The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Koide, Shohei
2009-06-17
Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success ofmore » the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.« less
Zhu, H.; Braun, W.
1999-01-01
A statistical analysis of a representative data set of 169 known protein structures was used to analyze the specificity of residue interactions between spatial neighboring strands in beta-sheets. Pairwise potentials were derived from the frequency of residue pairs in nearest contact, second nearest and third nearest contacts across neighboring beta-strands compared to the expected frequency of residue pairs in a random model. A pseudo-energy function based on these statistical pairwise potentials recognized native beta-sheets among possible alternative pairings. The native pairing was found within the three lowest energies in 73% of the cases in the training data set and in 63% of beta-sheets in a test data set of 67 proteins, which were not part of the training set. The energy function was also used to detect tripeptides, which occur frequently in beta-sheets of native proteins. The majority of native partners of tripeptides were distributed in a low energy range. Self-correcting distance geometry (SECODG) calculations using distance constraints sets derived from possible low energy pairing of beta-strands uniquely identified the native pairing of the beta-sheet in pancreatic trypsin inhibitor (BPTI). These results will be useful for predicting the structure of proteins from their amino acid sequence as well as for the design of proteins containing beta-sheets. PMID:10048326
Folding cooperativity in a three-stranded beta-sheet model.
Roe, Daniel R; Hornak, Viktor; Simmerling, Carlos
2005-09-16
The thermodynamic behavior of a previously designed three-stranded beta-sheet was studied via several microseconds of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including two partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual beta-hairpins that comprise the three-stranded beta-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperativity than has been performed on the basis of experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously.
NASA Astrophysics Data System (ADS)
Waldman, Amy Sue
I. Protein structure is not easily predicted from the linear sequence of amino acids. An increased ability to create protein structures would allow researchers to develop new peptide-based therapeutics and materials, and would provide insights into the mechanisms of protein folding. Toward this end, we have designed and synthesized two-stranded antiparallel beta-sheet mimics containing conformationally biased scaffolds and semicarbazide, urea, and hydrazide linker groups that attach peptide chains to the scaffold. The mimics exhibited populations of intramolecularly hydrogen-bonded beta-sheet-like conformers as determined by spectroscopic techniques such as FTIR, sp1H NMR, and ROESY studies. During our studies, we determined that a urea-hydrazide beta-strand mimic was able to tightly hydrogen bond to peptides in an antiparallel beta-sheet-like configuration. Several derivatives of the urea-hydrazide beta-strand mimic were synthesized. Preliminary data by electron microscopy indicate that the beta-strand mimics have an effect on the folding of Alzheimer's Abeta peptide. These data suggest that the urea-hydrazide beta-strand mimics and related compounds may be developed into therapeutics which effect the folding of the Abeta peptide into neurotoxic aggregates. II. In recent years, there has been concern about the low level of science literacy and science interest among Americans. A declining interest in science impacts the abilities of people to make informed decisions about technology. To increase the interest in science among secondary students, we have developed the UCI Chemistry Outreach Program to High Schools. The Program features demonstration shows and discussions about chemistry in everyday life. The development and use of show scripts has enabled large numbers of graduate and undergraduate student volunteers to demonstrate chemistry to more than 12,000 local high school students. Teachers, students, and volunteers have expressed their enjoyment of The UCI Chemistry Outreach Program to High Schools.
Rapid model building of beta-sheets in electron-density maps.
Terwilliger, Thomas C
2010-03-01
A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, P.C.; Gronenborn, A.M.; Beress, L.
The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 {phi} backbone and 21 {sub {chi}1} side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67more » {plus minus} 0.12 {angstrom} for the backbone atoms and 0.90 {plus minus} 0.17 {angstrom} for all atoms. The core of the protein is formed by a triple-stranded antiparallel {beta}-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel {beta}-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel {beta}-sheet are connected by a long exposed loop. A number of side-chain interactions are discussed in light of the structure.« less
Design and preparation of beta-sheet forming repetitive and block-copolymerized polypeptides.
Higashiya, Seiichiro; Topilina, Natalya I; Ngo, Silvana C; Zagorevskii, Dmitri; Welch, John T
2007-05-01
The design and rapid construction of libraries of genes coding beta-sheet forming repetitive and block-copolymerized polypeptides bearing various C- and N-terminal sequences are described. The design was based on the assembly of DNA cassettes coding for the (GA)3GX amino acid sequence where the (GAGAGA) sequences would constitute the beta-strand units of a larger beta-sheet assembly. The edges of this beta-sheet would be functionalized by the turn-inducing amino acids (GX). The polypeptides were expressed in Escherichia coli using conventional vectors and were purified by Ni-nitriloacetic acid (NTA) chromatography. The correlation of polymer structure with molecular weight was investigated by gel electrophoresis and mass spectrometry. The monomer sequences and post-translational chemical modifications were found to influence the mobility of the polypeptides over the full range of polypeptide molecular weights while the electrophoretic mobility of lower molecular weight polypeptides was more susceptible to C- and N-termini polypeptide modifications.
Saiki, Masatoshi; Honda, Shinya; Kawasaki, Kazunori; Zhou, Deshan; Kaito, Akira; Konakahara, Takeo; Morii, Hisayuki
2005-05-13
Various mutants of the protein fragment, barnase module-1 (1-24) were investigated in order to reveal the structural principle of amyloid-like fibrils. By means of circular dichroism spectroscopy, X-ray diffraction, electron microscopy, and thioflavin T binding assay, we found that the molecules containing two beta-strands and an intervening turn structure are assembled to form a cross-beta structure. Stabilization by both the hydrophobic interactions and hydrogen bonding between the respective paired side-chains on the coupled beta-strands was essential for fibril formation. These two types of interaction can also arrange the corresponding residues in lines on both sheet surfaces of protofilaments with a cross-beta structure. This leads to the most probable fibril structure constructed with the line-matching interactions between protofilaments. Consideration of the geometrical symmetry resulted in our finding that a limited number of essential models for molecular packing in fibril structure are stable, which would rationally explain the occurrence of two or three morphologies from an identical molecular species. The ribbon-like fibrils exhibited striped texture along the axis, which was assigned to a stacked two-sheet repeat as a structural unit. The comprehensively proposed structural model, that is, the sheet-sheet interaction between left-handed cross-beta structures, results in a slightly right-handed twist of beta-sheet stacking, which reasonably elucidates the intrinsic sizes of the fibril width and its helical period along the fibril axis, as the bias in the orientation of the hydrogen-bonded beta-strand pair at the lateral edge is larger than that at the central protofilament.
Minimalist design of water-soluble cross-[beta] architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancalana, Matthew; Makabe, Koki; Koide, Shohei
Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-{beta} proteins. The cross-{beta} motif is formed from the lamination of successive {beta}-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-{beta} has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-{beta}'s recalcitrance to protein engineering and conspicuous absence among the knownmore » atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-{beta} structures of fibril-forming peptides, we identified rows of hydrophobic residues ('ladders') running across {beta}-strands of each {beta}-sheet layer as a minimal component of the cross-{beta} motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-{beta} peptide onto a large {beta}-sheet protein formed a dimeric protein with a cross-{beta} architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-{beta} motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-{beta} structure and expanding the scope of protein design.« less
Minimalist design of water-soluble cross-beta architecture.
Biancalana, Matthew; Makabe, Koki; Koide, Shohei
2010-02-23
Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-beta proteins. The cross-beta motif is formed from the lamination of successive beta-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-beta has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-beta's recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-beta structures of fibril-forming peptides, we identified rows of hydrophobic residues ("ladders") running across beta-strands of each beta-sheet layer as a minimal component of the cross-beta motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-beta peptide onto a large beta-sheet protein formed a dimeric protein with a cross-beta architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-beta motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-beta structure and expanding the scope of protein design.
Solution structure and interactions of the Escherichia coli cell division activator protein CedA.
Chen, Ho An; Simpson, Peter; Huyton, Trevor; Roper, David; Matthews, Stephen
2005-05-10
CedA is a protein that is postulated to be involved in the regulation of cell division in Escherichia coli and related organisms; however, little biological data about its possible mode of action are available. Here we present a three-dimensional structure of this protein as determined by NMR spectroscopy. The protein is made up of four antiparallel beta-strands, an alpha-helix, and a large unstructured stretch of residues at the N-terminus. It shows structural similarity to a family of DNA-binding proteins which interact with dsDNA via a three-stranded beta-sheet, suggesting that CedA may be a DNA-binding protein. The putative binding surface of CedA is predominantly positively charged with a number of basic residues surrounding a groove largely dominated by aromatic residues. NMR chemical shift perturbations and gel-shift experiments performed with CedA confirm that the protein binds dsDNA, and its interaction is mediated primarily via the beta-sheet.
Molecular Mechanism of Thioflavin-T Binding to the Surface of [beta]-Rich Peptide Self-Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancalana, Matthew; Makabe, Koki; Koide, Akiko
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a 'peptide self-assembly mimic' (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimicmore » a segment of beta-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM beta-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the beta-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more beta-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.« less
Protein design on computers. Five new proteins: Shpilka, Grendel, Fingerclasp, Leather, and Aida.
Sander, C; Vriend, G; Bazan, F; Horovitz, A; Nakamura, H; Ribas, L; Finkelstein, A V; Lockhart, A; Merkl, R; Perry, L J
1992-02-01
What is the current state of the art in protein design? This question was approached in a recent two-week protein design workshop sponsored by EMBO and held at the EMBL in Heidelberg. The goals were to test available design tools and to explore new design strategies. Five novel proteins were designed: Shpilka, a sandwich of two four-stranded beta-sheets, a scaffold on which to explore variations in loop topology; Grendel, a four-helical membrane anchor, ready for fusion to water-soluble functional domains; Finger-clasp, a dimer of interdigitating beta-beta-alpha units, the simplest variant of the "handshake" structural class; Aida, an antibody binding surface intended to be specific for flavodoxin; Leather--a minimal NAD binding domain, extracted from a larger protein. Each design is available as a set of three-dimensional coordinates, the corresponding amino acid sequence and a set of analytical results. The designs are placed in the public domain for scrutiny, improvement, and possible experimental verification.
Teng, Q; Zhou, Z H; Smith, E T; Busse, S C; Howard, J B; Adams, M W; La Mar, G N
1994-05-24
Two-dimensional 1H NMR data have been used to make sequence-specific assignments and define the secondary structure of the three-iron form of the oxidized ferredoxin, Fd, from the hyperthermophilic archaeon Pyrococcus furiosus, Pf. Signals for at least some protons were located for 65 of the 66 amino acids in the sequence, in spite of the paramagnetic (S = 1/2) ground state, but not all could be assigned. Unassigned and missing signals could be qualitatively correlated with the expected proximity of the protons to the paramagnetic cluster. The secondary structure was deduced from qualitative analysis of the 2D nuclear Overhauser effect, which identified two antiparallel beta-sheets, one triple-stranded including Ala1-Ser5, Val39-Glu41, and Thr62-Ala66, and one double-stranded consisting of Glu26-Asn28 and Lys32-Glu34, as well as an alpha-helix involving Glu43-Glu54. Three tight type I turns are located at residues Asp7-Thr10, Pro22-Phe25, and Asp29-Gly31. Comparison with the crystal structure of Desulfovibrio gigas, Dg, Fd (Kissinger et al., 1991) reveals a very similar folding topology, although several secondary structural elements are extended in Pf relative to Dg Fd. Thus the beta-sheet involving the two termini is expanded to include the two terminal residues and incorporates a third strand from the internal loop that is lengthened by several insertions in Pf relative to Dg Fd. The double-stranded beta-sheet in the interior of Pf Fd is lengthened slightly due to a much tighter type I turn between the two strands. The helix near the C-terminus is three residues longer in Pf than in Dg Fd, as well as being shifted toward the N-terminus. The disulfide link between the two nonligating Cys residues (Cys21 and Cys48) is conserved in Pf Fd, but the link near the C-terminus is in the middle of the long alpha-helix in Pf Fd, instead of at the N-terminus of the helix as in Dg Fd. The extensions of the beta-sheets and alpha-helix increase the number of main-chain hydrogen bonds in Pf Fd by approximately 8 relative to those in Dg Fd and likely contribute to its remarkable thermostability (it is unaffected by anaerobic incubation at 95 degrees C for 24 h).(ABSTRACT TRUNCATED AT 400 WORDS)
Proteopedia: Rossmann Fold: A Beta-Alpha-Beta Fold at Dinucleotide Binding Sites
ERIC Educational Resources Information Center
Hanukoglu, Israel
2015-01-01
The Rossmann fold is one of the most common and widely distributed super-secondary structures. It is composed of a series of alternating beta strand (ß) and alpha helical (a) segments wherein the ß-strands are hydrogen bonded forming a ß-sheet. The initial beta-alpha-beta (ßaß) fold is the most conserved segment of Rossmann folds. As this segment…
Lietzow, Michael A; Hubbell, Wayne L
2004-03-23
A goal in the development of site-directed spin labeling in proteins is to correlate the motion of a nitroxide side chain with local structure, interactions, and dynamics. Significant progress toward this goal has been made using alpha-helical proteins of known structure, and the present study is the first step in a similar exploration of a beta-sheet protein, cellular retinol-binding protein (CRBP). Nitroxide side chains were introduced along both interior and edge strands. At sites in interior strands, the side-chain motion is strongly influenced by interactions with side chains of neighboring strands, giving rise to a rich variety of dynamic modes (weakly ordered, strongly ordered, immobilized) and complex electron paramagnetic resonance spectra that are modulated by strand twist. The interactions giving rise to the dynamic modes are explored using mutagenesis, and the results demonstrate the particular importance of the non-hydrogen-bonded neighbor residue in giving rise to highly ordered states. Along edge strands of the beta-sheet, the motion of the side chain is simple and weakly ordered, resembling that at solvent-exposed surfaces of an alpha-helix. A simple working model is proposed that can account for the wide variety of dynamic modes encountered. Collectively, the results suggest that the nitroxide side chain is an effective probe of side-chain interactions, and that site-directed spin labeling should be a powerful means of monitoring conformational changes that involve changes in beta-sheet topology.
Armen, Roger S; Alonso, Darwin O V; Daggett, Valerie
2004-10-01
The homotetramer of transthyretin (TTR) dissociates into a monomeric amyloidogenic intermediate that self-assembles into amyloid fibrils at low pH. We have performed molecular dynamics simulations of monomeric TTR at neutral and low pH at physiological (310 K) and very elevated temperature (498 K). In the low-pH simulations at both temperatures, one of the two beta-sheets (strands CBEF) becomes disrupted, and alpha-sheet structure forms in the other sheet (strands DAGH). alpha-sheet is formed by alternating alphaL and alphaR residues, and it was first proposed by Pauling and Corey. Overall, the simulations are in agreement with the available experimental observations, including solid-state NMR results for a TTR-peptide amyloid. In addition, they provide a unique explanation for the results of hydrogen exchange experiments of the amyloidogenic intermediate-results that are difficult to explain with beta-structure. We propose that alpha-sheet may represent a key pathological conformation during amyloidogenesis. Copyright 2004 Elsevier Ltd.
Li, Ying; Gupta, Ruchi; Cho, Jae-Hyun; Raleigh, Daniel P
2007-01-30
The C-terminal domain of ribosomal protein L9 (CTL9) is a 92-residue alpha-beta protein which contains an unusual three-stranded mixed parallel and antiparallel beta-sheet. The protein folds in a two-state fashion, and the folding rate is slow. It is thought that the slow folding may be caused by the necessity of forming this unusual beta-sheet architecture in the transition state for folding. This hypothesis makes CTL9 an interesting target for folding studies. The transition state for the folding of CTL9 was characterized by phi-value analysis. The folding of a set of hydrophobic core mutants was analyzed together with a set of truncation mutants. The results revealed a few positions with high phi-values (> or = 0.5), notably, V131, L133, H134, V137, and L141. All of these residues were found in the beta-hairpin region, indicating that the formation of this structure is likely to be the rate-limiting step in the folding of CTL9. One face of the beta-hairpin docks against the N-terminal helix. Analysis of truncation mutants of this helix confirmed its importance in folding. Mutations at other sites in the protein gave small phi-values, despite the fact that some of them had major effects on stability. The analysis indicates that formation of the antiparallel hairpin is critical and its interactions with the first helix are also important. Thus, the slow folding is not a consequence of the need to fully form the unusual three-stranded beta-sheet in the transition state. Analysis of the urea dependence of the folding rates indicates that mutations modulate the unfolded state. The folding of CTL9 is broadly consistent with the nucleation-condensation model of protein folding.
Sikirzhytski, Vitali; Topilina, Natalya I; Higashiya, Seiichiro; Welch, John T; Lednev, Igor K
2008-05-07
Elucidating the structure of the cross-beta core in large amyloid fibrils is a challenging problem in modern structural biology. For the first time, a set of de novo polypeptides was genetically engineered to form amyloid-like fibrils with similar morphology and yet different strand length. Differential ultraviolet Raman spectroscopy allowed for separation of the spectroscopic signatures of the highly ordered beta-sheet strands and turns of the fibril core. The relationship between Raman frequencies and Ramachandran dihedral angles of the polypeptide backbone indicates the nature of the beta-sheet and turn structural elements.
In silico study of full-length amyloid beta 1-42 tri- and penta-oligomers in solution.
Masman, Marcelo F; Eisel, Ulrich L M; Csizmadia, Imre G; Penke, Botond; Enriz, Ricardo D; Marrink, Siewert Jan; Luiten, Paul G M
2009-08-27
Amyloid oligomers are considered to play causal roles in the pathogenesis of amyloid-related degenerative diseases including Alzheimer's disease. Using MD simulation techniques, we explored the contributions of the different structural elements of trimeric and pentameric full-length Abeta1-42 aggregates in solution to their stability and conformational dynamics. We found that our models are stable at a temperature of 310 K, and converge toward an interdigitated side-chain packing for intermolecular contacts within the two beta-sheet regions of the aggregates: beta1 (residues 18-26) and beta2 (residues 31-42). MD simulations reveal that the beta-strand twist is a characteristic element of Abeta-aggregates, permitting a compact, interdigitated packing of side chains from neighboring beta-sheets. The beta2 portion formed a tightly organized beta-helix, whereas the beta1 portion did not show such a firm structural organization, although it maintained its beta-sheet conformation. Our simulations indicate that the hydrophobic core comprising the beta2 portion of the aggregate is a crucial stabilizing element in the Abeta aggregation process. On the basis of these structure-stability findings, the beta2 portion emerges as an optimal target for further antiamyloid drug design.
Folding thermodynamics of model four-strand antiparallel beta-sheet proteins.
Jang, Hyunbum; Hall, Carol K; Zhou, Yaoqi
2002-01-01
The thermodynamic properties for three different types of off-lattice four-strand antiparallel beta-strand protein models interacting via a hybrid Go-type potential have been investigated. Discontinuous molecular dynamic simulations have been performed for different sizes of the bias gap g, an artificial measure of a model protein's preference for its native state. The thermodynamic transition temperatures are obtained by calculating the squared radius of gyration R(g)(2), the root-mean-squared pair separation fluctuation Delta(B), the specific heat C(v), the internal energy of the system E, and the Lindemann disorder parameter Delta(L). Despite these models' simplicity, they exhibit a complex set of protein transitions, consistent with those observed in experimental studies on real proteins. Starting from high temperature, these transitions include a collapse transition, a disordered-to-ordered globule transition, a folding transition, and a liquid-to-solid transition. The high temperature transitions, i.e., the collapse transition and the disordered-to-ordered globule transition, exist for all three beta-strand proteins, although the native-state geometry of the three model proteins is different. However the low temperature transitions, i.e., the folding transition and the liquid-to-solid transition, strongly depend on the native-state geometry of the model proteins and the size of the bias gap. PMID:11806908
Tenenholz, T C; Rogowski, R S; Collins, J H; Blaustein, M P; Weber, D J
1997-03-11
PiTX-K alpha, a 35-residue peptide recently isolated from the venom of Pandinus imperator, blocks the rapidly inactivating (A-type) K+ channel(s) in rat brain synaptosomes and the cloned Kv 1.2 potassium channel at very low toxin concentrations (6 nM and 32 pM, respectively) [Rogowski, R. S., Collins, J. H., O'Neil, T. J., Gustafson, T. A., Werkman, T. A., Rogawski, M. A., Tenenholz, T. C., Weber, D. J., & Blaustein, M. P. (1996) Mol. Pharmacol. 50, 1167-1177]. The three-dimensional structure of PiTX-K alpha was determined using NMR spectroscopy in order to understand its selectivity and affinity toward K+ channels. PiTX-K alpha was found to have an alpha-helix from residues 10 to 21 and two beta-strands (betaI, 26-28; betaII, 33-35) connected by a type II beta-turn to form a small antiparallel beta-sheet. Three disulfide bonds, which are conserved in all members of the charybdotoxin family (alpha-K toxins), anchor one face of the alpha-helix to the beta-sheet. The N-terminal portion of PiTX-K alpha has three fewer residues than other alpha-K toxins such as charybdotoxin. Rather than forming a third beta-strand as found for other alpha-K toxins, the N-terminal region of PiTX-K alpha adopts an extended conformation. This structural difference in PiTX-K alpha together with differences in sequence at Pro-10, Tyr-14, and Asn-25 (versus Ser-10, Trp-14, and Arg-25 in CTX) may explain why PiTX-K alpha does not block maxi-K+ channels. Differences in three-dimensional structure between PiTX-K alpha and charybdotoxin are also observed in both the tight turn and the loop that connects the first beta-strand to the alpha-helix. As a result, side chains of two residues (Tyr-23 and Arg-31) are in regions of PiTX-K alpha that probably interact with rapidly inactivating A-type K+ channels. The analogous residues in charybdotoxin are positioned differently on the toxin surface. Thus, the locations of Tyr-23 and Arg-31 side chains in PiTX-K alpha could explain why this toxin blocks A-type channels at much lower concentrations than does charybdotoxin.
Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth
2007-11-01
We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.
Tasayco, M L; Fuchs, J; Yang, X M; Dyalram, D; Georgescu, R E
2000-09-05
The approach of comparing folding and folding/binding processes is exquisitely poised to narrow down the regions of the sequence that drive protein folding. We have dissected the small single alpha/beta domain of oxidized Escherichia coli thioredoxin (Trx) into three complementary fragments (N, residues 1-37; M, residues 38-73; and C, residues 74-108) to study them in isolation and upon recombination by far-UV CD and NMR spectroscopy. The isolated fragments show a minimum of ellipticity of ca. 197 nm in their far-UV CD spectra without concentration dependence, chemical shifts of H(alpha) that are close to the random coil values, and no medium- and long-range NOE connectivities in their three-dimensional NMR spectra. These fragments behave as disordered monomers. Only the far-UV CD spectra of binary or ternary mixtures that contain N- and C-fragments are different from the sum of their individual spectra, which is indicative of folding and/or binding of these fragments. Indeed, the cross-peaks corresponding to the rather hydrophobic beta(2) and beta(4) regions of the beta-sheet of Trx disappear from the (1)H-(15)N HSQC spectra of isolated labeled N- and C-fragments, respectively, upon addition of the unlabeled complementary fragments. The disappearing cross-peaks indicate interactions between the beta(2) and beta(4) regions, and their reappearance at lower temperatures indicates unfolding and/or dissociation of heteromers that are predominantly held by hydrophobic forces. Our results argue that the folding of Trx begins by zippering two discontiguous and rather hydrophobic chain segments (beta(2) and beta(4)) corresponding to neighboring strands of the native beta-sheet.
Structure of the E2 DNA-binding domain from human papillomavirus serotype 31 at 2.4 A.
Bussiere, D E; Kong, X; Egan, D A; Walter, K; Holzman, T F; Lindh, F; Robins, T; Giranda, V L
1998-11-01
The papillomaviruses are a family of small double-stranded DNA viruses which exclusively infect epithelial cells and stimulate the proliferation of those cells. A key protein within the papillomavirus life-cycle is known as the E2 (Early 2) protein and is responsible for regulating viral transcription from all viral promoters as well as for replication of the papillomavirus genome in tandem with another protein known as E1. The E2 protein itself consists of three functional domains: an N-terminal trans-activation domain, a proline-rich linker, and a C-terminal DNA-binding domain. The first crystal structure of the human papillomavirus, serotype 31 (HPV-31), E2 DNA-binding domain has been determined at 2.4 A resolution. The HPV DNA-binding domain monomer consists of two beta-alpha-beta repeats of approximately equal length and is arranged as to have an anti-parallel beta-sheet flanked by the two alpha-helices. The monomers form the functional in vivo dimer by association of the beta-sheets of each monomer so as to form an eight-stranded anti-parallel beta-barrel at the center of the dimer, with the alpha-helices lining the outside of the barrel. The overall structure of HVP-31 E2 DNA-binding domain is similar to both the bovine papillomavirus E2-binding domain and the Epstein-Barr nuclear antigen-1 DNA-binding domain.
Beta-propellers: associated functions and their role in human diseases.
Pons, Tirso; Gómez, Raú; Chinea, Glay; Valencia, Alfonso
2003-03-01
The beta-propeller fold appears as a very fascinating architecture based on four-stranded antiparallel and twisted beta-sheets, radially arranged around a central tunnel. Similar to the alpha/beta-barrel (TIM-barrel) fold, the beta-propeller has a wide range of different functions, and is gaining substantial attention. Some proteins containing beta-propeller domains have been implicated in the pathogenesis of a variety of diseases such as cancer, Alzheimer, Huntington, arthritis, familial hypercholesterolemia, retinitis pigmentosa, osteogenesis, hypertension, and microbial and viral infections. This article reviews some aspects of 3D structure, amino acids sequence regularities, and biological functions of the proteins containing beta-propeller domains. Major emphasis has been laid on beta-propellers whose functions are associated to human diseases. Recent research efforts reported in the fields of protein engineering, drug design, and protein structure-function relationship studies, concerning the beta-propeller architecture, have also been discussed.
Prediction of protein secondary structure content for the twilight zone sequences.
Homaeian, Leila; Kurgan, Lukasz A; Ruan, Jishou; Cios, Krzysztof J; Chen, Ke
2007-11-15
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure. (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kyung-Tase; Wu, Wei; Battaile, Kevin P.
In E. coli, MinD recruits MinE to the membrane, leading to a coupled oscillation required for spatial regulation of the cytokinetic Z ring. How these proteins interact, however, is not clear because the MinD-binding regions of MinE are sequestered within a six-stranded {beta} sheet and masked by N-terminal helices. minE mutations that restore interaction between some MinD and MinE mutants were isolated. These mutations alter the MinE structure leading to release of the MinD-binding regions and the N-terminal helices that bind the membrane. Crystallization of MinD-MinE complexes revealed a four-stranded {beta} sheet MinE dimer with the released {beta} strands (MinD-bindingmore » regions) converted to {alpha} helices bound to MinD dimers. These results identify the MinD-dependent conformational changes in MinE that convert it from a latent to an active form and lead to a model of how MinE persists at the MinD-membrane surface.« less
Pineda-Lucena, Antonio; Liao, Jack C C; Cort, John R; Yee, Adelinda; Kennedy, Michael A; Edwards, Aled M; Arrowsmith, Cheryl H
2003-05-01
As part of the Northeast Structural Genomics Consortium pilot project focused on small eukaryotic proteins and protein domains, we have determined the NMR structure of the protein encoded by ORF YML108W from Saccharomyces cerevisiae. YML108W belongs to one of the numerous structural proteomics targets whose biological function is unknown. Moreover, this protein does not have sequence similarity to any other protein. The NMR structure of YML108W consists of a four-stranded beta-sheet with strand order 2143 and two alpha-helices, with an overall topology of betabetaalphabetabetaalpha. Strand beta1 runs parallel to beta4, and beta2:beta1 and beta4:beta3 pairs are arranged in an antiparallel fashion. Although this fold belongs to the split betaalphabeta family, it appears to be unique among this family; it is a novel arrangement of secondary structure, thereby expanding the universe of protein folds.
Different disease-causing mutations in transthyretin trigger the same conformational conversion.
Steward, Robert E; Armen, Roger S; Daggett, Valerie
2008-03-01
Transthyretin (TTR)-containing amyloid fibrils are deposited in cardiac tissue as a natural consequence of aging. A large number of inherited mutations lead to amyloid diseases by accelerating TTR deposition in other organs. Amyloid formation is preceded by a disruption of the quaternary structure of TTR and conformational changes in the monomer. To study conformational changes preceding the formation of amyloid, we performed molecular dynamics simulations of the wild-type monomer, amyloidogenic variants (V30M, L55P, V122I) and a protective variant (T119M) at neutral and low pH. At low pH, the D strand dissociated from the beta-sheet to expose the A strand, consistent with experimental studies. In amyloidogenic variants and in the wild-type at low pH, there was a conformational change in the beta-sheets into alpha-sheet via peptide bond flips that was not observed at neutral pH in the wild-type monomer. The same residues participated in conversion in each amyloidogenic variant simulation, originating in the G strand between residues 106 and 109, with accelerated conversion at low pH. The T119M protective variant changed the local conformation of the H strand and suppressed the conversion observed in amyloidogenic variants.
Wang, Chang-Sheng; Sun, Chang-Liang
2010-04-15
In this article, the binding energies of 16 antiparallel and parallel beta-sheet models are estimated using the analytic potential energy function we proposed recently and the results are compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparisons indicate that the analytic potential energy function can produce reasonable binding energies for beta-sheet models. Further comparisons suggest that the binding energy of the beta-sheet models might come mainly from dipole-dipole attractive and repulsive interactions and VDW interactions between the two strands. The dipole-dipole attractive and repulsive interactions are further obtained in this article. The total of N-H...H-N and C=O...O=C dipole-dipole repulsive interaction (the secondary electrostatic repulsive interaction) in the small ring of the antiparallel beta-sheet models is estimated to be about 6.0 kcal/mol. The individual N-H...O=C dipole-dipole attractive interaction is predicted to be -6.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -5.2 +/- 0.6 kcal/mol in the parallel beta-sheet models. The individual C(alpha)-H...O=C attractive interaction is -1.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -1.5 +/- 0.2 kcal/mol in the parallel beta-sheet models. These values are important in understanding the interactions at protein-protein interfaces and developing a more accurate force field for peptides and proteins. 2009 Wiley Periodicals, Inc.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-05-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.
Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I
2001-01-01
Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033
Disulfide-Mediated β-Strand Dimers: Hyperstable β-Sheets Lacking Tertiary Interactions and Turns.
Kier, Brandon L; Anderson, Jordan M; Andersen, Niels H
2015-04-29
Disulfide bonds between cysteine residues are essential to the structure and folding of many proteins. Yet their role in the design of structured peptides and proteins has frequently been limited to use as intrachain covalent staples that reinforce existing structure or induce knot-like conformations. In β-hairpins, their placement at non-H-bonding positions across antiparallel strands has proven useful for achieving fully folded positive controls. Here we report a new class of designed β-sheet peptide dimers with strand-central disulfides as a key element. We have found that the mere presence of a disulfide bond near the middle of a short peptide chain is sufficient to nucleate some antiparallel β-sheet structure; addition of β-capping units and other favorable cross-strand interactions yield hyperstable sheets. Strand-central cystines were found to be superior to the best designed reversing turns in terms of nucleating β-sheet structure formation. We have explored the limitations and possibilities of this technique (the use of disulfides as sheet nucleators), and we provide a set of rules and rationales for the application and further design of disulfide-tethered "turnless" β-sheets.
Folding dynamics of a family of beta-sheet proteins
NASA Astrophysics Data System (ADS)
Rousseau, Denis
2008-03-01
Fatty acid binding proteins (FABP) consist of ten anti-parallel beta strands and two small alpha helices. The beta strands are arranged into two nearly orthogonal five-strand beta sheets that surround the interior cavity, which binds unsaturated long-chain fatty acids. In the brain isoform (BFABP), these are very important for the development of the central nervous system and neuron differentiation. Furthermore, BFABP is implicated in the pathogenesis of a variety of human diseases including cancer and neuronal degenerative disorders. In this work, site-directed spin labeling combined with EPR techniques have been used to study the folding mechanism of BFABP. In the first series of studies, we labeled the two Cys residues at position 5 and 80 in the wild type protein with an EPR spin marker; in addition, two singly labeled mutants at positions 5 and 80 in the C80A and C5A mutants, respectively, were also produced and used as controls. The changes in the distances between the two residues were examined by a pulsed EPR method, DEER (Double Electron Electron Resonance), as a function of guanidinium hydrochloride concentration. The results were compared with those from CW EPR, circular dichroism and fluorescence measurements, which provide the information regarding sidechain mobility, secondary structure and tertiary structure, respectively. The results will be discussed in the context of the folding mechanism of the family of fatty acid binding proteins.
Antiparallel Triple-strand Architecture for Prefibrillar Aβ42 Oligomers*
Gu, Lei; Liu, Cong; Stroud, James C.; Ngo, Sam; Jiang, Lin; Guo, Zhefeng
2014-01-01
Aβ42 oligomers play key roles in the pathogenesis of Alzheimer disease, but their structures remain elusive partly due to their transient nature. Here, we show that Aβ42 in a fusion construct can be trapped in a stable oligomer state, which recapitulates characteristics of prefibrillar Aβ42 oligomers and enables us to establish their detailed structures. Site-directed spin labeling and electron paramagnetic resonance studies provide structural restraints in terms of side chain mobility and intermolecular distances at all 42 residue positions. Using these restraints and other biophysical data, we present a novel atomic-level oligomer model. In our model, each Aβ42 protein forms a single β-sheet with three β-strands in an antiparallel arrangement. Each β-sheet consists of four Aβ42 molecules in a head-to-tail arrangement. Four β-sheets are packed together in a face-to-back fashion. The stacking of identical segments between different β-sheets within an oligomer suggests that prefibrillar oligomers may interconvert with fibrils via strand rotation, wherein β-strands undergo an ∼90° rotation along the strand direction. This work provides insights into rational design of therapeutics targeting the process of interconversion between toxic oligomers and non-toxic fibrils. PMID:25118290
Santiveri, Clara M; Pantoja-Uceda, David; Rico, Manuel; Jiménez, M Angeles
2005-10-15
In order to check our current knowledge on the principles involved in beta-hairpin formation, we have modified the sequence of a 3:5 beta-hairpin forming peptide with two different purposes, first to increase the stability of the formed 3:5 beta-hairpin, and second to convert the 3:5 beta-hairpin into a 2:2 beta-hairpin. The conformational behavior of the designed peptides was investigated in aqueous solution and in 30% trifluoroethanol (TFE) by analysis of the following nuclear magnetic resonance (NMR) parameters: nuclear Overhauser effect (NOE) data, and C(alpha)H, (13)C(alpha), and (13)C(beta) conformational shifts. From the differences in the ability to adopt beta-hairpin structures in these peptides, we have arrived to the following conclusions: (i) beta-Hairpin population increases with the statistical propensity of residues to occupy each turn position. (ii) The loop length, and in turn, the beta-hairpin type, can be modified as a function of the type of turn favored by the loop sequence. These two conclusions reinforce previous results about the importance of beta-turn sequence in beta-hairpin folding. (iii) Side-chain packing on each face of the beta-sheet may play a major role in beta-hairpin stability; hence simplified analysis in terms of isolated pair interactions and intrinsic beta-sheet propensities is insufficient. (iv) Contributions to beta-hairpin stability of turn and strand sequences are not completely independent. (v) The burial of hydrophobic surface upon beta-hairpin formation that, in turn, depends on side-chain packing also contributes to beta-hairpin stability. (vi) As previously observed, TFE stabilizes beta-hairpin structures, but the extent of the contribution of different factors to beta-hairpin formation is sometimes different in aqueous solution and in 30% TFE. (c) 2005 Wiley Periodicals, Inc. Biopolymers 79: 150-162, 2005.
Self-Assembled Hydrogels from Poly[N-(2-hydroxypropyl)methacrylamide] Grafted with β-Sheet Peptides
Radu-Wu, Larisa C.; Yang, Jiyuan; Wu, Kuangshi; Kopeček, Jindřich
2009-01-01
A new hybrid hydrogel based on poly[N-(2-hydroxypropyl)methacrylamide] grafted with a β-sheet peptide, Beta11, was designed. Circular dichroism spectroscopy indicated that the folding ability of β-sheet peptide was retained in the hybrid system, whereas the sensitivity of the peptide towards temperature and pH variations was hindered. The polymer backbone also prevented the twisting of the fibrils that resulted from the antiparallel arrangement of the β-strands, as proved by Fourier transform infrared spectroscopy. Thioflavin T binding experiments and transmission electron microscopy showed fibril formation with minimal lateral aggregation. As a consequence, the graft copolymer self-assembled into a hydrogel in aqueous environment. This process was mediated by association of β-sheet domains. Scanning electron microscopy revealed a particular morphology of the network, characterized by long-range order and uniformly aligned lamellae. Microrheology results confirmed that concentration-dependent gelation occurred. PMID:19591463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Biancalana, Matthew; Yan, Shude
2010-02-08
{beta}-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer {beta}-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that amore » penta-Ile peptide (Ile{sub 5}), which is insoluble and forms {beta}-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-{angstrom} crystal structure revealed that the Ile{sub 5} stretch forms a highly regular {beta}-strand within this flat {beta}-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat {beta}-strand of the Ile{sub 5} stretch primed for self-assembly is a low-energy conformation of the Ile{sub 5} stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to 'solubilize' an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.« less
Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.
Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I
1994-11-25
The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away from the beta-sheet to expose carboxyl-terminal residues essential for early steps in the HIV-1 infectious cycle. Basic residues implicated in membrane binding and nuclear localization functions cluster about an extruded cationic loop that connects beta-strands 1 and 2. The structure suggests that both membrane binding and nuclear localization may be mediated by complex tertiary structures rather than simple linear determinants.
A recipe for designing water-soluble, beta-sheet-forming peptides.
Mayo, K. H.; Ilyina, E.; Park, H.
1996-01-01
Based on observations of solubility and folding properties of peptide 33-mers derived from the beta-sheet domains of platelet factor-4 (PF4), interleukin-8 (IL-8), and growth related protein (Gro-alpha), as well as other beta-sheet-forming peptides, general guidelines have been developed to aid in the design of water soluble, self-association-induced beta-sheet-forming peptides. CD, 1H-NMR, and pulsed field gradient NMR self-diffusion measurements have been used to assess the degree of folding and state of aggregation. PF4 peptide forms native-like beta-sheet tetramers and is sparingly soluble above pH 6. IL-8 peptide is insoluble between pH 4.5 and pH 7.5, yet forms stable, native-like beta-sheet dimers at higher pH. Gro-alpha peptide is soluble at all pH values, yet displays no discernable beta-sheet structure even when diffusion data indicate dimer-tetramer aggregation. A recipe used in the de novo design of water-soluble beta-sheet-forming peptides calls for the peptide to contain 40-50% hydrophobic residues, usually aliphatic ones (I, L, V, A, M) (appropriately paired and mostly but not always alternating with polar residues in the sheet sequence), a positively charged (K, R) to negatively charged (E, D) residue ratio between 4/2 and 6/2, and a noncharged polar residue (N, Q, T, S) composition of about 20% or less. Results on four de novo designed, 33-residue peptides are presented supporting this approach. Under near physiologic conditions, all four peptides are soluble, form beta-sheet structures to varying degrees, and self-associate. One peptide folds as a stable, compact beta-sheet tetramer, whereas the others are transient beta-sheet-containing aggregates. PMID:8819163
Structural Basis for the Histone Chaperone Activity of Asf1
English, Christine M.; Adkins, Melissa W.; Carson, Joshua J.; Churchill, Mair E.A.; Tyler, Jessica K.
2010-01-01
SUMMARY Asf1 is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. The structure of the globular domain of Asf1 bound to H3/H4 determined by X-ray crystallography to a resolution of 1.7 Å shows how Asf1 binds the H3/H4 heterodimer, enveloping the C-terminus of histone H3 and physically blocking formation of the H3/H4 heterotetramer. Unexpectedly, the C-terminus of histone H4 that forms a mini-beta sheet with histone H2A in the nucleosome, undergoes a major conformational change upon binding to Asf1 and adds a beta strand to the Asf1 beta-sheet sandwich. Interactions with both H3 and H4 were required for Asf1 histone chaperone function in vivo and in vitro. The Asf1-H3/H4 structure suggests a “strand-capture” mechanism whereby the H4 tail acts as a lever to facilitate chromatin disassembly / assembly that may be used ubiquitously by histone chaperones. PMID:17081973
Protein-induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Wolfe; M Calabrese; A Nath
2011-12-31
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Protein-induced photophysical changes to the amyloid indicator dye thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Leslie S.; Calabrese, Matthew F.; Nath, Abhinav
2010-10-04
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Unfolding of the cold shock protein studied with biased molecular dynamics.
Morra, Giulia; Hodoscek, Milan; Knapp, Ernst-Walter
2003-11-15
The cold shock protein from Bacillus caldolyticus is a small beta-barrel protein that folds in a two-state mechanism. For the native protein and for several mutants, a wealth of experimental data are available on stability and folding, so that it is an optimal system to study this process. We compare data from unfolding simulations (trajectories of 5 and up to 12 ns) obtained with a bias potential at room temperature and from unbiased thermal unfolding simulations with experimental data. The unfolding patterns derived from the trajectories starting from different native-like conformations and subject to different unfolding conditions agree. The transition state found in the simulations of unfolding is close to the native structure in agreement with experiment. Moreover, a lower value of the free energy barrier of unfolding was found for the mutant R3E than for the mutant E46A and the native protein, as indicated by experimental data. The first unfolding event involves the three-stranded beta-sheet whose decomposition corresponds to the transition state. In contrast to conclusions drawn from experiments, we found that the two-stranded beta-strand forms the most stable substructure, which decomposes very late in the unfolding process. However, assuming that this structure forms very early in the folding process, our findings would not contradict the experiments but require a different interpretation of them. Copyright 2003 Wiley-Liss, Inc.
Chao, H.; Sönnichsen, F. D.; DeLuca, C. I.; Sykes, B. D.; Davies, P. L.
1994-01-01
Antifreeze proteins (AFPs) depress the freezing point of aqueous solutions by binding to and inhibiting the growth of ice. Whereas the ice-binding surface of some fish AFPs is suggested by their linear, repetitive, hydrogen bonding motifs, the 66-amino-acid-long Type III AFP has a compact, globular fold without any obvious periodicity. In the structure, 9 beta-strands are paired to form 2 triple-stranded antiparallel sheets and 1 double-stranded antiparallel sheet, with the 2 triple sheets arranged as an orthogonal beta-sandwich (Sönnichsen FD, Sykes BD, Chao H, Davies PL, 1993, Science 259:1154-1157). Based on its structure and an alignment of Type III AFP isoform sequences, a cluster of conserved, polar, surface-accessible amino acids (N14, T18, Q44, and N46) was noted on and around the triple-stranded sheet near the C-terminus. At 3 of these sites, mutations that switched amide and hydroxyl groups caused a large decrease in antifreeze activity, but amide to carboxylic acid changes produced AFPs that were fully active at pH 3 and pH 6. This is consistent with the observation that Type III AFP is optimally active from pH 2 to pH 11. At a concentration of 1 mg/mL, Q44T, N14S, and T18N had 50%, 25%, and 10% of the activity of wild-type antifreeze, respectively. The effects of the mutations were cumulative, such that the double mutant N14S/Q44T had 10% of the wild-type activity and the triple mutant N14S/T18N/Q44T had no activity. All mutants with reduced activity were shown to be correctly folded by NMR spectroscopy. Moreover, a complete characterization of the triple mutant by 2-dimensional NMR spectroscopy indicated that the individual and combined mutations did not significantly alter the structure of these proteins. These results suggest that the C-terminal beta-sheet of Type III AFP is primarily responsible for antifreeze activity, and they identify N14, T18, and Q44 as key residues for the AFP-ice interaction. PMID:7849594
Folding cooperativity in a 3-stranded β-sheet model
Roe, Daniel R.; Hornak, Viktor
2015-01-01
Summary The thermodynamic behavior of a previously designed three-stranded β-sheet was studied via several µs of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including 2 partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual β-hairpins that comprise the 3-stranded β-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperatively than has been performed based on experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously. PMID:16095612
2015-01-01
We present ONIOM calculations using B3LYP/d95(d,p) as the high level and AM1 as the medium level on parallel β-sheets containing four strands of Ac-AAAAAA-NH2 capped with either Ac-AAPAAA-NH2 or Ac-AAAPAA-NH2. Because Pro can form H-bonds from only one side of the peptide linkage (that containing the C=O H-bond acceptor), only one of the two Pro-containing strands can favorably add to the sheet on each side. Surprisingly, when the sheet is capped with AAPAAA-NH2 at one edge, the interaction between the cap and sheet is slightly more stabilizing than that of another all Ala strand. Breaking down the interaction enthalpies into H-bonding and distortion energies shows the favorable interaction to be due to lower distortion energies in both the strand and the four-stranded sheet. Because another strand would be inhibited for attachment to the other side of the capping (Pro-containing) strand, we suggest the possible use of Pro residues in peptides designed to arrest the growth of many amyloids. PMID:24422496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darbon, H.; Weber, C.; Braun, W.
1991-02-19
Sequence-specific nuclear magnetic resonance assignments for the polypeptide backbone and for most of the amino acid side-chain protons, as well as the general folding of AaH IT, are described. AaH IT is a neurotoxin purified from the venom of the scorpion Androctonus australis Hector and is specifically active on the insect nervous system. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The backbone folding is determined by distance geometry calculations with the DISMAN program. The regular secondary structure includesmore » two and a half turns of {alpha}-helix running from residues 21 to 30 and a three-stranded antiparallel {beta}-sheet including peptides 3-5, 34-38, and 41-46. Two tight turns are present, one connecting the end of the {alpha}-helix to an external strand of the {beta}-sheet, i.e., turn 31-34, and another connecting this same strand to the central one, i.e., turn 38-41. The differences in the specificity of these related proteins, which are able to discriminate between mammalian and insect voltage-dependent sodium channels of excitable tissues, are most probably brought about by the position of the C-terminal peptide with regard to a hydrophobic surface common to all scorpion toxins examined thus far. Thus, the interaction of a given scorpion toxin with its receptor might well be governed by the presence of this solvent-exposed hydrophobic surface, whereas adjacent areas modulate the specificity of the interaction.« less
Housset, D; Mazza, G; Grégoire, C; Piras, C; Malissen, B; Fontecilla-Camps, J C
1997-01-01
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand. PMID:9250664
Armen, Roger S; DeMarco, Mari L; Alonso, Darwin O V; Daggett, Valerie
2004-08-10
Transthyretin, beta(2)-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in structure are required for the formation of the amyloidogeneic intermediate, but it has proved impossible to characterize these conformational changes at high resolution using experimental means. To probe these conformational changes at atomic resolution, we have performed molecular dynamics simulations of these proteins at neutral and low pH. In low-pH simulations of all four proteins, we observe the formation of alpha-pleated sheet secondary structure, which was first proposed by L. Pauling and R. B. Corey [(1951) Proc. Natl. Acad. Sci. USA 37, 251-256]. In all beta-sheet proteins, transthyretin and beta(2)-microglobulin, alpha-pleated sheet structure formed over the strands that are highly protected in hydrogen-exchange experiments probing amyloidogenic conditions. In lysozyme and the prion protein, alpha-sheets formed in the specific regions of the protein implicated in the amyloidogenic conversion. We propose that the formation of alpha-pleated sheet structure may be a common conformational transition in amyloidosis.
Geisbrecht, Brian V; Hamaoka, Brent Y; Perman, Benjamin; Zemla, Adam; Leahy, Daniel J
2005-04-29
The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 A resolution, respectively. These structures reveal a core fold that is comprised of an alpha-helix lying diagonally across a five-stranded, mixed beta-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the beta-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.
Consonni, R; Santomo, L; Fusi, P; Tortora, P; Zetta, L
1999-09-28
Sso7d is a basic 7-kDa DNA-binding protein from Sulfolobus solfataricus, also endowed with ribonuclease activity. The protein consists of a double-stranded antiparallel beta-sheet, onto which an orthogonal triple-stranded antiparallel beta-sheet is packed, and of a small helical stretch at the C-terminus. Furthermore, the two beta-sheets enclose an aromatic cluster displaying a fishbone geometry. We previously cloned the Sso7d-encoding gene, expressed it in Escherichia coli, and produced several single-point mutants, either of residues located in the hydrophobic core or of Trp23, which is exposed to the solvent and plays a major role in DNA binding. The mutation F31A was dramatically destabilizing, with a loss in thermo- and piezostabilities by at least 27 K and 10 kbar, respectively. Here, we report the solution structure of the F31A mutant, which was determined by NMR spectroscopy using 744 distance constraints obtained from analysis of multidimensional spectra in conjunction with simulated annealing protocols. The most remarkable finding is the change in orientation of the Trp23 side chain, which in the wild type is completely exposed to the solvent, whereas in the mutant is largely buried in the aromatic cluster. This prevents the formation of a cavity in the hydrophobic core of the mutant, which would arise in the absence of structural rearrangements. We found additional changes produced by the mutation, notably a strong distortion in the beta-sheets with loss in several hydrogen bonds, increased flexibility of some stretches of the backbone, and some local strains. On one hand, these features may justify the dramatic destabilization provoked by the mutation; on the other hand, they highlight the crucial role of the hydrophobic core in protein stability. To the best of our knowledge, no similar rearrangement has been so far described as a result of a single-point mutation.
He, Fahu; Saito, Kohei; Kobayashi, Naohiro; Harada, Takushi; Watanabe, Satoru; Kigawa, Takanori; Güntert, Peter; Ohara, Osamu; Tanaka, Akiko; Unzai, Satoru; Muto, Yutaka; Yokoyama, Shigeyuki
2009-10-23
The Notch signaling pathway is critical for many developmental processes and requires complex trafficking of both Notch receptor and its ligands, Delta and Serrate. In Drosophila melanogaster, the endocytosis of Delta in the signal-sending cell is essential for Notch receptor activation. The Neuralized protein from D. melanogaster (Neur) is a ubiquitin E3 ligase, which binds to Delta through its first neuralized homology repeat 1 (NHR1) domain and mediates the ubiquitination of Delta for endocytosis. Tom, a Bearded protein family member, inhibits the Neur-mediated endocytosis through interactions with the NHR1 domain. We have identified the domain boundaries of the novel NHR1 domain, using a screening system based on our cell-free protein synthesis method, and demonstrated that the identified Neur NHR1 domain had binding activity to the 20-residue peptide corresponding to motif 2 of Tom by isothermal titration calorimetry experiments. We also determined the solution structure of the Neur NHR1 domain by heteronuclear NMR methods, using a (15)N/(13)C-labeled sample. The Neur NHR1 domain adopts a characteristic beta-sandwich fold, consisting of a concave five-stranded antiparallel beta-sheet and a convex seven-stranded antiparallel beta-sheet. The long loop (L6) between the beta6 and beta7 strands covers the hydrophobic patch on the concave beta-sheet surface, and the Neur NHR1 domain forms a compact globular fold. Intriguingly, in spite of the slight, but distinct, differences in the topology of the secondary structure elements, the structure of the Neur NHR1 domain is quite similar to those of the B30.2/SPRY domains, which are known to mediate specific protein-protein interactions. Further NMR titration experiments of the Neur NHR1 domain with the 20-residue Tom peptide revealed that the resonances originating from the bottom area of the beta-sandwich (the L3, L5, and L11 loops, as well as the tip of the L6 loop) were affected. In addition, a structural comparison of the Neur NHR1 domain with the first NHR domain of the human KIAA1787 protein, which is from another NHR subfamily and does not bind to the 20-residue Tom peptide, suggested the critical amino acid residues for the interactions between the Neur NHR1 domain and the Tom peptide. The present structural study will shed light on the role of the Neur NHR1 domain in the Notch signaling pathway.
Llamas-Saiz, Antonio L; Grotenbreg, Gijsbert M; Overhand, Mark; van Raaij, Mark J
2007-03-01
Gramicidin S is a nonribosomally synthesized cyclic decapeptide antibiotic with twofold symmetry (Val-Orn-Leu-D-Phe-Pro)(2); a natural source is Bacillus brevis. Gramicidin S is active against Gram-positive and some Gram-negative bacteria. However, its haemolytic toxicity in humans limits its use as an antibiotic to certain topical applications. Synthetically obtained gramicidin S was crystallized from a solution containing water, methanol, trifluoroacetic acid and hydrochloric acid. The structure was solved and refined at 0.95 A resolution. The asymmetric unit contains 1.5 molecules of gramicidin S, two trifluoroacetic acid molecules and ten water molecules located and refined in 14 positions. One gramicidin S molecule has an exact twofold-symmetrical conformation; the other deviates from the molecular twofold symmetry. The cyclic peptide adopts an antiparallel beta-sheet secondary structure with two type II' beta-turns. These turns have the residues D-Phe and Pro at positions i + 1 and i + 2, respectively. In the crystals, the gramicidin S molecules line up into double-stranded helical channels that differ from those observed previously. The implications of the supramolecular structure for several models of gramicidin S conformation and assembly in the membrane are discussed.
Popp, Alexander; Scheerer, David; Chi, Heng; Keiderling, Timothy A; Hauser, Karin
2016-05-04
Turn residues and side-chain interactions play an important role for the folding of β-sheets. We investigated the conformational dynamics of a three-stranded β-sheet peptide ((D) P(D) P) and a two-stranded β-hairpin (WVYY-(D) P) by time-resolved temperature-jump (T-jump) infrared spectroscopy. Both peptide sequences contain (D) Pro-Gly residues that favor a tight β-turn. The three-stranded β-sheet (Ac-VFITS(D) PGKTYTEV(D) PGOKILQ-NH2 ) is stabilized by the turn sequences, whereas the β-hairpin (SWTVE(D) PGKYTYK-NH2 ) folding is assisted by both the turn sequence and hydrophobic cross-strand interactions. Relaxation times after the T-jump were monitored as a function of temperature and occur on a sub-microsecond time scale, (D) P(D) P being faster than WVYY-(D) P. The Xxx-(D) Pro tertiary amide provides a detectable IR band, allowing us to probe the dynamics site-specifically. The relative importance of the turn versus the intrastrand stability in β-sheet formation is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Insights into Strand Exchange in BTB Domain Dimers from the Crystal Structures of FAZF and Miz1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stogios, Peter J.; Cuesta-Seijo, Jose Antonio; Chen, Lu
2010-09-22
The BTB domain is a widely distributed protein-protein interaction motif that is often found at the N-terminus of zinc finger transcription factors. Previous crystal structures of BTB domains have revealed tightly interwound homodimers, with the N-terminus from one chain forming a two-stranded anti-parallel {beta}-sheet with a strand from the other chain. We have solved the crystal structures of the BTB domains from Fanconi anemia zinc finger (FAZF) and Miz1 (Myc-interacting zinc finger 1) to resolutions of 2.0 {angstrom} and 2.6 {angstrom}, respectively. Unlike previous examples of BTB domain structures, the FAZF BTB domain is a nonswapped dimer, with each N-terminalmore » {beta}-strand associated with its own chain. As a result, the dimerization interface in the FAZF BTB domain is about half as large as in the domain-swapped dimers. The Miz1 BTB domain resembles a typical swapped BTB dimer, although it has a shorter N-terminus that is not able to form the interchain sheet. Using cysteine cross-linking, we confirmed that the promyelocytic leukemia zinc finger (PLZF) BTB dimer is strand exchanged in solution, while the FAZF BTB dimer is not. A phylogenic tree of the BTB fold based on both sequence and structural features shows that the common ancestor of the BTB domain in BTB-ZF (bric a brac, tramtrack, broad-complex zinc finger) proteins was a domain-swapped dimer. The differences in the N-termini seen in the FAZF and Miz1 BTB domains appear to be more recent developments in the structural evolution of the domain.« less
Chandra, N R; Ramachandraiah, G; Bachhawat, K; Dam, T K; Surolia, A; Vijayan, M
1999-01-22
A mannose-specific agglutinin, isolated from garlic bulbs, has been crystallized in the presence of a large excess of alpha-d-mannose, in space group C2 and cell dimensions, a=203.24, b=43.78, c=79.27 A, beta=112.4 degrees, with two dimers in the asymmetric unit. X-ray diffraction data were collected up to a nominal resolution of 2.4 A and the structure was solved by molecular replacement. The structure, refined to an R-factor of 22.6 % and an Rfree of 27.8 % reveals a beta-prism II fold, similar to that in the snowdrop lectin, comprising three antiparallel four-stranded beta-sheets arranged as a 12-stranded beta-barrel, with an approximate internal 3-fold symmetry. This agglutinin is, however, a dimer unlike snowdrop lectin which exists as a tetramer, despite a high degree of sequence similarity between them. A comparison of the two structures reveals a few substitutions in the garlic lectin which stabilise it into a dimer and prevent tetramer formation. Three mannose molecules have been identified on each subunit. In addition, electron density is observed for another possible mannose molecule per dimer resulting in a total of seven mannose molecules in each dimer. Although the mannose binding sites and the overall structure are similar in the subunits of snowdrop and garlic lectin, their specificities to glycoproteins such as GP120 vary considerably. These differences appear, in part, to be a direct consequence of the differences in oligomerisation, implying that variation in quaternary association may be a mode of achieving oligosaccharide specificity in bulb lectins. Copyright 1998 Academic Press.
Zhu, Y; Englebert, S; Joris, B; Ghuysen, J M; Kobayashi, T; Lampen, J O
1992-01-01
The membrane-spanning protein BlaR is essential for the induction of beta-lactamase in Bacillus licheniformis. Its nature and location were confirmed by the use of an antiserum specific for its carboxy-terminal penicillin sensor, its function was studied by genetic dissection, and the structure of the penicillin sensor was derived from hydrophobic cluster analysis of the amino acid sequence by using, as a reference, the class A beta-lactamases with known three-dimensional structures. During the first 2 h after the addition of the beta-lactam inducer, full-size BlaR, bound to the plasma membrane, is produced, and then beta-lactamase is produced. By 2 h after induction, BlaR is present in various (membrane-bound and cytosolic) forms, and there is a gradual decrease in beta-lactamase production. The penicillin sensors of BlaR and the class D beta-lactamases show strong similarities in primary structures. They appear to have the same basic spatial disposition of secondary structures as that of the class A beta-lactamases, except that they lack several alpha helices and, therefore, have a partially uncovered five-stranded beta sheet and a more readily accessible active site. Alterations of BlaR affecting conserved secondary structures of the penicillin sensor and specific sites of the transducer annihilate beta-lactamase inducibility. Images PMID:1400165
NASA Astrophysics Data System (ADS)
Rao, Francesco; Caflisch, Amedeo
2004-03-01
Networks are everywhere. The conformation space of a 20-residue antiparallel beta-sheet peptide [1], sampled by molecular dynamics simulations, is mapped to a network. Conformations are nodes of the network, and the transitions between them are links. As previously found for the World-Wide Web as well as for social and biological networks , the conformation space contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the network shows a hierarchical modularity [2] which is consistent with the funnel mechanism of folding [3] and is not observed for a random heteropolymer lacking a native state. Here we show that the conformation space network describes the free energy landscape without requiring projections into arbitrarily chosen reaction coordinates. The network analysis provides a basis for understanding the heterogeneity of the folding transition state and the existence of multiple pathways. [1] P. Ferrara and A. Caflisch, Folding simulations of a three-stranded antiparallel beta-sheet peptide, PNAS 97, 10780-10785 (2000). [2] Ravasz, E. and Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). [3] Dill, K. and Chan, H From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19 (1997)
Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro
Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi
2012-01-01
Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogh, R.H.; Mabbutt, B.C.; Kem, W.R.
Sequence-specific assignments are reported for the 500-MHz H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure ofmore » Sh I was defined on the basis of the pattern of sequential NOE connectivities. NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel {beta}-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a {beta}-bulge at residues 17 and 18 and a reverse turn, probably a type II {beta}-turn, involving residues 27-30. No evidence of {alpha}-helical structure was found.« less
Barik, Sailen
2004-09-01
The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the alpha-helices and beta-strands of proteins than within the more flexible linker regions ('turns' and 'loops') connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the alpha-helix and the beta-strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures.
Kister, Alexander
2015-01-01
We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198
Rapid amyloid fiber formation from the fast-folding WW domain FBP28.
Ferguson, Neil; Berriman, John; Petrovich, Miriana; Sharpe, Timothy D; Finch, John T; Fersht, Alan R
2003-08-19
The WW domains are small proteins that contain a three-stranded, antiparallel beta-sheet. The 40-residue murine FBP28 WW domain rapidly formed twirling ribbon-like fibrils at physiological temperature and pH, with morphology typical of amyloid fibrils. These ribbons were unusually wide and well ordered, making them highly suitable for structural studies. Their x-ray and electron-diffraction patterns displayed the characteristic amyloid fiber 0.47-nm reflection of the cross-beta diffraction signature. Both conventional and electron cryomicroscopy showed clearly that the ribbons were composed of many 2.5-nm-wide subfilaments that ran parallel to the long axis of the fiber. There was a region of lower density along the center of each filament. Lateral association of these filaments generated twisted, often interlinked, sheets up to 40 nm wide and many microns in length. The pitch of the helix varied from 60 to 320 nm, depending on the width of the ribbon. The wild-type FBP28 fibers were formed under conditions in which multiexponential folding kinetics is observed in other studies and which was attributed to a change in the mechanism of folding. It is more likely that those phases result from initial events in the off-pathway aggregation observed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Jincun; Wang Wei; Yuan Zhihong
The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel {beta}-sheets, {beta}5 and {beta}6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire {beta}6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the {beta}6 fragment, while the mouse antisera, induced by immunization of BALB/cmore » mice with recombinant S450-650, mainly recognized the {beta}6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the {beta}6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the {beta}6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.« less
A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.
Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T
2010-07-01
A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.
A free-energy approach for all-atom protein simulation.
Verma, Abhinav; Wenzel, Wolfgang
2009-05-06
All-atom free-energy methods offer a promising alternative to kinetic molecular mechanics simulations of protein folding and association. Here we report an accurate, transferable all-atom biophysical force field (PFF02) that stabilizes the native conformation of a wide range of proteins as the global optimum of the free-energy landscape. For 32 proteins of the ROSETTA decoy set and six proteins that we have previously folded with PFF01, we find near-native conformations with an average backbone RMSD of 2.14 A to the native conformation and an average Z-score of -3.46 to the corresponding decoy set. We used nonequilibrium sampling techniques starting from completely extended conformations to exhaustively sample the energy surface of three nonhomologous hairpin-peptides, a three-stranded beta-sheet, the all-helical 40 amino-acid HIV accessory protein, and a zinc-finger beta beta alpha motif, and find near-native conformations for the minimal energy for each protein. Using a massively parallel evolutionary algorithm, we also obtain a near-native low-energy conformation for the 54 amino-acid engrailed homeodomain. Our force field thus stabilized near-native conformations for a total of 20 proteins of all structure classes with an average RMSD of only 3.06 A to their respective experimental conformations.
Janecek, S; Baláz, S
1995-08-01
Twelve different (alpha/beta)8-barrel enzymes belonging to three structurally distinct families were found to contain, near the C-terminus of their strand beta 5, a conserved invariant glutamic acid residue that plays an important functional role in each of these enzymes. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif owing to their mutual evolutionary relatedness. For this purpose, the sequence region around the well conserved fifth beta-strand of alpha-amylase containing catalytic glutamate (Glu230, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The isolated sequence stretches of the 12 (alpha/beta)8-barrels are discussed from both the sequence-structural and the evolutionary point of view, the invariant glutamate residue being proposed to be a joining feature of the studied group of enzymes remaining from their ancestral (alpha/beta)8-barrel.
Richardson, J; Thomas, K A; Rubin, B H; Richardson, D C
1975-01-01
An electron density map at 3 angstrom resolution has been calculated for Cu2+, Zn2+ superoxide dismutase from bovine erythrocytes, and the course of the main chain has been traced. The dominant structural feature is an 8-stranded barrel of antiparallel beta-pleated sheet. There is one very short helical section and two long loops of non-repetitive structure. The Cu and Zn are bound between the loops and one side of the beta barrel and are about 6 Angstrom apart, with a common histidine ligand. The Cu has four histidine ligands in a somewhat distorted square plane, and the Zn has three histidines and an aspartate in approximately tetrahedral arrangement. The two coppers of a dimer are about 34 Angstrom apart. The two subunits have essentially the same conformation and have an extensive contact area that mainly involves hydrophobic side chain interactions. The overall folding pattern of the polypeptide chain is very similar to that of an immunoglobulin domain. Images PMID:1055410
In silico local structure approach: a case study on outer membrane proteins.
Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude
2008-04-01
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.
Kreplak, L; Doucet, J; Briki, F
2001-04-15
Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.
Janecek, S.
1995-01-01
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed. PMID:7549888
Janecek, S
1995-06-01
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.
2008-06-30
The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.
Identification of residue pairing in interacting β-strands from a predicted residue contact map.
Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng
2018-04-19
Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .
Zanuy, David; Gunasekaran, Kannan; Lesk, Arthur M; Nussinov, Ruth
2006-04-21
The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.
Mechanistic insights into phosphoprotein-binding FHA domains.
Liang, Xiangyang; Van Doren, Steven R
2008-08-01
[Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family of FHA domains by a bioinformatics approach. The phosphopeptide-dependent dynamics of an FHA domain, SH2 domain, and PTB domain suggest a common theme: rigid, preformed binding surfaces support van der Waals contacts that provide favorable binding enthalpy. Despite the lack of pronounced conformational changes in FHA domains linked to binding events, more subtle adjustments may be possible. In the one FHA domain tested, phosphothreonine peptide binding is accompanied by increased flexibility just outside the binding site and increased rigidity across the beta-sandwich. The folding of the same FHA domain progresses through near-native intermediates that stabilize the recognition loops in the center of the phosphoprotein-binding surface; this may promote rigidity in the interface and affinity for targets phosphorylated on threonine.
Rotondi, Kenneth S; Gierasch, Lila M
2003-01-01
We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein. Copyright 2004 Wiley Periodicals, Inc.
Feverati, Giovanni; Achoch, Mounia; Zrimi, Jihad; Vuillon, Laurent; Lesieur, Claire
2012-01-01
Protein oligomers are formed either permanently, transiently or even by default. The protein chains are associated through intermolecular interactions constituting the protein interface. The protein interfaces of 40 soluble protein oligomers of stœchiometries above two are investigated using a quantitative and qualitative methodology, which analyzes the x-ray structures of the protein oligomers and considers their interfaces as interaction networks. The protein oligomers of the dataset share the same geometry of interface, made by the association of two individual β-strands (β-interfaces), but are otherwise unrelated. The results show that the β-interfaces are made of two interdigitated interaction networks. One of them involves interactions between main chain atoms (backbone network) while the other involves interactions between side chain and backbone atoms or between only side chain atoms (side chain network). Each one has its own characteristics which can be associated to a distinct role. The secondary structure of the β-interfaces is implemented through the backbone networks which are enriched with the hydrophobic amino acids favored in intramolecular β-sheets (MCWIV). The intermolecular specificity is provided by the side chain networks via positioning different types of charged residues at the extremities (arginine) and in the middle (glutamic acid and histidine) of the interface. Such charge distribution helps discriminating between sequences of intermolecular β-strands, of intramolecular β-strands and of β-strands forming β-amyloid fibers. This might open new venues for drug designs and predictive tool developments. Moreover, the β-strands of the cholera toxin B subunit interface, when produced individually as synthetic peptides, are capable of inhibiting the assembly of the toxin into pentamers. Thus, their sequences contain the features necessary for a β-interface formation. Such β-strands could be considered as ‘assemblons’, independent associating units, by homology to the foldons (independent folding unit). Such property would be extremely valuable in term of assembly inhibitory drug development. PMID:22496732
Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation.
Nguyen, Houbi; Jager, Marcus; Moretto, Alessandro; Gruebele, Martin; Kelly, Jeffery W
2003-04-01
The equilibrium unfolding of the Formin binding protein 28 (FBP) WW domain, a stable three-stranded beta-sheet protein, can be described as reversible apparent two-state folding. Kinetics studied by laser temperature jump reveal a third state at temperatures below the midpoint of unfolding. The FBP free-energy surface can be tuned between three-state and two-state kinetics by changing the temperature, by truncation of the C terminus, or by selected point mutations. FBP WW domain is the smallest three-state folder studied to date and the only one that can be freely tuned between three-state and apparent two-state folding by several methods (temperature, truncation, and mutation). Its small size (28-37 residues), the availability of a quantitative reaction coordinate (phi(T)), the fast folding time scale (10s of micros), and the tunability of the folding routes by small temperature or sequence changes make this system the ideal prototype for studying more subtle features of the folding free-energy landscape by simulations or analytical theory.
Inhibitors of amyloid toxicity based on β-sheet packing of Aβ40 and Aβ42
Sato, Takeshi; Kienlen-Campard, Pascal; Ahmed, Mahiuddin; Liu, Wei; Li, Huilin; Elliott, James I.; Aimoto, Saburo; Constantinescu, Stefan N.; Octave, Jean-Noel; Smith, Steven O.
2008-01-01
Amyloid fibrils associated with Alzheimer’s disease and a wide range of other neurodegenerative diseases have a cross β-sheet structure where main chain hydrogen bonding occurs between β-strands in the direction of the fibril axis. The surface of the β-sheet has pronounced ridges and grooves when the individual β-strands have a parallel orientation and the amino acids are in-register with one another. Here we show that in Aβ amyloid fibrils, Met35 packs against Gly33 in the C-terminus of Aβ40 and against Gly37 in the C-terminus of Aβ42. These packing interactions suggest that the protofilament subunits are displaced relative to one another in the Aβ40 and Aβ42 fibril structures. We take advantage of this corrugated structure to design a new class of inhibitors that prevent fibril formation by placing alternating glycine and aromatic residues on one face of a β-strand. We show that peptide inhibitors based on a GxFxGxF framework disrupt sheet-to-sheet packing and inhibit the formation of mature Aβ fibrils as assayed by thioflavin T fluorescence, electron microscopy and solid-state NMR spectroscopy. The alternating large and small amino acids in the GxFxGxF sequence are complementary to the corresponding amino acids in the IxGxMxG motif found in the C-terminal sequence of Aβ40 and Aβ42. Importantly, the designed peptide inhibitors significantly reduce the toxicity induced by Aβ42 on cultured rat cortical neurons. PMID:16634632
Armen, Roger S; Daggett, Valerie
2005-12-13
The self-assembly of beta(2)-microglobulin into fibrils leads to dialysis-related amyloidosis. pH-mediated partial unfolding is required for the formation of the amyloidogenic intermediate that then self-assembles into amyloid fibrils. Two partially folded intermediates of beta(2)-microglobulin have been identified experimentally and linked to the formation of fibrils of distinct morphology, yet it remains difficult to characterize these partially unfolded states at high resolution using experimental approaches. Consequently, we have performed molecular dynamics simulations at neutral and low pH to determine the structures of these partially unfolded amyloidogenic intermediates. In the low-pH simulations, we observed the formation of alpha-sheet structure, which was first proposed by Pauling and Corey. Multiple simulations were performed, and two distinct intermediate state ensembles were identified that may account for the different fibril morphologies. The predominant early unfolding intermediate was nativelike in structure, in agreement with previous NMR studies. The late unfolding intermediate was significantly disordered, but it maintained an extended elongated structure, with hydrophobic clusters and residual alpha-extended chain strands in specific regions of the sequence that map to amyloidogenic peptides. We propose that the formation of alpha-sheet facilitates self-assembly into partially unfolded prefibrillar amyloidogenic intermediates.
Kalgin, Igor V; Caflisch, Amedeo; Chekmarev, Sergei F; Karplus, Martin
2013-05-23
A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The conformation space is reduced in dimensionality by introduction of linear combinations of hydrogen bond distances as the collective variables making use of a specially adapted principal component analysis (PCA); i.e., to make structured conformations more pronounced, only the formed bonds are included in determining the principal components. It is shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first component, to which eight native hydrogen bonds make the major contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for the overall folding process, while the second and third components distinguish the structured conformations. The representative points of the trajectory in the 3D space are grouped into conformational clusters that correspond to locally stable conformations of beta3s identified in earlier work. A simplified kinetic network based on the three components is constructed, and it is complemented by a hydrodynamic analysis. The latter, making use of "passive tracers" in 3D space, indicates that the folding flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices which correspond to repeated local rearrangement, not only around minima of the free energy surface but also in flat regions between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our understanding of this "hydrogen atom" of protein folding.
Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces
NASA Technical Reports Server (NTRS)
Cassidy, W. A. (Editor); Whillans, I. M. (Editor)
1990-01-01
The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.
Sonti, Rajesh; Rai, Rajkishor; Ragothama, Srinivasarao; Balaram, Padmanabhan
2012-12-13
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel β-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-LFV(D)P(L)PLFV-OMe (peptide 1) favors the β-hairpin conformation nucleated by the type II' β-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded β-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C(α)-C(β)(χ(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanfeng; Zheng, Yi; Qin, Ling
Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD+- or NADP+-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with eachmore » other. Both proteins reduce succinic semialdehyde, a metabolite of the GABA shunt. To further explore the structural and functional characteristics of these two β-HADs with a potentially unique substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP+ were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structure of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain One (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1 – α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain Two (166-287) is composed of a bundle of seven α-helices (α9 – α14). Four functional regions conserved in all β-HADs are spatially located near each other at the interdomain cleft in both Gs-βHAD and Gm-βHAD with a buried molecule of NADP+. The structural features of Gs-βHAD and Gm-βHAD are described in relation to the four conserved consensus sequences characteristic of β-HADs and the potential biochemical importance of these enzymes as an alternative pathway for the degradation of succinic semialdehyde.« less
NASA Astrophysics Data System (ADS)
Hu, Xiao; Kaplan, David; Cebe, Peggy
2007-03-01
We report a study of self-assembled beta pleated sheets in Bombyx mori silk fibroin films using thermal analysis and infrared spectroscopy. Crystallization of beta pleated sheets was effected either by heating the films above the glass transition temperature (Tg) and holding isothermally, or by exposure to methanol. The fractions of secondary structural components including random coils, alpha helices, beta pleated sheets, turns, and side chains, were evaluated using Fourier self-deconvolution (FSD) of the infrared absorbance spectra. As crystalline beta sheets form, the heat capacity increment from the TMDSC trace at Tg is systematically decreased and is linearly well correlated with beta sheet content determined from FSD. This analysis of beta sheet content can serve as an alternative to X-ray methods and may have wide applicability to other crystalline beta sheet forming proteins.
NASA Astrophysics Data System (ADS)
Nagarkar, Radhika P.
2009-12-01
The objective of this dissertation is to apply rational peptide design to fabricate nanomaterials via self-assembly. This has been demonstrated in structurally diverse systems with an aim of deciphering the underlying principles governing how sequence affects the peptide's ability to adopt a specific secondary structure and ultimate material properties that are realized from the association of these secondary structural elements. Several amyloidogenic proteins have been shown to self-assemble into fibrils using a mechanism known as domain swapping. Here, discreet units of secondary structure are exchanged among discreet proteins during self-assembly to form extended networks with precise three dimensional organization. The possibility of using these mechanisms to design peptides capable of controlled assembly and fibril formation leading to materials with targeted properties is explored. By altering the placement of a beta-turn sequence that varies the size and location of the exchanged strand, twisting, non-twisting and laminated fibrillar nanostructures are obtained. Hydrogels prepared from these strand swapping beta-hairpins have varied rheological properties due to differences in their fibrillar nanostructures. In a second distinct design, alpha/beta-proteins are used to prepare environmentally sensitive hydrogels. Here, multiple distinct motifs for structural integrity and dynamic response within a single self-assembling peptide allow the amyloid-like fibrils formed to controllably alter their nano-topography in response to an external stimulus such as temperature. The development of these self-assembling alpha/beta-protein motifs also necessitated the design of pH sensitive antiparallel coiled coils. Exploring the basic principles responsible for pH dependent conformational changes in coiled coils can lead to new insights in the control of protein structure and function. Lastly, this dissertation discusses the interface between biomolecules and inorganic materials. Here, a new methodology of functionalizing titania nanoparticles with peptides is developed. In all of these different material forming systems, extensive biophysical characterization by circular dichroism spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction and analytical ultracentrifugation is performed to understand peptide folding and self-assembly. Careful nanostructural characterization by electron and force microscopies is performed to elucidate self-assembly mechanisms and has proved to be vital in applying the iterative design process to develop responsive nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin,L.
2007-01-01
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 {angstrom}. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C{sub {alpha}} atoms of 0.9 {angstrom} and 1.2 {angstrom}, and sequence identities of 43% and 38%, respectively). The lactadherinmore » C2 domain has a discoidin-like fold containing two {beta}-sheets of five and three antiparallel {beta}-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One {beta}-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain {beta}-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.« less
Three-dimensional structure of interleukin 8 in solution.
Clore, G M; Appella, E; Yamada, M; Matsushima, K; Gronenborn, A M
1990-02-20
The solution structure of the interleukin 8 (IL-8) dimer has been solved by nuclear magnetic resonance (NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on a total of 1880 experimental distance restraints (of which 82 are intersubunit) and 362 torsion angle restraints (comprising phi, psi, and chi 1 torsion angles). A total of 30 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 1-5 of each subunit) is 0.41 +/- 0.08 A for the backbone atoms and 0.90 +/- 0.08 A for all atoms. The three-dimensional solution structure of the IL-8 dimer reveals a structural motif in which two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by about 14 A, lie on top of a six-stranded antiparallel beta-sheet platform derived from two three-stranded Greek keys, one from each monomer unit. The general architecture is similar to that of the alpha 1/alpha 2 domains of the human class I histocompatibility antigen HLA-A2. It is suggested that the two alpha-helices form the binding site for the cellular receptor and that the specificity of IL-8, as well as that of a number of related proteins involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response, is achieved by the distinct distribution of charged and polar residues at the surface of the helices.
Carneiro, Rômulo Farias; Torres, Renato Cézar Farias; Chaves, Renata Pinheiro; de Vasconcelos, Mayron Alves; de Sousa, Bruno Lopes; Goveia, André Castelo Rodrigues; Arruda, Francisco Vassiliepe; Matos, Maria Nágila Carneiro; Matthews-Cascon, Helena; Freire, Valder Nogueira; Teixeira, Edson Holanda; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda
2017-02-01
A new lectin from Aplysia dactylomela eggs (ADEL) was isolated by affinity chromatography on HCl-activated Sepharose™ media. Hemagglutination caused by ADEL was inhibited by several galactosides, mainly galacturonic acid (Ka = 6.05 × 10 6 M -1 ). The primary structure of ADEL consists of 217 residues, including 11 half-cystines involved in five intrachain and one interchain disulfide bond, resulting in a molecular mass of 57,228 ± 2 Da, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. ADEL showed high similarity with lectins isolated from Aplysia eggs, but not with other known lectins, indicating that these lectins could be grouped into a new family of animal lectins. Three glycosylation sites were found in its polypeptide backbone. Data from peptide-N-glycosidase F digestion and MS suggest that all oligosaccharides attached to ADEL are high in mannose. The secondary structure of ADEL is predominantly β-sheet, and its tertiary structure is sensitive to the presence of ligands, as observed by CD. A 3D structure model of ADEL was created and shows two domains connected by a short loop. Domain A is composed of a flat three-stranded and a curved five-stranded β-sheet, while domain B presents a flat three-stranded and a curved four-stranded β-sheet. Molecular docking revealed favorable binding energies for interactions between lectin and galacturonic acid, lactose, galactosamine, and galactose. Moreover, ADEL was able to agglutinate and inhibit biofilm formation of Staphylococcus aureus, suggesting that this lectin may be a potential alternative to conventional use of antimicrobial agents in the treatment of infections caused by Staphylococcal biofilms.
Support vector machines for prediction and analysis of beta and gamma-turns in proteins.
Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao
2005-04-01
Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.
Protein stabilization by introduction of cross-strand disulfides.
Chakraborty, Kausik; Thakurela, Sudhir; Prajapati, Ravindra Singh; Indu, S; Ali, P Shaik Syed; Ramakrishnan, C; Varadarajan, Raghavan
2005-11-08
Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.
The 2.2 A resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus.
Audette, G F; Vandonselaar, M; Delbaere, L T
2000-12-01
The tertiary and quaternary structure of the lectin I from Ulex europaeus (UE-I) has been determined to 2.2 A resolution. UE-I is a dimeric metalloglycoprotein that binds the H-type 2 human blood group determinant [alpha-L-Fucalpha(1-->2)-beta-D-Galbeta(1-->4)-beta-D-Glc NAcalpha-]. Nine changes from the published amino acid sequence were necessary to account for the electron density. The quaternary structural organization of UE-I is that of the most commonly occurring legume lectin dimer. The tertiary structure of the monomeric subunits is similar to that in the conventional lectin subunit; however, some structural differences are noted. These differences include a four-stranded anti-parallel "S" sheet in UE-I versus the five-stranded S sheet in other lectin monomers. The Ala residue of the Ala-Asp cis-peptide bond present in the carbohydrate-binding site of the conventional lectin monomer is replaced with a Thr in the UE-I structure. Also, a novel disulfide bridge linking Cys115 and Cys150 is present. There are two metallic ions, one calcium and the other manganese, per subunit. N-linked oligosaccharides are at residues 23 and 111 of each subunit. One molecule of R-2-methyl-2, 4-pentanediol (R-MPD) is present in a shallow depression on the surface of each subunit. In order to examine the binding of the H-type 2 blood group determinant by UE-I, its beta-methyl glycoside (H-type 2-OMe) was docked into the binding site of R-MPD. The epitope previously identified for H-type 2-OMe by chemical mapping proved, with only minor adjustment of amino acid residues, to be complementary to the shallow cavity occupied by R-MPD in the structure. Several key interactions have been proposed between the H-type 2-OMe and UE-I. Copyright 2000 Academic Press.
Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W
2005-12-06
Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, P.C.; Clore, G.M.; Beress, L.
The sequential resonance assignment of the {sup 1}H NMR spectrum of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata is presented. This is carried out with two-dimensional NMR techniques to identify through-bond and through-space (< 5{angstrom}) connectivities. Added spectral complexity arises from the fact that the sample is an approximately 1:1 mixture of two BDS-I isoproteins, (Leu-18)-BDS-I and (Phe-18)-BDS-I. Complete assignments, however, are obtained, largely due to the increased resolution and sensitivity afforded at 600 MHz. In addition, the stereospecific assignment of a large number of {beta}-methylene protons is achieved from an analysis of the patternmore » of {sup 3}J{sub {alpha}{beta}} coupling constants and the relative magnitudes of intraresidue NOEs involving the NH, C{sup {alpha}}H, and C{sup {beta}}H protons. Regular secondary structure elements are deduced from a qualitative interpretation of the nuclear Overhauser enhancement, {sup 3}J{sub HN{alpha}} coupling constant, and amide NH exchange data. A triple-stranded antiparallel {beta}-sheet is found to be related to that found in partially homologous sea anemone polypeptide toxins.« less
1H and 15N NMR resonance assignments and secondary structure of titin type I domains.
Muhle-Goll, C; Nilges, M; Pastore, A
1997-01-01
Titin/connectin is a giant muscle protein with a highly modular architecture consisting of multiple repeats of two sequence motifs, named type I and type II. Type I modules have been suggested to be intracellular members of the fibronectin type III (Fn3) domain family. Along the titin sequence they are exclusively present in the region of the molecule located in the sarcomere A-band. This region has been shown to interact with myosin and C-protein. One of the most noticeable features of type I modules is that they are particularly rich in semiconserved prolines, since these residues account for about 8% of their sequence. We have determined the secondary structure of a representative type I domain (A71) by 15N and 1H NMR. We show that the type I domains of titin have the Fn3 fold as proposed, consisting of a three- and a four-stranded beta-sheet. When the two sheets are placed on top of each other to form the beta-sandwich characteristic of the Fn3 fold, 8 out of 10 prolines are found on the same side of the molecule and form an exposed hydrophobic patch. This suggests that the semiconserved prolines might be relevant for the function of type I modules, providing a surface for binding to other A-band proteins. The secondary structure of A71 was structurally aligned to other extracellular Fn3 modules of known 3D structure. The alignment shows that titin type I modules have closest similarity to the first Fn3 domain of Drosophila neuroglian.
The molecular architecture of human N-acetylgalactosamine kinase.
Thoden, James B; Holden, Hazel M
2005-09-23
Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.
Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein.
Chao, H.; Davies, P. L.; Sykes, B. D.; Sönnichsen, F. D.
1993-01-01
To help understand the structure/function relationships in antifreeze proteins (AFP), and to define the motifs required for ice binding, a Type III AFP suitable for two-dimensional (2D) NMR studies was produced in Escherichia coli. A synthetic gene for one of the Type III AFP isoforms was assembled in a T7 polymerase-directed expression vector. The 67-amino acid-long gene product differed from the natural AFP by inclusion of an N-terminal methionine but was indistinguishable in activity. The NMR spectra of this AFP were complicated by cis-trans proline isomerization from the C-terminal sequence YPPA. Substitution of this sequence by YAA eliminated isomer signals without altering the activity or structure of the mutant AFP. This variant (rQAE m1.1) was selected for sequential assignment and the secondary structure determination using 2D 1H NMR spectroscopy. Nine beta-strands are paired to form two triple-stranded antiparallel sheets and one double-stranded antiparallel sheet. Two further proline replacements, P29A and P33A, were made to delineate the role of conserved prolines in Type III AFP. These mutants were valuable in clarifying ambiguous NMR spectral assignments amongst the remaining six prolines of rQAE m1.1. In contrast to the replacement of the C-terminal prolyl residues, the exchange of P29 and P33 caused some structural changes and significantly decreased protein solubility and antifreeze activity. PMID:8401227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalbitzer, H.R.; Neidig, K.P.; Hengstenberg, W.
1991-11-19
Complete sequence-specific assignments of the {sup 1}H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel {beta}-pleated sheet consisting of four strands, A, B, C, D, a segment S{sub AB} consisting of an extended region around the active-center histidine (His-15) and an {alpha}-helix, a half-turn between strands B and C, a segment S{sub CD} which shows no typical secondary structure, and the {alpha}-helical, C-terminal segment S{sub term}. These general structural features are similar to those found earliermore » in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.« less
Making Ordered DNA and Protein Structures from Computer-Printed Transparency Film Cut-Outs
ERIC Educational Resources Information Center
Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo
2009-01-01
Instructions are given for building physical scale models of ordered structures of B-form DNA, protein [alpha]-helix, and parallel and antiparallel protein [beta]-pleated sheets made from colored computer printouts designed for transparency film sheets. Cut-outs from these sheets are easily assembled. Conventional color coding for atoms are used…
Structural and sequence features of two residue turns in beta-hairpins.
Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu
2014-09-01
Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.
Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J
2002-03-08
An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.
Xiao, Senbo; Xiao, Shijun; Gräter, Frauke
2013-06-14
Stacking of β-sheets results in a protein super secondary structure with remarkable mechanical properties. β-Stacks are the determinants of a silk fiber's resilience and are also the building blocks of amyloid fibrils. While both silk and amyloid-type crystals are known to feature a high resistance against rupture, their structural and mechanical similarities and particularities are yet to be fully understood. Here, we systematically compare the rupture force and stiffness of amyloid and spider silk poly-alanine β-stacks of comparable sizes using Molecular Dynamics simulations. We identify the direction of force application as the primary determinant of the rupture strength; β-sheets in silk are orientated along the fiber axis, i.e. the pulling direction, and consequently require high forces in the several nanoNewton range for shearing β-strands apart, while β-sheets in amyloid are oriented vertically to the fiber, allowing a zipper-like rupture at sub-nanoNewton forces. A secondary factor rendering amyloid β-stacks softer and weaker than their spider silk counterparts is the sub-optimal side-chain packing between β-sheets due to the sequence variations of amyloid-forming proteins as opposed to the perfectly packed poly-alanine β-sheets of silk. Taken together, amyloid fibers can reach the stiffness of silk fibers in spite of their softer and weaker β-sheet arrangement as they are missing a softening amorphous matrix.
Frutos, Silvia; Rodriguez-Mias, Ricard A; Madurga, Sergio; Collinet, Bruno; Reboud-Ravaux, Michèle; Ludevid, Dolors; Giralt, Ernest
2007-01-01
HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition. Whereas enzymes are usually inactivated by blocking of the active site, the structure of dimeric HIV-1 PR allows an alternative inhibitory mechanism. Since the active site is formed by two half-enzymes, which are connected by a four-stranded antiparallel beta-sheet involving the N- and C- termini of both monomers, enzyme activity can be abolished by reagents targeting the dimer interface in a region relatively free of mutations would interfere with formation or stability of the functional HIV-1 PR dimer. This strategy has been explored by several groups who targeted the four-stranded antiparallel beta-sheet that contributes close to 75% of the dimerization energy. Interface peptides corresponding to native monomer N- or C-termini of several of their mimetics demonstrated, mainly on the basis of kinetic analyses, to act as dimerization inhibitors. However, to the best of our knowledge, neither X-ray crystallography nor NMR structural studies of the enzyme-inhibitor complex have been performed to date. In this article we report a structural study of the dimerization inhibition of HIV-1 PR by NMR using selective Trp side chain labeling.
Thermomyces lanuginosus: properties of strains and their hemicellulases.
Singh, Suren; Madlala, Andreas M; Prior, Bernard A
2003-04-01
The non-cellulolytic Thermomyces lanuginosus is a widespread and frequently isolated thermophilic fungus. Several strains of this fungus have been reported to produce high levels of cellulase-free beta-xylanase both in shake-flask and bioreactor cultivations but intraspecies variability in terms of beta-xylanase production is apparent. Furthermore all strains produce low extracellular levels of other hemicellulases involved in hemicellulose hydrolysis. Crude and purified hemicellulases from this fungus are stable at high temperatures in the range of 50-80 degrees C and over a broad pH range (3-12). Various strains are reported to produce a single xylanase with molecular masses varying between 23 and 29 kDa and pI values between 3.7 and 4.1. The gene encoding the T. lanuginosus xylanase has been cloned and sequenced and is shown to be a member of family 11 glycosyl hydrolases. The crystal structure of the xylanase indicates that the enzyme consists of two beta-sheets and one alpha-helix and forms a rigid complex with the three central sugars of xyloheptaose whereas the peripheral sugars might assume different configurations thereby allowing branched xylan chains to be accepted. The presence of an extra disulfide bridge between the beta-strand and the alpha-helix, as well as to an increase in the density of charged residues throughout the xylanase might contribute to the thermostability. The ability of T. lanuginosus to produce high levels of cellulase-free thermostable xylanase has made the fungus an attractive source of thermostable xylanase with potential as a bleach-boosting agent in the pulp and paper industry and as an additive in the baking industry.
Maury, Carl Peter J
2015-10-07
The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and evolvable. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
Improving strand pairing prediction through exploring folding cooperativity
Jeong, Jieun; Berman, Piotr; Przytycka, Teresa M.
2008-01-01
The topology of β-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore, predicting hydrogen bonded strand partners is a fundamental step towards predicting β-sheet topology. At the same time, finding the correct partners is very difficult due to long range interactions involved in strand pairing. Additionally, patterns of aminoacids observed in β-sheet formations are very general and therefore difficult to use for computational recognition of specific contacts between strands. In this work, we report a new strand pairing algorithm. To address above mentioned difficulties, our algorithm attempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds between a pair of strands changes the probabilities of forming hydrogen bonds between other pairs of strand. We demonstrate that this approach provides an improvement over previously proposed algorithms. We also compare the performance of this method to that of a global optimization algorithm that poses the problem as integer linear programming optimization problem and solves it using ILOG CPLEX™ package. PMID:18989036
Maghzal, Ghassan J; Brennan, Stephen O; Fellowes, Andrew P; Spearing, Ruth; George, Peter M
2003-02-21
Sequencing of all three fibrinogen genes from an individual with hypofibrinogenaemia led to the identification of two new point mutations in the Bbeta gene. Family studies showed the mutations Bbeta255 Arg-->His (Fibrinogen Merivale) and Bbeta148 Lys-->Asn (Fibrinogen Merivale II) were on different alleles and that only the Bbeta255 Arg-->His mutation segregated with hypofibrinogenaemia. Three simple heterozygotes for this mutation had mean fibrinogen concentrations of 1.4 mg/ml, while heterozygotes for the Bbeta148 Lys-->Asn mutation had normal fibrinogen concentrations. ESI MS analysis of endoproteinase Asp-N digests of Bbeta chains showed that the Bbeta255 Arg-->His substitution was not expressed in plasma, confirming it as the cause of the hypofibrinogenaemia. The Bbeta148 Lys-->Asn chains, on the other hand, were equally expressed with wild-type Bbeta chains in simple heterozygotes. Genotype analysis failed to detect either substitution in 182 healthy controls. Arg(255) is located in the first strand of the five-stranded sheet that forms the main feature of the betaD domain and appears to form an essential H bond with Gly(414). Both the Arg and Gly are absolutely conserved, not only in all known Bbeta chains, but also in all homologous alphaE and gamma chains and in all fibrinogen-related proteins. Protein instability from loss of this contact could easily explain the association of this mutation with hypofibrinogenaemia.
Kier, Brandon L.; Anderson, Jordan M.; Andersen, Niels H.
2014-01-01
A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state. PMID:24350581
Cochran, A G; Tong, R T; Starovasnik, M A; Park, E J; McDowell, R S; Theaker, J E; Skelton, N J
2001-01-31
Phage display of peptide libraries has become a powerful tool for the evolution of novel ligands that bind virtually any protein target. However, the rules governing conformational preferences in natural peptides are poorly understood, and consequently, structure-activity relationships in these molecules can be difficult to define. In an effort to simplify this process, we have investigated the structural stability of 10-residue, disulfide-constrained beta-hairpins and assessed their suitability as scaffolds for beta-turn display. Using disulfide formation as a probe, relative free energies of folding were measured for 19 peptides that differ at a one strand position. A tryptophan substitution promotes folding to a remarkable degree. NMR analysis confirms that the measured energies correlate well with the degree of beta-hairpin structure in the disulfide-cyclized peptides. Reexamination of a subset of the strand substitutions in peptides with different turn sequences reveals linear free energy relationships, indicating that turns and strand-strand interactions make independent, additive contributions to hairpin stability. Significantly, the tryptophan strand substitution is highly stabilizing with all turns tested, and peptides that display model turns or the less stable C'-C' ' turn of CD4 on this tryptophan "stem" are highly structured beta-hairpins in water. Thus, we have developed a small, structured beta-turn scaffold, containing only natural L-amino acids, that may be used to display peptide libraries of limited conformational diversity on phage.
Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals
NASA Astrophysics Data System (ADS)
Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph
2013-01-01
Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings.
Multistep modeling of protein structure: application to bungarotoxin
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Shibata, M.; Rein, R.
1986-01-01
Modelling of bungarotoxin in atomic details is presented in this article. The model-building procedure utilizes the low-resolution crystal coordinates of the c-alpha atoms of bungarotoxin, sequence homology within the neurotoxin family, as well as high-resolution x-ray diffraction data of cobratoxin and erabutoxin. Our model-building procedure involves: (a) principles of comparative modelling, (b) embedding procedures of distance geometry, and (c) use of molecular mechanics for optimizing packing. The model is not only consistent with the c-alpha coordinates of crystal structure, but also agrees with solution conformational features of the triple-stranded beta sheet as observed by NOE measurements.
Kalgin, Igor V.; Caflisch, Amedeo; Chekmarev, Sergei F.; Karplus, Martin
2013-01-01
A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The conformation space is reduced in dimensionality by introduction of linear combinations of hydrogen bond distances as the collective variables making use of a specially adapted Principal Component Analysis (PCA); i.e., to make structured conformations more pronounced, only the formed bonds are included in determining the principal components. It is shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first component, to which eight native hydrogen bonds make the major contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for the overall folding process, while the second and third components distinguish the structured conformations. The representative points of the trajectory in the 3D space are grouped into conformational clusters that correspond to locally stable conformations of beta3s identified in earlier work. A simplified kinetic network based on the three components is constructed and it is complemented by a hydrodynamic analysis. The latter, making use of “passive tracers” in 3D space, indicates that the folding flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices which correspond to repeated local rearrangement, not only around minima of the free energy surface, but also in flat regions between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our understanding of this “hydrogen atom” of protein folding. PMID:23621790
Automated main-chain model building by template matching and iterative fragment extension.
Terwilliger, Thomas C
2003-01-01
An algorithm for the automated macromolecular model building of polypeptide backbones is described. The procedure is hierarchical. In the initial stages, many overlapping polypeptide fragments are built. In subsequent stages, the fragments are extended and then connected. Identification of the locations of helical and beta-strand regions is carried out by FFT-based template matching. Fragment libraries of helices and beta-strands from refined protein structures are then positioned at the potential locations of helices and strands and the longest segments that fit the electron-density map are chosen. The helices and strands are then extended using fragment libraries consisting of sequences three amino acids long derived from refined protein structures. The resulting segments of polypeptide chain are then connected by choosing those which overlap at two or more C(alpha) positions. The fully automated procedure has been implemented in RESOLVE and is capable of model building at resolutions as low as 3.5 A. The algorithm is useful for building a preliminary main-chain model that can serve as a basis for refinement and side-chain addition.
Hydrogels constructed via self-assembly of beta-hairpin molecules
NASA Astrophysics Data System (ADS)
Ozbas, Bulent
There is a recent and growing interest in hydrogel materials that are formed via peptide self-assembly for tissue engineering applications. Peptide based materials are excellent candidates for diverse applications in biomedical field due to their responsive behavior and complex self-assembled structures. However, there is very limited information on the self-assembly and resultant network and mechanical properties of these types of hydrogels. The main goal of this dissertation is to investigate the self-assembly mechanism and viscoelastic properties of hydrogels that can be altered by changing solution conditions as well as the primary structure of the peptide. These hydrogels are formed via intramolecular folding and consequent self-assembly of 20 amino acid long beta-hairpin peptide molecules (Max1). The peptide molecules are locally amphiphilic with two linear strands of alternating hydrophobic valine and hydrophilic lysine amino acids connected with a Dproline-LProline turn sequence. Circular dichroism and FTIR spectroscopy show that at physiological conditions peptides are unfolded in the absence of salt. By raising the ionic strength of the solution electrostatic interactions between charged lysines are screened and the peptide arms are forced into a beta-sheet secondary structure stabilized by the turn sequence. These folded molecules intermolecularly assemble via hydrophobic collapse and hydrogen bonding into a three dimensional network. Folding and self-assembly of these molecules can also be triggered by increasing temperature and/or pH of the peptide solution. In addition, the random-coil to beta-sheet transition of the beta-hairpin peptides is pH and, with proper changes in the peptide sequence, thermally reversible. Rheological measurements demonstrate that the resultant supramolecular structure forms an elastic material, whose structure, and thus modulus, can be tuned by magnitude of the stimulus. Hydrogels recover their initial viscoelastic properties after cessation of high magnitude of strain due to the physically crosslinked network structure and strong inter-fibrillar interactions. These interactions can be turned off by either condensing anions or covalently attaching PEG chains on lysine-decorated fibrillar surfaces. TEM, SANS, and rheological data reveal that the elasticity arises from a network consisting of semiflexible fibrillar assemblies that are monodisperse in width. The experimental results are compared with scaling relationships developed for permanently crosslinked semiflexible biopolymer networks. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Xiaomin; Meehan, Edward J.; Xie, Jieming
2008-10-27
A novel type 1 ribosome-inactivating protein (RIP) designated cucurmosin was isolated from the sarcocarp of Cucurbita moschata (pumpkin). Besides rRNA N-glycosidase activity, cucurmosin exhibits strong cytotoxicities to three cancer cell lines of both human and murine origins, but low toxicity to normal cells. Plant genomic DNA extracted from the tender leaves was amplified by PCR between primers based on the N-terminal sequence and X-ray sequence of the C-terminal. The complete mature protein sequence was obtained from N-terminal protein sequencing and partial DNA sequencing, confirmed by high resolution crystal structure analysis. The crystal structure of cucurmosin has been determined at 1.04more » {angstrom}, a resolution that has never been achieved before for any RIP. The structure contains two domains: a large N-terminal domain composed of seven {alpha}-helices and eight {beta}-strands, and a smaller C-terminal domain consisting of three {alpha}-helices and two {beta}-strands. The high resolution structure established a glycosylation pattern of GlcNAc{sub 2}Man3Xyl. Asn225 was identified as a glycosylation site. Residues Tyr70, Tyr109, Glu158 and Arg161 define the active site of cucurmosin as an RNA N-glycosidase. The structural basis of cytotoxicity difference between cucurmosin and trichosanthin is discussed.« less
Reviriego, Felipe; Sanz, Ana; Navarro, Pilar; Latorre, Julio; García-España, Enrique; Liu-Gonzalez, Malva
2009-08-21
Hydrogen-bonded double-stranded hetero-helices are formed when reacting sodium 3,5-bis(ethoxycarbonyl)pyrazolate with beta-phenethylammonium or homoveratrylammonium chloride, in which one of the strands is defined by the ammonium cations and the other one by the pyrazolate anions.
Janecek, S.
1996-01-01
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins. PMID:8762144
Janecek, S
1996-06-01
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins.
A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeslack, W.A. III; Hurley, J.; Paskell, T.
1994-12-31
Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less
Park, Kyung-Tae; Wu, Wei; Battaile, Kevin P.; Lovell, Scott; Holyoak, Todd; Lutkenhaus, Joe
2011-01-01
Summary MinD recruits MinE to the membrane leading to a coupled oscillation required for spatial regulation of the cytokinetic Z ring in E. coli. How these proteins interact, however, is not clear since the MinD binding regions of MinE are sequestered within a 6-stranded β-sheet and masked by N-terminal helices. Here, minE mutations are isolated that restore interaction to some MinD and MinE mutants. These mutations alter the MinE structure releasing the MinD binding regions and N-terminal helices that bind MinD and the membrane, respectively. Crystallization of MinD-MinE complexes reveals a 4-stranded β-sheet MinE dimer with the released β strands (MinD binding regions) converted to α-helices bound to MinD dimers. These results suggest a 6 stranded, β-sheet dimer of MinE ‘senses’ MinD and switches to a 4-stranded β-sheet dimer that binds MinD and contributes to membrane binding. Also, the results indicate how MinE persists at the MinD-membrane surface. PMID:21816275
Structural Studies of Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.
Datta, Simanti; Costantino, Nina; Zhou, Xiaomei; Court, Donald L.
2008-01-01
We report the identification and functional analysis of nine genes from Gram-positive and Gram-negative bacteria and their phages that are similar to lambda (λ) bet or Escherichia coli recT. Beta and RecT are single-strand DNA annealing proteins, referred to here as recombinases. Each of the nine other genes when expressed in E. coli carries out oligonucleotide-mediated recombination. To our knowledge, this is the first study showing single-strand recombinase activity from diverse bacteria. Similar to bet and recT, most of these other recombinases were found to be associated with putative exonuclease genes. Beta and RecT in conjunction with their cognate exonucleases carry out recombination of linear double-strand DNA. Among four of these foreign recombinase/exonuclease pairs tested for recombination with double-strand DNA, three had activity, albeit barely detectable. Thus, although these recombinases can function in E. coli to catalyze oligonucleotide recombination, the double-strand DNA recombination activities with their exonuclease partners were inefficient. This study also demonstrated that Gam, by inhibiting host RecBCD nuclease activity, helps to improve the efficiency of λ Red-mediated recombination with linear double-strand DNA, but Gam is not absolutely essential. Thus, in other bacterial species where Gam analogs have not been identified, double-strand DNA recombination may still work in the absence of a Gam-like function. We anticipate that at least some of the recombineering systems studied here will potentiate oligonucleotide and double-strand DNA-mediated recombineering in their native or related bacteria. PMID:18230724
Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie
2012-01-01
The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906
Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie
2012-02-01
The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Copyright © 2011 Wiley Periodicals, Inc.
Qi, Zhitao; Xu, Wei; Meng, Fancui; Zhang, Qihuan; Chen, Chenglung; Shao, Rong
2016-01-01
Beta-defensins are important part of innate immunity of fish, which are the first defense line against invading pathogens. In this study, the β-defensin (Lhβ-defensin) gene was cloned from spleen tissue of soiny mullet (Liza haematocheila). Lhβ-defensin cDNA was 747 bp in length, encoding 63 amino acids. Sequence alignment revealed that Lhβ-defensin contained six conserved cysteine residues and shared 97.5% sequence identities with grouper (Epinephelus coioides) β-defensin. Realtime PCR revealed that Lhβ-defensin was highest expressed in the immune related organs, such as spleen, kidney and gut of healthy fish. Following Streptococcus dysgalactiae infection, Lhβ-defensin was up-regulated in immune related organs, e.g. 17.6-fold in spleen and 10.87-fold in gut at 24 h post infection (hpi). Lhβ-defensin possessed a monomeric structure of a three-stranded anti-parallel β-sheet and an α-helix stabilized by three disulfide bonds formed by Cys30-Cys58, Cys36-Cys52, and Cys40-Cys59. In addition to the experimental work, computer simulation was also carried out to determine the possible conformation of β-defensin and its interaction with palmitoyloleoylphosphatidylglycerol (POPG), a model of bacteria membrane. The Lhβ-defensin was found to form dimeric structure stabilized by the van der Waals contacts of Leu35 and Cys37 in two anti-parallel β1-strands and the cation-π interaction between Tyr32 and Arg54 respectively in the two β1-strands. The most important interactions between β-defensin and membrane are the electrostatic interactions between Arg residues in β-defensin and head group of POPG bilayer as well as hydrogen bond interactions between them. Our results were useful for further understanding the potential mechanism of antimicrobial property of fish β-defensins. PMID:27322675
Amyloidogenesis abolished by proline substitutions but enhanced by lipid binding.
Jiang, Ping; Xu, Weixin; Mu, Yuguang
2009-04-01
The influence of lipid molecules on the aggregation of a highly amyloidogenic segment of human islet amyloid polypeptide, hIAPP20-29, and the corresponding sequence from rat has been studied by all-atom replica exchange molecular dynamics (REMD) simulations with explicit solvent model. hIAPP20-29 fragments aggregate into partially ordered beta-sheet oligomers and then undergo large conformational reorganization and convert into parallel/antiparallel beta-sheet oligomers in mixed in-register and out-of-register patterns. The hydrophobic interaction between lipid tails and residues at positions 23-25 is found to stabilize the ordered beta-sheet structure, indicating a catalysis role of lipid molecules in hIAPP20-29 self-assembly. The rat IAPP variants with three proline residues maintain unstructured micelle-like oligomers, which is consistent with non-amyloidogenic behavior observed in experimental studies. Our study provides the atomic resolution descriptions of the catalytic function of lipid molecules on the aggregation of IAPP peptides.
Faghihi, Homa; Khalili, Fatemeh; Amini, Mohsen; Vatanara, Alireza
2017-09-01
The present study aimed at preparation and optimization of stable freeze-dried immunoglobulin G (IgG) applying proper amount of antibody with efficient combination of trehalose and hydroxypropyl-β-cyclodextrin (HPβCD). Response surface methodology was employed through a three-factor, three-level Box-Behnken design. Amounts of IgG (X 1 ), trehalose (X 2 ) and HPβCD (X 3 ) were independent variables. Aggregation following process (Y 1 ), after one month at 45 °C (Y 2 ), upon two month at 45 °C (Y 3 ) and beta-sheet content of IgG (Y 4 ) were determined as dependent variables. Results were fitted to quadratic models (except for beta-sheet content), describing the inherent relationship between main factors. Optimized formulation composed of 55.85 mg IgG, 52.51 mg trehalose and 16.01 mg HPβCD was prepared. The calculated responses of the optimized formulation were as follows: Y 1 = 0.19%, Y 2 = 0.78%, Y 3 = 1.88% and Y 4 = 68.60%, respectively. The thermal analysis confirmed the amorphous nature of optimum formulation and the integrity of IgG was shown to be favorably preserved. Validation of the optimization study demonstrated high degree of prognostic ability. The DOE study successfully predicted the optimum values of antibody as well as stabilizers for desirable process and storage stabilization of freeze-dried IgG.
Blandl, Tamas; Cochran, Andrea G; Skelton, Nicholas J
2003-02-01
The turn-forming ability of a series of three-residue sequences was investigated by substituting them into a well-characterized beta-hairpin peptide. The starting scaffold, bhpW, is a disulfide-cyclized 10-residue peptide that folds into a stable beta-hairpin with two antiparallel strands connected by a two-residue reverse turn. Substitution of the central two residues with the three-residue test sequences leads to less stable hairpins, as judged by thiol-disulfide equilibrium measurements. However, analysis of NMR parameters indicated that each molecule retains a significant folded population, and that the type of turn adopted by the three-residue sequence is the same in all cases. The solution structure of a selected peptide with a PDG turn contained an antiparallel beta-hairpin with a 3:5 type I + G1 bulge turn. Analysis of the energetic contributions of individual turn residues in the series of peptides indicates that substitution effects have significant context dependence, limiting the predictive power of individual amino acid propensities for turn formation. The most stable and least stable sequences were also substituted into a more stable disulfide-cyclized scaffold and a linear beta-hairpin scaffold. The relative stabilities remained the same, suggesting that experimental measurements in the bhpW context are a useful way to evaluate turn stability for use in protein design projects. Moreover, these scaffolds are capable of displaying a diverse set of turns, which can be exploited for the mimicry of protein loops or for generating libraries of reverse turns.
NASA Astrophysics Data System (ADS)
Mo, Yuxiang; Lei, Jiangtao; Sun, Yunxiang; Zhang, Qingwen; Wei, Guanghong
2016-09-01
Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer - dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation.
Prediction and analysis of beta-turns in proteins by support vector machine.
Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao
2003-01-01
Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittekind, M.; Klevit, R.E.; Reizer, J.
1990-08-07
On the basis of an analysis of two-dimensional {sup 1}H NMR spectra, the complete sequence-specific {sup 1}H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four {beta}-strands that form a single antiparallel {beta}-sheet and two well-defined {alpha}-helices. There are two stretchesmore » of extended backbone structure, one of which contains the active site His{sub 15}. The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies.« less
Rudolph, Michael J; Vance, David J; Cassidy, Michael S; Rong, Yinghui; Shoemaker, Charles B; Mantis, Nicholas J
2016-08-01
In this report, we describe the X-ray crystal structures of two single domain camelid antibodies (VH H), F5 and F8, each in complex with ricin toxin's enzymatic subunit (RTA). F5 has potent toxin-neutralizing activity, while F8 has weak neutralizing activity. F5 buried a total of 1760 Å(2) in complex with RTA and made contact with three prominent secondary structural elements: α-helix B (Residues 98-106), β-strand h (Residues 113-117), and the C-terminus of α-helix D (Residues 154-156). F8 buried 1103 Å(2) in complex with RTA that was centered primarily on β-strand h. As such, the structural epitope of F8 is essentially nested within that of F5. All three of the F5 complementarity determining regions CDRs were involved in RTA contact, whereas F8 interactions were almost entirely mediated by CDR3, which essentially formed a seventh β-strand within RTA's centrally located β-sheet. A comparison of the two structures reported here to several previously reported (RTA-VH H) structures identifies putative contact sites on RTA, particularly α-helix B, associated with potent toxin-neutralizing activity. This information has implications for rational design of RTA-based subunit vaccines for biodefense. Proteins 2016; 84:1162-1172. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins.
Rotondi, Kenneth S; Gierasch, Lila M
2006-01-01
This paper provides an introduction to fundamental conformational states of polypeptides in the beta-region of phi,psi space, in which the backbone is extended near to its maximal length, and to more complex architectures in which extended segments are linked by turns and loops. There are several variants on these conformations, and they comprise versatile scaffolds for presentation of side chains and backbone amides for molecular recognition and designed catalysts. In addition, the geometry of these fundamental folds can be readily mimicked in peptidomimetics. Copyright 2005 Wiley Periodicals, Inc.
Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka
2002-04-01
We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.
A photoaffinity scan maps regions of the p85 SH2 domain involved in phosphoprotein binding.
Williams, K P; Shoelson, S E
1993-03-15
Src homology 2 (SH2) domains are modular phosphotyrosine binding pockets found within a wide variety of cytoplasmic signaling molecules. Here we develop a new approach to analyzing protein-protein interfaces termed photoaffinity scanning, and apply the method to map regions of the phosphatidylinositol 3-kinase p85 SH2 domain that participate in phospho-protein binding. Each residue except phosphotyrosine (pY) within a tightly binding, IRS-1-derived phosphopeptide (GNGDpYMPMSPKS) was substituted with the photoactive amino acid, benzoylphenylalanine (Bpa). Whereas most substitutions had little effect on binding affinity, Bpa substitution of either Met (+1 and +3 with respect to pY) reduced affinity 50-100-fold to confirm their importance in the pYMXM recognition motif. In three cases photolysis of SH2 domain/Bpa phosphopeptide complexes led to cross-linking of > 50% of the SH2 domain; cross-link positions were identified by microsequence, amino acid composition, and electrospray mass spectrometric analyses. Bpa-1 cross-links within alpha-helix I, whereas Bpa+1 and Bpa+4 cross-link the SH2 domain within the flexible loop C-terminal to alpha-helix II. Moreover, cross-linking at any position prevents SH2 domain cleavage at a trypsin-sensitive site within the flexible loop between beta-strands 1 and 2. Therefore, at least three distinct SH2 regions in addition to the beta-sheet participate in phosphoprotein binding; the loop cross-linked by phosphopeptide residues C-terminal to pY appears to confer specificity to the phosphoprotein/SH2 domain interaction.
Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina
2010-09-27
Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residuesmore » 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length ECD. Quite unexpectedly, ND1 forms a dimer mediated through the exchange of its last {beta}-strand (strand G). {beta}-strand swapping, which is a subset of 3D domain swapping, has been found to mediate cell-cell adhesion by cadherins. 3D domain swapping has been proposed to be a mechanism of protein oligomerization, aggregation, evolution of oligomeric proteins from single domains and amyloidogenesis. In domain swapped proteins, the same structural elements are involved in the final 3D structure, and so there is little overall energetic difference between the monomer and the swapped oligomers. However, there is often a high energy barrier for the conversion as it often goes through an unfolded state. It is also possible that strand-swapping occurs during folding of nascent polypeptide chains. Frequently, the exchange hinges contain proline-rich motifs which are often in high strain conformations. Domain swapping appears to be a strategy to resolve such local structural strain. The exchange hinge of ND1 contains a Pro-Glu-Pro tripeptide motif. Both of the proline residues adopt extended trans conformations, when compared with cis in the full-length ECD structure. Proline cis-trans isomerization may be the driving force for this exchange. Strand-exchanged dimerization may be a mechanism for the oligomerization of EMMPRIN ECD and its cis-dependent homophilic interactions in cell-cell adhesion.« less
Ali-Torres, Jorge; Dannenberg, J J
2012-12-06
We report ONIOM calculations using B3LYP/D95** and AM1 on β-sheet formation from acetyl(Ala)(N)NH(2) (N = 28 or 40). The sheets contain from one to four β-turns for N = 28 and up to six for N = 40. We have obtained four types of geometrically optimized structures. All contain only β-turns. They differ from each other in the types of β-turns formed. The unsolvated sheets containing two turns are most stable. Aqueous solvation (using the SM5.2 and CPCM methods) reduces the stabilities of the folded structures compared to the extended strands.
Beating the Heat: Fast Scanning Melts Beta Sheet Crystals
NASA Astrophysics Data System (ADS)
Cebe, Peggy; Hu, Xiao; Kaplan, David; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniella; Schick, Christoph
2014-03-01
Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk. Previous thinking was that beta-pleated-sheet crystals in the dry solid state would not melt upon input of heat energy alone. Indeed, at conventional heating rates (~1-50 °C/min), silk exhibits its glass transition (~175 °C), followed by cold crystallization, and then by immediate thermal degradation beginning at about 225 °C. Here we demonstrate that beta-pleated-sheet crystals can melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s to avoid thermal degradation, and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. The authors acknowledge support from the National Science Foundation and German Academic Exchange Service DAAD; EZ acknowledges a European Union funded Marie Curie EST fellowship (ADVATEC); XH and DK acknowledge NIH P41 Tissue Engineering Resource Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakus,J.; Fedorov, A.; Fedorov, E.
2007-01-01
The d-mannonate dehydratase (ManD) function was assigned to a group of orthologous proteins in the mechanistically diverse enolase superfamily by screening a library of acid sugars. Structures of the wild type ManD from Novosphingobium aromaticivorans were determined at pH 7.5 in the presence of Mg2+ and also in the presence of Mg2+ and the 2-keto-3-keto-d-gluconate dehydration product; the structure of the catalytically active K271E mutant was determined at pH 5.5 in the presence of the d-mannonate substrate. As previously observed in the structures of other members of the enolase superfamily, ManD contains two domains, an N-terminal a+{beta} capping domain andmore » a ({beta}/a)7{beta}-barrel domain. The barrel domain contains the ligands for the essential Mg2+, Asp 210, Glu 236, and Glu 262, at the ends of the third, fourth, and fifth {beta}-strands of the barrel domain, respectively. However, the barrel domain lacks both the Lys acid/base catalyst at the end of the second {beta}-strand and the His-Asp dyad acid/base catalyst at the ends of the seventh and sixth {beta}-strands, respectively, that are found in many members of the superfamily. Instead, a hydrogen-bonded dyad of Tyr 159 in a loop following the second {beta}-strand and Arg 147 at the end of the second {beta}-strand are positioned to initiate the reaction by abstraction of the 2-proton. Both Tyr 159 and His 212, at the end of the third {beta}-strand, are positioned to facilitate both syn-dehydration and ketonization of the resulting enol intermediate to yield the 2-keto-3-keto-d-gluconate product with the observed retention of configuration. The identities and locations of these acid/base catalysts as well as of cationic amino acid residues that stabilize the enolate anion intermediate define a new structural strategy for catalysis (subgroup) in the mechanistically diverse enolase superfamily. With these differences, we provide additional evidence that the ligands for the essential Mg2+ are the only conserved residues in the enolase superfamily, establishing the primary functional importance of the Mg2+-assisted strategy for stabilizing the enolate anion intermediate.« less
An Amino Acid Code for β-sheet Packing Structure
Joo, Hyun; Tsai, Jerry
2014-01-01
To understand the relationship between protein sequence and structure, this work extends the knob-socket model in an investigation of β-sheet packing. Over a comprehensive set of β-sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the 2 types of 4 residue packing cliques necessary to describe β-sheet packing were characterized. Both occur between 2 adjacent hydrogen bonded β-strands. First, defining the secondary structure packing within β-sheets, the combined socket or XY:HG pocket consists of 4 residues i,i+2 on one strand and j,j+2 on the other. Second, characterizing the tertiary packing between β-sheets, the knob-socket XY:H+B consists of a 3 residue XY:H socket (i,i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, 2 types of knob-sockets are found: side-chain and main-chain sockets. The amino acid composition of the pockets and knob-sockets reveal the sequence specificity of β-sheet packing. For β-sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side-chain and main-chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β-sheet structure and provide an intuitive topological mapping of β-sheet packing. PMID:24668690
Chiusano, M L; D'Onofrio, G; Alvarez-Valin, F; Jabbari, K; Colonna, G; Bernardi, G
1999-09-30
We investigated the relationships between the nucleotide substitution rates and the predicted secondary structures in the three states representation (alpha-helix, beta-sheet, and coil). The analysis was carried out on 34 alignments, each of which comprised sequences belonging to at least four different mammalian orders. The rates of synonymous substitution were found to be significantly different in regions predicted to be alpha-helix, beta-sheet, or coil. Likewise, the nonsynonymous rates also differ, although expectedly at a lower extent, in the three types of secondary structure, suggesting that different selective constraints associated with the different structures are affecting in a similar way the synonymous and nonsynonymous rates. Moreover, the base composition of the third codon positions is different in coding sequence regions corresponding to different secondary structures of proteins.
Conformational analysis and design of cross-strand disulfides in antiparallel β-sheets.
Indu, S; Kochat, V; Thakurela, S; Ramakrishnan, C; Varadarajan, Raghavan
2011-01-01
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel β-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive χ¹ value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1°C in T(m). All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (ΔΔG⁰ = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. © 2010 Wiley-Liss, Inc.
Ali-Torres, Jorge
2012-01-01
We report ONIOM calculations using B3LYP/D95** and AM1 on β-sheet formation from acetyl(Ala)NNH2 (N=28 or 40). The sheets contain from one to four β-turns for N=28 and up to six for N=40. We have obtained four types of geometrically optimized structures. All contain only β-turns. They differ from each other in the types of β-turns formed. The unsolvated sheets containing two turns are most stable. Aqueous solvation (using the SM5.2 and CPCM methods) reduces the stabilities of the folded structures compared to the extended strands. PMID:23157432
Daniels, Noah M; Hosur, Raghavendra; Berger, Bonnie; Cowen, Lenore J
2012-05-01
One of the most successful methods to date for recognizing protein sequences that are evolutionarily related has been profile hidden Markov models (HMMs). However, these models do not capture pairwise statistical preferences of residues that are hydrogen bonded in beta sheets. These dependencies have been partially captured in the HMM setting by simulated evolution in the training phase and can be fully captured by Markov random fields (MRFs). However, the MRFs can be computationally prohibitive when beta strands are interleaved in complex topologies. We introduce SMURFLite, a method that combines both simplified MRFs and simulated evolution to substantially improve remote homology detection for beta structures. Unlike previous MRF-based methods, SMURFLite is computationally feasible on any beta-structural motif. We test SMURFLite on all propeller and barrel folds in the mainly-beta class of the SCOP hierarchy in stringent cross-validation experiments. We show a mean 26% (median 16%) improvement in area under curve (AUC) for beta-structural motif recognition as compared with HMMER (a well-known HMM method) and a mean 33% (median 19%) improvement as compared with RAPTOR (a well-known threading method) and even a mean 18% (median 10%) improvement in AUC over HHPred (a profile-profile HMM method), despite HHpred's use of extensive additional training data. We demonstrate SMURFLite's ability to scale to whole genomes by running a SMURFLite library of 207 beta-structural SCOP superfamilies against the entire genome of Thermotoga maritima, and make over a 100 new fold predictions. Availability and implementaion: A webserver that runs SMURFLite is available at: http://smurf.cs.tufts.edu/smurflite/
Barik, Sailen
2008-01-01
The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the α-helices and β-strands of proteins than within the more flexible linker regions (‘turns’ and ‘loops’) connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the α-helix and the β-strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures. PMID:15381847
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Marine Mammal Health and Stranding Response Program, Level A Stranding and Rehabilitation Disposition Data Sheet AGENCY: National Oceanic and Atmospheric Administration, Commerce. ACTION...
Intermediates and the folding of proteins L and G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Scott; Head-Gordon, Teresa
We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contactsmore » involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-Santoyo, A.; Del Pozo Yauner, L; Fuentes-Silva, D
Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although {lambda} chains, particularly those belonging to the {lambda}6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the {lambda}6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced itsmore » capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the VL (variable region of the light chain)-VL interface. This mutant crystallized in two orthorhombic polymorphs, P2{sub 1}2{sub 1}2{sub 1} and C222{sub 1}. In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222{sub 1} lattice showed the establishment of intermolecular {beta}-{beta} interactions that involved the N-terminus and {beta}-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the VL interface in {lambda}6 LCs.« less
Kaul, R; Angeles, A R; Jäger, M; Powers, E T; Kelly, J W
2001-06-06
To probe the conformational requirements of loop 1 in the Pin1 WW domain, the residues at the i + 2 and i + 3 positions of a beta-turn within this loop were replaced by dPro-Gly and Asn-Gly, which are known to prefer the conformations required at the i + 1 and i + 2 positions of type II' and type I' beta-turns. Conformational specificity or lack thereof was further examined by incorporating into the i + 2 and i + 3 positions a non-alpha-amino acid-based beta-turn mimetic (4-(2'-aminoethyl)-6-dibenzofuran propionic acid residue, 1), which was designed to replace the i + 1 and i + 2 positions of beta-turns. All these Pin WW variants are monomeric and folded as discerned by analytical ultracentrifugation, NMR, and CD. They exhibit cooperative two-state transitions and display thermodynamic stability within 0.5 kcal/mol of the wild-type WW domain, demonstrating that the acquisition of native structure and stability does not require a specific sequence and, by extension, conformation within loop 1. However, it could be that these loop 1 mutations alter the kinetics of antiparallel beta-sheet folding, which will be addressed by subsequent kinetic studies.
Natural triple beta-stranded fibrous folds.
Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J
2006-01-01
A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.
Structure of the bacteriophage T4 long tail fiber receptor-binding tip
Bartual, Sergio G.; Otero, José M.; Garcia-Doval, Carmela; Llamas-Saiz, Antonio L.; Kahn, Richard; Fox, Gavin C.; van Raaij, Mark J.
2010-01-01
Bacteriophages are the most numerous organisms in the biosphere. In spite of their biological significance and the spectrum of potential applications, little high-resolution structural detail is available on their receptor-binding fibers. Here we present the crystal structure of the receptor-binding tip of the bacteriophage T4 long tail fiber, which is highly homologous to the tip of the bacteriophage lambda side tail fibers. This structure reveals an unusual elongated six-stranded antiparallel beta-strand needle domain containing seven iron ions coordinated by histidine residues arranged colinearly along the core of the biological unit. At the end of the tip, the three chains intertwine forming a broader head domain, which contains the putative receptor interaction site. The structure reveals a previously unknown beta-structured fibrous fold, provides insights into the remarkable stability of the fiber, and suggests a framework for mutations to expand or modulate receptor-binding specificity. PMID:21041684
Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure.
Cobb, Nathan J; Sönnichsen, Frank D; McHaourab, Hassane; Surewicz, Witold K
2007-11-27
Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative diseases that are associated with conformational conversion of the normally monomeric and alpha-helical prion protein, PrP(C), to the beta-sheet-rich PrP(Sc). This latter conformer is believed to constitute the main component of the infectious TSE agent. In contrast to high-resolution data for the PrP(C) monomer, structures of the pathogenic PrP(Sc) or synthetic PrP(Sc)-like aggregates remain elusive. Here we have used site-directed spin labeling and EPR spectroscopy to probe the molecular architecture of the recombinant PrP amyloid, a misfolded form recently reported to induce transmissible disease in mice overexpressing an N-terminally truncated form of PrP(C). Our data show that, in contrast to earlier, largely theoretical models, the con formational conversion of PrP(C) involves major refolding of the C-terminal alpha-helical region. The core of the amyloid maps to C-terminal residues from approximately 160-220, and these residues form single-molecule layers that stack on top of one another with parallel, in-register alignment of beta-strands. This structural insight has important implications for understanding the molecular basis of prion propagation, as well as hereditary prion diseases, most of which are associated with point mutations in the region found to undergo a refolding to beta-structure.
Towards a Pharmacophore for Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.
2011-09-16
Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine sidemore » chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds may be required for future amyloid therapies. The structures described here start to define the amyloid pharmacophore, opening the way to structure-based design of improved diagnostics and therapeutics.« less
Qualtieri, Antonio; Le, Pera Maria; Pedace, Vera; Magariello, Angela; Brancati, Carlo
2002-02-01
We have identified a new neutral hemoglobin variant in a pregnant Italian woman, that resulted from a GTG-->CTG replacement at codon 126 of the beta chain, corresponding to a Val-->Leu amino acid change at position beta126(H4). Thermal and isopropanol stability tests were normal and there were no abnormal clinical features. Routine electrophoretic and ion exchange chromatographic methods for hemoglobin separation failed to show this variant, but reversed phase high performance liquid chromatography revealed an abnormal peak eluting near the normal beta chain. No abnormal tryptic peptide was revealed on the high performance liquid chromatographic elution pattern of the total globin digest. The mutation was determined at the DNA level by amplification of the three beta exons by polymerase chain reaction and direct sequencing of one exon that showed an abnormal migration on single strand conformational polymorphism analysis.
Reily, M D; Thanabal, V; Adams, M E
1995-02-01
The 48 amino acid peptides omega-Aga-IVA and omega-Aga-IVB are the first agents known to specifically block P-type calcium channels in mammalian brain, thus complementing the existing suite of pharmacological tools used for characterizing calcium channels. These peptides provide a new set of probes for studies aimed at elucidating the structural basis underlying the subtype specificity of calcium channel antagonists. We used 288 NMR-derived constraints in a protocol combining distance geometry and molecular dynamics employing the program DGII, followed by energy minimization with Discover to derive the three-dimensional structure of omega-Aga-IVB. The toxin consists of a well-defined core region, comprising seven solvent-shielded residues and a well-defined triple-stranded beta-sheet. Four loop regions have average backbone rms deviations between 0.38 and 1.31 A, two of which are well-defined type-II beta-turns. Other structural features include disordered C- and N-termini and several conserved basic amino acids that are clustered on one face of the molecule. The reported structure suggests a possible surface for interaction with the channel. This surface contains amino acids that are identical to those of another known P-type calcium channel antagonist, omega-Aga-IVA, and is rich in basic residues that may have a role in binding to the anionic sites in the extracellular regions of the calcium channel.
Campos-Olivas, R; Hörr, I; Bormann, C; Jung, G; Gronenborn, A M
2001-05-11
AFP1 is a recently discovered anti-fungal, chitin-binding protein from Streptomyces tendae Tü901. Mature AFP1 comprises 86 residues and exhibits limited sequence similarity to the cellulose-binding domains of bacterial cellulases and xylanases. No similarity to the Cys and Gly-rich domains of plant chitin-binding proteins (e.g. agglutinins, lectins, hevein) is observed. AFP1 is the first chitin-binding protein from a bacterium for which anti-fungal activity was shown. Here, we report the three-dimensional solution structure of AFP1, determined by nuclear magnetic resonance spectroscopy. The protein contains two antiparallel beta-sheets (five and four beta-strands each), that pack against each other in a parallel beta-sandwich. This type of architecture is conserved in the functionally related family II of cellulose-binding domains, albeit with different connectivity. A similar fold is also observed in other unrelated proteins (spore coat protein from Myxococcus xanthus, beta-B2 and gamma-B crystallins from Bos taurus, canavalin from Jack bean). AFP1 is therefore classified as a new member of the betagamma-crystallin superfamily. The dynamics of the protein was characterized by NMR using amide 15N relaxation and solvent exchange data. We demonstrate that the protein exhibits an axially symmetric (oblate-like) rotational diffusion tensor whose principal axis coincides to within 15 degrees with that of the inertial tensor. After completion of the present structure of AFP1, an identical fold was reported for a Streptomyces killer toxin-like protein. Based on sequence comparisons and clustering of conserved residues on the protein surface for different cellulose and chitin-binding proteins, we postulate a putative sugar-binding site for AFP1. The inability of the protein to bind short chitin fragments suggests that certain particular architectural features of the solid chitin surface are crucial for the interaction. Copyright 2001 Academic Press.
Wintjens, René; Belrhali, Hassan; Clantin, Bernard; Azarkan, Mohamed; Bompard, Coralie; Baeyens-Volant, Danielle; Looze, Yvan; Villeret, Vincent
2006-03-24
Glutaminyl cyclases (QCs) (EC 2.3.2.5) catalyze the intramolecular cyclization of protein N-terminal glutamine residues into pyroglutamic acid with the concomitant liberation of ammonia. QCs may be classified in two groups containing, respectively, the mammalian enzymes, and the enzymes from plants, bacteria, and parasites. The crystal structure of the QC from the latex of Carica papaya (PQC) has been determined at 1.7A resolution. The structure was solved by the single wavelength anomalous diffraction technique using sulfur and zinc as anomalous scatterers. The enzyme folds into a five-bladed beta-propeller, with two additional alpha-helices and one beta hairpin. The propeller closure is achieved via an original molecular velcro, which links the last two blades into a large eight stranded beta-sheet. The zinc ion present in the PQC is bound via an octahedral coordination into an elongated cavity located along the pseudo 5-fold axis of the beta-propeller fold. This zinc ion presumably plays a structural role and may contribute to the exceptional stability of PQC, along with an extended hydrophobic packing, the absence of long loops, the three-joint molecular velcro and the overall folding itself. Multiple sequence alignments combined with structural analyses have allowed us to tentatively locate the active site, which is filled in the crystal structure either by a Tris molecule or an acetate ion. These analyses are further supported by the experimental evidence that Tris is a competitive inhibitor of PQC. The active site is located at the C-terminal entrance of the PQC central tunnel. W83, W110, W169, Q24, E69, N155, K225, F22 and F67 are highly conserved residues in the C-terminal entrance, and their putative role in catalysis is discussed. The PQC structure is representative of the plants, bacterial and parasite enzymes and contrasts with that of mammalian enzymes, that may possibly share a conserved scaffold of the bacterial aminopeptidase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Baugh; T Weidner; J Baio
2011-12-31
The ability to orient active proteins on surfaces is a critical aspect of many medical technologies. An important related challenge is characterizing protein orientation in these surface films. This study uses a combination of time-of-flight secondary ion mass spectrometry (ToF-SIMS), sum frequency generation (SFG) vibrational spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to characterize the orientation of surface-immobilized Protein G B1, a rigid 6 kDa domain that binds the Fc fragment of IgG. Two Protein G B1 variants with a single cysteine introduced at either end were immobilized via the cysteine thiol onto maleimide-oligo(ethylene glycol)-functionalized gold and baremore » gold substrates. X-ray photoelectron spectroscopy was used to measure the amount of immobilized protein, and ToF-SIMS was used to measure the amino acid composition of the exposed surface of the protein films and to confirm covalent attachment of protein thiol to the substrate maleimide groups. SFG and NEXAFS were used to characterize the ordering and orientation of peptide or side chain bonds. On both substrates and for both cysteine positions, ToF-SIMS data showed enrichment of mass peaks from amino acids located at the end of the protein opposite to the cysteine surface position as compared with nonspecifically immobilized protein, indicating end-on protein orientations. Orientation on the maleimide substrate was enhanced by increasing pH (7.0-9.5) and salt concentration (0-1.5 M NaCl). SFG spectral peaks characteristic of ordered {alpha}-helix and {beta}-sheet elements were observed for both variants but not for cysteine-free wild type protein on the maleimide surface. The phase of the {alpha}-helix and {beta}-sheet peaks indicated a predominantly upright orientation for both variants, consistent with an end-on protein binding configuration. Polarization dependence of the NEXAFS signal from the N 1s to {pi}* transition of {beta}-sheet peptide bonds also indicated protein ordering, with an estimated tilt angle of inner {beta}-strands of 40-50{sup o} for both variants (one variant more tilted than the other), consistent with SFG results. The combined results demonstrate the power of using complementary techniques to probe protein orientation on surfaces.« less
Broitman, S; Amosova, O; Dolinnaya, N G; Fresco, J R
1999-07-30
A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.
Orientation determination of interfacial beta-sheet structures in situ.
Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan
2010-07-01
Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.
Reaction of. beta. -propiolactone with derivatives of adenine and with DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, R.; Mieyal, J.J.; Goldthwait, D.A.
1982-01-01
The reaction of deoxyadenosine with ..beta..-propiolactone produces two derivatives. One is 1-(2-carboxyethyl)-2-deoxyadenosine (CEdA). The proposed structure for the other is 3-(..beta..-D-2-deoxyribosyl)-7,8-dihydropyrimido-(2,l-i)purine-9-one (dDPP). Spectral characteristics of both compounds are presented. These include u.v. spectra of each in acidic, neutral and alkaline solutions, i.r. spectra, fluorescence spectra, and n.m.r. spectra. The dDPP can be converted to CEdA by mild acid hydrolysis, and the CEdA can be converted to dDPP by reaction with a carbodiimide derivative. When poly A was reacted with ..beta..-propiolactone, the yield of dDPP in the polymer was 7-9%. When double-stranded DNA was alkylated by (/sup 3/H)..beta..-propiolactone at relatively highmore » concentrations and then acid hydrolyzed to separate 1-(2-carboxyethyl)adenine (CEA) and 7-(2-carboxyethyl)guanine (CEG), and CEA to CEG ratio of up to 0.62 was obtained. With relatively low concentrations of (/sup 3/H)..beta..-propiolactone, the yield of CEA was low with double-stranded DNA but was 5-6 fold greater with single-stranded DNA.« less
Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna
2005-01-28
Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.
Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus.
Prasad, G. S.; Stura, E. A.; McRee, D. E.; Laco, G. S.; Hasselkus-Light, C.; Elder, J. H.; Stout, C. D.
1996-01-01
We have determined the crystal structure of dUTP pyrophosphatase (dUTPase) from feline immunodeficiency virus (FIV) at 1.9 A resolution. The structure has been solved by the multiple isomorphous replacement (MIR) method using a P6(3) crystal form. The results show that the enzyme is a trimer of 14.3 kDa subunits with marked structural similarity to E. coli dUTPase. In both enzymes the C-terminal strand of an anti-parallel beta-barrel participates in the beta-sheet of an adjacent subunit to form an interdigitated, biologically functional trimer. In the P6(3) crystal form one trimer packs on the 6(3) screw-axis and another on the threefold axis so that there are two independent monomers per asymmetric unit. A Mg2+ ion is coordinated by three asparate residues on the threefold axis of each trimer. Alignment of 17 viral, prokaryotic, and eukaryotic dUTPase sequences reveals five conserved motifs. Four of these map onto the interface between pairs of subunits, defining a putative active site region; the fifth resides in the C-terminal 16 residues, which is disordered in the crystals. Conserved motifs from all three subunits are required to create a given active site. With respect to viral protein expression, it is particularly interesting that the gene for dUTPase (DU) resides in the middle of the Pol gene, the enzyme cassette of the retroviral genome. Other enzymes encoded in the Pol polyprotein, including protease (PR), reverse transcriptase (RT), and most likely integrase (IN), are dimeric enzymes, which implies that the stoichiometry of expression of active trimeric dUTPase is distinct from the other Pol-encoded enzymes. Additionally, due to structural constraints, it is unlikely that dUTPase can attain an active form prior to cleavage from the polyprotein. PMID:8976551
β-sheet-like formation during the mechanical unfolding of prion protein
NASA Astrophysics Data System (ADS)
Tao, Weiwei; Yoon, Gwonchan; Cao, Penghui; Eom, Kilho; Park, Harold S.
2015-09-01
Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrPC, whose misfolded form PrPSc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.
β-sheet-like formation during the mechanical unfolding of prion protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Weiwei; Cao, Penghui; Park, Harold S., E-mail: parkhs@bu.edu
2015-09-28
Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrP{sup C}, whose misfolded form PrP{sup Sc} can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundredsmore » of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitiello, Giuseppe; CSGI; Grimaldi, Manuela
Highlights: Black-Right-Pointing-Pointer iA{beta}5p shows a significant tendency to deeply penetrates the hydrophobic core of lipid membrane. Black-Right-Pointing-Pointer A{beta}(25-35) locates in the external region of the membrane causing a re-positioning of CHOL. Black-Right-Pointing-Pointer iA{beta}5p withholds cholesterol in the inner hydrophobic core of the lipid membrane. Black-Right-Pointing-Pointer iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane. -- Abstract: Alzheimer's disease is characterized by the deposition of aggregates of the {beta}-amyloid peptide (A{beta}) in the brain. A potential therapeutic strategy for Alzheimer's disease is the use of synthetic {beta}-sheet breaker peptides, which are capable of binding A{beta} but unable to become part ofmore » a {beta}-sheet structure, thus inhibiting the peptide aggregation. Many studies suggest that membranes play a key role in the A{beta} aggregation; consequently, it is strategic to investigate the interplay between {beta}-sheet breaker peptides and A{beta} in the presence of lipid bilayers. In this work, we focused on the effect of the {beta}-sheet breaker peptide acetyl-LPFFD-amide, iA{beta}5p, on the interaction of the A{beta}(25-35) fragment with lipid membranes, studied by Electron Spin Resonance spectroscopy, using spin-labeled membrane components (either phospholipids or cholesterol). The ESR results show that iA{beta}5p influences the A{beta}(25-35) interaction with the bilayer through a cholesterol-mediated mechanism: iA{beta}5p withholds cholesterol in the inner hydrophobic core of the bilayer, making the interfacial region more fluid and capable to accommodate A{beta}(25-35). As a consequence, iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane, which is the first step of the {beta}-amyloid aggregation process.« less
Optimization and characterization of spray-dried IgG formulations: a design of experiment approach.
Faghihi, Homa; Najafabadi, Abdolhosein Rouholamini; Vatanara, Alireza
2017-10-24
The purpose of the present study is to optimize a spray-dried formulation as a model antibody regarding stability and aerodynamic property for further aerosol therapy of this group of macromolecules. A three-factor, three-level, Box-Behnken design was employed milligrams of Cysteine (X 1 ), Trehalose (X 2 ), and Tween 20 (X 3 ) as independent variables. The dependent variables were quantified and the optimized formulation was prepared accordingly. SEC-HPLC and FTIR-spectroscopy were conducted to evaluate the molecular and structural status of spray-dried preparations. Particle characterization of optimized sample was performed with the aid of DSC, SEM, and TSI examinations. Experimental responses of a total of 17 formulations resulted in yield values, (Y 1 ), ranging from 21.1 ± 0.2 to 40.2 ± 0.1 (%); beta-sheet content, (Y 2 ), from 66.22 ± 0.19 to 73.78 ± 0.26 (%); amount of aggregation following process, (Y 3 ), ranging from 0.11 ± 0.03 to 0.95 ± 0.03 (%); and amount of aggregation upon storage, (Y 4 ), from 0.81 ± 0.01 to 3.13 ± 0.64 (%) as dependent variables. Results-except for those of the beta sheet content-were fitted to quadratic models describing the inherent relationship between main factors. Co-application of Cysteine and Tween 20 preserved antibody molecules from molecular degradation and improved immediate and accelerated stability of spry-dried antibodies. Validation of the optimization study indicated high degree of prognostic ability of response surface methodology in preparation of stable spray-dried IgG. Graphical abstract Spray drying of IgG in the presence of Trehalose, Cysteine and Tween 20.
Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa.
Shao, L; Kinnally, K W; Mannella, C A
1996-01-01
The protein that forms the voltage-gated channel VDAC (or mitochondrial porin) has been purified from Neurospora crassa. At room temperature and pH 7, the circular dichoism (CD) spectrum of VDAC suspended in octyl beta-glucoside is similar to those of bacterial porins, consistent with a high beta-sheet content. When VDAC is reconstituted into phospholipid liposomes at pH 7, a similar CD spectrum is obtained and the liposomes are rendered permeable to sucrose. Heating VDAC in octyl beta-glucoside or in liposomes results in thermal denaturation. The CD spectrum irreversibly changes to one consistent with total loss of beta-sheet content, and VDAC-containing liposomes irreversibly lose sucrose permeability. When VDAC is suspended at room temperature in octyl beta-glucoside at pH < 5 or in sodium dodecyl sulfate at pH 7, its CD spectrum is consistent with partial loss of beta-sheet content. The sucrose permeability of VDAC-containing liposomes is decreased at low pH and restored at pH 7. Similarly, the pH-dependent changes in the CD spectrum of VDAC suspended in octyl beta-glucoside also are reversible. These results suggest that VDAC undergoes a reversible conformational change at low pH involving reduced beta-sheet content and loss of pore-forming activity. Images FIGURE 1 PMID:8842216
Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.
Zanuy, David; Poater, Jordi; Solà, Miquel; Hamley, Ian W; Alemán, Carlos
2016-01-14
We describe the 3D supramolecular structure of Fmoc-RGDS fibrils, where Fmoc and RGDS refer to the hydrophobic N-(fluorenyl-9-methoxycarbonyl) group and the hydrophilic Arg-Gly-Asp-Ser peptide sequence, respectively. For this purpose, we performed atomistic all-atom molecular dynamics simulations of a wide variety of packing modes derived from both parallel and antiparallel β-sheet configurations. The proposed model, which closely resembles the cross-β core structure of amyloids, is stabilized by π-π stacking interactions between hydrophobic Fmoc groups. More specifically, in this organization, the Fmoc-groups of β-strands belonging to the same β-sheet form columns of π-stacked aromatic rings arranged in a parallel fashion. Eight of such columns pack laterally forming a compact and dense hydrophobic core, in which two central columns are surrounded by three adjacent columns on each side. In addition to such Fmoc···Fmoc interactions, the hierarchical assembly of the constituent β-strands involves a rich variety of intra- and inter-strand interactions. Accordingly, hydrogen bonding, salt bridges and π-π stacking interactions coexist in the highly ordered packing network proposed for the Fmoc-RGDS amphiphile. Quantum mechanical calculations, which have been performed to quantify the above referred interactions, confirm the decisive role played by the π-π stacking interactions between the rings of the Fmoc groups, even though both inter-strand and intra-strand hydrogen bonds and salt bridges also play a non-negligible role. Overall, these results provide a solid reference to complement the available experimental data, which are not precise enough to determine the fibril structure, and reconcile previous independent observations.
Tolkatchev, Dmitri; Shaykhutdinov, Rustem; Xu, Ping; Plamondon, Josée; Watson, David C; Young, N Martin; Ni, Feng
2006-10-01
A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chun-Jing; Pang, Hai-Jun; Tang, Qun
2010-12-15
Three 3D compounds based on octamolybdate clusters and various Cu{sup I}/Cu{sup II}-bis(triazole) motifs, [Cu{sup I}{sub 2}btb][{beta}-Mo{sub 8}O{sub 26}]{sub 0.5} (1), [Cu{sup I}{sub 2}btpe][{beta}-Mo{sub 8}O{sub 26}]{sub 0.5} (2), and [Cu{sup II}(btpe){sub 2}][{beta}-Mo{sub 8}O{sub 26}]{sub 0.5} (3) [btb=1,4-bis(1,2,4-triazol-1-yl)butane, btpe=1,5-bis(1,2,4-triazol-1-yl)pentane], were isolated via tuning flexible ligand spacer length and metal coordination preferences. In 1, the copper(I)-btb motif is a one-dimensional (1D) chain which is further linked by hexadentate {beta}-[Mo{sub 8}O{sub 26}]{sup 4-} clusters via coordinating to Cu{sup I} cations giving a 3D structure. In 2, the copper(I)-btpe motif exhibits a 'stairs'-like [Cu{sup I}{sub 2}btpe]{sup 2+} sheet, and the tetradentate {beta}-[Mo{sub 8}O{sub 26}]{sup 4-}more » clusters interact with two neighboring [Cu{sup I}{sub 2}btpe]{sup 2+} sheets constructing a 3D framework. In 3, the copper(II)-btpe motif possesses a novel (2D{yields}3D) interdigitated structure, which is further connected by the tetradentate {beta}-[Mo{sub 8}O{sub 26}]{sup 4-} clusters forming a 3D framework. The thermal stability and luminescent properties of 1-3 are investigated in the solid state. -- Graphical abstract: Three 3D compounds based on {beta}-[Mo{sub 8}O{sub 26}]{sup 4-} clusters with different Cu{sup I}/Cu{sup II}-bis(triazole) motifs were synthesized by regularly tuning flexible ligand spacer length and metal coordination preferences. Display Omitted« less
Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design
NASA Astrophysics Data System (ADS)
Nussinov, Ruth
2012-02-01
Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly interacting α-helices that robustly prevent ion leakage, rather than hydrogen-bonded β-strands. Moreover, in comparison with β-rich antimicrobial peptide (AMP) such as a protegrin-1 (PG-1), both Aβ and PG-1 are cytotoxic, and capable of forming fibrils and dynamic channels which consist of subunits with similar dimensions. These combined properties support a functional relationship between amyloidogenic peptides and β-sheet-rich cytolytic AMPs, suggesting that PG-1 is amyloidogenic and amyloids may have an antimicrobial function.
Thompson, T B; Garrett, J B; Taylor, E A; Meganathan, R; Gerlt, J A; Rayment, I
2000-09-05
The X-ray structures of the ligand free (apo) and the Mg(2+)*o-succinylbenzoate (OSB) product complex of o-succinylbenzoate synthase (OSBS) from Escherichia coli have been solved to 1.65 and 1.77 A resolution, respectively. The structure of apo OSBS was solved by multiple isomorphous replacement in space group P2(1)2(1)2(1); the structure of the complex with Mg(2+)*OSB was solved by molecular replacement in space group P2(1)2(1)2. The two domain fold found for OSBS is similar to those found for other members of the enolase superfamily: a mixed alpha/beta capping domain formed from segments at the N- and C-termini of the polypeptide and a larger (beta/alpha)(7)beta barrel domain. Two regions of disorder were found in the structure of apo OSBS: (i) the loop between the first two beta-strands in the alpha/beta domain; and (ii) the first sheet-helix pair in the barrel domain. These regions are ordered in the product complex with Mg(2+)*OSB. As expected, the Mg(2+)*OSB pair is bound at the C-terminal end of the barrel domain. The electron density for the phenyl succinate component of the product is well-defined; however, the 1-carboxylate appears to adopt multiple conformations. The metal is octahedrally coordinated by Asp(161), Glu(190), and Asp(213), two water molecules, and one oxygen of the benzoate carboxylate group of OSB. The loop between the first two beta-strands in the alpha/beta motif interacts with the aromatic ring of OSB. Lys(133) and Lys(235) are positioned to function as acid/base catalysts in the dehydration reaction. Few hydrogen bonding or electrostatic interactions are involved in the binding of OSB to the active site; instead, most of the interactions between OSB and the protein are either indirect via water molecules or via hydrophobic interactions. As a result, evolution of both the shape and the volume of the active site should be subject to few structural constraints. This would provide a structural strategy for the evolution of new catalytic activities in homologues of OSBS and a likely explanation for how the OSBS from Amycolaptosis also can catalyze the racemization of N-acylamino acids [Palmer, D. R., Garrett, J. B., Sharma, V., Meganathan, R., Babbitt, P. C., and Gerlt, J. A. (1999) Biochemistry 38, 4252-4258].
pH-directed self-assembling helical peptide conformation
USDA-ARS?s Scientific Manuscript database
The beta-sheet and alpha-helix peptide conformation are two of the most fundamentally ordered secondary structures found in proteins and peptides. They also give rise to self-assembling motifs that form macromolecular channels and nanostructures. Through design these conformations can yield enhance...
The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii.
Sridhar Prasad, G.; Kresge, N.; Muhlberg, A. B.; Shaw, A.; Jung, Y. S.; Burgess, B. K.; Stout, C. D.
1998-01-01
NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258. PMID:9865948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heltzel, J.; Scouten Ponticelli, S; Sanders, L
2009-01-01
Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli {beta} clamp interact physically with the DNA that it topologically encircles. We utilized mutant {beta} clamp proteins bearing G66E and G174A substitutions ({beta}159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 ({beta}148-152), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of {beta}148-152, which verified that themore » poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both {beta}159 and {beta}148-152 were impaired for loading and retention on a linear primed DNA in vitro. In the case of {beta}148-152, this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired {beta}148-152-DNA interactions. Once loaded, {beta}148-152 was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, {beta}148-152 was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, {beta}148-152 was unable to support viability of E. coli. Nevertheless, physiological levels of {beta}148-152 expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing {beta}159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA, clamp-partner, and partner-DNA interactions serve to manage the actions of the different E. coli Pols in vivo.« less
Yang, A S; Hitz, B; Honig, B
1996-06-21
The stability of beta-turns is calculated as a function of sequence and turn type with a Monte Carlo sampling technique. The conformational energy of four internal hydrogen-bonded turn types, I, I', II and II', is obtained by evaluating their gas phase energy with the CHARMM force field and accounting for solvation effects with the Finite Difference Poisson-Boltzmann (FDPB) method. All four turn types are found to be less stable than the coil state, independent of the sequence in the turn. The free-energy penalties associated with turn formation vary between 1.6 kcal/mol and 7.7 kcal/mol, depending on the sequence and turn type. Differences in turn stability arise mainly from intraresidue interactions within the two central residues of the turn. For each combination of the two central residues, except for -Gly-Gly-, the most stable beta-turn type is always found to occur most commonly in native proteins. The fact that a model based on local interactions accounts for the observed preference of specific sequences suggests that long-range tertiary interactions tend to play a secondary role in determining turn conformation. In contrast, for beta-hairpins, long-range interactions appear to dominate. Specifically, due to the right-handed twist of beta-strands, type I' turns for -Gly-Gly- are found to occur with high frequency, even when local energetics would dictate otherwise. The fact that any combination of two residues is found able to adopt a relatively low-energy turn structure explains why the amino acid sequence in turns is highly variable. The calculated free-energy cost of turn formation, when combined with related numbers obtained for alpha-helices and beta-sheets, suggests a model for the initiation of protein folding based on metastable fragments of secondary structure.
Improved silencing properties using small internally segmented interfering RNAs
Bramsen, Jesper B.; Laursen, Maria B.; Damgaard, Christian K.; Lena, Suzy W.; Ravindra Babu, B.; Wengel, Jesper; Kjems, Jørgen
2007-01-01
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo. PMID:17726057
Inouye, Hideyo; Bond, Jeremy E; Deverin, Sean P; Lim, Amareth; Costello, Catherine E; Kirschner, Daniel A
2002-01-01
Betabellin is a 32-residue peptide engineered to fold into a four-stranded antiparallel beta-sheet protein. Upon air oxidation, the betabellin peptides can fold and assemble into a disulfide-bridged homodimer, or beta-sandwich, of 64 residues. Recent biophysical and ultrastructural studies indicate that betabellin 15D (B15D) (a homodimer of HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) forms unbranched, 35-A wide assemblies that resemble the protofilaments of amyloid fibers. In the present study, we have analyzed in detail the X-ray diffraction patterns of B15D prepared from acetonitrile. The fiber diffraction analysis indicated that the B15D fibril was composed of a double helix defined by the selection rule l = n + 7m (where l is even, and n and m are any integers), and having a 199-A period and pitch, 28-A rise per unit, and 10-A radius. This helical model is equivalent to a reverse-handed, single helix with half the period and defined by the selection rule l = -3n + 7m (where l is any integer). The asymmetric unit is the single B15D beta-sandwich molecule. These results suggest that the betabellin assembly that models the protofilaments of amyloid fibers is made up of discrete subunits on a helical array. Multiple intersheet hydrogen bonds in the axial direction and intersandwich polar interactions in the lateral direction stabilize the array. PMID:12202394
Leckie, F; Mattei, B; Capodicasa, C; Hemmings, A; Nuss, L; Aracri, B; De Lorenzo, G; Cervone, F
1999-01-01
Two members of the pgip gene family (pgip-1 and pgip-2) of Phaseolus vulgaris L. were expressed separately in Nicotiana benthamiana and the ligand specificity of their products was analysed by surface plasmon resonance (SPR). Polygalacturonase-inhibiting protein-1 (PGIP-1) was unable to interact with PG from Fusarium moniliforme and interacted with PG from Aspergillus niger; PGIP-2 interacted with both PGs. Only eight amino acid variations distinguish the two proteins: five of them are confined within the beta-sheet/beta-turn structure and two of them are contiguous to this region. By site-directed mutagenesis, each of the variant amino acids of PGIP-2 was replaced with the corresponding amino acid of PGIP-1, in a loss-of-function approach. The mutated PGIP-2s were expressed individually in N.benthamiana, purified and subjected to SPR analysis. Each single mutation caused a decrease in affinity for PG from F.moniliforme; residue Q253 made a major contribution, and its replacement with a lysine led to a dramatic reduction in the binding energy of the complex. Conversely, in a gain-of-function approach, amino acid K253 of PGIP-1 was mutated into the corresponding amino acid of PGIP-2, a glutamine. With this single mutation, PGIP-1 acquired the ability to interact with F.moniliforme PG. PMID:10228150
NASA Astrophysics Data System (ADS)
Choi, Woosung; Jee, Sang Eun; Jang, Seung Soon
Alzheimer's disease (AD) is type of degenerative dementia caused memory loss and behavior problem. Main reason of AD is Amyloid-Beta 40(A β) mostly composed of α -helix form misfolds to insoluble fibrils and soluble oilgomer. This insoluble fibrils aggregate with beta sheet structure and form the plaque which is caused nurotoxicity in brain. Both 3,4 dihydrocylmandelic acid (DHMA) and noremetanephrine (NMN) are the metabolite of norepinephrine in brain . Also these are inhibit the changing formation of fibrils and maintain the α -helix structure. In this computational modeling study, both NMN and DHMA molecules were modified and analyzed for specific effect on the A β-monomer using molecular dynamics simulation. Using molecular dynamic simulation, NMN and DHMA act as modulator on three A β-monomer batches and could observe the conformational changing of these A β-monomer under the physiologocal condition. This computational experiment is designed to compare and analyze both of chemicals for determining which chamecal would be more effective on the conformation of A β 40 monomer.
Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander
2014-10-02
Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibodymore » combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, A. A., E-mail: alashkov83@gmail.com; Sotnichenko, S. E.; Mikhailov, A. M.
2013-03-15
Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search formore » and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).« less
Islam, N; Poitras, L; Gagnon, F; Moss, T
1996-10-17
The structure and temporal expression of two Xenopus cDNAs encoding the beta subunit of pyruvate dehydrogenase (XPdhE1 beta) have been determined. XPdhE1 beta was 88% homologous to mature human PdhE1 beta, but the putative N-terminal mitochondrial signal peptide was poorly conserved. Zygotic expression of XPdhE1 beta mRNA was detected at neural tube closure and increased until stage 40. RT-PCR cloning identified a short homology to a protein kinase open reading frame within the 3' non-coding sequence of the XPdhE1 beta cDNAs. This homology, which occurred on the antisense cDNA strand, was shown by strand specific RT-PCR to be transcribed in vivo as part of an antisense RNA. Northern analysis showed that this RNA formed part of an abundant and heterogeneous population of antisense and sense poly(A)-RNAs transcribed from the XPdhE1 beta loci and coordinately regulated with message production.
Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.
Peterson, R W; Nicholson, E M; Thapar, R; Klevit, R E; Scholtz, J M
1999-03-12
In an effort to quantify the importance of hydrogen bonding and alpha-helix formation to protein stability, a capping box motif was introduced into the small phosphocarrier protein HPr. Previous studies had confirmed that Ser46, at the N-cap position of the short helix-B in HPr, serves as an N-cap in solution. Thus, only a single-site mutation was required to produce a canonical S-X-X-E capping box: Lys49 at the N3 position was substituted with a glutamic acid residue. Thermal and chemical denaturation studies on the resulting K49E HPr show that the designed variant is approximately 2 kcal mol-1 more stable than the wild-type protein. However, NMR studies indicate that the side-chain of Glu49 does not participate in the expected capping H-bond interaction, but instead forms a new tertiary H-bond that links helix-B to the four-stranded beta-sheet of HPr. Here, we demonstrate that a strategy in which new non-native H-bonds are introduced can generate proteins with increased stability. We discuss why the original capping box design failed, and compare the energetic consequences of the new tertiary side-chain to main-chain H-bond with a local (helix-capping) side-chain to main-chain H-bond on the protein's global stability. Copyright 1999 Academic Press.
Crystal structure of a macrophage migration inhibitory factor from Giardia lamblia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchko, Garry W.; Abendroth, Jan; Robinson, Howard
2013-06-15
Macrophage migration inhibitory factor (MIF) is a eukaryotic cytokine that affects a broad spectrum of immune responses and its activation/inactivation is associated with numerous diseases. During protozoan infections MIF is not only expressed by the host, but, has also been observed to be expressed by some parasites and released into the host. To better understand the biological role of parasitic MIF proteins, the crystal structure of the MIF protein from Giardia lamblia (Gl-MIF), the etiological agent responsible for giardiasis, has been determined at 2.30 Å resolution. The 114-residue protein adopts an α/β fold consisting of a four-stranded β-sheet with twomore » anti-parallel α-helices packed against a face of the β-sheet. An additional short β-strand aligns anti-parallel to β4 of the β-sheet in the adjacent protein unit to help stabilize a trimer, the biologically relevant unit observed in all solved MIF crystal structures to date, and form a discontinuous β-barrel. The structure of Gl-MIF is compared to the MIF structures from humans (Hs-MIF) and three Plasmodium species (falciparum, berghei, and yoelii). The structure of all five MIF proteins are generally similar with the exception of a channel that runs through the center of each trimer complex. Relative to Hs-MIF, there are differences in solvent accessibility and electrostatic potential distribution in the channel of Gl-MIF and the Plasmodium-MIFs due primarily to two “gate-keeper” residues in the parasitic MIFs. For the Plasmodium MIFs the gate-keeper residues are at positions 44 (Y==>R) and 100 (V==>D) and for Gl-MIF it is at position 100 (V==>R). If these gate-keeper residues have a biological function and contribute to the progression of parasitemia they may also form the basis for structure-based drug design targeting parasitic MIF proteins.« less
Abendroth, Jan; Robinson, Howard; Zhang, Yanfeng; Hewitt, Stephen N.; Edwards, Thomas E.; Van Voorhis, Wesley C.; Myler, Peter J.
2013-01-01
Macrophage migration inhibitory factor (MIF) is a eukaryotic cytokine that affects a broad spectrum of immune responses and its activation/inactivation is associated with numerous diseases. During protozoan infections MIF is not only expressed by the host, but, has also been observed to be expressed by some parasites and released into the host. To better understand the biological role of parasitic MIF proteins, the crystal structure of the MIF protein from Giardia lamblia (Gl-MIF), the etiological agent responsible for giardiasis, has been determined at 2.30 Å resolution. The 114-residue protein adopts an α/β fold consisting of a four-stranded β-sheet with two anti-parallel α-helices packed against a face of the β-sheet. An additional short β-strand aligns anti-parallel to β4 of the β-sheet in the adjacent protein unit to help stabilize a trimer, the biologically relevant unit observed in all solved MIF crystal structures to date, and form a discontinuous β-barrel. The structure of Gl-MIF is compared to the MIF structures from humans (Hs-MIF) and three Plasmodium species (falciparum, berghei, and yoelii). The structure of all five MIF proteins are generally similar with the exception of a channel that runs through the center of each trimer complex. Relative to Hs-MIF, there are differences in solvent accessibility and electrostatic potential distribution in the channel of Gl-MIF and the Plasmodium-MIFs due primarily to two “gate-keeper” residues in the parasitic MIFs. For the Plasmodium MIFs the gate-keeper residues are at positions 44 (Y⇒R) and 100 (V⇒D) and for Gl-MIF it is at position 100 (V⇒R). If these gate-keeper residues have a biological function and contribute to the progression of parasitemia they may also form the basis for structure-based drug design targeting parasitic MIF proteins. PMID:23709284
Liang, H; Olejniczak, E T; Mao, X; Nettesheim, D G; Yu, L; Thompson, C B; Fesik, S W
1994-01-01
The ets family of eukaryotic transcription factors is characterized by a conserved DNA-binding domain of approximately 85 amino acids for which the three-dimensional structure is not known. By using multidimensional NMR spectroscopy, we have determined the secondary structure of the ets domain of one member of this gene family, human Fli-1, both in the free form and in a complex with a 16-bp cognate DNA site. The secondary structure of the Fli-1 ets domain consists of three alpha-helices and a short four-stranded antiparallel beta-sheet. This secondary structure arrangement resembles that of the DNA-binding domain of the catabolite gene activator protein of Escherichia coli, as well as those of several eukaryotic DNA-binding proteins including histone H5, HNF-3/fork head, and the heat shock transcription factor. Differences in chemical shifts of backbone resonances and amide exchange rates between the DNA-bound and free forms of the Fli-1 ets domain suggest that the third helix is the DNA recognition helix, as in the catabolite gene activator protein and other structurally related proteins. These results suggest that the ets domain is structurally similar to the catabolite gene activator protein family of helix-turn-helix DNA-binding proteins. Images PMID:7972119
Interfacial and emulsifying properties of designed β-strand peptides.
Dexter, Annette F
2010-12-07
The structural and surfactant properties of a series of amphipathic β-strand peptides have been studied as a function of pH. Each nine-residue peptide has a framework of hydrophobic proline and phenylalanine amino acid residues, alternating with acidic or basic amino acids to give a sequence closely related to known β-sheet formers. Surface activity, interfacial mechanical properties, electronic circular dichroism (ECD), droplet sizing and zeta potential measurements were used to gain an overview of the peptide behavior as the molecular charge varied from ±4 to 0 with pH. ECD data suggest that the peptides form polyproline-type helices in bulk aqueous solution when highly charged, but may fold to β-hairpins rather than β-sheets when uncharged. In the uncharged state, the peptides adsorb readily at a macroscopic fluid interface to form mechanically strong interfacial films, but tend to give large droplet sizes on emulsification, apparently due to flocculation at a low droplet zeta potential. In contrast, highly charged peptide states gave a low interfacial coverage, but retained good emulsifying activity as judged by droplet size. Best emulsification was generally seen for intermediate charged states of the peptides, possibly representing a compromise between droplet zeta potential and interfacial binding affinity. The emulsifying properties of β-strand peptides have not been previously reported. Understanding the interfacial properties of such peptides is important to their potential development as biosurfactants.
Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Simonson, Caitlin; Schluter, Samuel F
2010-02-01
Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.
Protein- protein interaction detection system using fluorescent protein microdomains
Waldo, Geoffrey S.; Cabantous, Stephanie
2010-02-23
The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)
1985-01-01
The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).
Mills, Jeffrey L; Liu, Gaohua; Skerra, Arne; Szyperski, Thomas
2009-08-11
The NMR structure of the 21 kDa lipocalin FluA, which was previously obtained by combinatorial design, elucidates a reshaped binding site specific for the dye fluorescein resulting from 21 side chain replacements with respect to the parental lipocalin, the naturally occurring bilin-binding protein (BBP). As expected, FluA exhibits the lipocalin fold of BBP, comprising eight antiparallel beta-strands forming a beta-barrel with an alpha-helix attached to its side. Comparison of the NMR structure of free FluA with the X-ray structures of BBP.biliverdin IX(gamma) and FluA.fluorescein complexes revealed significant conformational changes in the binding pocket, which is formed by four loops at the open end of the beta-barrel as well as adjoining beta-strand segments. An "induced fit" became apparent for the side chain conformations of Arg 88 and Phe 99, which contact the bound fluorescein in the complex and undergo concerted rearrangement upon ligand binding. Moreover, slower internal motional modes of the polypeptide backbone were identified by measuring transverse (15)N backbone spin relaxation times in the rotating frame for free FluA and also for the FluA.fluorescein complex. A reduction in the level of such motions was detected upon complex formation, indicating rigidification of the protein structure and loss of conformational entropy. This hypothesis was confirmed by isothermal titration calorimetry, showing that ligand binding is enthalpy-driven, thus overcompensating for the negative entropy associated with both ligand binding per se and rigidification of the protein. Our investigation of the solution structure and dynamics as well as thermodynamics of lipocalin-ligand interaction not only provides insight into the general mechanism of small molecule accommodation in the deep and narrow cavity of this abundant class of proteins but also supports the future design of corresponding binding proteins with novel specificities, so-called "anticalins".
Hoefling, Martin; Iori, Francesco; Corni, Stefano; Gottschalk, Kay-Eberhard
2010-06-01
Interactions of proteins with inorganic surfaces are of high importance in biological events and in modern biotechnological applications. Therefore, peptides have been engineered to recognize inorganic surfaces with high specificity. However, the underlying interactions are still not well understood. Here, we investigated the adsorption of amino acids as protein building blocks onto a Au(111) surface. In particular, using molecular dynamics simulations, we calculated the potential of mean force between all the 20 amino acids and the gold surface. We found a strong dependence of the binding affinities on the chemical character of the amino acids. Additionally, the interaction free energy is correlated with the propensity of amino acids to form beta-sheets, hinting at design principles for gold binding peptides and induction of beta-sheet formation near surfaces.
Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent
NASA Astrophysics Data System (ADS)
Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu
2011-10-01
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.
O’Rourke, Sara M.; Sutthent, Ruengpung; Phung, Pham; Mesa, Kathryn A.; Frigon, Normand L.; To, Briana; Horthongkham, Navin; Limoli, Kay; Wrin, Terri; Berman, Phillip W.
2015-01-01
Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149. PMID:25793890
Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.
NASA Astrophysics Data System (ADS)
Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy
2009-03-01
We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.
Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P
2015-05-01
β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.
Simplified Methods for Improving the Blast Resistance of Cold-Formed Steel Walls
2011-01-01
sheathing products such as oriented strand board ( OSB ) offer a level of blast resistance that may be effective in mitigating lower-level blast...considered in order to keep designs to a minimum cost. Standard sheathing materials such as OSB , gypsum and plywood— as well as specially selected sheathing...commercially available clip connectors. Sheathing materials such as gypsum and OSB are brittle and have significantly lower capacity than sheet steel
Molecular dynamics studies of protein folding and aggregation
NASA Astrophysics Data System (ADS)
Ding, Feng
This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism that globular proteins under a denaturing environment partially unfold and aggregate by forming stabilizing hydrogen bonds between the backbones of the partial folded substructures. Proteins or peptides rich in alpha-helices also aggregate into beta-rich amyloid fibrils. Upon aggregation, the protein or peptide undergoes a conformational transition from alpha-helices to beta-sheets. The transition of alpha-helix to beta-hairpin (two-stranded beta-sheet) is studied in an all-heavy-atom discrete molecular dynamics model of a polyalanine chain. An entropical driving scenario for the alpha-helix to beta-hairpin transition is discovered.
Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.
Krapp, S; Kelly, G; Reischl, J; Weinzierl, R O; Matthews, S
1998-02-01
RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.
Structure of the aspartic protease from Rous sarcoma retrovirus refined at 2-A resolution.
Jaskólski, M; Miller, M; Rao, J K; Leis, J; Wlodawer, A
1990-06-26
The structure of Rous sarcoma virus protease has been solved by multiple isomorphous replacement in the crystal form belonging to space group P3(1)21, with unit-cell parameters a = 88.95 A and c = 78.90 A. The enzyme belongs to the family of aspartic proteases with two identical subunits composing the active homodimer. The noncrystallographic dyad relating these two subunits was identified after preliminary tracing in the MIR map and was used for phase improvement by electron-density averaging. Structure refinement resulted in a model that included 1772 protein atoms and 252 water molecules, with an R factor of 0.144 for data extending to 2 A. The secondary structure of a retroviral protease molecule closely resembles that of a single domain in pepsin-like aspartic proteases and consists of several beta-strands and of one well-defined and one distorted alpha-helix. The dimer interface is composed of the N- and C-terminal chains from both subunits which are intertwined to form a well-ordered four-stranded antiparallel beta-sheet. In each monomer, the catalytic triad (Asp-Ser-Gly) is located in a loop that forms a part of the psi-structure characteristic to all aspartic proteases. The position of a water molecule between the active-site aspartate residues and the general scheme of H bonding within the active site bear close resemblance to those in pepsin-like aspartic proteases and therefore suggest a similar enzymatic mechanism. The binding cleft over the active site is covered by two flap arms, one from each monomer, which are partially disordered. The retroviral protease dimer has been compared with several enzymes of cellular origin, with chains aligning to an rms deviation of 1.90 A or better.
Amyloid-beta-sheet formation at the air-water interface.
Schladitz, C; Vieira, E P; Hermel, H; Möhwald, H
1999-01-01
An amyloid(1-40) solution rich in coil, turn, and alpha-helix, but poor in beta-sheet, develops monolayers with a high beta-sheet content when spread at the air-water interface. These monolayers are resistant to repeated compression-dilatation cycles and interaction with trifluoroethanol. The secondary structure motifs were detected by circular dichroism (CD) in solution and with infrared reflection-absorption spectroscopy (IRRAS) at the interface. Hydrophobic influences are discussed for the structure conversion in an effort to understand the completely unknown reason for the natural change of the normal prion protein cellular (PrP(C)) into the abnormal prion protein scrapie (PrP(Sc)). PMID:10585952
Molecular models of NS3 protease variants of the Hepatitis C virus.
da Silveira, Nelson J F; Arcuri, Helen A; Bonalumi, Carlos E; de Souza, Fátima P; Mello, Isabel M V G C; Rahal, Paula; Pinho, João R R; de Azevedo, Walter F
2005-01-21
Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoden, James B.; Reinhardt, Laurie A.; Cook, Paul D.
2012-09-17
N-Acetylperosamine is an unusual dideoxysugar found in the O-antigens of some Gram-negative bacteria, including the pathogenic Escherichia coli strain O157:H7. The last step in its biosynthesis is catalyzed by PerB, an N-acetyltransferase belonging to the left-handed {beta}-helix superfamily of proteins. Here we describe a combined structural and functional investigation of PerB from Caulobacter crescentus. For this study, three structures were determined to 1.0 {angstrom} resolution or better: the enzyme in complex with CoA and GDP-perosamine, the protein with bound CoA and GDP-N-acetylperosamine, and the enzyme containing a tetrahedral transition state mimic bound in the active site. Each subunit of themore » trimeric enzyme folds into two distinct regions. The N-terminal domain is globular and dominated by a six-stranded mainly parallel {beta}-sheet. It provides most of the interactions between the protein and GDP-perosamine. The C-terminal domain consists of a left-handed {beta}-helix, which has nearly seven turns. This region provides the scaffold for CoA binding. On the basis of these high-resolution structures, site-directed mutant proteins were constructed to test the roles of His 141 and Asp 142 in the catalytic mechanism. Kinetic data and pH-rate profiles are indicative of His 141 serving as a general base. In addition, the backbone amide group of Gly 159 provides an oxyanion hole for stabilization of the tetrahedral transition state. The pH-rate profiles are also consistent with the GDP-linked amino sugar substrate entering the active site in its unprotonated form. Finally, for this investigation, we show that PerB can accept GDP-3-deoxyperosamine as an alternative substrate, thus representing the production of a novel trideoxysugar.« less
Tuning peptide amphiphile supramolecular structure for biomedical applications
NASA Astrophysics Data System (ADS)
Pashuck, Eugene Thomas, III
The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water that rapdily elongate to form long twisted ribbons. After being aged for two weeks half of these twisted ribbons turn into helical ribbons and by one month all of them have formed this new nanostructure. As a target in regenerative medicine, spinal cord injury repair presents a daunting challenge that has so far eluded successful pharmaceutical treatment. Previous work showing that PAs bearing the IKVAV epitope were found to increase functional recovery in mice paved the way for the more complex systems studied here. By making a PA that bound growth factors like neurotrophin-3 (NT-3) and glial cell line derived neurotrophic factor (GDNF) in with the PA matrix, it was found that the release of NT-3 could be significantly slowed from an IKVAV with the presence of a novel binding epitope, and that including GDNF into the gel significantly increased neurite outgrowth compared to the standard IKVAV PA.
Chang, Shan; He, Hong-Qiu; Shen, Lin; Wan, Hua
2015-10-01
Botulinum neurotoxins (BoNTs) are known as the most toxic natural substances. Synaptic vesicle protein 2 (SV2) has been proposed to be a protein receptor for BoNT/A. Recently, two short peptides (BoNT/A-A2 and SV2C-A3) were designed to inhibit complex formation between the BoNT/A receptor-binding domain (BoNT/A-RBD) and the synaptic vesicle protein 2C luminal domain (SV2C-LD). In this article, the two peptide complex systems are studied by molecular dynamics (MD) simulations. The structural stability analysis indicates that BoNT/A-A2 system is more stable than SV2C-A3 system. The conformational analysis implies that the β-sheet in BoNT/A-A2 system maintains its secondary structure but the two β-strands in SV2C-A3 system have remarkable conformational changes. Based on the calculation of hydrogen bonds, hydrophobic interactions and cation-π interactions, it is found that the internal hydrogen bonds play crucial roles in the structural stability of the peptides. Because of the stable secondary structure, the β-sheet in BoNT/A-A2 system establishes effective interactions at the interface and inhibits BoNT/A-RBD binding to SV2C-LD. In contrast, without other β-strands forming internal hydrogen bonds, the two isolated β-strands in SV2C-A3 system become the random coil. This conformational change breaks important hydrogen bonds and weakens cation-π interaction in the interface, so the complex formation is only partially inhibited by the two β-strands. These results are consistent with experimental studies and may be helpful in understanding the inhibition mechanisms of peptide inhibitors. © 2015 Wiley Periodicals, Inc.
Si, Dong; He, Jing
2014-01-01
Electron cryo-microscopy (Cryo-EM) technique produces 3-dimensional (3D) density images of proteins. When resolution of the images is not high enough to resolve the molecular details, it is challenging for image processing methods to enhance the molecular features. β-barrel is a particular structure feature that is formed by multiple β-strands in a barrel shape. There is no existing method to derive β-strands from the 3D image of a β-barrel at medium resolutions. We propose a new method, StrandRoller, to generate a small set of possible β-traces from the density images at medium resolutions of 5-10Å. StrandRoller has been tested using eleven β-barrel images simulated to 10Å resolution and one image isolated from the experimentally derived cryo-EM density image at 6.7Å resolution. StrandRoller was able to detect 81.84% of the β-strands with an overall 1.5Å 2-way distance between the detected and the observed β-traces, if the best of fifteen detections is considered. Our results suggest that it is possible to derive a small set of possible β-traces from the β-barrel cryo-EM image at medium resolutions even when no separation of the β-strands is visible in the images.
Omidvar, Reza; Xia, Youlin; Porcelli, Fernando; Bohlmann, Holger; Veglia, Gianluigi
2016-12-01
Plant defensins constitute the innate immune response against pathogens such as fungi and bacteria. Typical plant defensins are small, basic peptides that possess a characteristic three-dimensional fold stabilized by three or four disulfide bridges. In addition to known defensin genes, the Arabidopsis genome comprises >300 defensin-like genes coding for small cysteine-rich peptides. One of such genes encodes for AtPDFL2.1, a putative antifungal peptide of 55 amino acids, with six cysteine residues in its primary sequence. To understand the functional role of AtPDFL2.1, we carried out antifungal activity assays and determined its high-resolution three-dimensional structure using multidimensional solution NMR spectroscopy. We found that AtPDFL2.1 displays a strong inhibitory effect against Fusarium graminearum (IC 50 ≈4μM). This peptide folds in the canonical cysteine-stabilized αβ (CSαβ) motif, consisting of one α-helix and one triple-stranded antiparallel β-sheet stabilized by three disulfide bridges and a hydrophobic cluster of residues within its core where the α-helix packs tightly against the β-sheets. Nuclear spin relaxation measurements show that the structure of AtPDFL2.1 is essentially rigid, with the L3 loop located between β-strands 2 and 3 being more flexible and displaying conformational exchange. Interestingly, the dynamic features of loop L3 are conserved among defensins and are probably correlated to the antifungal and receptor binding activities. Copyright © 2016 Elsevier B.V. All rights reserved.
Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG.
Chen, Xiaoyun; Wang, Jie; Sniadecki, Jason J; Even, Mark A; Chen, Zhan
2005-03-29
We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.
Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement.
Li, Wei; Yang, Yang; Yan, Hao; Liu, Yan
2013-06-12
In biomolecular programming, the properties of biomolecules such as proteins and nucleic acids are harnessed for computational purposes. The field has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. DNA has already been used to build complex molecular circuits, where the basic building blocks are logic gates that produce single outputs from one or more logical inputs. We designed and experimentally realized a three-input majority gate based on DNA strand displacement. One of the key features of a three-input majority gate is that the three inputs have equal priority, and the output will be true if any of the two inputs are true. Our design consists of a central, circular DNA strand with three unique domains between which are identical joint sequences. Before inputs are introduced to the system, each domain and half of each joint is protected by one complementary ssDNA that displays a toehold for subsequent displacement by the corresponding input. With this design the relationship between any two domains is analogous to the relationship between inputs in a majority gate. Displacing two or more of the protection strands will expose at least one complete joint and return a true output; displacing none or only one of the protection strands will not expose a complete joint and will return a false output. Further, we designed and realized a complex five-input logic gate based on the majority gate described here. By controlling two of the five inputs the complex gate can realize every combination of OR and AND gates of the other three inputs.
Amorín, Manuel; Castedo, Luis; Granja, Juan R
2008-01-01
Peptide foldamers constitute a growing class of nanomaterials with potential applications in a wide variety of chemical, medical and technological fields. Here we describe the preparation and structural characteristics of a new class of cyclic peptide foldamers (3alpha,gamma-CPs) that, depending on their backbone N-methylation patterns and the medium, can either remain as flat rings that dimerize through arrays of hydrogen bonds of antiparallel beta-sheet type, or can fold into twisted double reverse turns that, in the case of double gamma-turns, associate in nonpolar solvents to form helical supramolecular structures. A 3alpha,gamma-CP consists of a number of multiples of a repeat unit made up of four amino acid residues of alternating chirality: three corresponding to alpha-amino acids and one to a gamma-amino acid (a cis-3-aminocycloalkanecarboxylic acid).
Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI.
Akasaka, K.; Li, H.; Yamada, H.; Li, R.; Thoresen, T.; Woodward, C. K.
1999-01-01
The effect of pressure on amide 15N chemical shifts was studied in uniformly 15N-labeled basic pancreatic trypsin inhibitor (BPTI) in 90%1H2O/10%2H2O, pH 4.6, by 1H-15N heteronuclear correlation spectroscopy between 1 and 2,000 bar. Most 15N signals were low field shifted linearly and reversibly with pressure (0.468 +/- 0.285 ppm/2 kbar), indicating that the entire polypeptide backbone structure is sensitive to pressure. A significant variation of shifts among different amide groups (0-1.5 ppm/2 kbar) indicates a heterogeneous response throughout within the three-dimensional structure of the protein. A tendency toward low field shifts is correlated with a decrease in hydrogen bond distance on the order of 0.03 A/2 kbar for the bond between the amide nitrogen atom and the oxygen atom of either carbonyl or water. The variation of 15N shifts is considered to reflect site-specific changes in phi, psi angles. For beta-sheet residues, a decrease in psi angles by 1-2 degrees/2 kbar is estimated. On average, shifts are larger for helical and loop regions (0.553 +/- 0.343 and 0.519 +/- 0.261 ppm/2 kbar, respectively) than for beta-sheet (0.295 +/- 0.195 ppm/2 kbar), suggesting that the pressure-induced structural changes (local compressibilities) are larger in helical and loop regions than in beta-sheet. Because compressibility is correlated with volume fluctuation, the result is taken to indicate that the volume fluctuation is larger in helical and loop regions than in beta-sheet. An important aspect of the volume fluctuation inferred from pressure shifts is that they include motions in slower time ranges (less than milliseconds) in which many biological processes may take place. PMID:10548039
Jeong, Sungmin; Kim, Hee Won; Lee, Suyong
2017-04-15
Rice flour-zein composites in a hydrated viscoelastic state were utilized to compensate for the role of wheat gluten in gluten-free sheeted dough. The use of zein above its glass transition temperature was able to form a viscoelastic protein network of non-wheat dough with rice flour. The mixing stability and development time of the rice dough were positively increased with increasing levels of zein. The protein secondary structural analysis by FTIR spectroscopy demonstrated that the rice doughs with high levels of zein showed significant increases in β-sheet structures whose intensity was almost doubled by the use of 10% zein. The use of zein at more than 5% (w/w) successfully produced gluten-free dough sheets that could be slit into thin and long noodle strands. In addition, the composites were effective in improving the rheological characteristics of gluten-free noodle strands by increasing their maximum force to extension, compared to wheat-based noodles. Copyright © 2016 Elsevier Ltd. All rights reserved.
MQXFS1 Quadrupole Fabrication Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosio, G.; Anerella, M.; Bossert, R.
This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.
Wynn, R M; Chuang, J L; Sansaricq, C; Mandel, H; Chuang, D T
2001-09-28
Maple syrup urine disease (MSUD) is a metabolic disorder associated with often-fatal ketoacidosis, neurological derangement, and mental retardation. In this study, we identify and characterize two novel type IB MSUD mutations in Israeli patients, which affect the E1beta subunit in the decarboxylase (E1) component of the branched-chain alpha-ketoacid dehydrogenase complex. The recombinant mutant E1 carrying the prevalent S289L-beta (TCG --> TTG) mutation in the Druze kindred exists as a stable inactive alphabeta heterodimer. Based on the human E1 structure, the S289L-beta mutation disrupts the interactions between Ser-289-beta and Glu-290-beta', and between Arg-309-beta and Glu-290-beta', which are essential for native alpha(2)beta(2) heterotetrameric assembly. The R133P-beta (CGG --> CCG) mutation, on the other hand, is inefficiently expressed in Escherichia coli as heterotetramers in a temperature-dependent manner. The R133P-beta mutant E1 exhibits significant residual activity but is markedly less stable than the wild-type, as measured by thermal inactivation and free energy change of denaturation. The R133P-beta substitution abrogates the coordination of Arg-133-beta to Ala-95-beta, Glu-96-beta, and Ile-97-beta, which is important for strand-strand interactions and K(+) ion binding in the beta subunit. These findings provide new insights into folding and assembly of human E1 and will facilitate DNA-based diagnosis for MSUD in the Israeli population.
Rosselli-Murai, Luciana K; Sforça, Maurício L; Sassonia, Rogério C; Azzoni, Adriano R; Murai, Marcelo J; de Souza, Anete P; Zeri, Ana C
2012-10-01
The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. Copyright © 2012 Elsevier Inc. All rights reserved.
Ethanol-perturbed amyloidogenic self-assembly of insulin: looking for origins of amyloid strains.
Dzwolak, Wojciech; Grudzielanek, Stefan; Smirnovas, Vytautas; Ravindra, Revanur; Nicolini, Chiara; Jansen, Ralf; Loksztejn, Anna; Porowski, Sylwester; Winter, Roland
2005-06-28
A model cosolvent, ethanol, has profound and diversified effects on the amyloidogenic self-assembly of insulin, yielding spectroscopically and morphologically distinguishable forms of beta-aggregates. The alcohol reduces hydrodynamic radii of insulin molecules, decreases enthalpic costs associated with aggregation-prone intermediate states, and accelerates the aggregation itself. Increasing the concentration of the cosolvent promotes curved, amorphous, and finally donut-shaped forms. According to FT-IR data, inter-beta-strand hydrogen bonding is stronger in fibrils formed in the presence of ethanol. Mechanisms underlying the polymorphism of insulin aggregates were investigated by spectroscopic (CD, FT-IR, and fluorescence anisotropy) and calorimetric (DSC and PPC) methods. The nonmonotonic character of the influence of ethanol on insulin aggregation suggests that both preferential exclusion (predominant at the low concentrations) and direct alcohol-protein interactions are involved. The perturbed hydration of aggregation nuclei appears to be a decisive factor in selection of a dominant mode of beta-strand alignment. It may override unfavorable structural consequences of an alternative strand-to-strand stacking, such as strained hydrogen bonding. A hypothetical mechanism of inducing different amyloid "strains" has been put forward. The cooperative character of fibril assembly creates enormous energy barriers for any interstrain transition, which renders the energy landscape comblike-shaped.
Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor
NASA Astrophysics Data System (ADS)
Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku
An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu; Kunstman, Kevin, E-mail: kunstman@northwestern.edu; Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu
Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 andmore » T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.« less
Flach, C R; Brauner, J W; Taylor, J W; Baldwin, R C; Mendelsohn, R
1994-01-01
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution. PMID:7919013
Papanikolopoulou, Katerina; van Raaij, Mark J; Mitraki, Anna
2008-01-01
Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.
Iwata, Takanori; Yamato, Masayuki; Tsuchioka, Hiroaki; Takagi, Ryo; Mukobata, Shigeki; Washio, Kaoru; Okano, Teruo; Ishikawa, Isao
2009-05-01
Periodontal regeneration has been challenged with chemical reagents and/or biological approaches, however, there is still no sufficient technique that can regenerate complete periodontium, including alveolar bone, cementum, and well-oriented collagen fibers. The purpose of this study was to examine multi-layered sheets of periodontal ligament (PDL)-derived cells for periodontal regeneration. Canine PDL cells were isolated enzymatically and expanded in vitro. The cell population contained cells capable of making single cell-derived colonies at an approximately 20% frequency. Expression of mRNA of periodontal marker genes, S100 calcium binding protein A4 and periostin, was observed. Alkaline phosphatase activity and gene expression of both osteoblastic/cementoblastic and periodontal markers were upregulated by osteoinductive medium. Then, three-layered PDL cell sheets supported with woven polyglycolic acid were transplanted to dental root surfaces having three-wall periodontal defects in an autologous manner, and bone defects were filled with porous beta-tricalcium phosphate. Cell sheet transplantation regenerated both new bone and cementum connecting with well-oriented collagen fibers, while only limited bone regeneration was observed in control group where cell sheet transplantation was eliminated. These results suggest that PDL cells have multiple differentiation properties to regenerate periodontal tissues comprising hard and soft tissues. PDL cell sheet transplantation should prove useful for periodontal regeneration in clinical settings.
Reversible thermal denaturation of a 60-kDa genetically engineered beta-sheet polypeptide.
Lednev, Igor K; Ermolenkov, Vladimir V; Higashiya, Seiichiro; Popova, Ludmila A; Topilina, Natalya I; Welch, John T
2006-11-15
A de novo 687-amino-acid residue polypeptide with a regular 32-amino-acid repeat sequence, (GA)(3)GY(GA)(3)GE(GA)(3)GH(GA)(3)GK, forms large beta-sheet assemblages that exhibit remarkable folding properties and, as well, form fibrillar structures. This construct is an excellent tool to explore the details of beta-sheet formation yielding intimate folding information that is otherwise difficult to obtain and may inform folding studies of naturally occurring materials. The polypeptide assumes a fully folded antiparallel beta-sheet/turn structure at room temperature, and yet is completely and reversibly denatured at 125 degrees C, adopting a predominant polyproline II conformation. Deep ultraviolet Raman spectroscopy indicated that melting/refolding occurred without any spectroscopically distinct intermediates, yet the relaxation kinetics depend on the initial polypeptide state, as would be indicative of a non-two-state process. Thermal denaturation and refolding on cooling appeared to be monoexponential with characteristic times of approximately 1 and approximately 60 min, respectively, indicating no detectable formation of hairpin-type nuclei in the millisecond timescale that could be attributed to nonlocal "nonnative" interactions. The polypeptide folding dynamics agree with a general property of beta-sheet proteins, i.e., initial collapse precedes secondary structure formation. The observed folding is much faster than expected for a protein of this size and could be attributed to a less frustrated free-energy landscape funnel for folding. The polypeptide sequence suggests an important balance between the absence of strong nonnative contacts (salt bridges or hydrophobic collapse) and limited repulsion of charged side chains.
Mir, C; Lopez-Viñas, E; Aledo, R; Puisac, B; Rizzo, C; Dionisi-Vici, C; Deodato, F; Pié, J; Gomez-Puertas, P; Hegardt, F G; Casals, N
2006-02-01
3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and leucine metabolism. The disease is caused by mutations in the gene coding for 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HL). To date 26 different mutations have been described. A (betaalpha)(8) TIM barrel structure has been proposed for the protein, and almost all missense mutations identified so far localize in the beta sheets that define the inside cavity. We report an Italian patient who bears homozygously a novel HL mutation, c.608G > A (p. G203E) in beta sheet six. A structural model of the mutated protein suggests that glutamic acid 203 impedes catalysis by blocking the entrance to the inner cavity of the enzyme. Loss of functionality has been confirmed in expression studies in E. coli, which demonstrate that the G203E mutation completely abolishes enzyme activity. Beta sheet six and beta sheet two are the two protein regions that accumulate most missense mutations, indicating their importance in enzyme functionality. A model for the mechanism of enzyme function is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Walter H.; Skalski, J R.; Sobocinski, Kathryn L.
2006-02-01
Ship wakes produced by deep-draft vessels transiting the lower Columbia River have been observed to cause stranding of juvenile salmon. Proposed deepening of the Columbia River navigation channel has raised concerns about the potential impact of the deepening project on juvenile salmon stranding. The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory design and conduct a study to assess stranding impacts that may be associated with channel deepening. The basic study design was a multivariate analysis of covariance of field observations and measurements under a statistical design for a before and aftermore » impact comparison. We have summarized field activities and statistical analyses for the ?before? component of the study here. Stranding occurred at all three sampling sites and during all three sampling seasons (Summer 2004, Winter 2005, and Spring 2005), for a total of 46 stranding events during 126 observed vessel passages. The highest occurrence of stranding occurred at Barlow Point, WA, where 53% of the observed events resulted in stranding. Other sites included Sauvie Island, OR (37%) and County Line Park, WA (15%). To develop an appropriate impact assessment model that accounted for relevant covariates, regression analyses were conducted to determine the relationships between stranding probability and other factors. Nineteen independent variables were considered as potential factors affecting the incidence of juvenile salmon stranding, including tidal stage, tidal height, river flow, current velocity, ship type, ship direction, ship condition (loaded/unloaded), ship speed, ship size, and a proxy variable for ship kinetic energy. In addition to the ambient and ship characteristics listed above, site, season, and fish density were also considered. Although no single factor appears as the primary factor for stranding, statistical analyses of the covariates resulted in the following equations: (1) Stranding Probability {approx} Location + Kinetic Energy Proxy + Tidal Height + Salmonid Density + Kinetic energy proxy ? Tidal Height + Tidal Height x Salmonid Density. (2) Stranding Probability {approx} Location + Total Wave Distance + Salmonid Density Index. (3) Log(Total Wave Height) {approx} Ship Block + Tidal Height + Location + Ship Speed. (4) Log(Total Wave Excursion Across the Beach) {approx} Location + Kinetic Energy Proxy + Tidal Height The above equations form the basis for a conceptual model of the factors leading to salmon stranding. The equations also form the basis for an approach for assessing impacts of dredging under the before/after study design.« less
Role of Polyalanine Domains in -Sheet Formation in Spider Silk Block Copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabotyagova, O.; Cebe, P; Kaplan, D
2010-01-01
Genetically engineered spider silk-like block copolymers were studied to determine the influence of polyalanine domain size on secondary structure. The role of polyalanine block distribution on {beta}-sheet formation was explored using FT-IR and WAXS. The number of polyalanine blocks had a direct effect on the formation of crystalline {beta}-sheets, reflected in the change in crystallinity index as the blocks of polyalanines increased. WAXS analysis confirmed the crystalline nature of the sample with the largest number of polyalanine blocks. This approach provides a platform for further exploration of the role of specific amino acid chemistries in regulating the assembly of {beta}-sheetmore » secondary structures, leading to options to regulate material properties through manipulation of this key component in spider silks.« less
Design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels
NASA Technical Reports Server (NTRS)
Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.
1980-01-01
A titanium multiwall thermal protection system panel was designed. The panel is a nine sheet sandwich structure consisting of an upper and lower face sheet; four dimpled sheets, three septum sheets, and clips for attachment to a vehicle structure. An acceptable fabrication process was developed, and the panel design was verified through mechanical and thermal testing of component specimens. A design was completed which takes into consideration fabrication techniques, thermal properties, mechanical properties, and materials availability.
Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N
1997-04-15
The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other conserved loops that converge at the active site cleft. The catalytic loop (residues 166-171) and the Mg2+ positioning loop (residues 184-186) are a stable part of the large lobe and have low B-factors in all structures solved to date. The stability of the glycine-rich loop is highly dependent on the ligands that occupy the active site cleft with maximum stability achieved in the ternary complex containing Mg x ATP and the peptide inhibitor. In this ternary complex the gamma-phosphate is secured between both lobes by hydrogen bonds to the backbone amide of Ser 53 in the glycine-rich loop and the amino group of Lys 168 in the catalytic loop. In the adenosine ternary complex the water molecule replacing the gamma-phosphate hydrogen bonds between Lys 168 and Asp 166 and makes no contact with the small lobe. This glycine-rich loop is thus the most mobile component of the active site cleft, with the tip of the loop being highly sensitive to what occupies the gamma-subsite.
Cleaver, James E.
1977-01-01
Cultured Chinese hamster cells were labeled with 6-3H-thymidine or 5-methyl-3H-thymidine and allowed to accumulate damage from 3H decays for various periods of time while frozen. The frequencies of cells resistant to 6-thioguanine or ouabain and the amount of DNA damage (i.e., number of single-strand breaks) were determined and compared with the mutation frequencies resulting from X and ultraviolet light irradiation. Whereas 3H decays and X rays made only 6-thioguanine-resistant mutants, ultraviolet light made both 6-thioguanine- and ouabain-resistant mutants. 3H decays originating at the 6 position were two to three times as effective as decays at the 5-methyl position in making drug-resistant mutants, but decays at both sites were equally effective in making single-strand breaks. Mutants and strand breaks produced by beta irradiation of the nucleus probably are the same irrespective of the site of the decay in thymine; these results indicate that the local transmutation effects of 3H decay produce more mutations when they occur at the 6 position than at the 5-methyl position. PMID:914028
Functional Hydrogel Materials Inspired by Amyloid
NASA Astrophysics Data System (ADS)
Schneider, Joel
2012-02-01
Protein assembly resulting in the formation of amyloid fibrils, assemblies rich in cross beta-sheet structure, is normally thought of as a deleterious event associated with disease. However, amyloid formation is also involved in a diverse array of normal biological functions such as cell adhesion, melanin synthesis, insect defense mechanism and modulation of water surface tension by fungi and bacteria. These findings indicate that Nature has evolved to take advantage of large, proteinaceous fibrillar assemblies to elicit function. We are designing functional materials, namely hydrogels, from peptides that self-assembled into fibrillar networks, rich in cross beta-sheet structure. These gels can be used for the direct encapsulation and delivery of small molecule-, protein- and cell-based therapeutics. Loaded gels exhibit shear-thinning/self-healing mechanical properties enabling their delivery via syringe. In addition to their use for delivery, we have found that some of these gels display antibacterial activity. Although cytocompatible towards mammalian cells, the hydrogels can kill a broad spectrum of bacteria on contact.
Peters, J; Nitsch, M; Kühlmorgen, B; Golbik, R; Lupas, A; Kellermann, J; Engelhardt, H; Pfander, J P; Müller, S; Goldie, K
1995-01-27
The surface (S-) layer of the hyperthermophilic archaebacterium Staphylothermus marinus was isolated, dissected into separate domains by chemical and proteolytic methods, and analyzed by spectroscopic, electron microscopic and biochemical techniques. The S-layer is formed by a poorly ordered meshwork of branched, filiform morphological subunits resembling dandelion seed-heads. A morphological subunit (christened by us tetrabrachion) consists of a 70 nm long, almost perfectly straight stalk ending in four straight arms of 24 nm length that provide lateral connectivity by end-to-end contacts. At 32 nm from the branching point, tetrabrachion carries two globular particles of 10 nm diameter that have both tryptic and chymotryptic protease activity. Tetrabrachion is built by a tetramer of M(r) 92,000 polypeptides that form a parallel, four-stranded alpha-helical rod and separate at one end into four strands. These strands interact in a 1:1 stoichiometry with polypeptides of M(r) 85,000 to form the arms. The arms are composed entirely of beta-sheets. All S-layer components contain bound carbohydrates (glucose, mannose, and glucosamine) at a ratio of 38 g/100 g protein for the complete tetrabrachion-protease complex. The unique structure of tetrabrachion is reflected in an extreme thermal stability in the presence of strong denaturants (1% (w/v) SDS of 6M guanidine): the arms, which are stabilized by intramolecular disulphide bridges, melt around 115 degrees C under non-reducing conditions, whereas the stalk sustains heating up to about 130 degrees C. Complete denaturation of the stalk domain requires treatment with 70% (v/v) sulfuric acid or with fuming trifluoromethanesulfonic acid. The globular protease can be heated to 90 degrees C in 6M guanidine and to 120 degrees C in 1% SDS and represents one of the most stable proteases characterized to date.
Control of DNA strand displacement kinetics using toehold exchange.
Zhang, David Yu; Winfree, Erik
2009-12-02
DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, short single-stranded segments of DNA that colocalize reactant DNA molecules. Recently, the toehold exchange process was introduced as a method for designing fast and reversible strand displacement reactions. Here, we characterize the kinetics of DNA toehold exchange and model it as a three-step process. This model is simple and quantitatively predicts the kinetics of 85 different strand displacement reactions from the DNA sequences. Furthermore, we use toehold exchange to construct a simple catalytic reaction. This work improves the understanding of the kinetics of nucleic acid reactions and will be useful in the rational design of dynamic DNA and RNA circuits and nanodevices.
In Situ FTIR Microspectroscopy of Brain Tissue from a Transgenic Mouse Model of Alzheimer Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rak,M.; Del Bigio, M.; Mai, S.
2007-01-01
Plaques composed of the A{beta} peptide are the main pathological feature of Alzheimer's disease. Dense-core plaques are fibrillar deposits of A{beta}, showing all the classical properties of amyloid including {beta}-sheet secondary structure, while diffuse plaques are amorphous deposits. We studied both plaque types, using synchrotron infrared (IR) microspectroscopy, a technique that allows the chemical composition and average protein secondary structure to be investigated in situ. We examined plaques in hippocampal, cortical and caudal tissue from 5- to 21-month-old TgCRND8 mice, a transgenic model expressing doubly mutant amyloid precursor protein, and displaying impaired hippocampal function and robust pathology from an earlymore » age. Spectral analysis confirmed that the congophilic plaque cores were composed of protein in a {beta}-sheet conformation. The amide I maximum of plaque cores was at 1623 cm-1, and unlike for in vitro A{beta} fibrils, the high-frequency (1680-1690 cm-1) component attributed to antiparallel {beta}-sheet was not observed. A significant elevation in phospholipids was found around dense-core plaques in TgCRND8 mice ranging in age from 5 to 21 months. In contrast, diffuse plaques were not associated with IR detectable changes in protein secondary structure or relative concentrations of any other tissue components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, B.C.; Dunn, J.J.; France, L.L.
1995-12-31
Lyme borreliosis, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America and Western Europe. As the major delayed immune response in humans, a better understanding of the major outer surface lipoproteins OspA and OspB are of much interest. These proteins have been shown to exhibit three distinct phylogenetic genotypes based on their DNA sequences. This paper describes the cloning of genomic DNA for each variant and amplification of PCR. DNA sequence data was used to derive computer driven phylogenetic analysis and deduced amino acid sequences. Overproduction of variant OspAs was carried out in E.more » coli using a T7-based expression system. Circular dichroism and fluorescence studies was carried out on the recombinant B31 PspA yielding evidence supporting a B31 protein containing 11% alpha-helix, 34% antiparallel beta-sheet, 12% parallel beta sheet.« less
Teste, Alexandra; Parks, George K
2009-02-20
Relevant new clues to wave-particle interactions have been obtained in Earth's plasma sheet (PS). The plasma measurements made on Cluster spacecraft show that broadband (approximately 2-6 kHz) electrostatic emissions, in the PS boundary layer, are associated with cold counterstreaming electrons flowing at 5-12x10(3) km s(-1) through hot Maxwellian plasma. In the current sheet (CS), electromagnetic whistler mode waves (approximately 10-80 Hz) and compressional Alfvén waves (<2 Hz) are detected with flat-topped electron distributions whose cutoff speeds are approximately 15-17x10(3) km s(-1). These waves are damped in the central CS where |B|
Kalgin, Igor V; Chekmarev, Sergei F; Karplus, Martin
2014-04-24
Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed "streamlines", the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.
2015-01-01
Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed ”streamlines”, the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations. PMID:24669953
NASA Technical Reports Server (NTRS)
Lim, Kap; Ho, Joseph X.; Keeling, Kim; Gilliland, Gary L.; Ji, Xinhua; Rueker, Florian; Carter, Daniel C.
1994-01-01
The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(sub 3)2(sub 1)2 with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.
Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.
Lu, H; Isralewitz, B; Krammer, A; Vogel, V; Schulten, K
1998-08-01
Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.
Schwaiger, F W; Weyers, E; Epplen, C; Brün, J; Ruff, G; Crawford, A; Epplen, J T
1993-09-01
Twenty-one different caprine and 13 ovine MHC-DRB exon 2 sequences were determined including part of the adjacent introns containing simple repetitive (gt)n(ga)m elements. The positions for highly polymorphic DRB amino acids vary slightly among ungulates and other mammals. From man and mouse to ungulates the basic (gt)n(ga)m structure is fixed in evolution for 7 x 10(7) years whereas ample variations exist in the tandem (gt)n and (ga)m dinucleotides and especially their "degenerated" derivatives. Phylogenetic trees for the alpha-helices and beta-pleated sheets of the ungulate DRB sequences suggest different evolutionary histories. In hoofed animals as well as in humans DRB beta-sheet encoding sequences and adjacent intronic repeats can be assembled into virtually identical groups suggesting coevolution of noncoding as well as coding DNA. In contrast alpha-helices and C-terminal parts of the first DRB domain evolve distinctly. In the absence of a defined mechanism causing specific, site-directed mutations, double-recombination or gene-conversion-like events would readily explain this fact. The role of the intronic simple (gt)n(ga)m repeat is discussed with respect to these genetic exchange mechanisms during evolution.
Pazos, F; Heredia, P; Valencia, A; de las Rivas, J
2001-12-01
The manganese-stabilizing protein (PsbO) is an essential component of photosystem II (PSII) and is present in all oxyphotosynthetic organisms. PsbO allows correct water splitting and oxygen evolution by stabilizing the reactions driven by the manganese cluster. Despite its important role, its structure and detailed functional mechanism are still unknown. In this article we propose a structural model based on fold recognition and molecular modeling. This model has additional support from a study of the distribution of characteristics of the PsbO sequence family, such as the distribution of conserved, apolar, tree-determinants, and correlated positions. Our threading results consistently showed PsbO as an all-beta (beta) protein, with two homologous beta domains of approximately 120 amino acids linked by a flexible Proline-Glycine-Glycine (PGG) motif. These features are compatible with a general elongated and flexible architecture, in which the two domains form a sandwich-type structure with Greek key topology. The first domain is predicted to include 8 to 9 beta-strands, the second domain 6 to 7 beta-strands. An Ig-like beta-sandwich structure was selected as a template to build the 3-D model. The second domain has, between the strands, long-loops rich in Pro and Gly that are difficult to model. One of these long loops includes a highly conserved region (between P148 and P174) and a short alpha-helix (between E181 and N188)). These regions are characteristic parts of PsbO and show that the second domain is not so similar to the template. Overall, the model was able to account for much of the experimental data reported by several authors, and it would allow the detection of key residues and regions that are proposed in this article as essential for the structure and function of PsbO. Copyright 2001 Wiley-Liss, Inc.
Low-Temperature Forming of Beta Titanium Alloys
NASA Technical Reports Server (NTRS)
Kaneko, R. S.; Woods, C. A.
1983-01-01
Low cost methods for titanium structural fabrication using advanced cold-formable beta alloys were investigated for application in a Mach 2.7 supersonic cruise vehicle. This work focuses on improving processing and structural efficiencies as compared with standard hot formed and riveted construction of alpha-beta alloy sheet structure. Mechanical property data and manufacturing parameters were developed for cold forming, brazing, welding, and processing Ti-15V-3Cr-3Sn-3Al sheet, and Ti-3Al-8V-6Cr-4Zr on a more limited basis. Cost and structural benefits were assessed through the fabrication and evaluation of large structural panels. The feasibility of increasing structural efficiency of beta titanium structure by selective reinforcement with metal matrix composite was also explored.
Bailleul, Geoffrey; Kravtzoff, Amanda; Joulin-Giet, Alix; Lecaille, Fabien; Labas, Valérie; Meudal, Hervé; Loth, Karine; Teixeira-Gomes, Ana-Paula; Gilbert, Florence B.; Coquet, Laurent; Jouenne, Thierry; Brömme, Dieter; Schouler, Catherine; Landon, Céline; Lalmanach, Gilles; Lalmanach, Anne-Christine
2016-01-01
Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion. PMID:27561012
Mechanical design of the third FnIII domain of tenascin-C.
Peng, Qing; Zhuang, Shulin; Wang, Meijia; Cao, Yi; Khor, Yuanai; Li, Hongbin
2009-03-13
By combining single-molecule atomic force microscopy (AFM), proline mutagenesis and steered molecular dynamics (SMD) simulations, we investigated the mechanical unfolding dynamics and mechanical design of the third fibronectin type III domain of tenascin-C (TNfn3) in detail. We found that the mechanical stability of TNfn3 is similar to that of other constituting FnIII domains of tenascin-C, and the unfolding process of TNfn3 is an apparent two-state process. By employing proline mutagenesis to block the formation of backbone hydrogen bonds and introduce structural disruption in beta sheet, we revealed that in addition to the important roles played by hydrophobic core packing, backbone hydrogen bonds in beta hairpins are also responsible for the overall mechanical stability of TNfn3. Furthermore, proline mutagenesis revealed that the mechanical design of TNfn3 is robust and the mechanical stability of TNfn3 is very resistant to structural disruptions caused by proline substitutions in beta sheets. Proline mutant F88P is one exception, as the proline mutation at position 88 reduced the mechanical stability of TNfn3 significantly and led to unfolding forces of < 20 pN. This result suggests that Phe88 is a weak point of the mechanical resistance for TNfn3. We used SMD simulations to understand the molecular details underlying the mechanical unfolding of TNfn3. The comparison between the AFM results and SMD simulations revealed similarities and discrepancies between the two. We compared the mechanical unfolding and design of TNfn3 and its structural homologue, the tenth FnIII domain from fibronectin. These results revealed the complexity underlying the mechanical design of FnIII domains and will serve as a starting point for systematically analyzing the mechanical architecture of other FnIII domains in tenascins-C, and will help to gain a better understanding of some of the complex features observed for the stretching of native tenascin-C.
Jouvensal, Laurence; Quillien, Laurence; Ferrasson, Eric; Rahbé, Yvan; Guéguen, Jacques; Vovelle, Françoise
2003-10-21
PA1b (pea albumin 1, subunit b) is a 37-amino acid cysteine-rich plant defense protein isolated from pea seeds (Pisum sativum). It induces short-term mortality in several pests, among which the cereal weevils Sitophilus sp. (Sitophilus oryzae, Sitophilus granarius, and Sitophilus zeamais) that are a major nuisance for stored cereals, all over the world. As such, PA1b is the first genuine protein phytotoxin specifically toxic to insects, which makes it a promising tool for seed weevil damage control. We have determined the 3-D solution structure of PA1b, using 2-D homonuclear proton NMR methods and molecular modeling. The primary sequence of the protein does not share similarities with other known toxins. It includes six cysteines forming three disulfide bridges. However, because of PA1b resistance to protease cleavage, conventional methods failed to establish the connectivity pattern. Our first attempts to assign the disulfide network from NOE data alone remained unsuccessful due to the tight packing of the cysteine residues within the core of the molecule. Yet, the use of ambiguous disulfide restraints within ARIA allowed us to establish that PA1b belongs to the inhibitor cystine-knot family. It exhibits the structural features that are characteristic of the knottin fold, namely, a triple-stranded antiparallel beta-sheet with a long flexible loop connecting the first to the second strand and a series of turns. A comparison of the structural properties of PA1b with that of structurally related proteins adopting a knottin fold and exhibiting a diverse range of biological activities shows that the electrostatic and lipophilic potentials at the surface of PA1b are very close to those found for the spider toxin ACTX-Hi:OB4219, thereby suggesting activity on ion channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Shanshan; Jing Xiaoyan; Liu Jingyuan
2013-01-15
Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Rong; Pineda, Marco; Ajamian, Eunice
2009-01-15
Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+},more » which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.« less
Stereolithographic models of the solvent-accessible surface of biopolymers. Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradford, J.; Noel, P.; Emery, J.D.
1996-11-01
The solvent-accessible surfaces of several biopolymers were calculated. As part of the DOE education outreach activity, two high school students participated in this project. Computer files containing sets of triangles were produced. These files are called stl files and are the ISO 9001 standard. They have been written onto CD-ROMs for distribution to American companies. Stereolithographic models were made of some of them to ensure that the computer calculations were done correctly. Stereolithographic models were made of interleukin 1{beta} (IL-1{beta}), three antibodies (an anti-p-azobenzene arsonate, an anti-Brucella A cell wall polysaccharide, and an HIV neutralizing antibody), a triple stranded coiledmore » coil, and an engrailed homeodomain. Also, the biopolymers and their files are described.« less
Capone, Ricardo; Jang, Hyunbum; Kotler, Samuel A; Kagan, Bruce L; Nussinov, Ruth; Lal, Ratnesh
2012-01-24
A current hypothesis for the pathology of Alzheimer's disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits. Here, using planar lipid bilayers and molecular dynamics (MD) simulations, we show that amino acid substitutions can be used to infer which residues are essential for channel structure. We created two Aβ(1-42) peptides with point mutations: F19P and F20C. The substitution of Phe19 with Pro inhibited channel conductance. MD simulation suggests a collapsed pore of F19P channels at the lower bilayer leaflet. The kinks at the Pro residues in the pore-lining β-strands induce blockage of the solvated pore by the N-termini of the chains. The cysteine mutant is capable of forming channels, and the conductance behavior of F20C channels is similar to that of the wild type. Overall, the mutational analysis of the channel activity performed in this work tests the proposition that the channels consist of a β-sheet rich organization, with the charged/polar central strand containing the mutation sites lining the pore, and the C-terminal strands facing the hydrophobic lipid tails. A detailed understanding of channel formation and its structure should aid studies of drug design aiming to control unregulated Aβ-dependent ion fluxes.
2012-01-01
A current hypothesis for the pathology of Alzheimer’s disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits. Here, using planar lipid bilayers and molecular dynamics (MD) simulations, we show that amino acid substitutions can be used to infer which residues are essential for channel structure. We created two Aβ1–42 peptides with point mutations: F19P and F20C. The substitution of Phe19 with Pro inhibited channel conductance. MD simulation suggests a collapsed pore of F19P channels at the lower bilayer leaflet. The kinks at the Pro residues in the pore-lining β-strands induce blockage of the solvated pore by the N-termini of the chains. The cysteine mutant is capable of forming channels, and the conductance behavior of F20C channels is similar to that of the wild type. Overall, the mutational analysis of the channel activity performed in this work tests the proposition that the channels consist of a β-sheet rich organization, with the charged/polar central strand containing the mutation sites lining the pore, and the C-terminal strands facing the hydrophobic lipid tails. A detailed understanding of channel formation and its structure should aid studies of drug design aiming to control unregulated Aβ-dependent ion fluxes. PMID:22242635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co
2010-08-01
Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less
RNA signal amplifier circuit with integrated fluorescence output.
Akter, Farhima; Yokobayashi, Yohei
2015-05-15
We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.
A model of the complex between human {beta}-microseminoprotein and CRISP-3 based on NMR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasriani, Houman; Fernlund, Per; Udby, Lene
2009-01-09
{beta}-Microseminoprotein (MSP), a 10 kDa seminal plasma protein, forms a tight complex with cysteine-rich secretory protein 3 (CRISP-3) from granulocytes. The 3D structure of human MSP has been determined but there is as yet no 3D structure for CRISP-3. We have now studied the complex between human MSP and CRISP-3 with multidimensional NMR. {sup 15}N-HSQC spectra show substantial differences between free and complexed hMSP. Using several 3D-NMR spectra of triply labeled hMSP in complex with a recombinant N-terminal domain of CRISP-3, most of the backbone of hMSP could be assigned. The data show that only one side of hMSP, comprisingmore » {beta}-strands 1, 4, 5, and 8 are affected by the complex formation, indicating that {beta}-strands 1 and 8 form the main binding surface. Based on this we present a tentative structure for the hMSP-CRISP-3 complex using the known crystal structure of triflin as a model of CRISP-3.« less
Kainov, Denis E; Pirttimaa, Markus; Tuma, Roman; Butcher, Sarah J; Thomas, George J; Bamford, Dennis H; Makeyev, Eugene V
2003-11-28
Genomes of complex viruses have been demonstrated, in many cases, to be packaged into preformed empty capsids (procapsids). This reaction is performed by molecular motors translocating nucleic acid against the concentration gradient at the expense of NTP hydrolysis. At present, the molecular mechanisms of packaging remain elusive due to the complex nature of packaging motors. In the case of the double-stranded RNA bacteriophage phi 6 from the Cystoviridae family, packaging of single-stranded genomic precursors requires a hexameric NTPase, P4. In the present study, the purified P4 proteins from two other cystoviruses, phi 8 and phi 13, were characterized and compared with phi 6 P4. All three proteins are hexameric, single-stranded RNA-stimulated NTPases with alpha/beta folds. Using a direct motor assay, we found that phi 8 and phi 13 P4 hexamers translocate 5' to 3' along ssRNA, whereas the analogous activity of phi 6 P4 requires association with the procapsid. This difference is explained by the intrinsically high affinity of phi 8 and phi 13 P4s for nucleic acids. The unidirectional translocation results in RNA helicase activity. Thus, P4 proteins of Cystoviridae exhibit extensive similarity to hexameric helicases and are simple models for studying viral packaging motor mechanisms.
An easy-to-prepare mini-scaffold for DNA origami
NASA Astrophysics Data System (ADS)
Brown, S.; Majikes, J.; Martínez, A.; Girón, T. M.; Fennell, H.; Samano, E. C.; Labean, T. H.
2015-10-01
The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated.The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated. Electronic supplementary information (ESI) available: Flow chart of the production process, base sequences of the scaffold strand, and synthetic staple strands, as well as caDNAnao files for all three mini-M13 origami structures. See DOI: 10.1039/c5nr04921k
Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes
Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.
2005-01-01
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Aming; Jordan, Jacob L.; Ivanova, Magdalena I.
Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], {alpha}-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were foundmore » to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native {beta}-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-{beta} amyloid core of aCgn aggregates and that at least 50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended {beta}-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability.« less
Antiparallel Self-Association of a γ,α-Hybrid Peptide: More Relevance of Weak Interactions.
Venugopalan, Paloth; Kishore, Raghuvansh
2015-08-01
To learn how a preorganized peptide-based molecular template, together with diverse weak non-covalent interactions, leads to an effective self-association, we investigated the conformational characteristics of a simple γ,α-hybrid model peptide, Boc-γ-Abz-Gly-OMe. The single-crystal X-ray diffraction analysis revealed the existence of a fully extended β-strand-like structure stabilized by two non-conventional C-H⋅⋅⋅O=C intramolecular H-bonds. The 2D (1) H NMR ROESY experiment led us to propose that the flat topology of the urethane-γ-Abz-amide moiety is predominantly preserved in a non-polar environment. The self-association of the energetically more favorable antiparallel β-strand-mimic in solid-state engenders an unusual 'flight of stairs' fabricated through face-to-face and edge-to-edge Ar⋅⋅⋅Ar interactions. In conjunction with FT-IR spectroscopic analysis in chloroform, we highlight that conformationally semi-rigid γ-Abz foldamer in appositely designed peptides may encourage unusual β-strand or β-sheet-like self-association and supramolecular organization stabilized via weak attractive forces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peptide adsorption to cyanine dye aggregates revealed by cryo-transmission electron microscopy.
von Berlepsch, Hans; Brandenburg, Enrico; Koksch, Beate; Böttcher, Christoph
2010-07-06
The binding interaction between aggregates of the 5-chloro-2-[[5-chloro-3-(3-sulfopropyl)-3H-benzothiazol-2-ylidene]methyl]-3-(3-sulfopropyl)benzothiazolium hydroxide inner salt ammonium salt (CD-1) and alpha-helix, as well as beta-sheet forming de novo designed peptides, was investigated by absorption spectroscopy, circular dichroism spectroscopy, and cryogenic transmission electron microscopy. Both pure dye and pure peptides self-assembled into well-defined supramolecular assemblies in acetate buffer at pH = 4. The dye formed sheetlike and tubular H- and J-aggregates and the peptides alpha-helical coiled-coil assemblies or beta-sheet rich fibrils. After mixing dye and peptide solutions, tubular aggregates with an unusual ultrastructure were found, most likely due to the decoration of dye tubes with monolayers of peptide assemblies based on the strong electrostatic attraction between the oppositely charged species. There was neither indication of a transfer of chirality from the peptides to the dye aggregates nor the opposite effect of a structural transfer from dye aggregates onto the peptides secondary structure.
Kobayashi, Y M; Alseikhan, B A; Jones, L R
2000-06-09
Triadin is an integral membrane protein of the junctional sarcoplasmic reticulum that binds to the high capacity Ca(2+)-binding protein calsequestrin and anchors it to the ryanodine receptor. The lumenal domain of triadin contains multiple repeats of alternating lysine and glutamic acid residues, which have been defined as KEKE motifs and have been proposed to promote protein associations. Here we identified the specific residues of triadin responsible for binding to calsequestrin by mutational analysis of triadin 1, the major cardiac isoform. A series of deletional fusion proteins of triadin 1 was generated, and by using metabolically labeled calsequestrin in filter-overlay assays, the calsequestrin-binding domain of triadin 1 was localized to a single KEKE motif comprised of 25 amino acids. Alanine mutagenesis within this motif demonstrated that the critical amino acids of triadin binding to calsequestrin are the even-numbered residues Lys(210), Lys(212), Glu(214), Lys(216), Gly(218), Gln(220), Lys(222), and Lys(224). Replacement of the odd-numbered residues within this motif by alanine had no effect on calsequestrin binding to triadin. The results suggest a model in which residues 210-224 of triadin form a beta-strand, with the even-numbered residues in the strand interacting with charged residues of calsequestrin, stabilizing a "polar zipper" that links the two proteins together. This small, highly charged beta-strand of triadin may tether calsequestrin to the junctional face membrane, allowing calsequestrin to sequester Ca(2+) in the vicinity of the ryanodine receptor during Ca(2+) uptake and Ca(2+) release.
Eisenberg, S P; Brewer, M T; Verderber, E; Heimdal, P; Brandhuber, B J; Thompson, R C
1991-01-01
Interleukin 1 receptor antagonist (IL-1ra) is a protein that binds to the IL-1 receptor and blocks the binding of both IL-1 alpha and -beta without inducing a signal of its own. Human IL-1ra has some sequence identity to human IL-1 beta, but the evolutionary relationship between these proteins has been unclear. We show that the genes for human, mouse, and rat IL-1ra are similar to the genes for IL-1 alpha and IL-1 beta in intron-exon organization, indicating that gene duplication events were important in the creation of this gene family. Furthermore, an analysis of sequence comparisons and mutation rates for IL-1 alpha, IL-1 beta, and IL-1ra suggests that the duplication giving rise to the IL-1ra gene was an early event in the evolution of the gene family. Comparisons between the mature sequences for IL-1ra, IL-1 alpha, and IL-1 beta suggest that IL-1ra has a beta-stranded structure like to IL-1 alpha and IL-1 beta, consistent with the three proteins being related. The N-terminal sequences of IL-1ra appear to be derived from a region of the genome different than those of IL-1 alpha and IL-1 beta, thus explaining their different modes of biosynthesis and suggesting an explanation for their different biological activities. Images PMID:1828896
Asymmetry at the molecular level in biology
NASA Astrophysics Data System (ADS)
Johnson, Louise N.
2005-10-01
Naturally occurring biological molecules are made of homochiral building blocks. Proteins are composed of L-amino acids (and not D-amino acids); nucleic acids such as DNA have D-ribose sugars (and not L-ribose sugars). It is not clear why nature selected a particular chirality. Selection could have occurred by chance or as a consequence of basic physical chemistry. Possible proposals, including the contribution of the parity violating the weak nuclear force, are discussed together with the mechanisms by which this very small contribution might be amplified. Homochirality of the amino acids has consequences for protein structure. Helices are right handed and beta sheets have a left-hand twist. When incorporated into the tertiary structure of a protein these chiralities limit the topologies of connections between helices and sheets. Polypeptides comprised of D-amino acids can be synthesized chemically and have been shown to adopt stable structures that are the mirror image of the naturally occurring L-amino acid polypeptides. Chirality is important in drug design. Three examples are discussed: penicillin; the CD4 antagonistic peptides; and thalidomide. The absolute hand of a biological structure can only be established by X-ray crystallographic methods using the technique of anomalous scattering.
A Novel, Highly Stable Fold of the Immunoglobulin Binding Domain of Streptococcal Protein G
NASA Astrophysics Data System (ADS)
Gronenborn, Angela M.; Filpula, David R.; Essig, Nina Z.; Achari, Aniruddha; Whitlow, Marc; Wingfield, Paul T.; Marius Clore, G.
1991-08-01
The high-resolution three-dimensional structure of a single immunoglobulin binding domain (B1, which comprises 56 residues including the NH_2-terminal Met) of protein G from group G Streptococcus has been determined in solution by nuclear magnetic resonance spectroscopy on the basis of 1058 experimental restraints. The average atomic root-mean-square distribution about the mean coordinate positions is 0.27 angstrom (overset{circ}{mathrm A}) for the backbone atoms, 0.65 overset{circ}{mathrm A} for all atoms, and 0.39 overset{circ}{mathrm A} for atoms excluding disordered surface side chains. The structure has no disulfide bridges and is composed of a four-stranded β sheet, on top of which lies a long helix. The central two strands (β 1 and β 4), comprising the NH_2- and COOH-termini, are parallel, and the outer two strands (β 2 and β 3) are connected by the helix in a +3x crossover. This novel topology (-1, +3x, -1), coupled with an extensive hydrogen-bonding network and a tightly packed and buried hydrophobic core, is probably responsible for the extreme thermal stability of this small domain (reversible melting at 87^circC).
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-03-21
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less
Plasma convection and ion beam generation in the plasma sheet boundary layer
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.
1991-01-01
Because of the dawn-dusk electric field E(dd), plasma in the magnetotail convects from the lobe toward the central plasma sheet (CPS). In the absence of space or velocity diffusion due to plasma turbulence, convection would yield a steady state distribution function f = V exp (-2/3) g(v exp 2 V exp 2/3), where V is the flux tube volume. Starting with such a distribution function and a plasma beta which varies from beta greater than 1 in the CPS to beta much smaller than 1 in the lobe, the evolution of the ion distribution function was studied considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E(dd) x B drift in the plasma sheet boundary layer (PSBL) and outer central plasma sheet (OCPS). The results show that, during the early stages after launching the KAWs, a beamlike ion distribution forms in the PSBL and at the same time the plasma density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the plasma temperature in the OCPS.
Channel specificity and secondary structure of the glucose-inducible porins of Pseudomonas spp.
Adewoye, L O; Tschetter, L; O'Neil, J; Worobec, E A
1998-06-01
The OprB porin-mediated glucose transport system was investigated in Pseudomonas chlororaphis, Burkholderia cepacia, and Pseudomonas fluorescens. Kinetic studies of [U-14C]glucose uptake revealed an inducible system of low Km values (0.3-5 microM) and high specificity for glucose. OprB homologs were purified and reconstituted into proteoliposomes. The porin function and channel preference for glucose were demonstrated by liposome swelling assays. Examination of the periplasmic glucose-binding protein (GBP) components by Western immunoblotting using P. aeruginosa GBP-specific antiserum revealed some homology between P. aeruginosa GBP and periplasmic proteins from P. fluorescens and P. chlororaphis but not B. cepacia. Circular dichroism spectropolarimetry of purified OprB-like porins from the three species revealed beta sheet contents of 31-50% in agreement with 40% beta sheet content for the P. aeruginosa OprB porin. These findings suggest that the high-affinity glucose transport system is primarily specific for glucose and well conserved in the genus Pseudomonas although its outer membrane component may differ in channel architecture and specificity for other carbohydrates.
Prasong, S; Nuanchai, K; Wilaiwan, S
2009-09-15
This study aimed to prepare Eri (Philosamia ricini) Silk Fibroin (SF)/chitosan (CS) blend films by a solvent evaporation method and to compare the blend films with both native SF and CS films. Influence of SF ratios on the morphology, secondary structure and thermal decomposition of the CS blend films were investigated. The native SF and CS films were uniform and homogeneous without phase separation. For the blend films, the uniform can be found less than 60% of SF composition. All of SF/CS blend films showed both SF and CS characteristics. FT-IR results showed that the blend films composed of both random coil and beta-sheet with predominant of beta-sheet form. Interaction of intermolecular between SF and CS have occurred which were measured by thermogravimetric thermograms. Increasing of SF contents was leading to the increase of beta-sheet structures which were enhanced the thermal stability of the CS blend films.
Rapid acquisition of beta-sheet structure in the prion protein prior to multimer formation.
Post, K; Pitschke, M; Schäfer, O; Wille, H; Appel, T R; Kirsch, D; Mehlhorn, I; Serban, H; Prusiner, S B; Riesner, D
1998-11-01
The N-terminally truncated form of the prion protein, PrP 27-30, and the corresponding recombinant protein, rPrP, were solubilized in 0.2% SDS, and the transitions induced by changing the conditions from 0.2% SDS to physiological conditions, i.e. removing SDS, were characterized with respect to solubility, resistance to proteolysis, secondary structure and multimerization. Circular dichroism, electron microscopy and fluorescence correlation spectroscopy were used to study the structural transitions of PrP. Within one minute the alpha-helical structure of PrP was transformed into one that was enriched in beta-sheets and consisted mainly of dimers. Larger oligomers were found after 20 minutes and larger multimers exhibiting resistance to proteolysis were found after several hours. It was concluded that the monomeric alpha-helical conformation was stable in SDS or when attached to the membrane; however, the state of lowest free energy in aqueous solution at neutral pH seems to be the multimeric, beta-sheet enriched conformation.
Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
Moriuchi, Toshiyuki; Hirao, Toshikazu
2010-07-20
The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen bonding. The configuration and sequence of the amino acids are instrumental in the process. Regulation of the directionality and specificity of hydrogen bonding is a key component in the design of various molecular assemblies. Ferrocene-peptide bioconjugates also have a strong tendency to self-assemble through the contributions of available hydrogen-bonding donors in the solid state. Some ferrocene-peptide bioconjugates bearing only one dipeptide chain exhibit a helically ordered molecular assembly through a network of intermolecular (rather than intramolecular) hydrogen bonds. The propensity to form the chiral helicity appears to be controlled by the chirality of the dipeptide chains. Organization of host molecules is a useful strategy for forming artificial receptors. The conformationally regulated ferrocene-peptide bioconjugate provides the chirality-organized binding site for size-selective and chiral recognition of dicarboxylic acids through multipoint hydrogen bonds. Metal ions serve a variety of purposes in proteins, including structural stabilization for biological function. The complexation of ferrocene-peptide bioconjugates with palladium(II) compounds not only stabilizes the chirality conformational regulation but also induces conformational regulation of the dipeptide chain through complexation and intramolecular chirality organization. Construction of the chirality-organized ferrocene-peptide bioconjugates is also achieved by metal-directed assembly. These varied examples amply demonstrate the value of ferrocene-peptide bioconjugates in asserting architectural control over highly ordered molecular assemblies.
Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne
2006-04-14
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.
Structural Aspects for Evolution of [beta]-Lactamases from Penicillin-Binding Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meroueh, Samy O.; Minasov, George; Lee, Wenlin
Penicillin-binding proteins (PBPs), biosynthetic enzymes of bacterial cell wall assembly, and {beta}-lactamases, resistance enzymes to {beta}-lactam antibiotics, are related to each other from an evolutionary point of view. Massova and Mobashery (Antimicrob. Agents Chemother. 1998, 42, 1-17) have proposed that for {beta}-lactamases to have become effective at their function as antibiotic resistance enzymes, they would have had to undergo structure alterations such that they would not interact with the peptidoglycan, which is the substrate for PBPs. A cephalosporin analogue, 7{beta}-[N-Acetyl-L-alanyl-{gamma}-D-glutamyl-L-lysine]-3-acetoxymethyl-3-cephem-carboxylic acid (compound 6), was conceived and synthesized to test this notion. The X-ray structure of the complex of this cephalosporinmore » bound to the active site of the deacylation-deficient Q120L/Y150E variant of the class C AmpC {beta}-lactamase from Escherichia coli was solved at 1.71 {angstrom} resolution. This complex revealed that the surface for interaction with the strand of peptidoglycan that acylates the active site, which is present in PBPs, is absent in the {beta}-lactamase active site. Furthermore, insertion of a peptide in the {beta}-lactamase active site at a location where the second strand of peptidoglycan in some PBPs binds has effectively abolished the possibility for such interaction with the {beta}-lactamase. A 2.6 ns dynamics simulation was carried out for the complex, which revealed that the peptidoglycan surrogate (i.e., the active-site-bound ligand) undergoes substantial motion and is not stabilized for binding within the active site. These factors taken together disclose the set of structure modifications in the antibiotic resistance enzyme that prevent it from interacting with the peptidoglycan, en route to achieving catalytic proficiency for their intended function.« less
Kellett, Mark; McKechnie, Stephen W
2005-04-01
The coding region of the hsp68 gene has been amplified, cloned, and sequenced from 10 Drosophila species, 5 from the melanogaster subgroup and 5 from the montium subgroup. When the predicted amino acid sequences are compared with available Hsp70 sequences, patterns of conservation suggest that the C-terminal region should be subdivided according to predominant secondary structure. Conservation levels between Hsp68 and Hsp70 proteins were high in the N-terminal ATPase and adjacent beta-sheet domains, medium in the alpha-helix domain, and low in the C-terminal mobile domain (78%, 72%, 41%, and 21% identity, respectively). A number of amino acid sites were found to be "diagnostic" for Hsp68 (28 of approximately 635 residues). A few of these occur in the ATPase domain (385 residues) but most (75%) are concentrated in the beta-sheet and alpha-helix domains (34% of the protein) with none in the short mobile domain. Five of the diagnostic sites in the beta-sheet domain are clustered around, but not coincident with, functional sites known to be involved in substrate binding. Nearly all of the Hsp70 family length variation occurs in the mobile domain. Within montium subgroup species, 2 nearly identical hsp68 PCR products that differed in length are either different alleles or products of an ancestral hsp68 duplication.
Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components
NASA Astrophysics Data System (ADS)
Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng
2017-12-01
Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.
NUMATA, TOMOYUKI; ISHIMATSU, IKUKO; KAKUTA, YOSHIMITSU; TANAKA, ISAO; KIMURA, MAKOTO
2004-01-01
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5′ leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36–127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 Å resolution by X-ray crystallography. The structure is composed of four helices (α1–α4) and a six-stranded antiparallel β-sheet (β1–β6) with a protruding β-strand (β7) at the C-terminal region. The strand β7 forms an antiparallel β-sheet by interacting with strand β4 in a symmetry-related molecule, suggesting that strands β4 and β7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the β-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal α-helices (α1–α4) and β-strand β6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands β2 and β3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P. PMID:15317976
NASA Technical Reports Server (NTRS)
Funderburgh, J. L.; Funderburgh, M. L.; Brown, S. J.; Vergnes, J. P.; Hassell, J. R.; Mann, M. M.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1993-01-01
Amino acid sequence from tryptic peptides of three different bovine corneal keratan sulfate proteoglycan (KSPG) core proteins (designated 37A, 37B, and 25) showed similarities to the sequence of a chicken KSPG core protein lumican. Bovine lumican cDNA was isolated from a bovine corneal expression library by screening with chicken lumican cDNA. The bovine cDNA codes for a 342-amino acid protein, M(r) 38,712, containing amino acid sequences identified in the 37B KSPG core protein. The bovine lumican is 68% identical to chicken lumican, with an 83% identity excluding the N-terminal 40 amino acids. Location of 6 cysteine and 4 consensus N-glycosylation sites in the bovine sequence were identical to those in chicken lumican. Bovine lumican had about 50% identity to bovine fibromodulin and 20% identity to bovine decorin and biglycan. About two-thirds of the lumican protein consists of a series of 10 amino acid leucine-rich repeats that occur in regions of calculated high beta-hydrophobic moment, suggesting that the leucine-rich repeats contribute to beta-sheet formation in these proteins. Sequences obtained from 37A and 25 core proteins were absent in bovine lumican, thus predicting a unique primary structure and separate mRNA for each of the three bovine KSPG core proteins.
Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John
2018-01-19
A main goal in DNA computing is to build DNA circuits to compute designated functions using a minimal number of DNA strands. Here, we propose a novel architecture to build compact DNA strand displacement circuits to compute a broad scope of functions in an analog fashion. A circuit by this architecture is composed of three autocatalytic amplifiers, and the amplifiers interact to perform computation. We show DNA circuits to compute functions sqrt(x), ln(x) and exp(x) for x in tunable ranges with simulation results. A key innovation in our architecture, inspired by Napier's use of logarithm transforms to compute square roots on a slide rule, is to make use of autocatalytic amplifiers to do logarithmic and exponential transforms in concentration and time. In particular, we convert from the input that is encoded by the initial concentration of the input DNA strand, to time, and then back again to the output encoded by the concentration of the output DNA strand at equilibrium. This combined use of strand-concentration and time encoding of computational values may have impact on other forms of molecular computation.
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit
2009-08-14
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.
Energy-efficient growth of phage Q Beta in Escherichia coli.
Kim, Hwijin; Yin, John
2004-10-20
The role of natural selection in the optimal design of organisms is controversial. Optimal forms, functions, or behaviors of organisms have long been claimed without knowledge of how genotype contributes to phenotype, delineation of design constraints, or reference to alternative designs. Moreover, arguments for optimal designs have been often based on models that were difficult, if not impossible, to test. Here, we begin to address these issues by developing and probing a kinetic model for the intracellular growth of bacteriophage Q beta in Escherichia coli. The model accounts for the energetic costs of all template-dependent polymerization reactions, in ATP equivalents, including RNA-dependent RNA elongation by the phage replicase and synthesis of all phage proteins by the translation machinery of the E. coli host cell. We found that translation dominated phage growth, requiring 85% of the total energy expenditure. Only 10% of the total energy was applied to activities other than the direct synthesis of progeny phage components, reflecting primarily the cost of making the negative-strand RNA template that is needed for replication of phage genomic RNA. Further, we defined an energy efficiency of phage growth and showed its direct relationship to the yield of phage progeny. Finally, we performed a sensitivity analysis and found that the growth of wild-type phage was optimized for progeny yield or energy efficiency, suggesting that phage Q beta has evolved to optimally utilize the finite resources of its host cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël
Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computationalmore » experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.« less
An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allanson, O., E-mail: oliver.allanson@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Wilson, F., E-mail: fw237@st-andrews.ac.uk
We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution functionmore » in two of the velocity directions to a Maxwellian distribution.« less
Amyloid peptide Aβ40 inhibits aggregation of Aβ42: Evidence from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Viet, Man Hoang; Li, Mai Suan
2012-06-01
Effects of amyloid beta (Aβ) peptide Aβ40 on secondary structures of Aβ42 are studied by all-atom simulations using the GROMOS96 43a1 force field with explicit water. It is shown that in the presence of Aβ40 the beta-content of monomer Aβ42 is reduced. Since the fibril-prone conformation N* of full-length Aβ peptides has the shape of beta strand-loop-beta strand this result suggests that Aβ40 decreases the probability of observing N* of Aβ42 in monomer state. Based on this and the hypothesis that the higher is the population of N* the higher fibril formation rates, one can expect that, in agreement with the recent experiment, Aβ40 inhibit fibril formation of Aβ42. It is shown that the presence of Aβ40 makes the salt bridge D23-K28 and fragment 18-33 of Aβ42 more flexible providing additional support for this experimental fact. Our estimation of the binding free energy by the molecular mechanics-Poisson-Boltzmann surface area method reveals the inhibition mechanism that Aβ40 binds to Aβ42 modifying its morphology.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Hoffman, Eric K.
1998-01-01
The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.
NASA Technical Reports Server (NTRS)
Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.
1999-01-01
Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.
Shanower, G A; Kantor, G J
1997-11-01
Xeroderma pigmentosum group C cells repair DNA damaged by ultraviolet radiation in an unusual pattern throughout the genome. They remove cyclobutane pyrimidine dimers only from the DNA of transcriptionally active chromatin regions and only from the strand that contains the transcribed strand. The repair proceeds in a manner that creates damage-free islands which are in some cases much larger than the active gene associated with them. For example, the small transcriptionally active beta-actin gene (3.5 kb) is repaired as part of a 50 kb single-stranded region. The repair responsible for creating these islands requires active transcription, suggesting that the two activities are coupled. A preferential repair pathway in normal human cells promotes repair of actively transcribed DNA strands and is coupled to transcription. It is not known if similar large islands, referred to as repair domains, are preferentially created as a result of the coupling. Data are presented showing that in normal cells, preferential repair in the beta-actin region is associated with the creation of a large, completely repaired region in the partially repaired genome. Repair at other genomic locations which contain inactive genes (insulin, 754) does not create similar large regions as quickly. In contrast, repair in Cockayne syndrome cells, which are defective in the preferential repair pathway but not in genome-overall repair, proceeds in the beta-actin region by a mechanism which does not create preferentially a large repaired region. Thus a correlation between the activity required to preferentially repair active genes and that required to create repaired domains is detected. We propose an involvement of the transcription-repair coupling factor in a coordinated repair pathway for removing DNA damage from entire transcription units.
Peng, Kuan; Shu, Qin; Liu, Zhonghua; Liang, Songping
2002-12-06
We have isolated a highly potent neurotoxin from the venom of the Chinese bird spider, Selenocosmia huwena. This 4.1-kDa toxin, which has been named huwentoxin-IV, contains 35 residues with three disulfide bridges: Cys-2-Cys-17, Cys-9-Cys-24, and Cys-16-Cys-31, assigned by a chemical strategy including partial reduction of the toxin and sequence analysis of the modified intermediates. It specifically inhibits the neuronal tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel with the IC(50) value of 30 nm in adult rat dorsal root ganglion neurons, while having no significant effect on the tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel. This toxin seems to be a site I toxin affecting the sodium channel through a mechanism quite similar to that of TTX: it suppresses the peak sodium current without altering the activation or inactivation kinetics. The three-dimensional structure of huwentoxin-IV has been determined by two-dimensional (1)H NMR combined with distant geometry and simulated annealing calculation by using 527 nuclear Overhauser effect constraints and 14 dihedral constraints. The resulting structure is composed of a double-stranded antiparallel beta-sheet (Leu-22-Ser-25 and Trp-30-Tyr-33) and four turns (Glu-4-Lys-7, Pro-11-Asp-14, Lys-18-Lys-21 and Arg-26-Arg-29) and belongs to the inhibitor cystine knot structural family. After comparison with other toxins purified from the same species, we are convinced that the positively charged residues of loop IV (residues 25-29), especially residue Arg-26, must be crucial to its binding to the neuronal tetrodotoxin-sensitive voltage-gated sodium channel.
Damberger, F. F.; Pelton, J. G.; Harrison, C. J.; Nelson, H. C.; Wemmer, D. E.
1994-01-01
The solution structure of the 92-residue DNA-binding domain of the heat shock transcription factor from Kluyveromyces lactis has been determined using multidimensional NMR methods. Three-dimensional (3D) triple resonance, 1H-13C-13C-1H total correlation spectroscopy, and 15N-separated total correlation spectroscopy-heteronuclear multiple quantum correlation experiments were used along with various 2D spectra to make nearly complete assignments for the backbone and side-chain 1H, 15N, and 13C resonances. Five-hundred eighty-three NOE constraints identified in 3D 13C- and 15N-separated NOE spectroscopy (NOESY)-heteronuclear multiple quantum correlation spectra and a 4-dimensional 13C/13C-edited NOESY spectrum, along with 35 phi, 9 chi 1, and 30 hydrogen bond constraints, were used to calculate 30 structures by hybrid distance geometry/stimulated annealing protocol, of which 24 were used for structural comparison. The calculations revealed that a 3-helix bundle packs against a small 4-stranded antiparallel beta-sheet. The backbone RMS deviation (RMSD) for the family of structures was 1.03 +/- 0.19 A with respect to the average structure. The topology is analogous to that of the C-terminal domain of the catabolite gene activator protein and appears to be in the helix-turn-helix family of DNA-binding proteins. The overall fold determined by the NMR data is consistent with recent crystallographic work on this domain (Harrison CJ, Bohm AA, Nelson HCM, 1994, Science 263:224) as evidenced by RMSD between backbone atoms in the NMR and X-ray structures of 1.77 +/- 0.20 A. Several differences were identified some of which may be due to protein-protein interactions in the crystal. PMID:7849597
Structural Interplay - Tuning Mechanics in Peptide-Polyurea Hybrids
NASA Astrophysics Data System (ADS)
Korley, Lashanda
Utilizing cues from natural materials, we have been inspired to explore the hierarchical arrangement critical to energy absorption and mechanical enhancement in synthetic systems. Of particular interest is the soft domain ordering proposed as a contributing element to the observed toughness in spider silk. Multiblock copolymers, are ideal and dynamic systems in which to explore this approach via variations in secondary structure of nature's building blocks - peptides. We have designed a new class of polyurea hybrids that incorporate peptidic copolymers as the soft segment. The impact of hierarchical ordering on the thermal, mechanical, and morphological behavior of these bio-inspired polyurethanes with a siloxane-based, peptide soft segment was investigated. These peptide-polyurethane/urea hybrids were microphase segregated, and the beta-sheet secondary structure of the soft segment was preserved during polymerization and film casting. Toughness enhancement at low strains was achieved, but the overall extensibility of the peptide-incorporated systems was reduced due to the unique hard domain organization. To decouple the secondary structure influence in the siloxane-peptide soft segment from mechanics dominated by the hard domain, we also developed non-chain extended peptide-polyurea hybrids in which the secondary structure (beta sheet vs. alpha helix) was tuned via choice of peptide and peptide length. It was shown that this structural approach allowed tailoring of extensibility, toughness, and modulus. The sheet-dominant hybrid materials were typically tougher and more elastic due to intermolecular H-bonding facilitating load distribution, while the helical-prevalent systems generally exhibited higher stiffness. Recently, we have explored the impact of a molecular design strategy that overlays a covalent and physically crosslinked architecture in these peptide-polyurea hybrids, demonstrating that physical constraints in the network hybrids influences peptide hydrogen bonding and morphology. These structural features correlated well with systematic changes in modulus, extensibility, and hysteresis. Complementary to this effort is the design of PEG-based peptide-polyurea hybrids with tunable and responsive as structural and injectable hydrogels. The authors acknowledge funding support from the National Science Foundation (CAREER DMR-0953236).
Tsigelny, Igor; Mahata, Sushil K.; Taupenot, Laurent; Preece, Nicholas E.; Mahata, Manjula; Khan, Imran; Parmer, Robert J.; O’Connor, Daniel T.
2009-01-01
A novel fragment of chromogranin A, known as ‘catestatin’ (bovine chromogranin A344–364), inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist, and may therefore constitute an endogenous autocrine feedback regulator of sympathoadrenal activity. To characterize how this activity depends on the peptide’s structure, we searched for common 3-dimensional motifs for this primary structure or its homologs. Catestatin’s primary structure bore significant (29–35.5% identity, general alignment score 44–57) sequence homology to fragment sequences within three homologs of known 3-dimensional structures, based on solved X-ray crystals: 8FAB, 1PKM, and 2IG2. Each of these sequences exists in nature as a β-strand/loop/β-strand structure, stabilized by hydrophobic interactions between the β-strands. The catestatin structure was stable during molecular dynamics simulations. The catestatin loop contains three Arg residues, whose electropositive side chains form the terminus of the structure, and give rise to substantial uncompensated charge asymmetry in the molecule. A hydrophobic moment plot revealed that catestatin is the only segment of chromogranin A predicted to contain amphiphilic β-strand. Circular dichroism in the far ultraviolet showed substantial (63%) β-sheet structure, especially in a hydrophobic environment. Alanine-substitution mutants of catestatin established a crucial role for the three central arginine residues in the loop (Arg351, Arg353, and Arg358), though not for two arginine residues in the strand region toward the amino-terminus. [125I]Catestatin bound to Torpedo membranes at a site other than the nicotinic agonist binding site. When the catestatin structure was ‘docked’ with the extracellular domain of the Torpedo nicotinic cholinergic receptor, it interacted principally with the β and δ subunits, in a relatively hydrophobic region of the cation pore extracellular orifice, and the complex of ligand and receptor largely occluded the cation pore, providing a structural basis for the non-competitive nicotinic cholinergic antagonist properties of the peptide. We conclude that a homology model of catestatin correctly predicts actual features of the peptide, both physical and biological. The model suggests particular spatial and charge features of the peptide which may serve as starting points in the development of non-peptide mimetics of this endogenous nicotinic cholinergic antagonist. PMID:9809795
Edge strand engineering prevents native-like aggregation in Sulfolobus solfataricus acylphosphatase.
de Rosa, Matteo; Bemporad, Francesco; Pellegrino, Sara; Chiti, Fabrizio; Bolognesi, Martino; Ricagno, Stefano
2014-09-01
β-proteins are constantly threatened by the risk of aggregation because β-sheets are inherently structured for edge-to-edge interactions. To avoid native-like aggregation, evolution has resulted in a set of strategies that prevent intermolecular β-interactions. Acylphosphatase from Sulfolobus solfataricus (Sso AcP) represents a suitable model for the study of such a process. Under conditions promoting aggregation, Sso AcP acquires a native-like conformational state whereby an unstructured N-terminal segment interacts with the edge β-strand B4 of an adjacent Sso AcP molecule. Because B4 is poorly protected against aggregation, this interaction triggers the aggregation cascade without the need for unfolding. Recently, three single Sso AcP mutants (V84D, Y86E and V84P) were designed to engineer additional protection against aggregation in B4 and were observed to successfully impair native-like aggregation in all three variants at the expense of a lower stability. To understand the structural basis of the reduced aggregation propensity and lower stability, the crystal structures of the Sso AcP variants were determined in the present study. Structural analysis reveals that the V84D and Y86E mutations exert protection by the insertion of an edge negative charge. A conformationally less regular B4 underlies protection against aggregation in the V84P mutant. The thermodynamic basis of instability is discussed. Moreover, kinetic experiments indicate that aggregation of the three mutants is not native-like and is independent of the interaction between B4 and the unstructured N-terminal segment. The reported data rationalize previous evidence regarding Sso AcP native-like aggregation and provide a basis for the design of aggregation-free proteins. The atomic coordinates and related experimental data for the Sso AcP mutants V84P, V84D, ΔN11 Y86E have been deposited in the Protein Data Bank under accession numbers 4OJ3, 4OJG and 4OJH, respectively. • Sso AcP and Sso AcP bind by fluorescence technology (View interaction). © 2014 FEBS.
A molecular view of the role of chirality in charge-driven polypeptide complexation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K. Q.; Perry, S. L.; Leon, L.
Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality alongmore » the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.« less
Castano, Sabine; Blaudez, Daniel; Desbat, Bernard; Dufourcq, Jean; Wróblewski, Henri
2002-05-03
The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at the lipid/water interface. Owing to the very high amount of spiralin in the membrane, such carpets would cover most if not all the lipids present in the outer leaflet of the bilayer.
Structure at 1.3 A resolution of Rhodothermus marinus caa(3) cytochrome c domain.
Srinivasan, Vasundara; Rajendran, Chitra; Sousa, Filipa L; Melo, Ana M P; Saraiva, Lígia M; Pereira, Manuela M; Santana, Margarida; Teixeira, Miguel; Michel, Hartmut
2005-02-04
The cytochrome c domain of subunit II from the Rhodothermus marinus caa(3) HiPIP:oxygen oxidoreductase, a member of the superfamily of heme-copper-containing terminal oxidases, was produced in Escherichia coli and characterised. The recombinant protein, which shows the same optical absorption and redox properties as the corresponding domain in the holo enzyme, was crystallized and its structure was determined to a resolution of 1.3 A by the multiwavelength anomalous dispersion (MAD) technique using the anomalous dispersion of the heme iron atom. The model was refined to final R(cryst) and R(free) values of 13.9% and 16.7%, respectively. The structure reveals the insertion of two short antiparallel beta-strands forming a small beta-sheet, an interesting variation of the classical all alpha-helical cytochrome c fold. This modification appears to be common to all known caa(3)-type terminal oxidases, as judged by comparative modelling and by analyses of the available amino acid sequences for these enzymes. This is the first high-resolution crystal structure reported for a cytochrome c domain of a caa(3)-type terminal oxidase. The R.marinus caa(3) uses HiPIP as the redox partner. The calculation of the electrostatic potential at the molecular surface of this extra C-terminal domain provides insights into the binding to its redox partner on one side and its interaction with the remaining subunit II on the other side.
Bates, P J; Laughton, C A; Jenkins, T C; Capaldi, D C; Roselt, P D; Reese, C B; Neidle, S
1996-11-01
Triple helices containing C+xGxC triplets are destabilised at physiological pH due to the requirement for base protonation of 2'-deoxycytidine (dC), which has a pKa of 4.3. The C nucleoside 2-amino-5-(2'-deoxy-beta-D-ribofuranosyl)pyridine (beta-AP) is structurally analogous to dC but is considerably more basic, with a pKa of 5.93. We have synthesised 5'-psoralen linked oligodeoxyribonucleotides (ODNs) containing thymidine (dT) and either beta-AP or its alpha-anomer (alpha-AP) and have assessed their ability to form triplexes with a double-stranded target derived from standard deoxynucleotides (i.e. beta-anomers). Third strand ODNs derived from dT and beta-AP were found to have considerably higher binding affinities for the target than the corresponding ODNs derived from dT and either dC or 5-methyl-2'-deoxycytidine (5-Me-dC). ODNs containing dT and alpha-AP also showed enhanced triplex formation with the duplex target and, in addition are more stable in serum-containing medium than standard oligopyrimidine-derived ODNs or ODNs derived from dT and beta-AP. Molecular modelling studies showed that an alpha-anomeric AP nucleotide can be accommodated within an otherwise beta-anomeric triplex with only minor perturbation of the triplex structure. Molecular dynamics (MD) simulations on triplexes containing either the alpha- or beta-anomer of (N1-protonated) AP showed that in both cases the base retained two standard hydrogen bonds to its associated guanine when the 'A-type' model of the triplex was used as the start-point for the simulation, but that bifurcated hydrogen bonds resulted when the alternative 'B-type' triplex model was used. The lack of a differential stability between alpha-AP- and beta-AP-containing triplexes at pH >7, predicted from the behaviour of the B-type models, suggests that the A-type models are more appropriate.
SCDC Spanish Curricula Units. Science/Math Strand, Unit 7, Grade 3, Supplement & Ditto Packet.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
Instructional aids for classroom use and worksheets which may be reproduced for individual seatwork are included in these support materials for unit seven of the science/math strand developed for Spanish-speaking students in grade three. They are designed to be used with the teacher's guide to the unit, which contains a timetable for their use.…
SCDC Spanish Curricula Units. Science/Math Strand, Unit 4, Grade Two, Teacher's Guide.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
The teacher's guide for unit four of a Spanish science/math strand for second graders contains instructional and assessment activities for kits 13-16. Each designed for a two- to three-week teaching period, the kits' activities are geared toward guiding the child to discover correct answers through methods provided and, by putting materials in his…
USDA-ARS?s Scientific Manuscript database
Novel double stranded RNAs (~8 kbp) were isolated from the three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genome organization of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and ...
USDA-ARS?s Scientific Manuscript database
Novel double-stranded RNAs (~8 kbp) were isolated from three cornered alfalfa hopper (Spissistilus festinus) and beet leafhopper (Circulifer tenellus), two plant-feeding hemipteran insect pests. Genomes of the two new viruses, designated as Spissistilus festinus virus 1 (SpFV1) and Circulifer tenell...
Collet, Olivier; Chipot, Christophe
2003-05-28
The unfolding of the last, C-terminal residue of AcNH(2)-(l-Leu)(11)-NHMe in its alpha-helical form has been investigated by measuring the variation of free energy involved in the alpha(R) to beta conformational transition. These calculations were performed using large-scale molecular dynamics simulations in conjunction with the umbrella sampling method. For different temperatures ranging from 280 to 370 K, the free energy of activation was estimated. Concurrently, unfolding simulations of a homopolypeptide formed by twelve hydrophobic residues were carried out, employing a three-dimensional lattice model description of the peptide, with a temperature-dependent interaction potential. Using a Monte Carlo approach, the lowest free energy conformation, an analogue of a right-handed alpha-helix, was determined in the region where the peptide chain is well ordered. The free energy barrier separating this state from a distinct, compact conformation, analogue to a beta-strand, was determined over a large enough range of temperatures. The results of these molecular dynamics and lattice model simulations are consistent and indicate that the kinetics of the unfolding of a hydrophobic peptide exhibits a non-Arrhenius behavior closely related to the temperature dependence of the hydrophobic effect. These results further illuminate the necessity to include a temperature dependence in potential energy functions designed for coarse-grained models of proteins.
Tissue strands as "bioink" for scale-up organ printing.
Yu, Yin; Ozbolat, Ibrahim T
2014-01-01
Organ printing, takes tissue spheroids as building blocks together with additive manufacturing technique to engineer tissue or organ replacement parts. Although a wide array of cell aggregation techniques has been investigated, and gained noticeable success, the application of tissue spheroids for scale-up tissue fabrication is still worth investigation. In this paper, we introduce a new micro-fabrication technique to create tissue strands at the scale of 500-700μm as a "bioink" for future robotic tissue printing. Printable alginate micro-conduits are used as semi-permeable capsules for tissue strand fabrication. Mouse insulinoma beta TC3 cell tissue strands were formed upon 4 days post fabrication with reasonable mechanical strength, high cell viability close to 90%, and tissue specific markers expression. Fusion was readily observed between strands when placing them together as early as 24h. Also, tissue strands were deposited with human umbilical vein smooth muscle cells (HUVSMCs) vascular conduits together to fabricated miniature pancreatic tissue analog. Our study provided a novel technique using tissue strands as "bioink" for scale-up bioprinting of tissues or organs.
Hayward, Steven; Milner-White, E James
2017-10-01
Examples of homomeric β-helices and β-barrels have recently emerged. Here we generalize the theory for the shear number in β-barrels to encompass β-helices and homomeric structures. We introduce the concept of the "β-strip," the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n-fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β-strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α-hemolysin, T4 phage spike, cylindrin, and the HET-s(218-289) prion. From reported dimensions measured by X-ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in-register β-strands folded into a "β-strip helix." Results suggest both stabilization of an individual β-strip helix and growth by addition of further β-strip helices can involve the same pair of sequence segments associating with β-sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design. © 2017 Wiley Periodicals, Inc.
Structural analysis of HLA-B40 epitopes.
Kawaguchi, G; Kato, N; Kashiwase, K; Karaki, S; Kohsaka, T; Akaza, T; Kano, K; Takiguchi, M
1993-03-01
Two genes encoding HLA-B60 or HLA-B61 were cloned from Japanese and the exons of their genes were sequenced. One silent mutation was observed at the exon 1 between HLA-B60 (B*40012) and B*40011. Seven nucleotide substitutions were seen at the exon 3 between HLA-B61 (B*4006) and B*4002. Three substitutions at codon 95, CTC in B*4002 to TGG in B*4006, changed Leu in B*4002 to Trp in B*4006, while two substitutions at codon 97, AGC in B*4002 and ACG in B*4006, changed Ser in B*4002 to Thr in B*4006. Since B*4002 shares the epitope of alloantibodies specific for HLA-B61, two HLA-B61 subtypes are discriminated by two amino acid substitutions at residues 95 and 97. B*40012 and B*4006 differ by four amino acid substitutions on the beta sheet and five amino acid substitutions on the alpha 2 helix. Since the residues at the beta sheet seem hardly to affect the binding of alloantibody, it is suspected that the residues on the alpha 2 helix provide epitopes for alloantibodies that discriminate allospecificity between HLA-B60 and HLA-B61.
Controlling aggregation propensity in A53T mutant of alpha-synuclein causing Parkinson's disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sonu; Sarkar, Anita; Sundar, Durai, E-mail: sundar@dbeb.iitd.ac.in
2009-09-18
Understanding {alpha}-synuclein in terms of fibrillization, aggregation, solubility and stability is fundamental in Parkinson's disease (PD). The three familial mutations, namely, A30P, E46K and A53T cause PD because the hydrophobic regions in {alpha}-synuclein acquire {beta}-sheet configuration, and have a propensity to fibrillize and form amyloids that cause cytotoxicity and neurodegeneration. On simulating the native form and mutants (A30P, E46K and A53T) of {alpha}-synuclein in water solvent, clear deviations are observed in comparison to the all-helical 1XQ8 PDB structure. We have identified two crucial residues, {sup 40}Val and {sup 74}Val, which play key roles in {beta}-sheet aggregation in the hydrophobic regionsmore » 36-41 and 68-78, respectively, leading to fibrillization and amyloidosis in familial (A53T) PD. We have also identified V40D{sub V}74D, a double mutant of A53T (the most amyloidogenic mutant). The simultaneous introduction of these two mutations in A53T nearly ends its aggregation propensity, increases its solubility and positively enhances its thermodynamic stability.« less
Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.
Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C
2009-07-07
Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.
Kinetic studies on strand displacement in de novo designed parallel heterodimeric coiled coils.
Groth, Mike C; Rink, W Mathis; Meyer, Nils F; Thomas, Franziska
2018-05-14
Among the protein folding motifs, which are accessible by de novo design, the parallel heterodimeric coiled coil is most frequently used in bioinspired applications and chemical biology in general. This is due to the straightforward sequence-to-structure relationships, which it has in common with all coiled-coil motifs, and the heterospecificity, which allows control of association. Whereas much focus was laid on designing orthogonal coiled coils, systematic studies on controlling association, for instance by strand displacement, are rare. As a contribution to the design of dynamic coiled-coil-based systems, we studied the strand-displacement mechanism in obligate heterodimeric coiled coils to investigate the suitability of the dissociation constants ( K D ) as parameters for the prediction of the outcome of strand-displacement reactions. We use two sets of heterodimeric coiled coils, the previously reported N-A x B y and the newly characterized C-A x B y . Both comprise K D values in the μM to sub-nM regime. Strand displacement is explored by CD titration and a FRET-based kinetic assay and is proved to be an equilibrium reaction with half-lifes from a few seconds up to minutes. We could fit the displacement data by a competitive binding model, giving rate constants and overall affinities of the underlying association and dissociation reactions. The overall affinities correlate well with the ratios of K D values determined by CD-thermal denaturation experiments and, hence, support the dissociative mechanism of strand displacement in heterodimeric coiled coils. From the results of more than 100 different displacement reactions we are able to classify three categories of overall affinities, which allow for easy prediction of the equilibrium of strand displacement in two competing heterodimeric coiled coils.
Groth, Mike C.; Rink, W. Mathis; Meyer, Nils F.
2018-01-01
Among the protein folding motifs, which are accessible by de novo design, the parallel heterodimeric coiled coil is most frequently used in bioinspired applications and chemical biology in general. This is due to the straightforward sequence-to-structure relationships, which it has in common with all coiled-coil motifs, and the heterospecificity, which allows control of association. Whereas much focus was laid on designing orthogonal coiled coils, systematic studies on controlling association, for instance by strand displacement, are rare. As a contribution to the design of dynamic coiled-coil-based systems, we studied the strand-displacement mechanism in obligate heterodimeric coiled coils to investigate the suitability of the dissociation constants (KD) as parameters for the prediction of the outcome of strand-displacement reactions. We use two sets of heterodimeric coiled coils, the previously reported N-AxBy and the newly characterized C-AxBy. Both comprise KD values in the μM to sub-nM regime. Strand displacement is explored by CD titration and a FRET-based kinetic assay and is proved to be an equilibrium reaction with half-lifes from a few seconds up to minutes. We could fit the displacement data by a competitive binding model, giving rate constants and overall affinities of the underlying association and dissociation reactions. The overall affinities correlate well with the ratios of KD values determined by CD-thermal denaturation experiments and, hence, support the dissociative mechanism of strand displacement in heterodimeric coiled coils. From the results of more than 100 different displacement reactions we are able to classify three categories of overall affinities, which allow for easy prediction of the equilibrium of strand displacement in two competing heterodimeric coiled coils. PMID:29780562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Rongjin; Aiyer, Sriram; Cote, Marie L.
The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1–44) and an HHCC zinc-finger NTD (residues 45–105), in two crystal forms are reported. The structuresmore » of IN NTR constructs encoding residues 1–105 (NTR1–105) and 8–105 (NTR8–105) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1–105 packs as a dimer and NTR8–105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647–656.« less
Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
Zhou, Ming; Zhai, Yueming; Dong, Shaojun
2009-07-15
In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2)/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes. The greatly enhanced electrochemical reactivity of the four free bases of DNA at the CR-GO/GC electrode compared with that at graphite/GC and GC electrodes makes the CR-GO/GC electrode a better choice for the electrochemical biosensing of four DNA bases in both the single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) at physiological pH without a prehydrolysis step. This allows us to detect a single-nucleotide polymorphism (SNP) site for short oligomers with a particular sequence at the CR-GO/GC electrode without any hybridization or labeling processes in this work, suggesting the potential applications of CR-GO in the label-free electrochemical detection of DNA hybridization or DNA damage for further research. Based on the greatly enhanced electrochemical reactivity of H2O2 and NADH at the CR-GO/GC electrode, CR-GO/GC electrode-based bioelectrodes (in connection with glucose oxidase (GOD) and alcohol dehydrogenase (ADH)) show a better analytical performance for the detection of glucose and ethanol compared with graphite/GC- or GC-based bioelectrodes. By comparing the electrochemical performance of CR-GO with that of the conventional graphite and GC, we reveal that CR-GO with the nature of a single sheet showing favorable electrochemical activity should be a kind of more robust and advanced carbon electrode material which may hold great promise for electrochemical sensors and biosensors design.
Yazaki, A; Ohno, S
1983-01-01
Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948
NASA Astrophysics Data System (ADS)
Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia
2013-03-01
Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.
Sass, H J; Büldt, G; Beckmann, E; Zemlin, F; van Heel, M; Zeitler, E; Rosenbusch, J P; Dorset, D L; Massalski, A
1989-09-05
Porin is an integral membrane protein that forms channels across the outer membrane of Escherichia coli. Electron microscopic studies of negatively stained two-dimensional porin crystals have shown three stain accumulations per porin trimer, revealing the locations of pores spanning the membrane. In this study, reconstituted porin lattices embedded in glucose were investigated using the low-dose technique on a cryo-electron microscope equipped with a helium-cooled superconducting objective lens. The specimen temperature was maintained at 5 K to yield an improved microscopic and specimen stability. Under these conditions, we obtained for the first time electron diffraction patterns from porin lattices to a resolution of 3.2 A and images showing optical diffraction up to a resolution of 4.9 A. Applying correlation averaging techniques to the digitized micrographs, we were able to reconstruct projected images of the porin trimer to a resolution of up to 3.5 A. In the final projection maps, amplitudes from electron diffraction and phases from these images were combined. The predominant feature is a high-density narrow band (about 6 A in thickness) that delineates the outer perimeter of the trimer. Since the molecule consists of almost exclusively beta-sheet structure, as revealed by spectroscopic data, we conclude that this band is a cylindrical beta-pleated sheet crossing the membrane nearly perpendicularly to its plane. Another intriguing finding is a low-density area (about 70 A2) situated in the centre of the trimer.
Molecular threading and tunable molecular recognition on DNA origami nanostructures.
Wu, Na; Czajkowsky, Daniel M; Zhang, Jinjin; Qu, Jianxun; Ye, Ming; Zeng, Dongdong; Zhou, Xingfei; Hu, Jun; Shao, Zhifeng; Li, Bin; Fan, Chunhai
2013-08-21
The DNA origami technology holds great promise for the assembly of nanoscopic technological devices and studies of biochemical reactions at the single-molecule level. For these, it is essential to establish well controlled attachment of functional materials to predefined sites on the DNA origami nanostructures for reliable measurements and versatile applications. However, the two-sided nature of the origami scaffold has shown limitations in this regard. We hypothesized that holes of the commonly used two-dimensional DNA origami designs are large enough for the passage of single-stranded (ss)-DNA. Sufficiently long ssDNA initially located on one side of the origami should thus be able to "thread" to the other side through the holes in the origami sheet. By using an origami sheet attached with patterned biotinylated ssDNA spacers and monitoring streptavidin binding with atomic force microscopic (AFM) imaging, we provide unambiguous evidence that the biotin ligands positioned on one side have indeed threaded through to the other side. Our finding reveals a previously overlooked critical design feature that should provide new interpretations to previous experiments and new opportunities for the construction of origami structures with new functional capabilities.
Sketching Designs Using the Five Design-Sheet Methodology.
Roberts, Jonathan C; Headleand, Chris; Ritsos, Panagiotis D
2016-01-01
Sketching designs has been shown to be a useful way of planning and considering alternative solutions. The use of lo-fidelity prototyping, especially paper-based sketching, can save time, money and converge to better solutions more quickly. However, this design process is often viewed to be too informal. Consequently users do not know how to manage their thoughts and ideas (to first think divergently, to then finally converge on a suitable solution). We present the Five Design Sheet (FdS) methodology. The methodology enables users to create information visualization interfaces through lo-fidelity methods. Users sketch and plan their ideas, helping them express different possibilities, think through these ideas to consider their potential effectiveness as solutions to the task (sheet 1); they create three principle designs (sheets 2,3 and 4); before converging on a final realization design that can then be implemented (sheet 5). In this article, we present (i) a review of the use of sketching as a planning method for visualization and the benefits of sketching, (ii) a detailed description of the Five Design Sheet (FdS) methodology, and (iii) an evaluation of the FdS using the System Usability Scale, along with a case-study of its use in industry and experience of its use in teaching.
Sharma, Gangavaram V M; Nagendar, Pendem; Ramakrishna, Kallaganti V S; Chandramouli, Nagula; Choudhary, Madavi; Kunwar, Ajit C
2008-06-02
A new three-residue turn was serendipitously discovered in alpha/beta hybrid peptides derived from alternating C-linked carbo-beta-amino acids (beta-Caa) and L-Ala residues. The three-residue beta-alpha-beta turn at the C termini, nucleated by a helix at the N termini, resulted in helix-turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds-CO(i-2)-NH(i), with a seven-membered pseudoring (gamma turn) in the backward direction, and NH(i-2)-CO(i), with a 13-membered pseudoring in the forward direction (i being the last residue)--at the C termini. The study was extended to generalize the new three-residue turn (beta-alpha-beta) by using different alpha- and beta-amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix-turn-helix (HTH) tertiary structures. However, this resulted in the destabilization of the beta-alpha-beta turn with the concomitant nucleation of another three-residue turn, alpha-beta-beta, which is stabilized by 11- and 15-membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Andrew B; Miallau, Linda; Sawaya, Michael R
VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA.more » The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.« less
Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.
Huber, A H; Wang, Y M; Bieber, A J; Bjorkman, P J
1994-04-01
We report the crystal structure of two adjacent fibronectin type III repeats from the Drosophila neural cell adhesion molecule neuroglian. Each domain consists of two antiparallel beta sheets and is folded topologically identically to single fibronectin type III domains from the extracellular matrix proteins tenascin and fibronectin. beta bulges and left-handed polyproline II helices disrupt the regular beta sheet structure of both neuroglian domains. The hydrophobic interdomain interface includes a metal-binding site, presumably involved in stabilizing the relative orientation between domains and predicted by sequence comparision to be present in the vertebrate homolog molecule L1. The neuroglian domains are related by a near perfect 2-fold screw axis along the longest molecular dimension. Using this relationship, a model for arrays of tandem fibronectin type III repeats in neuroglian and other molecules is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yew,W.; Fedorov, A.; Fedorov, E.
2007-01-01
We assigned L-talarate dehydratase (TalrD) and galactarate dehydratase (GalrD) functions to a group of orthologous proteins in the mechanistically diverse enolase superfamily, focusing our characterization on the protein encoded by the Salmonella typhimurium LT2 genome (GI:16766982; STM3697). Like the homologous mandelate racemase, L-fuconate dehydratase, and D-tartrate dehydratase, the active site of TalrD/GalrD contains a general acid/base Lys 197 at the end of the second {beta}-strand in the ({beta}/{alpha}){sub 7}{beta}-barrel domain, Asp 226, Glu 252, and Glu 278 as ligands for the essential Mg{sup 2+} at the ends of the third, fourth, and fifth {sup {beta}}-strands, a general acid/base His 328-Aspmore » 301 dyad at the ends of the seventh and sixth {beta}-strands, and an electrophilic Glu 348 at the end of the eighth {beta}-strand. We discovered the function of STM3697 by screening a library of acid sugars; it catalyzes the efficient dehydration of both L-talarate (k{sub cat} = 2.1 s{sup -1}, k{sub cat}/K{sub m} = 9.1 x 10{sup 3} M{sup -1} s{sup -1}) and galactarate (k{sub cat} = 3.5 s{sup -1}, k{sub cat}/K{sub m} = 1.1 x 10{sup 4} M{sup -1} s{sup -1}). Because L-talarate is a previously unknown metabolite, we demonstrated that S. typhimurium LT2 can utilize L-talarate as carbon source. Insertional disruption of the gene encoding STM3697 abolishes this phenotype; this disruption also diminishes, but does not eliminate, the ability of the organism to utilize galactarate as carbon source. The dehydration of L-talarate is accompanied by competing epimerization to galactarate; little epimerization to L-talarate is observed in the dehydration of galactarate. On the basis of (1) structures of the wild type enzyme complexed with L-lyxarohydroxamate, an analogue of the enolate intermediate, and of the K197A mutant complexed with L-glucarate, a substrate for exchange of the {alpha}-proton, and (2) incorporation of solvent deuterium into galactarate in competition with dehydration, we conclude that Lys 197 functions as the galactarate-specific base and His 328 functions as the L-talarate-specific base. The epimerization of L-talarate to galactarate that competes with dehydration can be rationalized by partitioning of the enolate intermediate between dehydration (departure of the 3-OH group catalyzed by the conjugate acid of His 328) and epimerization (protonation on C2 by the conjugate acid of Lys 197). The promiscuous catalytic activities discovered for STM3697 highlight the evolutionary potential of a 'conserved' active site architecture.« less
Binding Interactions of Agents That Alter α-Synuclein Aggregation
Sivanesam, K.; Byrne, A.; Bisaglia, M.; Bubacco, L.
2015-01-01
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor. PMID:25705374
Binding Interactions of Agents That Alter α-Synuclein Aggregation.
Sivanesam, K; Byrne, A; Bisaglia, M; Bubacco, L; Andersen, N
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15 N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15 N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15 N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Collins; W Hendrickson
2011-12-31
Folding and trafficking of low-density lipoprotein receptor (LDLR) family members, which play essential roles in development and homeostasis, are mediated by specific chaperones. The Boca/Mesd chaperone family specifically promotes folding and trafficking of the YWTD {beta} propeller-EGF domain pair found in the ectodomain of all LDLR members. Limited proteolysis, NMR spectroscopy, analytical ultracentrifugation, and X-ray crystallography were used to define a conserved core composed of a structured domain that is preceded by a disordered N-terminal region. High-resolution structures of the ordered domain were determined for homologous proteins from three metazoans. Seven independent protomers reveal a novel ferrodoxin-like superfamily fold withmore » two distinct {beta} sheet topologies. A conserved hydrophobic surface forms a dimer interface in each crystal, but these differ substantially at the atomic level, indicative of nonspecific hydrophobic interactions that may play a role in the chaperone activity of the Boca/Mesd family.« less
Novel mutations of CYP3A4 in Chinese.
Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D
2001-03-01
Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic groups and its effect on the metabolic activity of CYP3A4 remain to be further evaluated.
Fedoroff, Oleg Y; Townson, Sharon A; Golovanov, Alexander P; Baron, Martin; Avis, Johanna M
2004-08-13
WW domains mediate protein recognition, usually though binding to proline-rich sequences. In many proteins, WW domains occur in tandem arrays. Whether or how individual domains within such arrays cooperate to recognize biological partners is, as yet, poorly characterized. An important question is whether functional diversity of different WW domain proteins is reflected in the structural organization and ligand interaction mechanisms of their multiple domains. We have determined the solution structure and dynamics of a pair of WW domains (WW3-4) from a Drosophila Nedd4 family protein called Suppressor of deltex (Su(dx)), a regulator of Notch receptor signaling. We find that the binding of a type 1 PPPY ligand to WW3 stabilizes the structure with effects propagating to the WW4 domain, a domain that is not active for ligand binding. Both WW domains adopt the characteristic triple-stranded beta-sheet structure, and significantly, this is the first example of a WW domain structure to include a domain (WW4) lacking the second conserved Trp (replaced by Phe). The domains are connected by a flexible linker, which allows a hinge-like motion of domains that may be important for the recognition of functionally relevant targets. Our results contrast markedly with those of the only previously determined three-dimensional structure of tandem WW domains, that of the rigidly oriented WW domain pair from the RNA-splicing factor Prp40. Our data illustrate that arrays of WW domains can exhibit a variety of higher order structures and ligand interaction mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Crowley, Paula J.
2012-05-29
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 {angstrom} resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C{sub 1}, C{sub 2}, and C{sub 3}. Each domain adopts a DE-variant IgG fold, with two {beta}-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimalmore » region of binding was contained within the first and second DE-variant-IgG domains (C{sub 1} and C{sub 2}) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C{sub 1} and C{sub 2} domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C{sub 1} and C{sub 2} domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.« less
NASA Technical Reports Server (NTRS)
Lim, K.; Ho, J. X.; Keeling, K.; Gilliland, G. L.; Ji, X.; Ruker, F.; Carter, D. C.
1994-01-01
The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) (Muster T et al., 1993, J Virol 67:6642-6647) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class (Ji X, Zhang P, Armstrong RN, Gilliland GL, 1992, Biochemistry 31:10169-10184) was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(3)2(1)2, with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.
Entropic stabilization of isolated beta-sheets.
Dugourd, Philippe; Antoine, Rodolphe; Breaux, Gary; Broyer, Michel; Jarrold, Martin F
2005-04-06
Temperature-dependent electric deflection measurements have been performed for a series of unsolvated alanine-based peptides (Ac-WA(n)-NH(2), where Ac = acetyl, W = tryptophan, A = alanine, and n = 3, 5, 10, 13, and 15). The measurements are interpreted using Monte Carlo simulations performed with a parallel tempering algorithm. Despite alanine's high helix propensity in solution, the results suggest that unsolvated Ac-WA(n)-NH(2) peptides with n > 10 adopt beta-sheet conformations at room temperature. Previous studies have shown that protonated alanine-based peptides adopt helical or globular conformations in the gas phase, depending on the location of the charge. Thus, the charge more than anything else controls the structure.
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Falco, R. E.
1987-01-01
A specially designed wind tunnel was used to examine the effects of tandemly arranged parallel plate manipulators (TAPPMs) on a turbulent boundary-layer structure and the associated drag. Momentum balances, as well as measurements of the local shear stress from the velocity gradient near the wall, were used to obtain the net drag and local skin friction changes. Two TAPPMs, identical except for the thickness of their plates, were used in the study. Results with .003 inch plates were a maximum net drag reduction of 10 percent at 58 beta sub o (using a momentum balance). At 20 beta sub o, simultaneous laser sheet flow visualization and hot-wire anemometry data showed that the Reynolds stress in the large eddies was significantly reduced, as were the streamwise and normal velocity components. Using space-time correlations the reductions were again identified. Furthermore, quantitative flow visualization showed that the outward normal velocity of the inner region was also significantly decreased in the region around 20 beta sub o. However, throughout the first 130 beta sub o, the measured sublayer thickness with the TAPPMs in place was 15 to 20 percent greater. The data showed that the skin friction, as well as the structure of the turbulence, was strongly modified in the first 35 beta sub o, but that they both significantly relaxed toward unmanipulated boundary layer values by 50 beta sub o.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, M.H.; Wemmer, D.E.
1991-04-09
The {sup 1}H resonance assignments and secondary structure of the trypsin/chymotrypsin Bowman-Birk inhibitor from soybeans were determined by nuclear magnetic resonance spectroscopy (NMR) at 600 MHz in an 18% acetonitrile-d{sub 3}/aqueous cosolvent. Resonances from 69 to 71 amino acids were assigned sequence specifically. Residues Q11-T15 form an antiparallel {beta}-sheet with residues Q21-S25 in the tryptic inhibitory domain and an analogous region of antiparallel sheet forms between residues S38-A42 and Q48-V52 in the chymotryptic inhibitory domain. The inhibitory sites of each fragment (K16-S17 for trypsin, L43-S44 for chymotrypsin) are each part of a type VI like turn at one end ofmore » their respective region of the antiparallel {beta}-sheet. These structural elements are compared to those found in other Bowman-Birk inhibitors.« less
The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins.
Eisenberg, David
2003-09-30
PNAS papers by Linus Pauling, Robert Corey, and Herman Branson in the spring of 1951 proposed the alpha-helix and the beta-sheet, now known to form the backbones of tens of thousands of proteins. They deduced these fundamental building blocks from properties of small molecules, known both from crystal structures and from Pauling's resonance theory of chemical bonding that predicted planar peptide groups. Earlier attempts by others to build models for protein helices had failed both by including nonplanar peptides and by insisting on helices with an integral number of units per turn. In major respects, the Pauling-Corey-Branson models were astoundingly correct, including bond lengths that were not surpassed in accuracy for >40 years. However, they did not consider the hand of the helix or the possibility of bent sheets. They also proposed structures and functions that have not been found, including the gamma-helix.
Yuan, Quan; McHenry, Charles S
2009-11-13
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.
Barnard, Travis J; Dautin, Nathalie; Lukacik, Petra; Bernstein, Harris D; Buchanan, Susan K
2007-12-01
Autotransporters are virulence factors produced by Gram-negative bacteria. They consist of two domains, an N-terminal 'passenger' domain and a C-terminal beta-domain. beta-domains form beta-barrel structures in the outer membrane while passenger domains are translocated into the extracellular space. In some autotransporters, the two domains are separated by proteolytic cleavage. Using X-ray crystallography, we solved the 2.7-A structure of the post-cleavage state of the beta-domain of EspP, an autotransporter produced by Escherichia coli strain O157:H7. The structure consists of a 12-stranded beta-barrel with the passenger domain-beta-domain cleavage junction located inside the barrel pore, approximately midway between the extracellular and periplasmic surfaces of the outer membrane. The structure reveals an unprecedented intra-barrel cleavage mechanism and suggests that two conformational changes occur in the beta-domain after cleavage, one conferring increased stability on the beta-domain and another restricting access to the barrel pore.
Klenchin, Vadim A; Taylor Ringia, Erika A; Gerlt, John A; Rayment, Ivan
2003-12-16
o-Succinylbenzoate synthase (OSBS) from Escherichia coli, a member of the enolase superfamily, catalyzes an exergonic dehydration reaction in the menaquinone biosynthetic pathway in which 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) is converted to 4-(2'-carboxyphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB). Our previous structural studies of the Mg(2+).OSB complex established that OSBS is a member of the muconate lactonizing enzyme subgroup of the superfamily: the essential Mg(2+) is coordinated to carboxylate ligands at the ends of the third, fourth, and fifth beta-strands of the (beta/alpha)(7)beta-barrel catalytic domain, and the OSB product is located between the Lys 133 at the end of the second beta-strand and the Lys 235 at the end of the sixth beta-strand [Thompson, T. B., Garrett, J. B., Taylor, E. A, Meganathan, R., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 10662-76]. Both Lys 133 and Lys 235 were separately replaced with Ala, Ser, and Arg residues; all six mutants displayed no detectable catalytic activity. The structure of the Mg(2+).SHCHC complex of the K133R mutant has been solved at 1.62 A resolution by molecular replacement starting from the structure of the Mg(2+).OSB complex. This establishes the absolute configuration of SHCHC: the C1-carboxylate and the C6-OH leaving group are in a trans orientation, requiring that the dehydration proceed via a syn stereochemical course. The side chain of Arg 133 is pointed out of the active site so that it cannot function as a general base, whereas in the wild-type enzyme complexed with Mg(2+).OSB, the side chain of Lys 133 is appropriately positioned to function as the only acid/base catalyst in the syn dehydration. The epsilon-ammonium group of Lys 235 forms a cation-pi interaction with the cyclohexadienyl moiety of SHCHC, suggesting that Lys 235 also stabilizes the enediolate anion intermediate in the syn dehydration via a similar interaction.
Abe, T; Takano, H; Sasaki, N; Mori, K; Kawano, S
2000-02-01
We found that mitochondrial DNA (mtDNA) isolated from Physarum polycephalum fragmented itself in weak ionic solutions. The mtDNA was dissolved in STE (saline Tris-EDTA: 150 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA), TE (10 mM Tris-HCl, 1 mM EDTA) and DW, and then electrophoresed in an agarose gel. The intact 86-kbp mtDNA band was seen in STE, but several novel bands appeared in TE and DW. In TE, two discrete bands appeared at 6.7-kbp (alpha-band) and 5.0-kbp (beta-band), whereas at least 17 discrete bands were observed in distilled water (DW). These fragmentation patterns were not stoichiometric, as seen when using restriction endonucleases, but were clearly different from the degradation of DNA caused by a physical shearing force or a contaminating nuclease. In this paper, we characterize this in vitro fragmentation of mtDNA from P. polycephalum. We located 19 fragments, including the alpha and beta fragments, on a mtDNA restriction map, and demonstrated that these cleavage sites were S1 nuclease-sensitive regions, which are single-stranded DNA regions such as nicks and gaps in the mtDNA. The alpha and beta fragments are derived from the region encoding ribosomal RNAs (rRNAs) and the ATP synthase (atpA) gene, while the other 17 fragments are not derived from any specific region, but the cleavage sites are located throughout the mtDNA molecule. In P. polycephalum, it is well known that the growth rate of macroplasmodia decreases with aging. Equal amounts of mtDNA from juvenile and aged macroplasmodia were electrophoresed and the frequency of the beta fragment in each sample was measured. The ratio of the beta band to the total signal including background was estimated to be 3.3-4.0% in juvenile macroplasmodia, whereas it increased to 8.3-28.2% in aged macroplasmodia. This result suggests that the in vitro fragmentation of mtDNA is associated with macroplasmodial senescence. The single-stranded breakage of mtDNA of P. polycephalum may accumulate with age.
Esperante, Sebastián A; Covaleda, Giovanni; Trejo, Sebastián A; Bronsoms, Sílvia; Aviles, Francesc X; Ventura, Salvador
2017-07-14
Nerita Versicolor carboxypeptidase inhibitor (NvCI) is the strongest inhibitor reported so far for the M14A subfamily of carboxypeptidases. It comprises 53 residues and a protein fold composed of a two-stranded antiparallel β sheet connected by three loops and stabilized by three disulfide bridges. Here we report the oxidative folding and reductive unfolding pathways of NvCI. Much debate has gone on whether protein conformational folding guides disulfide bond formation or instead they are disulfide bonds that favour the arrangement of local or global structural elements. We show here that for NvCI both possibilities apply. Under physiological conditions, this protein folds trough a funnelled pathway involving a network of kinetically connected native-like intermediates, all sharing the disulfide bond connecting the two β-strands. In contrast, under denaturing conditions, the folding of NvCI is under thermodynamic control and follows a "trial and error" mechanism, in which an initial quasi-stochastic population of intermediates rearrange their disulfide bonds to attain the stable native topology. Despite their striking mechanistic differences, the efficiency of both folding routes is similar. The present study illustrates thus a surprising plasticity in the folding of this extremely stable small disulfide-rich inhibitor and provides the basis for its redesign for biomedical applications.
Tomato apical stunt viroid - Data Sheet
USDA-ARS?s Scientific Manuscript database
Tomato apical stunt viroid (TASVd), a member of the family Pospiviroidae, genus Pospiviroid, is a small, covalently closed, circular single-stranded, highly base-paired RNA molecule that ranges in size from 362 to 364 nucleotides. Viroids do not encode peptides or proteins, and use host proteins for...
Structural and Biophysical Characterization of Cajanus cajan Protease Inhibitor.
Shamsi, Tooba Naz; Parveen, Romana; Ahamad, Shahzaib; Fatima, Sadaf
2017-01-01
A large number of studies have proven that Protease inhibitors (PIs), specifically serine protease inhibitors, show immense divergence in regulation of proteolysis by targeting their specific proteases and hence, they play a key role in healthcare. We aimed to access in-vitro anticancer potential of PI from Cajanus cajan (CCPI). Also, crystallization of CCPI was targetted alongwith structure determination and its structure-function relationship. CCPI was purified from Cajanus cajan seeds by chromatographic techniques. The purity and molecular mass was determined by SDS-PAGE. Anticancer potential of CCPI was determined by MTT assay in normal HEK and cancerous A549 cells. The crystallization screening of CCPI was performed by commercially available screens. CCPI sequence was subject to BLASTp with homologous PIs. Progressive multiple alignment was performed using clustalw2 and was modelled using ab initio protocol of I-TASSER. The results showed ~14kDa CCPI was purified in homogeneity. Also, CCPI showed low cytotoxic effects of in HEK i.e., 27% as compared with 51% cytotoxicity in A549 cells. CCPI crystallized at 16°C using 15% PEG 6000 in 0.1M potassium phosphate buffer (pH 6.0) in 2-3weeks as rod or needles visualized as clusters under the microscope. The molecular modelling revealed that it contains 3 beta sheets, 3 beta hairpins, 2 β-bulges, 6 strands, 3 helices, 1helix-helix interaction, 41 β-turns and 27 γ-turns. The results indicate that CCPI may help to treat cancer in vivo aswell. Also, this is the first report on preliminary crystallization and structural studies of CCPI.
Secbase: database module to retrieve secondary structure elements with ligand binding motifs.
Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard
2009-10-01
Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.
Beta structures of alternating polypeptides and their possible prebiotic significance
NASA Technical Reports Server (NTRS)
Brack, A.; Orgel, L. E.
1975-01-01
A survey of the commonest amino acids formed in prebiotic conditions suggests that the earliest form of genetic coding may have specified polypeptides with a strong tendency to form stable beta-sheet structures. Poly(Val-Lys), like other polypeptides in which hydrophobic and hydrophilic residues alternate, tends to form beta structures. It is shown that bilayers with a hydrophobic interior and a hydrophilic exterior may be present in aqueous solution.
Crystal structure of the second PDZ domain of SAP97 in complex with a GluR-A C-terminal peptide.
von Ossowski, Ingemar; Oksanen, Esko; von Ossowski, Lotta; Cai, Chunlin; Sundberg, Maria; Goldman, Adrian; Keinänen, Kari
2006-11-01
Synaptic targeting of GluR-A subunit-containing glutamate receptors involves an interaction with synapse-associated protein 97 (SAP97). The C-terminus of GluR-A, which contains a class I PDZ ligand motif (-x-Ser/Thr-x-phi-COOH where phi is an aliphatic amino acid) associates preferentially with the second PDZ domain of SAP97 (SAP97(PDZ2)). To understand the structural basis of this interaction, we have determined the crystal structures of wild-type and a SAP97(PDZ2) variant in complex with an 18-mer C-terminal peptide (residues 890-907) of GluR-A and of two variant PDZ2 domains in unliganded state at 1.8-2.44 A resolutions. SAP97(PDZ2) folds to a compact globular domain comprising six beta-strands and two alpha-helices, a typical architecture for PDZ domains. In the structure of the peptide complex, only the last four C-terminal residues of the GluR-A are visible, and align as an antiparallel beta-strand in the binding groove of SAP97(PDZ2). The free carboxylate group and the aliphatic side chain of the C-terminal leucine (Leu907), and the hydroxyl group of Thr905 of the GluR-A peptide are engaged in essential class I PDZ interactions. Comparison between the free and complexed structures reveals conformational changes which take place upon peptide binding. The betaAlpha-betaBeta loop moves away from the C-terminal end of alphaB leading to a slight opening of the binding groove, which may better accommodate the peptide ligand. The two conformational states are stabilized by alternative hydrogen bond and coulombic interactions of Lys324 in betaAlpha-betaBeta loop with Asp396 or Thr394 in betaBeta. Results of in vitro binding and immunoprecipitation experiments using a PDZ motif-destroying L907A mutation as well as the insertion of an extra alanine residue between the C-terminal Leu907 and the stop codon are also consistent with a 'classical' type I PDZ interaction between SAP97 and GluR-A C-terminus.
Solution structure of the catalytic domain of RICH protein from goldfish.
Kozlov, Guennadi; Denisov, Alexey Y; Pomerantseva, Ekaterina; Gravel, Michel; Braun, Peter E; Gehring, Kalle
2007-03-01
Regeneration-induced CNPase homolog (RICH) is an axonal growth-associated protein, which is induced in teleost fish upon optical nerve injury. RICH consists of a highly acidic N-terminal domain, a catalytic domain with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity and a C-terminal isoprenylation site. In vitro RICH and mammalian brain CNPase specifically catalyze the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate remains unknown. Here, we report the NMR structure of the catalytic domain of goldfish RICH and describe its binding to CNPase inhibitors. The structure consists of a twisted nine-stranded antiparallel beta-sheet surrounded by alpha-helices on both sides. Despite significant local differences mostly arising from a seven-residue insert in the RICH sequence, the active site region is highly similar to that of human CNPase. Likewise, refinement of the catalytic domain of rat CNPase using residual dipolar couplings gave improved agreement with the published crystal structure. NMR titrations of RICH with inhibitors point to a similar catalytic mechanism for RICH and CNPase. The results suggest a functional importance for the evolutionarily conserved phosphodiesterase activity and hint of a link with pre-tRNA splicing.
Structural genomics reveals EVE as a new ASCH/PUA-related domain
Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Forouhar, Farhad; Zhou, Weihong; Kuzin, Alexander P.; Seetharaman, Jayaraman; Abashidze, Mariam; Ramelot, Theresa A.; Kennedy, Michael A.; Cort, John R.; Belachew, Adam; Hunt, John F.; Tong, Liang; Montelione, Gaetano T.; Rost, Burkhard
2014-01-01
Summary We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links. PMID:19191354
Structural Genomics Reveals EVE as a New ASCH/PUA-Related Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertonati, C.; Punta, M; Fischer, M
2008-01-01
We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE.more » Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, C; Bronk, L; UT Graduate School of Biomedical Sciences at Houston, Houston, TX
2015-06-15
Purpose: High throughput in vitro experiments assessing cell survival following proton radiation indicate that both the alpha and the beta parameters of the linear quadratic model increase with increasing proton linear energy transfer (LET). We investigated the relative biological effectiveness (RBE) of double-strand break (DSB) induction as a means of explaining the experimental results. Methods: Experiments were performed with two lung cancer cell lines and a range of proton LET values (0.94 – 19.4 keV/µm) using an experimental apparatus designed to irradiate cells in a 96 well plate such that each column encounters protons of different dose-averaged LET (LETd). Traditionalmore » linear quadratic survival curve fitting was performed, and alpha, beta, and RBE values obtained. Survival curves were also fit with a model incorporating RBE of DSB induction as the sole fit parameter. Fitted values of the RBE of DSB induction were then compared to values obtained using Monte Carlo Damage Simulation (MCDS) software and energy spectra calculated with Geant4. Other parameters including alpha, beta, and number of DSBs were compared to those obtained from traditional fitting. Results: Survival curve fitting with RBE of DSB induction yielded alpha and beta parameters that increase with proton LETd, which follows from the standard method of fitting; however, relying on a single fit parameter provided more consistent trends. The fitted values of RBE of DSB induction increased beyond what is predicted from MCDS data above proton LETd of approximately 10 keV/µm. Conclusion: In order to accurately model in vitro proton irradiation experiments performed with high throughput methods, the RBE of DSB induction must increase more rapidly than predicted by MCDS above LETd of 10 keV/µm. This can be explained by considering the increased complexity of DSBs or the nature of intra-track pairwise DSB interactions in this range of LETd values. NIH Grant 2U19CA021239-35.« less
Rajgaria, R.; Wei, Y.; Floudas, C. A.
2010-01-01
An integer linear optimization model is presented to predict residue contacts in β, α + β, and α/β proteins. The total energy of a protein is expressed as sum of a Cα – Cα distance dependent contact energy contribution and a hydrophobic contribution. The model selects contacts that assign lowest energy to the protein structure while satisfying a set of constraints that are included to enforce certain physically observed topological information. A new method based on hydrophobicity is proposed to find the β-sheet alignments. These β-sheet alignments are used as constraints for contacts between residues of β-sheets. This model was tested on three independent protein test sets and CASP8 test proteins consisting of β, α + β, α/β proteins and was found to perform very well. The average accuracy of the predictions (separated by at least six residues) was approximately 61%. The average true positive and false positive distances were also calculated for each of the test sets and they are 7.58 Å and 15.88 Å, respectively. Residue contact prediction can be directly used to facilitate the protein tertiary structure prediction. This proposed residue contact prediction model is incorporated into the first principles protein tertiary structure prediction approach, ASTRO-FOLD. The effectiveness of the contact prediction model was further demonstrated by the improvement in the quality of the protein structure ensemble generated using the predicted residue contacts for a test set of 10 proteins. PMID:20225257
Zhang, Lin; Yagnik, Gargey; Peng, Yong; Wang, Jianxiu; Xu, H. Howard; Hao, Yuanqiang; Liu, You-Nian; Zhou, Feimeng
2013-01-01
The aggregation of amyloidogenic proteins/peptides has been closely linked to the neuropathology of several important neurological disorders. In Alzheimer's disease (AD), amyloid beta (Aβ) peptides and their aggregation are believed to be at least partially responsible for the etiology of AD. The aggregate-inflicted cellular toxicity can be inhibited by short peptides whose sequence are homologous to segments of the Aβ(1–42) peptide responsible for β-sheet stacking (referred to as the β-sheet breaker peptides). Herein a water-soluble ferrocene (Fc)-tagged β-sheet breaker peptide (Fc-KLVFFK6) is used as an electrochemical probe for kinetic studies of the inhibition of the Aβ(1–42) fibrillation process and for determination of the optimal concentration of β-sheet breaker peptide for efficient inhibition. Our results demonstrated that Fc-KLVFFK6 interacts with the Aβ aggregates instantaneously in solution, and sub-stoichiometric amount of Fc-KLVFFK6 is sufficient to inhibit the formation of the Aβ oligomers and fibrils and to reduce the toxicity of Aβ(1–42). The interaction between Fc-KLVFFK6 and Aβ(1–42) follows a pseudo-first-order reaction, with a rate constant of 1.89 ± 0.05 × 10−4 s−1. Tagging β-sheet breaker peptides with a redox label facilitates design, screening, and rational use of peptidic inhibitors for impeding/altering Aβ aggregation. PMID:23232068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Li; Q Wang; R Mariuzza
2011-12-31
Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumor cells. In humans, the activating natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 play a major role in NK cell-mediated tumor cell lysis. NKp30 recognizes B7-H6, a member of the B7 family which is expressed on tumor, but not healthy, cells. To understand the basis for tumor surveillance by NCRs, we determined the structure of NKp30, a member of the CD28 family which includes CTLA-4 and PD-1, in complex with B7-H6. The overall organization of the NKp30-B7-H6-activating complex differs considerably from thosemore » of the CTLA-4-B7 and PD-1-PD-L T cell inhibitory complexes. Whereas CTLA-4 and PD-1 use only the front {beta}-sheet of their Ig-like domain to bind ligands, NKp30 uses both front and back {beta}-sheets, resulting in engagement of B7-H6 via the side, as well as face, of the {beta}-sandwich. Moreover, B7-H6 contacts NKp30 through the complementarity-determining region (CDR) - like loops of its V-like domain in an antibody-like interaction that is not observed for B7 or PD-L. This first structure of an NCR bound to ligand provides a template for designing molecules to stimulate NKp30-mediated cytolytic activity for tumor immunotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan,K.; Fedorov, A.; Almo, S.
2008-01-01
Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies ofmore » d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate group hydrogen bonds not only with the conserved motif but also with an active site loop following the sixth {beta}-strand, providing a potential structural mechanism for coupling substrate binding with catalysis.« less
Christensen, Nanna K; Bryld, Torsten; Sørensen, Mads D; Arar, Khalil; Wengel, Jesper; Nielsen, Poul
2004-02-07
Two LNA (locked nucleic acid) stereoisomers (beta-L-LNA and alpha-D-LNA) are evaluated in the mirror-image world, that is by the study of two mixed sequences of LNA and alpha-L-LNA and their L-DNA and L-RNA complements. Both are found to display high-affinity RNA-recognition by the formation of duplexes with parallel strand orientation.
Wang, Sha-Sha; Thornton, Keith; Kuhn, Andrew M; Nadeau, James G; Hellyer, Tobin J
2003-10-01
The BD ProbeTec ET System is based on isothermal strand displacement amplification (SDA) of target nucleic acid coupled with homogeneous real-time detection using fluorescent probes. We have developed a novel, rapid method using this platform that incorporates a universal detection format for identification of single-nucleotide polymorphisms (SNPs) and other genotypic variations. The system uses a common pair of fluorescent Detector Probes in conjunction with unlabeled allele-specific Adapter Primers and a universal buffer chemistry to permit analysis of multiple SNP loci under generic assay conditions. We used Detector Probes labeled with different dyes to facilitate differentiation of two alternative alleles in a single reaction with no postamplification manipulation. We analyzed six SNPs within the human beta(2)-adrenergic receptor (beta(2)AR) gene, using whole blood, buccal swabs, and urine samples, and compared results with those obtained by DNA sequencing. Unprocessed whole blood was successfully genotyped with as little as 0.1-1 micro L of sample per reaction. All six beta(2)AR assays were able to accommodate >/==" BORDER="0">20 micro L of unprocessed whole blood. For the 14 individuals tested, genotypes determined with the six beta(2)AR assays agreed with DNA sequencing results. SDA-based allelic differentiation on the BD ProbeTec ET System can detect SNPs rapidly, using whole blood, buccal swabs, or urine.
Gibbs motif sampling: detection of bacterial outer membrane protein repeats.
Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.
1995-01-01
The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488
Liu, Bingqian; Chen, Jinfeng; Wei, Qiaohua; Zhang, Bing; Zhang, Lan; Tang, Dianping
2015-07-15
A new signal amplification strategy based on target-regulated DNA proximity hybridization (TRPH) reaction accompanying formation of three-way DNA junction was designed for electronic detection of Microcystin-LR (MC-LR used in this case), coupling with junction-induced isothermal cycling signal amplification. Initially, a sandwiched-type immunoreaction was carried out in a low-cost PCR tube between anti-MC-LR mAb1 antibody-labeled DNA1 (mAb1-DNA1) and anti-MC-LR mAb2-labeled DNA2 (mAb2-DNA2) in the presence of target to form a three-way DNA junction. Then, the junction could undergo an unbiased strand displacement reaction on an h-like DNA nanostructure-modified electrode (labeled with methylene blue redox tag on the short DNA strand), thereby resulting in the dissociation of methylene blue-labeled signal DNA from the electrode. The newly formed double-stranded DNA could be cleaved again by exonuclease III, and the released three-way DNA junction retriggered the strand-displacement reaction with h-like DNA nanostructures for junction recycling. During the strand-displacement reaction, numerous methylene blue-labeled DNA strands were far away from the electrode, thus decreasing the detectable electrochemical signal within the applied potentials. Under optimal conditions, the TRPH-based immunosensing system exhibited good electrochemical responses for detecting target MC-LR at a concentration as low as 1.0ngkg(-1) (1.0ppt). Additionally, the precision, reproducibility, specificity and method accuracy were also investigated with acceptable results. Copyright © 2015 Elsevier B.V. All rights reserved.
Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kemin; Cao, Nan; Cheng, Bokun
The DNA topoisomerase I enzyme of Mycobacterium tuberculosis (MtTOP1) is essential for the viability of the organism and survival in a murine model. This topoisomerase is being pursued as a novel target for the discovery of new therapeutic agents for the treatment of drug-resistant tuberculosis. In this study, we succeeded in obtaining a structure of MtTOP1 by first predicting that the C-terminal region of MtTOP1 contains four repeated domains that do not involve the Zn-binding tetracysteine motifs seen in the C-terminal domains of Escherichia coli topoisomerase I. A construct (amino acids A2-T704), MtTOP1-704t, that includes the N-terminal domains (D1-D4) andmore » the first predicted C-terminal domain (D5) of MtTOP1 was expressed and found to retain DNA cleavage-religation activity and catalyze single-stranded DNA catenation. MtTOP1-704t was crystallized, and a structure of 2.52 angstrom resolution limit was obtained. The structure of the MtTOP1 N-terminal domains has features that have not been observed in other previously available bacterial topoisomerase I crystal structures. The first C-terminal domain D5 forms a novel protein fold of a four-stranded antiparallel beta-sheet stabilized by a crossing-over alpha-helix. Since there is only one type IA topoisomerase present in Mycobacteriaceae and related Actinobacteria, this subfamily of type IA topoisomerase may be required for multiple functions in DNA replication, transcription, recombination, and repair. The unique structural features observed for MtTOP1 may allow these topoisomerase I enzymes to carry out physiological functions associated with topoisomerase III enzyme in other bacteria.« less
Rate Kinetics and Molecular Dynamics of the Structural Transitions in Amyloidogenic Proteins
NASA Astrophysics Data System (ADS)
Steckmann, Timothy M.
Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's and others. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. Amyloid fibrils are composed of proteins that originate in an innocuous alpha-helix or random-coil structure. The alpha-helices convert their structure to beta-strands that aggregate into beta-sheets, and then into protofibrils, and ultimately into fully formed amyloid fibrils. On the basis of experimental data, I have developed a mathematical model for the kinetics of the reaction pathways and determined rate parameters for peptide secondary structural conversion and aggregation during the entire fibrillogenesis process from random coil to fibrils, including the molecular species that accelerate the conversions. The specific steps of the model and the rate constants that are determined by fitting to experimental data provide insight on the molecular species involved in the fibril formation process. To better understand the molecular basis of the protein structural transitions and aggregation, I report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccbeta, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow beta-hairpin proteins to straighten, and the subsequent formation of interchain hydrogen bonds during aggregation into amyloid fibrils. For my MD simulations, I found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccbeta protein experiences during the process of forming protofibrillar structures. Both the mathematical modeling of the kinetics and the MD simulations show that molecular structural heterogeneity is a major factor in the process. The MD simulations also show that intrachain and interchain hydrogen bonds breaking and forming is strongly correlated to the process of amyloid formation.
Programmable DNA scaffolds for spatially-ordered protein assembly
NASA Astrophysics Data System (ADS)
Chandrasekaran, Arun Richard
2016-02-01
Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed. Dedicated to my advisor Ned Seeman on the occasion of his 70th birthday.
Ramezani, Vahid; Vatanara, Alireza; Seyedabadi, Mohammad; Nabi Meibodi, Mohsen; Fanaei, Hamed
2017-07-01
Dry powder formulations are extensively used to improve the stability of antibodies. Spray drying is one of important methods for protein drying. This study investigated the effects of trehalose, hydroxypropyl beta cyclodextrin (HPBCD) and beta cyclodextrin (BCD) on the stability and particle properties of spray-dried IgG. D-optimal design was employed for both experimental design and analysis and optimization of the variables. The size and aerodynamic behavior of particles were determined using laser light scattering and glass twin impinger, respectively. In addition, stability, ratio of beta sheets and morphology of antibody were analyzed using size exclusion chromatography, IR spectroscopy and electron microscopy, respectively. Particle properties and antibody stability were significantly improved in the presence of HPBCD. In addition, particle aerodynamic behavior, in terms of fine-particle fraction (FPF), enhanced up to 52.23%. Furthermore, antibody was better preserved not only during spray drying, but also during long-term storage. In contrast, application of BCD resulted in the formation of larger particles. Although trehalose caused inappropriate aerodynamic property, it efficiently decreased antibody aggregation. HPBCD is an efficient excipient for the development of inhalable protein formulations. In this regard, optimal particle property and antibody stability was obtained with proper combination of cyclodextrins and simple sugars, such as trehalose.
Dynamics of beta-amyloid peptide in cholesterol superlattice domain
NASA Astrophysics Data System (ADS)
Smirnov, Anton; Zhu, Qing; Vaughn, Mark; Khare, Rajesh; Cheng, K.
2006-10-01
Presence of beta-amyloid peptide (beta-A) plagues in membranes of neuron cells is a clinical signature of Alzheimer disease. The onset of beta-A peptide aggregation occurs via a conformational transition from an alpha-helix state to a beta-sheet state. A gradual build-up of beta-A content in the neuronal extracellular space is another characteristic of the beta-A plague formation. Hypothetically, both the pathological conformation and the predominant localization of the beta-A can be a result of specific dynamic characteristics of the interphase between cellular membrane and extracellular milieu. In this study, the beta-A interphase problem has been investigated using a virtual membrane model implemented on the base of GROMACS molecular dynamics simulation package. The detailed folding pattern of beta-A has been examined using a novice interphase model comprised of a cholesterol supperlattice membrane and two water layers.
Computational Selection of Inhibitors of A-beta Aggregation and Neuronal Toxicity
Chen, Deliang; Martin, Zane S.; Soto, Claudio; Schein, Catherine H.
2009-01-01
Alzheimer’s Disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-β protein (Aβ). Disease symptoms can be alleviated, in vitro and in vivo, by “β-sheet breaker” pentapeptides that reduce plaque volume. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related β-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Aβ. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features in a conformation similar to the active peptides were selected, ranked by docking solubility parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Aβ aggregation at 2–3 μM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Aβ on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD. PMID:19540126
Patterning nonisometric origami in nematic elastomer sheets
NASA Astrophysics Data System (ADS)
Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik
Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.
Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł
2005-05-15
It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.
Silk from crickets: a new twist on spinning.
Walker, Andrew A; Weisman, Sarah; Church, Jeffrey S; Merritt, David J; Mudie, Stephen T; Sutherland, Tara D
2012-01-01
Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.
β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR
Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam
2015-01-01
Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix. PMID:25550503
β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR.
Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam
2015-01-13
Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix.
Duan, Ming-Rui; Nan, Jie; Liang, Yu-He; Mao, Peng; Lu, Lu; Li, Lanfen; Wei, Chunhong; Lai, Luhua; Li, Yi; Su, Xiao-Dong
2007-01-01
WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 Å resolution has revealed that this domain is composed of a globular structure with five β strands, forming an antiparallel β-sheet. A novel zinc-binding site is situated at one end of the β-sheet, between strands β4 and β5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at β2 and β3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins. PMID:17264121
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-04-23
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.
Biodegradable materials based on silk fibroin and keratin.
Vasconcelos, Andreia; Freddi, Giuliano; Cavaco-Paulo, Artur
2008-04-01
Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds for tissue engineering or as controlled release drug delivery vehicles.
Chandra, Vikas; Jasti, Jayasankar; Kaur, Punit; Dey, Sharmistha; Srinivasan, A; Betzel, Ch; Singh, T P
2002-10-01
Phospholipase A(2) (EC 3.1.1.4) is a key enzyme of the cascade mechanism involved in the production of proinflammatory compounds known as eicosanoids. The binding of phospholipase A(2) to membrane surfaces and the hydrolysis of phospholipids are thought to involve the formation of a hydrophobic channel into which a single substrate molecule diffuses before cleavage. In order to regulate the production of proinflammatory compounds, a specific peptide inhibitor of PLA(2), Leu-Ala-Ile-Tyr-Ser, has been designed. Phospholipase A(2) from Daboia russelli pulchella (DPLA(2)) and peptide Leu-Ala-Ile-Tyr-Ser (LAIYS) have been co-crystallized. The structure of the complex has been determined and refined to 2.0 A resolution. The structure contains two crystallographically independent molecules of DPLA(2), with one molecule of peptide specifically bound to one of them. The overall conformations of the two molecules are essentially similar except in three regions; namely, the calcium-binding loop including Trp31 (residues 25-34), the beta-wing consisting of two antiparallel beta-strands (residues 74-85) and the C-terminal region (residues 119-133). Of these, the most striking difference pertains to the orientation of Trp31 in the two molecules. The conformation of Trp31 in molecule A was suitable to allow the binding of peptide LAIYS, while that in molecule B prevented the entry of the ligand into the hydrophobic channel. The structure of the complex clearly showed that the OH group of Tyr of the inhibitor formed hydrogen bonds with both His48 N(delta1) and Asp49 O(delta1), while O(gamma)H of Ser was involved in a hydrogen bond with Trp31. Other peptide backbone atoms interact with protein through water molecules, while Leu, Ala and Ile form strong hydrophobic interactions with the residues of the hydrophobic channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Dongwen; Chung, Suhman; Miller, Maria
2012-06-19
The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intactmore » RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.« less
Guarracino, Danielle A; Gentile, Kayla; Grossman, Alec; Li, Evan; Refai, Nader; Mohnot, Joy; King, Daniel
2018-02-01
Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3 10 -helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 10 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.
Surface-enhanced Raman spectroscopy for the detection of pathogenic DNA and protein in foods
NASA Astrophysics Data System (ADS)
Chowdhury, Mustafa H.; Atkinson, Brad; Good, Theresa; Cote, Gerard L.
2003-07-01
Traditional Raman spectroscopy while extremely sensitive to structure and conformation, is an ineffective tool for the detection of bioanalytes at the sub milimolar level. Surface Enhanced Raman Spectroscopy (SERS) is a technique developed more recently that has been used with applaudable success to enhance the Raman cross-section of a molecule by factors of 106 to 1014. This technique can be exploited in a nanoscale biosensor for the detection of pathogenic proteins and DNA in foods by using a biorecognition molecule to bring a target analyte in close proximity to the mental surface. This is expected to produce a SERS signal of the target analyte, thus making it possible to easily discriminate between the target analyte and possible confounders. In order for the sensor to be effective, the Raman spectra of the target analyte would have to be distinct from that of the biorecognition molecule, as both would be in close proximity to the metal surface and thus be subjected to the SERS effect. In our preliminary studies we have successfully used citrate reduced silver colloidal particles to obtain unique SERS spectra of α-helical and β-sheet bovine serum albumin (BSA) that served as models of an α helical antiobiody (biorecognition element) and a β-sheet target protein (pathogenic prion). In addition, the unique SERS spectra of double stranded and single stranded DNA were also obtained where the single stranded DNA served as the model for the biorecognition element and the double stranded DNA served as themodel for the DNA probe/target hybrid. This provides a confirmation of the feasibility of the method which opens opportunities for potentially wide spread applications in the detection of food pathogens, biowarefare agents, andother bio-analytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvin, J.R.
1983-01-01
It is suggested that a primary, essential stage in the biologic formation of a microfibril of cellulose I is an extracellular, lateral association of presynthesized (1..-->..4)-..beta..-D-glucans, by hydrogen bonding, to form long, thin sheets. These sheets then superimpose themselves nonenzymatically by London forces to form the nascent microfibril. The ends of the constituent glucans of the nascent microfibril may undergo extension or rearrangement of the type indicated by Maclachlan and colleagues. The formation of the metastable, native structure (cellulose I) may be deduced from the above suggestion as a natural consequence of closest packing of the sheets. The irreversibility ofmore » the change from cellulose I to cellulose II, either by mercerization or regeneration, also follows from the postulate. The suggestion also explains why cellulose microfibrils and chitin microfibrils may be formed contiguously in cell walls without interfering with each other. High-resolution electron micrographs of the tips of newly formed microfibrils of bacterial cellulose which had been very lightly negatively stained with sodium phosphotungstate are consistent with the suggestion. 33 references, 3 figures.« less
Clarke, David J; Northey, Christopher G; Mack, Lynsey A; McNae, Iain W; Alexeev, Dmitriy; Sawyer, Lindsay; Campopiano, Dominic J
2004-11-01
Single-stranded DNA-binding (SSB) proteins stabilize single-stranded DNA, which is exposed by separation of the duplex during DNA replication, recombination and repair. The SSB protein from the hyperthermophile Aquifex aeolicus has been overexpressed in Escherichia coli, purified and characterized and crystals of the full-length protein (147 amino acids; M(r) 17 131.20) have been grown by vapour diffusion from ammonium sulfate pH 7.5 in both the absence and presence of ssDNA [dT(pT)(68)]. All crystals diffract to around 2.9 A resolution and those without bound DNA (native) belong to space group P2(1), with two tetramers in the asymmetric unit and unit-cell parameters a = 80.97, b = 73.40, c = 109.76 A, beta = 95.11 degrees . Crystals containing DNA have unit-cell parameters a = 108.65, b = 108.51, c = 113.24 A and could belong to three closely related space groups (I222, I2(1)2(1)2(1) or I4(1)) with one tetramer in the asymmetric unit. Electrospray mass spectrometry of the crystals confirmed that the protein was intact. Molecular replacement with a truncated E. coli SSB structure has revealed the position of the molecules in the unit cell and refinement of both native and DNA-bound forms is under way.
Architecture and biogenesis of plus-strand RNA virus replication factories
Paul, David; Bartenschlager, Ralf
2013-01-01
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories. PMID:24175228
Boosting protein stability with the computational design of β-sheet surfaces.
Kim, Doo Nam; Jacobs, Timothy M; Kuhlman, Brian
2016-03-01
β-sheets often have one face packed against the core of the protein and the other facing solvent. Mutational studies have indicated that the solvent-facing residues can contribute significantly to protein stability, and that the preferred amino acid at each sequence position is dependent on the precise structure of the protein backbone and the identity of the neighboring amino acids. This suggests that the most advantageous methods for designing β-sheet surfaces will be approaches that take into account the multiple energetic factors at play including side chain rotamer preferences, van der Waals forces, electrostatics, and desolvation effects. Here, we show that the protein design software Rosetta, which models these energetic factors, can be used to dramatically increase protein stability by optimizing interactions on the surfaces of small β-sheet proteins. Two design variants of the β-sandwich protein from tenascin were made with 7 and 14 mutations respectively on its β-sheet surfaces. These changes raised the thermal midpoint for unfolding from 45°C to 64°C and 74°C. Additionally, we tested an empirical approach based on increasing the number of potential salt bridges on the surfaces of the β-sheets. This was not a robust strategy for increasing stability, as three of the four variants tested were unfolded. © 2016 The Protein Society.
Boros, D L; Singh, K P; Gerard, H C; Hudson, A P; White, S L; Cutroneo, K R
2005-08-01
Schistosomiasis mansoni disseminated worm eggs in mice and humans induce granulomatous inflammations and cumulative fibrosis causing morbidity and possibly mortality. In this study, intrahepatic and I.V. injections of a double-stranded oligodeoxynucleotide decoy containing the TGF-beta regulatory element found in the distal promoter of the COL1A1 gene into worm-infected mice suppressed TGF-beta1, COL1A1, tissue inhibitor of metalloproteinase-1, and decreased COL3A1 mRNAs to a lesser extent. Sequence comparisons within the mouse genome found homologous sequences within the COL3A1, TGF-beta1, and TIMP-1 5' flanking regions. Cold competition gel mobility shift assays using these homologous sequences with 5' and 3' flanking regions found in the natural COL1A1 gene showed competition. Competitive gel mobility assays in a separate experiment showed no competition using a 5-base mutated or scrambled sequence. Explanted liver granulomas from saline-injected mice incorporated 10.45 +/- 1.7% (3)H-proline into newly synthesized collagen, whereas decoy-treated mice showed no collagen synthesis. Compared with the saline control schistosomiasis mice phosphorothioate double-stranded oligodeoxynucleotide treatment decreased total liver collagen content (i.e. hydroxy-4-proline) by 34%. This novel molecular approach has the potential to be employed as a novel antifibrotic treatment modality. (c) 2005 Wiley-Liss, Inc.
ATP-induced noncooperative thermal unfolding of hen lysozyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Honglin; Yin, Peidong; He, Shengnan
To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg{sup 2+}-ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the {beta}-domain stability of HEWL, induces a noncooperativemore » unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich {alpha}-helix and less {beta}-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric {beta}-sheet enriched intermediate.« less
Pragl, Bernt; Koschak, Alexandra; Trieb, Maria; Obermair, Gerald; Kaufmann, Walter A; Gerster, Uli; Blanc, Eric; Hahn, Christoph; Prinz, Heino; Schütz, Gerhard; Darbon, Herve; Gruber, Hermann J; Knaus, Hans-Günther
2002-01-01
Hongotoxin(1) (HgTX(1)), a 39-residue peptide recently isolated from the venom of Centruroides limbatus, blocks the voltage-gated K+ channels K(v)1.1, K(v)1.2, and K(v)1.3 at picomolar toxin concentrations (Koschak, A., Bugianesi, R. M., Mitterdorfer, J., Kaczorowski, G. J., Garcia, M. L., and Knaus, H. G. (1998) J. Biol. Chem. 273, 2639-2644). In this report, we determine the three-dimensional structure of HgTX(1) using NMR spectroscopy (PDB-code: 1HLY). HgTX(1) was found to possess a structure similar to previously characterized K+ channel toxins (e.g. margatoxin) consisting of a three-stranded antiparallel beta-sheet (residues 2-4, 26-30, and 33-37) and a helical conformation (part 3(10) helix and part alpha helix; residues 10-20). Due to the importance of residue Lys-28 for high-affinity interaction with the respective channels, lysine-reactive fluorescence dyes cannot be used to label wild-type HgTX(1). On the basis of previous studies (see above) and our NMR data, a HgTX(1) mutant (HgTX(1)-A19C) was engineered, expressed, and purified. HgTX(1)-A19C-SH was labeled using sulfhydryl-reactive Cy3-, Cy5-, and Alexa-dyes. Pharmacological characterization of fluorescently labeled HgTX(1)-A19C in radioligand binding studies indicated that these hongotoxin(1) analogues retain high-affinity for voltage-gated K+ channels and a respective pharmacological profile. Cy3- and Alexa-dye-labeled hongotoxin(1) analogues were used to investigate the localization of K+ channels in brain sections. The distribution of toxin binding closely follows the distribution of K(v)1.2 immunoreactivity with the highest expression levels in the cerebellar Purkinje cell layer. Taken together, these results demonstrate that fluorescently labeled HgTX(1) analogues comprise novel probes to characterize a subset of voltage-gated K+ channels.
Multifunctional hybrid networks based on self assembling peptide sequences
NASA Astrophysics Data System (ADS)
Sathaye, Sameer
The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This loose packing can be attributed to the designed wedge and trough shapes of the peptides disturbing formation of a uniform bilayer type structure proposed in the case of MAX1 with each hairpin having a flat hydrophobic surface. Although designed changes in hydrophobic shape of the peptide nanofibril core in the new peptides were found to significantly influence the self-assembled nanostructure and network rheological behavior, a lack of direct morphological and rheological evidence to prove shape specific hydrophobic interactions between wedge and trough shaped beta-hairpins was encountered. In the second approach, peptides with established differences in assembly kinetics and bulk mechanical properties of assembled peptide hydrogels were used to develop composite materials with diverse morphological and mechanical properties by blending with the biopolymer hyaluronic acid. The diverse properties of the composites have been correlated to the specific peptide hydrogels used to develop the composite and the different stages of peptide assembly at which blending with hyaluronic acid was carried out. Finally along with overall conclusions, the new area of co-assembly of peptides in solution has been explored and discussed as potential future work following the research discussed in this dissertation. Strategies such as construction of composite hydrogels from blends of MAX1/MAX8 peptide hydrogels and biologically important anionic species such as heparin biopolymer and DNA have been discussed. Another area of future work discussed is the design and study of peptides that can incorporate chemically crosslinkable functional groups in their hydrophobic amino acid side chains that can be covalently crosslinked after peptide assembly into fibrils. Such covalent crosslinking can potentially lead to stiffer individual peptide fibrils due to additional bond formation at the fibrillar core and therefore much stiffer hydrogels due to a synergistic effect. These enhanced stiffness values can render these new hydrogels excellent candidates for applications like development of extracellular mimetic materials and substrates with easily tunable stiffness values for stem cell differentiation studies.
Structural domains and main-chain flexibility in prion proteins.
Blinov, N; Berjanskii, M; Wishart, D S; Stepanova, M
2009-02-24
In this study we describe a novel approach to define structural domains and to characterize the local flexibility in both human and chicken prion proteins. The approach we use is based on a comprehensive theory of collective dynamics in proteins that was recently developed. This method determines the essential collective coordinates, which can be found from molecular dynamics trajectories via principal component analysis. Under this particular framework, we are able to identify the domains where atoms move coherently while at the same time to determine the local main-chain flexibility for each residue. We have verified this approach by comparing our results for the predicted dynamic domain systems with the computed main-chain flexibility profiles and the NMR-derived random coil indexes for human and chicken prion proteins. The three sets of data show excellent agreement. Additionally, we demonstrate that the dynamic domains calculated in this fashion provide a highly sensitive measure of protein collective structure and dynamics. Furthermore, such an analysis is capable of revealing structural and dynamic properties of proteins that are inaccessible to the conventional assessment of secondary structure. Using the collective dynamic simulation approach described here along with a high-temperature simulations of unfolding of human prion protein, we have explored whether locations of relatively low stability could be identified where the unfolding process could potentially be facilitated. According to our analysis, the locations of relatively low stability may be associated with the beta-sheet formed by strands S1 and S2 and the adjacent loops, whereas helix HC appears to be a relatively stable part of the protein. We suggest that this kind of structural analysis may provide a useful background for a more quantitative assessment of potential routes of spontaneous misfolding in prion proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso
Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C)more » domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.« less
Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.
Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong
2017-12-01
Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.
Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source
NASA Astrophysics Data System (ADS)
Christy, Larry
Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.
An Amino Acid Code for Irregular and Mixed Protein Packing
Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry
2015-01-01
To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334
Human β-Synuclein Rendered Fibrillogenic by Designed Mutations
Zibaee, Shahin; Fraser, Graham; Jakes, Ross; Owen, David; Serpell, Louise C.; Crowther, R. Anthony; Goedert, Michel
2010-01-01
Filamentous inclusions made of α-synuclein are found in nerve cells and glial cells in a number of human neurodegenerative diseases, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. The assembly and spreading of these inclusions are likely to play an important role in the etiology of common dementias and movement disorders. Both α-synuclein and the homologous β-synuclein are abundantly expressed in the central nervous system; however, β-synuclein is not present in the pathological inclusions. Previously, we observed a poor correlation between filament formation and the presence of residues 73–83 of α-synuclein, which are absent in β-synuclein. Instead, filament formation correlated with the mean β-sheet propensity, charge, and hydrophilicity of the protein (global physicochemical properties) and β-strand contiguity calculated by a simple algorithm of sliding averages (local physicochemical property). In the present study, we rendered β-synuclein fibrillogenic via one set of point mutations engineered to enhance global properties and a second set engineered to enhance predominantly β-strand contiguity. Our findings show that the intrinsic physicochemical properties of synucleins influence their fibrillogenic propensity via two distinct but overlapping modalities. The implications for filament formation and the pathogenesis of neurodegenerative diseases are discussed. PMID:20833719
Apelgot, S
1980-04-01
The experiments show the lethal effect of the beta decay of 33P incorporated in DNA of bacteriophage S 13. The lethal efficiency is high, 0.72 at 0 degrees C and 0.55 at--197 degrees C. The presence of a radical scavenger like AET has no influence. It was found previously that for such phages with single-stranded DNA, the lethal efficiency of 32P decay is unity, and that the lethal event is a DNA single-strand break, owing to the high energy of the nucleogenic 32S atom. As the recoil energy of the 33S atom is too low to account for such a break, it is suggested that the reorganization of the phosphate molecule into sulphate is able to bring about a DNA single-strand break with an efficiency as high as 0.7, at 0 degrees C. A model for the DNA double-strand-break produced by a transmutation processes is suggested.
NASA Astrophysics Data System (ADS)
Kapoor, K.; Saratchandran, N.; Muralidharan, K.
1999-02-01
Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5wt%Nb pressure tubes. The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structure at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.
Structural and Biophysical Characterization of Cajanus cajan Protease Inhibitor
Shamsi, Tooba Naz; Parveen, Romana; Ahamad, Shahzaib; Fatima, Sadaf
2017-01-01
Context: A large number of studies have proven that Protease inhibitors (PIs), specifically serine protease inhibitors, show immense divergence in regulation of proteolysis by targeting their specific proteases and hence, they play a key role in healthcare. Objective: We aimed to access in-vitro anticancer potential of PI from Cajanus cajan (CCPI). Also, crystallization of CCPI was targetted alongwith structure determination and its structure-function relationship. Materials and Methods: CCPI was purified from Cajanus cajan seeds by chromatographic techniques. The purity and molecular mass was determined by SDS-PAGE. Anticancer potential of CCPI was determined by MTT assay in normal HEK and cancerous A549 cells. The crystallization screening of CCPI was performed by commercially available screens. CCPI sequence was subject to BLASTp with homologous PIs. Progressive multiple alignment was performed using clustalw2 and was modelled using ab initio protocol of I-TASSER. Results: The results showed ~14kDa CCPI was purified in homogeneity. Also, CCPI showed low cytotoxic effects of in HEK i.e., 27% as compared with 51% cytotoxicity in A549 cells. CCPI crystallized at 16°C using 15% PEG 6000 in 0.1M potassium phosphate buffer (pH 6.0) in 2-3weeks as rod or needles visualized as clusters under the microscope. The molecular modelling revealed that it contains 3 beta sheets, 3 beta hairpins, 2 β-bulges, 6 strands, 3 helices, 1helix-helix interaction, 41 β-turns and 27 γ-turns. Discussion and Conclusion: The results indicate that CCPI may help to treat cancer in vivo aswell. Also, this is the first report on preliminary crystallization and structural studies of CCPI. PMID:28781485
Hemmi, Hikaru; Ishibashi, Jun; Tomie, Tetsuya; Yamakawa, Minoru
2003-06-20
Scarabaecin isolated from hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros is a 36-residue polypeptide that has antifungal activity. The solution structure of scarabaecin has been determined from twodimensional 1H NMR spectroscopic data and hybrid distance geometry-simulated annealing protocol calculation. Based on 492 interproton and 10 hydrogen-bonding distance restraints and 36 dihedral angle restraints, we obtained 20 structures. The average backbone root-mean-square deviation for residues 4-35 is 0.728 +/- 0.217 A from the mean structure. The solution structure consists of a two-stranded antiparallel beta-sheet connected by a type-I beta-turn after a short helical turn. All secondary structures and a conserved disulfide bond are located in the C-terminal half of the peptide, residues 18-36. Overall folding is stabilized by a combination of a disulfide bond, seven hydrogen bonds, and numerous hydrophobic interactions. The structural motif of the C-terminal half shares a significant tertiary structural similarity with chitin-binding domains of plant and invertebrate chitin-binding proteins, even though scarabaecin has no overall sequence similarity to other peptide/polypeptides including chitin-binding proteins. The length of its primary structure, the number of disulfide bonds, and the pattern of conserved functional residues binding to chitin in scarabaecin differ from those of chitin-binding proteins in other invertebrates and plants, suggesting that scarabaecin does not share a common ancestor with them. These results are thought to provide further strong experimental evidence to the hypothesis that chitin-binding proteins of invertebrates and plants are correlated by a convergent evolution process.
Boehm, M K; Corper, A L; Wan, T; Sohi, M K; Sutton, B J; Thornton, J D; Keep, P A; Chester, K A; Begent, R H; Perkins, S J
2000-03-01
MFE-23 is the first single-chain Fv antibody molecule to be used in patients and is used to target colorectal cancer through its high affinity for carcinoembryonic antigen (CEA), a cell-surface member of the immunoglobulin superfamily. MFE-23 contains an N-terminal variable heavy-chain domain joined by a (Gly(4)Ser)(3) linker to a variable light-chain (V(L)) domain (kappa chain) with an 11-residue C-terminal Myc-tag. Its crystal structure was determined at 2.4 A resolution by molecular replacement with an R(cryst) of 19.0%. Five of the six antigen-binding loops, L1, L2, L3, H1 and H2, conformed to known canonical structures. The sixth loop, H3, displayed a unique structure, with a beta-hairpin loop and a bifurcated apex characterized by a buried Thr residue. In the crystal lattice, two MFE-23 molecules were associated back-to-back in a manner not seen before. The antigen-binding site displayed a large acidic region located mainly within the H2 loop and a large hydrophobic region within the H3 loop. Even though this structure is unliganded within the crystal, there is an unusually large region of contact between the H1, H2 and H3 loops and the beta-sheet of the V(L) domain of an adjacent molecule (strands DEBA) as a result of intermolecular packing. These interactions exhibited remarkably high surface and electrostatic complementarity. Of seven MFE-23 residues predicted to make contact with antigen, five participated in these lattice contacts, and this model for antigen binding is consistent with previously reported site-specific mutagenesis of MFE-23 and its effect on CEA binding.
McKay, Gareth J; Clarke, Stephen; Davis, Jason A; Simpson, David A C; Silvestri, Giuliana
2005-01-01
Pigmented paravenous chorioretinal atrophy (PPCRA) is an unusual retinal degeneration characterized by accumulation of pigmentation along retinal veins. The purpose of this study was to describe the phenotype of a family with PPCRA, determine the mode of inheritance, and identify the causal mutation. Ophthalmic examination was performed on seven family members and serially detailed in the proband over a 3-year period. Blood samples were collected and DNA extracted. All 12 coding exons and the 5' promoter region of the crumbs homologue 1 (CRB1) gene were PCR amplified and DNA sequenced. In silico homology modeling was performed on the mutated protein domain. Subtle symmetrical chorioretinal atrophy in the inferior quadrant was the earliest clinical sign detectable within this family. Paravenous pigmentation occurred initially in the far periphery, progressing centrally, with atrophy later becoming more widespread, involving the nasal, then the temporal, and finally the upper quadrant. A novel, dominant Val162Met mutation within the fourth EGF-like domain of CRB1 cosegregates with the PPCRA phenotype. It is thought to affect domain structure, because codon 162 is involved in hydrogen bonding between the antiparallel beta-strands of the major beta-sheet, causing sufficient perturbation of the backbone that the domain-stabilizing hydrogen bond does not form or is weakened. PPCRA was dominantly inherited in this family, but exhibited variable expressivity. Males are more likely to exhibit a severe phenotype, whereas females may remain virtually asymptomatic even in later years. The PPCRA phenotype is associated with a Val162Met mutation in CRB1 which is likely to affect the structure of the CRB1 protein.
Yokota, Takehiro; Nara, Yukinori; Kashima, Akiko; Matsubara, Keiko; Misawa, Satoru; Kato, Ryohei; Sugio, Shigetoshi
2007-02-01
Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1. Copyright 2006 Wiley-Liss, Inc.
Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N.
2001-01-01
A generic statistical mechanical model is presented for the self-assembly of chiral rod-like units, such as β-sheet-forming peptides, into helical tapes, which with increasing concentration associate into twisted ribbons (double tapes), fibrils (twisted stacks of ribbons), and fibers (entwined fibrils). The finite fibril width and helicity is shown to stem from a competition between the free energy gain from attraction between ribbons and the penalty because of elastic distortion of the intrinsically twisted ribbons on incorporation into a growing fibril. Fibers are stabilized similarly. The behavior of two rationally designed 11-aa residue peptides, P11-I and P11-II, is illustrative of the proposed scheme. P11-I and P11-II are designed to adopt the β-strand conformation and to self-assemble in one dimension to form antiparallel β-sheet tapes, ribbons, fibrils, and fibers in well-defined solution conditions. The energetic parameters governing self-assembly have been estimated from the experimental data using the model. The 8-nm-wide fibrils consist of eight tapes, are extremely robust (scission energy ≈200 kBT), and sufficiently rigid (persistence length l̃fibril ≈ 20–70 μm) to form nematic solutions at peptide concentration c ≈ 0.9 mM (volume fraction ≈0.0009 vol/vol), which convert to self-supporting nematic gels at c > 4 mM. More generally, these observations provide a new insight into the generic self-assembling properties of β-sheet-forming peptides and shed new light on the factors governing the structures and stability of pathological amyloid fibrils in vivo. The model also provides a prescription of routes to novel macromolecules based on a variety of self-assembling chiral units, and protocols for extraction of the associated energy changes. PMID:11592996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenner, G.G.; Osserman, E.F.
1986-01-01
The subjects covered in this Symposium range through almost every clinical medical specialty. From an average of one paper in each of the past three Symposiums, the explosive interest in cerebral amyloidosis has led to the presentation of 12 papers on this subject in the present volume. The genetically predisposed familial amyloidotic processes, such as the polyneuropathies and familial Mediterranean fever have also stimulated extensive and intriguing investigations which have revealed the striking effect of a single amino acid substitution in transforming a normal protein into a lethal ''amyloidogenic'' one. This Symposium clearly depicts the advances since the first amyloidmore » fibril protein was definitively identified and defined 14 years ago. Since all amyloid fibril proteins so far described are variants of normal proteins, attention to gene abnormalities now becomes a significant focus as well as the pathogenic sequences which lead in these cases to twisted BETA-pleated sheet (amyloid) fibril formation. Tentative concepts such as the ''amyloidogenic protein precursor of the fibril,'' ''proteolysis as one mechanism of fibril formation,'' ''Congo red birefringence as a marker for the twisted BETA-pleated sheet protein'' are now substantiated by recurring confirmation. Even a prophylactic treatment for one of the amyloidotic conditions, familial Mediterranean fever, is now available. Predictably, as the pathogeneses of the amyloid diseases are individually deciphered, highly specific and directed therapies will evolve to treat their devastated victims.« less
Uth, Nicholas; Mueller, Jens; Smucker, Byran; Yousefi, Azizeh-Mitra
2017-02-21
This study reports the development of biological/synthetic scaffolds for bone tissue engineering (TE) via 3D bioplotting. These scaffolds were composed of poly(L-lactic-co-glycolic acid) (PLGA), type I collagen, and nano-hydroxyapatite (nHA) in an attempt to mimic the extracellular matrix of bone. The solvent used for processing the scaffolds was 1,1,1,3,3,3-hexafluoro-2-propanol. The produced scaffolds were characterized by scanning electron microscopy, microcomputed tomography, thermogravimetric analysis, and unconfined compression test. This study also sought to validate the use of finite-element optimization in COMSOL Multiphysics for scaffold design. Scaffold topology was simplified to three factors: nHA content, strand diameter, and strand spacing. These factors affect the ability of the scaffold to bear mechanical loads and how porous the structure can be. Twenty four scaffolds were constructed according to an I-optimal, split-plot designed experiment (DE) in order to generate experimental models of the factor-response relationships. Within the design region, the DE and COMSOL models agreed in their recommended optimal nHA (30%) and strand diameter (460 μm). However, the two methods disagreed by more than 30% in strand spacing (908 μm for DE; 601 μm for COMSOL). Seven scaffolds were 3D-bioplotted to validate the predictions of DE and COMSOL models (4.5-9.9 MPa measured moduli). The predictions for these scaffolds showed relative agreement for scaffold porosity (mean absolute percentage error of 4% for DE and 13% for COMSOL), but were substantially poorer for scaffold modulus (51% for DE; 21% for COMSOL), partly due to some simplifying assumptions made by the models. Expanding the design region in future experiments (e.g., higher nHA content and strand diameter), developing an efficient solvent evaporation method, and exerting a greater control over layer overlap could allow developing PLGA-nHA-collagen scaffolds to meet the mechanical requirements for bone TE.
Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D
2010-01-19
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.
Yeast prion architecture explains how proteins can be genes
NASA Astrophysics Data System (ADS)
Wickner, Reed
2013-03-01
Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452
Nicosia, Aldo; Maggio, Teresa; Mazzola, Salvatore; Cuttitta, Angela
2013-10-30
Anemonia viridis is a widespread and extensively studied Mediterranean species of sea anemone from which a large number of polypeptide toxins, such as blood depressing substances (BDS) peptides, have been isolated. The first members of this class, BDS-1 and BDS-2, are polypeptides belonging to the β-defensin fold family and were initially described for their antihypertensive and antiviral activities. BDS-1 and BDS-2 are 43 amino acid peptides characterised by three disulfide bonds that act as neurotoxins affecting Kv3.1, Kv3.2 and Kv3.4 channel gating kinetics. In addition, BDS-1 inactivates the Nav1.7 and Nav1.3 channels. The development of a large dataset of A. viridis expressed sequence tags (ESTs) and the identification of 13 putative BDS-like cDNA sequences has attracted interest, especially as scientific and diagnostic tools. A comparison of BDS cDNA sequences showed that the untranslated regions are more conserved than the protein-coding regions. Moreover, the KA/KS ratios calculated for all pairwise comparisons showed values greater than 1, suggesting mechanisms of accelerated evolution. The structures of the BDS homologs were predicted by molecular modelling. All toxins possess similar 3D structures that consist of a triple-stranded antiparallel β-sheet and an additional small antiparallel β-sheet located downstream of the cleavage/maturation site; however, the orientation of the triple-stranded β-sheet appears to differ among the toxins. To characterise the spatial expression profile of the putative BDS cDNA sequences, tissue-specific cDNA libraries, enriched for BDS transcripts, were constructed. In addition, the proper amplification of ectodermal or endodermal markers ensured the tissue specificity of each library. Sequencing randomly selected clones from each library revealed ectodermal-specific expression of ten BDS transcripts, while transcripts of BDS-8, BDS-13, BDS-14 and BDS-15 failed to be retrieved, likely due to under-representation in our cDNA libraries. The calculation of the relative abundance of BDS transcripts in the cDNA libraries revealed that BDS-1, BDS-3, BDS-4, BDS-5 and BDS-6 are the most represented transcripts.
Design and development of high frequency matrix phased-array ultrasonic probes
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Spencer, Roger L.
2012-05-01
High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.
BETA (Bitter Electromagnet Testing Apparatus) Design and Testing
NASA Astrophysics Data System (ADS)
Bates, Evan; Birmingham, William; Rivera, William; Romero-Talamas, Carlos
2016-10-01
BETA is a 1T water cooled Bitter-type magnetic system that has been designed and constructed at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County to serve as a prototype of a scaled 10T version. Currently the system is undergoing magnetic, thermal and mechanical testing to ensure safe operating conditions and to prove analytical design optimizations. These magnets will function as experimental tools for future dusty plasma based and collaborative experiments. An overview of design methods used for building a custom made Bitter magnet with user defined experimental constraints is reviewed. The three main design methods consist of minimizing the following: ohmic power, peak conductor temperatures, and stresses induced by Lorentz forces. We will also discuss the design of BETA which includes: the magnet core, pressure vessel, cooling system, power storage bank, high powered switching system, diagnostics with safety cutoff feedback, and data acquisition (DAQ)/magnet control Matlab code. Furthermore, we present experimental data from diagnostics for validation of our analytical preliminary design methodologies and finite element analysis calculations. BETA will contribute to the knowledge necessary to finalize the 10 T magnet design.
Woven-grid sealed quasi-bipolar lead-acid battery construction and fabricating method
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A quasi-bipolar lead-acid battery construction includes a plurality of bipolar cells disposed in side-by-side relation to form a stack, and a pair of monoplanar plates at opposite ends of the stack, the cell stack and monopolar plates being contained within a housing of the battery. Each bipolar cell is loaded with an electrolyte and composed of a bipolar electrode plate and a pair of separator plates disposed on opposite sides of the electrode plate and peripherally sealed thereto. Each bipolar electrode plate is composed of a partition sheet and two bipolar electrode elements folded into a hairpin configuration and applied over opposite edges of the partition sheet so as to cover the opposite surfaces of the opposite halves thereof. Each bipolar electrode element is comprised of a woven grid with a hot-melt strip applied to a central longitudinal region of the grid along which the grid is folded into the hairpin configuration, and layers of negative and positive active material pastes applied to opposite halves of the grid on opposite sides of the central hot-melt strip. The grid is made up of strands of conductive and non-conductive yarns composing the respective transverse and longitudinal weaves of the grid. The conductive yarn has a multi-stranded glass core surrounded and covered by a lead sheath, whereas the non-conductive yarn has a multi-stranded glass core surrounded and covered by a thermally activated sizing.
NASA Astrophysics Data System (ADS)
Potapov, A. S.
2018-04-01
Thirty events of CIR streams (corotating interaction regions between fast and slow solar wind) were analyzed in order to study statistically plasma structure within the CIR shear zones and to examine the interaction of the CIRs with the heliospheric current sheet (HCS) and the Earth's magnetosphere. The occurrence of current layers and high-beta plasma sheets in the CIR structure has been estimated. It was found that on average, each of the CIR streams had four current layers in its structure with a current density of more than 0.12 A/m2 and about one and a half high-beta plasma regions with a beta value of more than five. Then we traced how and how often the high-speed stream associated with the CIR can catch up with the heliospheric current sheet (HCS) and connect to it. The interface of each fourth CIR stream coincided in time within an hour with the HCS, but in two thirds of cases, the CIR connection with the HCS was completely absent. One event of the simultaneous observation of the CIR stream in front of the magnetosphere by the ACE satellite in the vicinity of the L1 libration point and the Wind satellite in the remote geomagnetic tail was considered in detail. Measurements of the components of the interplanetary magnetic field and plasma parameters showed that the overall structure of the stream is conserved. Moreover, some details of the fine structure are also transferred through the magnetosphere. In particular, the so-called "magnetic hole" almost does not change its shape when moving from L1 point to a neighborhood of L2 point.
Webb, Thomas R; Jiang, Luyong; Sviridov, Sergey; Venegas, Ruben E; Vlaskina, Anna V; McGrath, Douglas; Tucker, John; Wang, Jian; Deschenes, Alain; Li, Rongshi
2007-01-01
We report the further application of a novel approach to template and ligand design by the synthesis of agonists of the melanocortin receptor. This design method uses the conserved structural data from the three-dimensional conformations of beta-turn peptides to design rigid nonpeptide templates that mimic the orientation of the main chain C-alpha atoms in a peptide beta-turn. We report details on a new synthesis of derivatives of template 1 that are useful for the synthesis of exploratory libraries. The utility of this technique is further exemplified by several iterative rounds of high-throughput synthesis and screening, which result in new partially optimized nonpeptide agonists for several melanocortin receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu,P.
2007-01-01
Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present studymore » were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the percentage of {beta}-sheets (from 37.2% to 49.8%: S-FTIR absorption intensity) and reduced the {alpha}-helix to {beta}-sheet ratio (from 0.3 to 0.7) in the golden flaxseeds, which indicated a negative effect of the roasting on protein values, utilisation and bioavailability. These results were proved by the Cornell Net Carbohydrate Protein System in situ animal trial, which also revealed that roasting increased the amount of protein bound to lignin, and well as of the Maillard reaction protein (both of which are poorly used by ruminants), and increased the level of indigestible and undegradable protein in ruminants. The present results demonstrate the potential of highly spatially resolved synchrotron-based infrared microspectroscopy to locate 'pure' protein in feed tissues, and reveal protein secondary structures and digestive behaviour, making a significant step forward in and an important contribution to protein nutritional research. Further study is needed to determine the sensitivities of protein secondary structures to various heat-processing conditions, and to quantify the relationship between protein secondary structures and the nutrient availability and digestive behaviour of various protein sources. Information from the present study arising from the synchrotron-based IR probing of the protein secondary structures of protein sources at the cellular level will be valuable as a guide to maintaining protein quality and predicting digestive behaviours.« less
Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna
2013-01-01
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001
In Touch with Molecules: Improving Student Learning with Innovative Molecular Models
ERIC Educational Resources Information Center
Davenport, Jodi; Silberglitt, Matt; Olson, Arthur
2013-01-01
How do viruses self-assemble? Why do DNA bases pair the way they do? What factors determine whether strands of proteins fold into sheets or helices? Why does handedness matter? A deep understanding of core issues in biology requires students to understand both complex spatial structures of molecules and the interactions involved in dynamic…
Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent
2017-01-01
To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390
Micsonai, András; Wien, Frank; Bulyáki, Éva; Kun, Judit; Moussong, Éva; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József
2018-06-11
Circular dichroism (CD) spectroscopy is a widely used method to study the protein secondary structure. However, for decades, the general opinion was that the correct estimation of β-sheet content is challenging because of the large spectral and structural diversity of β-sheets. Recently, we showed that the orientation and twisting of β-sheets account for the observed spectral diversity, and developed a new method to estimate accurately the secondary structure (PNAS, 112, E3095). BeStSel web server provides the Beta Structure Selection method to analyze the CD spectra recorded by conventional or synchrotron radiation CD equipment. Both normalized and measured data can be uploaded to the server either as a single spectrum or series of spectra. The originality of BeStSel is that it carries out a detailed secondary structure analysis providing information on eight secondary structure components including parallel-β structure and antiparallel β-sheets with three different groups of twist. Based on these, it predicts the protein fold down to the topology/homology level of the CATH protein fold classification. The server also provides a module to analyze the structures deposited in the PDB for BeStSel secondary structure contents in relation to Dictionary of Secondary Structure of Proteins data. The BeStSel server is freely accessible at http://bestsel.elte.hu.
An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies
NASA Astrophysics Data System (ADS)
Seo, Jongcheol; Hoffmann, Waldemar; Warnke, Stephan; Huang, Xing; Gewinner, Sandy; Schöllkopf, Wieland; Bowers, Michael T.; von Helden, Gert; Pagel, Kevin
2017-01-01
Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.
Microwave conductance properties of aligned multiwall carbon nanotube textile sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.
2015-07-06
Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, themore » microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shoko; Weisman, Sarah; Trueman, Holly E.
Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet proteinmore » structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.« less
The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin.
Mikami, B; Hehre, E J; Sato, M; Katsube, Y; Hirose, M; Morita, Y; Sacchettini, J C
1993-07-13
New crystallographic findings are presented which offer a deeper understanding of the structure and functioning of beta-amylase, the first known exo-type starch-hydrolyzing enzyme. A refined three-dimensional structure of soybean beta-amylase, complexed with the inhibitor alpha-cyclodextrin, has been determined at 2.0-A resolution with a conventional R-value of 17.5%. The model contains 491 amino acid residues, 319 water molecules, 1 sulfate ion, and 1 alpha-cyclodextrin molecule. The protein consists of a core with an (alpha/beta)8 supersecondary structure, plus a smaller globular region formed by long loops (L3, L4, and L5) extending from beta-strands beta 3, beta 4, and beta 5. Between the two regions is a cleft that opens into a pocket whose floor contains the postulated catalytic center near the carboxyl group of Glu 186. The annular alpha-cyclodextrin binds in (and partly projects from) the cleft with its glucosyl O-2/O-3 face abutting the (alpha/beta)8 side and with its alpha-D(1 --> 4) glucosidic linkage progression running clockwise as viewed from that side. The ligand does not bind deeply enough to interact with the carboxyl group of Glu 186. Rather, it occupies most of the cleft entrance, strongly suggesting that alpha-cyclodextrin inhibits catalysis by blocking substrate access to the more deeply located reaction center. Of the various alpha-cyclodextrin interactions with protein residues in loops L4, L5, L6, and L7, most notable is the shallow inclusion complex formed with Leu 383 (in L7, on the core side of the cleft) through contacts of its methyl groups with the C-3 atoms of four of the ligand's D-glucopyranosyl residues. All six residues of the bound alpha-cyclodextrin are of 4C1 conformation and are joined by alpha-1,4 linkages with similar torsional angles to form a nearly symmetrical torus as reported for crystalline inclusion complexes with alpha-cyclodextrin. We envision a significant role for the methyl groups of Leu 383 at the cleft entrance with respect to the productive binding of the outer chains of starch.
Barron, Andrew D.; Ramsey, David W.; Smith, James G.
2014-01-01
This digital database contains information used to produce the geologic map published as Sheet 1 in U.S. Geological Survey Miscellaneous Investigations Series Map I-2005. (Sheet 2 of Map I-2005 shows sources of geologic data used in the compilation and is available separately). Sheet 1 of Map I-2005 shows the distribution and relations of volcanic and related rock units in the Cascade Range of Washington at a scale of 1:500,000. This digital release is produced from stable materials originally compiled at 1:250,000 scale that were used to publish Sheet 1. The database therefore contains more detailed geologic information than is portrayed on Sheet 1. This is most noticeable in the database as expanded polygons of surficial units and the presence of additional strands of concealed faults. No stable compilation materials exist for Sheet 1 at 1:500,000 scale. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map sheet, main report text, and accompanying mapping reference sheet from Map I-2005. For more information on volcanoes in the Cascade Range in Washington, Oregon, or California, please refer to the U.S. Geological Survey Volcano Hazards Program website.
Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation
Nguyen, Houbi; Jäger, Marcus; Moretto, Alessandro; Gruebele, Martin; Kelly, Jeffery W.
2003-01-01
The equilibrium unfolding of the Formin binding protein 28 (FBP) WW domain, a stable three-stranded β-sheet protein, can be described as reversible apparent two-state folding. Kinetics studied by laser temperature jump reveal a third state at temperatures below the midpoint of unfolding. The FBP free-energy surface can be tuned between three-state and two-state kinetics by changing the temperature, by truncation of the C terminus, or by selected point mutations. FBP WW domain is the smallest three-state folder studied to date and the only one that can be freely tuned between three-state and apparent two-state folding by several methods (temperature, truncation, and mutation). Its small size (28–37 residues), the availability of a quantitative reaction coordinate (φT), the fast folding time scale (10s of μs), and the tunability of the folding routes by small temperature or sequence changes make this system the ideal prototype for studying more subtle features of the folding free-energy landscape by simulations or analytical theory. PMID:12651955
Why S, Not X, Marks the Spot for CME/Flare Eruptions
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Sterling, Alphonse; Gary, Allen; Cirtain, Jonathan; Falconer, David
2010-01-01
For any major CME/flare eruption: I. The field that erupts is an arcade in which the interior is greatly sheared and twisted. Most of the free magnetic energy to be released: a) Is in the shear and twist of the interior field. b) Is Not due to a big current sheet. The eruption is unleashed by reconnection at a growing current sheet. The current sheet is still little when the reconnection turns on. The unleashed eruption then makes the current sheet much bigger by building it up faster than the reconnection can tear it down. II. Most X-ray jets work the opposite way: a) Tapped free energy is in the field of a pre-jet current sheet. b) Current sheet built by small arcade emerging into ambient field. c) Current sheet still much smaller than the arcade when reconnection turns on and tears it down, producing a jet. III. These rules reflect the low-beta condition in the eruptive magnetic field
Structure of the newly found green turtle egg-white ribonuclease.
Katekaew, Somporn; Kuaprasert, Buabarn; Torikata, Takao; Kakuta, Yoshimitsu; Kimura, Makoto; Yoneda, Kazunari; Araki, Tomohiro
2010-07-01
Marine green turtle (Chelonia mydas) egg-white ribonuclease (GTRNase) was crystallized from 1.1 M ammonium sulfate pH 5.5 and 30% glycerol using the sitting-drop vapour-diffusion method. The structure of GTRNase has been solved at 1.60 A resolution by the molecular-replacement technique using a model based on the structure of RNase 5 (murine angiogenin) from Mus musculus (46% identity). The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 86.271, b = 34.174, c = 39.738 A, alpha = 90, beta = 102, gamma = 90 degrees . GTRNase consists of three helices and seven beta-strands and displays the alpha+beta folding topology typical of a member of the RNase A superfamily. Superposition of the C(alpha) coordinates of GTRNase and RNase A superfamily members indicates that the overall structure is highly similar to that of angiogenin or RNase 5 from M. musculus (PDB code 2bwl) and RNase A from Bos taurus (PDB code 2blz), with root-mean-square deviations of 3.9 and 2.0 A, respectively. The catalytic residues are conserved with respect to the RNase A superfamily. The three disulfide bridges observed in the reptilian enzymes are conserved in GTRNase, while one further disulfide bond is required for the structural stability of mammalian RNases. GTRNase is expressed in egg white and the fact that its sequence has the highest similarity to that of snapping turtle pancreatic RNase suggests that the GTRNase secreted from oviduct cells to form egg white is probably the product of the same gene as activated in pancreatic cells.
Structure of a Trypanosoma Brucei Alpha/Beta--Hydrolase Fold Protein With Unknown Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, E.A.; Holmes, M.; Buckner, F.S.
2009-05-26
The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 {angstrom} using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the {alpha}/{beta}-hydrolase fold family. Structural superposition onto representative {alpha}/{beta}-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similaritymore » at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands {beta}6 and {beta}7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family.« less
Nabuurs, Sanne M; Westphal, Adrie H; aan den Toorn, Marije; Lindhoud, Simon; van Mierlo, Carlo P M
2009-06-17
Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.
Hoersch, Daniel; Otto, Harald; Cusanovich, Michael A; Heyn, Maarten P
2009-07-14
The photoreceptor PYP responds to light activation with global conformational changes. These changes are mainly located in the N-terminal cap of the protein, which is approximately 20 A away from the chromophore binding pocket and separated from it by the central beta-sheet. The question of the propagation of the structural change across the central beta-sheet is of general interest for the superfamily of PAS domain proteins, for which PYP is the structural prototype. Here we measured the kinetics of the structural changes in the N-terminal cap by transient absorption spectroscopy on the ns to second timescale. For this purpose the cysteine mutants A5C and N13C were prepared and labeled with thiol reactive 5-iodoacetamidofluorescein (IAF). A5 is located close to the N-terminus, while N13 is part of helix alpha1 near the functionally important salt bridge E12-K110 between the N-terminal cap and the central anti-parallel beta-sheet. The absorption spectrum of the dye is sensitive to its environment, and serves as a sensor for conformational changes near the labeling site. In both labeled mutants light activation results in a transient red-shift of the fluorescein absorption spectrum. To correlate the conformational changes with the photocycle intermediates of the protein, we compared the kinetics of the transient absorption signal of the dye with that of the p-hydroxycinnamoyl chromophore. While the structural change near A5 is synchronized with the rise of the I(2) intermediate, which is formed in approximately 200 mus, the change near N13 is delayed and rises with the next intermediate I(2)', which forms in approximately 2 ms. This indicates that different parts of the N-terminal cap respond to light activation with different kinetics. For the signaling pathway of photoactive yellow protein we propose a model in which the structural signal propagates from the chromophore binding pocket across the central beta-sheet via the N-terminal region to helix alpha1, resulting in a large change in the protein conformation.
Catalytic growth and structural characterization of semiconducting beta-Ga2O3 nanowires.
Choi, Kyo-Hong; Cho, Kwon-Koo; Kim, Ki-Won; Cho, Gyu-Bong; Ahn, Hyo-Jun; Nam, Tae-Hyun
2009-06-01
We have successfully synthesized beta-Ga2O3 nanomaterials with various morphologies, such as wire, rod, belt and sheet-like, through simple thermal evaporation of metal gallium powder in the presence of nickel oxide catalyst. beta-Ga2O3 nanomaterials with different morphology were observed as a function of synthesis time and temperature. In this report, generation sites of the beta-Ga2O3 nanomaterials have been delicately surveyed by FESEM. The growth mechanisms of nanomaterials are distinguished by the view of its generation site. The growth of nanowire follows both VLS and VS mechanism and other kinds of materials such as nanorod, nanobelt and nanosheet follows VS mechanism.
Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao
2015-10-01
Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.
Sanabria, Carlos; Lee, Peter J.; Starch, William; ...
2015-06-22
Cables made with Nb 3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force onmore » the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.« less
Qian, Minxie; Huang, Qichen; Wu, Guangteng; Lai, Luhua; Tang, Youqi; Pei, Jianfeng; Kusunoki, Masami
2012-02-01
The structure of acetamidase/formamidase (Amds/Fmds) from the archaeon Thermoanaerobacter tengcongensis has been determined by X-ray diffraction analysis using MAD data in a crystal of space group P2₁, with unit-cell parameters a = 41.23 (3), b = 152.88 (6), c = 100.26 (7) Å, β = 99.49 (3) ° and been refined to a crystallographic R-factor of 17.4% and R-free of 23.7%. It contains two dimers in one asymmetric unit, in which native Amds/Fmds (TE19) contains of the 32 kDa native protein. The final model consists of 4 monomer (299 amino acids residues with additional 2 expression tag amino acids residues), 5 Ca²⁺, 4 Zn²⁺ and 853 water molecules. The monomer is composed by the following: an N-domain which is featuring by three-layers β/β/β; a prominent excursion between N-terminal end of strand β₇ and β₁₁, which contains four-stranded antiparallel β sheet; an C-domain which is formed by the last 82 amino acid residues with the feature of mixed α/β structure. The protein contains ion-pair Ca²⁺-Zn²⁺. The portion of three-layer β/β/β along with the loops provides four protein ligands to the tightly bound Ca²⁺, three water molecules complete the coordination; and provides five protein ligands to the tightly bound Zn²⁺, one water molecule complete the coordination.
Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.
Konopiński, R; Nowak, R; Siedlecki, J A
1996-10-17
Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.
NASA Technical Reports Server (NTRS)
Holland, Frederic A., Jr.
2004-01-01
Modern engineering design practices are tending more toward the treatment of design parameters as random variables as opposed to fixed, or deterministic, values. The probabilistic design approach attempts to account for the uncertainty in design parameters by representing them as a distribution of values rather than as a single value. The motivations for this effort include preventing excessive overdesign as well as assessing and assuring reliability, both of which are important for aerospace applications. However, the determination of the probability distribution is a fundamental problem in reliability analysis. A random variable is often defined by the parameters of the theoretical distribution function that gives the best fit to experimental data. In many cases the distribution must be assumed from very limited information or data. Often the types of information that are available or reasonably estimated are the minimum, maximum, and most likely values of the design parameter. For these situations the beta distribution model is very convenient because the parameters that define the distribution can be easily determined from these three pieces of information. Widely used in the field of operations research, the beta model is very flexible and is also useful for estimating the mean and standard deviation of a random variable given only the aforementioned three values. However, an assumption is required to determine the four parameters of the beta distribution from only these three pieces of information (some of the more common distributions, like the normal, lognormal, gamma, and Weibull distributions, have two or three parameters). The conventional method assumes that the standard deviation is a certain fraction of the range. The beta parameters are then determined by solving a set of equations simultaneously. A new method developed in-house at the NASA Glenn Research Center assumes a value for one of the beta shape parameters based on an analogy with the normal distribution (ref.1). This new approach allows for a very simple and direct algebraic solution without restricting the standard deviation. The beta parameters obtained by the new method are comparable to the conventional method (and identical when the distribution is symmetrical). However, the proposed method generally produces a less peaked distribution with a slightly larger standard deviation (up to 7 percent) than the conventional method in cases where the distribution is asymmetric or skewed. The beta distribution model has now been implemented into the Fast Probability Integration (FPI) module used in the NESSUS computer code for probabilistic analyses of structures (ref. 2).
Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K
1982-10-25
When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.
Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K
1982-01-01
When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eke, Iris; Storch, Katja; Kaestner, Ina
Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg,more » {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.« less
Polypeptide p41 of a Norwalk-Like Virus Is a Nucleic Acid-Independent Nucleoside Triphosphatase
Pfister, Thomas; Wimmer, Eckard
2001-01-01
Southampton virus (SHV) is a member of the Norwalk-like viruses (NLVs), one of four genera of the family Caliciviridae. The genome of SHV contains three open reading frames (ORFs). ORF 1 encodes a polyprotein that is autocatalytically processed into six proteins, one of which is p41. p41 shares sequence motifs with protein 2C of picornaviruses and superfamily 3 helicases. We have expressed p41 of SHV in bacteria. Purified p41 exhibited nucleoside triphosphate (NTP)-binding and NTP hydrolysis activities. The NTPase activity was not stimulated by single-stranded nucleic acids. SHV p41 had no detectable helicase activity. Protein sequence comparison between the consensus sequences of NLV p41 and enterovirus protein 2C revealed regions of high similarity. According to secondary structure prediction, the conserved regions were located within a putative central domain of alpha helices and beta strands. This study reveals for the first time an NTPase activity associated with a calicivirus-encoded protein. Based on enzymatic properties and sequence information, a functional relationship between NLV p41 and enterovirus 2C is discussed in regard to the role of 2C-like proteins in virus replication. PMID:11160659
Yousefi, Azizeh-Mitra; Smucker, Byran; Naber, Alex; Wyrick, Cara; Shaw, Charles; Bennett, Katelyn; Szekely, Sarah; Focke, Carlie; Wood, Katherine A
2018-02-01
Tissue engineering using three-dimensional porous scaffolds has shown promise for the restoration of normal function in injured and diseased tissues and organs. Rigorous control over scaffold architecture in melt extrusion additive manufacturing is highly restricted mainly due to pronounced variations in the deposited strand diameter upon any variations in process conditions and polymer viscoelasticity. We have designed an I-optimal, split-plot experiment to study the extrudate swell in melt extrusion additive manufacturing and to control the scaffold architecture. The designed experiment was used to generate data to relate three responses (swell, density, and modulus) to a set of controllable factors (plotting needle diameter, temperature, pressure, and the dispensing speed). The fitted regression relationships were used to optimize the three responses simultaneously. The swell response was constrained to be close to 1 while maximizing the modulus and minimizing the density. Constraining the extrudate swell to 1 generates design-driven scaffolds, with strand diameters equal to the plotting needle diameter, and allows a greater control over scaffold pore size. Hence, the modulus of the scaffolds can be fully controlled by adjusting the in-plane distance between the deposited strands. To the extent of the model's validity, we can eliminate the effect of extrudate swell in designing these scaffolds, while targeting a range of porosity and modulus appropriate for bone tissue engineering. The result of this optimization was a predicted modulus of 14 MPa and a predicted density of 0.29 g/cm 3 (porosity ≈ 75%) using polycaprolactone as scaffold material. These predicted responses corresponded to factor levels of 0.6 μm for the plotting needle diameter, plotting pressure of 2.5 bar, melt temperature of 113.5 °C, and dispensing speed of 2 mm/s. The validation scaffold enabled us to quantify the percentage difference for the predictions, which was 9.5% for the extrudate swell, 19% for the density, and 29% for the modulus.
Hubin, Ellen; Deroo, Stéphanie; Schierle, Gabriele Kaminksi; Kaminski, Clemens; Serpell, Louise; Subramaniam, Vinod; van Nuland, Nico; Broersen, Kerensa; Raussens, Vincent; Sarroukh, Rabia
2015-12-01
Most Alzheimer's disease (AD) cases are late-onset and characterized by the aggregation and deposition of the amyloid-beta (Aβ) peptide in extracellular plaques in the brain. However, a few rare and hereditary Aβ mutations, such as the Italian Glu22-to-Lys (E22K) mutation, guarantee the development of early-onset familial AD. This type of AD is associated with a younger age at disease onset, increased β-amyloid accumulation, and Aβ deposition in cerebral blood vessel walls, giving rise to cerebral amyloid angiopathy (CAA). It remains largely unknown how the Italian mutation results in the clinical phenotype that is characteristic of CAA. We therefore investigated how this single point mutation may affect the aggregation of Aβ1-42 in vitro and structurally characterized the resulting fibrils using a biophysical approach. This paper reports that wild-type and Italian-mutant Aβ both form fibrils characterized by the cross-β architecture, but with distinct β-sheet organizations, resulting in differences in thioflavin T fluorescence and solvent accessibility. E22K Aβ1-42 oligomers and fibrils both display an antiparallel β-sheet structure, in comparison with the parallel β-sheet structure of wild-type fibrils, characteristic of most amyloid fibrils described in the literature. Moreover, we demonstrate structural plasticity for Italian-mutant Aβ fibrils in a pH-dependent manner, in terms of their underlying β-sheet arrangement. These findings are of interest in the ongoing debate that (1) antiparallel β-sheet structure might represent a signature for toxicity, which could explain the higher toxicity reported for the Italian mutant, and that (2) fibril polymorphism might underlie differences in disease pathology and clinical manifestation.
Hiramatsu, Hirotsugu; Goto, Yuji; Naiki, Hironobu; Kitagawa, Teizo
2005-06-08
A structural model of amyloid fibril formed by the #21-31 fragment of beta2-microglobulin is proposed from microscope IR measurements on specifically 13C-labeled peptide fibrils and Raman spectra of the dispersed fibril solution. The 13C-shifted amide frequency indicated the secondary structure of the labeled residues. The IR spectra have demonstrated that the region between F22 and V27 forms the core part with the extended beta-sheet structure. Raman spectra indicated the formation of a dimer with a disulfide bridge between C25 residues.
The 3D structures of VDAC represent a native conformation
Hiller, Sebastian; Abramson, Jeff; Mannella, Carmen; Wagner, Gerhard; Zeth, Kornelius
2010-01-01
The most abundant protein of the mitochondrial outer membrane is the voltage-dependent anion channel (VDAC), which facilitates the exchange of ions and molecules between mitochondria and cytosol and is regulated by interactions with other proteins and small molecules. VDAC has been extensively studied for more than three decades, and last year three independent investigations revealed a structure of VDAC-1 exhibiting 19 transmembrane β-strands, constituting a unique structural class of β-barrel membrane proteins. Here, we provide a historical perspective on VDAC research and give an overview of the experimental design used to obtain these structures. Furthermore, we validate the protein refolding approach and summarize biochemical and biophysical evidence that links the 19-stranded structure to the native form of VDAC. PMID:20708406
Arvand, Majid; Mirroshandel, Aazam A
2017-10-15
With the advantages of excellent optical properties and biocompatibility, single-strand DNA-functionalized quantum dots have been widely applied in biosensing and bioimaging. A new aptasensor with easy operation, high sensitivity, and high selectivity was developed by immobilizing the aptamer on water soluble l-cysteine capped ZnS quantum dots (QDs). Graphene oxide (GO) sheets are mixed with the aptamer-QDs. Consequently, the aptamer-conjugated QDs bind to the GO sheets to form a GO/aptamer-QDs ensemble. This aptasensor enables the energy transfer based on a fluorescence resonance energy transfer (FRET) from the QDs to the GO sheets, quenching the fluorescence of QDs. The GO/aptamer-QDs ensemble assay acts as a "turn-on'' fluorescent sensor for edifenphos (EDI) detection. When GO was replaced by EDI, the fluorescence of QDs was restored and its intensity was proportional to the EDI concentration. This GO-based aptasensor under the optimum conditions exhibited excellent analytical performance for EDI determination, ranging from 5×10 -4 to 6×10 -3 mg L -1 with the detection limit of 1.3×10 -4 mgL -1 . Furthermore, the designed aptasensor exhibited excellent selectivity toward EDI compared to other pesticides and herbicides with similar structures such as diazinon, heptachlor, endrin, dieldrin, butachlor and chlordane. Good reproducibility and precision (RSD =3.9%, n =10) of the assay indicates the high potential of the aptasensor for quantitative trace analysis of EDI. Moreover, the results demonstrate the applicability of the aptasensor for monitoring EDI fungicide in spiked real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Goetze, Bernhard; Tuebing, Fabian; Xie, Yunli; Dorostkar, Mario M; Thomas, Sabine; Pehl, Ulrich; Boehm, Stefan; Macchi, Paolo; Kiebler, Michael A
2006-01-16
Mammalian Staufen2 (Stau2) is a member of the double-stranded RNA-binding protein family. Its expression is largely restricted to the brain. It is thought to play a role in the delivery of RNA to dendrites of polarized neurons. To investigate the function of Stau2 in mature neurons, we interfered with Stau2 expression by RNA interference (RNAi). Mature neurons lacking Stau2 displayed a significant reduction in the number of dendritic spines and an increase in filopodia-like structures. The number of PSD95-positive synapses and miniature excitatory postsynaptic currents were markedly reduced in Stau2 down-regulated neurons. Akin effects were caused by overexpression of dominant-negative Stau2. The observed phenotype could be rescued by overexpression of two RNAi cleavage-resistant Stau2 isoforms. In situ hybridization revealed reduced expression levels of beta-actin mRNA and fewer dendritic beta-actin mRNPs in Stau2 down-regulated neurons. Thus, our data suggest an important role for Stau2 in the formation and maintenance of dendritic spines of hippocampal neurons.
Yamada, Masanori; Hori, Minako; Tabuchi, Shinya
2010-08-01
Water-soluble beta-cyclodextrin-immobilized poly(ethyleneimine) (PEICD) was synthesized by the grafting of beta-cyclodextrin to the branched poly(ethyleneimine). In an aqueous solution, this PEICD polymer could encapsulate bisphenol A, known to be a harmful compound. Additionally, the stability constant of bisphenol A to the PEICD polymer was 1.1 x 10(4)M(-1). However, the water-solubility of PEICD has been making it difficult to utilize it as an environmental material. Therefore, we prepared the DNA-PEICD composite material by mixing the double-stranded DNA and PEICD. This DNA-PEICD composite material was extremely stable in water and possessed both properties of the intercalation into the double-stranded DNA and the encapsulation into the CD cavity. As a result, this material can accumulate various harmful compounds, such as dioxin- and polychlorobiphenyl (PCB)-derivatives and bisphenol A, from a multi-component solution. Therefore, the DNA-PEICD composite material may have the potential to be used as an environmental material. Copyright 2010 Elsevier B.V. All rights reserved.
Structure-activity relationships of insect defensins
NASA Astrophysics Data System (ADS)
Koehbach, Johannes
2017-07-01
Insects make up the largest and most diverse group of organisms on earth with several million species to exist in total. Considering the sheer number of insect species and the vast variety of ways they interact with their environment through chemistry, it is clear that they have significant potential as a source of new lead molecules. They have adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds have been identified including for example defensin peptides. Insect defensins were found to have broad-spectrum activity against various gram-positive/negative bacteria as well as fungi. They exhibit a unique structural topology involving the complex arrangement of three disulfide bonds as well as an alpha helix and beta sheets, which is known as cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make them promising candidates for the development of novel antibiotics lead molecules. This review highlights the current knowledge regarding the structure-activity relationships of insect defensin peptides and provides basis for future studies focusing on the rational design of novel cysteine-rich antimicrobial peptides.
Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir
2009-01-01
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.
School to Work Fact Sheets: Making School to Work Opportunities Happen for Youth with Disabilities.
ERIC Educational Resources Information Center
Horne, Richard L.; Thuli, Kelli J.
These six fact sheets are designed to communicate strategies for serving all youth, especially youth with disabilities, in school to work programs: (1) "Overview of the School-to-Work Opportunities Act" briefly describes this 1994 federal law and the three components of school-to-work programs: school-based learning, work-based learning,…
28. Photographic copy of ink on linen drawing (at the ...
28. Photographic copy of ink on linen drawing (at the archives of Niagara Mohawk Power Corporation, 300 Eric Boulevard West, Syracuse, New York 13202), Strand, Draftsman, October 3, 1923. Sheet 1-473, International Paper Company. Completing crest of dam. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY
Tice, Colin M; Zhao, Wei; Xu, Zhenrong; Cacatian, Salvacion T; Simpson, Robert D; Ye, Yuan-Jie; Singh, Suresh B; McKeever, Brian M; Lindblom, Peter; Guo, Joan; Krosky, Paula M; Kruk, Barbara A; Berbaum, Jennifer; Harrison, Richard K; Johnson, Judith J; Bukhtiyarov, Yuri; Panemangalore, Reshma; Scott, Boyd B; Zhao, Yi; Bruno, Joseph G; Zhuang, Linghang; McGeehan, Gerard M; He, Wei; Claremon, David A
2010-02-01
Structure-guided drug design led to the identification of a class of spirocyclic ureas which potently inhibit human 11beta-HSD1 in vitro. Lead compound 10j was shown to be orally bioavailable in three species, distributed into adipose tissue in the mouse, and its (R) isomer 10j2 was efficacious in a primate pharmacodynamic model. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
A Logical OR Redundancy within the Asx-Pro-Asx-Gly Type 1 {Beta}-Turn Motif
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jihun; Dubey, Vikash Kumar; Longo, Lian M.
2008-04-19
Turn secondary structure is essential to the formation of globular protein architecture. Turn structures are, however, much more complex than either {alpha}-helix or {beta}-sheet, and the thermodynamics and folding kinetics are poorly understood. Type I {beta}-turns are the most common type of reverse turn, and they exhibit a statistical consensus sequence of Asx-Pro-Asx-Gly (where Asx is Asp or Asn). A comprehensive series of individual and combined Asx mutations has been constructed within three separate type I 3:5 G1 bulge {beta}-turns in human fibroblast growth factor-1, and their effects on structure, stability, and folding have been determined. The results show amore » fundamental logical OR relationship between the Asx residues in the motif, involving H-bond interactions with main-chain amides within the turn. These interactions can be modulated by additional interactions with residues adjacent to the turn at positions i + 4 and i + 6. The results show that the Asx residues in the turn motif make a substantial contribution to the overall stability of the protein, and the Asx logical OR relationship defines a redundant system that can compensate for deleterious point mutations. The results also show that the stability of the turn is unlikely to be the prime determinant of formation of turn structure in the folding transition state.« less
Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.
2007-01-01
A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.
Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.
Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao
2017-04-15
TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.
Joseph, Prem Raj B; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M; Garofalo, Roberto P; Rajarathnam, Krishna
2013-09-17
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Evolutionary potential of an RNA virus.
Makeyev, Eugene V; Bamford, Dennis H
2004-02-01
RNA viruses are remarkably adaptable to changing environments. This is medically important because it enables pathogenic viruses to escape the immune response and chemotherapy and is of considerable theoretical interest since it allows the investigation of evolutionary processes within convenient time scales. A number of earlier studies have addressed the dynamics of adapting RNA virus populations. However, it has been difficult to monitor the trajectory of molecular changes in RNA genomes in response to selective pressures. To address the problem, we developed a novel in vitro evolution system based on a recombinant double-stranded RNA bacteriophage, phi 6, containing a beta-lactamase (bla) gene marker. Carrier-state bacterial cells are resistant to ampicillin, and after several passages, they become resistant to high concentrations of another beta-lactam antibiotic, cefotaxime, due to mutations in the virus-borne bla gene. We monitored the changes in bla cDNAs induced by cefotaxime selection and observed an initial explosion in sequence variants with multiple mutations throughout the gene. After four passages, a stable, homogeneous population of bla sequences containing three specific nonsynonymous mutations was established. Of these, two mutations (E104K and G238S) have been previously reported for beta-lactamases from cefotaxime-resistant bacterial isolates. These results extend our understanding of the molecular mechanisms of viral adaptation and also demonstrate the possibility of using an RNA virus as a vehicle for directed evolution of heterologous proteins.
The Effect of Basepair Mismatch on DNA Strand Displacement.
Broadwater, D W Bo; Kim, Harold D
2016-04-12
DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single basepair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term the concurrent displacement model, and used the first passage time approach to quantitatively explain the salient features of the observed relationship. We also introduce the concept of splitting probabilities to justify that the concurrent model can be simplified into a three-step sequential model in the presence of an invader mismatch. We expect our model to become a powerful tool to design DNA-based reaction schemes with broad functionality. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun
2015-07-08
We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.
NASA Astrophysics Data System (ADS)
Jaganathan, Maheshkumar; Ramakrishnan, C.; Velmurugan, D.; Dhathathreyan, Aruna
2015-02-01
For a conceptual understanding of how an ionic liquid stabilizes a solvated protein, in this study, using new force field parameters, a molecular dynamics simulation (MDS) of the loop and helical regions of hydrated Cytochrome c (cyt c) and its interaction with the ionic liquid ethylammonium nitrate (EAN) have been studied. For a simulation trajectory of 100 ns, the changes in network of water around the protein due to EAN and subsequent reorganization of the protein have been analyzed. The radii of gyration of solvated cyt c (13.7 Å) and cyt c + EAN (13.4 Å) at the end of the trajectory are higher than the protein in its crystalline state (12.64 Å) suggesting enhanced stability of the protein due to tightly organized assembly of EAN near the solvated cyt c. This increase in stability of the protein has been verified experimentally using fluorescence, circular dichroic spectroscopy and differential scanning calorimetry. With increasing EAN in cyt c + EAN, protein conformation shows unusually high β strand population. To check whether the beta strand is an intermediate or a local minimum state, denaturation of cyt c with urea in the presence of EAN has been undertaken. Results show that EAN helps in renaturation of the protein by forming a tightly organized assembly around the protein with the beta strand state appearing as a local minimum energy state. Thus the feasibility of using ionic liquids to form networks around the protein and their possible applications in stabilization of the proteins has been demonstrated.
Armen, Roger S.; DeMarco, Mari L.; Alonso, Darwin O. V.; Daggett, Valerie
2004-01-01
Transthyretin, β2-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in structure are required for the formation of the amyloidogeneic intermediate, but it has proved impossible to characterize these conformational changes at high resolution using experimental means. To probe these conformational changes at atomic resolution, we have performed molecular dynamics simulations of these proteins at neutral and low pH. In low-pH simulations of all four proteins, we observe the formation of α-pleated sheet secondary structure, which was first proposed by L. Pauling and R. B. Corey [(1951) Proc. Natl. Acad. Sci. USA 37, 251–256]. In all β-sheet proteins, transthyretin and β2-microglobulin, α-pleated sheet structure formed over the strands that are highly protected in hydrogen-exchange experiments probing amyloidogenic conditions. In lysozyme and the prion protein, α-sheets formed in the specific regions of the protein implicated in the amyloidogenic conversion. We propose that the formation of α-pleated sheet structure may be a common conformational transition in amyloidosis. PMID:15280548
Segmented molecular design of self-healing proteinaceous materials
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.
2015-01-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335
Segmented molecular design of self-healing proteinaceous materials
NASA Astrophysics Data System (ADS)
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.
2015-09-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.
Segmented molecular design of self-healing proteinaceous materials.
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C
2015-09-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less
Conley, P B; Lemaux, P G; Lomax, T L; Grossman, A R
1986-01-01
The polypeptide composition of the phycobilisome, the major light-harvesting complex of prokaryotic cyanobacteria and certain eukaryotic algae, can be modulated by different light qualities in cyanobacteria exhibiting chromatic adaptation. We have identified genomic fragments encoding a cluster of phycobilisome polypeptides (phycobiliproteins) from the chromatically adapting cyanobacterium Fremyella diplosiphon using previously characterized DNA fragments of phycobiliprotein genes from the eukaryotic alga Cyanophora paradoxa and from F. diplosiphon. Characterization of two lambda-EMBL3 clones containing overlapping genomic fragments indicates that three sets of phycobiliprotein genes--the alpha- and beta-allophycocyanin genes plus two sets of alpha- and beta-phycocyanin genes--are clustered within 13 kilobases on the cyanobacterial genome and transcribed off the same strand. The gene order (alpha-allophycocyanin followed by beta-allophycocyanin and beta-phycocyanin followed by alpha-phycocyanin) appears to be a conserved arrangement found previously in a eukaryotic alga and another cyanobacterium. We have reported that one set of phycocyanin genes is transcribed as two abundant red light-induced mRNAs (1600 and 3800 bases). We now present data showing that the allophycocyanin genes and a second set of phycocyanin genes are transcribed into major mRNAs of 1400 and 1600 bases, respectively. These transcripts are present in RNA isolated from cultures grown in red and green light, although lower levels of the 1600-base phycocyanin transcript are present in cells grown in green light. Furthermore, a larger transcript of 1750 bases hybridizes to the allophycocyanin genes and may be a precursor to the 1400-base species. Images PMID:3086870
Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement
NASA Astrophysics Data System (ADS)
Srinivas, Niranjan
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems. In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways. We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
Design and analysis of DNA strand displacement devices using probabilistic model checking
Lakin, Matthew R.; Parker, David; Cardelli, Luca; Kwiatkowska, Marta; Phillips, Andrew
2012-01-01
Designing correct, robust DNA devices is difficult because of the many possibilities for unwanted interference between molecules in the system. DNA strand displacement has been proposed as a design paradigm for DNA devices, and the DNA strand displacement (DSD) programming language has been developed as a means of formally programming and analysing these devices to check for unwanted interference. We demonstrate, for the first time, the use of probabilistic verification techniques to analyse the correctness, reliability and performance of DNA devices during the design phase. We use the probabilistic model checker prism, in combination with the DSD language, to design and debug DNA strand displacement components and to investigate their kinetics. We show how our techniques can be used to identify design flaws and to evaluate the merits of contrasting design decisions, even on devices comprising relatively few inputs. We then demonstrate the use of these components to construct a DNA strand displacement device for approximate majority voting. Finally, we discuss some of the challenges and possible directions for applying these methods to more complex designs. PMID:22219398
Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina
2016-02-15
The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Proteolysis of truncated hemolysin A yields a stable dimerization interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, Walter R. P.; Bhattacharyya, Basudeb; Grilley, Daniel P.
2017-02-21
Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interfacemore » is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.« less
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...
2018-02-09
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.
1995-10-01
Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35{degree}N; Long. 115{degree}W and lat. 38{degree}N, long. 118{degree}W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. Themore » procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute`s ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado.« less
Fluctuation dynamics in reconnecting current sheets
NASA Astrophysics Data System (ADS)
von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas
2015-11-01
During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.
Effect of Subelement Spacing in Rrp Nb3Sn Deformed Strands
NASA Astrophysics Data System (ADS)
Barzi, E.; Turrioni, D.; Alsharo'a, M.; Field, M.; Hong, S.; Parrell, J.; Yamada, R.; Zhang, Y.; Zlobin, A. V.
2008-03-01
The Restacked Rod Process (RRP) is the Nb3Sn strand technology presently producing the largest critical current densities at 4.2 K and 12 T. However, when subject to transverse plastic deformation, RRP subelements (SE) merge into each other, creating larger filaments with a somewhat continuous barrier. In this case, the strand sees a larger effective filament size and its instability can dramatically increase locally leading to a cable quench. To reduce and possibly eliminate this effect, Oxford Instruments Superconducting Technology (OST) developed for FNAL a modified RRP strand design with larger Cu spacing between SE's arranged in a 60/61 array. Strand samples of this design with sizes from 0.7 to 1 mm were first evaluated for transport current properties. A comparison study was then performed between the regular 54/61 and the modified 60/61 design using 0.7 mm round and deformed strands. Finite element modeling of the deformed strands was also performed with ANSYS.
Structure of the Major Apple Allergen Mal d 1
2017-01-01
More than 70% of birch pollen-allergic patients develop allergic cross-reactions to the major allergen found in apple fruits (Malus domestica), the 17.5 kDa protein Mal d 1. Allergic reactions against this protein result from initial sensitization to the major allergen from birch pollen, Bet v 1. Immunologic cross-reactivity of Bet v 1-specific IgE antibodies with Mal d 1 after apple consumption can subsequently provoke severe oral allergic syndromes. This study presents the three-dimensional NMR solution structure of Mal d 1 (isoform Mal d 1.0101, initially cloned from ‘Granny Smith’ apples). This protein is composed of a seven-stranded antiparallel β-sheet and three α-helices that form a large internal cavity, similar to Bet v 1 and other cross-reactive food allergens. The Mal d 1 structure provides the basis for elucidating the details of allergic cross-reactivity between birch pollen and apple allergens on a molecular level. PMID:28161953
Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii
Story, Randall M.; Li, Hong; Abelson, John N.
2001-01-01
We have determined the structure of a DEAD box putative RNA helicase from the hyperthermophile Methanococcus jannaschii. Like other helicases, the protein contains two α/β domains, each with a recA-like topology. Unlike other helicases, the protein exists as a dimer in the crystal. Through an interaction that resembles the dimer interface of insulin, the amino-terminal domain's 7-strand β-sheet is extended to 14 strands across the two molecules. Motifs conserved in the DEAD box family cluster in the cleft between domains, and many of their functions can be deduced by mutational data and by comparison with other helicase structures. Several lines of evidence suggest that motif III Ser-Ala-Thr may be involved in binding RNA. PMID:11171974
Willwand, K; Baldauf, A Q; Deleu, L; Mumtsidu, E; Costello, E; Beard, P; Rommelaere, J
1997-10-01
The right-end telomere of replicative form (RF) DNA of the autonomous parvovirus minute virus of mice (MVM) consists of a sequence that is self-complementary except for a three nucleotide loop around the axis of symmetry and an interior bulge of three unpaired nucleotides on one strand (designated the right-end 'bubble'). This right-end inverted repeat can exist in the form of a folded-back strand (hairpin conformation) or in an extended form, base-paired to a copy strand (duplex conformation). We recently reported that the right-end telomere is processed in an A9 cell extract supplemented with the MVM nonstructural protein NS1. This processing is shown here to result from the NS1-dependent nicking of the complementary strand at a unique position 21 nt inboard of the folded-back genomic 5' end. DNA species terminating in duplex or hairpin configurations, or in a mutated structure that has lost the right-end bulge, are all cleaved in the presence of NS1, indicating that features distinguishing these structures are not prerequisites for nicking under the in vitro conditions tested. Cleavage of the hairpin structure is followed by strand-displacement synthesis, generating the right-end duplex conformation, while processing of the duplex structure leads to the release of free right-end telomeres. In the majority of molecules, displacement synthesis at the right terminus stops a few nucleotides before reaching the end of the template strand, possibly due to NS1 which is covalently bound to this end. A fraction of the right-end duplex product undergoes melting and re-folding into hairpin structures (formation of a 'rabbit-ear' structure).
In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus.
Dai, Xinghong; Li, Zhihai; Lai, Mason; Shu, Sara; Du, Yushen; Zhou, Z Hong; Sun, Ren
2017-01-05
Packaging of the genome into a protein capsid and its subsequent delivery into a host cell are two fundamental processes in the life cycle of a virus. Unlike double-stranded DNA viruses, which pump their genome into a preformed capsid, single-stranded RNA (ssRNA) viruses, such as bacteriophage MS2, co-assemble their capsid with the genome; however, the structural basis of this co-assembly is poorly understood. MS2 infects Escherichia coli via the host 'sex pilus' (F-pilus); it was the first fully sequenced organism and is a model system for studies of translational gene regulation, RNA-protein interactions, and RNA virus assembly. Its positive-sense ssRNA genome of 3,569 bases is enclosed in a capsid with one maturation protein monomer and 89 coat protein dimers arranged in a T = 3 icosahedral lattice. The maturation protein is responsible for attaching the virus to an F-pilus and delivering the viral genome into the host during infection, but how the genome is organized and delivered is not known. Here we describe the MS2 structure at 3.6 Å resolution, determined by electron-counting cryo-electron microscopy (cryoEM) and asymmetric reconstruction. We traced approximately 80% of the backbone of the viral genome, built atomic models for 16 RNA stem-loops, and identified three conserved motifs of RNA-coat protein interactions among 15 of these stem-loops with diverse sequences. The stem-loop at the 3' end of the genome interacts extensively with the maturation protein, which, with just a six-helix bundle and a six-stranded β-sheet, forms a genome-delivery apparatus and joins 89 coat protein dimers to form a capsid. This atomic description of genome-capsid interactions in a spherical ssRNA virus provides insight into genome delivery via the host sex pilus and mechanisms underlying ssRNA-capsid co-assembly, and inspires speculation about the links between nucleoprotein complexes and the origins of viruses.
ERIC Educational Resources Information Center
Flynn, Rosalind
Designed to be used before and after attending a performance of the musical play "The Very First Family" (in which a Stone Age family and their neighbors bring three of Rudyard Kipling's stories to life), this cue sheet for teachers presents information about the performance and suggests classroom activities. The activities in the cue…
Kouvatsos, Nikolaos; Meldrum, Jill K; Searle, Mark S; Thomas, Neil R
2006-11-28
We have engineered a variant of the beta-clam shell protein ILBP which lacks the alpha-helical motif that caps the central binding cavity; the mutant protein is sufficiently destabilised that it is unfolded under physiological conditions, however, it unexpectedly binds its natural bile acid substrates with high affinity forming a native-like beta-sheet rich structure and demonstrating strong thermodynamic coupling between ligand binding and protein folding.
DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells.
Putzbach, William; Gao, Quan Q; Patel, Monal; Haluck-Kangas, Ashley; Murmann, Andrea E; Peter, Marcus E
2018-01-01
Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Electrotransfection of Polyamine Folded DNA Origami Structures.
Chopra, Aradhana; Krishnan, Swati; Simmel, Friedrich C
2016-10-12
DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (<1 mM) concentrations of the condensing agent spermidine. Much like in DNA condensation, the amount of spermidine required for origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.
Triplex-forming oligonucleotides: a third strand for DNA nanotechnology
2018-01-01
Abstract DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical (‘triplex’) structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone. PMID:29228337
21. Photographic copy of ink on linen drawing (at the ...
21. Photographic copy of ink on linen drawing (at the archives of Niagara Mohawk Power Corporation, 300 Eric Boulevard West, Syracuse, New York 13202), Strand, Draftsman, September 23, 1913. Sheet 1-258, International Paper Company and Finch, Pruyn & Company. Concrete dam. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY
An integrated single- and two-photon non-diffracting light-sheet microscope
NASA Astrophysics Data System (ADS)
Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang
2018-04-01
We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.
New design of cable-in-conduit conductor for application in future fusion reactors
NASA Astrophysics Data System (ADS)
Qin, Jinggang; Wu, Yu; Li, Jiangang; Liu, Fang; Dai, Chao; Shi, Yi; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Yagotintsev, Konstantin A.; Lubkemann, Ruben; Anvar, V. A.; Devred, Arnaud
2017-11-01
The China Fusion Engineering Test Reactor (CFETR) is a new tokamak device whose magnet system includes toroidal field, central solenoid (CS) and poloidal field coils. The main goal is to build a fusion engineering tokamak reactor with about 1 GW fusion power and self-sufficiency by blanket. In order to reach this high performance, the magnet field target is 15 T. However, the huge electromagnetic load caused by high field and current is a threat for conductor degradation under cycling. The conductor with a short-twist-pitch (STP) design has large stiffness, which enables a significant performance improvement in view of load and thermal cycling. But the conductor with STP design has a remarkable disadvantage: it can easily cause severe strand indentation during cabling. The indentation can reduce the strand performance, especially under high load cycling. In order to overcome this disadvantage, a new design is proposed. The main characteristic of this new design is an updated layout in the triplet. The triplet is made of two Nb3Sn strands and one soft copper strand. The twist pitch of the two Nb3Sn strands is large and cabled first. The copper strand is then wound around the two superconducting strands (CWS) with a shorter twist pitch. The following cable stages layout and twist pitches are similar to the ITER CS conductor with STP design. One short conductor sample with a similar scale to the ITER CS was manufactured and tested with the Twente Cable Press to investigate the mechanical properties, AC loss and internal inspection by destructive examination. The results are compared to the STP conductor (ITER CS and CFETR CSMC) tests. The results show that the new conductor design has similar stiffness, but much lower strand indentation than the STP design. The new design shows potential for application in future fusion reactors.
Jang, Bora; Kim, Boyoung; Kim, Hyunsook; Kwon, Hyokyoung; Kim, Minjeong; Seo, Yunmi; Colas, Marion; Jeong, Hansaem; Jeong, Eun Hye; Lee, Kyuri; Lee, Hyukjin
2018-06-08
Enzymatic synthesis of RNA nanostructures is achieved by isothermal rolling circle transcription (RCT). Each arm of RNA nanostructures provides a functional role of Dicer substrate RNA inducing sequence specific RNA interference (RNAi). Three different RNAi sequences (GFP, RFP, and BFP) are incorporated within the three-arm junction RNA nanostructures (Y-RNA). The template and helper DNA strands are designed for the large-scale in vitro synthesis of RNA strands to prepare self-assembled Y-RNA. Interestingly, Dicer processing of Y-RNA is highly influenced by its physical structure and different gene silencing activity is achieved depending on its arm length and overhang. In addition, enzymatic synthesis allows the preparation of various Y-RNA structures using a single DNA template offering on demand regulation of multiple target genes.
The Future of Distributed Leadership
ERIC Educational Resources Information Center
Gronn, Peter
2008-01-01
Purpose: This paper aims to assess the empirical utility and conceptual significance of distributed leadership. Design/methodology/approach: Three main sources of evidence are drawn on. The paper reviews some neglected commentary of an early generation of distributed leadership theorists. It also discusses a strand of social science writings on…
Inhibition of beta-amyloid aggregation by fluorescent dye labels
NASA Astrophysics Data System (ADS)
Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.
2014-02-01
The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.
Camacho, María; Calabuig, Pascual; Luzardo, Octavio P; Boada, Luis D; Zumbado, Manuel; Orós, Jorge
2013-07-01
We report the number of strandings caused by crude oil among loggerhead turtles (Caretta caretta) in the Canary Islands between 1998 and 2011 and analyze the impact of the designation of the Canary Islands as a Particularly Sensitive Sea Area (PSSA) in 2005. Among 1,679 stranded loggerhead turtles, 52 turtles stranded due to crude oil (3.1%). The survival rate of the turtles stranded by crude oil was 88%. All turtles that died because of crude oil stranding had signs of ingestion of crude oil and lesions, included esophageal impaction, necrotizing gastroenteritis, necrotizing hepatitis, and tubulonephrosis. The number of strandings caused by crude oil after 2005 was significantly lower than it was before 2006. We show that the designation of the Canary Islands as a PSSA in 2005 by the International Maritime Organization was associated with a reduction of sea turtle strandings caused by crude oil.
Effects of a mutation on the folding mechanism of a beta-hairpin.
Juraszek, Jarek; Bolhuis, Peter G
2009-12-17
The folding mechanism of a protein is determined by its primary sequence. Yet, how the mechanism is changed by a mutation is still poorly understood, even for basic secondary structures such as beta-hairpins. We perform an extensive simulation study of the effects of mutating the GB1 beta-hairpin into Trpzip4 (Y5W, F12W, V14W) on the folding mechanism. While Trpzip4 has a much more stable native state due to very strong hydrophobic interactions of the side chains, its folding rate does not differ significantly from the wild type beta-hairpin. We sample the free-energy landscapes of both hairpins with Replica Exchange Molecular Dynamics (REMD) and identify the four (meta)stable states (U, H, F, and N). Using Transition Path Sampling (TPS), we then harvest ensembles of unbiased pathways between the H and F states and between the F and N states to investigate the unbiased folding mechanisms. In both hairpins, the hydrophobic collapse (U-H) is followed by the middle hydrogen bond formation (H-F), and finally a closing of the strands in a zipper-like fashion (F-N). For the Trpzip4, the path ensembles indicate that the final F-N step is much more difficult than for GB1 and involves partial unfolding, rezipping of hydrogen bonds, and rearrangement of the Trp-14 side chain. For the rate-limiting (H-F) step, the path ensembles show that in GB1 desolvation and strand closure go hand in hand, while in Trpzip4 desolvation is decoupled from strand closure. Nevertheless, likelihood maximization shows that the reaction coordinate for both hairpins remains the interstrand distance. We conclude that the folding mechanism of both hairpins is a combination of hydrophobic collapse and zipping of hydrogen bonds but that the zipper mechanism is more visible in Trpzip4. A major difference between the two hairpins is that in the transition state of the rate-limiting step for Trpzip4 one tryptophan is exposed to the solvent due to steric hindrance, making the folding mechanism more complex and leading to an increased F-N barrier. Thus, our results show in atomistic detail how a mutation leads to a different folding mechanism and results in a more frustrated folding free-energy landscape.
Simultaneous measurements of magnetotail dynamics by IMP spacecraft
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Lepping, R. P.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.
1980-01-01
Changes in tail energy density during substorms in the magnetotail are given. In addition to plasma sheet thinnings seen prior to substorm onsets, a gradual decrease in plasma beta was detected in the deep tail which precedes onset and the more prominent plasma disappearance that typically accompanies it. The frequency of thinnings and the regions over which they occurred indicate that drastic changes in plasma sheet thickness are common features of substorms which occur at all locations across the tail.
Arkansas Dance Curriculum Framework 1995 (Draft).
ERIC Educational Resources Information Center
Arkansas State Dept. of Education, Little Rock.
This framework for dance contains three instructional strands. Each strand has content standards and cumulative student learning expectations for grades K-4, grades 5-8, and grades 9-12. The three strands are: (1) "Basic Elements of Movement;" (2) "Arts in Civilization;" and (3) "Artistic Communication." The content…
NASA Astrophysics Data System (ADS)
Thubagere, Anupama J.; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F.; Ardelean, Diana A.; Cherry, Kevin M.; Qian, Lulu
2017-02-01
Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits.
NASA Astrophysics Data System (ADS)
Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi
2016-04-01
3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. Electronic supplementary information (ESI) available: SEM micrographs of porous PE with and without maleated PE, X-ray micro-computed tomogram of porous extruded PE, FTIR spectra of GO, XPS wide spectra of untreated and GO immobilized PE and Raman spectra of PE and GO. See DOI: 10.1039/c6nr01356b
Euston, S R; Hughes, P; Naser, Md A; Westacott, R E
2008-05-01
Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.
Casting inorganic structures with DNA molds
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng
2014-01-01
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973
Peng, Cheng; Svirskis, Darren; Lee, Sung Je; Oey, Indrawati; Kwak, Hae-Soo; Chen, Guanyu; Bunt, Craig; Wen, Jingyuan
2017-02-14
Beta-carotene is a potent antioxidant for maintaining human health. However, its oral absorption is low due to poor aqueous solubility of less than 1 μg/ml. A microemulsion delivery system was designed to solubilize beta-carotene toward enhancing its oral bioavailability. From seven pseudoternary diagrams constructed, three systems were selected with large microemulsion areas suitable for oral administration and dilution in the predominately aqueous gastrointestinal fluids. Conductivity and rheology characterization were conducted along four dilution lines within the selected systems. Three pseudoternary-phase diagrams were selected with large microemulsion regions, >60% of the total phase diagram area, which provide microemulsions with higher drug-loading capacity. A phenomenon was observed by which both propylene glycol and Capmul MCM EP stabilize the microstructure of the microemulsions has been proposed based on the characterization studies. An optimal bicontinuous microemulsion formulation was selected comprising 12% orange oil, 24% Capmul MCM, 18% Tween 20, 6% Labrasol, 20% propylene glycol and 20% water, with a high beta-carotene loading capacity of 140.8 μg/ml and droplet size of 117.4 nm. In conclusion, the developed novel microemulsion formulation allows solubilizing beta-carotene and is a promising basis for further development as a functional beverage.
Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.
2010-11-05
Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened ormore » eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.« less
Structure of the Minor Pseudopilin EpsH From the Type 2 Secretion System of Vibrio Cholerae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanez, M.E.; Korotkov, K.V.; Abendroth, J.
2009-05-28
Many Gram-negative bacteria use the multi-protein type II secretion system (T2SS) to selectively translocate virulence factors from the periplasmic space into the extracellular environment. In Vibrio cholerae the T2SS is called the extracellular protein secretion (Eps) system, which translocates cholera toxin and several enzymes in their folded state across the outer membrane. Five proteins of the T2SS, the pseudopilins, are thought to assemble into a pseudopilus, which may control the outer membrane pore EpsD, and participate in the active export of proteins in a 'piston-like' manner. We report here the 2.0 {angstrom} resolution crystal structure of an N-terminally truncated variantmore » of EpsH, a minor pseudopilin from Vibrio cholerae. While EpsH maintains an N-terminal {alpha}-helix and C-terminal {beta}-sheet consistent with the type 4a pilin fold, structural comparisons reveal major differences between the minor pseudopilin EpsH and the major pseudopilin GspG from Klebsiella oxytoca: EpsH contains a large {beta}-sheet in the variable domain, where GspG contains an {alpha}-helix. Most importantly, EpsH contains at its surface a hydrophobic crevice between its variable and conserved {beta}-sheets, wherein a majority of the conserved residues within the EpsH family are clustered. In a tentative model of a T2SS pseudopilus with EpsH at its tip, the conserved crevice faces away from the helix axis. This conserved surface region may be critical for interacting with other proteins from the T2SS machinery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tiansheng; Thomas, G.J. Jr.; Chen, Zhongguo
Structures of protein and RNA components of bean pod mottle virus (BPMV) have been investigated by use of laser Raman spectroscopy. Raman spectra were collected from both aqueous solutions and single crystals of BPMV capsids (top component) and virions (middle and bottom components, which package, respectively, small and large RNA molecules). Analysis of the data permits the assignment of conformation-sensitive Raman bands to viral protein and RNA constituents and observation of structural similarities and differences between solution and crystalline states of BPMV components. The Raman results show that the protein subunits of the empty capsid contain between 45% and 55%more » {beta}-strand and {beta}-turn secondary structure, in agreement with the recently determined X-ray crystal structure, and that this total {beta}-strand content undergoes a small increase with packaging of RNA. A comparison of Raman spectra of crystal and solution states of the BPMV middle component reveals only minor structural differences between the two, and these are restricted almost exclusively to Raman bands of RNA in the region of assigned phosphodiester conformation markers. Although in both the crystal and solution only C3{prime} endo/anti nucleosides are detected, the crystal exhibits a weaker 813-cm{sup {minus}1} band and strong 870-cm{sup {minus}1} band, which suggests that {approximately}8% of the nucleotides have O-P-O torsions configured differently in the crystal from that in the solution.« less
Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan
2015-01-01
The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.
Jose, Jaya C; Sengupta, Neelanjana
2013-06-01
We have probed the effect of a model hydrophilic surface, rutile TiO(2), on the full-length amyloid beta (Aβ(1-42)) monomer using molecular dynamics simulations. The rutile surface brings about sharp changes in the peptide's intrinsic behavior in a distance-dependent manner. The intrinsic collapse of the peptide is disrupted, while the β-sheet propensity is sharply enhanced with increased proximity to the surface. The results may have implications for Aβ self-assembly and fibrillogenesis on hydrophilic surfaces and should be taken into consideration in the design of novel nanomaterials for perturbing amyloidogenic behavior.
[A turning point in the knowledge of the structure-function-activity relations of elastin].
Alix, A J
2001-01-01
In this review are presented the last new results of our research group dealing with the molecular structures (atomic level) of tropoelastin, elastin and elastin derived peptides studied by using essentially methods of bioinformatics (theoretical predictions and molecular modelling) linked to experimental circular dichroism spectroscopic studies. We already had characterized both the local secondary structure and some parts of the tertiary structure of the tropoelastin and elastin molecules (human, bovine...), by using either theoretical predictions (local secondary structure, linear epitopes...) and/or experimental data (optical spectroscopic methods: Raman scattering, infrared absorption, circular dichroism). Except the cross-linking regions which are in helical conformations, the whole tropoelastin structure displays a lot of beta-reverse turns which usually belong to irregular structures in proteins. These turns play a key role in other regularly structures orientation (alpha-helix, beta-strand), thus they are very important in the native protein 3D architecture. It is particularly true for human tropoelastin, because its sequence is rich in glycines and prolines, and these residues are frequently met in beta-turns (a beta-turn is made of four consecutive residues which are stabilized by an hydrogen bond). Several types of beta-turns can be defined with the dihedral angles values phi and psi of the two central residues. Thus, by using a very recent updated set of propensities for the amino acid residues to belong to given types of reverse beta-turns (extracted from a reference set of known 3-D structures of globular proteins), we have determined, (by using our home made software COUDES), for all possible tetrapeptides of the human tropoelastin sequence, the distribution and the characterization of the possible type of turns. Thus, it is shown that the locations and/or the types of these reverse beta-turns reveal a regularity and are not all random. This confirms our hypothesis that intra-molecular elasticity of tropoelastin could be explained by the possibility of transitions between conformations involving short beta-strands and beta-turns. This result is of great interest in the construction (by using molecular biology) of elastic biomaterials derived from the elastin sequence (particularly, the elastin derived peptides corresponding to the sequence exon 21--(exon 24--exon 24...). Our study permit also to predict the conformations of specific elastin derived peptides which could have interesting biological activity. Peptides resulting from the degradation of elastin, the insoluble polymer of tropoelastin and responsible for the elasticity of vertebrate tissues, can induce biological effects and notably the regulation of matrix metalloproteinases (MMP-s) activity. Recently, it was proposed that some elastin derived hexapeptides resulting from circular permutations of VGVAPG (a three fold repetition sequence in exon 24 of human tropoelastin) possess MMP-1 production and activation regulation properties. This effect depends on the presence of the tropoelastin specific membraneous receptor 67 KDa EBP (Elastin Binding Protein). Our results obtained by using both circular dichroism spectroscopy and linear predictions confirmed the hypothesis of a structure dependent mechanism with a possibly occurring type VIII beta-turn on the first four residues of the GXXPG sequence consensus which is only present among all active peptides. Thus, we have performed extensive molecular dynamics studies, in both implicit and explicit solvent, on these active and inactive elastin derived hexapeptides. Using our own analysis method of pattern recognition of the types of the beta-reverse-turns followed during the molecular dynamics trajectory, we found that active and inactive peptides effectively form two well distinct conformational groups in which active peptides preferentially adopt conformation close to type VIII GXXP (beta-reverse-turn. The structural role of the C terminal G residue could also be explained. Additional molecular simulations on (VGVAPG)2 and (VGVAPG)3 show the formation of two or three GXXP tetrapeptides adopting a structure close to type VIII beta-reverse-turn, suggesting a local conformational preference for this motif. This observation of a specific structural single and/or repeated motif is in agreement with the circular dichroism spectra of the involved (VGVAPG)1, (VGVAPG)2 and (VGVAPG)3 peptides and then it can be proposed that their biological activities have to be linear. The final aim of this type of work is to understand more about the sequence/structure/function/activity relationships of those structured peptides in order to propose specific sequences (corresponding to specific structures) for best biological activity results.
Schilling, D; Reid IV, J D; Hujer, A; Morgan, D; Demoll, E; Bummer, P; Fenstermaker, R A; Kaetzel, D M
1998-01-01
Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties. PMID:9677323
Mechanical properties of coated titanium Beta-21S after exposure to air at 700 and 800 C
NASA Technical Reports Server (NTRS)
Wiedemann, Karl E.; Bird, R. Keith; Wallace, Terryl A.; Clark, Ronald K.
1992-01-01
Mechanical properties of Beta-21S (Ti-15Mo-3Al-2.7Nb-0.2Si, wt percent) with glass, aluminide, and glass-on-aluminide coatings less than 3-micron thick were studied. Coatings were deposited by sol-gel processing or electron-beam evaporation onto 4.5-mil (113-micron) thick Beta-21S sheet from which, after oxidizing in air at 700 or 800 C, tensile test specimens were machined. Plastic elongation was the most severely degraded of the tensile properties; the glass-on-aluminide coatings were the most effective in preventing degradation. It was found that oxygen trapping by forming oxides in the coating, and reactions between the coatings and the Beta-21S alloy played significant roles.
The free energy landscape for beta hairpin folding in explicit water.
Zhou, R; Berne, B J; Germain, R
2001-12-18
The folding free energy landscape of the C-terminal beta hairpin of protein G has been explored in this study with explicit solvent under periodic boundary condition and OPLSAA force field. A highly parallel replica exchange method that combines molecular dynamics trajectories with a temperature exchange Monte Carlo process is used for sampling with the help of a new efficient algorithm P3ME/RESPA. The simulation results show that the hydrophobic core and the beta strand hydrogen bond form at roughly the same time. The free energy landscape with respect to various reaction coordinates is found to be rugged at low temperatures and becomes a smooth funnel-like landscape at about 360 K. In contrast to some very recent studies, no significant helical content has been found in our simulation at all temperatures studied. The beta hairpin population and hydrogen-bond probability are in reasonable agreement with the experiment at biological temperature, but both decay more slowly than the experiment with temperature.
Ong, Luvena L; Ke, Yonggang
2017-01-01
DNA nanostructures are a useful technology for precisely organizing and manipulating nanomaterials. The DNA bricks method is a modular and versatile platform for applications requiring discrete or periodic structures with complex three-dimensional features. Here, we describe how structures are designed from the fundamental strand architecture through assembly and characterization of the formed structures.
Martin, Peter R; Couvé, Sophie; Zutterling, Caroline; Albelazi, Mustafa S; Groisman, Regina; Matkarimov, Bakhyt T; Parsons, Jason L; Elder, Rhoderick H; Saparbaev, Murat K
2017-12-12
Interstrand cross-links (ICLs) are highly cytotoxic DNA lesions that block DNA replication and transcription by preventing strand separation. Previously, we demonstrated that the bacterial and human DNA glycosylases Nei and NEIL1 excise unhooked psoralen-derived ICLs in three-stranded DNA via hydrolysis of the glycosidic bond between the crosslinked base and deoxyribose sugar. Furthermore, NEIL3 from Xenopus laevis has been shown to cleave psoralen- and abasic site-induced ICLs in Xenopus egg extracts. Here we report that human NEIL3 cleaves psoralen-induced DNA-DNA cross-links in three-stranded and four-stranded DNA substrates to generate unhooked DNA fragments containing either an abasic site or a psoralen-thymine monoadduct. Furthermore, while Nei and NEIL1 also cleave a psoralen-induced four-stranded DNA substrate to generate two unhooked DNA duplexes with a nick, NEIL3 targets both DNA strands in the ICL without generating single-strand breaks. The DNA substrate specificities of these Nei-like enzymes imply the occurrence of long uninterrupted three- and four-stranded crosslinked DNA-DNA structures that may originate in vivo from DNA replication fork bypass of an ICL. In conclusion, the Nei-like DNA glycosylases unhook psoralen-derived ICLs in various DNA structures via a genuine repair mechanism in which complex DNA lesions can be removed without generation of highly toxic double-strand breaks.
Slow Mode Waves in the Heliospheric Plasma Sheet
NASA Technical Reports Server (NTRS)
Smith, Edward. J.; Zhou, Xiaoyan
2007-01-01
We report the results of a search for waves/turbulence in the Heliospheric Plasma Sheet (HPS) surrounding the Heliospheric Current Sheet (HCS). The HPS is treated as a distinctive heliospheric structure distinguished by relatively high Beta, slow speed plasma. The data used in the investigation are from a previously published study of the thicknesses of the HPS and HCS that were obtained in January to May 2004 when Ulysses was near aphelion at 5 AU. The advantage of using these data is that the HPS is thicker at large radial distances and the spacecraft spends longer intervals inside the plasma sheet. From the study of the magnetic field and solar wind velocity components, we conclude that, if Alfven waves are present, they are weak and are dominated by variations in the field magnitude, B, and solar wind density, NP, that are anti-correlated.