Algebraic Algorithm Design and Local Search
1996-12-01
method for performing algorithm design that is more purely algebraic than that of KIDS. This method is then applied to local search. Local search is a...synthesis. Our approach was to follow KIDS in spirit, but to adopt a pure algebraic formalism, supported by Kestrel’s SPECWARE environment (79), that...design was developed that is more purely algebraic than that of KIDS. This method was then applied to local search. A general theory of local search was
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1982-01-01
Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Verifying a Computer Algorithm Mathematically.
ERIC Educational Resources Information Center
Olson, Alton T.
1986-01-01
Presents an example of mathematics from an algorithmic point of view, with emphasis on the design and verification of this algorithm. The program involves finding roots for algebraic equations using the half-interval search algorithm. The program listing is included. (JN)
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Efficient computer algebra algorithms for polynomial matrices in control design
NASA Technical Reports Server (NTRS)
Baras, J. S.; Macenany, D. C.; Munach, R.
1989-01-01
The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.
NASA Technical Reports Server (NTRS)
Jain, A.; Man, G. K.
1993-01-01
This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.
Mishra, Bud
2009-01-01
Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723
NASA Astrophysics Data System (ADS)
Alshammari, Fahad; Isaac, Phillip S.; Marquette, Ian
2018-02-01
We introduce a search algorithm that utilises differential operator realisations to find polynomial Casimir operators of Lie algebras. To demonstrate the algorithm, we look at two classes of examples: (1) the model filiform Lie algebras and (2) the Schrödinger Lie algebras. We find that an abstract form of dimensional analysis assists us in our algorithm, and greatly reduces the complexity of the problem.
Parallel Algorithms for Least Squares and Related Computations.
1991-03-22
for dense computations in linear algebra . The work has recently been published in a general reference book on parallel algorithms by SIAM. AFO SR...written his Ph.D. dissertation with the principal investigator. (See publication 6.) • Parallel Algorithms for Dense Linear Algebra Computations. Our...and describe and to put into perspective a selection of the more important parallel algorithms for numerical linear algebra . We give a major new
Linear time-invariant controller design for two-channel decentralized control systems
NASA Technical Reports Server (NTRS)
Desoer, Charles A.; Gundes, A. Nazli
1987-01-01
This paper analyzes a linear time-invariant two-channel decentralized control system with a 2 x 2 strictly proper plant. It presents an algorithm for the algebraic design of a class of decentralized compensators which stabilize the given plant.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Numerical methods on some structured matrix algebra problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1996-06-01
This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less
Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannick, J.
The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less
Generic, Type-Safe and Object Oriented Computer Algebra Software
NASA Astrophysics Data System (ADS)
Kredel, Heinz; Jolly, Raphael
Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.
Computing Gröbner Bases within Linear Algebra
NASA Astrophysics Data System (ADS)
Suzuki, Akira
In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.
In Praise of Numerical Computation
NASA Astrophysics Data System (ADS)
Yap, Chee K.
Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
Labeled trees and the efficient computation of derivations
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.
Azad, Ariful; Buluç, Aydın
2016-05-16
We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less
NASA Astrophysics Data System (ADS)
Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin
2008-07-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.
Integrand-level reduction of loop amplitudes by computational algebraic geometry methods
NASA Astrophysics Data System (ADS)
Zhang, Yang
2012-09-01
We present an algorithm for the integrand-level reduction of multi-loop amplitudes of renormalizable field theories, based on computational algebraic geometry. This algorithm uses (1) the Gröbner basis method to determine the basis for integrand-level reduction, (2) the primary decomposition of an ideal to classify all inequivalent solutions of unitarity cuts. The resulting basis and cut solutions can be used to reconstruct the integrand from unitarity cuts, via polynomial fitting techniques. The basis determination part of the algorithm has been implemented in the Mathematica package, BasisDet. The primary decomposition part can be readily carried out by algebraic geometry softwares, with the output of the package BasisDet. The algorithm works in both D = 4 and D = 4 - 2 ɛ dimensions, and we present some two and three-loop examples of applications of this algorithm.
Algorithms for computations of Loday algebras' invariants
NASA Astrophysics Data System (ADS)
Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.
2017-04-01
The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.
Cognitive Foundry v. 3.0 (OSS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basilico, Justin; Dixon, Kevin; McClain, Jonathan
2009-11-18
The Cognitive Foundry is a unified collection of tools designed for research and applications that use cognitive modeling, machine learning, or pattern recognition. The software library contains design patterns, interface definitions, and default implementations of reusable software components and algorithms designed to support a wide variety of research and development needs. The library contains three main software packages: the Common package that contains basic utilities and linear algebraic methods, the Cognitive Framework package that contains tools to assist in implementing and analyzing theories of cognition, and the Machine Learning package that provides general algorithms and methods for populating Cognitive Frameworkmore » components from domain-relevant data.« less
Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation
NASA Technical Reports Server (NTRS)
Mook, D. J.; Lew, Jiann-Shiun
1991-01-01
Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.
Smooth function approximation using neural networks.
Ferrari, Silvia; Stengel, Robert F
2005-01-01
An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.
Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.
ERIC Educational Resources Information Center
Alexopoulos, John; Abraham, Paul
2001-01-01
Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…
Automated ILA design for synchronous sequential circuits
NASA Technical Reports Server (NTRS)
Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.
1991-01-01
An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.
Using trees to compute approximate solutions to ordinary differential equations exactly
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
Reading Bombelli's x-purgated Algebra.
ERIC Educational Resources Information Center
Arcavi, Abraham; Bruckheimer, Maxim
1991-01-01
Presents the algorithm to approximate square roots as reproduced from the 1579 edition of an algebra book by Rafael Bombelli. The sequence of activities illustrates that the process of understanding an original source of mathematics, first at the algorithmic level and then with respect to its mathematical validity in modern terms, can be an…
Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.
Zabet, K; Rossiter, J A; Haber, R; Abdullah, M
2017-11-01
This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.
ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.
Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L
2012-06-07
Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Layout optimization with algebraic multigrid methods
NASA Technical Reports Server (NTRS)
Regler, Hans; Ruede, Ulrich
1993-01-01
Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luszczek, Piotr R; Tomov, Stanimire Z; Dongarra, Jack J
We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs andmore » coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.« less
Avoiding Communication in Dense Linear Algebra
2013-08-16
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...and parallelizing Strassen’s matrix multiplication algorithm (Chapter 11). 6 Chapter 2 Preliminaries 2.1 Notation and Definitions In this section we...between computations and algo- rithms). The following definition is based on [56]: Definition 2.1. A classical algorithm in linear algebra is one that
Distributed Sensing and Processing: A Graphical Model Approach
2005-11-30
that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.
Spatial operator approach to flexible multibody system dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1991-01-01
The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.
Research issues of geometry-based visual languages and some solutions
NASA Astrophysics Data System (ADS)
Green, Thorn G.
This dissertation addresses the problem of how to design visual language systems that are based upon Geometric Algebra, and provide a visual coupling of algebraic expressions and geometric depictions. This coupling of algebraic expressions and geometric depictions provides a new means for expressing both mathematical and geometric relationships present in mathematics, physics, and Computer-Aided Geometric Design (CAGD). Another significant feature of such a system is that the result of changing a parameter (by dragging the mouse) can be seen immediately in the depiction(s) of all expressions that use that parameter. This greatly aides the cognition of the relationships between variables. Systems for representing such a coupling of algebra and geometry have characteristics of both visual language systems, and systems for scientific visualization. Instead of using a parsing or dataflow paradigm for the visual language representation, the systems instead represent equations as manipulatible constrained diagrams for their visualization. This requires that the design of such a system have (but is not limited to) a means for parsing equations entered by the user, a scheme for producing a visual representation of these equations; techniques for maintaining the coupling between the expressions entered and the diagrams displayed; algorithms for maintaining the consistency of the diagrams; and, indexing capabilities that are efficient enough to allow diagrams to be created, and manipulated in a short enough period of time. The author proposes solutions for how such a design can be realized.
Multi-sensor image registration based on algebraic projective invariants.
Li, Bin; Wang, Wei; Ye, Hao
2013-04-22
A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spotz, William F.
PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos takes advantage of the flexibility and ease of use of Python, and the efficiency of themore » underlying C++, C and Fortran numerical kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.« less
Symbolic integration of a class of algebraic functions. [by an algorithmic approach
NASA Technical Reports Server (NTRS)
Ng, E. W.
1974-01-01
An algorithm is presented for the symbolic integration of a class of algebraic functions. This class consists of functions made up of rational expressions of an integration variable x and square roots of polynomials, trigonometric and hyperbolic functions of x. The algorithm is shown to consist of the following components:(1) the reduction of input integrands to conical form; (2) intermediate internal representations of integrals; (3) classification of outputs; and (4) reduction and simplification of outputs to well-known functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R.
In this study we analyze and extend mesh-free algorithms for three-dimensional data transfer problems in partitioned multiphysics simulations. We first provide a direct comparison between a mesh-based weighted residual method using the common-refinement scheme and two mesh-free algorithms leveraging compactly supported radial basis functions: one using a spline interpolation and one using a moving least square reconstruction. Through the comparison we assess both the conservation and accuracy of the data transfer obtained from each of the methods. We do so for a varying set of geometries with and without curvature and sharp features and for functions with and without smoothnessmore » and with varying gradients. Our results show that the mesh-based and mesh-free algorithms are complementary with cases where each was demonstrated to perform better than the other. We then focus on the mesh-free methods by developing a set of algorithms to parallelize them based on sparse linear algebra techniques. This includes a discussion of fast parallel radius searching in point clouds and restructuring the interpolation algorithms to leverage data structures and linear algebra services designed for large distributed computing environments. The scalability of our new algorithms is demonstrated on a leadership class computing facility using a set of basic scaling studies. Finally, these scaling studies show that for problems with reasonable load balance, our new algorithms for both spline interpolation and moving least square reconstruction demonstrate both strong and weak scalability using more than 100,000 MPI processes with billions of degrees of freedom in the data transfer operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Hewitt, T.
1985-08-01
This note describes some experiments on simple, dense linear algebra algorithms. These experiments show that the CRAY X-MP is capable of small-grain multitasking arising from standard implementations of LU and Cholesky decomposition. The implementation described here provides the ''fastest'' execution rate for LU decomposition, 718 MFLOPS for a matrix of order 1000.
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
NASA Astrophysics Data System (ADS)
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
Just-in-Time Algebra: A Problem Solving Approach Including Multimedia and Animation.
ERIC Educational Resources Information Center
Hofmann, Roseanne S.; Hunter, Walter R.
2003-01-01
Describes a beginning algebra course that places stronger emphasis on learning to solve problems and introduces topics using real world applications. Students learn estimating, graphing, and algebraic algorithms for the purpose of solving problems. Indicates that applications motivate students by appearing to be a more relevant topic as well as…
ERIC Educational Resources Information Center
Yildiz Ulus, Aysegul
2013-01-01
This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…
Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos
2014-01-01
Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033
Communication Avoiding and Overlapping for Numerical Linear Algebra
2012-05-08
future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing...linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve...will continue to grow relative to the cost of computation. With exascale computing as the long-term goal, the community needs to develop techniques
Slattery, Stuart R.
2015-12-02
In this study we analyze and extend mesh-free algorithms for three-dimensional data transfer problems in partitioned multiphysics simulations. We first provide a direct comparison between a mesh-based weighted residual method using the common-refinement scheme and two mesh-free algorithms leveraging compactly supported radial basis functions: one using a spline interpolation and one using a moving least square reconstruction. Through the comparison we assess both the conservation and accuracy of the data transfer obtained from each of the methods. We do so for a varying set of geometries with and without curvature and sharp features and for functions with and without smoothnessmore » and with varying gradients. Our results show that the mesh-based and mesh-free algorithms are complementary with cases where each was demonstrated to perform better than the other. We then focus on the mesh-free methods by developing a set of algorithms to parallelize them based on sparse linear algebra techniques. This includes a discussion of fast parallel radius searching in point clouds and restructuring the interpolation algorithms to leverage data structures and linear algebra services designed for large distributed computing environments. The scalability of our new algorithms is demonstrated on a leadership class computing facility using a set of basic scaling studies. Finally, these scaling studies show that for problems with reasonable load balance, our new algorithms for both spline interpolation and moving least square reconstruction demonstrate both strong and weak scalability using more than 100,000 MPI processes with billions of degrees of freedom in the data transfer operation.« less
Application of Quaternions for Mesh Deformation
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
Application of Quaternions for Mesh
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.
Feedback Controller Design for the Synchronization of Boolean Control Networks.
Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling
2016-09-01
This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.
C-semiring Frameworks for Minimum Spanning Tree Problems
NASA Astrophysics Data System (ADS)
Bistarelli, Stefano; Santini, Francesco
In this paper we define general algebraic frameworks for the Minimum Spanning Tree problem based on the structure of c-semirings. We propose general algorithms that can compute such trees by following different cost criteria, which must be all specific instantiation of c-semirings. Our algorithms are extensions of well-known procedures, as Prim or Kruskal, and show the expressivity of these algebraic structures. They can deal also with partially-ordered costs on the edges.
Two-spectral Yang-Baxter operators in topological quantum computation
NASA Astrophysics Data System (ADS)
Sanchez, William F.
2011-05-01
One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers
Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.
Anderson, John R
2012-03-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. Copyright © 2011 Elsevier Ltd. All rights reserved.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
Fast matrix multiplication and its algebraic neighbourhood
NASA Astrophysics Data System (ADS)
Pan, V. Ya.
2017-11-01
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Gauss Elimination: Workhorse of Linear Algebra.
1995-08-05
linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.
An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System
Cengiz, Kubra
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468
NASA Astrophysics Data System (ADS)
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent algorithm based on generalization of Weyl character formula. We also offer alternative implementation based on the Freudenthal multiplicity formula which can be faster in some cases. Restrictions: Computational complexity grows fast with the rank of an algebra, so computations for algebras of ranks greater than 8 are not practical. Unusual features: We offer the possibility of using a traditional mathematical notation for the objects in representation theory of Lie algebras in computations if Affine.m is used in the Mathematica notebook interface. Running time: From seconds to days depending on the rank of the algebra and the complexity of the representation.
Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian
2016-09-28
We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.
A homotopy algorithm for digital optimal projection control GASD-HADOC
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANTHI, NANDAKISHORE
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less
Trees, bialgebras and intrinsic numerical algorithms
NASA Technical Reports Server (NTRS)
Crouch, Peter; Grossman, Robert; Larson, Richard
1990-01-01
Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.
On recent advances and future research directions for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.; Manhardt, P. D.
1986-01-01
This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.
Multigrid solutions to quasi-elliptic schemes
NASA Technical Reports Server (NTRS)
Brandt, A.; Taasan, S.
1985-01-01
Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate then corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.
Multigrid solutions to quasi-elliptic schemes
NASA Technical Reports Server (NTRS)
Brandt, A.; Taasan, S.
1985-01-01
Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate than corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.
Acoustooptic linear algebra processors - Architectures, algorithms, and applications
NASA Technical Reports Server (NTRS)
Casasent, D.
1984-01-01
Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.
A Linear Algebra Measure of Cluster Quality.
ERIC Educational Resources Information Center
Mather, Laura A.
2000-01-01
Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)
Algebraic Procedures and Creative Thinking
ERIC Educational Resources Information Center
Tabach, Michal; Friedlander, Alex
2017-01-01
Simplifying symbolic expressions is usually perceived in middle school algebra as an algorithmic activity, achieved by performing sequences of short drill-and-practice tasks, which have little to do with conceptual learning or with creative mathematical thinking. The aim of this study is to explore possible ways by which ninth-grade students can…
Fast Algorithms for Designing Unimodular Waveform(s) With Good Correlation Properties
NASA Astrophysics Data System (ADS)
Li, Yongzhe; Vorobyov, Sergiy A.
2018-03-01
In this paper, we develop new fast and efficient algorithms for designing single/multiple unimodular waveforms/codes with good auto- and cross-correlation or weighted correlation properties, which are highly desired in radar and communication systems. The waveform design is based on the minimization of the integrated sidelobe level (ISL) and weighted ISL (WISL) of waveforms. As the corresponding optimization problems can quickly grow to large scale with increasing the code length and number of waveforms, the main issue turns to be the development of fast large-scale optimization techniques. The difficulty is also that the corresponding optimization problems are non-convex, but the required accuracy is high. Therefore, we formulate the ISL and WISL minimization problems as non-convex quartic optimization problems in frequency domain, and then simplify them into quadratic problems by utilizing the majorization-minimization technique, which is one of the basic techniques for addressing large-scale and/or non-convex optimization problems. While designing our fast algorithms, we find out and use inherent algebraic structures in the objective functions to rewrite them into quartic forms, and in the case of WISL minimization, to derive additionally an alternative quartic form which allows to apply the quartic-quadratic transformation. Our algorithms are applicable to large-scale unimodular waveform design problems as they are proved to have lower or comparable computational burden (analyzed theoretically) and faster convergence speed (confirmed by comprehensive simulations) than the state-of-the-art algorithms. In addition, the waveforms designed by our algorithms demonstrate better correlation properties compared to their counterparts.
NASA Technical Reports Server (NTRS)
Mitra, Debasis; Thomas, Ajai; Hemminger, Joseph; Sakowski, Barbara
2001-01-01
In this research we have developed an algorithm for the purpose of constraint processing by utilizing relational algebraic operators. Van Beek and others have investigated in the past this type of constraint processing from within a relational algebraic framework, producing some unique results. Apart from providing new theoretical angles, this approach also gives the opportunity to use the existing efficient implementations of relational database management systems as the underlying data structures for any relevant algorithm. Our algorithm here enhances that framework. The algorithm is quite general in its current form. Weak heuristics (like forward checking) developed within the Constraint-satisfaction problem (CSP) area could be also plugged easily within this algorithm for further enhancements of efficiency. The algorithm as developed here is targeted toward a component-oriented modeling problem that we are currently working on, namely, the problem of interactive modeling for batch-simulation of engineering systems (IMBSES). However, it could be adopted for many other CSP problems as well. The research addresses the algorithm and many aspects of the problem IMBSES that we are currently handling.
Fast template matching with polynomials.
Omachi, Shinichiro; Omachi, Masako
2007-08-01
Template matching is widely used for many applications in image and signal processing. This paper proposes a novel template matching algorithm, called algebraic template matching. Given a template and an input image, algebraic template matching efficiently calculates similarities between the template and the partial images of the input image, for various widths and heights. The partial image most similar to the template image is detected from the input image for any location, width, and height. In the proposed algorithm, a polynomial that approximates the template image is used to match the input image instead of the template image. The proposed algorithm is effective especially when the width and height of the template image differ from the partial image to be matched. An algorithm using the Legendre polynomial is proposed for efficient approximation of the template image. This algorithm not only reduces computational costs, but also improves the quality of the approximated image. It is shown theoretically and experimentally that the computational cost of the proposed algorithm is much smaller than the existing methods.
An efficient motion-resistant method for wearable pulse oximeter.
Yan, Yong-Sheng; Zhang, Yuan-Ting
2008-05-01
Reduction of motion artifact and power saving are crucial in designing a wearable pulse oximeter for long-term telemedicine application. In this paper, a novel algorithm, minimum correlation discrete saturation transform (MCDST) has been developed for the estimation of arterial oxygen saturation (SaO2), based on an optical model derived from photon diffusion analysis. The simulation shows that the new algorithm MCDST is more robust under low SNRs than the clinically verified motion-resistant algorithm discrete saturation transform (DST). Further, the experiment with different severity of motions demonstrates that MCDST has a slightly better performance than DST algorithm. Moreover, MCDST is more computationally efficient than DST because the former uses linear algebra instead of the time-consuming adaptive filter used by latter, which indicates that MCDST can reduce the required power consumption and circuit complexity of the implementation. This is vital for wearable devices, where the physical size and long battery life are crucial.
Global identifiability of linear compartmental models--a computer algebra algorithm.
Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C
1998-01-01
A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.
Bisimulation equivalence of differential-algebraic systems
NASA Astrophysics Data System (ADS)
Megawati, Noorma Yulia; Schaft, Arjan van der
2018-01-01
In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to general linear differential-algebraic (DAE) systems. Geometric control theory is used to derive a linear-algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal bisimulation relation between two linear DAE systems. The general definition is specialised to the case where the matrix pencil sE - A is regular. Furthermore, by developing a one-sided version of bisimulation, characterisations of simulation and abstraction are obtained.
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
Cramer-Rao bound analysis of wideband source localization and DOA estimation
NASA Astrophysics Data System (ADS)
Yip, Lean; Chen, Joe C.; Hudson, Ralph E.; Yao, Kung
2002-12-01
In this paper, we derive the Cramér-Rao Bound (CRB) for wideband source localization and DOA estimation. The resulting CRB formula can be decomposed into two terms: one that depends on the signal characteristic and one that depends on the array geometry. For a uniformly spaced circular array (UCA), a concise analytical form of the CRB can be given by using some algebraic approximation. We further define a DOA beamwidth based on the resulting CRB formula. The DOA beamwidth can be used to design the sampling angular spacing for the Maximum-likelihood (ML) algorithm. For a randomly distributed array, we use an elliptical model to determine the largest and smallest effective beamwidth. The effective beamwidth and the CRB analysis of source localization allow us to design an efficient algorithm for the ML estimator. Finally, our simulation results of the Approximated Maximum Likelihood (AML) algorithm are demonstrated to match well to the CRB analysis at high SNR.
Numerical algebraic geometry: a new perspective on gauge and string theories
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.
2012-07-01
There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.
Non-AdS holography in 3-dimensional higher spin gravity — General recipe and example
NASA Astrophysics Data System (ADS)
Afshar, H.; Gary, M.; Grumiller, D.; Rashkov, R.; Riegler, M.
2012-11-01
We present the general algorithm to establish the classical and quantum asymptotic symmetry algebra for non-AdS higher spin gravity and implement it for the specific example of spin-3 gravity in the non-principal embedding with Lobachevsky ( {{{{H}}^2}× {R}} ) boundary conditions. The asymptotic symmetry algebra for this example consists of a quantum W_3^{(2) } (Polyakov-Bershadsky) and an affine û(1) algebra. We show that unitary representations of the quantum W_3^{(2) } algebra exist only for two values of its central charge, the trivial c = 0 "theory" and the simple c = 1 theory.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Zaitsev, Alexandr V.; Voloshin, Victor M.
2001-03-01
Historic information regarding the appearance and creation of fundamentals of algebra-logical apparatus-`equivalental algebra' for description of neuro-nets paradigms and algorithms is considered which is unification of theory of neuron nets (NN), linear algebra and the most generalized neuro-biology extended for matrix case. A survey is given of `equivalental models' of neuron nets and associative memory is suggested new, modified matrix-tenzor neurological equivalental models (MTNLEMS) are offered with double adaptive-equivalental weighing (DAEW) for spatial-non- invariant recognition (SNIR) and space-invariant recognition (SIR) of 2D images (patterns). It is shown, that MTNLEMS DAEW are the most generalized, they can describe the processes in NN both within the frames of known paradigms and within new `equivalental' paradigm of non-interaction type, and the computing process in NN under using the offered MTNLEMs DAEW is reduced to two-step and multi-step algorithms and step-by-step matrix-tenzor procedures (for SNIR) and procedures of defining of space-dependent equivalental functions from two images (for SIR).
Algebraic, geometric, and stochastic aspects of genetic operators
NASA Technical Reports Server (NTRS)
Foo, N. Y.; Bosworth, J. L.
1972-01-01
Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.
Control Theory based Shape Design for the Incompressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Cowles, G.; Martinelli, L.
2003-12-01
A design method for shape optimization in incompressible turbulent viscous flow has been developed and validated for inverse design. The gradient information is determined using a control theory based algorithm. With such an approach, the cost of computing the gradient is negligible. An additional adjoint system must be solved which requires the cost of a single steady state flow solution. Thus, this method has an enormous advantage over traditional finite-difference based algorithms. The method of artificial compressibility is utilized to solve both the flow and adjoint systems. An algebraic turbulence model is used to compute the eddy viscosity. The method is validated using several inverse wing design test cases. In each case, the program must modify the shape of the initial wing such that its pressure distribution matches that of the target wing. Results are shown for the inversion of both finite thickness wings as well as zero thickness wings which can be considered a model of yacht sails.
DNA algorithms of implementing biomolecular databases on a biological computer.
Chang, Weng-Long; Vasilakos, Athanasios V
2015-01-01
In this paper, DNA algorithms are proposed to perform eight operations of relational algebra (calculus), which include Cartesian product, union, set difference, selection, projection, intersection, join, and division, on biomolecular relational databases.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less
Linear Algebra and Sequential Importance Sampling for Network Reliability
2011-12-01
first test case is an Erdős- Renyi graph with 100 vertices and 150 edges. Figure 1 depicts the relative variance of the three Algorithms: Algorithm TOP...e va ria nc e Figure 1: Relative variance of various algorithms on Erdős Renyi graph, 100 vertices 250 edges. Key: Solid = TOP-DOWN algorithm
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.
Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L
2011-08-01
In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.
DEGAS: Dynamic Exascale Global Address Space Programming Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, James
The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less
NASA Astrophysics Data System (ADS)
Ingacheva, Anastasia; Chukalina, Marina; Khanipov, Timur; Nikolaev, Dmitry
2018-04-01
Motion blur caused by camera vibration is a common source of degradation in photographs. In this paper we study the problem of finding the point spread function (PSF) of a blurred image using the tomography technique. The PSF reconstruction result strongly depends on the particular tomography technique used. We present a tomography algorithm with regularization adapted specifically for this task. We use the algebraic reconstruction technique (ART algorithm) as the starting algorithm and introduce regularization. We use the conjugate gradient method for numerical implementation of the proposed approach. The algorithm is tested using a dataset which contains 9 kernels extracted from real photographs by the Adobe corporation where the point spread function is known. We also investigate influence of noise on the quality of image reconstruction and investigate how the number of projections influence the magnitude change of the reconstruction error.
Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms
NASA Astrophysics Data System (ADS)
Samanta, A.; Todd, L. A.
A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.
QCCM Center for Quantum Algorithms
2008-10-17
algorithms (e.g., quantum walks and adiabatic computing ), as well as theoretical advances relating algorithms to physical implementations (e.g...Park, NC 27709-2211 15. SUBJECT TERMS Quantum algorithms, quantum computing , fault-tolerant error correction Richard Cleve MITACS East Academic...0511200 Algebraic results on quantum automata A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thrien Theory of Computing Systems 39(2006
Generalized algebraic scene-based nonuniformity correction algorithm.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2005-02-01
A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.
New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation
NASA Astrophysics Data System (ADS)
Liu, Jianzhou; Wang, Li; Zhang, Juan
2017-11-01
The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.
NASA Astrophysics Data System (ADS)
Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.
2018-03-01
Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.
On the validation of a code and a turbulence model appropriate to circulation control airfoils
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.
1988-01-01
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.
Iterative algorithms for tridiagonal matrices on a WSI-multiprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajski, D.D.; Sameh, A.H.; Wisniewski, J.A.
1982-01-01
With the rapid advances in semiconductor technology, the construction of Wafer Scale Integration (WSI)-multiprocessors consisting of a large number of processors is now feasible. We illustrate the implementation of some basic linear algebra algorithms on such multiprocessors.
Introduction to Mathematica® for Physicists
NASA Astrophysics Data System (ADS)
Grozin, Andrey
We were taught at calculus classes that integration is an art, not a science (in contrast to differentiation—even a monkey can be trained to take derivatives). And we were taught wrong. The Risch algorithm (which is known for decades) allows one to find, in a finite number of steps, if a given indefinite integral can be taken in elementary functions, and if so, to calculate it. This algorithm has been constructed in works by an American mathematician Risch near 1970; many cases were not analyzed completely in these works and were later considered by other mathematicians. The algorithm is very complicated, and no computer algebra system implements it fully. Its implementation in Mathematica is rather complete, even with extensions to some classes of special functions, but details are not publicly known. Strictly speaking, it is not quite an algorithm, because it contains algorithmically unsolvable subproblems, such as finding out if a given combination of elementary functions vanishes. But in practice computer algebra systems are quite good in solving such problems. Here we shall consider, at a very elementary level, the main ideas of the Risch algorithm; see [16] for more details.
PLA realizations for VLSI state machines
NASA Technical Reports Server (NTRS)
Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.
1990-01-01
A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.
Independent component analysis algorithm FPGA design to perform real-time blind source separation
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe; Odom, Crispin; Botella, Guillermo; Meyer-Baese, Anke
2015-05-01
The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.
ERIC Educational Resources Information Center
Chang, Yu-Liang; Huang, Yu-I
2014-01-01
The intention of this study was to improve the learning deficiency in algebraic learning and to enhance Taiwanese middle students' learning achievement and interest in algebra. By using a grade skipping experimental design, the research team intended to find out an effective way to benefit these students' leaning in abstract algebraic concepts.…
Students’ Algebraic Thinking Process in Context of Point and Line Properties
NASA Astrophysics Data System (ADS)
Nurrahmi, H.; Suryadi, D.; Fatimah, S.
2017-09-01
Learning of schools algebra is limited to symbols and operating procedures, so students are able to work on problems that only require the ability to operate symbols but unable to generalize a pattern as one of part of algebraic thinking. The purpose of this study is to create a didactic design that facilitates students to do algebraic thinking process through the generalization of patterns, especially in the context of the property of point and line. This study used qualitative method and includes Didactical Design Research (DDR). The result is students are able to make factual, contextual, and symbolic generalization. This happen because the generalization arises based on facts on local terms, then the generalization produced an algebraic formula that was described in the context and perspective of each student. After that, the formula uses the algebraic letter symbol from the symbol t hat uses the students’ language. It can be concluded that the design has facilitated students to do algebraic thinking process through the generalization of patterns, especially in the context of property of the point and line. The impact of this study is this design can use as one of material teaching alternative in learning of school algebra.
Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.
Allen, Edward E; Norris, James L; John, David J; Thomas, Stan J; Turkett, William H; Fetrow, Jacquelyn S
2010-01-01
Multiple approaches for reverse-engineering biological networks from time-series data have been proposed in the computational biology literature. These approaches can be classified by their underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their time paradigm, which includes next-state and co-temporal modeling. The types of biological relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is important to understand the strengths and weaknesses of the various algorithms and time paradigms on actual experimental data. We assess how well the co-temporal implementations of three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) identify two types of entity relationships, parent and sibling, between biological entities, 2) deal with experimental sparse time course data, and 3) handle experimental noise seen in replicate data sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting models match literature models in terms of siblings and parent relationships. Results indicate that all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling relationships, but perform relatively poorly in finding parent relationships.
Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz
2015-01-01
Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.
Designing Spreadsheet-Based Tasks for Purposeful Algebra
ERIC Educational Resources Information Center
Ainley, Janet; Bills, Liz; Wilson, Kirsty
2005-01-01
We describe the design of a sequence of spreadsheet-based pedagogic tasks for the introduction of algebra in the early years of secondary schooling within the Purposeful Algebraic Activity project. This design combines two relatively novel features to bring a different perspective to research in the use of spreadsheets for the learning and…
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817
NASA Astrophysics Data System (ADS)
Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee
2016-02-01
Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.
Radiometrically accurate scene-based nonuniformity correction for array sensors.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2003-10-01
A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.
Comparison of methods for developing the dynamics of rigid-body systems
NASA Technical Reports Server (NTRS)
Ju, M. S.; Mansour, J. M.
1989-01-01
Several approaches for developing the equations of motion for a three-degree-of-freedom PUMA robot were compared on the basis of computational efficiency (i.e., the number of additions, subtractions, multiplications, and divisions). Of particular interest was the investigation of the use of computer algebra as a tool for developing the equations of motion. Three approaches were implemented algebraically: Lagrange's method, Kane's method, and Wittenburg's method. Each formulation was developed in absolute and relative coordinates. These six cases were compared to each other and to a recursive numerical formulation. The results showed that all of the formulations implemented algebraically required fewer calculations than the recursive numerical algorithm. The algebraic formulations required fewer calculations in absolute coordinates than in relative coordinates. Each of the algebraic formulations could be simplified, using patterns from Kane's method, to yield the same number of calculations in a given coordinate system.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Algebraic criteria for positive realness relative to the unit circle.
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1973-01-01
A definition is presented of the circle positive realness of real rational functions relative to the unit circle in the complex variable plane. The problem of testing this kind of positive reality is reduced to the algebraic problem of determining the distribution of zeros of a real polynomial with respect to and on the unit circle. Such reformulation of the problem avoids the search for explicit information about imaginary poles of rational functions. The stated algebraic problem is solved by applying the polynomial criteria of Marden (1966) and Jury (1964), and a completely recursive algorithm for circle positive realness is obtained.
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
Bellman's GAP--a language and compiler for dynamic programming in sequence analysis.
Sauthoff, Georg; Möhl, Mathias; Janssen, Stefan; Giegerich, Robert
2013-03-01
Dynamic programming is ubiquitous in bioinformatics. Developing and implementing non-trivial dynamic programming algorithms is often error prone and tedious. Bellman's GAP is a new programming system, designed to ease the development of bioinformatics tools based on the dynamic programming technique. In Bellman's GAP, dynamic programming algorithms are described in a declarative style by tree grammars, evaluation algebras and products formed thereof. This bypasses the design of explicit dynamic programming recurrences and yields programs that are free of subscript errors, modular and easy to modify. The declarative modules are compiled into C++ code that is competitive to carefully hand-crafted implementations. This article introduces the Bellman's GAP system and its language, GAP-L. It then demonstrates the ease of development and the degree of re-use by creating variants of two common bioinformatics algorithms. Finally, it evaluates Bellman's GAP as an implementation platform of 'real-world' bioinformatics tools. Bellman's GAP is available under GPL license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes a repository of re-usable modules for RNA folding based on thermodynamics.
ERIC Educational Resources Information Center
Mavrikis, M.; Noss, R.; Hoyles, C.; Geraniou, E.
2013-01-01
This paper describes the design of a mathematical microworld to tackle the persistent difficulties that secondary school students have with the idea of algebraic generalization, which is a key stumbling block in secondary-school mathematics classrooms. Our focus is to characterize algebraic ways of thinking and to design both affordances of the…
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing
ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
A Electro-Optical Image Algebra Processing System for Automatic Target Recognition
NASA Astrophysics Data System (ADS)
Coffield, Patrick Cyrus
The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.
Grid generation methodology and CFD simulations in sliding vane compressors and expanders
NASA Astrophysics Data System (ADS)
Bianchi, Giuseppe; Rane, Sham; Kovacevic, Ahmed; Cipollone, Roberto; Murgia, Stefano; Contaldi, Giulio
2017-08-01
The limiting factor for the employment of advanced 3D CFD tools in the analysis and design of rotary vane machines is the unavailability of methods for generation of computational grids suitable for fast and reliable numerical analysis. The paper addresses this challenge presenting the development of an analytical grid generation for vane machines that is based on the user defined nodal displacement. In particular, mesh boundaries are defined as parametric curves generated using trigonometrical modelling of the axial cross section of the machine while the distribution of computational nodes is performed using algebraic algorithms with transfinite interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality in terms of cell size and expansion. In this way, the moving and deforming fluid domain of the sliding vane machine is discretized and the conservation of intrinsic quantities in ensured by maintaining the cell connectivity and structure. For validation of generated grids, a mid-size air compressor and a small-scale expander for Organic Rankine Cycle applications have been investigated in this paper. Remarks on implementation of the mesh motion algorithm, stability and robustness experienced with the ANSYS CFX solver as well as the obtained flow results are presented.
On a programming language for graph algorithms
NASA Technical Reports Server (NTRS)
Rheinboldt, W. C.; Basili, V. R.; Mesztenyi, C. K.
1971-01-01
An algorithmic language, GRAAL, is presented for describing and implementing graph algorithms of the type primarily arising in applications. The language is based on a set algebraic model of graph theory which defines the graph structure in terms of morphisms between certain set algebraic structures over the node set and arc set. GRAAL is modular in the sense that the user specifies which of these mappings are available with any graph. This allows flexibility in the selection of the storage representation for different graph structures. In line with its set theoretic foundation, the language introduces sets as a basic data type and provides for the efficient execution of all set and graph operators. At present, GRAAL is defined as an extension of ALGOL 60 (revised) and its formal description is given as a supplement to the syntactic and semantic definition of ALGOL. Several typical graph algorithms are written in GRAAL to illustrate various features of the language and to show its applicability.
Numerical evaluation of mobile robot navigation in static indoor environment via EGAOR Iteration
NASA Astrophysics Data System (ADS)
Dahalan, A. A.; Saudi, A.; Sulaiman, J.; Din, W. R. W.
2017-09-01
One of the key issues in mobile robot navigation is the ability for the robot to move from an arbitrary start location to a specified goal location without colliding with any obstacles while traveling, also known as mobile robot path planning problem. In this paper, however, we examined the performance of a robust searching algorithm that relies on the use of harmonic potentials of the environment to generate smooth and safe path for mobile robot navigation in a static known indoor environment. The harmonic potentials will be discretized by using Laplacian’s operator to form a system of algebraic approximation equations. This algebraic linear system will be computed via 4-Point Explicit Group Accelerated Over-Relaxation (4-EGAOR) iterative method for rapid computation. The performance of the proposed algorithm will then be compared and analyzed against the existing algorithms in terms of number of iterations and execution time. The result shows that the proposed algorithm performed better than the existing methods.
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan
2015-07-01
Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Mniszewski, S M; Cawkwell, M J; Wall, M E; Mohd-Yusof, J; Bock, N; Germann, T C; Niklasson, A M N
2015-10-13
We present an algorithm for the calculation of the density matrix that for insulators scales linearly with system size and parallelizes efficiently on multicore, shared memory platforms with small and controllable numerical errors. The algorithm is based on an implementation of the second-order spectral projection (SP2) algorithm [ Niklasson, A. M. N. Phys. Rev. B 2002 , 66 , 155115 ] in sparse matrix algebra with the ELLPACK-R data format. We illustrate the performance of the algorithm within self-consistent tight binding theory by total energy calculations of gas phase poly(ethylene) molecules and periodic liquid water systems containing up to 15,000 atoms on up to 16 CPU cores. We consider algorithm-specific performance aspects, such as local vs nonlocal memory access and the degree of matrix sparsity. Comparisons to sparse matrix algebra implementations using off-the-shelf libraries on multicore CPUs, graphics processing units (GPUs), and the Intel many integrated core (MIC) architecture are also presented. The accuracy and stability of the algorithm are illustrated with long duration Born-Oppenheimer molecular dynamics simulations of 1000 water molecules and a 303 atom Trp cage protein solvated by 2682 water molecules.
Prime factorization using quantum annealing and computational algebraic geometry
NASA Astrophysics Data System (ADS)
Dridi, Raouf; Alghassi, Hedayat
2017-02-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.
Kleene Algebra and Bytecode Verification
2016-04-27
computing the star (Kleene closure) of a matrix of transfer functions. In this paper we show how this general framework applies to the problem of Java ...bytecode verification. We show how to specify transfer functions arising in Java bytecode verification in such a way that the Kleene algebra operations...potentially improve the performance over the standard worklist algorithm when a small cutset can be found. Key words: Java , bytecode, verification, static
Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.
ERIC Educational Resources Information Center
Morris, J. Richard
This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…
An Inquiry-Based Linear Algebra Class
ERIC Educational Resources Information Center
Wang, Haohao; Posey, Lisa
2011-01-01
Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…
An algebraic algorithm for nonuniformity correction in focal-plane arrays.
Ratliff, Bradley M; Hayat, Majeed M; Hardie, Russell C
2002-09-01
A scene-based algorithm is developed to compensate for bias nonuniformity in focal-plane arrays. Nonuniformity can be extremely problematic, especially for mid- to far-infrared imaging systems. The technique is based on use of estimates of interframe subpixel shifts in an image sequence, in conjunction with a linear-interpolation model for the motion, to extract information on the bias nonuniformity algebraically. The performance of the proposed algorithm is analyzed by using real infrared and simulated data. One advantage of this technique is its simplicity; it requires relatively few frames to generate an effective correction matrix, thereby permitting the execution of frequent on-the-fly nonuniformity correction as drift occurs. Additionally, the performance is shown to exhibit considerable robustness with respect to lack of the common types of temporal and spatial irradiance diversity that are typically required by statistical scene-based nonuniformity correction techniques.
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
NASA Astrophysics Data System (ADS)
Moore, Peter K.
2003-07-01
Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied.
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)
NASA Astrophysics Data System (ADS)
Habiballa, Hashim; Jendryscik, Radek
2017-11-01
The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
Understanding Division of Fractions: An Alternative View
ERIC Educational Resources Information Center
Fredua-Kwarteng, E.; Ahia, Francis
2006-01-01
The purpose of this paper is to offer three alternatives to patterns or visualization used to justify division of fraction "algorithm" invert and multiply". The three main approaches are historical, similar denominators and algebraic, that teachers could use to justify the standard algorithm of division of fraction. The historical approach uses…
Simplification of multiple Fourier series - An example of algorithmic approach
NASA Technical Reports Server (NTRS)
Ng, E. W.
1981-01-01
This paper describes one example of multiple Fourier series which originate from a problem of spectral analysis of time series data. The example is exercised here with an algorithmic approach which can be generalized for other series manipulation on a computer. The generalized approach is presently pursued towards applications to a variety of multiple series and towards a general purpose algorithm for computer algebra implementation.
A Process Algebraic Approach to Software Architecture Design
NASA Astrophysics Data System (ADS)
Aldini, Alessandro; Bernardo, Marco; Corradini, Flavio
Process algebra is a formal tool for the specification and the verification of concurrent and distributed systems. It supports compositional modeling through a set of operators able to express concepts like sequential composition, alternative composition, and parallel composition of action-based descriptions. It also supports mathematical reasoning via a two-level semantics, which formalizes the behavior of a description by means of an abstract machine obtained from the application of structural operational rules and then introduces behavioral equivalences able to relate descriptions that are syntactically different. In this chapter, we present the typical behavioral operators and operational semantic rules for a process calculus in which no notion of time, probability, or priority is associated with actions. Then, we discuss the three most studied approaches to the definition of behavioral equivalences - bisimulation, testing, and trace - and we illustrate their congruence properties, sound and complete axiomatizations, modal logic characterizations, and verification algorithms. Finally, we show how these behavioral equivalences and some of their variants are related to each other on the basis of their discriminating power.
Properties of coupled-cluster equations originating in excitation sub-algebras
NASA Astrophysics Data System (ADS)
Kowalski, Karol
2018-03-01
In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.
Vertex Algebras W(p)Am and W(p)Dm and Constant Term Identities
NASA Astrophysics Data System (ADS)
Adamović, Dražen; Lin, Xianzu; Milas, Antun
2015-03-01
We consider AD-type orbifolds of the triplet vertex algebras W(p) extending the well-known c=1 orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras A(W(p)^{A_m}) and A(W(p)^{D_m}), where A_m and D_m are cyclic and dihedral groups, respectively. A combinatorial algorithm for classification of irreducible W(p)^Γ-modules is developed, which relies on a family of constant term identities and properties of certain polynomials based on constant terms. All these properties can be checked for small values of m and p with a computer software. As a result, we argue that if certain constant term properties hold, the irreducible modules constructed in [Commun. Contemp. Math. 15 (2013), 1350028, 30 pages; Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a complete list of irreducible W(p)^{A_m} and W(p)^{D_m}-modules. This paper is a continuation of our previous work on the ADE subalgebras of the triplet vertex algebra W(p).
Prime factorization using quantum annealing and computational algebraic geometry
Dridi, Raouf; Alghassi, Hedayat
2017-01-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, Timothy P.
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less
Designing Cognitively Diagnostic Assessment for Algebraic Content Knowledge and Thinking Skills
ERIC Educational Resources Information Center
Zhang, Zhidong
2018-01-01
This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…
Implicit Plasma Kinetic Simulation Using The Jacobian-Free Newton-Krylov Method
NASA Astrophysics Data System (ADS)
Taitano, William; Knoll, Dana; Chacon, Luis
2009-11-01
The use of fully implicit time integration methods in kinetic simulation is still area of algorithmic research. A brute-force approach to simultaneously including the field equations and the particle distribution function would result in an intractable linear algebra problem. A number of algorithms have been put forward which rely on an extrapolation in time. They can be thought of as linearly implicit methods or one-step Newton methods. However, issues related to time accuracy of these methods still remain. We are pursuing a route to implicit plasma kinetic simulation which eliminates extrapolation, eliminates phase-space from the linear algebra problem, and converges the entire nonlinear system within a time step. We accomplish all this using the Jacobian-Free Newton-Krylov algorithm. The original research along these lines considered particle methods to advance the distribution function [1]. In the current research we are advancing the Vlasov equations on a grid. Results will be presented which highlight algorithmic details for single species electrostatic problems and coupled ion-electron electrostatic problems. [4pt] [1] H. J. Kim, L. Chac'on, G. Lapenta, ``Fully implicit particle in cell algorithm,'' 47th Annual Meeting of the Division of Plasma Physics, Oct. 24-28, 2005, Denver, CO
Paving the Way To Algebraic Thought Using Residue Designs.
ERIC Educational Resources Information Center
Johnson, Iris DeLoach
1998-01-01
Presents a brief definition and examples of residue designs while sharing some of the algebraic thought that a student used to form generalizations about the patterns discovered during the investigations of residue designs. (ASK)
Automatic Blocking Of QR and LU Factorizations for Locality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Q; Kennedy, K; You, H
2004-03-26
QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less
A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
NASA Astrophysics Data System (ADS)
Sulaimanov, Z. M.; Shumilov, B. M.
2017-10-01
For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.
UCSMP Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
Decryption of pure-position permutation algorithms.
Zhao, Xiao-Yu; Chen, Gang; Zhang, Dan; Wang, Xiao-Hong; Dong, Guang-Chang
2004-07-01
Pure position permutation image encryption algorithms, commonly used as image encryption investigated in this work are unfortunately frail under known-text attack. In view of the weakness of pure position permutation algorithm, we put forward an effective decryption algorithm for all pure-position permutation algorithms. First, a summary of the pure position permutation image encryption algorithms is given by introducing the concept of ergodic matrices. Then, by using probability theory and algebraic principles, the decryption probability of pure-position permutation algorithms is verified theoretically; and then, by defining the operation system of fuzzy ergodic matrices, we improve a specific decryption algorithm. Finally, some simulation results are shown.
NASA Astrophysics Data System (ADS)
Mendes Platt, Gustavo; Pinheiro Domingos, Roberto; Oliveira de Andrade, Matheus
2014-01-01
The calculation of reactive azeotropes is an important task in the preliminary design and simulation of reactive distillation columns. Classically, homogeneous nonreactive azeotropes are vapor-liquid coexistence conditions where phase compositions are equal. For homogeneous reactive azeotropes, simultaneous phase and chemical equilibria occur concomitantly with equality of compositions (in the Ung-Doherty transformed space). The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. In a previous paper (Platt et al 2013 J. Phys.: Conf. Ser. 410 012020), we investigated some numerical aspects of the calculation of reactive azeotropes in the isobutene + methanol + methyl-tert-butyl-ether (with two reactive azeotropes) system using two metaheuristics: the Luus-Jaakola adaptive random search and the Firefly algorithm. Here, we use a hybrid structure (stochastic + deterministic) in order to produce accurate results for both azeotropes. After identifying the neighborhood of the reactive azeotrope, the nonlinear algebraic system is solved using Newton's method. The results indicate that using metaheuristics and some techniques devoted to the calculation of multiple minima allows both azeotropic coordinates in this reactive system to be obtains. In this sense, we provide a comprehensive analysis of a useful framework devoted to solving nonlinear systems, particularly in phase equilibrium problems.
NASA Astrophysics Data System (ADS)
Matone, Marco
2016-11-01
Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp (X) exp (Y)=exp (W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp (X) exp (Y) exp (Z)=exp (W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper.
A Novel Image Encryption Based on Algebraic S-box and Arnold Transform
NASA Astrophysics Data System (ADS)
Farwa, Shabieh; Muhammad, Nazeer; Shah, Tariq; Ahmad, Sohail
2017-09-01
Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.
Suboptimal LQR-based spacecraft full motion control: Theory and experimentation
NASA Astrophysics Data System (ADS)
Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.
2016-05-01
This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
Designing Virtual Worlds for Use in Mathematics Education: The Example of Experiential Algebra.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
1992-01-01
Discussion of the use of virtual reality (VR) to help students learn highlights the use of VR with elementary algebra. Learning theory is examined, including knowledge construction; knowledge representation is discussed, including the symbol systems of algebra; and spatial algebra is described and illustrated. (34 references) (LRW)
Computational efficiency for the surface renewal method
NASA Astrophysics Data System (ADS)
Kelley, Jason; Higgins, Chad
2018-04-01
Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.
ERIC Educational Resources Information Center
Nagasinghe, Iranga
2010-01-01
This thesis investigates and develops a few acceleration techniques for the search engine algorithms used in PageRank and HITS computations. PageRank and HITS methods are two highly successful applications of modern Linear Algebra in computer science and engineering. They constitute the essential technologies accounted for the immense growth and…
Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms
ERIC Educational Resources Information Center
Anderson, John R.
2012-01-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…
The algebraic decoding of the (41, 21, 9) quadratic residue code
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei
1992-01-01
A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.
Block Iterative Methods for Elliptic and Parabolic Difference Equations.
1981-09-01
S V PARTER, M STEUERWALT N0OO14-7A-C-0341 UNCLASSIFIED CSTR -447 NL ENN.EEEEEN LLf SCOMPUTER SCIENCES c~DEPARTMENT SUniversity of Wisconsin- SMadison...suggests that iterative algorithms that solve for several points at once will converge more rapidly than point algorithms . The Gaussian elimination... algorithm is seen in this light to converge in one step. Frankel [14], Young [34], Arms, Gates, and Zondek [1], and Varga [32], using the algebraic structure
ERIC Educational Resources Information Center
Okpube, Nnaemeka Michael; Anugwo, M. N.
2016-01-01
This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…
ERIC Educational Resources Information Center
Sun Lin, Hong-Zheng; Chiou, Guey-Fa
2017-01-01
This study examined the effects of comparison and game-challenge strategies on sixth graders' learning achievement of algebra variable, learning attitude towards algebra variable learning, and meta-cognitive awareness of algebra variable learning. A 2 × 2 factorial design was used, and 86 students were invited to participate in the experimental…
Validation of DNA-based identification software by computation of pedigree likelihood ratios.
Slooten, K
2011-08-01
Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually simple, the calculations can be quite involved, especially with large pedigrees, precise mutation models etc. In this article we describe a series of test cases designed to check if software designed to calculate such likelihood ratios computes them correctly. The cases include both simple and more complicated pedigrees, among which inbred ones. We show how to calculate the likelihood ratio numerically and algebraically, including a general mutation model and possibility of allelic dropout. In Appendix A we show how to derive such algebraic expressions mathematically. We have set up these cases to validate new software, called Bonaparte, which performs pedigree likelihood ratio calculations in a DVI context. Bonaparte has been developed by SNN Nijmegen (The Netherlands) for the Netherlands Forensic Institute (NFI). It is available free of charge for non-commercial purposes (see www.dnadvi.nl for details). Commercial licenses can also be obtained. The software uses Bayesian networks and the junction tree algorithm to perform its calculations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Attitude determination using vector observations: A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz
2013-09-01
Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.
Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...
2014-12-31
Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D; Kang, S; Kim, T
2014-06-01
Purpose: In this paper, we implemented the four-dimensional (4D) digital tomosynthesis (DTS) imaging based on algebraic image reconstruction technique and total-variation minimization method in order to compensate the undersampled projection data and improve the image quality. Methods: The projection data were acquired as supposed the cone-beam computed tomography system in linear accelerator by the Monte Carlo simulation and the in-house 4D digital phantom generation program. We performed 4D DTS based upon simultaneous algebraic reconstruction technique (SART) among the iterative image reconstruction technique and total-variation minimization method (TVMM). To verify the effectiveness of this reconstruction algorithm, we performed systematic simulation studiesmore » to investigate the imaging performance. Results: The 4D DTS algorithm based upon the SART and TVMM seems to give better results than that based upon the existing method, or filtered-backprojection. Conclusion: The advanced image reconstruction algorithm for the 4D DTS would be useful to validate each intra-fraction motion during radiation therapy. In addition, it will be possible to give advantage to real-time imaging for the adaptive radiation therapy. This research was supported by Leading Foreign Research Institute Recruitment Program (Grant No.2009-00420) and Basic Atomic Energy Research Institute (BAERI); (Grant No. 2009-0078390) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP)« less
Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.
Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad
2017-11-30
In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.
Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients
Solano-Altamirano, Juan Manuel; Khikhlukha, Danila
2017-01-01
In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722
Mathematics in the Real World.
ERIC Educational Resources Information Center
Borenstein, Matt
1997-01-01
The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…
Livermore Big Artificial Neural Network Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Combinatorial-topological framework for the analysis of global dynamics.
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Combinatorial-topological framework for the analysis of global dynamics
NASA Astrophysics Data System (ADS)
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).
Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin
2017-01-01
We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.
Software Development Of XML Parser Based On Algebraic Tools
NASA Astrophysics Data System (ADS)
Georgiev, Bozhidar; Georgieva, Adriana
2011-12-01
In this paper, is presented one software development and implementation of an algebraic method for XML data processing, which accelerates XML parsing process. Therefore, the proposed in this article nontraditional approach for fast XML navigation with algebraic tools contributes to advanced efforts in the making of an easier user-friendly API for XML transformations. Here the proposed software for XML documents processing (parser) is easy to use and can manage files with strictly defined data structure. The purpose of the presented algorithm is to offer a new approach for search and restructuring hierarchical XML data. This approach permits fast XML documents processing, using algebraic model developed in details in previous works of the same authors. So proposed parsing mechanism is easy accessible to the web consumer who is able to control XML file processing, to search different elements (tags) in it, to delete and to add a new XML content as well. The presented various tests show higher rapidity and low consumption of resources in comparison with some existing commercial parsers.
Strategies Toward Automation of Overset Structured Surface Grid Generation
NASA Technical Reports Server (NTRS)
Chan, William M.
2017-01-01
An outline of a strategy for automation of overset structured surface grid generation on complex geometries is described. The starting point of the process consists of an unstructured surface triangulation representation of the geometry derived from a native CAD, STEP, or IGES definition, and a set of discretized surface curves that captures all geometric features of interest. The procedure for surface grid generation is decomposed into an algebraic meshing step, a hyperbolic meshing step, and a gap-filling step. This paper will focus primarily on the high-level plan with details on the algebraic step. The algorithmic procedure for the algebraic step involves analyzing the topology of the network of surface curves, distributing grid points appropriately on these curves, identifying domains bounded by four curves that can be meshed algebraically, concatenating the resulting grids into fewer patches, and extending appropriate boundaries of the concatenated grids to provide proper overlap. Results are presented for grids created on various aerospace vehicle components.
Using Students' Interests as Algebraic Models
ERIC Educational Resources Information Center
Whaley, Kenneth A.
2012-01-01
Fostering algebraic thinking is an important goal for middle-grades mathematics teachers. Developing mathematical reasoning requires that teachers cultivate students' habits of mind. Teachers develop students' understanding of algebra by engaging them in tasks that involve modeling and representation. This study was designed to investigate how…
Oleanna Math Program Materials.
ERIC Educational Resources Information Center
Coole, Walter A.
This document is a collection of course outlines, syllabi, and test materials designed for several high school level and lower division mathematics courses taught in an auto-tutorial learning laboratory at Skagit Valley College (Washington). The courses included are: Pre-Algebra, Basic Algebra, Plan Geometry, Intermediate Algebra, Probability and…
Bellman’s GAP—a language and compiler for dynamic programming in sequence analysis
Sauthoff, Georg; Möhl, Mathias; Janssen, Stefan; Giegerich, Robert
2013-01-01
Motivation: Dynamic programming is ubiquitous in bioinformatics. Developing and implementing non-trivial dynamic programming algorithms is often error prone and tedious. Bellman’s GAP is a new programming system, designed to ease the development of bioinformatics tools based on the dynamic programming technique. Results: In Bellman’s GAP, dynamic programming algorithms are described in a declarative style by tree grammars, evaluation algebras and products formed thereof. This bypasses the design of explicit dynamic programming recurrences and yields programs that are free of subscript errors, modular and easy to modify. The declarative modules are compiled into C++ code that is competitive to carefully hand-crafted implementations. This article introduces the Bellman’s GAP system and its language, GAP-L. It then demonstrates the ease of development and the degree of re-use by creating variants of two common bioinformatics algorithms. Finally, it evaluates Bellman’s GAP as an implementation platform of ‘real-world’ bioinformatics tools. Availability: Bellman’s GAP is available under GPL license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes a repository of re-usable modules for RNA folding based on thermodynamics. Contact: robert@techfak.uni-bielefeld.de Supplementary information: Supplementary data are available at Bioinformatics online PMID:23355290
Block iterative restoration of astronomical images with the massively parallel processor
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, Don J.
1987-01-01
A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mo, C. D.
1978-01-01
An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.
Multidimensional Hermite-Gaussian quadrature formulae and their application to nonlinear estimation
NASA Technical Reports Server (NTRS)
Mcreynolds, S. R.
1975-01-01
A simplified technique is proposed for calculating multidimensional Hermite-Gaussian quadratures that involves taking the square root of a matrix by the Cholesky algorithm rather than computation of the eigenvectors of the matrix. Ways of reducing the dimension, number, and order of the quadratures are set forth. If the function f(x) under the integral sign is not well approximated by a low-order algebraic expression, the order of the quadrature may be reduced by factoring f(x) into an expression that is nearly algebraic and one that is Gaussian.
An algebra-based method for inferring gene regulatory networks.
Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard
2014-03-26
The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.
HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi
Dongarra, Jack; Gates, Mark; Haidar, Azzam; ...
2015-01-01
This paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for multicore with Intel Xeon Phi coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an overview of the MAGMA MIC library, an open source, high performance library, that incorporates the developments presented here and, more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting heterogeneous architectures that feature a mix of multicore CPUs and coprocessors. The LAPACK-compliance simplifies the use of the MAGMA MIC library in applications, while providing them with portably performant DLA.more » High performance is obtained through the use of the high-performance BLAS, hardware-specific tuning, and a hybridization methodology whereby we split the algorithm into computational tasks of various granularities. Execution of those tasks is properly scheduled over the heterogeneous hardware by minimizing data movements and mapping algorithmic requirements to the architectural strengths of the various heterogeneous hardware components. Our methodology and programming techniques are incorporated into the MAGMA MIC API, which abstracts the application developer from the specifics of the Xeon Phi architecture and is therefore applicable to algorithms beyond the scope of DLA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druinsky, Alex; Ghysels, Pieter; Li, Xiaoye S.
In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism andmore » made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.« less
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
Encryption and decryption algorithm using algebraic matrix approach
NASA Astrophysics Data System (ADS)
Thiagarajan, K.; Balasubramanian, P.; Nagaraj, J.; Padmashree, J.
2018-04-01
Cryptographic algorithms provide security of data against attacks during encryption and decryption. However, they are computationally intensive process which consume large amount of CPU time and space at time of encryption and decryption. The goal of this paper is to study the encryption and decryption algorithm and to find space complexity of the encrypted and decrypted data by using of algorithm. In this paper, we encrypt and decrypt the message using key with the help of cyclic square matrix provides the approach applicable for any number of words having more number of characters and longest word. Also we discussed about the time complexity of the algorithm. The proposed algorithm is simple but difficult to break the process.
Styopin, Nikita E; Vershinin, Anatoly V; Zingerman, Konstantin M; Levin, Vladimir A
2016-09-01
Different variants of the Uzawa algorithm are compared with one another. The comparison is performed for the case in which this algorithm is applied to large-scale systems of linear algebraic equations. These systems arise in the finite-element solution of the problems of elasticity theory for incompressible materials. A modification of the Uzawa algorithm is proposed. Computational experiments show that this modification improves the convergence of the Uzawa algorithm for the problems of solid mechanics. The results of computational experiments show that each variant of the Uzawa algorithm considered has its advantages and disadvantages and may be convenient in one case or another.
A portable MPI-based parallel vector template library
NASA Technical Reports Server (NTRS)
Sheffler, Thomas J.
1995-01-01
This paper discusses the design and implementation of a polymorphic collection library for distributed address-space parallel computers. The library provides a data-parallel programming model for C++ by providing three main components: a single generic collection class, generic algorithms over collections, and generic algebraic combining functions. Collection elements are the fourth component of a program written using the library and may be either of the built-in types of C or of user-defined types. Many ideas are borrowed from the Standard Template Library (STL) of C++, although a restricted programming model is proposed because of the distributed address-space memory model assumed. Whereas the STL provides standard collections and implementations of algorithms for uniprocessors, this paper advocates standardizing interfaces that may be customized for different parallel computers. Just as the STL attempts to increase programmer productivity through code reuse, a similar standard for parallel computers could provide programmers with a standard set of algorithms portable across many different architectures. The efficacy of this approach is verified by examining performance data collected from an initial implementation of the library running on an IBM SP-2 and an Intel Paragon.
A Portable MPI-Based Parallel Vector Template Library
NASA Technical Reports Server (NTRS)
Sheffler, Thomas J.
1995-01-01
This paper discusses the design and implementation of a polymorphic collection library for distributed address-space parallel computers. The library provides a data-parallel programming model for C + + by providing three main components: a single generic collection class, generic algorithms over collections, and generic algebraic combining functions. Collection elements are the fourth component of a program written using the library and may be either of the built-in types of c or of user-defined types. Many ideas are borrowed from the Standard Template Library (STL) of C++, although a restricted programming model is proposed because of the distributed address-space memory model assumed. Whereas the STL provides standard collections and implementations of algorithms for uniprocessors, this paper advocates standardizing interfaces that may be customized for different parallel computers. Just as the STL attempts to increase programmer productivity through code reuse, a similar standard for parallel computers could provide programmers with a standard set of algorithms portable across many different architectures. The efficacy of this approach is verified by examining performance data collected from an initial implementation of the library running on an IBM SP-2 and an Intel Paragon.
da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira
2010-04-01
Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.
The Algebra of Complex Numbers.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
ERIC Educational Resources Information Center
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
Remainder Wheels and Group Theory
ERIC Educational Resources Information Center
Brenton, Lawrence
2008-01-01
Why should prospective elementary and high school teachers study group theory in college? This paper examines applications of abstract algebra to the familiar algorithm for converting fractions to repeating decimals, revealing ideas of surprising substance beneath an innocent facade.
An effective automatic procedure for testing parameter identifiability of HIV/AIDS models.
Saccomani, Maria Pia
2011-08-01
Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site http://www.dei.unipd.it/~pia/ ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.
Versatile and declarative dynamic programming using pair algebras.
Steffen, Peter; Giegerich, Robert
2005-09-12
Dynamic programming is a widely used programming technique in bioinformatics. In sharp contrast to the simplicity of textbook examples, implementing a dynamic programming algorithm for a novel and non-trivial application is a tedious and error prone task. The algebraic dynamic programming approach seeks to alleviate this situation by clearly separating the dynamic programming recurrences and scoring schemes. Based on this programming style, we introduce a generic product operation of scoring schemes. This leads to a remarkable variety of applications, allowing us to achieve optimizations under multiple objective functions, alternative solutions and backtracing, holistic search space analysis, ambiguity checking, and more, without additional programming effort. We demonstrate the method on several applications for RNA secondary structure prediction. The product operation as introduced here adds a significant amount of flexibility to dynamic programming. It provides a versatile testbed for the development of new algorithmic ideas, which can immediately be put to practice.
On iterative processes in the Krylov-Sonneveld subspaces
NASA Astrophysics Data System (ADS)
Ilin, Valery P.
2016-10-01
The iterative Induced Dimension Reduction (IDR) methods are considered for solving large systems of linear algebraic equations (SLAEs) with nonsingular nonsymmetric matrices. These approaches are investigated by many authors and are charachterized sometimes as the alternative to the classical processes of Krylov type. The key moments of the IDR algorithms consist in the construction of the embedded Sonneveld subspaces, which have the decreasing dimensions and use the orthogonalization to some fixed subspace. Other independent approaches for research and optimization of the iterations are based on the augmented and modified Krylov subspaces by using the aggregation and deflation procedures with present various low rank approximations of the original matrices. The goal of this paper is to show, that IDR method in Sonneveld subspaces present an original interpretation of the modified algorithms in the Krylov subspaces. In particular, such description is given for the multi-preconditioned semi-conjugate direction methods which are actual for the parallel algebraic domain decomposition approaches.
Approximation, abstraction and decomposition in search and optimization
NASA Technical Reports Server (NTRS)
Ellman, Thomas
1992-01-01
In this paper, I discuss four different areas of my research. One portion of my research has focused on automatic synthesis of search control heuristics for constraint satisfaction problems (CSPs). I have developed techniques for automatically synthesizing two types of heuristics for CSPs: Filtering functions are used to remove portions of a search space from consideration. Another portion of my research is focused on automatic synthesis of hierarchic algorithms for solving constraint satisfaction problems (CSPs). I have developed a technique for constructing hierarchic problem solvers based on numeric interval algebra. Another portion of my research is focused on automatic decomposition of design optimization problems. We are using the design of racing yacht hulls as a testbed domain for this research. Decomposition is especially important in the design of complex physical shapes such as yacht hulls. Another portion of my research is focused on intelligent model selection in design optimization. The model selection problem results from the difficulty of using exact models to analyze the performance of candidate designs.
Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chiou, Jin-Chern
1990-01-01
Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.
ERIC Educational Resources Information Center
Gutierrez-Santos, S.; Geraniou, E.; Pearce-Lazard, D.; Poulovassilis, A.
2012-01-01
The MiGen project is designing and developing an intelligent exploratory environment to support 11-14-year-old students in their learning of algebraic generalization. Deployed within the classroom, the system also provides tools to assist teachers in monitoring students' activities and progress. This paper describes the design of these Teacher…
Design of an FPGA-Based Algorithm for Real-Time Solutions of Statistics-Based Positioning
DeWitt, Don; Johnson-Williams, Nathan G.; Miyaoka, Robert S.; Li, Xiaoli; Lockhart, Cate; Lewellen, Tom K.; Hauck, Scott
2010-01-01
We report on the implementation of an algorithm and hardware platform to allow real-time processing of the statistics-based positioning (SBP) method for continuous miniature crystal element (cMiCE) detectors. The SBP method allows an intrinsic spatial resolution of ~1.6 mm FWHM to be achieved using our cMiCE design. Previous SBP solutions have required a postprocessing procedure due to the computation and memory intensive nature of SBP. This new implementation takes advantage of a combination of algebraic simplifications, conversion to fixed-point math, and a hierarchal search technique to greatly accelerate the algorithm. For the presented seven stage, 127 × 127 bin LUT implementation, these algorithm improvements result in a reduction from >7 × 106 floating-point operations per event for an exhaustive search to < 5 × 103 integer operations per event. Simulations show nearly identical FWHM positioning resolution for this accelerated SBP solution, and positioning differences of <0.1 mm from the exhaustive search solution. A pipelined field programmable gate array (FPGA) implementation of this optimized algorithm is able to process events in excess of 250 K events per second, which is greater than the maximum expected coincidence rate for an individual detector. In contrast with all detectors being processed at a centralized host, as in the current system, a separate FPGA is available at each detector, thus dividing the computational load. These methods allow SBP results to be calculated in real-time and to be presented to the image generation components in real-time. A hardware implementation has been developed using a commercially available prototype board. PMID:21197135
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Sterck, H
2011-10-18
The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead ofmore » the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with O'Hara which will be submitted some time later in 2011 to a data mining conference. PI Hans De Sterck has developed a new optimization algorithm for canonical tensor approximation, formulating an extension of the nonlinear GMRES method to optimization problems. Numerical results for tensors with up to 8 modes show that this new method is efficient for sparse and dense tensors. He has written a paper on this which has been submitted to the SIAM Journal on Scientific Computing. PI Hans De Sterck has further developed his new optimization algorithm for canonical tensor approximation, formulating an extension in terms of steepest-descent preconditioning, which makes the approach generally applicable for nonlinear optimization. He has written a paper on this extension which has been submitted to Numerical Linear Algebra with Applications.« less
On the performance of SART and ART algorithms for microwave imaging
NASA Astrophysics Data System (ADS)
Aprilliyani, Ria; Prabowo, Rian Gilang; Basari
2018-02-01
The development of advanced technology leads to the change of human lifestyle in current society. One of the disadvantage impact is arising the degenerative diseases such as cancers and tumors, not just common infectious diseases. Every year, victims of cancers and tumors grow significantly leading to one of the death causes in the world. In early stage, cancer/tumor does not have definite symptoms, but it will grow abnormally as tissue cells and damage normal tissue. Hence, early cancer detection is required. Some common diagnostics modalities such as MRI, CT and PET are quite difficult to be operated in home or mobile environment such as ambulance. Those modalities are also high cost, unpleasant, complex, less safety and harder to move. Hence, this paper proposes a microwave imaging system due to its portability and low cost. In current study, we address on the performance of simultaneous algebraic reconstruction technique (SART) algorithm that was applied in microwave imaging. In addition, SART algorithm performance compared with our previous work on algebraic reconstruction technique (ART), in order to have performance comparison, especially in the case of reconstructed image quality. The result showed that by applying SART algorithm on microwave imaging, suspicious cancer/tumor can be detected with better image quality.
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Gao, Zongzhao; Yang, YaFei
2018-02-01
Based on the discrete algebraic reconstruction technique (DART), this study aims to address and test a new improved algorithm applied to incomplete projection data to generate a high quality reconstruction image by reducing the artifacts and noise in computed tomography. For the incomplete projections, an augmented Lagrangian based on compressed sensing is first used in the initial reconstruction for segmentation of the DART to get higher contrast graphics for boundary and non-boundary pixels. Then, the block matching 3D filtering operator was used to suppress the noise and to improve the gray distribution of the reconstructed image. Finally, simulation studies on the polychromatic spectrum were performed to test the performance of the new algorithm. Study results show a significant improvement in the signal-to-noise ratios (SNRs) and average gradients (AGs) of the images reconstructed from incomplete data. The SNRs and AGs of the new images reconstructed by DART-ALBM were on average 30%-40% and 10% higher than the images reconstructed by DART algorithms. Since the improved DART-ALBM algorithm has a better robustness to limited-view reconstruction, which not only makes the edge of the image clear but also makes the gray distribution of non-boundary pixels better, it has the potential to improve image quality from incomplete projections or sparse projections.
Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*
Bank, R.; Falgout, R. D.; Jones, T.; ...
2015-10-29
In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less
NASA Astrophysics Data System (ADS)
Ernawati; Carnia, E.; Supriatna, A. K.
2018-03-01
Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.
Hoff, Michael N; Andre, Jalal B; Xiang, Qing-San
2017-02-01
Balanced steady state free precession (bSSFP) imaging suffers from off-resonance artifacts such as signal modulation and banding. Solutions for removal of bSSFP off-resonance dependence are described and compared, and an optimal solution is proposed. An Algebraic Solution (AS) that complements a previously described Geometric Solution (GS) is derived from four phase-cycled bSSFP datasets. A composite Geometric-Algebraic Solution (GAS) is formed from a noise-variance-weighted average of the AS and GS images. Two simulations test the solutions over a range of parameters, and phantom and in vivo experiments are implemented. Image quality and performance of the GS, AS, and GAS are compared with the complex sum and a numerical parameter estimation algorithm. The parameter estimation algorithm, GS, AS, and GAS remove most banding and signal modulation in bSSFP imaging. The variable performance of the GS and AS on noisy data justifies generation of the GAS, which consistently provides the highest performance. The GAS is a robust technique for bSSFP signal demodulation that balances the regional efficacy of the GS and AS to remove banding, a feat not possible with prevalent techniques. Magn Reson Med 77:644-654, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Making Associativity Operational
ERIC Educational Resources Information Center
Asghari, Amir H.; Khosroshahi, Leyla G.
2017-01-01
The purpose of this paper is to propose an "operational" idea for developing algebraic thinking in the absence of alphanumeric symbols. The paper reports on a design experiment encouraging preschool children to use the associative property algebraically. We describe the theoretical basis of the design, the tasks used, and examples of…
Designing Virtual Worlds for Use in Mathematics Education.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…
ERIC Educational Resources Information Center
Duke, Roger; Graham, Alan
2007-01-01
In this article, the authors describe how a Java applet can help to build learners' intuitions about basic ideas of algebra. "Matchbox Algebra" is a Java applet the authors have designed to enable learners to grasp a key idea in learning algebra: that the letter "x" may be thought of as representing an as-yet-unknown number. They describe the…
Foundations of Algebra: 2009-10. Implementation Insights. E&R Report No. 10.28
ERIC Educational Resources Information Center
Paeplow, Colleen
2010-01-01
This report examined the implementation of Foundations of Algebra, a course designed to provide high school students with low mathematics performance an extra opportunity to review and study foundational mathematics concepts prior to enrolling in Introductory Mathematics and subsequently Algebra I. In the fall of 2009, 877 high school students…
Math 3008--Developmental Mathematics II. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This is designed as the second of a two-semester sequence. Topics include performing operations with radicals and exponents; learning to solve equations;…
Math 3007--Developmental Mathematics I. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This course is designed as the first of a two-semester sequence. Topics include operations with signed numbers; simple operations on monomials and…
Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1983-01-01
A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.
Ionospheric-thermospheric UV tomography: 1. Image space reconstruction algorithms
NASA Astrophysics Data System (ADS)
Dymond, K. F.; Budzien, S. A.; Hei, M. A.
2017-03-01
We present and discuss two algorithms of the class known as Image Space Reconstruction Algorithms (ISRAs) that we are applying to the solution of large-scale ionospheric tomography problems. ISRAs have several desirable features that make them useful for ionospheric tomography. In addition to producing nonnegative solutions, ISRAs are amenable to sparse-matrix formulations and are fast, stable, and robust. We present the results of our studies of two types of ISRA: the Least Squares Positive Definite and the Richardson-Lucy algorithms. We compare their performance to the Multiplicative Algebraic Reconstruction and Conjugate Gradient Least Squares algorithms. We then discuss the use of regularization in these algorithms and present our new approach based on regularization to a partial differential equation.
A polymorphic reconfigurable emulator for parallel simulation
NASA Technical Reports Server (NTRS)
Parrish, E. A., Jr.; Mcvey, E. S.; Cook, G.
1980-01-01
Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described.
Trace of totally positive algebraic integers and integer transfinite diameter
NASA Astrophysics Data System (ADS)
Flammang, V.
2009-06-01
Explicit auxiliary functions can be used in the ``Schur-Siegel- Smyth trace problem''. In the previous works, these functions were constructed only with polynomials having all their roots positive. Here, we use several polynomials with complex roots, which are found with Wu's algorithm, and we improve the known lower bounds for the absolute trace of totally positive algebraic integers. This improvement has a consequence for the search of Salem numbers that have a negative trace. The same method also gives a small improvement of the upper bound for the integer transfinite diameter of [0,1].
NASA Astrophysics Data System (ADS)
Lai, Siyan; Xu, Ying; Shao, Bo; Guo, Menghan; Lin, Xiaola
2017-04-01
In this paper we study on Monte Carlo method for solving systems of linear algebraic equations (SLAE) based on shared memory. Former research demostrated that GPU can effectively speed up the computations of this issue. Our purpose is to optimize Monte Carlo method simulation on GPUmemoryachritecture specifically. Random numbers are organized to storein shared memory, which aims to accelerate the parallel algorithm. Bank conflicts can be avoided by our Collaborative Thread Arrays(CTA)scheme. The results of experiments show that the shared memory based strategy can speed up the computaions over than 3X at most.
Negative base encoding in optical linear algebra processors
NASA Technical Reports Server (NTRS)
Perlee, C.; Casasent, D.
1986-01-01
In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.
Synthesis of Greedy Algorithms Using Dominance Relations
NASA Technical Reports Server (NTRS)
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2010-01-01
Greedy algorithms exploit problem structure and constraints to achieve linear-time performance. Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called a matroid, but the existence of such a translation can be as hard to determine as the existence of a greedy algorithm itself. An alternative characterization of greedy algorithms is in terms of dominance relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a process by which dominance relations can be methodically derived for a number of greedy algorithms, including activity selection, and prefix-free codes. By incorporating our approach into an existing framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engineering method for greedy algorithms. We also compare our approach with other characterizations of greedy algorithms.
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics
ERIC Educational Resources Information Center
Sangwin, Christopher J.; Naismith, Laura
2008-01-01
We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
ERIC Educational Resources Information Center
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
NASA Technical Reports Server (NTRS)
Reichelt, Mark
1993-01-01
In this paper we describe a novel generalized SOR (successive overrelaxation) algorithm for accelerating the convergence of the dynamic iteration method known as waveform relaxation. A new convolution SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both analytic and experimental results are given to demonstrate that the convergence of the convolution SOR algorithm is substantially faster than that of the more obvious frequency-independent waveform SOR algorithm. Finally, to demonstrate the general applicability of this new method, it is used to solve the differential-algebraic system generated by spatial discretization of the time-dependent semiconductor device equations.
On the efficient and reliable numerical solution of rate-and-state friction problems
NASA Astrophysics Data System (ADS)
Pipping, Elias; Kornhuber, Ralf; Rosenau, Matthias; Oncken, Onno
2016-03-01
We present a mathematically consistent numerical algorithm for the simulation of earthquake rupture with rate-and-state friction. Its main features are adaptive time stepping, a novel algebraic solution algorithm involving nonlinear multigrid and a fixed point iteration for the rate-and-state decoupling. The algorithm is applied to a laboratory scale subduction zone which allows us to compare our simulations with experimental results. Using physical parameters from the experiment, we find a good fit of recurrence time of slip events as well as their rupture width and peak slip. Computations in 3-D confirm efficiency and robustness of our algorithm.
NASA Astrophysics Data System (ADS)
Matone, Marco
2015-11-01
We show that there are {\\it 13 types} of commutator algebras leading to the new closed forms of the Baker-Campbell-Hausdorff (BCH) formula $$\\exp(X)\\exp(Y)\\exp(Z)=\\exp({AX+BZ+CY+DI}) \\ , $$ derived in arXiv:1502.06589, JHEP {\\bf 1505} (2015) 113. This includes, as a particular case, $\\exp(X) \\exp(Z)$, with $[X,Z]$ containing other elements in addition to $X$ and $Z$. The algorithm exploits the associativity of the BCH formula and is based on the decomposition $\\exp(X)\\exp(Y)\\exp(Z)=\\exp(X)\\exp({\\alpha Y}) \\exp({(1-\\alpha) Y}) \\exp(Z)$, with $\\alpha$ fixed in such a way that it reduces to $\\exp({\\tilde X})\\exp({\\tilde Y})$, with $\\tilde X$ and $\\tilde Y$ satisfying the Van-Brunt and Visser condition $[\\tilde X,\\tilde Y]=\\tilde u\\tilde X+\\tilde v\\tilde Y+\\tilde cI$. It turns out that $e^\\alpha$ satisfies, in the generic case, an algebraic equation whose exponents depend on the parameters defining the commutator algebra. In nine {\\it types} of commutator algebras, such an equation leads to rational solutions for $\\alpha$. We find all the equations that characterize the solution of the above decomposition problem by combining it with the Jacobi identity.
A discrete Fourier transform for virtual memory machines
NASA Technical Reports Server (NTRS)
Galant, David C.
1992-01-01
An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
NASA Technical Reports Server (NTRS)
Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
NOSS altimeter algorithm specifications
NASA Technical Reports Server (NTRS)
Hancock, D. W.; Forsythe, R. G.; Mcmillan, J. D.
1982-01-01
A description of all algorithms required for altimeter processing is given. Each description includes title, description, inputs/outputs, general algebraic sequences and data volume. All required input/output data files are described and the computer resources required for the entire altimeter processing system were estimated. The majority of the data processing requirements for any radar altimeter of the Seasat-1 type are scoped. Additions and deletions could be made for the specific altimeter products required by other projects.
Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.
Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan
2015-02-01
Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.
Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in
2015-02-15
Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less
Effects of Feedback in an Online Algebra Intervention
ERIC Educational Resources Information Center
Bokhove, Christian; Drijvers, Paul
2012-01-01
The design and arrangement of appropriate automatic feedback in digital learning environment is a widely recognized issue. In this article, we investigate the effect of feedback on the design and the results of a digital intervention for algebra. Three feedback principles guided the intervention: timing and fading, crises, and feedback variation.…
Partially Flipped Linear Algebra: A Team-Based Approach
ERIC Educational Resources Information Center
Carney, Debra; Ormes, Nicholas; Swanson, Rebecca
2015-01-01
In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…
NASA Astrophysics Data System (ADS)
Das, Sukanta Kumar; Shukla, Ashish Kumar
2011-04-01
Single-frequency users of a satellite-based augmentation system (SBAS) rely on ionospheric models to mitigate the delay due to the ionosphere. The ionosphere is the major source of range and range rate errors for users of the Global Positioning System (GPS) who require high-accuracy positioning. The purpose of the present study is to develop a tomography model to reconstruct the total electron content (TEC) over the low-latitude Indian region which lies in the equatorial ionospheric anomaly belt. In the present study, the TEC data collected from the six TEC collection stations along a longitudinal belt of around 77 degrees are used. The main objective of the study is to find out optimum pixel size which supports a better reconstruction of the electron density and hence the TEC over the low-latitude Indian region. Performance of two reconstruction algorithms Algebraic Reconstruction Technique (ART) and Multiplicative Algebraic Reconstruction Technique (MART) is analyzed for different pixel sizes varying from 1 to 6 degrees in latitude. It is found from the analysis that the optimum pixel size is 5° × 50 km over the Indian region using both ART and MART algorithms.
High-performance image processing architecture
NASA Astrophysics Data System (ADS)
Coffield, Patrick C.
1992-04-01
The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.
Partitioning sparse matrices with eigenvectors of graphs
NASA Technical Reports Server (NTRS)
Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu
1990-01-01
The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J.A.
This report is a sequel to ORNL/CSD-106 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. Beginning with the previous supplement, the subject has been restricted to Numerical Linear Algebra, roughly characterized by the American Mathematical Society's classification sections 15 and 65F but with little coverage of infinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some consideration is given to the uses of graph theory in Numerical Linear Algebra, particularly with respect to algorithms for sparse matrix computations. The period coveredmore » by this report is roughly the calendar year 1982 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications lagging actual appearance dates by up to nearly half a year. The review citations are limited to the Mathematical Reviews (MR).« less
SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.
Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga
2013-01-01
High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Geometric descriptions of entangled states by auxiliary varieties
NASA Astrophysics Data System (ADS)
Holweck, Frédéric; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-01
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n + 1), for n ⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
ERIC Educational Resources Information Center
Tidd, Simon T.; Stoelinga, Timothy M.; Bush-Richards, Angela M.; De Sena, Donna L.; Dwyer, Theodore J.
2018-01-01
Double-block instruction has become a popular strategy for supporting struggling mathematics students in algebra I. Despite its widespread adoption, little consistent evidence supports the attributes of a successful double-block design or the effectiveness of this instructional strategy. In this study, the authors examine a pilot implementation of…
Underprepared Students' Performance on Algebra in a Double-Period High School Mathematics Program
ERIC Educational Resources Information Center
Martinez, Mara V.; Bragelman, John; Stoelinga, Timothy
2016-01-01
The primary goal of the Intensified Algebra I (IA) program is to enable mathematically underprepared students to successfully complete Algebra I in 9th grade and stay on track to meet increasingly rigorous high school mathematics graduation requirements. The program was designed to bring a range of both cognitive and non-cognitive supports to bear…
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2015-08-01
The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.
Using Approximations to Accelerate Engineering Design Optimization
NASA Technical Reports Server (NTRS)
Torczon, Virginia; Trosset, Michael W.
1998-01-01
Optimization problems that arise in engineering design are often characterized by several features that hinder the use of standard nonlinear optimization techniques. Foremost among these features is that the functions used to define the engineering optimization problem often are computationally intensive. Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions that define the problem would necessarily be incurred for each iteration of the optimization algorithm. Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates within an optimization context since surrogates can be chosen or constructed so that they are typically much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic approximations as surrogates for the objective. In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability of improving the current approximation to the objective during the course of the optimization. We define and experiment with the use of merit functions chosen to simultaneously improve both the solution to the optimization problem (the objective) and the quality of the approximation. Our goal is to further improve the effectiveness of our general approach without sacrificing any of its rigor.
An algebra-based method for inferring gene regulatory networks
2014-01-01
Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Conclusions Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html. PMID:24669835
FPGA implementation of sparse matrix algorithm for information retrieval
NASA Astrophysics Data System (ADS)
Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio
2005-06-01
Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Object-Image Correspondence for Algebraic Curves under Projections
NASA Astrophysics Data System (ADS)
Burdis, Joseph M.; Kogan, Irina A.; Hong, Hoon
2013-03-01
We present a novel algorithm for deciding whether a given planar curve is an image of a given spatial curve, obtained by a central or a parallel projection with unknown parameters. The motivation comes from the problem of establishing a correspondence between an object and an image, taken by a camera with unknown position and parameters. A straightforward approach to this problem consists of setting up a system of conditions on the projection parameters and then checking whether or not this system has a solution. The computational advantage of the algorithm presented here, in comparison to algorithms based on the straightforward approach, lies in a significant reduction of a number of real parameters that need to be eliminated in order to establish existence or non-existence of a projection that maps a given spatial curve to a given planar curve. Our algorithm is based on projection criteria that reduce the projection problem to a certain modification of the equivalence p! roblem of planar curves under affine and projective transformations. To solve the latter problem we make an algebraic adaptation of signature construction that has been used to solve the equivalence problems for smooth curves. We introduce a notion of a classifying set of rational differential invariants and produce explicit formulas for such invariants for the actions of the projective and the affine groups on the plane.
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
Algebraic and adaptive learning in neural control systems
NASA Astrophysics Data System (ADS)
Ferrari, Silvia
A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.
An algebraic structure of discrete-time biaffine systems
NASA Technical Reports Server (NTRS)
Tarn, T.-J.; Nonoyama, S.
1979-01-01
New results on the realization of finite-dimensional, discrete-time, internally biaffine systems are presented in this paper. The external behavior of such systems is described by multiaffine functions and the state space is constructed via Nerode equivalence relations. We prove that the state space is an affine space. An algorithm which amounts to choosing a frame for the affine space is presented. Our algorithm reduces in the linear and bilinear case to a generalization of algorithms existing in the literature. Explicit existence criteria for span-canonical realizations as well as an affine isomorphism theorem are given.
Superiorization-based multi-energy CT image reconstruction
Yang, Q; Cong, W; Wang, G
2017-01-01
The recently-developed superiorization approach is efficient and robust for solving various constrained optimization problems. This methodology can be applied to multi-energy CT image reconstruction with the regularization in terms of the prior rank, intensity and sparsity model (PRISM). In this paper, we propose a superiorized version of the simultaneous algebraic reconstruction technique (SART) based on the PRISM model. Then, we compare the proposed superiorized algorithm with the Split-Bregman algorithm in numerical experiments. The results show that both the Superiorized-SART and the Split-Bregman algorithms generate good results with weak noise and reduced artefacts. PMID:28983142
Reduced projection angles for binary tomography with particle aggregation.
Al-Rifaie, Mohammad Majid; Blackwell, Tim
This paper extends particle aggregate reconstruction technique (PART), a reconstruction algorithm for binary tomography based on the movement of particles. PART supposes that pixel values are particles, and that particles diffuse through the image, staying together in regions of uniform pixel value known as aggregates. In this work, a variation of this algorithm is proposed and a focus is placed on reducing the number of projections and whether this impacts the reconstruction of images. The algorithm is tested on three phantoms of varying sizes and numbers of forward projections and compared to filtered back projection, a random search algorithm and to SART, a standard algebraic reconstruction method. It is shown that the proposed algorithm outperforms the aforementioned algorithms on small numbers of projections. This potentially makes the algorithm attractive in scenarios where collecting less projection data are inevitable.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Learning to Apply Algebra in the Community for Adults With Intellectual Developmental Disabilities.
Rodriguez, Anthony M
2016-02-01
Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This study explores the feasibility of algebra instruction for adults with IDD through an experimental curriculum. Ten individuals with IDD participated in a 6-week course framing mathematics concepts within the context of everyday challenges in handling money. The article explores classroom techniques, discusses student strategies, and proposes possible avenues for future research analyzing mathematics instructional design strategies for individuals with IDD.
Double-Stage Delay Multiply and Sum Beamforming Algorithm Applied to Ultrasound Medical Imaging.
Mozaffarzadeh, Moein; Sadeghi, Masume; Mahloojifar, Ali; Orooji, Mahdi
2018-03-01
In ultrasound (US) imaging, delay and sum (DAS) is the most common beamformer, but it leads to low-quality images. Delay multiply and sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from the level of side lobes and low noise suppression. Here, a novel beamforming algorithm is introduced based on expansion of the DMAS formula. We found that there is a DAS algebra inside the expansion, and we proposed use of the DMAS instead of the DAS algebra. The introduced method, namely double-stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in an approximately 25% lower level of side lobes compared with DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in signal-to-noise ratio, full width at half-maximum and contrast ratio, respectively, compared with the DMAS beamformer. Copyright © 2018. Published by Elsevier Inc.
Maurer, S A; Kussmann, J; Ochsenfeld, C
2014-08-07
We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset perturbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like graphics processing units (GPU). The scaling is reduced from O(N⁵) to O(N³) by a reformulation of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the 3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the conventional algorithm. Instead, our reformulation allows to replace the rate-determining contraction step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs. Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient manner on a single GPU-server.
ERIC Educational Resources Information Center
Veith, Velma
2013-01-01
English as a Second Language (ESL) learners' access and achievement in Algebra I was examined to determine whether ESL students continue to be denied equal opportunity-to-learn (OTL) as a result of unnecessary tracking practices. In this quasi-experiment, a pre-post retrospective comparison group design was used to determine the effects of the…
LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor
NASA Astrophysics Data System (ADS)
Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram
2007-09-01
Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
Assessment of an Explicit Algebraic Reynolds Stress Model
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2005-01-01
This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions for two select configurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation data, experimental data, or empirical models for several different geometries with compressible, separated, and high Reynolds number flows. In general, the turbulence model matched data or followed experimental trends well, and for the selected configurations, the computational results of ISAAC closely matched those of PAB3D using the same turbulence model.
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Spatial operator algebra framework for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, Abhinandan; Kreutz, K.
1989-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Spatial Operator Algebra for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Full-order optimal compensators for flow control: the multiple inputs case
NASA Astrophysics Data System (ADS)
Semeraro, Onofrio; Pralits, Jan O.
2018-03-01
Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely
2015-12-01
We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.
Institute for Defense Analysis. Annual Report 1995.
1995-01-01
staff have been involved in the community-wide development of MPI as well as in its application to specific NSA problems. 35 Parallel Groebner ...Basis Code — Symbolic Computing on Parallel Machines The Groebner basis method is a set of algorithms for reformulating very complex algebraic expres
ERIC Educational Resources Information Center
Karakus, Fatih; Aydin, Bünyamin
2017-01-01
This study aimed at determining the effects of using a computer algebra system (CAS) on undergraduate students' spatial visualization skills in a calculus course. This study used an experimental design. The "one group pretest-posttest design" was the research model. The participants were 41 sophomore students (26 female and 15 male)…
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
ERIC Educational Resources Information Center
Keller, Edward L.
This unit, which looks at applications of linear algebra to population studies, is designed to help pupils: (1) understand an application of matrix algebra to the study of populations; (2) see how knowledge of eigen values and eigen vectors is useful in studying powers of matrices; and (3) be briefly exposed to some difficult but interesting…
Extensions of algebraic image operators: An approach to model-based vision
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morelli, Michael V.
1990-01-01
Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.
Minimizing inner product data dependencies in conjugate gradient iteration
NASA Technical Reports Server (NTRS)
Vanrosendale, J.
1983-01-01
The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).
Robust Algorithms for Detecting a Change in a Stochastic Process with Infinite Memory
1988-03-01
breakdown point and the additional assumption of 0-mixing on the nominal meas- influence function . The structure of the optimal algorithm ures. Then Huber’s...are i.i.d. sequences of Gaus- For the breakdown point and the influence function sian random variables, with identical variance o2 . Let we will use...algebraic sign for i=0,1. Here z will be chosen such = f nthat it leads to worst case or earliest breakdown. i (14) Next, the influence function measures
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
Algebra for Enterprise Ontology: towards analysis and synthesis of enterprise models
NASA Astrophysics Data System (ADS)
Suga, Tetsuya; Iijima, Junichi
2018-03-01
Enterprise modeling methodologies have made enterprises more likely to be the object of systems engineering rather than craftsmanship. However, the current state of research in enterprise modeling methodologies lacks investigations of the mathematical background embedded in these methodologies. Abstract algebra, a broad subfield of mathematics, and the study of algebraic structures may provide interesting implications in both theory and practice. Therefore, this research gives an empirical challenge to establish an algebraic structure for one aspect model proposed in Design & Engineering Methodology for Organizations (DEMO), which is a major enterprise modeling methodology in the spotlight as a modeling principle to capture the skeleton of enterprises for developing enterprise information systems. The results show that the aspect model behaves well in the sense of algebraic operations and indeed constructs a Boolean algebra. This article also discusses comparisons with other modeling languages and suggests future work.
Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework
Antonopoulos, Georgios C.; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko
2015-01-01
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984
Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.
Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko
2015-01-01
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Doing Mathematics with Purpose: Mathematical Text Types
ERIC Educational Resources Information Center
Dostal, Hannah M.; Robinson, Richard
2018-01-01
Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…
ERIC Educational Resources Information Center
Hayden, F. Gregory
1980-01-01
By algebraically defining a school finance structure as a total budget system, partial derivatives can be used to find the kinds of rewards, incentives, and distributions the structure defines for individual districts and among districts. Equity concerns can also be answered. (Author/IRT)
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.
Addressing the United States Navy Need for Software Engineering Education
1999-09-01
taught in MA 1996 (5 - 0). Precalculus review, complex numbers and algebra, complex plane, DeMovire’s Theorem, matrix algebra, LU decomposition...This course was designed for the METOC and Combat Systems curricula. PREREQUISITE: Precalculus mathematics. MA1996 MATHEMATICS FOR SCIENTISTS AND...description for MAI995 (5 - 0). This course was designed for the METOC and Combat Systems curricula. PREREQUISITE: Precalculus mathematics. PHYSICS/SYSTEMS
Computer Aided Instruction for a Course in Boolean Algebra and Logic Design. Final Report (Revised).
ERIC Educational Resources Information Center
Roy, Rob
The use of computers to prepare deficient college and graduate students for courses that build upon previously acquired information would solve the growing problem of professors who must spend up to one third of their class time in review of material. But examination of students who were taught Boolean Algebra and Logic Design by means of Computer…
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
Calabi-Yau Geometries: Algorithms, Databases and Physics
NASA Astrophysics Data System (ADS)
He, Yang-Hui
2013-08-01
With a bird's-eye view, we survey the landscape of Calabi-Yau threefolds, compact and noncompact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its principles on powerful computers and experimenting with the vast mathematical data, new physics can be learnt. It is hoped that this interdisciplinary glimpse will be of some use to the beginning student.
Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.
Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J
2012-09-01
Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.
Propagating Qualitative Values Through Quantitative Equations
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak
1992-01-01
In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.
Structural synthesis: Precursor and catalyst
NASA Technical Reports Server (NTRS)
Schmit, L. A.
1984-01-01
More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less
The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)
NASA Astrophysics Data System (ADS)
2017-09-01
The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary
Geometric descriptions of entangled states by auxiliary varieties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-15
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete themore » approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.« less
CT brush and CancerZap!: two video games for computed tomography dose minimization.
Alvare, Graham; Gordon, Richard
2015-05-12
X-ray dose from computed tomography (CT) scanners has become a significant public health concern. All CT scanners spray x-ray photons across a patient, including those using compressive sensing algorithms. New technologies make it possible to aim x-ray beams where they are most needed to form a diagnostic or screening image. We have designed a computer game, CT Brush, that takes advantage of this new flexibility. It uses a standard MART algorithm (Multiplicative Algebraic Reconstruction Technique), but with a user defined dynamically selected subset of the rays. The image appears as the player moves the CT brush over an initially blank scene, with dose accumulating with every "mouse down" move. The goal is to find the "tumor" with as few moves (least dose) as possible. We have successfully implemented CT Brush in Java and made it available publicly, requesting crowdsourced feedback on improving the open source code. With this experience, we also outline a "shoot 'em up game" CancerZap! for photon limited CT. We anticipate that human computing games like these, analyzed by methods similar to those used to understand eye tracking, will lead to new object dependent CT algorithms that will require significantly less dose than object independent nonlinear and compressive sensing algorithms that depend on sprayed photons. Preliminary results suggest substantial dose reduction is achievable.
Optimal apodization design for medical ultrasound using constrained least squares part I: theory.
Guenther, Drake A; Walker, William F
2007-02-01
Aperture weighting functions are critical design parameters in the development of ultrasound systems because beam characteristics affect the contrast and point resolution of the final output image. In previous work by our group, we developed a metric that quantifies a broadband imaging system's contrast resolution performance. We now use this metric to formulate a novel general ultrasound beamformer design method. In our algorithm, we use constrained least squares (CLS) techniques and a linear algebra formulation to describe the system point spread function (PSF) as a function of the aperture weightings. In one approach, we minimize the energy of the PSF outside a certain boundary and impose a linear constraint on the aperture weights. In a second approach, we minimize the energy of the PSF outside a certain boundary while imposing a quadratic constraint on the energy of the PSF inside the boundary. We present detailed analysis for an arbitrary ultrasound imaging system and discuss several possible applications of the CLS techniques, such as designing aperture weightings to maximize contrast resolution and improve the system depth of field.
NASA Astrophysics Data System (ADS)
Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.
2016-05-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
A wavelet-based ECG delineation algorithm for 32-bit integer online processing
2011-01-01
Background Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. Methods This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. Results The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. Conclusions The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra. PMID:21457580
A wavelet-based ECG delineation algorithm for 32-bit integer online processing.
Di Marco, Luigi Y; Chiari, Lorenzo
2011-04-03
Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.
Diagnosing students' misconceptions in algebra: results from an experimental pilot study.
Russell, Michael; O'Dwyer, Laura M; Miranda, Helena
2009-05-01
Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.
García-Jacas, César R; Marrero-Ponce, Yovani; Acevedo-Martínez, Liesner; Barigye, Stephen J; Valdés-Martiní, José R; Contreras-Torres, Ernesto
2014-07-05
The present report introduces the QuBiLS-MIDAS software belonging to the ToMoCoMD-CARDD suite for the calculation of three-dimensional molecular descriptors (MDs) based on the two-linear (bilinear), three-linear, and four-linear (multilinear or N-linear) algebraic forms. Thus, it is unique software that computes these tensor-based indices. These descriptors, establish relations for two, three, and four atoms by using several (dis-)similarity metrics or multimetrics, matrix transformations, cutoffs, local calculations and aggregation operators. The theoretical background of these N-linear indices is also presented. The QuBiLS-MIDAS software was developed in the Java programming language and employs the Chemical Development Kit library for the manipulation of the chemical structures and the calculation of the atomic properties. This software is composed by a desktop user-friendly interface and an Abstract Programming Interface library. The former was created to simplify the configuration of the different options of the MDs, whereas the library was designed to allow its easy integration to other software for chemoinformatics applications. This program provides functionalities for data cleaning tasks and for batch processing of the molecular indices. In addition, it offers parallel calculation of the MDs through the use of all available processors in current computers. The studies of complexity of the main algorithms demonstrate that these were efficiently implemented with respect to their trivial implementation. Lastly, the performance tests reveal that this software has a suitable behavior when the amount of processors is increased. Therefore, the QuBiLS-MIDAS software constitutes a useful application for the computation of the molecular indices based on N-linear algebraic maps and it can be used freely to perform chemoinformatics studies. Copyright © 2014 Wiley Periodicals, Inc.
State-Space System Realization with Input- and Output-Data Correlation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1997-01-01
This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.
2014-01-01
Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213
TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE
NASA Technical Reports Server (NTRS)
Vu, B. T.
1994-01-01
TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
ERIC Educational Resources Information Center
Corlu, M. Sencer; Capraro, Robert M.; Corlu, M. Ali
2011-01-01
Students need to achieve automaticity in learning mathematics without sacrificing conceptual understanding of the algorithms that are essential in being successful in algebra and problem solving, as well as in science. This research investigated the relationship between science-contextualized problems and computational fluency by testing an…
1984-06-01
A.Arays, G.V.Sibiriskov. The AVTO -ANALTZE J. Comput. Math. and Mth. Phys., v. 11, N.4, Progrn eg System. J. Comput. Math. and Cinpur. 1971, pp. 1071...1075. Mach., No.3, Kharkov, 1972. 2. S.A.Abhrmov. On Sam Algorithms for Algebraic 13. Z.A.Arays, C.V.Sibiriakov. AVTO -AALM.K. Novo- Transformstions of
Spectral element multigrid. Part 2: Theoretical justification
NASA Technical Reports Server (NTRS)
Maday, Yvon; Munoz, Rafael
1988-01-01
A multigrid algorithm is analyzed which is used for solving iteratively the algebraic system resulting from tha approximation of a second order problem by spectral or spectral element methods. The analysis, performed here in the one dimensional case, justifies the good smoothing properties of the Jacobi preconditioner that was presented in Part 1 of this paper.
Sequential Syndrome Decoding of Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
The algebraic structure of convolutional codes are reviewed and sequential syndrome decoding is applied to those codes. These concepts are then used to realize by example actual sequential decoding, using the stack algorithm. The Fano metric for use in sequential decoding is modified so that it can be utilized to sequentially find the minimum weight error sequence.
Fostering Algebraic Understanding through Math
ERIC Educational Resources Information Center
Lim, Kien H.
2016-01-01
Magic captivates humans because of their innate capacity to be intrigued and a desire to resolve their curiosity. In a mathematics classroom, algorithms akin to magic tricks can be an effective tool to engage students in thinking and problem solving. Tricks that rely on the power of mathematics are especially suitable for students to experience an…
Li, Yanqiu; Liu, Shi; Inaki, Schlaberg H.
2017-01-01
Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography. PMID:28895930
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, S. A.; Kussmann, J.; Ochsenfeld, C., E-mail: Christian.Ochsenfeld@cup.uni-muenchen.de
2014-08-07
We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset perturbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like graphics processing units (GPU). The scaling is reduced from O(N{sup 5}) to O(N{sup 3}) by a reformulation of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the 3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the conventional algorithm. Instead, our reformulation allows tomore » replace the rate-determining contraction step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs. Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient manner on a single GPU-server.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, Jack J.; Tomov, Stanimire
2014-03-24
The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid Multicore+GPU-based systems, using all the processing power that future high-end systems can make available within given energy constraints. Our efforts at the University of Tennessee achieved the goals set in all of the five areas identified in the proposal: 1. Communication optimal algorithms; 2. Autotuning for GPU and hybrid processors; 3. Scheduling and memory management techniques for heterogeneity and scale; 4. Fault tolerance and robustness for large scale systems; 5. Building energymore » efficiency into software foundations. The University of Tennessee’s main contributions, as proposed, were the research and software development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented with various techniques targeting the five main areas outlined.« less
Rosen's (M,R) system in process algebra.
Gatherer, Derek; Galpin, Vashti
2013-11-17
Robert Rosen's Metabolism-Replacement, or (M,R), system can be represented as a compact network structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this suggests that many biological networks will be non-computable, with implications for those branches of systems biology that rely on in silico modelling for predictive purposes. We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen's fundamental objections to computational systems biology. We argue that the behaviour of (M,R) in Bio-PEPA shows life-like properties.
Dynamics and Breakup of a Contracting Viscous Filament
NASA Astrophysics Data System (ADS)
Wilkes, Edward; Notz, Patrick; Ambravaneswaran, Bala; Basaran, Osman
1999-11-01
Free viscous filaments are formed during the breakup of liquid drops and jets. Such filaments are typically precursors of satellite droplets that are often undesirable in applications such as ink-jet printing. In this paper, the contraction of an axisymmetric liquid filament due to action of surface tension is studied theoretically. The analysis is based on solving (a) the full Navier-Stokes system in two-dimensions (2-d) and (b) a one-dimensional (1-d) approximation of the exact equations based on slender-jet theory. The rigorous, 2-d calculations are carried out with finite element algorithms using either algebraic or elliptic mesh generation. As the filament contracts, bulbous regions form at its two ends. When the initial aspect ratio a/b and/or the Reynolds number Re are sufficiently low, the ends coalesce into an oscillating free drop. Filament breakup occurs when a/b and/or Re are sufficiently high. The 2-d algorithms reveal for the first time that liquid filaments of finite viscosity can overturn prior to interface rupture. The power of elliptic mesh generation over algebraic methods in analyzing such situations is highlighted.
A three-dimensional wide-angle BPM for optical waveguide structures.
Ma, Changbao; Van Keuren, Edward
2007-01-22
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
NASA Astrophysics Data System (ADS)
Kochedykov, S. S.; Noev, A. N.; Dushkin, A. V.; Gubin, I. A.
2018-05-01
On the basis of the mathematical graph theory, the method of optimum switching of infocommunication networks in the conditions of cyber attacks is developed. The idea of representation of a set of possible ways on the graph in the form of the multilevel tree ordered by rules of algebra of a logic theory is the cornerstone of a method. As a criterion of optimization, the maximum of network transmission capacity to which assessment Ford- Falkerson's theorem is applied is used. The method is realized in the form of a numerical algorithm, which can be used not only for design, but also for operational management of infocommunication networks in conditions of violation of the functioning of their switching centers.
IBM system/360 assembly language interval arithmetic software
NASA Technical Reports Server (NTRS)
Phillips, E. J.
1972-01-01
Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.
Controllability of switched singular mix-valued logical control networks with constraints
NASA Astrophysics Data System (ADS)
Deng, Lei; Gong, Mengmeng; Zhu, Peiyong
2018-03-01
The present paper investigates the controllability problem of switched singular mix-valued logical control networks (SSMLCNs) with constraints on states and controls. First, using the semi-tenser product (STP) of matrices, the SSMLCN is expressed in an algebraic form, based on which a necessary and sufficient condition is given for the uniqueness of solution of SSMLCNs. Second, a necessary and sufficient criteria is derived for the controllability of constrained SSMLCNs, by converting a constrained SSMLCN into a parallel constrained switched mix-valued logical control network. Third, an algorithm is presented to design a proper switching sequence and a control scheme which force a state to a reachable state. Finally, a numerical example is given to demonstrate the efficiency of the results obtained in this paper.
A three-dimensional wide-angle BPM for optical waveguide structures
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2007-01-01
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
DiStefano, Joseph
2014-01-01
Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p 1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I–O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)–COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and–importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It’s illustrated and validated here for models of moderate complexity, with and without initial conditions. Built-in examples include unidentifiable 2 to 4-compartment and HIV dynamics models. PMID:25350289
Secondary School Mathematics Curriculum Improvement Study Information Bulletin 7.
ERIC Educational Resources Information Center
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
The background, objectives, and design of Secondary School Mathematics Curriculum Improvement Study (SSMCIS) are summarized. Details are given of the content of the text series, "Unified Modern Mathematics," in the areas of algebra, geometry, linear algebra, probability and statistics, analysis (calculus), logic, and computer…
NASA Astrophysics Data System (ADS)
Benkrid, K.; Belkacemi, S.; Sukhsawas, S.
2005-06-01
This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.
A nonlinear H-infinity approach to optimal control of the depth of anaesthesia
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Rigatou, Efthymia; Zervos, Nikolaos
2016-12-01
Controlling the level of anaesthesia is important for improving the success rate of surgeries and for reducing the risks to which operated patients are exposed. This paper proposes a nonlinear H-infinity approach to optimal control of the level of anaesthesia. The dynamic model of the anaesthesia, which describes the concentration of the anaesthetic drug in different parts of the body, is subjected to linearization at local operating points. These are defined at each iteration of the control algorithm and consist of the present value of the system's state vector and of the last control input that was exerted on it. For this linearization Taylor series expansion is performed and the system's Jacobian matrices are computed. For the linearized model an H-infinity controller is designed. The feedback control gains are found by solving at each iteration of the control algorithm an algebraic Riccati equation. The modelling errors due to this approximate linearization are considered as disturbances which are compensated by the robustness of the control loop. The stability of the control loop is confirmed through Lyapunov analysis.
Iterative algorithms for computing the feedback Nash equilibrium point for positive systems
NASA Astrophysics Data System (ADS)
Ivanov, I.; Imsland, Lars; Bogdanova, B.
2017-03-01
The paper studies N-player linear quadratic differential games on an infinite time horizon with deterministic feedback information structure. It introduces two iterative methods (the Newton method as well as its accelerated modification) in order to compute the stabilising solution of a set of generalised algebraic Riccati equations. The latter is related to the Nash equilibrium point of the considered game model. Moreover, we derive the sufficient conditions for convergence of the proposed methods. Finally, we discuss two numerical examples so as to illustrate the performance of both of the algorithms.
A Simple Introduction to Gröbner Basis Methods in String Phenomenology
NASA Astrophysics Data System (ADS)
Gray, James
In this talk I give an elementary introduction to the key algorithm used in recent applications of computational algebraic geometry to the subject of string phenomenology. I begin with a simple description of the algorithm itself and then give 3 examples of its use in physics. I describe how it can be used to obtain constraints on flux parameters, how it can simplify the equations describing vacua in 4d string models and lastly how it can be used to compute the vacuum space of the electroweak sector of the MSSM.
Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.
2008-01-01
We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202
On generalized Volterra systems
NASA Astrophysics Data System (ADS)
Charalambides, S. A.; Damianou, P. A.; Evripidou, C. A.
2015-01-01
We construct a large family of evidently integrable Hamiltonian systems which are generalizations of the KM system. The algorithm uses the root system of a complex simple Lie algebra. The Hamiltonian vector field is homogeneous cubic but in a number of cases a simple change of variables transforms such a system to a quadratic Lotka-Volterra system. We present in detail all such systems in the cases of A3, A4 and we also give some examples from higher dimensions. We classify all possible Lotka-Volterra systems that arise via this algorithm in the An case.
NASA Astrophysics Data System (ADS)
Jing, Ting Jing; Tarmizi, Rohani Ahmad; Bakar, Kamariah Abu; Aralas, Dalia
2017-01-01
This study investigates the effect of utilizing Variation Theory Based Strategy on students' algebraic achievement and motivation in learning algebra. The study used quasi-experimental non-equivalent control group research design and involved 56 Form Two (Secondary Two) students in two classes (28 in experimental group, 28 in control group) in Malaysia The first class of students went through algebra class taught with Variation Theory Based Strategy (VTBS) while the second class of students experienced conventional teaching strategy. The instruments used for the study were a 24-item Algebra Test and 36-item Instructional Materials Motivation Survey. Result from analysis of Covariance indicated that experimental group students achieved significantly better test scores than control group. Result of Multivariate Analysis of Variance also shows evidences of significant effect of VTBS on experimental students' overall motivation in all the five subscales; attention, relevance, confidence, and satisfaction. These results suggested the utilization of VTBS would improve students' learning in algebra.
Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza
2014-03-01
This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.
NASA Astrophysics Data System (ADS)
Ardıç, Mehmet Alper; Işleyen, Tevfik
2018-01-01
In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.
Structural analysis and design of multivariable control systems: An algebraic approach
NASA Technical Reports Server (NTRS)
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging.
Gabr, Refaat E; Tefera, Getaneh B; Allen, William J; Pednekar, Amol S; Narayana, Ponnada A
2017-03-01
We present a platform, GRAphical Pipeline Environment (GRAPE), to facilitate the development of patient-adaptive magnetic resonance imaging (MRI) protocols. GRAPE is an open-source project implemented in the Qt C++ framework to enable graphical creation, execution, and debugging of real-time image analysis algorithms integrated with the MRI scanner. The platform provides the tools and infrastructure to design new algorithms, and build and execute an array of image analysis routines, and provides a mechanism to include existing analysis libraries, all within a graphical environment. The application of GRAPE is demonstrated in multiple MRI applications, and the software is described in detail for both the user and the developer. GRAPE was successfully used to implement and execute three applications in MRI of the brain, performed on a 3.0-T MRI scanner: (i) a multi-parametric pipeline for segmenting the brain tissue and detecting lesions in multiple sclerosis (MS), (ii) patient-specific optimization of the 3D fluid-attenuated inversion recovery MRI scan parameters to enhance the contrast of brain lesions in MS, and (iii) an algebraic image method for combining two MR images for improved lesion contrast. GRAPE allows graphical development and execution of image analysis algorithms for inline, real-time, and adaptive MRI applications.
xPerm: fast index canonicalization for tensor computer algebra
NASA Astrophysics Data System (ADS)
Martín-García, José M.
2008-10-01
We present a very fast implementation of the Butler-Portugal algorithm for index canonicalization with respect to permutation symmetries. It is called xPerm, and has been written as a combination of a Mathematica package and a C subroutine. The latter performs the most demanding parts of the computations and can be linked from any other program or computer algebra system. We demonstrate with tests and timings the effectively polynomial performance of the Butler-Portugal algorithm with respect to the number of indices, though we also show a case in which it is exponential. Our implementation handles generic tensorial expressions with several dozen indices in hundredths of a second, or one hundred indices in a few seconds, clearly outperforming all other current canonicalizers. The code has been already under intensive testing for several years and has been essential in recent investigations in large-scale tensor computer algebra. Program summaryProgram title: xPerm Catalogue identifier: AEBH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 93 582 No. of bytes in distributed program, including test data, etc.: 1 537 832 Distribution format: tar.gz Programming language: C and Mathematica (version 5.0 or higher) Computer: Any computer running C and Mathematica (version 5.0 or higher) Operating system: Linux, Unix, Windows XP, MacOS RAM:: 20 Mbyte Word size: 64 or 32 bits Classification: 1.5, 5 Nature of problem: Canonicalization of indexed expressions with respect to permutation symmetries. Solution method: The Butler-Portugal algorithm. Restrictions: Multiterm symmetries are not considered. Running time: A few seconds with generic expressions of up to 100 indices. The xPermDoc.nb notebook supplied with the distribution takes approximately one and a half hours to execute in full.
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Finite element concepts in computational aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.
2013-10-01
In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.
Model Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster
Parallel grid generation algorithm for distributed memory computers
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Moitra, Anutosh
1994-01-01
A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.
Seismic noise attenuation using an online subspace tracking algorithm
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang
2018-02-01
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.
Combining Automated Theorem Provers with Symbolic Algebraic Systems: Position Paper
NASA Technical Reports Server (NTRS)
Schumann, Johann; Koga, Dennis (Technical Monitor)
1999-01-01
In contrast to pure mathematical applications where automated theorem provers (ATPs) are quite capable, proof tasks arising form real-world applications from the area of Software Engineering show quite different characteristics: they usually do not only contain much arithmetic (albeit often quite simple one), but they also often contain reasoning about specific structures (e.g. graphics, sets). Thus, an ATP must be capable of performing reasoning together with a fair amount of simplification, calculation and solving. Therefore, powerful simplifiers and other (symbolic and semi-symbolic) algorithms seem to be ideally suited to augment ATPs. In the following we shortly describe two major points of interest in combining SASs (symbolic algebraic systems) with top-down automated theorem provers (here: SETHEO [Let92, GLMS94]).
NASA Astrophysics Data System (ADS)
Dumansky, Alexander M.; Tairova, Lyudmila P.
2008-09-01
A method for the construction of hereditary constitutive equation is proposed for the laminate on the basis of hereditary constitutive equations of a layer. The method is developed from the assumption that in the directions of axes of orthotropy the layer follows elastic behavior, and obeys hereditary constitutive equations under shear. The constitutive equations of the laminate are constructed on the basis of classical laminate theory and algebra of resolvent operators. Effective matrix algorithm and relationships of operator algebra are used to derive visco-elastic stiffness and compliance of the laminate. The example of construction of hereditary constitutive equations of cross-ply carbon fiber-reinforced plastic is presented.
Experiments with conjugate gradient algorithms for homotopy curve tracking
NASA Technical Reports Server (NTRS)
Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.
1991-01-01
There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.
Symbol Sense Behavior in Digital Activities
ERIC Educational Resources Information Center
Bokhove, Christian; Drijvers, Paul
2010-01-01
The algebraic expertise that mathematics education is aiming for includes both procedural skills and conceptual understanding. To capture the latter, notions such as symbol sense, gestalt view and visual salience have been developed. We wonder if digital activities can be designed that not only require procedural algebraic skills, but also invite…
Teaching Algebraic Equations to Middle School Students with Intellectual Disabilities
ERIC Educational Resources Information Center
Baker, Joshua N.; Rivera, Christopher J.; Morgan, Joseph John; Reese, Noelle
2015-01-01
The purpose of this study was to replicate similar instructional techniques of Jimenez, Browder, and Courtade (2008) using a single-subject multiple-probe across participants design to investigate the effects of task analytic instruction coupled with semi-concrete representations to teach linear algebraic equations to middle school students with…
Elementary Algebra Connections to Precalculus
ERIC Educational Resources Information Center
Lopez-Boada, Roberto; Daire, Sandra Arguelles
2013-01-01
This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…
ERIC Educational Resources Information Center
Wilkie, Karina J.; Clarke, Doug M.
2016-01-01
Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their…
An Evaluation of Interventions to Facilitate Algebra Problem Solving
ERIC Educational Resources Information Center
Mayfield, Kristin H.; Glenn, Irene M.
2008-01-01
Three participants were trained on 6 target algebra skills and subsequently received a series of 5 instructional interventions (cumulative practice, tiered feedback, feedback plus solution sequence instruction, review practice, and transfer training) in a multiple baseline across skills design. The effects of the interventions on the performance…
NASA Astrophysics Data System (ADS)
Hunter, Jodie
2014-12-01
Current reforms in mathematics education advocate the development of mathematical learning communities in which students have opportunities to engage in mathematical discourse and classroom practices which underlie algebraic reasoning. This article specifically addresses the pedagogical actions teachers take which structure student engagement in dialogical discourse and activity which facilitates early algebraic reasoning. Using videotaped recordings of classroom observations, the teacher and researcher collaboratively examined the classroom practices and modified the participatory practices to develop a learning environment which supported early algebraic reasoning. Facilitating change in the classroom environment was a lengthy process which required consistent and ongoing attention initially to the social norms and then to the socio-mathematical norms. Specific pedagogical actions such as the use of specifically designed tasks, materials and representations and a constant press for justification and generalisation were required to support students to link their numerical understandings to algebraic reasoning.
NASA Astrophysics Data System (ADS)
Rosita, N. T.
2018-03-01
The purpose of this study is to analyse algebraic reasoning ability using the SOLO model as a theoretical framework to assess students’ algebraic reasoning abilities of Field Dependent cognitive (FD), Field Independent (FI) and Gender perspectives. The method of this study is a qualitative research. The instrument of this study is the researcher himself assisted with algebraic reasoning tests, the problems have been designed based on NCTM indicators and algebraic reasoning according to SOLO model. While the cognitive style of students is determined using Group Embedded Figure Test (GEFT), as well as interviews on the subject as triangulation. The subjects are 15 female and 15 males of the sixth semester students of mathematics education, STKIP Sebelas April. The results of the qualitative data analysis is that most subjects are at the level of unistructural and multi-structural, subjects at the relational level have difficulty in forming a new linear pattern. While the subjects at the extended abstract level are able to meet all the indicators of algebraic reasoning ability even though some of the answers are not perfect yet. Subjects of FI tend to have higher algebraic reasoning abilities than of the subject of FD.
Toward a New Method of Decoding Algebraic Codes Using Groebner Bases
1993-10-01
variables over GF(2m). A celebrated algorithm by Buchberger produces a reduced Groebner basis of that ideal. It tums out that, since the common roots of...all the polynomials in the ideal are a set of isolated points, this reduced Groebner basis is in triangular form, and the univariate polynomial in that
ERIC Educational Resources Information Center
Dobbs, David E.
2012-01-01
This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.
CFD analyses for advanced pump design
NASA Technical Reports Server (NTRS)
Dejong, F. J.; Choi, S.-K.; Govindan, T. R.
1994-01-01
As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.
Generalization of mixed multiscale finite element methods with applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C S
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less
Boolean Operations with Prism Algebraic Patches
Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi
2009-01-01
In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262
Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators
NASA Astrophysics Data System (ADS)
Iliadis, L. S.; Spartalis, S. I.
2007-12-01
This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.
Effects of Graphic Organiser on Students' Achievement in Algebraic Word Problems
ERIC Educational Resources Information Center
Owolabi, Josiah; Adaramati, Tobiloba Faith
2015-01-01
This study investigated the effects of graphic organiser and gender on students' academic achievement in algebraic word problem. Three research questions and three null hypotheses were used in guiding this study. Quasi experimental research was employed and Non-equivalent pre and post test design was used. The study involved the Senior Secondary…
Divergence of Scientific Heuristic Method and Direct Algebraic Instruction
ERIC Educational Resources Information Center
Calucag, Lina S.
2016-01-01
This is an experimental study, made used of the non-randomized experimental and control groups, pretest-posttest designs. The experimental and control groups were two separate intact classes in Algebra. For a period of twelve sessions, the experimental group was subjected to the scientific heuristic method, but the control group instead was given…
Design-Based Research within the Constraints of Practice: AlgebraByExample
ERIC Educational Resources Information Center
Booth, Julie L.; Cooper, Laura A.; Donovan, M. Suzanne; Huyghe, Alexandra; Koedinger, Kenneth R.; Paré-Blagoev, E. Juliana
2015-01-01
Superintendents from districts in the Minority Student Achievement Network (MSAN) challenged the Strategic Education Research Partnership (SERP) to identify an approach to narrowing the minority student achievement gap in Algebra 1 without isolating minority students for intervention. SERP partnered with 8 MSAN districts and researchers from 3…
Computer Algebra Systems in Education Newsletter[s].
ERIC Educational Resources Information Center
Computer Algebra Systems in Education Newsletter, 1990
1990-01-01
Computer Algebra Systems (CAS) are computer systems for the exact solution of problems in symbolic form. The newspaper is designed to serve as a conduit for information and ideas on the use of CAS in education, especially in lower division college and university courses. Articles included are about CAS programs in several colleges, experiences…
Designing Tasks for Math Modeling in College Algebra: A Critical Review
ERIC Educational Resources Information Center
Staats, Susan; Robertson, Douglas
2014-01-01
Over the last decade, the pedagogical approach known as mathematical modeling has received increased interest in college algebra classes in the United States. Math modeling assignments ask students to develop their own problem-solving tools to address non-routine, realistic scenarios. The open-ended quality of modeling activities creates dilemmas…
Analysis of Computer Algebra System Tutorials Using Cognitive Load Theory
ERIC Educational Resources Information Center
May, Patricia
2004-01-01
Most research in the area of Computer Algebra Systems (CAS) has been designed to compare the effectiveness of instructional technology to traditional lecture-based formats. While results are promising, research also indicates evidence of the steep learning curve imposed by the technology. Yet no studies have been conducted to investigate this…
Design Research on Personalized Problem Posing in Algebra
ERIC Educational Resources Information Center
Walkington, Candace
2017-01-01
Algebra is an area of pressing national concern around issues of equity and access in education. Recent theories and research suggest that personalization of instruction can allow students to activate their funds of knowledge and can elicit interest in the content to be learned. This paper examines the results of a large-scale teaching experiment…
Mathematical Designs for Teaching and Learning Composition.
ERIC Educational Resources Information Center
Laque, Carol Feiser
Algebraic equations and geometric forms are useful in teaching and learning composition. Algebraic equations can illustrate the modular nature of paragraph structures and can be refined by students to describe types of paragraphs. Discussion of the "slippery" nature of words and their power of transformation can be a lecture topic as the class…
Online Homework Effectiveness for Underprepared and Repeating College Algebra Students
ERIC Educational Resources Information Center
Brewer, David Shane; Becker, Kurt
2010-01-01
This research compared the effectiveness, in terms of mathematical achievement, of online homework to textbook homework over an entire semester for 145 students enrolled in multiple sections of college algebra at a large community college. A quasi-experimental, posttest design was used to analyze the effect on mathematical achievement, as measured…
ERIC Educational Resources Information Center
Duke, Roger; Graham, Alan; Johnston-Wilder, Sue
2008-01-01
This article is the third in a series of articles describing a research project entitled "Entering into Symbols" (EIS) on the use of mathematical applets at key stages 2 and 3. The first two articles, in "MT200" and "MT203", described applets designed to teach place value ("Tuckshop subtraction") and basic algebra ("Matchbox algebra"). In this…
Student Reactions to Learning Theory Based Curriculum Materials in Linear Algebra--A Survey Analysis
ERIC Educational Resources Information Center
Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff
2016-01-01
In this report we examine students' perceptions of the implementation of carefully designed curriculum materials (called modules) in linear algebra courses at three different universities. The curricular materials were produced collaboratively by STEM and mathematics education faculty as members of a professional learning community (PLC) over…
Developing a TI-92 Manual Generator Based on Computer Algebra Systems
ERIC Educational Resources Information Center
Jun, Youngcook
2004-01-01
The electronic medium suitable for mathematics learning and teaching is often designed with a notebook interface provided in a computer algebra system. Such a notebook interface facilitates a workspace for mathematical activities along with an online help system. In this paper, the proposed feature is implemented in the Mathematica's notebook…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, James W.
This project addresses both communication-avoiding algorithms, and reproducible floating-point computation. Communication, i.e. moving data, either between levels of memory or processors over a network, is much more expensive per operation than arithmetic (measured in time or energy), so we seek algorithms that greatly reduce communication. We developed many new algorithms for both dense and sparse, and both direct and iterative linear algebra, attaining new communication lower bounds, and getting large speedups in many cases. We also extended this work in several ways: (1) We minimize writes separately from reads, since writes may be much more expensive than reads on emergingmore » memory technologies, like Flash, sometimes doing asymptotically fewer writes than reads. (2) We extend the lower bounds and optimal algorithms to arbitrary algorithms that may be expressed as perfectly nested loops accessing arrays, where the array subscripts may be arbitrary affine functions of the loop indices (eg A(i), B(i,j+k, k+3*m-7, …) etc.). (3) We extend our communication-avoiding approach to some machine learning algorithms, such as support vector machines. This work has won a number of awards. We also address reproducible floating-point computation. We define reproducibility to mean getting bitwise identical results from multiple runs of the same program, perhaps with different hardware resources or other changes that should ideally not change the answer. Many users depend on reproducibility for debugging or correctness. However, dynamic scheduling of parallel computing resources, combined with nonassociativity of floating point addition, makes attaining reproducibility a challenge even for simple operations like summing a vector of numbers, or more complicated operations like the Basic Linear Algebra Subprograms (BLAS). We describe an algorithm that computes a reproducible sum of floating point numbers, independent of the order of summation. The algorithm depends only on a subset of the IEEE Floating Point Standard 754-2008, uses just 6 words to represent a “reproducible accumulator,” and requires just one read-only pass over the data, or one reduction in parallel. New instructions based on this work are being considered for inclusion in the future IEEE 754-2018 floating-point standard, and new reproducible BLAS are being considered for the next version of the BLAS standard.« less
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2015-05-01
To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.
Low dose reconstruction algorithm for differential phase contrast imaging.
Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni
2011-01-01
Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.
Waller, Niels G
2016-01-01
For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.
Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.
Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971
A design automation framework for computational bioenergetics in biological networks.
Angione, Claudio; Costanza, Jole; Carapezza, Giovanni; Lió, Pietro; Nicosia, Giuseppe
2013-10-01
The bioenergetic activity of mitochondria can be thoroughly investigated by using computational methods. In particular, in our work we focus on ATP and NADH, namely the metabolites representing the production of energy in the cell. We develop a computational framework to perform an exhaustive investigation at the level of species, reactions, genes and metabolic pathways. The framework integrates several methods implementing the state-of-the-art algorithms for many-objective optimization, sensitivity, and identifiability analysis applied to biological systems. We use this computational framework to analyze three case studies related to the human mitochondria and the algal metabolism of Chlamydomonas reinhardtii, formally described with algebraic differential equations or flux balance analysis. Integrating the results of our framework applied to interacting organelles would provide a general-purpose method for assessing the production of energy in a biological network.
An evolutionary morphological approach for software development cost estimation.
Araújo, Ricardo de A; Oliveira, Adriano L I; Soares, Sergio; Meira, Silvio
2012-08-01
In this work we present an evolutionary morphological approach to solve the software development cost estimation (SDCE) problem. The proposed approach consists of a hybrid artificial neuron based on framework of mathematical morphology (MM) with algebraic foundations in the complete lattice theory (CLT), referred to as dilation-erosion perceptron (DEP). Also, we present an evolutionary learning process, called DEP(MGA), using a modified genetic algorithm (MGA) to design the DEP model, because a drawback arises from the gradient estimation of morphological operators in the classical learning process of the DEP, since they are not differentiable in the usual way. Furthermore, an experimental analysis is conducted with the proposed model using five complex SDCE problems and three well-known performance metrics, demonstrating good performance of the DEP model to solve SDCE problems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Final Report, DE-FG01-06ER25718 Domain Decomposition and Parallel Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widlund, Olof B.
2015-06-09
The goal of this project is to develop and improve domain decomposition algorithms for a variety of partial differential equations such as those of linear elasticity and electro-magnetics.These iterative methods are designed for massively parallel computing systems and allow the fast solution of the very large systems of algebraic equations that arise in large scale and complicated simulations. A special emphasis is placed on problems arising from Maxwell's equation. The approximate solvers, the preconditioners, are combined with the conjugate gradient method and must always include a solver of a coarse model in order to have a performance which is independentmore » of the number of processors used in the computer simulation. A recent development allows for an adaptive construction of this coarse component of the preconditioner.« less
NASA Astrophysics Data System (ADS)
Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.
2011-09-01
Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
NASA Astrophysics Data System (ADS)
Yuliani, R. E.; Suryadi, D.; Dahlan, J. A.
2018-05-01
The objective of this research is to design an alleged teacher learning path or Hypotetical Learning Trajectory (HLT) to anticipate mathematics anxiety of students in learning algebra. HLT loads expected mathematics learning objectives, estimates the level of knowledge and understanding of the students, as well as the selection of mathematical activity in accordance with the learning competencies. This research uses educational design research method. The research steps consist of a preliminary design, experimental and retrospective analysis. Data were gathered from various sources, such as data is written during the research process of test results, documentation, sheet results of students' work, results of interviews, questionnaires, and video recordings. The subjects of the study were 10 junior high school students. Based on the research identified 2 students at the level of high anxiety, 7 people at medium anxiety level and 1 student at low anxiety level. High anxiety levels about 20%, was approximately 70% and approximately 10% lower. These results can be used as an evaluation and reflection for designing materials that can anticipate mathematics anxiety of students learning algebra concepts.
Floares, Alexandru George
2008-01-01
Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.
NASA Astrophysics Data System (ADS)
Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.
1981-02-01
Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.
DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach
NASA Astrophysics Data System (ADS)
Tchagang, Alain B.; Tewfik, Ahmed H.
2006-12-01
Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.
Vecharynski, Eugene; Yang, Chao; Pask, John E.
2015-02-25
Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less
Pure field theories and MACSYMA algorithms
NASA Technical Reports Server (NTRS)
Ament, W. S.
1977-01-01
A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Intermediate grouping on remotely sensed data using Gestalt algebra
NASA Astrophysics Data System (ADS)
Michaelsen, Eckart
2014-10-01
Human observers often achieve striking recognition performance on remotely sensed data unmatched by machine vision algorithms. This holds even for thermal images (IR) or synthetic aperture radar (SAR). Psychologists refer to these capabilities as Gestalt perceptive skills. Gestalt Algebra is a mathematical structure recently proposed for such laws of perceptual grouping. It gives operations for mirror symmetry, continuation in rows and rotational symmetric patterns. Each of these operations forms an aggregate-Gestalt of a tuple of part-Gestalten. Each Gestalt is attributed with a position, an orientation, a rotational frequency, a scale, and an assessment respectively. Any Gestalt can be combined with any other Gestalt using any of the three operations. Most often the assessment of the new aggregate-Gestalt will be close to zero. Only if the part-Gestalten perfectly fit into the desired pattern the new aggregate-Gestalt will be assessed with value one. The algebra is suitable in both directions: It may render an organized symmetric mandala using random numbers. Or it may recognize deep hidden visual relationships between meaningful parts of a picture. For the latter primitives must be obtained from the image by some key-point detector and a threshold. Intelligent search strategies are required for this search in the combinatorial space of possible Gestalt Algebra terms. Exemplarily, maximal assessed Gestalten found in selected aerial images as well as in IR and SAR images are presented.
A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions
NASA Astrophysics Data System (ADS)
Zhang, Lin; Han, Zhong; Chen, Yong
2018-01-01
To construct the one-dimensional optimal system of finite dimensional Lie algebra automatically, we develop a new Maple package One Optimal System. Meanwhile, we propose a new method to calculate the adjoint transformation matrix and find all the invariants of Lie algebra in spite of Killing form checking possible constraints of each classification. Besides, a new conception called invariance set is raised. Moreover, this Maple package is proved to be more efficiency and precise than before by applying it to some classic examples. Supported by the Global Change Research Program of China under Grant No. 2015CB95390, National Natural Science Foundation of China under Grant Nos. 11675054 and 11435005, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213
Formal development of a clock synchronization circuit
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.
Building Generalized Inverses of Matrices Using Only Row and Column Operations
ERIC Educational Resources Information Center
Stuart, Jeffrey
2010-01-01
Most students complete their first and only course in linear algebra with the understanding that a real, square matrix "A" has an inverse if and only if "rref"("A"), the reduced row echelon form of "A", is the identity matrix I[subscript n]. That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix…
NASA Astrophysics Data System (ADS)
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S
2013-03-01
The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism. © 2012 British Society for Neuroendocrinology.
Contextualizing symbol, symbolizing context
NASA Astrophysics Data System (ADS)
Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang
2017-08-01
When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.
ERIC Educational Resources Information Center
Berry, Sharon
2017-01-01
This study used a quantitative, causal-comparative design. It compared educational outcome data from online Algebra 1 courses to determine if a significant difference existed between synchronous and asynchronous students for end-of-course grades, state assessments scores, and student perceptions of their course. The study found that synchronous…
The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness
ERIC Educational Resources Information Center
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2016-01-01
To raise math success rates in middle school, many schools and districts have implemented summer math programs designed to improve student preparation for algebra content in grade 8. However, little is known about the effectiveness of these programs. While students who participate typically experience learning gains, there is little rigorous…
ERIC Educational Resources Information Center
Bankhead, Mike
The high levels of anxiety, apprehension, and apathy of students in college algebra courses caused the instructor to create and test a variety of math teaching techniques designed to boost student confidence and enthusiasm in the subject. Overall, this proposal covers several different techniques, which have been evaluated by both students and the…
A Practical Approach to Inquiry-Based Learning in Linear Algebra
ERIC Educational Resources Information Center
Chang, J.-M.
2011-01-01
Linear algebra has become one of the most useful fields of mathematics since last decade, yet students still have trouble seeing the connection between some of the abstract concepts and real-world applications. In this article, we propose the use of thought-provoking questions in lesson designs to allow two-way communications between instructors…
ERIC Educational Resources Information Center
Ma, Tingting; Brown, Irving A.; Kulm, Gerald; Davis, Trina J.; Lewis, Chance W.; Allen, G. Donald
2016-01-01
From the perspectives of Graduate Research Assistants (GRAs), this study examines the design and implementation of a simulated teaching environment in "Second Life" (SL) for prospective teachers to teach algebra for diverse learners. Drawing upon the Learning-for-Use framework, the analyses provide evidence on the development of student…
An Intervention Including an Online Game to Improve Grade 6 Students' Performance in Early Algebra
ERIC Educational Resources Information Center
Kolovou, Angeliki; van den Heuvel-Panhuizen, Marja; Koller, Olaf
2013-01-01
This study investigated whether an intervention including an online game contributed to 236 Grade 6 students' performance in early algebra, that is, solving problems with covarying quantities. An exploratory quasi-experimental study was conducted with a pretest-posttest-control-group design. Students in the experimental group were asked to solve…
ERIC Educational Resources Information Center
Bunrasi, John Bosco Tuptip
2012-01-01
The purpose of this study was to examine constructivist-based algebra lessons and a cooperative construct to address the achievement gap between White (non-Hispanic) and Mexican American 8th grade students at a southern California middle school. The lessons were designed to facilitate social interdependence which promoted peer-to-peer interaction…
Computer Algebra Systems: Permitted but Are They Used?
ERIC Educational Resources Information Center
Pierce, Robyn; Bardini, Caroline
2015-01-01
Since the 1990s, computer algebra systems (CAS) have been available in Australia as hand-held devices designed for students with the expectation that they will be used in the mathematics classroom. The data discussed in this paper was collected as part of a pilot study that investigated first year university mathematics and statistics students'…
ERIC Educational Resources Information Center
Wilkie, Karina J,; Clarke, Doug
2014-01-01
This design-based research project investigated the development of functional thinking in algebra for the upper primary years of schooling. Ten teachers and their students were involved in a sequence of five cycles of collaborative planning, team-teaching, evaluating and revising five lessons on functional thinking for their students over one…
The Effects of Online Homework on Achievement and Self-Efficacy of College Algebra Students
ERIC Educational Resources Information Center
Brewer, David Shane
2009-01-01
This study compared the effectiveness, in terms of mathematical achievement and mathematics self-efficacy, of online homework to textbook homework over an entire semester for 145 students enrolled in multiple sections of college algebra at a large community college. A quasi-experimental, posttest design was used to analyze the effect on…
ERIC Educational Resources Information Center
Grassl, R.; Mingus, T. T. Y.
2007-01-01
Experiences in designing and teaching a reformed abstract algebra course are described. This effort was partially a result of a five year statewide National Science Foundation (NSF) grant entitled the Rocky Mountain Teacher Enhancement Collaborative. The major thrust of this grant was to implement reform in core mathematics courses that would…
Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?
Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2014-01-01
The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2nd-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge. PMID:25541565
Scalable algorithms for 3D extended MHD.
NASA Astrophysics Data System (ADS)
Chacon, Luis
2007-11-01
In the modeling of plasmas with extended MHD (XMHD), the challenge is to resolve long time scales while rendering the whole simulation manageable. In XMHD, this is particularly difficult because fast (dispersive) waves are supported, resulting in a very stiff set of PDEs. In explicit schemes, such stiffness results in stringent numerical stability time-step constraints, rendering them inefficient and algorithmically unscalable. In implicit schemes, it yields very ill-conditioned algebraic systems, which are difficult to invert. In this talk, we present recent theoretical and computational progress that demonstrate a scalable 3D XMHD solver (i.e., CPU ˜N, with N the number of degrees of freedom). The approach is based on Newton-Krylov methods, which are preconditioned for efficiency. The preconditioning stage admits suitable approximations without compromising the quality of the overall solution. In this work, we employ optimal (CPU ˜N) multilevel methods on a parabolized XMHD formulation, which renders the whole algorithm scalable. The (crucial) parabolization step is required to render XMHD multilevel-friendly. Algebraically, the parabolization step can be interpreted as a Schur factorization of the Jacobian matrix, thereby providing a solid foundation for the current (and future extensions of the) approach. We will build towards 3D extended MHDootnotetextL. Chac'on, Comput. Phys. Comm., 163 (3), 143-171 (2004)^,ootnotetextL. Chac'on et al., 33rd EPS Conf. Plasma Physics, Rome, Italy, 2006 by discussing earlier algorithmic breakthroughs in 2D reduced MHDootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) and 2D Hall MHD.ootnotetextL. Chac'on et al., J. Comput. Phys., 188 (2), 573-592 (2003)
MARS spectral molecular imaging of lamb tissue: data collection and image analysis
NASA Astrophysics Data System (ADS)
Aamir, R.; Chernoglazov, A.; Bateman, C. J.; Butler, A. P. H.; Butler, P. H.; Anderson, N. G.; Bell, S. T.; Panta, R. K.; Healy, J. L.; Mohr, J. L.; Rajendran, K.; Walsh, M. F.; de Ruiter, N.; Gieseg, S. P.; Woodfield, T.; Renaud, P. F.; Brooke, L.; Abdul-Majid, S.; Clyne, M.; Glendenning, R.; Bones, P. J.; Billinghurst, M.; Bartneck, C.; Mandalika, H.; Grasset, R.; Schleich, N.; Scott, N.; Nik, S. J.; Opie, A.; Janmale, T.; Tang, D. N.; Kim, D.; Doesburg, R. M.; Zainon, R.; Ronaldson, J. P.; Cook, N. J.; Smithies, D. J.; Hodge, K.
2014-02-01
Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20-140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we are one of the first to present data from multi-energy photon-processing small animal CT systems, we make the raw, partial and fully processed data available with the intention that others can analyze it using their familiar routines. The raw, partially processed and fully processed data of lamb tissue along with the phantom calibration data can be found at http://hdl.handle.net/10092/8531.
A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Louis A; Mason, John J.
We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, themore » problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.« less
Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering
NASA Astrophysics Data System (ADS)
Koehler, Sarah Muraoka
Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive controller and apply the inexact interior point method to this nonlinear non-convex ramp metering problem.
Analysis of the Harrier forebody/inlet design using computational techniques
NASA Technical Reports Server (NTRS)
Chow, Chuen-Yen
1993-01-01
Under the support of this Cooperative Agreement, computations of transonic flow past the complex forebody/inlet configuration of the AV-8B Harrier II have been performed. The actual aircraft configuration was measured and its surface and surrounding domain were defined using computational structured grids. The thin-layer Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-grid technique. A fully conservative, alternating direction implicit (ADI), approximately-factored, partially flux-split algorithm was employed to perform the computation. An existing code was altered to conform with the needs of the study, and some special engine face boundary conditions were developed. The algorithm incorporated the Chimera technique and an algebraic turbulence model in order to deal with the embedded multi-grids and viscous governing equations. Comparison with experimental data has yielded good agreement for the simplifications incorporated into the analysis. The aim of the present research was to provide a methodology for the numerical solution of complex, combined external/internal flows. This is the first time-dependent Navier-Stokes solution for a geometry in which the fuselage and inlet share a wall. The results indicate the methodology used here is a viable tool for transonic aircraft modeling.
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
The full spectrum of AdS5/CFT4 I: representation theory and one-loop Q-system
NASA Astrophysics Data System (ADS)
Marboe, Christian; Volin, Dmytro
2018-04-01
With the formulation of the quantum spectral curve for the AdS5/CFT4 integrable system, it became potentially possible to compute its full spectrum with high efficiency. This is the first paper in a series devoted to the explicit design of such computations, with no restrictions to particular subsectors being imposed. We revisit the representation theoretical classification of possible states in the spectrum and map the symmetry multiplets to solutions of the quantum spectral curve at zero coupling. To this end it is practical to introduce a generalisation of Young diagrams to the case of non-compact representations and define algebraic Q-systems directly on these diagrams. Furthermore, we propose an algorithm to explicitly solve such Q-systems that circumvents the traditional usage of Bethe equations and simplifies the computation effort. For example, our algorithm quickly obtains explicit analytic results for all 495 multiplets that accommodate single-trace operators in N=4 SYM with classical conformal dimension up to \\frac{13}{2} . We plan to use these results as the seed for solving the quantum spectral curve perturbatively to high loop orders in the next paper of the series.
General purpose graphic processing unit implementation of adaptive pulse compression algorithms
NASA Astrophysics Data System (ADS)
Cai, Jingxiao; Zhang, Yan
2017-07-01
This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.
Computational Workbench for Multibody Dynamics
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2007-01-01
PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Leapfrog variants of iterative methods for linear algebra equations
NASA Technical Reports Server (NTRS)
Saylor, Paul E.
1988-01-01
Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.
Matched filter based detection of floating mines in IR spacetime
NASA Astrophysics Data System (ADS)
Borghgraef, Alexander; Lapierre, Fabian; Philips, Wilfried; Acheroy, Marc
2009-09-01
Ship-based automatic detection of small floating objects on an agitated sea surface remains a hard problem. Our main concern is the detection of floating mines, which proved a real threat to shipping in confined waterways during the first Gulf War, but applications include salvaging,search-and-rescue and perimeter or harbour defense. IR video was chosen for its day-and-night imaging capability, and its availability on military vessels. Detection is difficult because a rough sea is seen as a dynamic background of moving objects with size order, shape and temperature similar to those of the floating mine. We do find a determinant characteristic in the target's periodic motion, which differs from that of the propagating surface waves composing the background. The classical detection and tracking approaches give bad results when applied to this problem. While background detection algorithms assume a quasi-static background, the sea surface is actually very dynamic, causing this category of algorithms to fail. Kalman or particle filter algorithms on the other hand, which stress temporal coherence, suffer from tracking loss due to occlusions and the great noise level of the image. We propose an innovative approach. This approach uses the periodicity of the objects movement and thus its temporal coherence. The principle is to consider the video data as a spacetime volume similar to a hyperspectral data cube by replacing the spectral axis with a temporal axis. We can then apply algorithms developed for hyperspectral detection problems to the detection of small floating objects. We treat the detection problem using multilinear algebra, designing a number of finite impulse response filters (FIR) maximizing the target response. The algorithm was applied to test footage of practice mines in the infrared.
ERIC Educational Resources Information Center
Serfaty de Markus, Alicia
2018-01-01
This quasi-treatment study, using a non-equivalent group design, explored how a set of animations related to various concepts in algebra impacted students' ability to learn as measured by changes in quiz and test scores. The concepts that were investigated were addition and subtraction of rational expressions, solving equations involving rational…
ERIC Educational Resources Information Center
Fuller, Edgar; Deshler, Jessica M.; Kuhn, Betsy; Squire, Douglas
2014-01-01
In 2007 the Department of Mathematics at our institution began developing a placement process designed to identify at-risk students entering mathematics courses at the College Algebra and Calculus levels. Major changes in our placement testing process and the resulting interventions for at-risk students were put in place in Fall of 2008. At the…
ERIC Educational Resources Information Center
Adani, Anthony; Eskay, Michael; Onu, Victoria
2012-01-01
This quasi-experimental study examined the effect of self-instruction strategy on the achievement in algebra of students with learning difficulty in mathematics. Two research questions and one null hypothesis were formulated to guide the study. The study adopted a non-randomized pre-test and post-test control group design with one experimental…
To Math or Not to Math: The Algebra-Calculus Pipeline and Postsecondary Mathematics Remediation
ERIC Educational Resources Information Center
Showalter, Daniel A.
2017-01-01
This article reports on a study designed to estimate the effect of high school coursetaking in the algebra-calculus pipeline on the likelihood of placing out of postsecondary remedial mathematics. A nonparametric variant of propensity score analysis was used on a nationally representative data set to remove selection bias and test for an effect…
ERIC Educational Resources Information Center
Malik, Ishan Z.
2011-01-01
Urban African American students lack an abstract understanding of algebra and are below their academic level in comparison to other ethnic groups, and this is a pervasive problem (McKinney, Chappell, Berry, & Hickman, 2009). The purpose of this quantitative study using a quasi-experimental design was to determine whether the use of…
Patterns, Functions, and Algebra: Wired for Space. NASA Connect: Program 3 in the 2000-2001 Series.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
This teaching unit is designed to help students in grades 5 to 8 explore the concepts of patterns, functions, and algebra in the context of propelling spacecraft. The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit…
Mathematics Achievement with Digital Game-Based Learning in High School Algebra 1 Classes
ERIC Educational Resources Information Center
Ferguson, Terri Lynn Kurley
2014-01-01
This study examined the impact of digital game-based learning (DGBL) on mathematics achievement in a rural high school setting in North Carolina. A causal comparative research design was used in this study to collect data to determine the effectiveness of DGBL in high school Algebra 1 classes. Data were collected from the North Carolina…
Robust High Data Rate MIMO Underwater Acoustic Communications
2011-09-30
We solved it via exploiting FFTs. The extended CAN algorithm is referred to as periodic CAN ( PeCAN ). Unlike most existing sequence construction...methods which are algebraic and deterministic in nature, we start the iteration of PeCAN from random phase initializations and then proceed to...covert UAC applications. We will use PeCAN sequences for more in-water experimentations to demonstrate their effectiveness. Temporal Resampling: In
Spatial operator algebra for flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1993-01-01
This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.
Mathematical modelling in engineering: an alternative way to teach Linear Algebra
NASA Astrophysics Data System (ADS)
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-10-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).
Computational algebraic geometry for statistical modeling FY09Q2 progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre
2009-03-01
This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones inmore » more detail; the next section provides an overview of the project and how the current progress fits into it.« less
A globally well-posed finite element algorithm for aerodynamics applications
NASA Technical Reports Server (NTRS)
Iannelli, G. S.; Baker, A. J.
1991-01-01
A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For the linear basis, the resultant approximation is at least second-order-accurate in time and space for synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second-order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and two-dimensional Euler and Navier-Stokes benchmark test problems.
Possible quantum algorithm for the Lipshitz-Sarkar-Steenrod square for Khovanov homology
NASA Astrophysics Data System (ADS)
Ospina, Juan
2013-05-01
Recently the celebrated Khovanov Homology was introduced as a target for Topological Quantum Computation given that the Khovanov Homology provides a generalization of the Jones polynomal and then it is possible to think about of a generalization of the Aharonov.-Jones-Landau algorithm. Recently, Lipshitz and Sarkar introduced a space-level refinement of Khovanov homology. which is called Khovanov Homotopy. This refinement induces a Steenrod square operation Sq2 on Khovanov homology which they describe explicitly and then some computations of Sq2 were presented. Particularly, examples of links with identical integral Khovanov homology but with distinct Khovanov homotopy types were showed. In the presente work we will introduce possible quantum algorithms for the Lipshitz- Sarkar-Steenrod square for Khovanov Homolog and their possible simulations using computer algebra.
A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction
Kumar, B.; Huang, C. -H.; Sadayappan, P.; ...
1995-01-01
In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required working storagemore » of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less
A generalization of algebraic surface drawing
NASA Technical Reports Server (NTRS)
Blinn, J. F.
1982-01-01
An implicit surface mathematical description of three-dimensional space is defined in terms of all points which satisfy some equation F(x, y, z) equals 0. This form is ideal for space-shaded picture drawing, where the coordinates are substituted for x and y and the equation is solved for z. A new algorithm is presented which is applicable to functional forms other than those of first- and second-order polynomial functions, such as the summation of several Gaussian density distributions. The algorithm was created in order to model electron density maps of molecular structures, but is shown to be capable of generating shapes of esthetic interest.
Connectivity is a Poor Indicator of Fast Quantum Search
NASA Astrophysics Data System (ADS)
Meyer, David A.; Wong, Thomas G.
2015-03-01
A randomly walking quantum particle evolving by Schrödinger's equation searches on d -dimensional cubic lattices in O (√{N }) time when d ≥5 , and with progressively slower runtime as d decreases. This suggests that graph connectivity (including vertex, edge, algebraic, and normalized algebraic connectivities) is an indicator of fast quantum search, a belief supported by fast quantum search on complete graphs, strongly regular graphs, and hypercubes, all of which are highly connected. In this Letter, we show this intuition to be false by giving two examples of graphs for which the opposite holds true: one with low connectivity but fast search, and one with high connectivity but slow search. The second example is a novel two-stage quantum walk algorithm in which the walking rate must be adjusted to yield high search probability.
NASA Astrophysics Data System (ADS)
Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula
2018-07-01
Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.
NASA Technical Reports Server (NTRS)
Maliassov, Serguei
1996-01-01
In this paper an algebraic substructuring preconditioner is considered for nonconforming finite element approximations of second order elliptic problems in 3D domains with a piecewise constant diffusion coefficient. Using a substructuring idea and a block Gauss elimination, part of the unknowns is eliminated and the Schur complement obtained is preconditioned by a spectrally equivalent very sparse matrix. In the case of quasiuniform tetrahedral mesh an appropriate algebraic multigrid solver can be used to solve the problem with this matrix. Explicit estimates of condition numbers and implementation algorithms are established for the constructed preconditioner. It is shown that the condition number of the preconditioned matrix does not depend on either the mesh step size or the jump of the coefficient. Finally, numerical experiments are presented to illustrate the theory being developed.
Cierniak, Robert; Lorent, Anna
2016-09-01
The main aim of this paper is to investigate properties of our originally formulated statistical model-based iterative approach applied to the image reconstruction from projections problem which are related to its conditioning, and, in this manner, to prove a superiority of this approach over ones recently used by other authors. The reconstruction algorithm based on this conception uses a maximum likelihood estimation with an objective adjusted to the probability distribution of measured signals obtained from an X-ray computed tomography system with parallel beam geometry. The analysis and experimental results presented here show that our analytical approach outperforms the referential algebraic methodology which is explored widely in the literature and exploited in various commercial implementations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki
2009-02-01
Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Producing approximate answers to database queries
NASA Technical Reports Server (NTRS)
Vrbsky, Susan V.; Liu, Jane W. S.
1993-01-01
We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittens, Alex; Devarakonda, Aditya; Racah, Evan
We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausibility), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to 1.6TB particle physics, 2.2TB and 16TB climate modeling and 1.1TB bioimaging data. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data parallel model. We perform scalingmore » experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance.« less
Ranging algebraically with more observations than unknowns
NASA Astrophysics Data System (ADS)
Awange, J. L.; Fukuda, Y.; Takemoto, S.; Ateya, I. L.; Grafarend, E. W.
2003-07-01
In the recently developed Spatial Reference System that is designed to check and control the accuracy of the three-dimensional coordinate measuring machines and tooling equipment (Metronom US., Inc., Ann Arbor: http://www.metronomus.com), the coordinates of the edges of the instrument are computed from distances of the bars. The use of distances in industrial application is fast gaining momentum just as in Geodesy and in Geophysical applications and thus necessitating efficient algorithms to solve the nonlinear distance equations. Whereas the ranging problem with minimum known stations was considered in our previous contribution in the same Journal, the present contribution extends to the case where one is faced with many distance observations than unknowns (overdetermined case) as is usually the case in practise. Using the Gauss-Jacobi Combinatorial approach, we demonstrate how one can proceed to position without reverting to iterative and linearizing procedures such as Newton's or Least Squares approach.
The detection and stabilisation of limit cycle for deterministic finite automata
NASA Astrophysics Data System (ADS)
Han, Xiaoguang; Chen, Zengqiang; Liu, Zhongxin; Zhang, Qing
2018-04-01
In this paper, the topological structure properties of deterministic finite automata (DFA), under the framework of the semi-tensor product of matrices, are investigated. First, the dynamics of DFA are converted into a new algebraic form as a discrete-time linear system by means of Boolean algebra. Using this algebraic description, the approach of calculating the limit cycles of different lengths is given. Second, we present two fundamental concepts, namely, domain of attraction of limit cycle and prereachability set. Based on the prereachability set, an explicit solution of calculating domain of attraction of a limit cycle is completely characterised. Third, we define the globally attractive limit cycle, and then the necessary and sufficient condition for verifying whether all state trajectories of a DFA enter a given limit cycle in a finite number of transitions is given. Fourth, the problem of whether a DFA can be stabilised to a limit cycle by the state feedback controller is discussed. Criteria for limit cycle-stabilisation are established. All state feedback controllers which implement the minimal length trajectories from each state to the limit cycle are obtained by using the proposed algorithm. Finally, an illustrative example is presented to show the theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J.A.
This report is a sequel to ORNL/CSD-96 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. With this supplement, the coverage has been restricted to Numerical Linear Algebra and is now roughly characterized by the American Mathematical Society's classification section 15 and 65F but with little coverage of inifinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some recognition is made of the uses of graph theory in Numerical Linear Algebra, particularly as regards their use in algorithms for sparse matrix computations.more » The period covered by this report is roughly the calendar year 1981 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications. The review citations are limited to the Mathematical Reviews (MR) and Das Zentralblatt fur Mathematik und Ihre Grenzgebiete (ZBL). Future reports will be made more timely by closer ovservation of the few journals which supply the bulk of the listings rather than what appears to be too much reliance on secondary sources. Some thought is being given to the physical appearance of these reports and the author welcomes comments concerning both their appearance and contents.« less
Closed, analytic, boson realizations for Sp(4)
NASA Astrophysics Data System (ADS)
Klein, Abraham; Zhang, Qing-Ying
1986-08-01
The problem of determing a boson realization for an arbitrary irrep of the unitary simplectic algebra Sp(2d) [or of the corresponding discrete unitary irreps of the unbounded algebra Sp(2d,R)] has been solved completely in recent papers by Deenen and Quesne [J. Deenen and C. Quesne, J. Math. Phys. 23, 878, 2004 (1982); 25, 1638 (1984); 26, 2705 (1985)] and by Moshinsky and co-workers [O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, J. Math. Phys. 26, 2107 (1985); M. Moshinsky, ``Boson realization of symplectic algebras,'' to be published]. This solution is not known in closed analytic form except for d=1 and for special classes of irreps for d>1. A different method of obtaining a boson realization that solves the full problem for Sp(4) is described. The method utilizes the chain Sp(2d)⊇SU(2)×SU(2) ×ṡṡṡ×SU(2) (d times), which, for d≥4, does not provide a complete set of quantum numbers. Though a simple solution of the missing label problem can be given, this solution does not help in the construction of a mapping algorithm for general d.
Learning algebra through MCREST strategy in junior high school students
NASA Astrophysics Data System (ADS)
Siregar, Nurfadilah; Kusumah, Yaya S.; Sabandar, J.; Dahlan, J. A.
2017-09-01
The aims of this paper are to describe the use of MCREST strategy in learning algebra and to obtain empirical evidence on the effect of MCREST strategy es specially on reasoning ability. Students in eight grade in one of schools at Cimahi City are chosen as the sample of this study. Using pre-test and post-test control group design, the data then analyzed in descriptive and inferential statistics. The results of this study show the students who got MCREST strategy in their class have better result in test of reasoning ability than students who got direct learning. It means that MCREST strategy gives good impact in learning algebra.
Spectral relationships between kicked Harper and on-resonance double kicked rotor operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Wayne; Mouritzen, Anders S.; Wang Jiao
2009-03-15
Kicked Harper operators and on-resonance double kicked rotor operators model quantum systems whose semiclassical limits exhibit chaotic dynamics. Recent computational studies indicate a striking resemblance between the spectra of these operators. In this paper we apply C*-algebra methods to explain this resemblance. We show that each pair of corresponding operators belongs to a common rotation C*-algebra B{sub {alpha}}, prove that their spectra are equal if {alpha} is irrational, and prove that the Hausdorff distance between their spectra converges to zero as q increases if {alpha}=p/q with p and q coprime integers. Moreover, we show that corresponding operators in B{sub {alpha}}more » are homomorphic images of mother operators in the universal rotation C*-algebra A{sub {alpha}} that are unitarily equivalent and hence have identical spectra. These results extend analogous results for almost Mathieu operators. We also utilize the C*-algebraic framework to develop efficient algorithms to compute the spectra of these mother operators for rational {alpha} and present preliminary numerical results that support the conjecture that their spectra are Cantor sets if {alpha} is irrational. This conjecture for almost Mathieu operators, called the ten Martini problem, was recently proven after intensive efforts over several decades. This proof for the almost Mathieu operators utilized transfer matrix methods, which do not exist for the kicked operators. We outline a strategy, based on a special property of loop groups of semisimple Lie groups, to prove this conjecture for the kicked operators.« less
Geometry and Algebra: Glow with the Flow. NASA Connect: Program 2 in the 2000-2001 Series.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
This teaching unit is designed to help students in grades 5 to 8 explore the concepts of geometry and algebra in the context of the force of drag. The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit consists of…
Mixing Microworld and CAS Features in Building Computer Systems that Help Students Learn Algebra
ERIC Educational Resources Information Center
Nicaud, Jean-Francois; Bouhineau, Denis; Chaachoua, Hamid
2004-01-01
We present the design principles for a new kind of computer system that helps students learn algebra. The fundamental idea is to have a system based on the microworld paradigm that allows students to make their own calculations, as they do with paper and pencil, without being obliged to use commands, and to verify the correctness of these…
NASA Astrophysics Data System (ADS)
Huang, Ding-jiang; Ivanova, Nataliya M.
2016-02-01
In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.
NASA Astrophysics Data System (ADS)
Roussel, Marc R.
1999-10-01
One of the traditional obstacles to learning quantum mechanics is the relatively high level of mathematical proficiency required to solve even routine problems. Modern computer algebra systems are now sufficiently reliable that they can be used as mathematical assistants to alleviate this difficulty. In the quantum mechanics course at the University of Lethbridge, the traditional three lecture hours per week have been replaced by two lecture hours and a one-hour computer-aided problem solving session using a computer algebra system (Maple). While this somewhat reduces the number of topics that can be tackled during the term, students have a better opportunity to familiarize themselves with the underlying theory with this course design. Maple is also available to students during examinations. The use of a computer algebra system expands the class of feasible problems during a time-limited exercise such as a midterm or final examination. A modern computer algebra system is a complex piece of software, so some time needs to be devoted to teaching the students its proper use. However, the advantages to the teaching of quantum mechanics appear to outweigh the disadvantages.
Cybernetic systems based on inductive logic
NASA Astrophysics Data System (ADS)
Fry, Robert L.
2001-05-01
Recent work in the area of inductive logic suggests that cybernetics might be quantified and reduced to engineering practice. If so, then there are considerable implications for engineering, science, and other fields. This paper attempts to capture the essential ideas of cybernetics cast in the light of inductive logic. The described inductive logic extends conventional logic by adding a conjugate logical domain of questions to the logical domain of assertions intrinsic to Boolean Algebra with which most are familiar. This was first posited and developed by Richard Cox. Interestingly enough, these two logical domains, one of questions and the other of assertions, only exist relative to one another with each possessing natural measures of entropy and probability, respectively. Examples are given that highlight the utility of cybernetic approaches to neuroscience, algorithm design, system engineering, and the design and understanding of defensive and offensive systems. For example, the application of cybernetic approaches to defense systems suggests that these systems possess a wavefunction which like quantum mechanics, collapses when we ``look'' through the eyes of the system sensors such as radars and optical sensors. .
Gazizov, R. K.
2017-01-01
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorin, Alexandre J.; Morzfeld, Matthias; Tu, Xuemin
Implicit particle filters for data assimilation update the particles by first choosing probabilities and then looking for particle locations that assume them, guiding the particles one by one to the high probability domain. We provide a detailed description of these filters, with illustrative examples, together with new, more general, methods for solving the algebraic equations and with a new algorithm for parameter identification.
Robust High Data Rate MIMO Underwater Acoustic Communications
2010-12-31
algorithm is referred to as periodic CAN ( PeCAN ). Unlike most existing sequence construction methods which are algebraic and deterministic in nature, we...start the iteration of PeCAN from random phase initializations and then proceed to cyclically minimize the desired metric. In this way, through...by the foe and hence are especially useful as training sequences or as spreading sequences for UAC applications. We will use PeCAN sequences for
Gainetdinova, A A; Gazizov, R K
2017-01-01
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.
NASA Astrophysics Data System (ADS)
Lawrence, Lettie Carol
1997-08-01
The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.
Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J
2017-05-01
We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.
None, None
2015-09-28
Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less
Graph Mining Meets the Semantic Web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Sukumar, Sreenivas R; Lim, Seung-Hwan
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluatemore » the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.« less
Improved parallel data partitioning by nested dissection with applications to information retrieval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar
The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less
High-performance computing on GPUs for resistivity logging of oil and gas wells
NASA Astrophysics Data System (ADS)
Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.
2017-10-01
We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.
ERIC Educational Resources Information Center
Rosenberg, Nancy S.
A group is viewed to be one of the simplest and most interesting algebraic structures. The theory of groups has been applied to many branches of mathematics as well as to crystallography, coding theory, quantum mechanics, and the physics of elementary particles. This material is designed to help the user: 1) understand what groups are and why they…
A new root-based direction-finding algorithm
NASA Astrophysics Data System (ADS)
Wasylkiwskyj, Wasyl; Kopriva, Ivica; DoroslovačKi, Miloš; Zaghloul, Amir I.
2007-04-01
Polynomial rooting direction-finding (DF) algorithms are a computationally efficient alternative to search-based DF algorithms and are particularly suitable for uniform linear arrays of physically identical elements provided that mutual interaction among the array elements can be either neglected or compensated for. A popular algorithm in such situations is Root Multiple Signal Classification (Root MUSIC (RM)), wherein the estimation of the directions of arrivals (DOA) requires the computation of the roots of a (2N - 2) -order polynomial, where N represents number of array elements. The DOA are estimated from the L pairs of roots closest to the unit circle, where L represents number of sources. In this paper we derive a modified root polynomial (MRP) algorithm requiring the calculation of only L roots in order to estimate the L DOA. We evaluate the performance of the MRP algorithm numerically and show that it is as accurate as the RM algorithm but with a significantly simpler algebraic structure. In order to demonstrate that the theoretically predicted performance can be achieved in an experimental setting, a decoupled array is emulated in hardware using phase shifters. The results are in excellent agreement with theory.
Simple and Accurate Method for Central Spin Problems
NASA Astrophysics Data System (ADS)
Lindoy, Lachlan P.; Manolopoulos, David E.
2018-06-01
We describe a simple quantum mechanical method that can be used to obtain accurate numerical results over long timescales for the spin correlation tensor of an electron spin that is hyperfine coupled to a large number of nuclear spins. This method does not suffer from the statistical errors that accompany a Monte Carlo sampling of the exact eigenstates of the central spin Hamiltonian obtained from the algebraic Bethe ansatz, or from the growth of the truncation error with time in the time-dependent density matrix renormalization group (TDMRG) approach. As a result, it can be applied to larger central spin problems than the algebraic Bethe ansatz, and for longer times than the TDMRG algorithm. It is therefore an ideal method to use to solve central spin problems, and we expect that it will also prove useful for a variety of related problems that arise in a number of different research fields.
A compressed sensing based approach on Discrete Algebraic Reconstruction Technique.
Demircan-Tureyen, Ezgi; Kamasak, Mustafa E
2015-01-01
Discrete tomography (DT) techniques are capable of computing better results, even using less number of projections than the continuous tomography techniques. Discrete Algebraic Reconstruction Technique (DART) is an iterative reconstruction method proposed to achieve this goal by exploiting a prior knowledge on the gray levels and assuming that the scanned object is composed from a few different densities. In this paper, DART method is combined with an initial total variation minimization (TvMin) phase to ensure a better initial guess and extended with a segmentation procedure in which the threshold values are estimated from a finite set of candidates to minimize both the projection error and the total variation (TV) simultaneously. The accuracy and the robustness of the algorithm is compared with the original DART by the simulation experiments which are done under (1) limited number of projections, (2) limited view problem and (3) noisy projections conditions.
Preconditioned conjugate gradient methods for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.
1990-01-01
The compressible Navier-Stokes equations are solved for a variety of two-dimensional inviscid and viscous problems by preconditioned conjugate gradient-like algorithms. Roe's flux difference splitting technique is used to discretize the inviscid fluxes. The viscous terms are discretized by using central differences. An algebraic turbulence model is also incorporated. The system of linear equations which arises out of the linearization of a fully implicit scheme is solved iteratively by the well known methods of GMRES (Generalized Minimum Residual technique) and Chebyschev iteration. Incomplete LU factorization and block diagonal factorization are used as preconditioners. The resulting algorithm is competitive with the best current schemes, but has wide applications in parallel computing and unstructured mesh computations.
Path planning algorithms for assembly sequence planning. [in robot kinematics
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Sanderson, Arthur C.
1991-01-01
Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.
Compliance matrices for cracked bodies
NASA Technical Reports Server (NTRS)
Ballarini, R.
1986-01-01
An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).
Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna
2016-02-01
optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear ...would expect that linear combinations of them in a neighborhood around would also have low sidelobes. The algorithms in this paper exploit this
Discrete Methods and their Applications
1993-02-03
problem of finding all near-optimal solutions to a linear program. In paper [18], we give a brief and elementary proof of a result of Hoffman [1952) about...relies only on linear programming duality; second, we obtain geometric and algebraic representations of the bounds that are determined explicitly in...same. We have studied the problem of finding the minimum n such that a given unit interval graph is an n--graph. A linear time algorithm to compute
Kong, Jianlei; Ding, Xiaokang; Liu, Jinhao; Yan, Lei; Wang, Jianli
2015-01-01
In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents. PMID:26147726
Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2016-02-01
Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
ERIC Educational Resources Information Center
Eriksson, Inger; Jansson, Anders
2017-01-01
The issue of this article is to identify and discuss what conditions may be necessary to build into tasks to make it likely for students to be involved in an algebraic Learning Activity inspired by Davydov. Data from a pilot study was used in which a group of students (N = 28) in grade 1 (7-year-olds) were invited to participate in discussions and…
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Model-Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.