigate the viability of such a direct verification method. Results of the Phase II testing were positive, and additional investigation of direct verification of adhesive locking features is merited.
40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...
40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...
40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) For...
40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...
40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...
Cluster man/system design requirements and verification. [for Skylab program
NASA Technical Reports Server (NTRS)
Watters, H. H.
1974-01-01
Discussion of the procedures employed for determining the man/system requirements that guided Skylab design, and review of the techniques used for implementing the man/system design verification. The foremost lesson learned from the design need anticipation and design verification experience is the necessity to allow for human capabilities of in-flight maintenance and repair. It is now known that the entire program was salvaged by a series of unplanned maintenance and repair events which were implemented in spite of poor design provisions for maintenance.
Space Shuttle Lightning Protection
NASA Technical Reports Server (NTRS)
Suiter, D. L.; Gadbois, R. D.; Blount, R. L.
1979-01-01
The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics.
NASA Astrophysics Data System (ADS)
Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; Price, Stephen; Hoffman, Matthew; Lipscomb, William H.; Fyke, Jeremy; Vargo, Lauren; Boghozian, Adrianna; Norman, Matthew; Worley, Patrick H.
2017-06-01
To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptops to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Ultimately, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
The Danish Environmental Technology Verification program (DANETV) Water Test Centre operated by DHI, is supported by the Danish Ministry for Science, Technology and Innovation. DANETV, the United States Environmental Protection Agency Environmental Technology Verification Progra...
The concept verification testing of materials science payloads
NASA Technical Reports Server (NTRS)
Griner, C. S.; Johnston, M. H.; Whitaker, A.
1976-01-01
The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.
Space shuttle OMS helium regulator design and development
NASA Technical Reports Server (NTRS)
Wichmann, H.; Kelly, T. L.; Lynch, R.
1974-01-01
Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.
Design evolution of the orbiter reaction control subsystem
NASA Technical Reports Server (NTRS)
Taeber, R. J.; Karakulko, W.; Belvins, D.; Hohmann, C.; Henderson, J.
1985-01-01
The challenges of space shuttle orbiter reaction control subsystem development began with selection of the propellant for the subsystem. Various concepts were evaluated before the current Earth storable, bipropellant combination was selected. Once that task was accomplished, additional challenges of designing the system to satisfy the wide range of requirements dictated by operating environments, reusability, and long life were met. Verification of system adequacy was achieved by means of a combination of analysis and test. The studies, the design efforts, and the test and analysis techniques employed in meeting the challenges are described.
Verification and Validation of Digitally Upgraded Control Rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald; Lau, Nathan
2015-09-01
As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cyclesmore » of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice—the propensity for late-stage V&V and the use of increasingly complex psychological assessment measures for V&V.« less
NASA Astrophysics Data System (ADS)
Kim, Cheol-kyun; Kim, Jungchan; Choi, Jaeseung; Yang, Hyunjo; Yim, Donggyu; Kim, Jinwoong
2007-03-01
As the minimum transistor length is getting smaller, the variation and uniformity of transistor length seriously effect device performance. So, the importance of optical proximity effects correction (OPC) and resolution enhancement technology (RET) cannot be overemphasized. However, OPC process is regarded by some as a necessary evil in device performance. In fact, every group which includes process and design, are interested in whole chip CD variation trend and CD uniformity, which represent real wafer. Recently, design based metrology systems are capable of detecting difference between data base to wafer SEM image. Design based metrology systems are able to extract information of whole chip CD variation. According to the results, OPC abnormality was identified and design feedback items are also disclosed. The other approaches are accomplished on EDA companies, like model based OPC verifications. Model based verification will be done for full chip area by using well-calibrated model. The object of model based verification is the prediction of potential weak point on wafer and fast feed back to OPC and design before reticle fabrication. In order to achieve robust design and sufficient device margin, appropriate combination between design based metrology system and model based verification tools is very important. Therefore, we evaluated design based metrology system and matched model based verification system for optimum combination between two systems. In our study, huge amount of data from wafer results are classified and analyzed by statistical method and classified by OPC feedback and design feedback items. Additionally, novel DFM flow would be proposed by using combination of design based metrology and model based verification tools.
Thermal design verification testing of the Clementine spacecraft: Quick, cheap, and useful
NASA Technical Reports Server (NTRS)
Kim, Jeong H.; Hyman, Nelson L.
1994-01-01
At this writing, Clementine had successfully fulfilled its moon-mapping mission; at this reading it will have also, with continued good fortune, taken a close look at the asteroid Geographos. The thermal design that made all this possible was indeed formidable in many respects, with very high ratios of requirements-to-available resources and performance-to-cost and mass. There was no question that a test verification of this quite unique and complex design was essential, but it had to be squeezed into an unyielding schedule and executed with bare-bones cost and manpower. After describing the thermal control subsystem's features, we report all the drama, close-calls, and cost-cutting, how objectives were achieved under severe handicap but (thankfully) with little management and documentation interference. Topics include the newly refurbished chamber (ready just in time), the reality level of the engineering model, using the analytical thermal model, the manner of environment simulation, the hand-scratched film heaters, functioning of all three types of heat pipes (but not all heat pipes), and the BMDO sensors' checkout through the chamber window. Test results revealed some surprises and much valuable data, resulting in thermal model and flight hardware refinements. We conclude with the level of correlation between predictions and both test temperatures and flight telemetry.
The Hyper-X Flight Systems Validation Program
NASA Technical Reports Server (NTRS)
Redifer, Matthew; Lin, Yohan; Bessent, Courtney Amos; Barklow, Carole
2007-01-01
For the Hyper-X/X-43A program, the development of a comprehensive validation test plan played an integral part in the success of the mission. The goal was to demonstrate hypersonic propulsion technologies by flight testing an airframe-integrated scramjet engine. Preparation for flight involved both verification and validation testing. By definition, verification is the process of assuring that the product meets design requirements; whereas validation is the process of assuring that the design meets mission requirements for the intended environment. This report presents an overview of the program with emphasis on the validation efforts. It includes topics such as hardware-in-the-loop, failure modes and effects, aircraft-in-the-loop, plugs-out, power characterization, antenna pattern, integration, combined systems, captive carry, and flight testing. Where applicable, test results are also discussed. The report provides a brief description of the flight systems onboard the X-43A research vehicle and an introduction to the ground support equipment required to execute the validation plan. The intent is to provide validation concepts that are applicable to current, follow-on, and next generation vehicles that share the hybrid spacecraft and aircraft characteristics of the Hyper-X vehicle.
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A., III
1983-01-01
A preliminary reduced variable master was constructed for pressure loading. A study of cell thickness versus cell stress was completed. Work is continuing on encapsulation of qualification modules. A 4 ft x 4 ft 'credit card' construction laminate was made.
Design, analysis and test verification of advanced encapsulation systems
NASA Astrophysics Data System (ADS)
Garcia, A., III
1983-02-01
A preliminary reduced variable master was constructed for pressure loading. A study of cell thickness versus cell stress was completed. Work is continuing on encapsulation of qualification modules. A 4 ft x 4 ft 'credit card' construction laminate was made.
Test/QA Plan for Verification of Leak Detection and Repair Technologies
The purpose of the leak detection and repair (LDAR) test and quality assurance plan is to specify procedures for a verification test applicable to commercial LDAR technologies. The purpose of the verification test is to evaluate the performance of participating technologies in b...
Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems
The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...
Design of ground test suspension systems for verification of flexible space structures
NASA Technical Reports Server (NTRS)
Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.
1988-01-01
A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.
Validation of the F-18 high alpha research vehicle flight control and avionics systems modifications
NASA Technical Reports Server (NTRS)
Chacon, Vince; Pahle, Joseph W.; Regenie, Victoria A.
1990-01-01
The verification and validation process is a critical portion of the development of a flight system. Verification, the steps taken to assure the system meets the design specification, has become a reasonably understood and straightforward process. Validation is the method used to ensure that the system design meets the needs of the project. As systems become more integrated and more critical in their functions, the validation process becomes more complex and important. The tests, tools, and techniques which are being used for the validation of the high alpha research vehicle (HARV) turning valve control system (TVCS) are discussed, and their solutions are documented. The emphasis of this paper is on the validation of integrated systems.
Validation of the F-18 high alpha research vehicle flight control and avionics systems modifications
NASA Technical Reports Server (NTRS)
Chacon, Vince; Pahle, Joseph W.; Regenie, Victoria A.
1990-01-01
The verification and validation process is a critical portion of the development of a flight system. Verification, the steps taken to assure the system meets the design specification, has become a reasonably understood and straightforward process. Validation is the method used to ensure that the system design meets the needs of the project. As systems become more integrated and more critical in their functions, the validation process becomes more complex and important. The tests, tools, and techniques which are being used for the validation of the high alpha research vehicle (HARV) turning vane control system (TVCS) are discussed and the problems and their solutions are documented. The emphasis of this paper is on the validation of integrated system.
Special features of the CLUSTER antenna and radial booms design, development and verification
NASA Technical Reports Server (NTRS)
Gianfiglio, G.; Yorck, M.; Luhmann, H. J.
1995-01-01
CLUSTER is a scientific space mission to in-situ investigate the Earth's plasma environment by means of four identical spin-stabilized spacecraft. Each spacecraft is provided with a set of four rigid booms: two Antenna Booms and two Radial Booms. This paper presents a summary of the boom development and verification phases addressing the key aspects of the Radial Boom design. In particular, it concentrates on the difficulties encountered in fulfilling simultaneously the requirements of minimum torque ratio and maximum allowed shock loads at boom latching for this two degree of freedom boom. The paper also provides an overview of the analysis campaign and testing program performed to achieve sufficient confidence in the boom performance and operation.
37 CFR 262.7 - Verification of royalty payments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Designated Agent have agreed as to proper verification methods. (b) Frequency of verification. A Copyright Owner or a Performer may conduct a single audit of the Designated Agent upon reasonable notice and... COPYRIGHT ARBITRATION ROYALTY PANEL RULES AND PROCEDURES RATES AND TERMS FOR CERTAIN ELIGIBLE...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... according to the design. The third- subsea function and pressure tests party verification must include...; Requires new casing and cementing integrity tests; Establishes new requirements for subsea secondary BOP... that, for the final casing string (or liner if it is the final string), an operator must install one...
An Item-Driven Adaptive Design for Calibrating Pretest Items. Research Report. ETS RR-14-38
ERIC Educational Resources Information Center
Ali, Usama S.; Chang, Hua-Hua
2014-01-01
Adaptive testing is advantageous in that it provides more efficient ability estimates with fewer items than linear testing does. Item-driven adaptive pretesting may also offer similar advantages, and verification of such a hypothesis about item calibration was the main objective of this study. A suitability index (SI) was introduced to adaptively…
NASA Technical Reports Server (NTRS)
French, Scott W.
1991-01-01
The goals are to show that verifying and validating a software system is a required part of software development and has a direct impact on the software's design and structure. Workshop tasks are given in the areas of statistics, integration/system test, unit and architectural testing, and a traffic controller problem.
6DOF Testing of the SLS Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Geohagan, Kevin; Bernard, Bill; Oliver, T. Emerson; Leggett, Jared; Strickland, Dennis
2018-01-01
The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). Because the navigation architecture for the SLS Block 1 vehicle is a purely inertial system, the accuracy of the achieved orbit relative to mission requirements is very sensitive to initial alignment accuracy. The assessment of this sensitivity and many others via simulation is a part of the SLS Model-Based Design and Model-Based Requirements approach. As a part of the aforementioned, 6DOF Monte Carlo simulation is used in large part to develop and demonstrate verification of program requirements. To facilitate this and the GN&C flight software design process, an SLS-Program-controlled Design Math Model (DMM) of the SLS INS was developed by the SLS Navigation Team. The SLS INS model implements all of the key functions of the hardware-namely, GCA, inertial navigation, and FDIR (Fault Detection, Isolation, and Recovery)-in support of SLS GN&C design requirements verification. Despite the strong sensitivity to initial alignment, GCA accuracy requirements were not verified by test due to program cost and schedule constraints. Instead, the system relies upon assessments performed using the SLS INS model. In order to verify SLS program requirements by analysis, the SLS INS model is verified and validated against flight hardware. In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.
Simulation verification techniques study: Simulation self test hardware design and techniques report
NASA Technical Reports Server (NTRS)
1974-01-01
The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.
This verification test was conducted according to procedures specifiedin the Test/QA Planfor Verification of Enzyme-Linked Immunosorbent Assay (ELISA) Test Kis for the Quantitative Determination of Endocrine Disrupting Compounds (EDCs) in Aqueous Phase Samples. Deviations to the...
The purpose of the cavity ringdown spectroscopy (CRDS) technology test and quality assurance plan is to specify procedures for a verification test applicable to commercial cavity ringdown spectroscopy technologies. The purpose of the verification test is to evaluate the performa...
40 CFR 86.1849-01 - Right of entry.
Code of Federal Regulations, 2011 CFR
2011-07-01
... entity who conducts or causes to be conducted in-use verification or in-use confirmatory testing under... where any such certification or in-use verification or in-use confirmatory testing or any procedures or... test vehicle used for certification, in-use verification or in-use confirmatory testing which is being...
High-G Verification of Lithium-Polymer (Li-Po) Pouch Cells
2016-05-19
should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. The...telemetry systems supporting the design , development, and testing of smart and precision mortar and artillery projectiles. 15. SUBJECT TERMS Telemetry...electronics have enabled smaller and more powerful electronic devices to be developed as designers are able to package more capability in smaller spaces. At
NASA Technical Reports Server (NTRS)
Srivas, Mandayam; Bickford, Mark
1991-01-01
The design and formal verification of a hardware system for a task that is an important component of a fault tolerant computer architecture for flight control systems is presented. The hardware system implements an algorithm for obtaining interactive consistancy (byzantine agreement) among four microprocessors as a special instruction on the processors. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, provided certain preconditions hold. An assumption is made that the processors execute synchronously. For verification, the authors used a computer aided design hardware design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.
NASA Astrophysics Data System (ADS)
Hoesl, M.; Deepak, S.; Moteabbed, M.; Jassens, G.; Orban, J.; Park, Y. K.; Parodi, K.; Bentefour, E. H.; Lu, H. M.
2016-04-01
The purpose of this work is the clinical commissioning of a recently developed in vivo range verification system (IRVS) for treatment of prostate cancer by anterior and anterior oblique proton beams. The IRVS is designed to perform a complete workflow for pre-treatment range verification and adjustment. It contains specifically designed dosimetry and electronic hardware and a specific software for workflow control with database connection to the treatment and imaging systems. An essential part of the IRVS system is an array of Si-diode detectors, designed to be mounted to the endorectal water balloon routinely used for prostate immobilization. The diodes can measure dose rate as function of time from which the water equivalent path length (WEPL) and the dose received are extracted. The former is used for pre-treatment beam range verification and correction, if necessary, while the latter is to monitor the dose delivered to patient rectum during the treatment and serves as an additional verification. The entire IRVS workflow was tested for anterior and 30 degree inclined proton beam in both solid water and anthropomorphic pelvic phantoms, with the measured WEPL and rectal doses compared to the treatment plan. Gafchromic films were also used for measurement of the rectal dose and compared to IRVS results. The WEPL measurement accuracy was in the order of 1 mm and after beam range correction, the dose received by the rectal wall were 1.6% and 0.4% from treatment planning, respectively, for the anterior and anterior oblique field. We believe the implementation of IRVS would make the treatment of prostate with anterior proton beams more accurate and reliable.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
...-AQ06 Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing... correct certain portions of the Protocol Gas Verification Program and Minimum Competency Requirements for... final rule that amends the Agency's Protocol Gas Verification Program (PGVP) and the minimum competency...
Verification test report on a solar heating and hot water system
NASA Technical Reports Server (NTRS)
1978-01-01
Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.
Flight Testing the Rotor Systems Research Aircraft (RSRA)
NASA Technical Reports Server (NTRS)
Hall, G. W.; Merrill, R. K.
1983-01-01
In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.
Development and tests on OREX vehicle thermal structure system
NASA Astrophysics Data System (ADS)
Yoshinaka, Toshinari; Morino, Yoshiki
1992-08-01
An overview of the thermal system structure development and their tests for Orbital Re-entry Experiment (OREX) vehicle, being developed as a part of H-2 Orbiting Plane (HOPE) development, is presented. The results of study on the OREX vehicle thermal structure system and concept of the system study are shown. The results of HOPE thermal structure system research were reflected to OREX in employing polyacrylonitrile tissues with conversion coating for the nose cap, Carbon-Thermal Protection System (TPS), and ceramic tile TPS for the structure. Test plans were established for material characteristics and design verifications, and flight validation for C/C (Carbon/Carbon Composite) nose cap and TPS, and gap filler, arc wind tunnel, heat insulation, and adhesion quality verification tests. Environment resistance of the C/C nose cone, C/C TPS, and ceramic tile TPS were verified and prospects of their manufacturing were obtained.
Verification of a Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation
NASA Technical Reports Server (NTRS)
Tartabini, Paul V.; Roithmayr, Carlos; Toniolo, Matthew D.; Karlgaard, Christopher; Pamadi, Bandu N.
2008-01-01
This paper discusses the verification of the Constraint Force Equation (CFE) methodology and its implementation in the Program to Optimize Simulated Trajectories II (POST2) for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint; the second case involves two rigid bodies connected with a universal joint; and the third test case is that of Mach 7 separation of the Hyper-X vehicle. For the first two cases, the POST2/CFE solutions compared well with those obtained using industry standard benchmark codes, namely AUTOLEV and ADAMS. For the Hyper-X case, the POST2/CFE solutions were in reasonable agreement with the flight test data. The CFE implementation in POST2 facilitates the analysis and simulation of stage separation as an integral part of POST2 for seamless end-to-end simulations of launch vehicle trajectories.
NASA Technical Reports Server (NTRS)
Fey, M. G.
1981-01-01
The experimental verification system for the production of silicon via the arc heater-sodium reduction of SiCl4 was designed, fabricated, installed, and operated. Each of the attendant subsystems was checked out and operated to insure performance requirements. These subsystems included: the arc heaters/reactor, cooling water system, gas system, power system, Control & Instrumentation system, Na injection system, SiCl4 injection system, effluent disposal system and gas burnoff system. Prior to introducing the reactants (Na and SiCl4) to the arc heater/reactor, a series of gas only-power tests was conducted to establish the operating parameters of the three arc heaters of the system. Following the successful completion of the gas only-power tests and the readiness tests of the sodium and SiCl4 injection systems, a shakedown test of the complete experimental verification system was conducted.
Low-cost and high-speed optical mark reader based on an intelligent line camera
NASA Astrophysics Data System (ADS)
Hussmann, Stephan; Chan, Leona; Fung, Celine; Albrecht, Martin
2003-08-01
Optical Mark Recognition (OMR) is thoroughly reliable and highly efficient provided that high standards are maintained at both the planning and implementation stages. It is necessary to ensure that OMR forms are designed with due attention to data integrity checks, the best use is made of features built into the OMR, used data integrity is checked before the data is processed and data is validated before it is processed. This paper describes the design and implementation of an OMR prototype system for marking multiple-choice tests automatically. Parameter testing is carried out before the platform and the multiple-choice answer sheet has been designed. Position recognition and position verification methods have been developed and implemented in an intelligent line scan camera. The position recognition process is implemented into a Field Programmable Gate Array (FPGA), whereas the verification process is implemented into a micro-controller. The verified results are then sent to the Graphical User Interface (GUI) for answers checking and statistical analysis. At the end of the paper the proposed OMR system will be compared with commercially available system on the market.
Software engineering and automatic continuous verification of scientific software
NASA Astrophysics Data System (ADS)
Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.
2011-12-01
Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.
AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR MERCURY EMISSION SAMPLING SYSTEMS
CEMs - Tekran Instrument Corp. Series 3300 and Thermo Electron's Mercury Freedom System Continuous Emission Monitors (CEMs) for mercury are designed to determine total and/or chemically speciated vapor-phase mercury in combustion emissions. Performance for mercury CEMs are cont...
Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1
NASA Technical Reports Server (NTRS)
Bernard, Douglas E. (Editor); Man, Guy K. (Editor)
1989-01-01
Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft.
Elastic suspension of a wind tunnel test section
NASA Technical Reports Server (NTRS)
Hacker, R.; Rock, S.; Debra, D. B.
1982-01-01
Experimental verification of the theory describing arbitrary motions of an airfoil is reported. The experimental apparatus is described. A mechanism was designed to provide two separate degrees of freedom without friction or backlash to mask the small but important aerodynamic effects of interest.
A real-time simulator of a turbofan engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.
1989-01-01
A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.
NASA Technical Reports Server (NTRS)
Page, J.
1981-01-01
The effects of an independent verification and integration (V and I) methodology on one class of application are described. Resource profiles are discussed. The development environment is reviewed. Seven measures are presented to test the hypothesis that V and I improve the development and product. The V and I methodology provided: (1) a decrease in requirements ambiguities and misinterpretation; (2) no decrease in design errors; (3) no decrease in the cost of correcting errors; (4) a decrease in the cost of system and acceptance testing; (5) an increase in early discovery of errors; (6) no improvement in the quality of software put into operation; and (7) a decrease in productivity and an increase in cost.
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
On verifying a high-level design. [cost and error analysis
NASA Technical Reports Server (NTRS)
Mathew, Ben; Wehbeh, Jalal A.; Saab, Daniel G.
1993-01-01
An overview of design verification techniques is presented, and some of the current research in high-level design verification is described. Formal hardware description languages that are capable of adequately expressing the design specifications have been developed, but some time will be required before they can have the expressive power needed to be used in real applications. Simulation-based approaches are more useful in finding errors in designs than they are in proving the correctness of a certain design. Hybrid approaches that combine simulation with other formal design verification techniques are argued to be the most promising over the short term.
Lacbawan, Felicitas L; Weck, Karen E; Kant, Jeffrey A; Feldman, Gerald L; Schrijver, Iris
2012-01-01
The number of clinical laboratories introducing various molecular tests to their existing test menu is continuously increasing. Prior to offering a US Food and Drug Administration-approved test, it is necessary that performance characteristics of the test, as claimed by the company, are verified before the assay is implemented in a clinical laboratory. To provide an example of the verification of a specific qualitative in vitro diagnostic test: cystic fibrosis carrier testing using the Luminex liquid bead array (Luminex Molecular Diagnostics, Inc, Toronto, Ontario). The approach used by an individual laboratory for verification of a US Food and Drug Administration-approved assay is described. Specific verification data are provided to highlight the stepwise verification approach undertaken by a clinical diagnostic laboratory. Protocols for verification of in vitro diagnostic assays may vary between laboratories. However, all laboratories must verify several specific performance specifications prior to implementation of such assays for clinical use. We provide an example of an approach used for verifying performance of an assay for cystic fibrosis carrier screening.
30 CFR 250.913 - When must I resubmit Platform Verification Program plans?
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.913 When must I resubmit Platform Verification Program plans? (a) You must resubmit any design verification, fabrication... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I resubmit Platform Verification...
40 CFR 1065.920 - PEMS Calibrations and verifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... verification. The verification consists of operating an engine over a duty cycle in the laboratory and... by laboratory equipment as follows: (1) Mount an engine on a dynamometer for laboratory testing...
Advanced on-site power plant development technology program
NASA Technical Reports Server (NTRS)
Kemp, F. S.
1985-01-01
A 30-cell stack was tested for 7200 hours. At 6000 hours the stack was successfully refilled with acid with no loss of performance. A second stack containing the advanced Configuration B cell package was fabricated and assembled for testing in 1985. A 200-kW brassboard inverter was successfully evaluated, verifying the design of the two-bridge ASCR circuit design. A fuel processing catalyst train was tested for 2000 hours verifying the catalyst for use in a 200-kW development reformer. The development reformer was fabricated for evaluation in 1985. The initial test plan was prepared for a 200-kW verification test article.
WIS Implementation Study Report. Volume 2. Resumes.
1983-10-01
WIS modernization that major attention be paid to interface definition and design, system integra- tion and test , and configuration management of the...Estimates -- Computer Corporation of America -- 155 Test Processing Systems -- Newburyport Computer Associates, Inc. -- 183 Cluster II Papers-- Standards...enhancements of the SPL/I compiler system, development of test systems for the verification of SDEX/M and the timing and architecture of the AN/U YK-20 and
Design and testing of the Space Station Freedom Propellant Tank Assembly
NASA Technical Reports Server (NTRS)
Dudley, D. D.; Thonet, T. A.; Goforth, A. M.
1992-01-01
Propellant storage and management functions for the Propulsion Module of the U.S. Space Station Freedom are provided by the Propellant Tank Assembly (PTA). The PTA consists of a surface-tension type propellant acquisition device contained within a welded titanium pressure vessel. The PTA design concept was selected with high reliability and low program risk as primary goals in order to meet stringent NASA structural, expulsion, fracture control and reliability requirements. The PTA design makes use of Shuttle Orbital Maneuvering System and Peacekeeper Propellant Storage Assembly design and analysis techniques. This paper summarizes the PTA design solution and discusses the underlying detailed analyses. In addition, design verification and qualification test activities are discussed.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2008-01-01
Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.
Magnetic cleanliness verification approach on tethered satellite
NASA Technical Reports Server (NTRS)
Messidoro, Piero; Braghin, Massimo; Grande, Maurizio
1990-01-01
Magnetic cleanliness testing was performed on the Tethered Satellite as the last step of an articulated verification campaign aimed at demonstrating the capability of the satellite to support its TEMAG (TEthered MAgnetometer) experiment. Tests at unit level and analytical predictions/correlations using a dedicated mathematical model (GANEW program) are also part of the verification activities. Details of the tests are presented, and the results of the verification are described together with recommendations for later programs.
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
Debris control design achievements of the booster separation motors
NASA Technical Reports Server (NTRS)
Smith, G. W.; Chase, C. A.
1985-01-01
The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.
NASA Technical Reports Server (NTRS)
1982-01-01
Tests to verify the as-designed performance of all circuits within the thematic mapper electronics module unit are described. Specifically, the tests involved the evaluation of the scan line corrector driver, shutter drivers function, cal lamp controller function, post amplifier function, command decoder verification unit, and the temperature and actuator controllers function.
Direct Write Printing on Thin and Flexible Substrates for Space Applications
NASA Technical Reports Server (NTRS)
Paquette, Beth
2016-01-01
This presentation describes the work done on direct-write printing conductive traces for a flexible detector application. A Repeatability Plan was established to define detector requirements, material and printer selections, printing facilities, and tests to verify requirements are met. Designs were created for the detector, and printed using an aerosol jet printer. Testing for requirement verification is ongoing.
Elaina Jennings; John W. van de Lindt; Ershad Ziaei; Pouria Bahmani; Sangki Park; Xiaoyun Shao; Weichiang Pang; Douglas Rammer; Gary Mochizuki; Mikhail Gershfeld
2015-01-01
The FEMA P-807 Guidelines were developed for retrofitting soft-story wood-frame buildings based on existing data, and the method had not been verified through full-scale experimental testing. This article presents two different retrofit designs based directly on the FEMA P-807 Guidelines that were examined at several different seismic intensity levels. The...
NASA Astrophysics Data System (ADS)
Launch vehicle propulsion system reliability considerations during the design and verification processes are discussed. The tools available for predicting and minimizing anomalies or failure modes are described and objectives for validating advanced launch system propulsion reliability are listed. Methods for ensuring vehicle/propulsion system interface reliability are examined and improvements in the propulsion system development process are suggested to improve reliability in launch operations. Also, possible approaches to streamline the specification and procurement process are given. It is suggested that government and industry should define reliability program requirements and manage production and operations activities in a manner that provides control over reliability drivers. Also, it is recommended that sufficient funds should be invested in design, development, test, and evaluation processes to ensure that reliability is not inappropriately subordinated to other management considerations.
He, Hua; McDermott, Michael P.
2012-01-01
Sensitivity and specificity are common measures of the accuracy of a diagnostic test. The usual estimators of these quantities are unbiased if data on the diagnostic test result and the true disease status are obtained from all subjects in an appropriately selected sample. In some studies, verification of the true disease status is performed only for a subset of subjects, possibly depending on the result of the diagnostic test and other characteristics of the subjects. Estimators of sensitivity and specificity based on this subset of subjects are typically biased; this is known as verification bias. Methods have been proposed to correct verification bias under the assumption that the missing data on disease status are missing at random (MAR), that is, the probability of missingness depends on the true (missing) disease status only through the test result and observed covariate information. When some of the covariates are continuous, or the number of covariates is relatively large, the existing methods require parametric models for the probability of disease or the probability of verification (given the test result and covariates), and hence are subject to model misspecification. We propose a new method for correcting verification bias based on the propensity score, defined as the predicted probability of verification given the test result and observed covariates. This is estimated separately for those with positive and negative test results. The new method classifies the verified sample into several subsamples that have homogeneous propensity scores and allows correction for verification bias. Simulation studies demonstrate that the new estimators are more robust to model misspecification than existing methods, but still perform well when the models for the probability of disease and probability of verification are correctly specified. PMID:21856650
Validation of the AVM Blast Computational Modeling and Simulation Tool Set
2015-08-04
by-construction" methodology is powerful and would not be possible without high -level design languages to support validation and verification. [1,4...to enable the making of informed design decisions. Enable rapid exploration of the design trade-space for high -fidelity requirements tradeoffs...live-fire tests, the jump height of the target structure is recorded by using either high speed cameras or a string pot. A simple projectile motion
Space station System Engineering and Integration (SE and I). Volume 2: Study results
NASA Technical Reports Server (NTRS)
1987-01-01
A summary of significant study results that are products of the Phase B conceptual design task are contained. Major elements are addressed. Study results applicable to each major element or area of design are summarized and included where appropriate. Areas addressed include: system engineering and integration; customer accommodations; test and program verification; product assurance; conceptual design; operations and planning; technical and management information system (TMIS); and advanced development.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and verification tests for the biomedical ground lead system of Apollo biomedical monitors are presented. Major efforts were made to provide a low impedance path to ground, reduce noise and artifact of ECG signals, and limit the current flowing in the ground electrode of the system.
30 CFR 285.705 - When must I use a Certified Verification Agent (CVA)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified Verification Agent § 285.705 When must I use a Certified Verification Agent (CVA)? You must use a CVA to review and certify the Facility Design Report, the...
NASA Technical Reports Server (NTRS)
Cleveland, Paul E.; Parrish, Keith A.
2005-01-01
A thorough and unique thermal verification and model validation plan has been developed for NASA s James Webb Space Telescope. The JWST observatory consists of a large deployed aperture optical telescope passively cooled to below 50 Kelvin along with a suite of several instruments passively and actively cooled to below 37 Kelvin and 7 Kelvin, respectively. Passive cooling to these extremely low temperatures is made feasible by the use of a large deployed high efficiency sunshield and an orbit location at the L2 Lagrange point. Another enabling feature is the scale or size of the observatory that allows for large radiator sizes that are compatible with the expected power dissipation of the instruments and large format Mercury Cadmium Telluride (HgCdTe) detector arrays. This passive cooling concept is simple, reliable, and mission enabling when compared to the alternatives of mechanical coolers and stored cryogens. However, these same large scale observatory features, which make passive cooling viable, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone to most space missions thermal verification plan. JWST is simply too large in its deployed configuration to be properly thermal balance tested in the facilities that currently exist. This reality, when combined with a mission thermal concept with little to no flight heritage, has necessitated the need for a unique and alternative approach to thermal system verification and model validation. This paper describes the thermal verification and model validation plan that has been developed for JWST. The plan relies on judicious use of cryogenic and thermal design margin, a completely independent thermal modeling cross check utilizing different analysis teams and software packages, and finally, a comprehensive set of thermal tests that occur at different levels of JWST assembly. After a brief description of the JWST mission and thermal architecture, a detailed description of the three aspects of the thermal verification and model validation plan is presented.
NASA Technical Reports Server (NTRS)
Martinez, Pedro A.; Dunn, Kevin W.
1987-01-01
This paper examines the fundamental problems and goals associated with test, verification, and flight-certification of man-rated distributed data systems. First, a summary of the characteristics of modern computer systems that affect the testing process is provided. Then, verification requirements are expressed in terms of an overall test philosophy for distributed computer systems. This test philosophy stems from previous experience that was gained with centralized systems (Apollo and the Space Shuttle), and deals directly with the new problems that verification of distributed systems may present. Finally, a description of potential hardware and software tools to help solve these problems is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.
To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less
Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; ...
2017-03-23
To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less
30 CFR 250.909 - What is the Platform Verification Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is the Platform Verification Program? 250... Verification Program § 250.909 What is the Platform Verification Program? The Platform Verification Program is the MMS approval process for ensuring that floating platforms; platforms of a new or unique design...
Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Cockrell, Charles
2008-01-01
NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification.
MSAT boom joint testing and load absorber design
NASA Technical Reports Server (NTRS)
Klinker, D. H.; Shuey, K.; St.clair, D. R.
1994-01-01
Through a series of component and system-level tests, the torque margin for the MSAT booms is being determined. The verification process has yielded a number of results and lessons that can be applied to many other types of deployable spacecraft mechanisms. The MSAT load absorber has proven to be an effective way to provide high energy dissipation using crushable honeycomb. Using two stages of crushable honeycomb and a fusible link, a complex crush load profile has been designed and implemented. The design features of the load absorber lend themselves to use in other spacecraft applications.
Thermal design verification testing for the ATS-F and -G spacecraft.
NASA Technical Reports Server (NTRS)
Coyle, M.; Greenwell, J.
1972-01-01
There is a wide fluctuation in the internal power dissipation from the components within the earth viewing module (EVM). The electronic component functional reliability required for a two-to-five year mission is the most significant factor for the thermal design criteria. A mathematical thermal model of the EVM and the orbital environment is used to predict the performance of the thermal control system. Comparisons of the results obtained in chamber thermal balance tests with the data computed on the basis of the theoretical model provide the means for validating the thermal design.
A zero-knowledge protocol for nuclear warhead verification
NASA Astrophysics Data System (ADS)
Glaser, Alexander; Barak, Boaz; Goldston, Robert J.
2014-06-01
The verification of nuclear warheads for arms control involves a paradox: international inspectors will have to gain high confidence in the authenticity of submitted items while learning nothing about them. Proposed inspection systems featuring `information barriers', designed to hide measurements stored in electronic systems, are at risk of tampering and snooping. Here we show the viability of a fundamentally new approach to nuclear warhead verification that incorporates a zero-knowledge protocol, which is designed in such a way that sensitive information is never measured and so does not need to be hidden. We interrogate submitted items with energetic neutrons, making, in effect, differential measurements of both neutron transmission and emission. Calculations for scenarios in which material is diverted from a test object show that a high degree of discrimination can be achieved while revealing zero information. Our ideas for a physical zero-knowledge system could have applications beyond the context of nuclear disarmament. The proposed technique suggests a way to perform comparisons or computations on personal or confidential data without measuring the data in the first place.
Efficient logistic regression designs under an imperfect population identifier.
Albert, Paul S; Liu, Aiyi; Nansel, Tonja
2014-03-01
Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. © 2013, The International Biometric Society.
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1972-01-01
Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.
Measurements for liquid rocket engine performance code verification
NASA Technical Reports Server (NTRS)
Praharaj, Sarat C.; Palko, Richard L.
1986-01-01
The goal of the rocket engine performance code verification tests is to obtain the I sub sp with an accuracy of 0.25% or less. This needs to be done during the sequence of four related tests (two reactive and two hot gas simulation) to best utilize the loss separation technique recommended in this study. In addition to I sub sp, the measurements of the input and output parameters for the codes are needed. This study has shown two things in regard to obtaining the I sub sp uncertainty within the 0.25% target. First, this target is generally not being realized at the present time, and second, the instrumentation and testing technology does exist to obtain this 0.25% uncertainty goal. However, to achieve this goal will require carefully planned, designed, and conducted testing. In addition, the test-stand (or system) dynamics must be evaluated in the pre-test and post-test phases of the design of the experiment and data analysis, respectively always keeping in mind that a .25% overall uncertainty in I sub sp is targeted. A table gives the maximum allowable uncertainty required for obtaining I sub sp with 0.25% uncertainty, the currently-quoted instrument specification, and present test uncertainty for the parameters. In general, it appears that measurement of the mass flow parameter within the required uncertainty may be the most difficult.
Rocket Propulsion 21 Steering Committee Meeting (RP21) NASA In-Space Propulsion Update
NASA Technical Reports Server (NTRS)
Klem, Mark
2015-01-01
In-house Support of NEXT-C Contract Status Thruster NEXT Long Duration Test post-test destructive evaluation in progress Findings will be used to verify service life models identify potential design improvements Cathode heater fabrication initiated for cyclic life testing Thruster operating algorithm definition verification initiated to provide operating procedures for mission users High voltage propellant isolator life test voluntarily terminated after successfully operating 51,200 h Power processor unit (PPU) Replaced all problematic stacked multilayer ceramic dual inline pin capacitors within PPU Test bed Rebuilt installed discharge power supply primary power board Completed full functional performance characterization Final test report in progress Transferred PPU Testbed to contractor to support prototype design effort.
Formal Verification Toolkit for Requirements and Early Design Stages
NASA Technical Reports Server (NTRS)
Badger, Julia M.; Miller, Sheena Judson
2011-01-01
Efficient flight software development from natural language requirements needs an effective way to test designs earlier in the software design cycle. A method to automatically derive logical safety constraints and the design state space from natural language requirements is described. The constraints can then be checked using a logical consistency checker and also be used in a symbolic model checker to verify the early design of the system. This method was used to verify a hybrid control design for the suit ports on NASA Johnson Space Center's Space Exploration Vehicle against safety requirements.
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Evans, Richard K.
2009-01-01
A large-scale, distributed, high-speed data acquisition system (HSDAS) is currently being installed at the Space Power Facility (SPF) at NASA Glenn Research Center s Plum Brook Station in Sandusky, OH. This installation is being done as part of a facility construction project to add Vibro-acoustic Test Capabilities (VTC) to the current thermal-vacuum testing capability of SPF in support of the Orion Project s requirement for Space Environments Testing (SET). The HSDAS architecture is a modular design, which utilizes fully-remotely managed components, enables the system to support multiple test locations with a wide-range of measurement types and a very large system channel count. The architecture of the system is presented along with details on system scalability and measurement verification. In addition, the ability of the system to automate many of its processes such as measurement verification and measurement system analysis is also discussed.
Enhanced Verification Test Suite for Physics Simulation Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, J R; Brock, J S; Brandon, S T
2008-10-10
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest.more » This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater sophistication or other physics regimes (e.g., energetic material response, magneto-hydrodynamics), would represent a scientifically desirable complement to the fundamental test cases discussed in this report. The authors believe that this document can be used to enhance the verification analyses undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility, and usefulness of the simulation codes that are analyzed with these problems.« less
Measuring Fluctuating Pressure Levels and Vibration Response in a Jet Plume
NASA Technical Reports Server (NTRS)
Osterholt, Douglas J.; Knox, Douglas M.
2011-01-01
The characterization of loads due to solid rocket motor plume impingement allows for moreaccurate analyses of components subjected to such an environment. Typically, test verification of predicted loads due to these conditions is widely overlooked or unsuccessful. ATA Engineering, Inc., performed testing during a solid rocket motor firing to obtain acceleration and pressure responses in the hydrodynamic field surrounding the jet plume. The test environment necessitated a robust design to facilitate measurements being made in close proximity to the jet plume. This paper presents the process of designing a test fixture and an instrumentation package that could withstand the solid rocket plume environment and protect the required instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Amy B.; Zyvoloski, George Anthony; Weaver, Douglas James
The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test thatmore » is likely to span several years.« less
Advanced composite vertical fin for L-1011 aircraft
NASA Technical Reports Server (NTRS)
Jackson, A. C.
1984-01-01
The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.
Rule Systems for Runtime Verification: A Short Tutorial
NASA Astrophysics Data System (ADS)
Barringer, Howard; Havelund, Klaus; Rydeheard, David; Groce, Alex
In this tutorial, we introduce two rule-based systems for on and off-line trace analysis, RuleR and LogScope. RuleR is a conditional rule-based system, which has a simple and easily implemented algorithm for effective runtime verification, and into which one can compile a wide range of temporal logics and other specification formalisms used for runtime verification. Specifications can be parameterized with data, or even with specifications, allowing for temporal logic combinators to be defined. We outline a number of simple syntactic extensions of core RuleR that can lead to further conciseness of specification but still enabling easy and efficient implementation. RuleR is implemented in Java and we will demonstrate its ease of use in monitoring Java programs. LogScope is a derivation of RuleR adding a simple very user-friendly temporal logic. It was developed in Python, specifically for supporting testing of spacecraft flight software for NASA’s next 2011 Mars mission MSL (Mars Science Laboratory). The system has been applied by test engineers to analysis of log files generated by running the flight software. Detailed logging is already part of the system design approach, and hence there is no added instrumentation overhead caused by this approach. While post-mortem log analysis prevents the autonomous reaction to problems possible with traditional runtime verification, it provides a powerful tool for test automation. A new system is being developed that integrates features from both RuleR and LogScope.
DOT National Transportation Integrated Search
2000-06-01
In 1997, a load rating of an historic reinforced concrete bridge in Oregon, Horsetail Creek Bridge, indicated substandard shear and moment capacities of the beams. As a result, the Bridge was strengthened with fiber reinforced : polymer composites as...
Lageos assembly operation plan
NASA Technical Reports Server (NTRS)
Brueger, J.
1975-01-01
Guidelines and constraints procedures for LAGEOS assembly, operation, and design performance are given. Special attention was given to thermal, optical, and dynamic analysis and testing. The operation procedures illustrate the interrelation and sequence of tasks in a flow diagram. The diagram also includes quality assurance functions for verification of operation tasks.
Sediment Ecotoxicity Assessment Ring Verification Report and Statement
The SEA Ring (U.S. Patent No. 8,011,239) is an integrated, field tested, toxicity and bioavailability assessment device. This device was developed at SPAWAR in San Diego, California and is commercially available from Zebra-Tech, Ltd. The SEA Ring was designed to evaluate toxicity...
DOT National Transportation Integrated Search
2014-08-01
In the past 5.5 years, the Texas Department of Transportation (TxDOT) spent approximately $2 million for recasting precast concrete products that had alkali-silica reaction (ASR). Aggregates belonging to false positive and negative categories based o...
Performance verification testing of the UltraStrip Systems, Inc., Mobile Emergency Filtration System (MEFS) was conducted under EPA's Environmental Technology Verification (ETV) Program at the EPA Test and Evaluation (T&E) Facility in Cincinnati, Ohio, during November, 2003, thr...
Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Schwartz, R.; Hare, D.; Moore, J. S.; Melliar-Smith, P. M.; Shostak, R. E.; Boyer, R. S.; Green, M. W.; Elliott, W. D.
1983-01-01
A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic.
NASA Technical Reports Server (NTRS)
Freeman, Delman C., Jr.; Reubush, Daivd E.; McClinton, Charles R.; Rausch, Vincent L.; Crawford, J. Larry
1997-01-01
This paper provides an overview of NASA's Hyper-X Program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an overview of the flight test program, research objectives, approach, schedule and status. Substantial experimental database and concept validation have been completed. The program is currently concentrating on the first, Mach 7, vehicle development, verification and validation in preparation for wind-tunnel testing in 1998 and flight testing in 1999. Parallel to this effort the Mach 5 and 10 vehicle designs are being finalized. Detailed analytical and experimental evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a database for validation of design methods once flight test data are available.
Design of lightning protection for a full-authority digital engine control
NASA Technical Reports Server (NTRS)
Dargi, M.; Rupke, E.; Wiles, K.
1991-01-01
The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.
NASA Technical Reports Server (NTRS)
Harvill, W. E.; Kizer, J. A.
1976-01-01
The advantageous structural uses of advanced filamentary composites are demonstrated by design, fabrication, and test of three boron-epoxy reinforced C-130 center wing boxes. The advanced development work necessary to support detailed design of a composite reinforced C-130 center wing box was conducted. Activities included the development of a basis for structural design, selection and verification of materials and processes, manufacturing and tooling development, and fabrication and test of full-scale portions of the center wing box. Detailed design drawings, and necessary analytical structural substantiation including static strength, fatigue endurance, flutter, and weight analyses are considered. Some additional component testing was conducted to verify the design for panel buckling, and to evaluate specific local design areas. Development of the cool tool restraint concept was completed, and bonding capabilities were evaluated using full-length skin panel and stringer specimens.
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
This technical report contains the Higher-Order Logic (HOL) listings of the partial verification of the requirements and design for a commercially developed processor interface unit (PIU). The PIU is an interface chip performing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault tolerant computer system. This system, the Fault Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. This report contains the actual HOL listings of the PIU verification as it currently exists. Section two of this report contains general-purpose HOL theories and definitions that support the PIU verification. These include arithmetic theories dealing with inequalities and associativity, and a collection of tactics used in the PIU proofs. Section three contains the HOL listings for the completed PIU design verification. Section 4 contains the HOL listings for the partial requirements verification of the P-Port.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.
TRAC-PF1 code verification with data from the OTIS test facility. [Once-Through Intergral System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childerson, M.T.; Fujita, R.K.
1985-01-01
A computer code (TRAC-PF1/MOD1) developed for predicting transient thermal and hydraulic integral nuclear steam supply system (NSSS) response was benchmarked. Post-small break loss-of-coolant accident (LOCA) data from a scaled, experimental facility, designated the One-Through Integral System (OTIS), were obtained for the Babcock and Wilcox NSSS and compared to TRAC predictions. The OTIS tests provided a challenging small break LOCA data set for TRAC verification. The major phases of a small break LOCA observed in the OTIS tests included pressurizer draining and loop saturation, intermittent reactor coolant system circulation, boiler-condenser mode, and the initial stages of refill. The TRAC code wasmore » successful in predicting OTIS loop conditions (system pressures and temperatures) after modification of the steam generator model. In particular, the code predicted both pool and auxiliary-feedwater initiated boiler-condenser mode heat transfer.« less
Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin
2016-12-04
Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given.
Man-rated flight software for the F-8 DFBW program
NASA Technical Reports Server (NTRS)
Bairnsfather, R. R.
1975-01-01
The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.
Integrated verification and testing system (IVTS) for HAL/S programs
NASA Technical Reports Server (NTRS)
Senn, E. H.; Ames, K. R.; Smith, K. A.
1983-01-01
The IVTS is a large software system designed to support user-controlled verification analysis and testing activities for programs written in the HAL/S language. The system is composed of a user interface and user command language, analysis tools and an organized data base of host system files. The analysis tools are of four major types: (1) static analysis, (2) symbolic execution, (3) dynamic analysis (testing), and (4) documentation enhancement. The IVTS requires a split HAL/S compiler, divided at the natural separation point between the parser/lexical analyzer phase and the target machine code generator phase. The IVTS uses the internal program form (HALMAT) between these two phases as primary input for the analysis tools. The dynamic analysis component requires some way to 'execute' the object HAL/S program. The execution medium may be an interpretive simulation or an actual host or target machine.
Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin
2016-01-01
Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given. PMID:28060306
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Olson, Leah M.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is engaged in a multi-year design and test campaign aimed at qualifying a parachute recovery system for human use on the Orion Spacecraft. Orion has parachute flight performance requirements that will ultimately be verified through the use of Monte Carlo multi-degree of freedom flight simulations. These simulations will be anchored by real world flight test data and iteratively improved to provide a closer approximation to the real physics observed in the inherently chaotic inflation and steady state flight of the CPAS parachutes. This paper will examine the processes necessary to verify the flight performance requirements of the human rated spacecraft. The focus will be on the requirements verification and model validation planned on CPAS.
SLS Flight Software Testing: Using a Modified Agile Software Testing Approach
NASA Technical Reports Server (NTRS)
Bolton, Albanie T.
2016-01-01
NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner. Through agile testing, there has been increased value through individuals and interactions over processes and tools, improved customer collaboration, and improved responsiveness to changes through controlled planning. The presentation will describe agile testing methodology as taken with the SLS FSW Test and Verification team at Marshall Space Flight Center.
Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.
2015-01-01
The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.
Traveler Phase 1A Joint Review
NASA Technical Reports Server (NTRS)
St. John, Clint; Scofield, Jan; Skoog, Mark; Flock, Alex; Williams, Ethan; Guirguis, Luke; Loudon, Kevin; Sutherland, Jeffrey; Lehmann, Richard; Garland, Michael;
2017-01-01
The briefing contains the preliminary findings and suggestions for improvement of methods used in development and evaluation of a multi monitor runtime assurance architecture for autonomous flight vehicles. Initial system design, implementation, verification, and flight testing has been conducted. As of yet detailed data review is incomplete, and flight testing has been limited to initial monitor force fights. Detailed monitor flight evaluations have yet to be performed.
ERIC Educational Resources Information Center
Matthews, Paul G.; Atkinson, Richard C.
This paper reports an experiment designed to test theoretical relations among fast problem solving, more complex and slower problem solving, and research concerning fundamental memory processes. Using a cathode ray tube, subjects were presented with propositions of the form "Y is in list X" which they memorized. In later testing they were asked to…
ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR INDOOR AIR PRODUCTS
The paper discusses environmental technology verification (ETV) for indoor air products. RTI is developing the framework for a verification testing program for indoor air products, as part of EPA's ETV program. RTI is establishing test protocols for products that fit into three...
The Environmental Technology Verification (ETV) – Environmental and Sustainable Technology Evaluations (ESTE) Program conducts third-party verification testing of commercially available technologies that may accomplish environmental program management goals. In this verification...
PERFORMANCE VERIFICATION TEST FOR FIELD-PORTABLE MEASUREMENTS OF LEAD IN DUST
The US Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program (www.epa.jzov/etv) conducts performance verification tests of technologies used for the characterization and monitoring of contaminated media. The program exists to provide high-quali...
VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS
This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...
SLS Navigation Model-Based Design Approach
NASA Technical Reports Server (NTRS)
Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas
2018-01-01
The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and management of design requirements to the development of usable models, model requirements, and model verification and validation efforts. The models themselves are represented in C/C++ code and accompanying data files. Under the idealized process, potential ambiguity in specification is reduced because the model must be implementable versus a requirement which is not necessarily subject to this constraint. Further, the models are shown to emulate the hardware during validation. For models developed by the Navigation Team, a common interface/standalone environment was developed. The common environment allows for easy implementation in design and analysis tools. Mechanisms such as unit test cases ensure implementation as the developer intended. The model verification and validation process provides a very high level of component design insight. The origin and implementation of the SLS variant of Model-based Design is described from the perspective of the SLS Navigation Team. The format of the models and the requirements are described. The Model-based Design approach has many benefits but is not without potential complications. Key lessons learned associated with the implementation of the Model Based Design approach and process from infancy to verification and certification are discussed
Gaia challenging performances verification: combination of spacecraft models and test results
NASA Astrophysics Data System (ADS)
Ecale, Eric; Faye, Frédéric; Chassat, François
2016-08-01
To achieve the ambitious scientific objectives of the Gaia mission, extremely stringent performance requirements have been given to the spacecraft contractor (Airbus Defence and Space). For a set of those key-performance requirements (e.g. end-of-mission parallax, maximum detectable magnitude, maximum sky density or attitude control system stability), this paper describes how they are engineered during the whole spacecraft development process, with a focus on the end-to-end performance verification. As far as possible, performances are usually verified by end-to-end tests onground (i.e. before launch). However, the challenging Gaia requirements are not verifiable by such a strategy, principally because no test facility exists to reproduce the expected flight conditions. The Gaia performance verification strategy is therefore based on a mix between analyses (based on spacecraft models) and tests (used to directly feed the models or to correlate them). Emphasis is placed on how to maximize the test contribution to performance verification while keeping the test feasible within an affordable effort. In particular, the paper highlights the contribution of the Gaia Payload Module Thermal Vacuum test to the performance verification before launch. Eventually, an overview of the in-flight payload calibration and in-flight performance verification is provided.
Test and Verification Approach for the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Strong, Edward
2008-01-01
This viewgraph presentation is a test and verification approach for the NASA Constellation Program. The contents include: 1) The Vision for Space Exploration: Foundations for Exploration; 2) Constellation Program Fleet of Vehicles; 3) Exploration Roadmap; 4) Constellation Vehicle Approximate Size Comparison; 5) Ares I Elements; 6) Orion Elements; 7) Ares V Elements; 8) Lunar Lander; 9) Map of Constellation content across NASA; 10) CxP T&V Implementation; 11) Challenges in CxP T&V Program; 12) T&V Strategic Emphasis and Key Tenets; 13) CxP T&V Mission & Vision; 14) Constellation Program Organization; 15) Test and Evaluation Organization; 16) CxP Requirements Flowdown; 17) CxP Model Based Systems Engineering Approach; 18) CxP Verification Planning Documents; 19) Environmental Testing; 20) Scope of CxP Verification; 21) CxP Verification - General Process Flow; 22) Avionics and Software Integrated Testing Approach; 23) A-3 Test Stand; 24) Space Power Facility; 25) MEIT and FEIT; 26) Flight Element Integrated Test (FEIT); 27) Multi-Element Integrated Testing (MEIT); 28) Flight Test Driving Principles; and 29) Constellation s Integrated Flight Test Strategy Low Earth Orbit Servicing Capability.
Towards composition of verified hardware devices
NASA Technical Reports Server (NTRS)
Schubert, E. Thomas; Levitt, K.; Cohen, G. C.
1991-01-01
Computers are being used where no affordable level of testing is adequate. Safety and life critical systems must find a replacement for exhaustive testing to guarantee their correctness. Through a mathematical proof, hardware verification research has focused on device verification and has largely ignored system composition verification. To address these deficiencies, we examine how the current hardware verification methodology can be extended to verify complete systems.
NASA Technical Reports Server (NTRS)
Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.
2007-01-01
This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.
Handbook: Design of automated redundancy verification
NASA Technical Reports Server (NTRS)
Ford, F. A.; Hasslinger, T. W.; Moreno, F. J.
1971-01-01
The use of the handbook is discussed and the design progress is reviewed. A description of the problem is presented, and examples are given to illustrate the necessity for redundancy verification, along with the types of situations to which it is typically applied. Reusable space vehicles, such as the space shuttle, are recognized as being significant in the development of the automated redundancy verification problem.
An overview of key technology thrusts at Bell Helicopter Textron
NASA Technical Reports Server (NTRS)
Harse, James H.; Yen, Jing G.; Taylor, Rodney S.
1988-01-01
Insight is provided into several key technologies at Bell. Specific topics include the results of ongoing research and development in advanced rotors, methodology development, and new configurations. The discussion on advanced rotors highlight developments on the composite, bearingless rotor, including the development and testing of full scale flight hardware as well as some of the design support analyses and verification testing. The discussion on methodology development concentrates on analytical development in aeromechanics, including correlation studies and design application. New configurations, presents the results of some advanced configuration studies including hardware development.
Apollo Soyuz Test Project Weights and Mass Properties Operational Management System
NASA Technical Reports Server (NTRS)
Collins, M. A., Jr.; Hischke, E. R.
1975-01-01
The Apollo Soyuz Test Project (ASTP) Weights and Mass Properties Operational Management System was established to assure a timely and authoritative method of acquiring, controlling, generating, and disseminating an official set of vehicle weights and mass properties data. This paper provides an overview of the system and its interaction with the various aspects of vehicle and component design, mission planning, hardware and software simulations and verification, and real-time mission support activities. The effect of vehicle configuration, design maturity, and consumables updates is discussed in the context of weight control.
22 CFR 123.14 - Import certificate/delivery verification procedure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... REGULATIONS LICENSES FOR THE EXPORT OF DEFENSE ARTICLES § 123.14 Import certificate/delivery verification procedure. (a) The Import Certificate/Delivery Verification Procedure is designed to assure that a commodity... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Import certificate/delivery verification...
22 CFR 123.14 - Import certificate/delivery verification procedure.
Code of Federal Regulations, 2011 CFR
2011-04-01
... REGULATIONS LICENSES FOR THE EXPORT OF DEFENSE ARTICLES § 123.14 Import certificate/delivery verification procedure. (a) The Import Certificate/Delivery Verification Procedure is designed to assure that a commodity... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Import certificate/delivery verification...
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Each STD shall develop a quality assurance program which will assure that the materials and workmanship... criteria in § 637.207 and be approved by the FHWA. (b) STD capabilities. The STD shall maintain an adequate... qualified sampling and testing personnel employed by the STD or its designated agent. (d) Verification...
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Each STD shall develop a quality assurance program which will assure that the materials and workmanship... criteria in § 637.207 and be approved by the FHWA. (b) STD capabilities. The STD shall maintain an adequate... qualified sampling and testing personnel employed by the STD or its designated agent. (d) Verification...
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Each STD shall develop a quality assurance program which will assure that the materials and workmanship... criteria in § 637.207 and be approved by the FHWA. (b) STD capabilities. The STD shall maintain an adequate... qualified sampling and testing personnel employed by the STD or its designated agent. (d) Verification...
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Each STD shall develop a quality assurance program which will assure that the materials and workmanship... criteria in § 637.207 and be approved by the FHWA. (b) STD capabilities. The STD shall maintain an adequate... qualified sampling and testing personnel employed by the STD or its designated agent. (d) Verification...
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Each STD shall develop a quality assurance program which will assure that the materials and workmanship... criteria in § 637.207 and be approved by the FHWA. (b) STD capabilities. The STD shall maintain an adequate... qualified sampling and testing personnel employed by the STD or its designated agent. (d) Verification...
Additional Evidence for the Accuracy of Biographical Data: Long-Term Retest and Observer Ratings.
ERIC Educational Resources Information Center
Shaffer, Garnett Stokes; And Others
1986-01-01
Investigated accuracy of responses to biodata questionnaire using a test-retest design and informed external observers for verification. Responses from 237 subjects and 200 observers provided evidence that many responses to biodata questionnaire were accurate. Assessed sources of inaccuracy, including social desirability effects, and noted…
Verification Fit Test of Three Size Infantry Helmet
1975-01-01
consideration to the helmet designer. This result is consistent with other studies (for example, NDC Technical Report 72-52-CE, " Anthropometry of US Army...FRBQUENCY 18 * 17 * 16 * 15 * 14 * * 13 * * 12 * * * xl . * * 10 * * *S9 * * * * * ° •:i8 * * * * * S7 * * * * * * S6 * * * * * * * S5 4 * * * * * * * *I3
The TraceDetect's SafeGuard is designed to automatically measure total arsenic concentrations in drinking water samples (including raw water and treated water) over a range from 1 ppb to over 100 ppb. Once the operator has introduced the sample vial and selected "measure&qu...
DOT National Transportation Integrated Search
2000-06-01
In 1997, a load rating of an historic reinforced concrete bridge in Oregon, Horsetail Creek Bridge, indicated substandard shear and moment capacities of the beams. As a result, the Bridge was strengthened with fiber reinforced polymer composites as a...
NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.
2009-01-01
Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.
This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...
40 CFR 1065.920 - PEMS calibrations and verifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...
VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS, Oregon
This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...
NASA Technical Reports Server (NTRS)
Badgley, R. H.; Fleming, D. P.; Smalley, A. J.
1975-01-01
A program for the development and verification of drive-train dynamic technology is described along with its basis and the results expected from it. A central feature of this program is a drive-train test facility designed for the testing and development of advanced drive-train components, including shaft systems, dampers, and couplings. Previous efforts in designing flexible dynamic drive-train systems are reviewed, and the present state of the art is briefly summarized. The design of the test facility is discussed with major attention given to the formulation of the test-rig concept, dynamic scaling of model shafts, and the specification of design parameters. Specific efforts envisioned for the test facility are briefly noted, including evaluations of supercritical test shafts, stability thresholds for various sources and types of instabilities that can exist in shaft systems, effects of structural flexibility on the dynamic performance of dampers, and methods for vibration control in two-level and three-level flexible shaft systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronowski, D.R.; Madsen, M.M.
The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less
Software development for airborne radar
NASA Astrophysics Data System (ADS)
Sundstrom, Ingvar G.
Some aspects for development of software in a modern multimode airborne nose radar are described. First, an overview of where software is used in the radar units is presented. The development phases-system design, functional design, detailed design, function verification, and system verification-are then used as the starting point for the discussion. Methods, tools, and the most important documents are described. The importance of video flight recording in the early stages and use of a digital signal generators for performance verification is emphasized. Some future trends are discussed.
PANIC: A General-purpose Panoramic Near-infrared Camera for the Calar Alto Observatory
NASA Astrophysics Data System (ADS)
Cárdenas Vázquez, M.-C.; Dorner, B.; Huber, A.; Sánchez-Blanco, E.; Alter, M.; Rodríguez Gómez, J. F.; Bizenberger, P.; Naranjo, V.; Ibáñez Mengual, J.-M.; Panduro, J.; García Segura, A. J.; Mall, U.; Fernández, M.; Laun, W.; Ferro Rodríguez, I. M.; Helmling, J.; Terrón, V.; Meisenheimer, K.; Fried, J. W.; Mathar, R. J.; Baumeister, H.; Rohloff, R.-R.; Storz, C.; Verdes-Montenegro, L.; Bouy, H.; Ubierna, M.; Fopp, P.; Funke, B.
2018-02-01
PANIC7 is the new PAnoramic Near-Infrared Camera for Calar Alto and is a project jointly developed by the MPIA in Heidelberg, Germany, and the IAA in Granada, Spain, for the German-Spanish Astronomical Center at Calar Alto Observatory (CAHA; Almería, Spain). This new instrument works with the 2.2 m and 3.5 m CAHA telescopes covering a field of view of 30 × 30 arcmin and 15 × 15 arcmin, respectively, with a sampling of 4096 × 4096 pixels. It is designed for the spectral bands from Z to K S , and can also be equipped with narrowband filters. The instrument was delivered to the observatory in 2014 October and was commissioned at both telescopes between 2014 November and 2015 June. Science verification at the 2.2 m telescope was carried out during the second semester of 2015 and the instrument is now at full operation. We describe the design, assembly, integration, and verification process, the final laboratory tests and the PANIC instrument performance. We also present first-light data obtained during the commissioning and preliminary results of the scientific verification. The final optical model and the theoretical performance of the camera were updated according to the as-built data. The laboratory tests were made with a star simulator. Finally, the commissioning phase was done at both telescopes to validate the camera real performance on sky. The final laboratory test confirmed the expected camera performances, complying with the scientific requirements. The commissioning phase on sky has been accomplished.
PFLOTRAN Verification: Development of a Testing Suite to Ensure Software Quality
NASA Astrophysics Data System (ADS)
Hammond, G. E.; Frederick, J. M.
2016-12-01
In scientific computing, code verification ensures the reliability and numerical accuracy of a model simulation by comparing the simulation results to experimental data or known analytical solutions. The model is typically defined by a set of partial differential equations with initial and boundary conditions, and verification ensures whether the mathematical model is solved correctly by the software. Code verification is especially important if the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment [Oberkampf and Trucano (2007)]. Justified confidence in a particular computational tool requires clarity in the exercised physics and transparency in its verification process with proper documentation. We present a quality assurance (QA) testing suite developed by Sandia National Laboratories that performs code verification for PFLOTRAN, an open source, massively-parallel subsurface simulator. PFLOTRAN solves systems of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport processes in porous media. PFLOTRAN's QA test suite compares the numerical solutions of benchmark problems in heat and mass transport against known, closed-form, analytical solutions, including documentation of the exercised physical process models implemented in each PFLOTRAN benchmark simulation. The QA test suite development strives to follow the recommendations given by Oberkampf and Trucano (2007), which describes four essential elements in high-quality verification benchmark construction: (1) conceptual description, (2) mathematical description, (3) accuracy assessment, and (4) additional documentation and user information. Several QA tests within the suite will be presented, including details of the benchmark problems and their closed-form analytical solutions, implementation of benchmark problems in PFLOTRAN simulations, and the criteria used to assess PFLOTRAN's performance in the code verification procedure. References Oberkampf, W. L., and T. G. Trucano (2007), Verification and Validation Benchmarks, SAND2007-0853, 67 pgs., Sandia National Laboratories, Albuquerque, NM.
Bayesian Estimation of Combined Accuracy for Tests with Verification Bias
Broemeling, Lyle D.
2011-01-01
This presentation will emphasize the estimation of the combined accuracy of two or more tests when verification bias is present. Verification bias occurs when some of the subjects are not subject to the gold standard. The approach is Bayesian where the estimation of test accuracy is based on the posterior distribution of the relevant parameter. Accuracy of two combined binary tests is estimated employing either “believe the positive” or “believe the negative” rule, then the true and false positive fractions for each rule are computed for two tests. In order to perform the analysis, the missing at random assumption is imposed, and an interesting example is provided by estimating the combined accuracy of CT and MRI to diagnose lung cancer. The Bayesian approach is extended to two ordinal tests when verification bias is present, and the accuracy of the combined tests is based on the ROC area of the risk function. An example involving mammography with two readers with extreme verification bias illustrates the estimation of the combined test accuracy for ordinal tests. PMID:26859487
1975-07-01
the product , including its operational and maintenance requirements . However, there are many other program elements that are equally critical, i.e...customer needs into meaningful, practical requirements which can be met by the designer, verified in the product and used effectively by the operator. The...and government) and H- Production Verification Testing Requirements , spread over longer delivery periods, causing problems of shop load, high cash
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, Roy H.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.
1987-01-01
The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punnoose, Ratish J.; Armstrong, Robert C.; Wong, Matthew H.
Formal methods have come into wide use because of their effectiveness in verifying "safety and security" requirements of digital systems; a set of requirements for which testing is mostly ineffective. Formal methods are routinely used in the design and verification of high-consequence digital systems in industry. This report outlines our work in assessing the capabilities of commercial and open source formal tools and the ways in which they can be leveraged in digital design workflows.
Hafnium transistor design for neural interfacing.
Parent, David W; Basham, Eric J
2008-01-01
A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1989-01-01
An integrated autopilot/autothrottle was designed for flight test on the NASA TSRV B-737 aircraft. The system was designed using a total energy concept and is attended to achieve the following: (1) fuel efficiency by minimizing throttle activity; (2) low development and implementation costs by designing the control modes around a fixed inner loop design; and (3) maximum safety by preventing stall and engine overboost. The control law was designed initially using linear analysis; the system was developed using nonlinear simulations. All primary design requirements were satisfied.
This ETV program generic verification protocol was prepared and reviewed for the Verification of Pesticide Drift Reduction Technologies project. The protocol provides a detailed methodology for conducting and reporting results from a verification test of pesticide drift reductio...
This generic verification protocol provides a detailed method to conduct and report results from a verification test of pesticide application technologies that can be used to evaluate these technologies for their potential to reduce spray drift.
Schlaberg, Robert; Mitchell, Michael J; Taggart, Edward W; She, Rosemary C
2012-01-01
US Food and Drug Administration (FDA)-approved diagnostic tests based on molecular genetic technologies are becoming available for an increasing number of microbial pathogens. Advances in technology and lower costs have moved molecular diagnostic tests formerly performed for research purposes only into much wider use in clinical microbiology laboratories. To provide an example of laboratory studies performed to verify the performance of an FDA-approved assay for the detection of Clostridium difficile cytotoxin B compared with the manufacturer's performance standards. We describe the process and protocols used by a laboratory for verification of an FDA-approved assay, assess data from the verification studies, and implement the assay after verification. Performance data from the verification studies conducted by the laboratory were consistent with the manufacturer's performance standards and the assay was implemented into the laboratory's test menu. Verification studies are required for FDA-approved diagnostic assays prior to use in patient care. Laboratories should develop a standardized approach to verification studies that can be adapted and applied to different types of assays. We describe the verification of an FDA-approved real-time polymerase chain reaction assay for the detection of a toxin gene in a bacterial pathogen.
Hypersonic CFD applications for the National Aero-Space Plane
NASA Technical Reports Server (NTRS)
Richardson, Pamela F.; Mcclinton, Charles R.; Bittner, Robert D.; Dilley, A. Douglas; Edwards, Kelvin W.
1989-01-01
Design and analysis of the NASP depends heavily upon developing the critical technology areas that cover the entire engineering design of the vehicle. These areas include materials, structures, propulsion systems, propellants, integration of airframe and propulsion systems, controls, subsystems, and aerodynamics areas. Currently, verification of many of the classical engineering tools relies heavily on computational fluid dynamics. Advances are being made in the development of CFD codes to accomplish nose-to-tail analyses for hypersonic aircraft. Additional details involving the partial development, analysis, verification, and application of the CFL3D code and the SPARK combustor code are discussed. A nonequilibrium version of CFL3D that is presently being developed and tested is also described. Examples are given of portion calculations for research hypersonic aircraft geometries and comparisons with experiment data show good agreement.
Spot: A Programming Language for Verified Flight Software
NASA Technical Reports Server (NTRS)
Bocchino, Robert L., Jr.; Gamble, Edward; Gostelow, Kim P.; Some, Raphael R.
2014-01-01
The C programming language is widely used for programming space flight software and other safety-critical real time systems. C, however, is far from ideal for this purpose: as is well known, it is both low-level and unsafe. This paper describes Spot, a language derived from C for programming space flight systems. Spot aims to maintain compatibility with existing C code while improving the language and supporting verification with the SPIN model checker. The major features of Spot include actor-based concurrency, distributed state with message passing and transactional updates, and annotations for testing and verification. Spot also supports domain-specific annotations for managing spacecraft state, e.g., communicating telemetry information to the ground. We describe the motivation and design rationale for Spot, give an overview of the design, provide examples of Spot's capabilities, and discuss the current status of the implementation.
NASA Technical Reports Server (NTRS)
1973-01-01
The development, construction, and test of a 100-word vocabulary near real time word recognition system are reported. Included are reasonable replacement of any one or all 100 words in the vocabulary, rapid learning of a new speaker, storage and retrieval of training sets, verbal or manual single word deletion, continuous adaptation with verbal or manual error correction, on-line verification of vocabulary as spoken, system modes selectable via verification display keyboard, relationship of classified word to neighboring word, and a versatile input/output interface to accommodate a variety of applications.
Instrument Systems Analysis and Verification Facility (ISAVF) users guide
NASA Technical Reports Server (NTRS)
Davis, J. F.; Thomason, J. O.; Wolfgang, J. L.
1985-01-01
The ISAVF facility is primarily an interconnected system of computers, special purpose real time hardware, and associated generalized software systems, which will permit the Instrument System Analysts, Design Engineers and Instrument Scientists, to perform trade off studies, specification development, instrument modeling, and verification of the instrument, hardware performance. It is not the intent of the ISAVF to duplicate or replace existing special purpose facilities such as the Code 710 Optical Laboratories or the Code 750 Test and Evaluation facilities. The ISAVF will provide data acquisition and control services for these facilities, as needed, using remote computer stations attached to the main ISAVF computers via dedicated communication lines.
The 1991 3rd NASA Symposium on VLSI Design
NASA Technical Reports Server (NTRS)
Maki, Gary K.
1991-01-01
Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2.
NASA Astrophysics Data System (ADS)
Kuseler, Torben; Lami, Ihsan; Jassim, Sabah; Sellahewa, Harin
2010-04-01
The use of mobile communication devices with advance sensors is growing rapidly. These sensors are enabling functions such as Image capture, Location applications, and Biometric authentication such as Fingerprint verification and Face & Handwritten signature recognition. Such ubiquitous devices are essential tools in today's global economic activities enabling anywhere-anytime financial and business transactions. Cryptographic functions and biometric-based authentication can enhance the security and confidentiality of mobile transactions. Using Biometric template security techniques in real-time biometric-based authentication are key factors for successful identity verification solutions, but are venerable to determined attacks by both fraudulent software and hardware. The EU-funded SecurePhone project has designed and implemented a multimodal biometric user authentication system on a prototype mobile communication device. However, various implementations of this project have resulted in long verification times or reduced accuracy and/or security. This paper proposes to use built-in-self-test techniques to ensure no tampering has taken place on the verification process prior to performing the actual biometric authentication. These techniques utilises the user personal identification number as a seed to generate a unique signature. This signature is then used to test the integrity of the verification process. Also, this study proposes the use of a combination of biometric modalities to provide application specific authentication in a secure environment, thus achieving optimum security level with effective processing time. I.e. to ensure that the necessary authentication steps and algorithms running on the mobile device application processor can not be undermined or modified by an imposter to get unauthorized access to the secure system.
A system verification platform for high-density epiretinal prostheses.
Chen, Kuanfu; Lo, Yi-Kai; Yang, Zhi; Weiland, James D; Humayun, Mark S; Liu, Wentai
2013-06-01
Retinal prostheses have restored light perception to people worldwide who have poor or no vision as a consequence of retinal degeneration. To advance the quality of visual stimulation for retinal implant recipients, a higher number of stimulation channels is expected in the next generation retinal prostheses, which poses a great challenge to system design and verification. This paper presents a system verification platform dedicated to the development of retinal prostheses. The system includes primary processing, dual-band power and data telemetry, a high-density stimulator array, and two methods for output verification. End-to-end system validation and individual functional block characterization can be achieved with this platform through visual inspection and software analysis. Custom-built software running on the computers also provides a good way for testing new features before they are realized by the ICs. Real-time visual feedbacks through the video displays make it easy to monitor and debug the system. The characterization of the wireless telemetry and the demonstration of the visual display are reported in this paper using a 256-channel retinal prosthetic IC as an example.
Verification testing of the ReCip® RTS-500 System was conducted over a 12-month period at the Massachusetts Alternative Septic System Test Center (MASSTC) located on Otis Air National Guard Base in Bourne, Massachusetts. A nine-week startup period preceded the verification test t...
2017-08-01
comparable with MARATHON 1 in terms of output. Rather, the MARATHON 2 verification cases were designed to ensure correct implementation of the new algorithms...DISCLAIMER The findings of this report are not to be construed as an official Department of the Army position, policy, or decision unless so designated by...for employment against demands. This study is a comparative verification of the functionality of MARATHON 4 (our newest implementation of MARATHON
NASA Technical Reports Server (NTRS)
1975-01-01
The findings are presented of investigations on concepts and techniques in automated performance verification. The investigations were conducted to provide additional insight into the design methodology and to develop a consolidated technology base from which to analyze performance verification design approaches. Other topics discussed include data smoothing, function selection, flow diagrams, data storage, and shuttle hydraulic systems.
Upgrades at the NASA Langley Research Center National Transonic Facility
NASA Technical Reports Server (NTRS)
Paryz, Roman W.
2012-01-01
Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.
The development of a non-cryogenic nitrogen/oxygen supply system
NASA Technical Reports Server (NTRS)
Greenough, B. M.
1972-01-01
Development of the hydrazine/water electrolysis process in a manned spacecraft to provide metabolic oxygen and both oxygen and nitrogen for cabin leakage makeup was studied. Electrode development efforts were directed to stability, achieved with catalyst additives and improved processing techniques, and a higher hydrazine conversion efficiency, achieved by reducing catalyst loading on the cathodes. Extensive testing of the one-man breadboard N2/02 system provided complete characterization of cabin atmosphere control aspects. A detailed design of a prototype modular N2/02 unit was conducted. The contact heat exchanger which is an integral component of this design was fabricated and sucessfully design-verification tested.
JOVIAL J73 Automated Verification System - Study Phase
1980-08-01
capabil- ities for the tool, and the high-level design of the tool are also described. Future capabilities for the tool are identified. -N CONTENTS...Implemented Test Tools 3-22 4 FUNCTIONAL DESCRIPTION OF Ji3AVS 4-1 4.1 Summary of Capabilities 4-3 4.2 J 3.AVS Operat . 4-11 5 DESIGN OF J73AVS 5-1 6...Both JOVIAL languages are primarily designed for command and control system programming. They are es- pecially well suited to large systems requiring
Astronaut tool development: An orbital replaceable unit-portable handhold
NASA Technical Reports Server (NTRS)
Redmon, John W., Jr.
1989-01-01
A tool to be used during astronaut Extra-Vehicular Activity (EVA) replacement of spent or defective electrical/electronic component boxes is described. The generation of requirements and design philosophies are detailed, as well as specifics relating to mechanical development, interface verifications, testing, and astronaut feedback. Findings are presented in the form of: (1) a design which is universally applicable to spacecraft component replacement, and (2) guidelines that the designer of orbital replacement units might incorporate to enhance spacecraft on-orbit maintainability and EVA mission safety.
A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.
1993-01-01
The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.
Performance Measurement of Advanced Stirling Convertors (ASC-E3)
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2013-01-01
NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing data of the Advanced Stirling Convertor (ASC). The latest version of the ASC (ASC-E3, to represent the third cycle of engineering model test hardware) is of a design identical to the forthcoming flight convertors. For this generation of hardware, a joint Sunpower and GRC effort was initiated to improve and standardize the test support hardware. After this effort was completed, the first pair of ASC-E3 units was produced by Sunpower and then delivered to GRC in December 2012. GRC has begun operation of these units. This process included performance verification, which examined the data from various tests to validate the convertor performance to the product specification. Other tests included detailed performance mapping that encompassed the wide range of operating conditions that will exist during a mission. These convertors were then transferred to Lockheed Martin for controller checkout testing. The results of this latest convertor performance verification activity are summarized here.
Modular control subsystems for use in solar heating systems for multi-family dwellings
NASA Technical Reports Server (NTRS)
1977-01-01
Progress in the development of solar heating modular control subsystems is reported. Circuit design, circuit drawings, and printed circuit board layout are discussed along with maintenance manuals, installation instructions, and verification and acceptance tests. Calculations made to determine the predicted performance of the differential thermostat are given including details and results of tests for the offset temperature, and boil and freeze protect points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm, J; Mein, S; McNiven, A
2015-06-15
Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria ofmore » 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.« less
Verification procedure for the wavefront quality of the primary mirrors for the MRO interferometer
NASA Astrophysics Data System (ADS)
Bakker, Eric J.; Olivares, Andres; Schmell, Reed A.; Schmell, Rodney A.; Gartner, Darren; Jaramillo, Anthony; Romero, Kelly; Rael, Andres; Lewis, Jeff
2009-08-01
We present the verification procedure for the 1.4 meter primary mirrors of the Magdalena Ridge Observatory Interferometer (MROI). Six mirrors are in mass production at Optical Surface Technologies (OST) in Albuquerque. The six identical parabolic mirrors will have a radius of curvature of 6300 mm and a final surface wavefront quality of 29 nm rms. The mirrors will be tested in a tower using a computer generated hologram, and the Intellium⢠H2000 interferometer from Engineering Synthesis Design, Inc. (ESDI). The mirror fabrication activities are currently in the early stage of polishing and have already delivered some promising results with the interferometer. A complex passive whiffle tree has been designed and fabricated by Advanced Mechanical and Optical Systems (AMOS, Belgium) that takes into account the gravity loading for an alt-alt mount. The final testing of the primary mirrors will be completed with the mirror cells that will be used in the telescopes. In addition we report on shear tests performed on the mirror cell pads on the back of the primary mirrors. These pads are glued to the mirror. The shear test has demonstrated that the glue can withstand at least 4.9 kilo Newton. This is within the requirements.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
Characterization of Microporous Insulation, Microsil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R.
Microsil microporous insulation has been characterized by Lawrence Livermore National Laboratory for possible use in structural and thermal applications in the DPP-1 design. Qualitative test results have provided mechanical behavioral characteristics for DPP-1 design studies and focused on the material behavioral response to being crushed, cyclically loaded, and subjected to vibration for a confined material with an interference fit or a radial gap. Quantitative test results have provided data to support the DPP-1 FEA model analysis and verification and were used to determine mechanical property values for the material under a compression load. The test results are documented within thismore » report.« less
Martin, Edward J [Virginia Beach, VA
2008-01-15
A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.
The Environmental Technology Verification Program, established by the EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance.
Spacecraft Data Simulator for the test of level zero processing systems
NASA Technical Reports Server (NTRS)
Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem
1994-01-01
The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.
The verification test will be conducted under the auspices of the U.S. Environmental Protection Agency (EPA) through the Environmental Technology Verification (ETV) Program. It will be performed by Battelle, which is managing the ETV Advanced Monitoring Systems (AMS) Center throu...
Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities
NASA Astrophysics Data System (ADS)
Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred
2012-07-01
The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in the frame of an ESA TRP study [1]. A bread-board including typical non-linearities has been designed, manufactured and tested through a typical spacecraft dynamic test campaign. The study has demonstrate the capabilities to perform non-linear dynamic test predictions on a flight representative spacecraft, the good correlation of test results with respect to Finite Elements Model (FEM) prediction and the possibility to identify modal behaviour and to characterize non-linearities characteristics from test results. As a synthesis for this study, overall guidelines have been derived on the mechanical verification process to improve level of expertise on tests involving spacecraft including non-linearity.
The specification-based validation of reliable multicast protocol: Problem Report. M.S. Thesis
NASA Technical Reports Server (NTRS)
Wu, Yunqing
1995-01-01
Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP multicasting. In this report, we develop formal models for RMP using existing automated verification systems, and perform validation on the formal RMP specifications. The validation analysis help identifies some minor specification and design problems. We also use the formal models of RMP to generate a test suite for conformance testing of the implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress of implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation.
Test Analysis Tools to Ensure Higher Quality of On-Board Real Time Software for Space Applications
NASA Astrophysics Data System (ADS)
Boudillet, O.; Mescam, J.-C.; Dalemagne, D.
2008-08-01
EADS Astrium Space Transportation, in its Les Mureaux premises, is responsible for the French M51 nuclear deterrent missile onboard SW. There was also developed over 1 million of line of code, mostly in ADA, for the Automated Transfer Vehicle (ATV) onboard SW and the flight control SW of the ARIANE5 launcher which has put it into orbit. As part of the ATV SW, ASTRIUM ST has developed the first Category A SW ever qualified for a European space application. To ensure that all these embedded SW have been developed with the highest quality and reliability level, specific development tools have been designed to cover the steps of source code verification, automated validation test or complete target instruction coverage verification. Three of such dedicated tools are presented here.
Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables
NASA Technical Reports Server (NTRS)
Johnson, D. W.; Curry, D. M.; Kelly, R. E.
1986-01-01
Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.
Murias, Juan M; Pogliaghi, Silvia; Paterson, Donald H
2018-01-01
The accuracy of an exhaustive ramp incremental (RI) test to determine maximal oxygen uptake ([Formula: see text]O 2max ) was recently questioned and the utilization of a verification phase proposed as a gold standard. This study compared the oxygen uptake ([Formula: see text]O 2 ) during a RI test to that obtained during a verification phase aimed to confirm attainment of [Formula: see text]O 2max . Sixty-one healthy males [31 older (O) 65 ± 5 yrs; 30 younger (Y) 25 ± 4 yrs] performed a RI test (15-20 W/min for O and 25 W/min for Y). At the end of the RI test, a 5-min recovery period was followed by a verification phase of constant load cycling to fatigue at either 85% ( n = 16) or 105% ( n = 45) of the peak power output obtained from the RI test. The highest [Formula: see text]O 2 after the RI test (39.8 ± 11.5 mL·kg -1 ·min -1 ) and the verification phase (40.1 ± 11.2 mL·kg -1 ·min -1 ) were not different ( p = 0.33) and they were highly correlated ( r = 0.99; p < 0.01). This response was not affected by age or intensity of the verification phase. The Bland-Altman analysis revealed a very small absolute bias (-0.25 mL·kg -1 ·min -1 , not different from 0) and a precision of ±1.56 mL·kg -1 ·min -1 between measures. This study indicated that a verification phase does not highlight an under-estimation of [Formula: see text]O 2max derived from a RI test, in a large and heterogeneous group of healthy younger and older men naïve to laboratory testing procedures. Moreover, only minor within-individual differences were observed between the maximal [Formula: see text]O 2 elicited during the RI and the verification phase. Thus a verification phase does not add any validation of the determination of a [Formula: see text]O 2max . Therefore, the recommendation that a verification phase should become a gold standard procedure, although initially appealing, is not supported by the experimental data.
Extremely accurate sequential verification of RELAP5-3D
Mesina, George L.; Aumiller, David L.; Buschman, Francis X.
2015-11-19
Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less
Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S R; Bihari, B L; Salari, K
As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.
21 CFR 120.25 - Process verification for certain processors.
Code of Federal Regulations, 2010 CFR
2010-04-01
... accuracy, precision, and sensitivity in detecting E. coli. This method is designed to detect the presence... times: (i) Aseptically inoculate 10 mL of juice into 90 mL of Universal Preenrichment Broth (Difco) and... series of seven tests are positive for E. coli, the control measures to attain the 5-log reduction...
21 CFR 120.25 - Process verification for certain processors.
Code of Federal Regulations, 2013 CFR
2013-04-01
... accuracy, precision, and sensitivity in detecting E. coli. This method is designed to detect the presence... times: (i) Aseptically inoculate 10 mL of juice into 90 mL of Universal Preenrichment Broth (Difco) and... series of seven tests are positive for E. coli, the control measures to attain the 5-log reduction...
46 CFR 62.25-25 - Programmable systems and devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Programmable systems and devices. 62.25-25 Section 62.25... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-25 Programmable systems and devices. (a) Programmable control or alarm system logic must not be altered after Design Verification testing...
Xia, Yidong; Podgorney, Robert; Huang, Hai
2016-03-17
FALCON (“Fracturing And Liquid CONvection”) is a hybrid continuous / discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (“Multiphysics Object-Oriented Simulation Environment”) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (“V&V”) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system (“EGS”) design. Furthermore, the intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the FALCON solution methods. The simulation problems vary in complexity from singly mechanical ormore » thermo process, to coupled thermo-hydro-mechanical processes in geological porous media. Numerical results obtained by FALCON agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Some form of solution verification has been attempted to identify sensitivities in the solution methods, where possible, and suggest best practices when using the FALCON code.« less
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim
1993-01-01
The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.
Supersonic gas-liquid cleaning system
NASA Technical Reports Server (NTRS)
Caimi, Raoul E. B.; Thaxton, Eric A.
1994-01-01
A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.
Supersonic gas-liquid cleaning system
NASA Astrophysics Data System (ADS)
Caimi, Raoul E. B.; Thaxton, Eric A.
1994-02-01
A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.
Surface-specific additive manufacturing test artefacts
NASA Astrophysics Data System (ADS)
Townsend, Andrew; Racasan, Radu; Blunt, Liam
2018-06-01
Many test artefact designs have been proposed for use with additive manufacturing (AM) systems. These test artefacts have primarily been designed for the evaluation of AM form and dimensional performance. A series of surface-specific measurement test artefacts designed for use in the verification of AM manufacturing processes are proposed here. Surface-specific test artefacts can be made more compact because they do not require the large dimensions needed for accurate dimensional and form measurements. The series of three test artefacts are designed to provide comprehensive information pertaining to the manufactured surface. Measurement possibilities include deviation analysis, surface texture parameter data generation, sub-surface analysis, layer step analysis and build resolution comparison. The test artefacts are designed to provide easy access for measurement using conventional surface measurement techniques, for example, focus variation microscopy, stylus profilometry, confocal microscopy and scanning electron microscopy. Additionally, the test artefacts may be simply visually inspected as a comparative tool, giving a fast indication of process variation between builds. The three test artefacts are small enough to be included in every build and include built-in manufacturing traceability information, making them a convenient physical record of the build.
Evaluation of Nonlinear Constitutive Properties of Concrete
1990-02-01
34 " \\ 19:#BSTRACT (Continue on reverse if necesuar 4nd identify by block number) 3his report describes the development of a methodology that allows for...Continued). The method of evaluation, as developed herein, consists of the following steps: 1. The design and execution of a series of material... developed in Step L. 3. Design and execution of the series of verification tests which provide data suffi- cient for defining key complex material
ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM FOR MONITORING AND CHARACTERIZATION
The Environmental Technology Verification Program is a service of the Environmental Protection Agency designed to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of performance. The goal of ETV i...
Considerations in STS payload environmental verification
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1978-01-01
Considerations regarding the Space Transportation System (STS) payload environmental verification are reviewed. It is noted that emphasis is placed on testing at the subassembly level and that the basic objective of structural dynamic payload verification is to ensure reliability in a cost-effective manner. Structural analyses consist of: (1) stress analysis for critical loading conditions, (2) model analysis for launch and orbital configurations, (3) flight loads analysis, (4) test simulation analysis to verify models, (5) kinematic analysis of deployment/retraction sequences, and (6) structural-thermal-optical program analysis. In addition to these approaches, payload verification programs are being developed in the thermal-vacuum area. These include the exposure to extreme temperatures, temperature cycling, thermal-balance testing and thermal-vacuum testing.
Space telescope observatory management system preliminary test and verification plan
NASA Technical Reports Server (NTRS)
Fritz, J. S.; Kaldenbach, C. F.; Williams, W. B.
1982-01-01
The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided.
Foo Kune, Denis [Saint Paul, MN; Mahadevan, Karthikeyan [Mountain View, CA
2011-01-25
A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.
Hardware acceleration and verification of systems designed with hardware description languages (HDL)
NASA Astrophysics Data System (ADS)
Wisniewski, Remigiusz; Wegrzyn, Marek
2005-02-01
Hardware description languages (HDLs) allow creating bigger and bigger designs nowadays. The size of prototyped systems very often exceeds million gates. Therefore verification process of the designs takes several hours or even days. The solution for this problem can be solved by hardware acceleration of simulation.
A Design Rationale Capture Tool to Support Design Verification and Re-use
NASA Technical Reports Server (NTRS)
Hooey, Becky Lee; Da Silva, Jonny C.; Foyle, David C.
2012-01-01
A design rationale tool (DR tool) was developed to capture design knowledge to support design verification and design knowledge re-use. The design rationale tool captures design drivers and requirements, and documents the design solution including: intent (why it is included in the overall design); features (why it is designed the way it is); information about how the design components support design drivers and requirements; and, design alternatives considered but rejected. For design verification purposes, the tool identifies how specific design requirements were met and instantiated within the final design, and which requirements have not been met. To support design re-use, the tool identifies which design decisions are affected when design drivers and requirements are modified. To validate the design tool, the design knowledge from the Taxiway Navigation and Situation Awareness (T-NASA; Foyle et al., 1996) system was captured and the DR tool was exercised to demonstrate its utility for validation and re-use.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
.... SUPPLEMENTARY INFORMATION: RI 38-107, Verification of Who is Getting Payments, is designed for use by the... OFFICE OF PERSONNEL MANAGEMENT Submission for Review: Verification of Who Is Getting Payments, RI... currently approved information collection request (ICR) 3206-0197, Verification of Who is Getting Payments...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
...: 3060-0329. Title: Section 2.955, Equipment Authorization-Verification (Retention of Records). Form No.... Section 2.955 describes for each equipment device subject to verification, the responsible party, as shown... performing the verification testing. The Commission may request additional information regarding the test...
Orbit attitude processor. STS-1 bench program verification test plan
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1980-01-01
A plan for the static verification of the STS-1 ATT PROC ORBIT software requirements is presented. The orbit version of the SAPIENS bench program is used to generate the verification data. A brief discussion of the simulation software and flight software modules is presented along with a description of the test cases.
40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...
40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...
40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...
40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...
This generic verification protocol provides a detailed method for conducting and reporting results from verification testing of pesticide application technologies. It can be used to evaluate technologies for their potential to reduce spray drift, hence the term “drift reduction t...
Sediq, Amany Mohy-Eldin; Abdel-Azeez, Ahmad GabAllahm Hala
2014-01-01
The current practice in Zagazig University Hospitals Laboratories (ZUHL) is manual verification of all results for the later release of reports. These processes are time consuming and tedious, with large inter-individual variation that slows the turnaround time (TAT). Autoverification is the process of comparing patient results, generated from interfaced instruments, against laboratory-defined acceptance parameters. This study describes an autoverification engine designed and implemented in ZUHL, Egypt. A descriptive study conducted at ZUHL, from January 2012-December 2013. A rule-based system was used in designing an autoverification engine. The engine was preliminarily evaluated on a thyroid function panel. A total of 563 rules were written and tested on 563 simulated cases and 1673 archived cases. The engine decisions were compared to that of 4 independent expert reviewers. The impact of engine implementation on TAT was evaluated. Agreement was achieved among the 4 reviewers in 55.5% of cases, and with the engine in 51.5% of cases. The autoverification rate for archived cases was 63.8%. Reported lab TAT was reduced by 34.9%, and TAT segment from the completion of analysis to verification was reduced by 61.8%. The developed rule-based autoverification system has a verification rate comparable to that of the commercially available software. However, the in-house development of this system had saved the hospital the cost of commercially available ones. The implementation of the system shortened the TAT and minimized the number of samples that needed staff revision, which enabled laboratory staff to devote more time and effort to handle problematic test results and to improve patient care quality.
NASA Technical Reports Server (NTRS)
Krause, D. R.
1972-01-01
A conceptual design was developed for an MLI system which will meet the design constraints of an ILRV used for 7- to 30-day missions. The ten tasks are briefly described: (1) material survey and procurement, material property tests, and selection of composites to be considered; (2) definition of environmental parameters and tooling requirements, and thermal and structural design verification test definition; (3) definition of tanks and associated hardware to be used, and definition of MLI concepts to be considered; (4) thermal analyses, including purge, evacuation, and reentry repressurization analyses; (5) structural analyses (6) thermal degradation tests of composite and structural tests of fastener; (7) selection of MLI materials and system; (8) definition of a conceptual MLI system design; (9) evaluation of nondestructive inspection techniques and definition of procedures for repair of damaged areas; and (10) preparation of preliminary specifications.
Enhancing pre-service physics teachers' creative thinking skills through HOT lab design
NASA Astrophysics Data System (ADS)
Malik, Adam; Setiawan, Agus; Suhandi, Andi; Permanasari, Anna
2017-08-01
A research on the implementation of HOT (Higher Order Thinking) Laboratory has been carried out. This research is aimed to compare increasing of creative thinking skills of pre-service physics teachers who receive physics lesson with HOT Lab and with verification lab for the topic of electric circuit. This research used a quasi-experiment methods with control group pretest-posttest design. The subject of the research is 40 Physics Education pre-service physics teachers of UIN Sunan Gunung Djati Bandung. Research samples were selected by class random sampling technique. Data on pre-service physics teachers' creative thinking skills were collected using test of creative thinking skills in the form of essay. The results of the research reveal that average of N-gain of creative thinking skills are <0,69> for pre-service physics teachers who received lesson with HOT Lab design and <0,39> for pre-service physics teachers who received lesson with verification lab, respectively. Therefore, we conclude that application of HOT Lab design is more effective to increase creative thinking skills in the lesson of electric circuit.
Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.
Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa
2005-12-01
Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.
Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis
NASA Technical Reports Server (NTRS)
Davis, Mitchell L.; Aguilar, Michael L.; Mora, Victor D.; Regenie, Victoria A.; Ritz, William F.
2009-01-01
Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL).
Results of the performance verification of the CoaguChek XS system.
Plesch, W; Wolf, T; Breitenbeck, N; Dikkeschei, L D; Cervero, A; Perez, P L; van den Besselaar, A M H P
2008-01-01
This is the first paper reporting a performance verification study of a point-of-care (POC) monitor for prothrombin time (PT) testing according to the requirements given in chapter 8 of the International Organization for Standardization (ISO) 17593:2007 standard "Clinical laboratory testing and in vitro medical devices - Requirements for in vitro monitoring systems for self-testing of oral anticoagulant therapy". The monitor under investigation was the new CoaguChek XS system which is designed for use in patient self testing. Its detection principle is based on the amperometric measurement of the thrombin activity generated by starting the coagulation cascade using a recombinant human thromboplastin. The system performance verification study was performed at four study centers using venous and capillary blood samples on two test strip lots. Laboratory testing was performed from corresponding frozen plasma samples with six commercial thromboplastins. Samples from 73 normal donors and 297 patients on oral anticoagulation therapy were collected. Results were assessed using a refined data set of 260 subjects according to the ISO 17593:2007 standard. Each of the two test strip lots met the acceptance criteria of ISO 17593:2007 versus all thromboplastins (bias -0.19 to 0.18 INR; >97% of data within accuracy limits). The coefficient of variation for imprecision of the PT determinations in INR ranged from 2.0% to 3.2% in venous, and from 2.9% to 4.0% in capillary blood testing. Capillary versus venous INR data showed agreement of results with regression lines equal to the line of identity. The new system demonstrated a high level of trueness and accuracy, and low imprecision in INR testing. It can be concluded that the CoaguChek XS system complies with the requirements in chapter 8 of the ISO standard 17593:2007.
Simulation based mask defect repair verification and disposition
NASA Astrophysics Data System (ADS)
Guo, Eric; Zhao, Shirley; Zhang, Skin; Qian, Sandy; Cheng, Guojie; Vikram, Abhishek; Li, Ling; Chen, Ye; Hsiang, Chingyun; Zhang, Gary; Su, Bo
2009-10-01
As the industry moves towards sub-65nm technology nodes, the mask inspection, with increased sensitivity and shrinking critical defect size, catches more and more nuisance and false defects. Increased defect counts pose great challenges in the post inspection defect classification and disposition: which defect is real defect, and among the real defects, which defect should be repaired and how to verify the post-repair defects. In this paper, we address the challenges in mask defect verification and disposition, in particular, in post repair defect verification by an efficient methodology, using SEM mask defect images, and optical inspection mask defects images (only for verification of phase and transmission related defects). We will demonstrate the flow using programmed mask defects in sub-65nm technology node design. In total 20 types of defects were designed including defects found in typical real circuit environments with 30 different sizes designed for each type. The SEM image was taken for each programmed defect after the test mask was made. Selected defects were repaired and SEM images from the test mask were taken again. Wafers were printed with the test mask before and after repair as defect printability references. A software tool SMDD-Simulation based Mask Defect Disposition-has been used in this study. The software is used to extract edges from the mask SEM images and convert them into polygons to save in GDSII format. Then, the converted polygons from the SEM images were filled with the correct tone to form mask patterns and were merged back into the original GDSII design file. This merge is for the purpose of contour simulation-since normally the SEM images cover only small area (~1 μm) and accurate simulation requires including larger area of optical proximity effect. With lithography process model, the resist contour of area of interest (AOI-the area surrounding a mask defect) can be simulated. If such complicated model is not available, a simple optical model can be used to get simulated aerial image intensity in the AOI. With built-in contour analysis functions, the SMDD software can easily compare the contour (or intensity) differences between defect pattern and normal pattern. With user provided judging criteria, this software can be easily disposition the defect based on contour comparison. In addition, process sensitivity properties, like MEEF and NILS, can be readily obtained in the AOI with a lithography model, which will make mask defect disposition criteria more intelligent.
EPA has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The Air Pollution Control Technology Verification Center, a cente...
40 CFR 1066.240 - Torque transducer verification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification. Verify torque-measurement systems by performing the verifications described in §§ 1066.270 and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Torque transducer verification. 1066...
General Dynamic (GD) Launch Waveform On-Orbit Performance Report
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Shalkhauser, Mary Jo
2014-01-01
The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.
NASA Astrophysics Data System (ADS)
McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye
1997-06-01
The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.
Verification of NASA Emergent Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Vanderbilt, Amy K. C. S.; Truszkowski, Walt; Rash, James; Hinchey, Mike
2004-01-01
NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. This mission, the prospective ANTS (Autonomous Nano Technology Swarm) mission, will comprise of 1,000 autonomous robotic agents designed to cooperate in asteroid exploration. The emergent properties of swarm type missions make them powerful, but at the same time are more difficult to design and assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of future swarm-based missions. The advantage of using formal methods is their ability to mathematically assure the behavior of a swarm, emergent or otherwise. The ANT mission is being used as an example and case study for swarm-based missions for which to experiment and test current formal methods with intelligent swam. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior.
A three degree of freedom manipulator used for store separation wind tunnel test
NASA Astrophysics Data System (ADS)
Wei, R.; Che, B.-H.; Sun, C.-B.; Zhang, J.; Lu, Y.-Q.
2018-06-01
A three degree of freedom manipulator is presented, which is used for store separation wind tunnel test. It is a kind of mechatronics product, have small volume and large moment of torque. The paper researched the design principle of wind tunnel test equipment, also introduced the transmission principle design, physical design, control system design, drive element selection calculation and verification, dynamics computation and static structural computation of the manipulator. To satisfy the design principle of wind tunnel test equipment, some optimization design are made include optimizes the structure of drive element and cable, fairing configuration, overall dimension so that to make the device more suitable for the wind tunnel test. Some tests are made to verify the parameters of the manipulator. The results show that the device improves the load from 100 Nm to 250 Nm, control accuracy from 0.1°to 0.05°in pitch and yaw, also improves load from 10 Nm to 20 Nm, control accuracy from 0.1°to 0.05°in roll.
Design and Analysis of Modules for Segmented X-Ray Optics
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; BIskach, Michael P.; Chan, Kai-Wing; Saha, Timo T; Zhang, William W.
2012-01-01
Future X-ray astronomy missions demand thin, light, and closely packed optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The modular approach to X-ray Flight Mirror Assembly (FMA) design allows excellent scalability of the mirror technology to support a variety of mission sizes and science objectives. This paper describes FMA designs using slumped glass mirror segments for several X-ray astrophysics missions studied by NASA and explores the driving requirements and subsequent verification tests necessary to qualify a slumped glass mirror module for space-flight. A rigorous testing program is outlined allowing Technical Development Modules to reach technical readiness for mission implementation while reducing mission cost and schedule risk.
Problems experienced and envisioned for dynamical physical systems
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1985-01-01
The use of high performance systems, which is the trend of future space systems, naturally leads to lower margins and a higher sensitivity to parameter variations and, therefore, more problems of dynamical physical systems. To circumvent dynamic problems of these systems, appropriate design, verification analysis, and tests must be planned and conducted. The basic design goal is to define the problem before it occurs. The primary approach for meeting this goal is a good understanding and reviewing of the problems experienced in the past in terms of the system under design. This paper reviews many of the dynamic problems experienced in space systems design and operation, categorizes them as to causes, and envisions future program implications, developing recommendations for analysis and test approaches.
NASA Technical Reports Server (NTRS)
Kashangaki, Thomas A. L.
1992-01-01
This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.
Prototype automated post-MECO ascent I-load Verification Data Table
NASA Technical Reports Server (NTRS)
Lardas, George D.
1990-01-01
A prototype automated processor for quality assurance of Space Shuttle post-Main Engine Cut Off (MECO) ascent initialization parameters (I-loads) is described. The processor incorporates Clips rules adapted from the quality assurance criteria for the post-MECO ascent I-loads. Specifically, the criteria are implemented for nominal and abort targets, as given in the 'I-load Verification Data Table, Part 3, Post-MECO Ascent, Version 2.1, December 1989.' This processor, ivdt, compares a given l-load set with the stated mission design and quality assurance criteria. It determines which I-loads violate the stated criteria, and presents a summary of I-loads that pass or fail the tests.
Palmprint Based Verification System Using SURF Features
NASA Astrophysics Data System (ADS)
Srinivas, Badrinath G.; Gupta, Phalguni
This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.
Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results
NASA Technical Reports Server (NTRS)
Burken, John J.; Larson, Richard R.
2009-01-01
F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.
Integrating Model-Based Verification into Software Design Education
ERIC Educational Resources Information Center
Yilmaz, Levent; Wang, Shuo
2005-01-01
Proper design analysis is indispensable to assure quality and reduce emergent costs due to faulty software. Teaching proper design verification skills early during pedagogical development is crucial, as such analysis is the only tractable way of resolving software problems early when they are easy to fix. The premise of the presented strategy is…
Assume-Guarantee Verification of Source Code with Design-Level Assumptions
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Pasareanu, Corina S.; Cobleigh, Jamieson M.
2004-01-01
Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. To address the 'state explosion' problem associated with this technique, we propose to integrate assume-guarantee verification at different phases of system development. During design, developers build abstract behavioral models of the system components and use them to establish key properties of the system. To increase the scalability of model checking at this level, we have developed techniques that automatically decompose the verification task by generating component assumptions for the properties to hold. The design-level artifacts are subsequently used to guide the implementation of the system, but also to enable more efficient reasoning at the source code-level. In particular we propose to use design-level assumptions to similarly decompose the verification of the actual system implementation. We demonstrate our approach on a significant NASA application, where design-level models were used to identify; and correct a safety property violation, and design-level assumptions allowed us to check successfully that the property was presented by the implementation.
Advanced composite elevator for Boeing 727 aircraft, volume 2
NASA Technical Reports Server (NTRS)
Chovil, D. V.; Grant, W. D.; Jamison, E. S.; Syder, H.; Desper, O. E.; Harvey, S. T.; Mccarty, J. E.
1980-01-01
Preliminary design activity consisted of developing and analyzing alternate design concepts and selecting the optimum elevator configuration. This included trade studies in which durability, inspectability, producibility, repairability, and customer acceptance were evaluated. Preliminary development efforts consisted of evaluating and selecting material, identifying ancillary structural development test requirements, and defining full scale ground and flight test requirements necessary to obtain Federal Aviation Administration (FAA) certification. After selection of the optimum elevator configuration, detail design was begun and included basic configuration design improvements resulting from manufacturing verification hardware, the ancillary test program, weight analysis, and structural analysis. Detail and assembly tools were designed and fabricated to support a full-scope production program, rather than a limited run. The producibility development programs were used to verify tooling approaches, fabrication processes, and inspection methods for the production mode. Quality parts were readily fabricated and assembled with a minimum rejection rate, using prior inspection methods.
Stirling cryocooler test results and design model verification
NASA Astrophysics Data System (ADS)
Shimko, Martin A.; Stacy, W. D.; McCormick, John A.
A long-life Stirling cycle cryocooler being developed for spaceborne applications is described. The results from tests on a preliminary breadboard version of the cryocooler used to demonstrate the feasibility of the technology and to validate the generator design code used in its development are presented. This machine achieved a cold-end temperature of 65 K while carrying a 1/2-W cooling load. The basic machine is a double-acting, flexure-bearing, split Stirling design with linear electromagnetic drives for the expander and compressors. Flat metal diaphragms replace pistons for sweeping and sealing the machine working volumes. The double-acting expander couples to a laminar-channel counterflow recuperative heat exchanger for regeneration. The PC-compatible design code developed for this design approach calculates regenerator loss, including heat transfer irreversibilities, pressure drop, and axial conduction in the regenerator walls. The code accurately predicted cooler performance and assisted in diagnosing breadboard machine flaws during shakedown and development testing.
Verification and Validation Studies for the LAVA CFD Solver
NASA Technical Reports Server (NTRS)
Moini-Yekta, Shayan; Barad, Michael F; Sozer, Emre; Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.
2013-01-01
The verification and validation of the Launch Ascent and Vehicle Aerodynamics (LAVA) computational fluid dynamics (CFD) solver is presented. A modern strategy for verification and validation is described incorporating verification tests, validation benchmarks, continuous integration and version control methods for automated testing in a collaborative development environment. The purpose of the approach is to integrate the verification and validation process into the development of the solver and improve productivity. This paper uses the Method of Manufactured Solutions (MMS) for the verification of 2D Euler equations, 3D Navier-Stokes equations as well as turbulence models. A method for systematic refinement of unstructured grids is also presented. Verification using inviscid vortex propagation and flow over a flat plate is highlighted. Simulation results using laminar and turbulent flow past a NACA 0012 airfoil and ONERA M6 wing are validated against experimental and numerical data.
NASA Astrophysics Data System (ADS)
Martin, L.; Schatalov, M.; Hagner, M.; Goltz, U.; Maibaum, O.
Today's software for aerospace systems typically is very complex. This is due to the increasing number of features as well as the high demand for safety, reliability, and quality. This complexity also leads to significant higher software development costs. To handle the software complexity, a structured development process is necessary. Additionally, compliance with relevant standards for quality assurance is a mandatory concern. To assure high software quality, techniques for verification are necessary. Besides traditional techniques like testing, automated verification techniques like model checking become more popular. The latter examine the whole state space and, consequently, result in a full test coverage. Nevertheless, despite the obvious advantages, this technique is rarely yet used for the development of aerospace systems. In this paper, we propose a tool-supported methodology for the development and formal verification of safety-critical software in the aerospace domain. The methodology relies on the V-Model and defines a comprehensive work flow for model-based software development as well as automated verification in compliance to the European standard series ECSS-E-ST-40C. Furthermore, our methodology supports the generation and deployment of code. For tool support we use the tool SCADE Suite (Esterel Technology), an integrated design environment that covers all the requirements for our methodology. The SCADE Suite is well established in avionics and defense, rail transportation, energy and heavy equipment industries. For evaluation purposes, we apply our approach to an up-to-date case study of the TET-1 satellite bus. In particular, the attitude and orbit control software is considered. The behavioral models for the subsystem are developed, formally verified, and optimized.
Verification testing of the Aquionics, Inc. bersonInLine® 4250 UV System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills Wastewater Treatment Plant test site in Parsippany, New Jersey. Two full-scale reactors were mounted in series. T...