Sample records for desired cell types

  1. Chemical compound-based direct reprogramming for future clinical applications

    PubMed Central

    Takeda, Yukimasa; Harada, Yoshinori; Yoshikawa, Toshikazu; Dai, Ping

    2018-01-01

    Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy. PMID:29739872

  2. Improving cell therapy – experiments using transplanted telomerase-immortalized cells in immunodeficient mice

    PubMed Central

    Huang, Qin; Chen, Meizhen; Liang, Sitai; Acha, Victor; Liu, Dan; Yuan, Furong; Hawks, Christina L.; Hornsby, Peter J.

    2007-01-01

    Cell therapy is the use of stem cells and other types of cells in various therapies for age-related diseases. Two issues that must be addressed before cell therapy could be used routinely in medicine are improved efficacy of the transplanted cells and demonstrated long-term safety. Desirable genetic modifications that could be made to cells to be used for cell therapy include immortalization with hTERT (human telomerase reverse transcriptase). We have used a model for cell therapy in which transplantation of adrenocortical cells restores glucocorticoid and mineralocorticoid hormone levels in adrenalectomized immunodeficient mice. In this model, clones of cells that had been immortalized with hTERT were shown to be able to replace the function of the animals'adrenal glands by forming vascularized tissue structures when cells were transplanted beneath the capsule of the kidney. hTERT-modified cells showed no tendency for neoplastic changes. Moreover, a series of experiments showed that hTERT does not cooperate with known oncoproteins in tumorigenesis either in adrenocortical cells or in human fibroblasts. Nevertheless, hTERT was required for tumorigenesis when cells were implanted subcutaneously rather than in the subrenal capsule space. Changes in gene expression make hTERT-modified cells more robust. Understanding these changes is important so as to be able to separately control immortalization and other desirable properties of cells that could be used in cell therapy. Alternatively, desirable properties of transplants might be provided by co-transplanted mesenchymal cells: mesenchymal cell-assisted cell therapy. For both hTERT modification and mesenchymal cell-assisted cell therapy, genomics approaches will be needed to define what genetic modifications are desirable and safe in cells used in cell therapy. PMID:17123586

  3. A Dual-Responsive Self-Assembled Monolayer for Specific Capture and On-Demand Release of Live Cells.

    PubMed

    Gao, Xia; Li, Qiang; Wang, Fengchao; Liu, Xuehui; Liu, Dingbin

    2018-06-22

    We report a dual-responsive self-assembled monolayer (SAM) on a well-defined rough gold substrate for dynamic capture and release of live cells. By incorporating 5'-triphosphate (ATP) aptamer into a SAM, we can accurately isolate specific cell types and subsequently release captured cells at either population or desired-group (or even single-cell) levels. On one hand, the whole SAMs can be disassembled through addition of ATP solution, leading to the entire release of the captured cells from the supported substrate. On the other hand, desired cells can be selectively released by using near-infrared light (NIR) irradiation, with relatively high spatial and temporal precision. The proposed dual-responsive cell capture-and-release system is biologically friendly and is reusable with another round of modification, showing great usefulness in cancer diagnosis and molecular analysis.

  4. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  5. Progress research of non-Cz silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1983-01-01

    The simultaneous diffusion of liquid boron and liquid phosphorus dopants into N-type dendritic silicon web for solar cells was investigated. It is planned that the diffusion parameters required to achieve the desired P(+)NN(+) cell structure be determined and the resultant cell properties be compared to cells produced in a sequential differential process. A cost analysis of the simultaneous junction formation process is proposed.

  6. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake.

    PubMed

    Mirshafiee, Vahid; Kim, Raehyun; Park, Soyun; Mahmoudi, Morteza; Kraft, Mary L

    2016-01-01

    Nanoparticles (NPs) are functionalized with targeting ligands to enable selectively delivering drugs to desired locations in the body. When these functionalized NPs enter the blood stream, plasma proteins bind to their surfaces, forming a protein corona that affects NP uptake and targeting efficiency. To address this problem, new strategies for directing the formation of a protein corona that has targeting capabilities are emerging. Here, we have investigated the feasibility of directing corona composition to promote targeted NP uptake by specific types of cells. We used the well-characterized process of opsonin-induced phagocytosis by macrophages as a simplified model of corona-mediated NP uptake by a desired cell type. We demonstrate that pre-coating silica NPs with gamma-globulins (γ-globulins) produced a protein corona that was enriched with opsonins, such as immunoglobulins. Although immunoglobulins are ligands that bind to receptors on macrophages and elicit phagocytois, the opsonin-rich protein corona did not increase NP uptake by macrophage RAW 264.7 cells. Immunolabeling experiments indicated that the binding of opsonins to their target cell surface receptors was impeded by other proteins in the corona. Thus, corona-mediated NP targeting strategies must optimize both the recruitment of the desired plasma proteins as well as their accessibility and orientation in the corona layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of autologous blood cell therapies

    PubMed Central

    Kim, Ah Ram; Sankaran, Vijay G.

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation and blood cell transfusions are commonly performed in patients with a variety of blood disorders. Unfortunately, these donor-derived cell therapies are constrained due to limited supplies, infectious risk factors, a lack of appropriately matched donors, and the risk of immunologic complications from such products. The use of autologous cell therapies has been proposed to overcome these shortcomings. One can derive such therapies directly from hematopoietic stem and progenitor cells of individuals, which can then be manipulated ex vivo to produce desired modifications or differentiated to produce a particular target population. Alternatively, pluripotent stem cells, which have a theoretically unlimited self-renewal capacity and an ability to differentiate into any desired cell type, can be used as an autologous starting source for such manipulation and differentiation approaches. In addition, such cell products can also be used as a delivery vehicle for therapeutics. In this review, we highlight recent advances and discuss ongoing challenges for the in vitro generation of autologous hematopoietic cells that can be used for cell therapy. PMID:27345108

  8. Embryonic and Induced Pluripotent Stem Cells: Understanding, Creating, and Exploiting the Nano-Niche for Regenerative Medicine

    PubMed Central

    2013-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research. PMID:23414366

  9. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells

    PubMed Central

    Wakabayashi, Shunichi; Soma, Atsumi; Sato, Saeko; Nakatake, Yuhki; Oda, Mayumi; Murakami, Miyako; Sakota, Miki; Chikazawa-Nohtomi, Nana

    2016-01-01

    Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings. PMID:27802135

  10. Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia.

    PubMed

    Palm, Thomas; Bolognin, Silvia; Meiser, Johannes; Nickels, Sarah; Träger, Claudia; Meilenbrock, Ralf-Leslie; Brockhaus, Johannes; Schreitmüller, Miriam; Missler, Markus; Schwamborn, Jens Christian

    2015-11-06

    Induced pluripotent stem cell bear the potential to differentiate into any desired cell type and hold large promise for disease-in-a-dish cell-modeling approaches. With the latest advances in the field of reprogramming technology, the generation of patient-specific cells has become a standard technology. However, directed and homogenous differentiation of human pluripotent stem cells into desired specific cell types remains an experimental challenge. Here, we report the development of a novel hiPSCs-based protocol enabling the generation of expandable homogenous human neural stem cells (hNSCs) that can be maintained under self-renewing conditions over high passage numbers. Our newly generated hNSCs retained differentiation potential as evidenced by the reliable generation of mature astrocytes that display typical properties as glutamate up-take and expression of aquaporin-4. The hNSC-derived astrocytes showed high activity of pyruvate carboxylase as assessed by stable isotope assisted metabolic profiling. Moreover, using a cell transplantation approach, we showed that grafted hNSCs were not only able to survive but also to differentiate into astroglial in vivo. Engraftments of pluripotent stem cells derived from somatic cells carry an inherent tumor formation potential. Our results demonstrate that hNSCs with self-renewing and differentiation potential may provide a safer alternative strategy, with promising applications especially for neurodegenerative disorders.

  11. Development of autologous blood cell therapies.

    PubMed

    Kim, Ah Ram; Sankaran, Vijay G

    2016-10-01

    Allogeneic hematopoietic stem cell transplantation and blood cell transfusions are performed commonly in patients with a variety of blood disorders. Unfortunately, these donor-derived cell therapies are constrained due to limited supplies, infectious risk factors, a lack of appropriately matched donors, and the risk of immunologic complications from such products. The use of autologous cell therapies has been proposed to overcome these shortcomings. One can derive such therapies directly from hematopoietic stem and progenitor cells of individuals, which can then be manipulated ex vivo to produce the desired modifications or differentiated to produce a particular target population. Alternatively, pluripotent stem cells, which have a theoretically unlimited self-renewal capacity and an ability to differentiate into any desired cell type, can be used as an autologous starting source for such manipulation and differentiation approaches. Such cell products can also be used as a delivery vehicle for therapeutics. In this review, we highlight recent advances and discuss ongoing challenges for the in vitro generation of autologous hematopoietic cells that can be used for cell therapy. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Signaling Molecules Governing Pluripotency and Early Lineage Commitments in Human Pluripotent Stem Cells

    PubMed Central

    Fathi, Ali; Eisa-Beygi, Shahram; Baharvand, Hossein

    2017-01-01

    Signaling in pluripotent stem cells is a complex and dynamic process involving multiple mediators, finely tuned to balancing pluripotency and differentiation states. Characterizing and modifying the necessary signaling pathways to attain desired cell types is required for stem-cell applications in various fields of regenerative medicine. These signals may help enhance the differentiation potential of pluripotent cells towards each of the embryonic lineages and enable us to achieve pure in vitro cultures of various cell types. This review provides a timely synthesis of recent advances into how maintenance of pluripotency in hPSCs is regulated by extrinsic cues, such as the fibroblast growth factor (FGF) and ACTIVIN signaling pathways, their interplay with other signaling pathways, namely, wingless- type MMTV integration site family (WNT) and mammalian target of rapamycin (mTOR), and the pathways governing the determination of multiple lineages. PMID:28670512

  13. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.

    PubMed

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-12-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.

  14. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks

    PubMed Central

    Orabona, Emanuele; De Stefano, Luca; Ferry, Mike; Hasty, Jeff; di Bernardo, Mario; di Bernardo, Diego

    2014-01-01

    We describe an innovative experimental and computational approach to control the expression of a protein in a population of yeast cells. We designed a simple control algorithm to automatically regulate the administration of inducer molecules to the cells by comparing the actual protein expression level in the cell population with the desired expression level. We then built an automated platform based on a microfluidic device, a time-lapse microscopy apparatus, and a set of motorized syringes, all controlled by a computer. We tested the platform to force yeast cells to express a desired fixed, or time-varying, amount of a reporter protein over thousands of minutes. The computer automatically switched the type of sugar administered to the cells, its concentration and its duration, according to the control algorithm. Our approach can be used to control expression of any protein, fused to a fluorescent reporter, provided that an external molecule known to (indirectly) affect its promoter activity is available. PMID:24831205

  16. Tissue Photolithography

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil; Shibata, Darryl; Taylor, Clive

    2011-01-01

    Tissue lithography will enable physicians and researchers to obtain macromolecules with high purity (greater than 90 percent) from desired cells in conventionally processed, clinical tissues by simply annotating the desired cells on a computer screen. After identifying the desired cells, a suitable lithography mask will be generated to protect the contents of the desired cells while allowing destruction of all undesired cells by irradiation with ultraviolet light. The DNA from the protected cells can be used in a number of downstream applications including DNA sequencing. The purity (i.e., macromolecules isolated form specific cell types) of such specimens will greatly enhance the value and information of downstream applications. In this method, the specific cells are isolated on a microscope slide using photolithography, which will be faster, more specific, and less expensive than current methods. It relies on the fact that many biological molecules such as DNA are photosensitive and can be destroyed by ultraviolet irradiation. Therefore, it is possible to protect the contents of desired cells, yet destroy undesired cells. This approach leverages the technologies of the microelectronics industry, which can make features smaller than 1 micrometer with photolithography. A variety of ways has been created to achieve identification of the desired cell, and also to designate the other cells for destruction. This can be accomplished through chrome masks, direct laser writing, and also active masking using dynamic arrays. Image recognition is envisioned as one method for identifying cell nuclei and cell membranes. The pathologist can identify the cells of interest using a microscopic computerized image of the slide, and appropriate custom software. In one of the approaches described in this work, the software converts the selection into a digital mask that can be fed into a direct laser writer, e.g. the Heidelberg DWL66. Such a machine uses a metalized glass plate (with chrome metallization) on which there is a thin layer of photoresist. The laser transfers the digital mask onto the photoresist by direct writing, with typical best resolution of 2 micrometers. The plate is then developed to remove the exposed photoresist, which leaves the exposed areas susceptible to chemical chrome etch. The etch removes the unprotected chrome. The rest of the photoresist is then removed, by either ultraviolet organic solvent or over-development. The remaining chrome pattern is quickly oxidized by atmospheric exposure (typically within 30 seconds). The ready chrome mask is now applied to the tissue slide and aligned manually, or using automatic software and pre-designed alignment marks. The slide plate sandwich is then exposed to UV to destroy the DNA of the unwanted cells. The slide and plate are separated and the slide is processed in a standard way to prepare for polymerase chain reaction (PCR) and potential identification of cancer sequences.

  17. Investigation of the diaphragm-type pressure cell

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1932-01-01

    This report relates to various improvements in the process of manufacture of the NACA standard pressure cell. Like most pressure recording devices employing thin diaphragms, they would in general show considerable change in calibration with temperature and also some change of calibration with time or aging effect. The required diaphragm thickness and the desirable rate of mechanical magnification have been determined on the basis of several hundred tests.

  18. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.; Krishnagopal, S.

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.

  19. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  20. The Terminator mouse is a diphtheria toxin-receptor knock-in mouse strain for rapid and efficient enrichment of desired cell lineages.

    PubMed

    Guo, Jian-Kan; Shi, Hongmei; Koraishy, Farrukh; Marlier, Arnaud; Ding, Zhaowei; Shan, Alan; Cantley, Lloyd G

    2013-11-01

    Biomedical research often requires primary cultures of specific cell types, which are challenging to obtain at high purity in a reproducible manner. Here we engineered the murine Rosa26 locus by introducing the diphtheria toxin receptor flanked by loxP sites. The resultant strain was nicknamed the Terminator mouse. This approach results in diphtheria toxin-receptor expression in all non-Cre expressing cell types, making these cells susceptible to diphtheria toxin exposure. In primary cultures of kidney cells derived from the Terminator mouse, over 99.99% of cells were dead within 72 h of diphtheria toxin treatment. After crossing the Terminator with the podocin-Cre (podocyte specific) mouse or the Ggt-Cre (proximal tubule specific) mouse, diphtheria toxin treatment killed non-Cre expressing cells but spared podocytes and proximal tubule cells, respectively, enriching the primary cultures to over 99% purity, based on both western blotting and immunostaining of marker proteins. Thus, the Terminator mouse can be a useful tool to selectively and reproducibly obtain even low-abundant cell types at high quantity and purity.

  1. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source

    PubMed Central

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-01-01

    Abstract. In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses. PMID:26158049

  2. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source.

    PubMed

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-10-01

    In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.

  3. Nephron segment-specific gene expression using AAV vectors.

    PubMed

    Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R

    2018-02-26

    AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Derivation, propagation and differentiation of human embryonic stem cells.

    PubMed

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.

  5. Physical non-viral gene delivery methods for tissue engineering.

    PubMed

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  6. Physical non-viral gene delivery methods for tissue engineering

    PubMed Central

    Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.

    2016-01-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792

  7. Directing three-dimensional multicellular morphogenesis by self-organization of vascular mesenchymal cells in hyaluronic acid hydrogels.

    PubMed

    Zhu, Xiaolu; Gojgini, Shiva; Chen, Ting-Hsuan; Fei, Peng; Dong, Siyan; Ho, Chih-Ming; Segura, Tatiana

    2017-01-01

    Physical scaffolds are useful for supporting cells to form three-dimensional (3D) tissue. However, it is non-trivial to develop a scheme that can robustly guide cells to self-organize into a tissue with the desired 3D spatial structures. To achieve this goal, the rational regulation of cellular self-organization in 3D extracellular matrix (ECM) such as hydrogel is needed. In this study, we integrated the Turing reaction-diffusion mechanism with the self-organization process of cells and produced multicellular 3D structures with the desired configurations in a rational manner. By optimizing the components of the hydrogel and applying exogenous morphogens, a variety of multicellular 3D architectures composed of multipotent vascular mesenchymal cells (VMCs) were formed inside hyaluronic acid (HA) hydrogels. These 3D architectures could mimic the features of trabecular bones and multicellular nodules. Based on the Turing reaction-diffusion instability of morphogens and cells, a theoretical model was proposed to predict the variations observed in 3D multicellular structures in response to exogenous factors. It enabled the feasibility to obtain diverse types of 3D multicellular structures by addition of Noggin and/or BMP2. The morphological consistency between the simulation prediction and experimental results probably revealed a Turing-type mechanism underlying the 3D self-organization of VMCs in HA hydrogels. Our study has provided new ways to create a variety of self-organized 3D multicellular architectures for regenerating biomaterial and tissues in a Turing mechanism-based approach.

  8. Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells

    PubMed Central

    Rekittke, Nadine E.; Ang, Meidjie; Rawat, Divya; Khatri, Rahul

    2016-01-01

    Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy. PMID:27047547

  9. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    PubMed

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.

  10. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    PubMed

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  11. Nifurpirinol: A more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations.

    PubMed

    Bergemann, David; Massoz, Laura; Bourdouxhe, Jordane; Carril Pardo, Claudio A; Voz, Marianne L; Peers, Bernard; Manfroid, Isabelle

    2018-04-17

    The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired. © 2018 by the Wound Healing Society.

  12. Origins and implications of pluripotent stem cell variability and heterogeneity

    PubMed Central

    Cahan, Patrick; Daley, George Q.

    2014-01-01

    Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could ‘lock’ the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field. PMID:23673969

  13. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    PubMed

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  14. Can hi-jacking hypoxia inhibit extracellular vesicles in cancer?

    PubMed

    Lowry, Michelle C; O'Driscoll, Lorraine

    2018-06-01

    Increasing evidence indicates that extracellular vesicles (EVs) are key players in undesirable cell-cell communication in cancer. However, the release of EVs is not unique to cancer cells; normal cells release EVs to perform physiological roles. Thus, selective inhibition of EV release from cancer cells is desirable. Hypoxia contributes to tumour development and aggressiveness. EV quantities and thus undesirable communications are substantially increased in hypoxia. Targeting hypoxia could selectively inhibit EV release from tumour cells without disturbing physiologically relevant EVs. The unfavourable association between hypoxia and EV release is evident in multiple tumour types; therefore, targeting hypoxia could have a broad therapeutic benefit. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A TALEN genome editing system to generate human stem cell-based disease models

    PubMed Central

    Ding, Qiurong; Lee, Youn-Kyoung; Schaefer, Esperance A. K.; Peters, Derek T.; Veres, Adrian; Kim, Kevin; Kuperwasser, Nicolas; Motola, Daniel L.; Meissner, Torsten B.; Hendriks, William T.; Trevisan, Marta; Gupta, Rajat M.; Moisan, Annie; Banks, Eric; Friesen, Max; Schinzel, Robert T.; Xia, Fang; Tang, Alexander; Xia, Yulei; Figueroa, Emmanuel; Wann, Amy; Ahfeldt, Tim; Daheron, Laurence; Zhang, Feng; Rubin, Lee L.; Peng, Lee F.; Chung, Raymond T.; Musunuru, Kiran; Cowan, Chad A.

    2012-01-01

    SUMMARY Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter of which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease—dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor neuron death, and hepatitis C infection. We find little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease. PMID:23246482

  16. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    PubMed Central

    Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek

    2013-01-01

    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598

  17. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  18. Estimating cell populations

    NASA Technical Reports Server (NTRS)

    White, B. S.; Castleman, K. R.

    1981-01-01

    An important step in the diagnosis of a cervical cytology specimen is estimating the proportions of the various cell types present. This is usually done with a cell classifier, the error rates of which can be expressed as a confusion matrix. We show how to use the confusion matrix to obtain an unbiased estimate of the desired proportions. We show that the mean square error of this estimate depends on a 'befuddlement matrix' derived from the confusion matrix, and how this, in turn, leads to a figure of merit for cell classifiers. Finally, we work out the two-class problem in detail and present examples to illustrate the theory.

  19. Preparation of pancreatic β-cells from human iPS cells with small molecules

    PubMed Central

    2012-01-01

    Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed. PMID:22722666

  20. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.

    PubMed

    Madl, Christopher M; Heilshorn, Sarah C

    2018-06-04

    Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.

  1. Efficient Generation and Editing of Feeder-free IPSCs from Human Pancreatic Cells Using the CRISPR-Cas9 System.

    PubMed

    Nandal, Anjali; Mallon, Barbara; Telugu, Bhanu P

    2017-11-08

    Embryonic and induced pluripotent stem cells can self-renew and differentiate into multiple cell types of the body. The pluripotent cells are thus coveted for research in regenerative medicine and are currently in clinical trials for eye diseases, diabetes, heart diseases, and other disorders. The potential to differentiate into specialized cell types coupled with the recent advances in genome editing technologies including the CRISPR/Cas system have provided additional opportunities for tailoring the genome of iPSC for varied applications including disease modeling, gene therapy, and biasing pathways of differentiation, to name a few. Among the available editing technologies, the CRISPR/Cas9 from Streptococcus pyogenes has emerged as a tool of choice for site-specific editing of the eukaryotic genome. The CRISPRs are easily accessible, inexpensive, and highly efficient in engineering targeted edits. The system requires a Cas9 nuclease and a guide sequence (20-mer) specific to the genomic target abutting a 3-nucleotide "NGG" protospacer-adjacent-motif (PAM) for targeting Cas9 to the desired genomic locus, alongside a universal Cas9 binding tracer RNA (together called single guide RNA or sgRNA). Here we present a step-by-step protocol for efficient generation of feeder-independent and footprint-free iPSC and describe methodologies for genome editing of iPSC using the Cas9 ribonucleoprotein (RNP) complexes. The genome editing protocol is effective and can be easily multiplexed by pre-complexing sgRNAs for more than one target with the Cas9 protein and simultaneously delivering into the cells. Finally, we describe a simplified approach for identification and characterization of iPSCs with desired edits. Taken together, the outlined strategies are expected to streamline generation and editing of iPSC for manifold applications.

  2. Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

    PubMed

    Li, Xiang; Liu, Defang; Ma, Yantao; Du, Xiaomin; Jing, Junzhan; Wang, Lipeng; Xie, Bingqing; Sun, Da; Sun, Shaoqiang; Jin, Xueqin; Zhang, Xu; Zhao, Ting; Guan, Jingyang; Yi, Zexuan; Lai, Weifeng; Zheng, Ping; Huang, Zhuo; Chang, Yanzhong; Chai, Zhen; Xu, Jun; Deng, Hongkui

    2017-08-03

    Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cellular interaction of a layer-by-layer based drug delivery system depending on material properties and cell types.

    PubMed

    Brueckner, Mandy; Jankuhn, Steffen; Jülke, Eva-Maria; Reibetanz, Uta

    2018-01-01

    Drug delivery systems (DDS) and their interaction with cells are a controversial topic in the development of therapeutic concepts and approaches. On one hand, DDS are very useful for protected and targeted transport of defined dosages of active agents. On the other hand, their physicochemical properties such as material, size, shape, charge, or stiffness have a huge impact on cellular uptake and intracellular processing. Additionally, even identical DDS can undergo a completely diverse interaction with different cell types. However, quite often in in vitro DDS/cell interaction experiments, those aspects are not considered and DDS and cells are randomly chosen. Hence, our investigations provide an insight into layer-by-layer designed microcarriers with modifications of only some of the most important parameters (surface charge, stiffness, and applied microcarrier/cell ratio) and their influence on cellular uptake and viability. We also considered the interaction of these differently equipped DDS with several cell types and investigated professional phagocytes (neutrophil granulocytes; macrophages) as well as non-professional phagocytes (epithelial cells) under comparable conditions. We found that even small modifications such as layer-by-layer (LbL)-microcarriers with positive or negative surface charge, or LbL-microcarriers with solid core or as hollow capsules but equipped with the same surface properties, show significant differences in interaction and viability, and several cell types react very differently to the offered DDS. As a consequence, the properties of the DDS have to be carefully chosen with respect to the addressed cell type with the aim to efficiently transport a desired agent.

  4. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells

    PubMed Central

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N.; McGinnis, Christopher S.; Zhou, Joseph X.; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-01-01

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or “tipping point” at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations. PMID:28167799

  5. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    PubMed

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-02-28

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.

  6. Advances in the theory and application of BSF cells. [including electrical resistivity and photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.

  7. Ethical challenges for using human cells in clinical cell therapy.

    PubMed

    Hermerén, Göran

    2012-01-01

    In this chapter, different challenges for using human cells in clinical cell therapy are identified and discussed. Several types of challenges are defined and described, with particular attention to the relation between ethical and scientific challenges. Some challenges are cell and disease specific: they are raised by research on special types of cells with certain methods in order to pave the way for cell therapies of particular diseases. But since scientific work is carried out in a societal and value-loaded context, the relations between scientific, ethical, and regulatory challenges are complex. Three theses are first discussed: there is not one fixed list of ethical challenges, some challenges are disease and cell type specific; there are challenges at all stages of the translation from bench to bedside, and the challenges are related to the various stages of translation. Moreover, experimental and ethical research needs to be integrated. Finally, a fourth thesis is suggested: if a constructive and well-argued position is desired, it is necessary to be specific not only about the scientific details but also about the value premises. Everybody is for justice, integrity, and respect for persons. But what precisely does this mean when it is applied to the choices scientists and regulators have to face in their daily work? Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Functional diversity of human vaginal APC subsets in directing T cell responses

    PubMed Central

    Duluc, Dorothée; Gannevat, Julien; Anguiano, Esperanza; Zurawski, Sandra; Carley, Michael; Boreham, Muriel; Stecher, Jack; Dullaers, Melissa; Banchereau, Jacques; Oh, SangKon

    2012-01-01

    Human vaginal mucosa is the major entry site of sexually transmitted pathogens and thus has long been attractive as a site for mounting mucosal immunity. It is also known as a tolerogenic microenvironment. Here, we demonstrate that immune responses in the vagina are orchestrated by the functional diversity of four major antigen-presenting cell (APC) subsets. Langerhans cells (LCs) and CD14− lamina propria (LP)-DCs polarize CD4+ and CD8+ T cells toward Th2, whereas CD14+ LP-DCs and macrophages polarize CD4+ T cells toward Th1. Both LCs and CD14− LP-DCs are potent inducers of Th22. Due to their functional specialties and the different expression levels of pattern-recognition receptors on the APC subsets, microbial products do not bias them to elicit common types of immune responses (Th1 or Th2). To evoke desired types of adaptive immune responses in the human vagina, antigens may need to be targeted to proper APC subsets with right adjuvants. PMID:23131784

  9. Induced neural stem cells as a means of treatment in Huntington's disease.

    PubMed

    Choi, Kyung-Ah; Hong, Sunghoi

    2017-11-01

    Huntington's disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it. Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD. Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington's disease.

  10. A novel "Turn-On" fluorescent probe for F(-) detection in aqueous solution and its application in live-cell imaging.

    PubMed

    Xu, Jian; Sun, Shaobo; Li, Qian; Yue, Ying; Li, Yingdong; Shao, Shijun

    2014-11-07

    A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F(-)) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the "Turn-On" fluorescent response of probe 1 to F(-) was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F(-) in the range of 0.1-1mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of "Turn-On" fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F(-) in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    PubMed

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  12. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments.

    PubMed

    Danilova, Olga V; Suzina, Natalia E; Van De Kamp, Jodie; Svenning, Mette M; Bodrossy, Levente; Dedysh, Svetlana N

    2016-11-01

    Although representatives with spiral-shaped cells are described for many functional groups of bacteria, this cell morphotype has never been observed among methanotrophs. Here, we show that spiral-shaped methanotrophic bacteria do exist in nature but elude isolation by conventional approaches due to the preference for growth under micro-oxic conditions. The helical cell shape may enable rapid motility of these bacteria in water-saturated, heterogeneous environments with high microbial biofilm content, therefore offering an advantage of fast cell positioning under desired high methane/low oxygen conditions. The pmoA genes encoding a subunit of particulate methane monooxygenase from these methanotrophs form a new genus-level lineage within the family Methylococcaceae, type Ib methanotrophs. Application of a pmoA-based microarray detected these bacteria in a variety of high-latitude freshwater environments including wetlands and lake sediments. As revealed by the environmental pmoA distribution analysis, type Ib methanotrophs tend to live very near the methane source, where oxygen is scarce. The former perception of type Ib methanotrophs as being typical for thermal habitats appears to be incorrect because only a minor proportion of pmoA sequences from these bacteria originated from environments with elevated temperatures.

  14. Cellular interaction of a layer-by-layer based drug delivery system depending on material properties and cell types

    PubMed Central

    Brueckner, Mandy; Jankuhn, Steffen; Jülke, Eva-Maria; Reibetanz, Uta

    2018-01-01

    Background Drug delivery systems (DDS) and their interaction with cells are a controversial topic in the development of therapeutic concepts and approaches. On one hand, DDS are very useful for protected and targeted transport of defined dosages of active agents. On the other hand, their physicochemical properties such as material, size, shape, charge, or stiffness have a huge impact on cellular uptake and intracellular processing. Additionally, even identical DDS can undergo a completely diverse interaction with different cell types. However, quite often in in vitro DDS/cell interaction experiments, those aspects are not considered and DDS and cells are randomly chosen. Methods and results Hence, our investigations provide an insight into layer-by-layer designed microcarriers with modifications of only some of the most important parameters (surface charge, stiffness, and applied microcarrier/cell ratio) and their influence on cellular uptake and viability. We also considered the interaction of these differently equipped DDS with several cell types and investigated professional phagocytes (neutrophil granulocytes; macrophages) as well as non-professional phagocytes (epithelial cells) under comparable conditions. We found that even small modifications such as layer-by-layer (LbL)-microcarriers with positive or negative surface charge, or LbL-microcarriers with solid core or as hollow capsules but equipped with the same surface properties, show significant differences in interaction and viability, and several cell types react very differently to the offered DDS. Conclusion As a consequence, the properties of the DDS have to be carefully chosen with respect to the addressed cell type with the aim to efficiently transport a desired agent. PMID:29670351

  15. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    PubMed

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  16. The Use of Human Wharton's Jelly Cells for Cochlear Tissue Engineering.

    PubMed

    Mellott, Adam J; Detamore, Michael S; Staecker, Hinrich

    2016-01-01

    Tissue engineering focuses on three primary components: stem cells, biomaterials, and growth factors. Together, the combination of these components is used to regrow and repair damaged tissues that normally do not regenerate easily on their own. Much attention has been focused on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), due to their broad differentiation potential. However, ESCs and iPSCs require very detailed protocols to differentiate into target tissues, which are not always successful. Furthermore, procurement of ESCs is considered ethically controversial in some regions and procurement of iPSCs requires laborious transformation of adult tissues and characterization. However, mesenchymal stem cells are an adult stem cell population that are not ethically controversial and are readily available for procurement. Furthermore, mesenchymal stem cells exhibit the ability to differentiate into a variety of cell types arising from the mesoderm. In particular, human Wharton's jelly cells (hWJCs) are mesenchymal-type stem cells found in umbilical cords that possess remarkable differentiation potential. hWJCs are a highly desirable stem cell population due to their abundance in supply, high proliferation rates, and ability to differentiate into multiple cell types arising from all three germ layers. hWJCs are used to generate several neurological phenotypes arising from the ectoderm and are considered for engineering mechanosensory hair cells found in the auditory complex. Here, we report the methods for isolating hWJCs from human umbilical cords and non-virally transfected for use in cochlear tissue engineering studies.

  17. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  18. Engineering the human pluripotent stem cell microenvironment to direct cell fate

    PubMed Central

    Hazeltine, Laurie B.; Selekman, Joshua A.; Palecek, Sean P.

    2013-01-01

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystems technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. PMID:23510904

  19. Engineering the human pluripotent stem cell microenvironment to direct cell fate.

    PubMed

    Hazeltine, Laurie B; Selekman, Joshua A; Palecek, Sean P

    2013-11-15

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  1. Single-cell forensic short tandem repeat typing within microfluidic droplets.

    PubMed

    Geng, Tao; Novak, Richard; Mathies, Richard A

    2014-01-07

    A short tandem repeat (STR) typing method is developed for forensic identification of individual cells. In our strategy, monodisperse 1.5 nL agarose-in-oil droplets are produced with a high frequency using a microfluidic droplet generator. Statistically dilute single cells, along with primer-functionalized microbeads, are randomly compartmentalized in the droplets. Massively parallel single-cell droplet polymerase chain reaction (PCR) is performed to transfer replicas of desired STR targets from the single-cell genomic DNA onto the coencapsulated microbeads. These DNA-conjugated beads are subsequently harvested and reamplified under statistically dilute conditions for conventional capillary electrophoresis (CE) STR fragment size analysis. The 9-plex STR profiles of single cells from both pure and mixed populations of GM09947 and GM09948 human lymphoid cells show that all alleles are correctly called and allelic drop-in/drop-out is not observed. The cell mixture study exhibits a good linear relationship between the observed and input cell ratios in the range of 1:1 to 10:1. Additionally, the STR profile of GM09947 cells could be deduced even in the presence of a high concentration of cell-free contaminating 9948 genomic DNA. Our method will be valuable for the STR analysis of samples containing mixtures of cells/DNA from multiple contributors and for low-concentration samples.

  2. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    PubMed

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  3. Massively parallel nanowell-based single-cell gene expression profiling.

    PubMed

    Goldstein, Leonard D; Chen, Ying-Jiun Jasmine; Dunne, Jude; Mir, Alain; Hubschle, Hermann; Guillory, Joseph; Yuan, Wenlin; Zhang, Jingli; Stinson, Jeremy; Jaiswal, Bijay; Pahuja, Kanika Bajaj; Mann, Ishminder; Schaal, Thomas; Chan, Leo; Anandakrishnan, Sangeetha; Lin, Chun-Wah; Espinoza, Patricio; Husain, Syed; Shapiro, Harris; Swaminathan, Karthikeyan; Wei, Sherry; Srinivasan, Maithreyan; Seshagiri, Somasekar; Modrusan, Zora

    2017-07-07

    Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.

  4. Radiobiological studies using gamma and x rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  5. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  6. Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12

    PubMed Central

    Janelsins, Brian M.; Sumpter, Tina L.; Tkacheva, Olga A.; Rojas-Canales, Darling M.; Erdos, Geza; Mathers, Alicia R.; Shufesky, William J.; Storkus, Walter J.; Falo, Louis D.; Morelli, Adrian E.; Larregina, Adriana T.

    2013-01-01

    Substance-P and hemokinin-1 are proinflammatory neuropeptides with potential to promote type 1 immunity through agonistic binding to neurokinin-1 receptor (NK1R). Dendritic cells (DCs) are professional antigen-presenting cells that initiate and regulate the outcome of innate and adaptive immune responses. Immunostimulatory DCs are highly desired for the development of positive immunization techniques. DCs express functional NK1R; however, regardless of their potential DC-stimulatory function, the ability of NK1R agonists to promote immunostimulatory DCs remains unexplored. Here, we demonstrate that NK1R signaling activates therapeutic DCs capable of biasing type 1 immunity by inhibition of interleukin-10 (IL-10) synthesis and secretion, without affecting their low levels of IL-12 production. The potent type 1 effector immune response observed following cutaneous administration of NK1R-signaled DCs required their homing in skin-draining lymph nodes (sDLNs) where they induced inflammation and licensed endogenous-conventional sDLN-resident and -recruited inflammatory DCs to secrete IL-12. Our data demonstrate that NK1R signaling promotes immunostimulatory DCs, and provide relevant insight into the mechanisms used by neuromediators to regulate innate and adaptive immune responses. PMID:23365459

  7. Brachypodium as an experimental system for the study of stem parenchyma biology in grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Jacob Kruger; Wilkerson, Curtis Gene; Ma, Wujun

    Stem parenchyma is a major cell type that serves key metabolic functions for the plant especially in large grasses, such as sugarcane and sweet sorghum, where it serves to store sucrose or other products of photosynthesis. It is therefore desirable to understand the metabolism of this cell type as well as the mechanisms by which it provides its function for the rest of the plant. Ultimately, this information can be used to selectively manipulate this cell type in a controlled manner to achieve crop improvement. In this study, we show that Brachypodium distachyon is a useful model system for stemmore » pith parenchyma biology. Brachypodium can be grown under condition where it resembles the growth patterns of important crops in that it produces large amounts of stem material with the lower leaves senescing and with significant stores of photosynthate located in the stem parenchyma cell types. We further characterize stem plastid morphology as a function of tissue types, as this organelle is central for a number of metabolic pathways, and quantify gene expression for the four main classes of starch biosynthetic genes. Notably, we find several of these genes differentially regulated between stem and leaf. Furthermore, these studies show, consistent with other grasses, that the stem functions as a specialized storage compartment in Brachypodium.« less

  8. Brachypodium as an experimental system for the study of stem parenchyma biology in grasses

    DOE PAGES

    Jensen, Jacob Kruger; Wilkerson, Curtis Gene; Ma, Wujun

    2017-03-01

    Stem parenchyma is a major cell type that serves key metabolic functions for the plant especially in large grasses, such as sugarcane and sweet sorghum, where it serves to store sucrose or other products of photosynthesis. It is therefore desirable to understand the metabolism of this cell type as well as the mechanisms by which it provides its function for the rest of the plant. Ultimately, this information can be used to selectively manipulate this cell type in a controlled manner to achieve crop improvement. In this study, we show that Brachypodium distachyon is a useful model system for stemmore » pith parenchyma biology. Brachypodium can be grown under condition where it resembles the growth patterns of important crops in that it produces large amounts of stem material with the lower leaves senescing and with significant stores of photosynthate located in the stem parenchyma cell types. We further characterize stem plastid morphology as a function of tissue types, as this organelle is central for a number of metabolic pathways, and quantify gene expression for the four main classes of starch biosynthetic genes. Notably, we find several of these genes differentially regulated between stem and leaf. Furthermore, these studies show, consistent with other grasses, that the stem functions as a specialized storage compartment in Brachypodium.« less

  9. Mechanical Stimulation of Stem Cells Using Cyclic Uniaxial Strain

    PubMed Central

    Kurpinski, Kyle; Li, Song

    2007-01-01

    The role of mechanical forces in the development and maintenance of biological tissues is well documented, including several mechanically regulated phenomena such as bone remodeling, muscular hypertrophy, and smooth muscle cell plasticity. However, the forces involved are often extremely complex and difficult to monitor and control in vivo. To better investigate the effects of mechanical forces on cells, we have developed an in vitro method for applying uniaxial cyclic tensile strain to adherent cells cultured on elastic membranes. This method utilizes a custom-designed bioreactor with a motorized cam-rotor system to apply the desired force. Here we present a step-by-step video protocol demonstrating how to assemble the various components of each "stretch chamber", including, in this case, a silicone membrane with micropatterned topography to orient the cells with the direction of the strain. We also describe procedures for sterilizing the chambers, seeding cells onto the membrane, latching the chamber into the bioreactor, and adjusting the mechanical parameters (i.e. magnitude and rate of strain). The procedures outlined in this particular protocol are specific for seeding human mesenchymal stem cells onto silicone membranes with 10 µm wide channels oriented parallel to the direction of strain. However, the methods and materials presented in this system are flexible enough to accommodate a number of variations on this theme: strain rate, magnitude, duration, cell type, membrane topography, membrane coating, etc. can all be tailored to the desired application or outcome. This is a robust method for investigating the effects of uniaxial tensile strain applied to cells in vitro. PMID:18997890

  10. Suppressive effects of fisetin on mice T lymphocytes in vitro and in vivo.

    PubMed

    Song, Bocui; Guan, Shuang; Lu, Jing; Chen, Zhibao; Huang, Guoren; Li, Gen; Xiong, Ying; Zhang, Shuang; Yue, Zhanpeng; Deng, Xuming

    2013-11-01

    Most of the immunosuppressive drugs have satisfactory therapeutic effects on organ transplantation and autoimmune disease. However, their clinical application is limited by side effects. Therefore, new and safe immunosuppressive drugs against acute and chronic rejections are eagerly awaited. Fisetin, a flavonoid present in various types of vegetables and fruits, has few side effects and low level of toxicity, which would be a desirable clinical feature. In the present study, we investigated the immunosuppressive effects and underlying mechanisms of fisetin against T-cell activation in vitro and in vivo. We measured the effect of fisetin on T-lymphocyte proliferation, T-cell subsets, cell cycle progression, cytokine production, and nuclear factor activation in vitro, as well as its influence on T cell-mediated delayed-type hypersensitivity reaction in vivo. In vitro, the results showed that fisetin significantly suppressed mouse splenocytes proliferation, Th1 and Th2 cytokine production, cell cycle and the ratio of CD4(+)/CD8(+) T cells. Furthermore, fisetin exerts an immunosuppressive effect in mouse T lymphocytes through the suppression of nuclear factor kappa B activation and nuclear factor of activated T cells signaling in a dose-dependent manner. In vivo, fisetin treatment also significantly inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reactions in mice. Fisetin had strong immunosuppressive activity in vitro and in vivo, suggesting a potential role for fisetin as an immunosuppressive agent. Copyright © 2013. Published by Elsevier Inc.

  11. Quercetin targets the interaction of calcineurin with LxVP-type motifs in immunosuppression

    PubMed Central

    Zhao, Yane; Zhang, Jin; Shi, Xiaoyu; Li, Jing; Wang, Rui; Song, Ruiwen; Wei, Qun; Cai, Huaibin; Luo, Jing

    2016-01-01

    Calcineurin (CN) is a unique calcium/calmodulin (CaM)-activated serine/threonine phosphatase. To perform its diverse biological functions, CN communicates with many substrates and other proteins. In the physiological activation of T cells, CN acts through transcriptional factors belonging to the NFAT family and other transcriptional effectors. The classic immunosuppressive drug cyclosporin A (CsA) can bind to cyclophilin (CyP) and compete with CN for the NFAT LxVP motif. CsA has debilitating side effects, including nephrotoxicity, hypertension and tremor. It is desirable to develop alternative immunosuppressive agents. To this end, we first tested the interactions between CN and the LxVP-type substrates, including endogenous regulators of calcineurin (RCAN1) and NFAT. Interestingly, we found that quercetin, the primary dietary flavonol, can inhibit the activity of CN and significantly disrupt the associations between CN and its LxVP-type substrates. We then validated the inhibitory effects of quercetin on the CN-NFAT interactions in cell-based assays. Further, quercetin also shows dose-dependent suppression of cytokine gene expression in mouse spleen cells. These data raise the possibility that the interactions of CN with its LxVP-type substrates are potential targets for immunosuppressive agents. PMID:27109380

  12. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  13. Foam generator and viscometer apparatus and process

    DOEpatents

    Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.

    2004-10-26

    An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.

  14. Electrochemical cell operation and system

    DOEpatents

    Maru, Hansraj C.

    1980-03-11

    Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.

  15. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    PubMed

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  16. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts

    PubMed Central

    Bernstein, Diana L.; Le Lay, John E.; Ruano, Elena G.; Kaestner, Klaus H.

    2015-01-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator–like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970

  17. Advances in Microfluidic Platforms for Analyzing and Regulating Human Pluripotent Stem Cells

    PubMed Central

    Qian, Tongcheng; Shusta, Eric V.; Palecek, Sean P.

    2015-01-01

    Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications. PMID:26313850

  18. CD24 tracks divergent pluripotent states in mouse and human cells

    PubMed Central

    Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  19. Cellular genetic therapy.

    PubMed

    Del Vecchio, F; Filareto, A; Spitalieri, P; Sangiuolo, F; Novelli, G

    2005-01-01

    Cellular genetic therapy is the ultimate frontier for those pathologies that are consequent to a specific nonfunctional cellular type. A viable cure for there kinds of diseases is the replacement of sick cells with healthy ones, which can be obtained from the same patient or a different donor. In fact, structures can be corrected and strengthened with the introduction of undifferentiated cells within specific target tissues, where they will specialize into the desired cellular types. Furthermore, consequent to the recent results obtained with the transdifferentiation experiments, a process that allows the in vitro differentiation of embryonic and adult stem cells, it has also became clear that many advantages may be obtained from the use of stem cells to produce drugs, vaccines, and therapeutic molecules. Since stem cells can sustain lineage potentials, the capacity for differentiation, and better tolerance for the introduction of exogenous genes, they are also considered as feasible therapeutic vehicles for gene therapy. In fact, it is strongly believed that the combination of cellular genetic and gene therapy approaches will definitely allow the development of new therapeutic strategies as well as the production of totipotent cell lines to be used as experimental models for the cure of genetic disorders.

  20. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity.

    PubMed

    Mahameed, Mohamed; Tirosh, Boaz

    2017-11-01

    An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Generation of a Gaussia luciferase-expressing endotheliotropic cytomegalovirus for screening approaches and mutant analyses.

    PubMed

    Falk, Jessica J; Laib Sampaio, Kerstin; Stegmann, Cora; Lieber, Diana; Kropff, Barbara; Mach, Michael; Sinzger, Christian

    2016-09-01

    For many questions in human cytomegalovirus (HCMV) research, assays are desired that allow robust and fast quantification of infection efficiencies under high-throughput conditions. The secreted Gaussia luciferase has been demonstrated as a suitable reporter in the context of a fibroblast-adapted HCMV strain, which however is greatly restricted in the number of cell types to which it can be applied. We inserted the Gaussia luciferase expression cassette into the BAC-cloned virus strain TB40-BAC4, which displays the natural broad cell tropism of HCMV and hence allows application to screening approaches in a variety of cell types including fibroblasts, epithelial, and endothelial cells. Here, we applied the reporter virus TB40-BAC4-IE-GLuc to identify mouse hybridoma clones that preferentially neutralize infection of endothelial cells. In addition, as the Gaussia luciferase is secreted into culture supernatants from infected cells it allows kinetic analyses in living cultures. This can speed up and facilitate phenotypic characterization of BAC-cloned mutants. For example, we analyzed a UL74 stop-mutant of TB40-BAC4-IE-GLuc immediately after reconstitution in transfected cultures and found the increase of luciferase delayed and reduced as compared to wild type. Phenotypic monitoring directly in transfected cultures can minimize the risk of compensating mutations that might occur with extended passaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  3. Single Cell Assay for Analyzing Single Cell Exosome and Endocrine Secretion and Cancer Markers

    NASA Astrophysics Data System (ADS)

    Chiu, Yu-Jui

    To understand the inhomogeneity of cells in biological systems, there is a growing demand for the capability to characterize the properties of individual single cells. Since single cell studies require continuous monitoring of the cell behaviors instead of a snapshot test at a single time point, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and cannot provide, for appropriate cell types, proliferation of single cells and convenient, non-invasive tests of single cell behaviors from molecular markers. In this dissertation, I present a highly versatile single-cell assay that can accommodate different cellular types, enable easy and efficient single cell loading and culturing, and be suitable for the study of effects of in-vitro environmental factors in combination with drug screening. The salient features of the assay are the non-invasive collection and surveying of single cell secretions at different time points and massively parallel translocation of single cells by user defined criteria, producing very high compatibility to the downstream process such as single cell qPCR and sequencing. Above all, the acquired information is quantitative -- for example, one of the studies is measured by the number of exosomes each single cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single cell properties.

  4. KOH concentration effect on cycle life of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Lim, Hong S.; Verzwyvelt, S. A.

    1987-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  5. Fabrication of a multi-layer three-dimensional scaffold with controlled porous micro-architecture for application in small intestine tissue engineering.

    PubMed

    Knight, Toyin; Basu, Joydeep; Rivera, Elias A; Spencer, Thomas; Jain, Deepak; Payne, Richard

    2013-01-01

    Various methods can be employed to fabricate scaffolds with characteristics that promote cell-to-material interaction. This report examines the use of a novel technique combining compression molding with particulate leaching to create a unique multi-layered scaffold with differential porosities and pore sizes that provides a high level of control to influence cell behavior. These cell behavioral responses were primarily characterized by bridging and penetration of two cell types (epithelial and smooth muscle cells) on the scaffold in vitro. Larger pore sizes corresponded to an increase in pore penetration, and a decrease in pore bridging. In addition, smaller cells (epithelial) penetrated further into the scaffold than larger cells (smooth muscle cells). In vivo evaluation of a multi-layered scaffold was well tolerated for 75 d in a rodent model. This data shows the ability of the components of multi-layered scaffolds to influence cell behavior, and demonstrates the potential for these scaffolds to promote desired tissue outcomes in vivo.

  6. Functionalization of protein-based nanocages for drug delivery applications.

    PubMed

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  7. Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications.

    PubMed

    Burks, Scott R; Ziadloo, Ali; Kim, Saejeong J; Nguyen, Ben A; Frank, Joseph A

    2013-11-01

    Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases. © AlphaMed Press.

  8. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes

    PubMed Central

    Wu, Yun; Ma, Junyu; Woods, Parker S.; Chesarino, Nicholas M.; Liu, Chang; Lee, L. James; Nana-Sinkam, Serge P.; Davis, Ian C.

    2015-01-01

    Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with >70% specificity in vivo, were retained within ATII cells for at least 48 hours, and did not accumulate at significant levels in other lung cell types or viscera. 48 hours after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for treatment of pulmonary diseases that result primarily from ATII cell dysfunction. PMID:25687308

  9. An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs.

    PubMed

    Leferink, Anne M; Reis, Diogo Santos; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2018-04-11

    When tissue engineering strategies rely on the combination of three-dimensional (3D) polymeric or ceramic scaffolds with cells to culture implantable tissue constructs in vitro, it is desirable to monitor tissue growth and cell fate to be able to more rationally predict the quality and success of the construct upon implantation. Such a 3D construct is often referred to as a 'black-box' since the properties of the scaffolds material limit the applicability of most imaging modalities to assess important construct parameters. These parameters include the number of cells, the amount and type of tissue formed and the distribution of cells and tissue throughout the construct. Immunolabeling enables the spatial and temporal identification of multiple tissue types within one scaffold without the need to sacrifice the construct. In this report, we concisely review the applicability of antibodies (Abs) and their conjugation chemistries in tissue engineered constructs. With some preliminary experiments, we show an efficient conjugation strategy to couple extracellular matrix Abs to fluorophores. The conjugated probes proved to be effective in determining the presence of collagen type I and type II on electrospun and additive manufactured 3D scaffolds seeded with adult human bone marrow derived mesenchymal stromal cells. The conjugation chemistry applied in our proof of concept study is expected to be applicable in the coupling of any other fluorophore or particle to the Abs. This could ultimately lead to a library of probes to permit high-contrast imaging by several imaging modalities.

  10. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoliang; Ding, Shiyou

    Searching for alternative and clean energy is one of the most important tasks today. Our research aimed at finding the best living condition for certain types of oleaginous yeasts for efficient lipid production. We found that R. glutinis yeast cells has great variability in lipid production among cells while Y. lipolytica cells has similar oil production ability. We found some individual cells shows much higher level of oil production. In order to further study these cases, we employed a label-free chemical sensitive microscopy method call stimulated Raman scattering (SRS). With SRS, we could measure the lipid content in each cell.more » We combined SRS microscopy with microfluidic device so that we can isolate cells with high fat content. We also developed SRS imaging technique that has higher imaging speed, which is highly desirable for high throughput cell screening and sorting. Since these cells has similar genome, it must be the transcriptome caused their difference in oil production. We developed a single cell transcriptome sequencing method to study which genes are responsible for elevated oil production. These methods that are developed for this project can easily be applied for many other areas of research. For example, the single transcriptome can be used to study the transcriptomes of other cell types. The high-speed SRS microscopy techniques can be used to speed up chemical imaging for lablefree histology or imaging distribution of chemicals in tissues of live mice or in humans. The developed microfluidic platform can be used to sort other type of cells, e.g., white blood cells for diagnosis of cancer or other blood diseases.« less

  11. Amorphous silicon cell array powered solar tracking apparatus

    DOEpatents

    Hanak, Joseph J.

    1985-01-01

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  12. Nanoporous delafossite CuAlO2 from inorganic/polymer double gels: a desirable high-surface-area p-type transparent electrode material.

    PubMed

    Das, Barun; Renaud, Adèle; Volosin, Alex M; Yu, Lei; Newman, Nathan; Seo, Dong-Kyun

    2015-02-02

    Nanoporous structures of a p-type semiconductor, delafossite CuAlO(2), with a high crystallinity have been fabricated through an inorganic/polymer double-gel process and characterized for the first time via Mott-Schottky measurements. The effect of the precursor concentration, calcination temperature, and atmosphere were examined to achieve high crystallinity and photoelectrochemical properties while maximizing the porosity. The optical properties of the nanoporous CuAlO(2) are in good agreement with the literature with an optical band gap of 3.9 eV, and the observed high electrical conductivity and hole concentrations conform to highly crystalline and well-sintered nanoparticles observed in the product. The Mott-Schottky plot from the electrochemical impedance spectroscopy studies indicates a flat-band potential of 0.49 V versus Ag/AgCl. It is concluded that CuAlO(2) exhibits band energies very close to those of NiO but with electrical properties very desirable in the fabrication of photoelectrochemical devices including dye-sensitized solar cells.

  13. Nanoporous Delafossite CuAlO 2 from Inorganic/Polymer Double Gels: A Desirable High-Surface-Area p-Type Transparent Electrode Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Barun; Renaud, Adèle; Volosin, Alex M.

    2015-02-02

    Nanoporous structures of a p-type semiconductor, delafossite CuAlO2, with a high crystallinity have been fabricated through an inorganic/polymer double-gel process and characterized for the first time via Mott–Schottky measurements. The effect of the precursor concentration, calcination temperature, and atmosphere were examined to achieve high crystallinity and photoelectrochemical properties while maximizing the porosity. The optical properties of the nanoporous CuAlO2 are in good agreement with the literature with an optical band gap of 3.9 eV, and the observed high electrical conductivity and hole concentrations conform to highly crystalline and well-sintered nanoparticles observed in the product. The Mott–Schottky plot from the electrochemicalmore » impedance spectroscopy studies indicates a flat-band potential of 0.49 V versus Ag/AgCl. It is concluded that CuAlO2 exhibits band energies very close to those of NiO but with electrical properties very desirable in the fabrication of photoelectrochemical devices including dye-sensitized solar cells.« less

  14. Nanoporous Delafossite CuAlO 2 from Inorganic/Polymer Double Gels: A Desirable High-Surface-Area p-Type Transparent Electrode Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Barun; Renaud, Adèle; Volosin, Alex M.

    2015-02-02

    Nanoporous structures of a p-type semiconductor, delafossite CuAlO 2, with a high crystallinity have been fabricated through an inorganic/polymer double-gel process and characterized for the first time via Mott–Schottky measurements. The effect of the precursor concentration, calcination temperature, and atmosphere were examined to achieve high crystallinity and photoelectrochemical properties while maximizing the porosity. The optical properties of the nanoporous CuAlO 2 are in good agreement with the literature with an optical band gap of 3.9 eV, and the observed high electrical conductivity and hole concentrations conform to highly crystalline and well-sintered nanoparticles observed in the product. The Mott–Schottky plot frommore » the electrochemical impedance spectroscopy studies indicates a flat-band potential of 0.49 V versus Ag/AgCl. It is concluded that CuAlO 2 exhibits band energies very close to those of NiO but with electrical properties very desirable in the fabrication of photoelectrochemical devices including dye-sensitized solar cells.« less

  15. A sealable ultrathin window sample cell for the study of liquids by means of soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Grötzsch, D.; Streeck, C.; Nietzold, C.; Malzer, W.; Mantouvalou, I.; Nutsch, A.; Dietrich, P.; Unger, W.; Beckhoff, B.; Kanngießer, B.

    2017-12-01

    A new sample cell concept for the analysis of liquids or solid-liquid interfaces using soft X-ray spectroscopy is presented, which enables the complete sealing of the cell as well as the transport into vacuum via, for example, a load-lock system. The cell uses pressure monitoring and active as well as passive pressure regulation systems, thereby facilitating the full control over the pressure during filling, sealing, evacuation, and measurement. The cell design and sample preparation as well as the crucial sealing procedure are explained in detail. As a first proof-of-principle experiment, successful nitrogen K-edge fluorescence yield near-edge X-ray absorption fine structure experiments of a biomolecular solution are presented. For this purpose, it is shown that the careful evaluation of all involved parameters, such as window type or photon flux, is desirable for optimizing the experimental result.

  16. In vivo biodistribution and behavior of CdTe/ZnS quantum dots.

    PubMed

    Zhao, Yan; Zhang, Yue; Qin, Gaofeng; Cheng, Jinjun; Zeng, Wenhao; Liu, Shuchen; Kong, Hui; Wang, Xueqian; Wang, Qingguo; Qu, Huihua

    2017-01-01

    The unique features of quantum dots (QDs) make them desirable fluorescent tags for cell and developmental biology applications that require long-term, multitarget, and highly sensitive imaging. In this work, we imaged fluorescent cadmium telluride/zinc sulfide (CdTe/ZnS) QDs in organs, tissues, and cells, and analyzed the mechanism of their lymphatic uptake and cellular distribution. We observed that the fluorescent CdTe/ZnS QDs were internalized by lymph nodes in four cell lines from different tissue sources. We obtained the fluorescence intensity-QD concentrations curve by quantitative analysis. Our results demonstrate that cells containing QDs can complete mitosis normally and that distribution of QDs was uniform across cell types and involved the vesicular transport system, including the endoplasmic reticulum. This capacity for CdTe/ZnS QD targeting provides insights into the applicability and limitations of fluorescent QDs for imaging biological specimens.

  17. Identification of Skeletal Muscle Satellite Cells by Immunofluorescence with Pax7 and Laminin Antibodies.

    PubMed

    Feng, Xuesong; Naz, Faiza; Juan, Aster H; Dell'Orso, Stefania; Sartorelli, Vittorio

    2018-04-19

    Immunofluorescence is an effective method that helps to identify different cell types on tissue sections. In order to study the desired cell population, antibodies for specific cell markers are applied on tissue sections. In adult skeletal muscle, satellite cells (SCs) are stem cells that contribute to muscle repair and regeneration. Therefore, it is important to visualize and trace the satellite cell population under different physiological conditions. In resting skeletal muscle, SCs reside between the basal lamina and myofiber plasma membrane. A commonly used marker for identifying SCs on the myofibers or in cell culture is the paired box protein Pax7. In this article, an optimized Pax7 immunofluorescence protocol on skeletal muscle sections is presented that minimizes non-specific staining and background. Another antibody that recognizes a protein (laminin) of the basal lamina was also added to help identify SCs. Similar protocols can also be used to perform double or triple labeling with Pax7 and antibodies for additional proteins of interest.

  18. Method for delivery of small molecules and proteins across the cell wall of algae using molecular transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geihe, Erika; Trantow, Brian; Wender, Paul

    The introduction of tools to study, control or expand the inner-workings of algae has been slow to develop. Provided are embodiments of a molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing molecular cargos into algal cells. The methods of the disclosure have been shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae, including Neochloris oleoabundans and Scenedesmus dimorphus, thus providing a new and versatile tool for algal research and modification. The method of delivering a cargo compound to an algal cell comprisesmore » contacting an algal cell with a guanidinium-rich delivery vehicle comprising a guanidinium-rich molecular transporter (GR-MoTr) linked to a cargo compound desired to be delivered to the algal cell, whereby the guanidinium-rich molecular transporter can traverse the algal cell wall, thereby delivering the cargo compound to the algal cell.« less

  19. Phenotypic and genomic analysis of serotype 3 Sabin poliovirus vaccine produced in MRC-5 cell substrate.

    PubMed

    Alirezaie, Behnam; Taqavian, Mohammad; Aghaiypour, Khosrow; Esna-Ashari, Fatemeh; Shafyi, Abbas

    2011-05-01

    The cell substrate has a pivotal role in live virus vaccines production. It is necessary to evaluate the effects of the cell substrate on the properties of the propagated viruses, especially in the case of viruses which are unstable genetically such as polioviruses, by monitoring the molecular and phenotypical characteristics of harvested viruses. To investigate the presence/absence of mutation(s), the near full-length genomic sequence of different harvests of the type 3 Sabin strain of poliovirus propagated in MRC-5 cells were determined. The sequences were compared with genomic sequences of different virus seeds, vaccines, and OPV-like isolates. Nearly complete genomic sequencing results, however, revealed no detectable mutations throughout the genome RNA-plaque purified (RSO)-derived monopool of type 3 OPVs manufactured in MRC-5. Thirty-six years of experience in OPV production, trend analysis, and vaccine surveillance also suggest that: (i) different monopools of serotype 3 OPV produced in MRC-5 retained their phenotypic characteristics (temperature sensitivity and neuroattenuation), (ii) MRC-5 cells support the production of acceptable virus yields, (iii) OPV replicated in the MRC-5 cell substrate is a highly efficient and safe vaccine. These results confirm previous reports that MRC-5 is a desirable cell substrate for the production of OPV. Copyright © 2011 Wiley-Liss, Inc.

  20. Lentiviral vectors in cancer immunotherapy.

    PubMed

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  1. Chemicals as the Sole Transformers of Cell Fate.

    PubMed

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  2. Critical Determinants of Uptake and Translocation of Nanoparticles by the Human Pulmonary Alveolar Epithelium

    PubMed Central

    2015-01-01

    The ability to manipulate the size and surface properties of nanomaterials makes them a promising vector for improving drug delivery and efficacy. Inhalation is a desirable route of administration as nanomaterials preferentially deposit in the alveolar region, a large surface area for drug absorption. However, as yet, the mechanisms by which particles translocate across the alveolar epithelial layer are poorly understood. Here we show that human alveolar type I epithelial cells internalize nanoparticles, whereas alveolar type II epithelial cells do not, and that nanoparticles translocate across the epithelial monolayer but are unable to penetrate the tight junctions between cells, ruling out paracellular translocation. Furthermore, using siRNA, we demonstrate that 50 nm nanoparticles enter largely by passive diffusion and are found in the cytoplasm, whereas 100 nm nanoparticles enter primarily via clathrin- and also caveolin-mediated endocytosis and are found in endosomes. Functionalization of nanoparticles increases their uptake and enhances binding of surfactant which further promotes uptake. Thus, we demonstrate that uptake and translocation across the pulmonary epithelium is controlled by alveolar type I epithelial cells, and furthermore, we highlight a number of factors that should be considered when designing new nanomedicines in order to improve drug delivery to the lung. PMID:25360809

  3. Epigenetic rejuvenation.

    PubMed

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  4. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells.

    PubMed

    García-Vallejo, Juan J; Ambrosini, Martino; Overbeek, Annemieke; van Riel, Wilhelmina E; Bloem, Karien; Unger, Wendy W J; Chiodo, Fabrizio; Bolscher, Jan G; Nazmi, Kamran; Kalay, Hakan; van Kooyk, Yvette

    2013-04-01

    Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells in order to achieve an appropriate uptake, processing, and presentation to Ag-specific T cells. C-type lectins have shown to be ideal receptors for the targeting of antigens to dendritic cells and allow the use of their natural ligands - glycans - instead of antibodies. Amongst them, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is an interesting candidate due to its biological properties and the availability of its natural carbohydrate ligands. Using Le(b)-conjugated poly(amido amine) (PAMAM) dendrimers we aimed to characterize the optimal level of multivalency necessary to achieve the desired internalization, lysosomal delivery, Ag-specific T cell proliferation, and cytokine response. Increasing DC-SIGN ligand multivalency directly translated in an enhanced binding, which might also be interesting for blocking purposes. Internalization, routing to lysosomal compartments, antigen presentation and cytokine response could be optimally achieved with glycopeptide dendrimers carrying 16-32 glycan units. This report provides the basis for the design of efficient targeting of peptide antigens for the immunotherapy of cancer, autoimmunity and infectious diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Tadahiro; PRESTO-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ueda, Kouta

    We have developed an improved, windowed type environmental-cell (E-cell) transmission electron microscope (TEM) for in situ observation of gas-solid interactions, such as catalytic reactions at atmospheric pressure. Our E-cell TEM includes a compact E-cell specimen holder with mechanical stability, resulting in smoother introduction of the desired gases compared with previous E-cell TEMs. In addition, the gas control unit was simplified by omitting the pressure control function of the TEM pre-evacuation chamber. This simplification was due to the successful development of remarkably tough thin carbon films as the window material. These films, with a thickness of <10 nm, were found tomore » withstand pressure differences >2 atm. Appropriate arrangement of the specimen position inside the E-cell provided quantitatively analyzable TEM images, with no disturbances caused by the windowed films. As an application, we used this E-cell TEM to observe the dynamic shape change in a catalytic gold nanoparticle supported on TiO{sub 2} during the oxidation of CO gas.« less

  6. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  7. 41 CFR 102-75.450 - What type of property is suitable or desirable for use as a historic monument?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What type of property is... Historic Monuments § 102-75.450 What type of property is suitable or desirable for use as a historic... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  8. 41 CFR 102-75.450 - What type of property is suitable or desirable for use as a historic monument?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What type of property is... Historic Monuments § 102-75.450 What type of property is suitable or desirable for use as a historic... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  9. 41 CFR 102-75.450 - What type of property is suitable or desirable for use as a historic monument?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What type of property is... Historic Monuments § 102-75.450 What type of property is suitable or desirable for use as a historic... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  10. 41 CFR 102-75.450 - What type of property is suitable or desirable for use as a historic monument?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What type of property is... Historic Monuments § 102-75.450 What type of property is suitable or desirable for use as a historic... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  11. 41 CFR 102-75.450 - What type of property is suitable or desirable for use as a historic monument?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What type of property is... Historic Monuments § 102-75.450 What type of property is suitable or desirable for use as a historic... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  12. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  13. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Eppich, Henry M. (Inventor); Mangano, Joseph A. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  14. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  15. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function.

    PubMed

    Steeghs, Liana; van Vliet, Sandra J; Uronen-Hansson, Heli; van Mourik, Andries; Engering, Anneke; Sanchez-Hernandez, Martha; Klein, Nigel; Callard, Robin; van Putten, Jos P M; van der Ley, Peter; van Kooyk, Yvette; van de Winkel, Jan G J

    2006-02-01

    Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.

  16. Cloning cattle: the methods in the madness.

    PubMed

    Oback, Björn; Wells, David N

    2007-01-01

    Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven--in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals-researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.

  17. Do rational numbers play a role in selection for stochasticity?

    PubMed

    Sinclair, Robert

    2014-01-01

    When a given tissue must, to be able to perform its various functions, consist of different cell types, each fairly evenly distributed and with specific probabilities, then there are at least two quite different developmental mechanisms which might achieve the desired result. Let us begin with the case of two cell types, and first imagine that the proportion of numbers of cells of these types should be 1:3. Clearly, a regular structure composed of repeating units of four cells, three of which are of the dominant type, will easily satisfy the requirements, and a deterministic mechanism may lend itself to the task. What if, however, the proportion should be 10:33? The same simple, deterministic approach would now require a structure of repeating units of 43 cells, and this certainly seems to require a far more complex and potentially prohibitive deterministic developmental program. Stochastic development, replacing regular units with random distributions of given densities, might not be evolutionarily competitive in comparison with the deterministic program when the proportions should be 1:3, but it has the property that, whatever developmental mechanism underlies it, its complexity does not need to depend very much upon target cell densities at all. We are immediately led to speculate that proportions which correspond to fractions with large denominators (such as the 33 of 10/33) may be more easily achieved by stochastic developmental programs than by deterministic ones, and this is the core of our thesis: that stochastic development may tend to occur more often in cases involving rational numbers with large denominators. To be imprecise: that simple rationality and determinism belong together, as do irrationality and randomness.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriello, Nicholas M.; Douglas, Erik S.; Mathies, Richard A.

    A microchip that performs directed capture and chemical activation of surface-modified single-cells has been developed. The cell-capture system is comprised of interdigitated gold electrodes microfabricated on a glass substrate within PDMS channels. The cell surface is labeled with thiol functional groups using endogenous RGD receptors and adhesion to exposed gold pads on the electrodes is directed by applying a driving electric potential. Multiple cell types can thus be sequentially and selectively captured on desired electrodes. Single-cell capture efficiency is optimized by varying the duration of field application. Maximum single-cell capture is attained for the 10 min trial, with 63+-9 percentmore » (n=30) of the electrode pad rows having a single cell. In activation studies, single M1WT3 CHO cells loaded with the calcium-sensitive dye fluo-4 AM were captured; exposure to the muscarinic agonist carbachol increased the fluorescence to 220+-74percent (n=79) of the original intensity. These results demonstrate the ability to direct the adhesion of selected living single cells on electrodes in a microfluidic device and to analyze their response to chemical stimuli.« less

  19. Mast cell-mediated and associated disorders in pregnancy: a risky game with an uncertain outcome?

    PubMed

    Woidacki, Katja; Zenclussen, Ana Claudia; Siebenhaar, Frank

    2014-01-01

    During pregnancy, the maternal organism is under the influence of tremendous endocrine as well as immunological changes as an adaptation to the implanted and developing fetus. In most cases, the maternal adaptations to pregnancy ensure both, the protection against harmful pathogens and the tolerance toward the growing semi-allogeneic fetus. However, under certain circumstances the unique hormonal milieu during pregnancy is causative of a shift into an unfavorable direction. Of particular importance are cellular disorders previous to pregnancy that involve cell types known for their susceptibility to hormones. One interesting cell type is the mast cell (MC), one of the key figures in allergic disorders. While physiological numbers of MCs were shown to positively influence pregnancy outcome, at least in mouse models, uncontrolled augmentations in quantity, and/or activation can lead to pregnancy complications. Women that have the desire of getting pregnant and been diagnosed with MC mediated disorders such as urticaria and mastocytosis or chronic inflammatory diseases in which MCs are involved, including atopic dermatitis, asthma, or psoriasis, may benefit from specialized medical assistance to ensure a positive pregnancy outcome. In the present review, we address the course of pregnancy in women affected by MC mediated or associated disorders.

  20. Nanothin Coculture Membranes with Tunable Pore Architecture and Thermoresponsive Functionality for Transfer-Printable Stem Cell-Derived Cardiac Sheets.

    PubMed

    Ryu, Seungmi; Yoo, Jin; Jang, Yeongseon; Han, Jin; Yu, Seung Jung; Park, Jooyeon; Jung, Seon Yeop; Ahn, Kyung Hyun; Im, Sung Gap; Char, Kookheon; Kim, Byung-Soo

    2015-10-27

    Coculturing stem cells with the desired cell type is an effective method to promote the differentiation of stem cells. The features of the membrane used for coculturing are crucial to achieving the best outcome. Not only should the membrane act as a physical barrier that prevents the mixing of the cocultured cell populations, but it should also allow effective interactions between the cells. Unfortunately, conventional membranes used for coculture do not sufficiently meet these requirements. In addition, cell harvesting using proteolytic enzymes following coculture impairs cell viability and the extracellular matrix (ECM) produced by the cultured cells. To overcome these limitations, we developed nanothin and highly porous (NTHP) membranes, which are ∼20-fold thinner and ∼25-fold more porous than the conventional coculture membranes. The tunable pore size of NTHP membranes at the nanoscale level was found crucial for the formation of direct gap junctions-mediated contacts between the cocultured cells. Differentiation of the cocultured stem cells was dramatically enhanced with the pore size-customized NTHP membrane system compared to conventional coculture methods. This was likely due to effective physical contacts between the cocultured cells and the fast diffusion of bioactive molecules across the membrane. Also, the thermoresponsive functionality of the NTHP membranes enabled the efficient generation of homogeneous, ECM-preserved, highly viable, and transfer-printable sheets of cardiomyogenically differentiated cells. The coculture platform developed in this study would be effective for producing various types of therapeutic multilayered cell sheets that can be differentiated from stem cells.

  1. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, M. P. Ramachandra

    1983-08-23

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  2. The transcriptional regulation of pluripotency

    PubMed Central

    Yeo, Jia-Chi; Ng, Huck-Hui

    2013-01-01

    The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities. Indeed, the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool to study embryonic development, but also offers great therapeutic potential within the field of regenerative medicine. However, it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentiation into the desired cell type very difficult. Therefore, in order to harness ESCs for clinical applications, a detailed understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is necessary. In this respect, through a variety of transcriptomic approaches, ESC pluripotency has been found to be regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as a key factor in modulating the ESC transcriptome. Here in this review, we summarize our current understanding of the transcriptional regulatory network in ESCs, discuss how the control of various signalling pathways could influence pluripotency, and provide a future outlook of ESC research. PMID:23229513

  3. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, Ramachandra M. P.; Knaster, Mark B.

    1984-01-10

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  4. Effect of fat types on the structural and textural properties of dough and semi-sweet biscuit.

    PubMed

    Mamat, Hasmadi; Hill, Sandra E

    2014-09-01

    Fat is an important ingredient in baking products and it plays many roles in providing desirable textural properties of baking products, particularly biscuit. In this study, the effect of fat types on dough rheological properties and quality of semi-sweet biscuit (rich tea type) were investigated using various techniques. Texture profile and extensibility analysis were used to study the dough rheology, while three-point bend test and scanning electron microscopy were used to analyse the textural characteristics of final product. TPA results showed that the type of fat significantly influenced dough textural properties. Biscuit produced with higher solid fat oil showed higher breaking force but this was not significantly different when evaluated by sensory panel. Scanning electron microscopy showed that biscuit produced with palm mid-fraction had an open internal microstructure and heterogeneous air cells as compared to other samples.

  5. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    PubMed

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  6. Love and hooking up in the new millennium: communication technology and relationships among urban African American and Puerto Rican young adults.

    PubMed

    Bergdall, Anna R; Kraft, Joan Marie; Andes, Karen; Carter, Marion; Hatfield-Timajchy, Kendra; Hock-Long, Linda

    2012-01-01

    Communication technology is a central feature of young people's lives, but its role in romantic and sexual relationships has not been thoroughly examined. This article describes how young adults use communication technology for partnering across relationship stages (formation, maintenance, and dissolution) and types (serious/casual), and proposes implications of usage in relationships. This study analyzed qualitative data from a five-week, prospective, coital diary method with related debriefing interviews (N = 70) of African American and Puerto Rican men and women aged 18 to 25 years in Hartford and Philadelphia. Cell phones, including calls, text messaging, and mobile Internet, were the most common forms of communication technology used for partnering goals. Participants reported using cell phones to pursue partnering goals across all relationship stages, including formation (meeting, screening, and getting to know new partners), maintaining existing relationships, and breaking up. Cell phone uses depended on the type of relationship (serious/casual) and the participants' intentions and desires. Results indicated that cell phones are an important element of communication among young adults in romantic and sexual relationships. Specific features of cell phone communication shape the process and context of partnering. Future research should explore emerging communication technologies and implications for psychosocial development, dating violence, and sexual behavior.

  7. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies.

    PubMed

    Clement, Mathew; Pearson, James A; Gras, Stephanie; van den Berg, Hugo A; Lissina, Anya; Llewellyn-Lacey, Sian; Willis, Mark D; Dockree, Tamsin; McLaren, James E; Ekeruche-Makinde, Julia; Gostick, Emma; Robertson, Neil P; Rossjohn, Jamie; Burrows, Scott R; Price, David A; Wong, F Susan; Peakman, Mark; Skowera, Ania; Wooldridge, Linda

    2016-10-17

    CD8 + T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8 + T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8 + T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8 + T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, "blocking" anti-CD8 antibodies can suppress autoreactive CD8 + T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8 + T-cell compartment.

  8. In vitro effects of direct current electric fields on adipose-derived stromal cells.

    PubMed

    Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B

    2010-06-18

    Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Response of single junction GaAs/GaAs and GaAs/Ge solar cells to multiple doses of 1 MeV electrons

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Szedon, J. R.; Bartko, J.; Chung, M. A.

    1989-01-01

    A comparison of the radiation tolerance of MOCVD-grown GaAs cells and GaAs/Ge cells was undertaken using 1 MeV electrons. The GaAs/Ge cells are somewhat more tolerant of 1 MeV electron irradiation and more responsive to annealing than are the GaAs/GaAs cells examined in this study. However, both types of cells suffer a greater degradation in efficiency than has been observed in other recent studies. The reason for this is not certain, but it may be associated with an emitter thickness which appears to be greater than desired. The deep level transient spectroscopy (DLTS) spectra following irradiation are not significantly different for the GaAs/Ge and the GaAs/GaAs cells, with each having just two peaks. The annealing behavior of these peaks is also similar in the two samples examined. It appears that no penalty in radiation tolerance, and perhaps some benefit, is associated with fabricating MOCVD GaAs cells on Ge substrates rather than GaAs substrates.

  10. Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders.

    PubMed

    Mohammadi, Alireza; Maleki-Jamshid, Ali; Sanooghi, Davood; Milan, Peiman Brouki; Rahmani, Arash; Sefat, Farshid; Shahpasand, Koorosh; Soleimani, Mansoureh; Bakhtiari, Mehrdad; Belali, Rafie; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Perry, George; Mozafari, Masoud

    2018-03-16

    A neurological disorder is any disorder or abnormality in the nervous system. Among different neurological disorders, Alzheimer's disease (AD) is recognized as the sixth leading cause of death globally. Considerable research has been conducted to find pioneer treatments for this devastating disorder among which cell therapy has attracted remarkable attentions over the last decade. Up to now, targeted differentiation into specific desirable cell types has remained a major obstacle to clinical application of cell therapy. Also, potential risks including uncontrolled growth of stem cells could be disastrous. In our novel protocol, we used basal forebrain cholinergic progenitor cells (BFCN) derived from human chorion-derived mesenchymal stem cells (hC-MSCs) which made it possible to obtain high-quality population of cholinergic neurons and in vivo in much shorter time period than previous established methods. Remarkably, the transplanted progenitors fully differentiated to cholinergic neurons which in turn integrated in higher cortical networks of host brains, resulting in significant improvement in cognitive assessments. This method may have profound implications in cell therapies for any other neurodegenerative disorders. Graphical Abstract ᅟ.

  11. Precision Metabolic Engineering: the Design of Responsive, Selective, and Controllable Metabolic Systems

    PubMed Central

    McNerney, Monica P.; Watstein, Daniel M.; Styczynski, Mark P.

    2015-01-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed “precision metabolic engineering,” involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. PMID:26189665

  12. Effects of Hydrogel Stiffness and Extracellular Compositions on Modulating Cartilage Regeneration by Mixed Populations of Stem Cells and Chondrocytes In Vivo.

    PubMed

    Wang, Tianyi; Lai, Janice H; Yang, Fan

    2016-12-01

    Cell-based therapies offer great promise for repairing cartilage. Previous strategies often involved using a single cell population such as stem cells or chondrocytes. A mixed cell population may offer an alternative strategy for cartilage regeneration while overcoming donor scarcity. We have recently reported that adipose-derived stem cells (ADSCs) can catalyze neocartilage formation by neonatal chondrocytes (NChons) when mixed co-cultured in 3D hydrogels in vitro. However, it remains unknown how the biochemical and mechanical cues of hydrogels modulate cartilage formation by mixed cell populations in vivo. The present study seeks to answer this question by co-encapsulating ADSCs and NChons in 3D hydrogels with tunable stiffness (∼1-33 kPa) and biochemical cues, and evaluating cartilage formation in vivo using a mouse subcutaneous model. Three extracellular matrix molecules were examined, including chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Our results showed that the type of biochemical cue played a dominant role in modulating neocartilage deposition. CS and HA enhanced type II collagen deposition, a desirable phenotype for articular cartilage. In contrast, HS promoted fibrocartilage phenotype with the upregulation of type I collagen and failed to retain newly deposited matrix. Hydrogels with stiffnesses of ∼7-33 kPa led to a comparable degree of neocartilage formation, and a minimal initial stiffness was required to retain hydrogel integrity over time. Results from this study highlight the important role of matrix cues in directing neocartilage formation, and they offer valuable insights in guiding optimal scaffold design for cartilage regeneration by using mixed cell populations.

  13. Production of medakafish chimeras from a stable embryonic stem cell line.

    PubMed

    Hong, Y; Winkler, C; Schartl, M

    1998-03-31

    Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology.

  14. Production of medakafish chimeras from a stable embryonic stem cell line

    PubMed Central

    Hong, Yunhan; Winkler, Christoph; Schartl, Manfred

    1998-01-01

    Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology. PMID:9520425

  15. Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer.

    PubMed

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua; Liu, Dewu; Wu, Zhenfang

    2013-10-01

    The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro-cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT.

  16. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    PubMed

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  17. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements.

    PubMed

    Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R

    1999-04-01

    The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.

  18. Metal-doped organic foam and method of making same. [Patent application

    DOEpatents

    Rinde, J.A.

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  19. Method of making metal-doped organic foam products

    DOEpatents

    Rinde, James A.

    1981-01-01

    Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  20. The cell monolayer trajectory from the system state point of view.

    PubMed

    Stys, Dalibor; Vanek, Jan; Nahlik, Tomas; Urban, Jan; Cisar, Petr

    2011-10-01

    Time-lapse microscopic movies are being increasingly utilized for understanding the derivation of cell states and predicting cell future. Often, fluorescence and other types of labeling are not available or desirable, and cell state-definitions based on observable structures must be used. We present the methodology for cell behavior recognition and prediction based on the short term cell recurrent behavior analysis. This approach has theoretical justification in non-linear dynamics theory. The methodology is based on the general stochastic systems theory which allows us to define the cell states, trajectory and the system itself. We introduce the usage of a novel image content descriptor based on information contribution (gain) by each image point for the cell state characterization as the first step. The linkage between the method and the general system theory is presented as a general frame for cell behavior interpretation. We also discuss extended cell description, system theory and methodology for future development. This methodology may be used for many practical purposes, ranging from advanced, medically relevant, precise cell culture diagnostics to very utilitarian cell recognition in a noisy or uneven image background. In addition, the results are theoretically justified.

  1. Cross-Priming of Naive Cd8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells

    PubMed Central

    Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina

    2000-01-01

    The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796

  2. Towards band structure and band offset engineering of monolayer Mo(1-x)W(x)S2 via Strain

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Ahmad, Rafia; Pandey, Tribhuwan; Rai, Amritesh; Feng, Simin; Yang, Jing; Lin, Zhong; Terrones, Mauricio; Banerjee, Sanjay K.; Singh, Abhishek K.; Akinwande, Deji; Lin, Jung-Fu

    2018-01-01

    Semiconducting transition metal dichalcogenides (TMDs) demonstrate a wide range of optoelectronic properties due to their diverse elemental compositions, and are promising candidates for next-generation optoelectronics and energy harvesting devices. However, effective band offset engineering is required to implement practical structures with desirable functionalities. Here, we explore the pressure-induced band structure evolution of monolayer WS2 and Mo0.5W0.5S2 using hydrostatic compressive strain applied in a diamond anvil cell (DAC) apparatus and theoretical calculations, in order to study the modulation of band structure and explore the possibility of band alignment engineering through different compositions. Higher W composition in Mo(1-x)W(x)S2 contributes to a greater pressure-sensitivity of direct band gap opening, with a maximum value of 54 meV GPa-1 in WS2. Interestingly, while the conduction band minima (CBMs) remains largely unchanged after the rapid gap increase, valence band maxima (VBMs) significantly rise above the initial values. It is suggested that the pressure- and composition-engineering could introduce a wide variety of band alignments including type I, type II, and type III heterojunctions, and allow to construct precise structures with desirable functionalities. No structural transition is observed during the pressure experiments, implying the pressure could provide selective modulation of band offset.

  3. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis.

    PubMed

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Zhou, Li; Guo, Junling; Hu, Xu; Xiao, Guoping; Zhou, Zhemin

    2015-09-21

    Bacillus subtilis is an all-important Gram-positive bacterium of valuable biotechnological utility that has been widely used to over-produce industrially and pharmaceutically relevant proteins. There are a variety of expression systems in terms of types of transcriptional patterns, among which the auto-inducible and growth-phase-dependent promoters are gaining increasing favor due to their inducer-independent feature, allowing for the potential to industrially scale-up. To expand the applicability of the auto-inducible expression system, a novel auto-regulatory expression system coupled with cell density was constructed and developed in B. subtilis using the quorum-sensing related promoter srfA (PsrfA). The promoter of the srf operon was used to construct an expression plasmid with the green fluorescent protein (GFP) downstream of PsrfA. The expression displayed a cell-density-dependent pattern in that GFP had a fairly low expression level at the early exponential stage and was highly expressed at the late exponential as well as the stationary stages. Moreover, the recombinant system had a similar expression pattern in wild-type B. subtilis 168, WB600, and WB800, as well as in B. subtilis 168 derivative strain 1681, with the complete deletion of PsrfA, indicating the excellent compatibility of this system. Noticeably, the expression strength of PsrfA was enhanced by optimizing the -10 and -35 core sequence by substituting both sequences with consensus sequences. Importantly, the expression pattern was successfully developed in an auto-regulatory cell-density coupling system by the simple addition of glucose in which GFP could not be strongly expressed until glucose was depleted, resulting in a greater amount of the GFP product and increased cell density. The expression system was eventually tested by the successful over-production of aminopeptidase to a desired level. The auto-regulatory cell density coupling system that is mediated by PsrfA is a novel expression system that has an expression pattern that is split between cell-growth and over-expression, leading to an increase in cell density and elevating the overall expression levels of heterologously expressed proteins. The broad applicability of this system and inducer-free expression property in B. subtilis facilitate the industrial scale-up and medical applications for the over-production of a variety of desired proteins.

  4. A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.

    PubMed

    Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen

    2016-04-08

    Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    PubMed Central

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems. PMID:23443975

  6. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  7. Design and simulation of a microfluidic device for acoustic cell separation.

    PubMed

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gene selection for the reconstruction of stem cell differentiation trees: a linear programming approach.

    PubMed

    Ghadie, Mohamed A; Japkowicz, Nathalie; Perkins, Theodore J

    2015-08-15

    Stem cell differentiation is largely guided by master transcriptional regulators, but it also depends on the expression of other types of genes, such as cell cycle genes, signaling genes, metabolic genes, trafficking genes, etc. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering can organize cell types into a tree, but in general this tree is different from the differentiation hierarchy itself. Given the differentiation hierarchy and gene expression data at each node, we construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming approach to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a weighted Euclidean metric that uses just 175 genes. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. We then report on the selected genes and their biological functions. Our approach offers a new way to identify genes that may have important roles in stem cell differentiation. tperkins@ohri.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. X-Ray Absorption Spectroscopy of Electrochemically Generated Species

    DTIC Science & Technology

    1993-02-01

    that is a modification of our previously reported design (17) with reticulated vitreous carbon (RVC) as the working electrode. A peristaltic pump...and a flowing analyte stream. A packed carbon -bed bulk electrolysis cell generates the desired metal oxidation state. Completa oxidation and...packed carbon -bed bulk electrolysis cell generates the desired metal oxidation state. The system consists of a closed loop of electrolyte solution

  10. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells.

    PubMed

    Appelt-Menzel, Antje; Cubukova, Alevtina; Günther, Katharina; Edenhofer, Frank; Piontek, Jörg; Krause, Gerd; Stüber, Tanja; Walles, Heike; Neuhaus, Winfried; Metzger, Marco

    2017-04-11

    In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm 2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Determination of lifetimes and recombination currents in p-n junction solar cells, diodes, and transistors

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.

    1981-01-01

    New methods are presented and illustrated that enable the accurate determination of the diffusion length of minority carriers in the narrow regions of a solar cell or a diode. Other methods now available are inaccurate for the desired case in which the width of the region is less than the diffusion length. Once the diffusion length is determined by the new methods, this result can be combined with measured dark I-V characteristics and with small-signal admittance characteristics to enable determination of the recombination currents in each quasi-neutral region of the cell - for example, in the emitter, low-doped base, and high-doped base regions of the BSF (back-surface-field) cell. This approach leads to values for the effective surface recombination velocity of the high-low junction forming the back-surface field of BSF cells or the high-low emitter junction of HLE cells. These methods are also applicable for measuring the minority-carrier lifetime in thin epitaxial layers grown on substrates with opposite conductivity type.

  12. Susceptibility of mouse minute virus to inactivation by heat in two cell culture media types.

    PubMed

    Schleh, Marc; Romanowski, Peter; Bhebe, Prince; Zhang, Li; Chinniah, Shivanthi; Lawrence, Bill; Bashiri, Houman; Gaduh, Asri; Rajurs, Viveka; Rasmussen, Brian; Chuck, Alice; Dehghani, Houman

    2009-01-01

    Viral contaminations of biopharmaceutical manufacturing cell culture facilities are a significant threat and one for which having a risk mitigation strategy is highly desirable. High temperature, short time (HTST) mammalian cell media treatment may potentially safeguard manufacturing facilities from such contaminations. HTST is thought to inactivate virions by denaturing proteins of the viral capsid, and there is evidence that HTST provides ample virucidal efficacy against nonenveloped or naked viruses such as mouse minute virus (MMV), a parvovirus. The aim of the studies presented herein was to further delineate the susceptibility of MMV, known to have contaminated mammalian cell manufacturing facilities, to heat by exposing virus-spiked cell culture media to a broad range of temperatures and for various times of exposure. The results of these studies show that HTST is capable of inactivating MMV by three orders of magnitude or more. Thus, we believe that HTST is a useful technology for the purposes of providing a barrier to adventitious contamination of mammalian cell culture processes in the biopharmaceutical industry. 2009 American Institute of Chemical Engineers

  13. Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease.

    PubMed

    Kaupisch, A; Kennedy, L; Stelmanis, V; Tye, B; Kane, N M; Mountford, J C; Courtney, A; Baker, A H

    2012-10-01

    Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin(+)/PECAM-1(+) cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.

  14. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    PubMed Central

    Chen, I-Ping

    2014-01-01

    More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts. PMID:25621177

  15. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    PubMed

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. A Sustained Activation of Pancreatic NMDARs Is a Novel Factor of β-Cell Apoptosis and Dysfunction.

    PubMed

    Huang, Xiao-Ting; Yue, Shao-Jie; Li, Chen; Huang, Yan-Hong; Cheng, Qing-Mei; Li, Xiao-Hong; Hao, Cai-Xia; Wang, Ling-Zhi; Xu, Jian-Ping; Ji, Ming; Chen, Chen; Feng, Dan-Dan; Luo, Zi-Qiang

    2017-11-01

    Type 2 diabetes, which features β-cell failure, is caused by the decrease of β-cell mass and insulin secretory function. Current treatments fail to halt the decrease of functional β-cell mass. Strategies to prevent β-cell apoptosis and dysfunction are highly desirable. Recently, our group and others have reported that blockade of N-methyl-d-aspartate receptors (NMDARs) in the islets has been proposed to prevent the progress of type 2 diabetes through improving β-cell function. It suggests that a sustained activation of the NMDARs may exhibit deleterious effect on β-cells. However, the exact functional impact and mechanism of the sustained NMDAR stimulation on islet β-cells remains unclear. Here, we identify a sustained activation of pancreatic NMDARs as a novel factor of apoptotic β-cell death and function. The sustained treatment with NMDA results in an increase of intracellular [Ca2+] and reactive oxygen species, subsequently induces mitochondrial membrane potential depolarization and a decrease of oxidative phosphorylation expression, and then impairs the mitochondrial function of β-cells. NMDA specifically induces the mitochondrial-dependent pathway of apoptosis in β-cells through upregulation of the proapoptotic Bim and Bax, and downregulation of antiapoptotic Bcl-2. Furthermore, a sustained stimulation of NMDARs impairs β-cell insulin secretion through decrease of pancreatic duodenal homeobox-1 (Pdx-1) and adenosine triphosphate synthesis. The activation of nuclear factor-κB partly contributes to the reduction of Pdx-1 expression induced by overstimulation of NMDARs. In conclusion, we show that the sustained stimulation of NMDARs is a novel mediator of apoptotic signaling and β-cell dysfunction, providing a mechanistic insight into the pathological role of NMDARs activation in diabetes. Copyright © 2017 Endocrine Society.

  17. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

    PubMed Central

    Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2015-01-01

    The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808

  18. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

    PubMed

    Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-07-16

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  19. Hydrogel based approaches for cardiac tissue engineering.

    PubMed

    Saludas, Laura; Pascual-Gil, Simon; Prósper, Felipe; Garbayo, Elisa; Blanco-Prieto, María

    2017-05-25

    Heart failure still represents the leading cause of death worldwide. Novel strategies using stem cells and growth factors have been investigated for effective cardiac tissue regeneration and heart function recovery. However, some major challenges limit their translation to the clinic. Recently, biomaterials have emerged as a promising approach to improve delivery and viability of therapeutic cells and proteins for the regeneration of the damaged heart. In particular, hydrogels are considered one of the most promising vehicles. They can be administered through minimally invasive techniques while maintaining all the desirable characteristics of drug delivery systems. This review discusses recent advances made in the field of hydrogels for cardiac tissue regeneration in detail, focusing on the type of hydrogel (conventional, injectable, smart or nano- and micro-gel), the biomaterials used for its manufacture (natural, synthetic or hybrid) and the therapeutic agent encapsulated (stem cells or proteins). We expect that these novel hydrogel-based approaches will open up new possibilities in drug delivery and cell therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.

    PubMed

    Gao, Guifang; Hubbell, Karen; Schilling, Arndt F; Dai, Guohao; Cui, Xiaofeng

    2017-01-01

    Bioprinting based on thermal inkjet printing is one of the most attractive enabling technologies for tissue engineering and regeneration. During the printing process, cells, scaffolds , and growth factors are rapidly deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations. Ideally, the bioprinted tissues are able to mimic the native anatomic structures in order to restore the biological functions. In this study, a bioprinting platform for 3D cartilage tissue engineering was developed using a commercially available thermal inkjet printer with simultaneous photopolymerization . The engineered cartilage demonstrated native zonal organization, ideal extracellular matrix (ECM ) composition, and proper mechanical properties. Compared to the conventional tissue fabrication approach, which requires extended UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression profile. Therefore, this platform is ideal for anatomic tissue engineering with accurate cell distribution and arrangement.

  1. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.

    PubMed

    Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen

    2016-11-16

    For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.

  2. Bone Marrow Mesenchymal Stem Cells Are an Attractive Donor Cell Type for Production of Cloned Pigs As Well As Genetically Modified Cloned Pigs by Somatic Cell Nuclear Transfer

    PubMed Central

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua

    2013-01-01

    Abstract The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro–cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT. PMID:24033142

  3. Using Electronic Noses to Detect Tumors During Neurosurgery

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.; Kateb, Babak; Chen, Mike

    2008-01-01

    It has been proposed to develop special-purpose electronic noses and algorithms for processing the digitized outputs of the electronic noses for determining whether tissue exposed during neurosurgery is cancerous. At present, visual inspection by a surgeon is the only available intraoperative technique for detecting cancerous tissue. Implementation of the proposal would help to satisfy a desire, expressed by some neurosurgeons, for an intraoperative technique for determining whether all of a brain tumor has been removed. The electronic-nose technique could complement multimodal imaging techniques, which have also been proposed as means of detecting cancerous tissue. There are also other potential applications of the electronic-nose technique in general diagnosis of abnormal tissue. In preliminary experiments performed to assess the viability of the proposal, the problem of distinguishing between different types of cultured cells was substituted for the problem of distinguishing between normal and abnormal specimens of the same type of tissue. The figure presents data from one experiment, illustrating differences between patterns that could be used to distinguish between two types of cultured cancer cells. Further development can be expected to include studies directed toward answering questions concerning not only the possibility of distinguishing among various types of normal and abnormal tissue but also distinguishing between tissues of interest and other odorous substances that may be present in medical settings.

  4. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  5. Life is 3D: Boosting Spheroid Function for Tissue Engineering.

    PubMed

    Laschke, Matthias W; Menger, Michael D

    2017-02-01

    Spheroids provide a 3D environment with intensive cell-cell contacts. As a result of their excellent regenerative properties and rapid progress in their high-throughput production, spheroids are increasingly suggested as building blocks for tissue engineering. In this review, we focus on innovative biotechnological approaches that increase the quality of spheroids for this specific type of application. These include in particular the fabrication of coculture spheroids, mimicking the complex morphology and physiological tasks of natural tissues. In vitro preconditioning under different culture conditions and incorporation of biomaterials improve the function of spheroids and their directed fusion into macrotissues of desired shapes. The continuous development of these sophisticated approaches may markedly contribute to a broad implementation of spheroid-based tissue engineering in future regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro.

    PubMed

    D'Arcangelo, Elisa; McGuigan, Alison P

    2015-01-01

    Micropatterning strategies, which enable control over cell and tissue architecture in vitro, have emerged as powerful platforms for modelling tissue microenvironments at different scales and complexities. Here, we provide an overview of popular micropatterning techniques, along with detailed descriptions, to guide new users through the decision making process of which micropatterning procedure to use, and how to best obtain desired tissue patterns. Example techniques and the types of biological observations that can be made are provided from the literature. A focus is placed on microcontact printing to obtain co-cultures of patterned, confluent sheets, and the challenges associated with optimizing this protocol. Many issues associated with microcontact printing, however, are relevant to all micropatterning methodologies. Finally, we briefly discuss challenges in addressing key limitations associated with current micropatterning technologies.

  7. From simple desires to ordinary beliefs: the early development of everyday psychology.

    PubMed

    Wellman, H M; Woolley, J D

    1990-06-01

    We provide evidence for the claim that before young children construe human action in terms of beliefs and desires they understand action only in terms of simple desires. This type of naive psychology--a simple desire psychology--constitutes a coherent understanding of human action, but it differs from the belief--desire psychology of slightly older children and adults. In this paper we characterize what we mean by a simple desire psychology and report two experiments. In Experiment 1 we demonstrate that 2-year-old can predict actions and reactions related to simple desires. In Experiment 2 we demonstrate that many 2-year-old pass desire reasoning tasks while at the same time failing belief reasoning tasks that are passed by slightly older children, and that are as comparable as possible to the desire tasks they pass with ease.

  8. Generation of mammalian cells stably expressing multiple genes at predetermined levels.

    PubMed

    Liu, X; Constantinescu, S N; Sun, Y; Bogan, J S; Hirsch, D; Weinberg, R A; Lodish, H F

    2000-04-10

    Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.

  9. A hybrid microfluidic device for on-demand orientation and multidirectional imaging of C. elegans organs and neurons

    PubMed Central

    Ardeshiri, Ramtin; Mulcahy, Ben; Zhen, Mei; Rezai, Pouya

    2016-01-01

    C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology. PMID:27990213

  10. Derivation of novel genetically diverse human embryonic stem cell lines.

    PubMed

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  11. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  12. Thinking outside the liver: Induced pluripotent stem cells for hepatic applications

    PubMed Central

    Subba Rao, Mekala; Sasikala, Mitnala; Reddy, D Nageshwar

    2013-01-01

    The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications. PMID:23801830

  13. Thinking outside the liver: induced pluripotent stem cells for hepatic applications.

    PubMed

    Subba Rao, Mekala; Sasikala, Mitnala; Nageshwar Reddy, D

    2013-06-14

    The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.

  14. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    PubMed

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Cho, Dong-Woo

    2016-07-05

    Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bioprinting method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process. Furthermore, protein absorption on the printed platform was very low, which will lead to accurate measurement of metabolism and drug sensitivity. Moreover, heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of the natural conditions of the organs. The liver organ was selected for the evaluation of the developed method, and liver function was shown to be significantly enhanced on the liver-on-a-chip, which was prepared by 3D bioprinting. Consequently, the results demonstrate that the suggested 3D bioprinting method is easier and more versatile for production of organs-on-chips.

  16. Comparative Study of Influenza Virus Replication in MDCK Cells and in Primary Cells Derived from Adenoids and Airway Epithelium

    PubMed Central

    Ikizler, Mine R.; Kawaoka, Yoshihiro; Rudenko, Larisa G.; Treanor, John J.; Subbarao, Kanta; Wright, Peter F.

    2012-01-01

    Although clinical trials with human subjects are essential for determination of safety, infectivity, and immunogenicity, it is desirable to know in advance the infectiousness of potential candidate live attenuated influenza vaccine strains for human use. We compared the replication kinetics of wild-type and live attenuated influenza viruses, including H1N1, H3N2, H9N2, and B strains, in Madin-Darby canine kidney (MDCK) cells, primary epithelial cells derived from human adenoids, and human bronchial epithelium (NHBE cells). Our data showed that despite the fact that all tissue culture models lack a functional adaptive immune system, differentiated cultures of human epithelium exhibited the greatest restriction for all H1N1, H3N2, and B vaccine viruses studied among three cell types tested and the best correlation with their levels of attenuation seen in clinical trials with humans. In contrast, the data obtained with MDCK cells were the least predictive of restricted viral replication of live attenuated vaccine viruses in humans. We were able to detect a statistically significant difference between the replication abilities of the U.S. (A/Ann Arbor/6/60) and Russian (A/Leningrad/134/17/57) cold-adapted vaccine donor strains in NHBE cultures. Since live attenuated pandemic influenza vaccines may potentially express a hemagglutinin and neuraminidase from a non-human influenza virus, we assessed which of the three cell cultures could be used to optimally evaluate the infectivity and cellular tropism of viruses derived from different hosts. Among the three cell types tested, NHBE cultures most adequately reflected the infectivity and cellular tropism of influenza virus strains with different receptor specificities. NHBE cultures could be considered for use as a screening step for evaluating the restricted replication of influenza vaccine candidates. PMID:22915797

  17. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE PAGES

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; ...

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  18. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation.

    PubMed

    Xiong, Z; Zhao, S; Mao, X; Lu, X; He, G; Yang, G; Chen, M; Ishaq, M; Ostrikov, K

    2014-03-01

    An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~150 ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. Published by Elsevier B.V.

  19. PCR amplification and genetic analysis in a microwell cell culturing chip.

    PubMed

    Lindström, Sara; Hammond, Maria; Brismar, Hjalmar; Andersson-Svahn, Helene; Ahmadian, Afshin

    2009-12-21

    We have previously described a microwell chip designed for high throughput, long-term single-cell culturing and clonal analysis in individual wells providing a controlled way of studying high numbers of individual adherent or non-adherent cells. Here we present a method for the genetic analysis of cells cultured on-chip by PCR and minisequencing, demonstrated using two human adherent cell lines: one wild type and one with a single-base mutation in the p53 gene. Five wild type or mutated cells were seeded per well (in a defined set of wells, each holding 500 nL of culture medium) in a 672-microwell chip. The cell chip was incubated overnight, or cultured for up to five days, depending on the desired colony size, after which the cells were lysed and subjected to PCR directly in the wells. PCR products were detected, in the wells, using a biotinylated primer and a fluorescently labelled primer, allowing the products to be captured on streptavidin-coated magnetic beads and detected by a fluorescence microscope. In addition, to enable genetic analysis by minisequencing, the double-stranded PCR products were denatured and the immobilized strands were kept in the wells by applying a magnetic field from the bottom of the wells while the wells were washed, a minisequencing reaction mixture was added, and after incubation in appropriate conditions the expected genotypes were detected in the investigated microwells, simultaneously, by an array scanner. We anticipate that the technique could be used in mutation frequency screening, providing the ability to correlate cells' proliferative heterogeneity to their genetic heterogeneity, in hundreds of samples simultaneously. The presented method of single-cell culture and DNA amplification thus offers a potentially powerful alternative to single-cell PCR, with advantageous robustness and sensitivity.

  20. Down-regulation of BAX gene during carcinogenesis and acquisition of resistance to 5-FU in colorectal cancer.

    PubMed

    Manoochehri, Mehdi; Karbasi, Ashraf; Bandehpour, Mojgan; Kazemi, Bahram

    2014-04-01

    Carcinogenesis and resistance to chemotherapy could be as results of expression variations in apoptosis regulating genes. Changes in the expression of apoptosis interfering genes may contribute to colorectal carcinogenesis and resistance to 5-Flourouracil (5-FU) during treatment schedule period. The present study aimed to evaluate the expression of pro-apoptotic and anti-apoptotic genes in colorectal cancer tumor tissues, normal adjacent tissues, and tumor colorectal cancer cell line during acquiring resistance to 5-FU in HT-29 based on Bolus treatment protocol. The normal and tumor tissues were obtained from hospital after surgery and total RNA was extracted for expression analysis. The HT-29 colorectal cancer cell line was cultured and exposed with 5-FU in three stages based on Bolus protocol. The MTT assay and Real Time PCR were carried out to determine the sensitivity to the drug and expression of desired genes, respectively. The obtained data showed that Proapoptotic genes, BAX and BID, were down-regulated in resistant derivate cells compared to wild type HT-29 cells. On the other hand Antiapoptotic genes, CIAP1 and XIAP, showed upregulation in resistant cells compared to wild type ones. Furthermore, BAX and FAS genes showed down-regulation in tumor samples in comparison to normal adjacent tissues. In conclusion, the results of our study suggest that BAX down-regulation could contribute as an important factor during both colorectal carcinogenesis and cell resistance to 5-FU.

  1. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.

    PubMed

    Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2014-03-28

    In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.

  2. Mesenchymal stem cells support hepatocyte function in engineered liver grafts.

    PubMed

    Kadota, Yoshie; Yagi, Hiroshi; Inomata, Kenta; Matsubara, Kentaro; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Shinoda, Masahiro; Obara, Hideaki; Itano, Osamu; Kitagawa, Yuko

    2014-01-01

    Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.

  3. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    PubMed

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells

    PubMed Central

    Herrmann, Andreas; Kortylewski, Marcin; Kujawski, Maciej; Zhang, Chunyan; Reckamp, Karen; Armstrong, Brian; Wang, Lin; Kowolik, Claudia; Deng, Jiehui; Robert, Figlin; Yu, Hua

    2010-01-01

    Improving effector T cell functions is highly desirable for preventive or therapeutic interventions of diverse diseases. Stat3 in the myeloid compartment constrains Th-1 type immunity, dampening natural and induced antitumor immune responses. We have recently developed an in vivo siRNA delivery platform by conjugating a TLR9 agonist with siRNA that efficiently targets myeloid and B cells. Here we show that either ablating the Stat3 alleles in the myeloid compartment and B cells combined with CpG triggering or administrating the CpG-Stat3siRNA conjugates drastically augments effector functions of adoptively transferred CD8+ T cells. Specifically, we demonstrate that both approaches are capable of increasing dendritic cell and CD8+ T cell engagement in tumor draining lymph nodes. Furthermore, both approaches can significantly activate the transferred CD8+ T cells in vivo, upregulating effector molecules such as perforin, granzyme B and IFN-γ. Intravital multiphoton microscopy reveals that Stat3 silencing combined with CpG triggering greatly increases killing activity and tumor infiltration of transferred T cells. These results suggest the use of CpG-Stat3siRNA, and possibly other Stat3 inhibitors, as a potent adjuvant to improve T cell therapies. PMID:20841481

  5. Versatile graphene biosensors for enhancing human cell therapy.

    PubMed

    Vlăsceanu, George M; Amărandi, Roxana-Maria; Ioniță, Mariana; Tite, Teddy; Iovu, Horia; Pilan, Luisa; Burns, Jorge S

    2018-05-01

    Technological advances in engineering and cell biology stimulate novel approaches for medical treatment, in particular cell-based therapy. The first cell-based gene therapy against cancer was recently approved by the US Food and Drug Administration. Progress in cancer diagnosis includes a blood test detecting five cancer types. Numerous stem cell phase I/II clinical trials showing safety and efficacy will soon pursue qualifying criteria for advanced therapy medicinal products (ATMP), aspiring to join the first stem-cell therapy approved by the European Medicines Agency. Cell based therapy requires extensive preclinical characterisation of biomarkers indicating mechanisms of action crucial to the desired therapeutic effect. Quantitative analyses monitoring critical functions for the manufacture of optimal cell and tissue-based clinical products include successful potency assays for implementation. The challenge to achieve high quality measurement is increasingly met by progress in biosensor design. We adopt a cell therapy perspective to highlight recent examples of graphene-enhanced biointerfaces for measurement of biomarkers relevant to cancer treatment, diagnosis and tissue regeneration. Graphene based biosensor design problems can thwart their use for health care transformative point of care testing and real-time applications. We discuss concerns to be addressed and emerging solutions for establishing clinical grade biosensors to accelerate human cell therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Targeted gene expression without a tissue-specific promoter: creating mosaic embryos using laser-induced single-cell heat shock

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Kose, H.; Chiba, A.; Keshishian, H.

    1997-01-01

    We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.

  7. Psychological Factors Involved in Sexual Desire, Sexual Activity, and Sexual Satisfaction: A Multi-factorial Perspective.

    PubMed

    Dosch, Alessandra; Rochat, Lucien; Ghisletta, Paolo; Favez, Nicolas; Van der Linden, Martial

    2016-11-01

    This study explored the role of psychological trait factors in sexual desire and sexual activity. In particular, it investigated how these factors may contribute to maintaining a balance between motivational aspects and self-control abilities, as both have been considered important in relation to adaptive sexuality. Moreover, the study explored the relationship between sexual desire, activity, and satisfaction. Participants completed questionnaires assessing sexual desire (dyadic, solitary), sexual activity (with a partner, alone), sexual satisfaction, approach and avoidance motivation, attachment, self-control, sensation seeking, and mindfulness. Cluster analyses, based on participants' level of sexual desire and sexual activity, highlighted three distinct profiles for each gender related to different types of psychological functioning: (a) participants with high dyadic sexual desire and activity were the most sexually satisfied, showed optimal psychological functioning, and were characterized by a balance between motivational tendencies to seek positive rewards and self-control abilities (high approach motivation, secure attachment, high self-control, high mindfulness); (b) participants with high dyadic and solitary sexual desire and activity were moderately satisfied and showed a type of psychological functioning predominantly characterized by impulsivity (an overly high motivation to obtain rewards in women, and low self-control in men); (c) participants with low dyadic sexual desire and activity were the least sexually satisfied and were characterized by high motivation to avoid negative consequences and low self-control (high avoidance motivation, insecure attachment, and poor mindfulness). These results shed further light on how fundamental psychological factors contribute to explain the individual variability in sexual desire, activity, and satisfaction.

  8. [New assessment scale based on the type of person desired by an employer].

    PubMed

    Sasaki, Kenichi; Toyoda, Hideki

    2011-10-01

    In many cases, aptitude tests used in the hiring process fail to connect the measurement scale with the emotional type of the person desired by an employer. This experimental study introduced a new measuring method, in which the measurement scale could be adjusted according to the type of person an employer is seeking. Then the effectiveness of this method was verified by comparing the results of an aptitude test utilizing the method and the results of the typical hiring process carried out by the new method in hiring.

  9. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  10. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    PubMed

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  11. Method of preparing a sintered lithium aluminate structure for containing electrolyte

    DOEpatents

    Sim, James W.; Kinoshita, Kimio

    1981-01-01

    A porous sintered tile is formed of lithium aluminate for retaining molten lectrolyte within a fuel cell. The tile is prepared by reacting lithium hydroxide in aqueous solution with alumina particles to form beta lithium aluminate particles. The slurry is evaporated to dryness and the solids dehydrated to form a beta lithium aluminate powder. The powder is compacted into the desired shape and sintered at a temperature in excess of 1200 K. but less than 1900 K. to form a porous integral structure that is subsequently filled with molten electrolyte. A tile of this type is intended for use in containing molten alkali metal carbonates as electolyte for use in a fuel cell having porous metal or metal oxide electrodes for burning a fuel gas such as hydrogen and/or carbon monoxide with an oxidant gas containing oxygen.

  12. Peptide-directed self-assembly of functionalized polymeric nanoparticles. Part II: effects of nanoparticle composition on assembly behavior and multiple drug loading ability.

    PubMed

    Xiang, Xu; Ding, Xiaochu; Moser, Trevor; Gao, Qi; Shokuhfar, Tolou; Heiden, Patricia A

    2015-04-01

    Peptide-functionalized polymeric nanoparticles were designed and self-assembled into continuous nanoparticle fibers and three-dimensional scaffolds via ionic complementary peptide interaction. Different nanoparticle compositions can be designed to be appropriate for each desired drug, so that the release of each drug is individually controlled and the simultaneous sustainable release of multiple drugs is achieved in a single scaffold. A self-assembled scaffold membrane was incubated with NIH3T3 fibroblast cells in a culture dish that demonstrated non-toxicity and non-inhibition on cell proliferation. This type of nanoparticle scaffold combines the advantages of peptide self-assembly and the versatility of polymeric nanoparticle controlled release systems for tissue engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DNA vaccines: roles against diseases

    PubMed Central

    Khan, Kishwar Hayat

    2013-01-01

    Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored. PMID:24432284

  14. An algorithm for the design and tuning of RF accelerating structures with variable cell lengths

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2018-05-01

    An algorithm is proposed for the design of a π mode standing wave buncher structure with variable cell lengths. It employs a two-parameter, multi-step approach for the design of the structure with desired resonant frequency and field flatness. The algorithm, along with analytical scaling laws for the design of the RF power coupling slot, makes it possible to accurately design the structure employing a freely available electromagnetic code like SUPERFISH. To compensate for machining errors, a tuning method has been devised to achieve desired RF parameters for the structure, which has been qualified by the successful tuning of a 7-cell buncher to π mode frequency of 2856 MHz with field flatness <3% and RF coupling coefficient close to unity. The proposed design algorithm and tuning method have demonstrated the feasibility of developing an S-band accelerating structure for desired RF parameters with a relatively relaxed machining tolerance of ∼ 25 μm. This paper discusses the algorithm for the design and tuning of an RF accelerating structure with variable cell lengths.

  15. Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells.

    PubMed

    Cunha, Bárbara; Aguiar, Tiago; Silva, Marta M; Silva, Ricardo J S; Sousa, Marcos F Q; Pineda, Earl; Peixoto, Cristina; Carrondo, Manuel J T; Serra, Margarida; Alves, Paula M

    2015-11-10

    The integration of up- and downstream unit operations can result in the elimination of hold steps, thus decreasing the footprint, and ultimately can create robust closed system operations. This type of design is desirable for the bioprocess of human mesenchymal stem cells (hMSC), where high numbers of pure cells, at low volumes, need to be delivered for therapy applications. This study reports a proof of concept of the integration of a continuous perfusion culture in bioreactors with a tangential flow filtration (TFF) system for the concentration and washing of hMSC. Moreover, we have also explored a continuous alternative for concentrating hMSC. Results show that expanding cells in a continuous perfusion operation mode provided a higher expansion ratio, and led to a shift in cells' metabolism. TFF operated either in continuous or discontinuous allowed to concentrate cells, with high cell recovery (>80%) and viability (>95%); furthermore, continuous TFF permitted to operate longer with higher cell concentrations. Continuous diafiltration led to higher protein clearance (98%) with lower cell death, when comparing to discontinuous diafiltration. Overall, an integrated process allowed for a shorter process time, recovering 70% of viable hMSC (>95%), with no changes in terms of morphology, immunophenotype, proliferation capacity and multipotent differentiation potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  17. Chemical peels.

    PubMed

    Jackson, Adrianna

    2014-02-01

    Chemical peels are a method of resurfacing with a long-standing history of safety in the treatment of various skin conditions. This article reviews the classification of different chemical agents based on their depth of injury. The level of injury facilitates cell turnover, epidermal thickening, skin lightening, and new collagen formation. Preprocedural, periprocedural, and postprocedural skin care are briefly discussed. To select the appropriate chemical peel, the provider should evaluate the patient's expectations, medical history, skin type, and possible complications to determine the best chemical peel to achieve the desired results. Patients with Fitzpatrick skin types IV to VI have increased risk of dyspigmentation, hypertrophic, and keloid scarring. These individuals respond well to superficial and medium-depth chemical peels. Advances in the use of combination peels allow greater options for skin rejuvenation with less risk of complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density.

    PubMed

    Wang, Huiyuan; Cai, Lei; Paul, Alexandra; Enejder, Annika; Heilshorn, Sarah C

    2014-09-08

    Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP's lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell-matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics.

  19. Stand-alone photovoltaic (PV) powered electrochromic window

    DOEpatents

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  20. Stand-alone photovoltaic (PV) powered electrochromic window

    DOEpatents

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  1. Over-expression of NADH-dependent oxidoreductase (fucO) for increasing furfural or 5-hydroxymethylfurfural tolerance

    DOEpatents

    Miller, Elliot N.; Zhang, Xueli; Yomano, Lorraine P.; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-10-13

    The subject invention pertains to the discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural. This allows for a new approach to improve furfural tolerance in bacterial and/or yeast cells used to produce desired products. Thus, novel biocatalysts (bacterial, fungal or yeast cells) exhibiting increased tolerance to furfural and 5-hydroxymethylfurfural (5-HMF) are provided as are methods of making and using such biocatalysts for the production of a desired product.

  2. Liquid crystal modulator with ultra-wide dynamic range and adjustable driving voltage.

    PubMed

    Wang, Xing-jun; Huang, Zhang-di; Feng, Jing; Chen, Xiang-fei; Liang, Xiao; Lu, Yan-qing

    2008-08-18

    We demonstrated a reflective-type liquid crystal (LC) intensity modulator in 1550 nm telecomm band. An effective way to compensate the residual phase of a LC cell is proposed. With the adjustment of a true zero-order quarter wave plate and enhanced by total internal reflection induced birefringence, over 53 dB dynamic range was achieved, which is much desired for some high-end optical communication, infrared scene projection applications. In addition, the driving voltages were decreased and adjustable. Mechanical and spectral tolerance measurements show that our LC modulator is quite stable. Further applications of our experimental setup were discussed including bio-sensors and high speed modulators.

  3. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  4. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  5. Theoretical and experimental studies on wide-band-gap p-type conductive BaCuSeF and related compounds

    NASA Astrophysics Data System (ADS)

    Sakakima, Hiroshi; Nishitani, Mikihiko; Yamamoto, Koichi; Wada, Takahiro

    2015-08-01

    BaCuSeF and related compounds, MCuQF (M = Ba, Sr; Q = Se, S), are known to show p-type conduction. The formation energies of the Cu vacancy ΔH[VCu] in a MCuQF system were computed by first-principles calculation with a generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional as an electron exchange and correlation functional. The density of states (DOS) of BaCuSeF was calculated with the hybrid functional of Heyd-Scuseria-Ernzerhof (HSE) 06. ΔH[VCu] was found to be very small under both the Cu- and Q-rich conditions, which probably contributes to p-type conduction. The electronic structure of BaCuSeF was studied by X-ray photoelectron spectroscopy (XPS) with UV photoelectron yield spectroscopy (UVPYS) and photoemission yield spectroscopy (PYS). The determined depth of the top of the valence band relative to the vacuum level was about 4.9 eV. This value is desirable for applications in compound semiconductor thin-film tandem solar cells since the absorbers of polycrystalline thin-film solar cells, such as CdTe and Cu(In,Ga)Se2, are p-type semiconductors. The DOS of BaCuSeF calculated with the HSE06 functional was almost consistent with the XPS spectrum.

  6. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  7. The FFAG return loop for the CBETA Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, J. S.

    2017-04-28

    The CBETA energy recovery linac uses a single xed eld alternating gradient (FFAG) beam line to return the beam for electron beams with four energies, ranging from 42 MeV to 150 MeV. To keep the beam line compact, the ends of the return line have a small radius of curvature, but the central part of the return line is straight. These are connected by transition lines that adiabatically change from one to the other. We rst describe the design or the arc cell. We then describe how a straight cell is created to be a good match to this arcmore » cell. We then describe the design of the transition line between them. The design process makes use of eld maps for the desired magnets. Because we switch magnet types as we move from the arc, through the transition, and into the straight, there are discrete jumps in the elds that degrade the adiabaticity of the transition, and we describe corrections to manage that.« less

  8. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  9. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  10. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  11. Direct Reprogramming of Human Amniotic Fluid Stem Cells by OCT4 and Application in Repairing of Cerebral Ischemia Damage

    PubMed Central

    Qin, Mingde; Chen, Ruihua; Li, Hong; Liang, Hansi; Xue, Qun; Li, Fang; Chen, Ying; Zhang, Xueguang

    2016-01-01

    Amniotic fluid stem cells (AFSCs) are a type of fetal stem cell whose stemness encompasses both embryonic and adult stem cells, suggesting that they may be easily and efficiently reprogrammed into induced pluripotent stem cells (iPSCs). To further simplify the reprogramming process, the creation of AFSC-derived iPSCs using a single factor is desirable. Here we report the generation of one-factor human AFSC-iPSCs (AiPSCs) from human AFSCs by ectopic expression of the transcription factor OCT4. Just like human embryonic stem cells, AiPSCs exhibited similar epigenetic status, global gene expression profiles, teratoma formation and in vitro & in vivo pluripotency. Our results indicate that the OCT4 is necessary and sufficient to directly reprogram human AFSCs into pluripotent AiPSCs. Moreover, reflecting the similar memory characteristics of AFSCs and neural stem cells, we show that AiPSC membrane-derived vesicles (MVs) repair cerebral ischemia damage. We anticipate that the successful generation of one-factor AiPSCs will facilitate the creation of patient-specific pluripotent stem cells without the need for transgenic expression of oncogenes. Moreover, MVs from tissue-specific AiPSCs have potential in tissue repair, representing a novel application of iPSCs. PMID:27019637

  12. Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma cell lines: surrogates for neurological damage in vivo.

    PubMed

    Young, Julie; Wahle, Klaus W J; Boyle, Susanne P

    2008-01-01

    Oxidative stress is implicated in the development of a range of neurological diseases. There is increasing interest in the neuroprotective efficacy of antioxidants in modulating such processes with at least one polyphenolic being tested as a prophylactic in Alzheimer's disease. Beneficial effects of adjunctive n-3 polyunsaturated fatty acids with combined intakes of vitamin C and E on both the positive and negative symptoms of schizophrenia have been reported. Robust in vitro systems are desirable, enabling a mechanistic investigation of the molecular mechanisms underpinning such effects and identification of further potentially efficacious nutraceuticals. A comparative study employing a human lymphoblastoid cell line derived from a subject with early onset schizophrenia, a neuroblastoma IMR-32 cell line and the histiocytic lymphoma U937 cell line was undertaken. The cytoprotective effects of two phenols in affording protection to cellular DNA from an oxidative challenge were assessed in untreated and fatty acid treated cell lines. Marked differences in the uptake of fatty acids by the cell types were found and the IMR-32 cell line was most susceptible to the oxidant challenge. Hydroxytyrosol gave significant cytoprotection in all three-cell lines and this possible neuroprotective efficacy warrants further investigation, both in vitro and in vivo.

  13. Near-infrared remotely triggered drug-release strategies for cancer treatment

    NASA Astrophysics Data System (ADS)

    Goodman, Amanda M.; Neumann, Oara; Nørregaard, Kamilla; Henderson, Luke; Choi, Mi-Ran; Clare, Susan E.; Halas, Naomi J.

    2017-11-01

    Remotely controlled, localized drug delivery is highly desirable for potentially minimizing the systemic toxicity induced by the administration of typically hydrophobic chemotherapy drugs by conventional means. Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery, and are an emerging field of interest in cancer treatment. Here, we demonstrate near-IR light-triggered release of two drug molecules from both DNA-based and protein-based hosts that have been conjugated to near-infrared-absorbing Au nanoshells (SiO2 core, Au shell), each forming a light-responsive drug delivery complex. We show that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release can be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells. Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex showed increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods provide spatially and temporally localized drug-release strategies that can facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

  14. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice.

    PubMed

    Tsuchida, K

    2008-07-01

    Gene-targeted therapies, such as adeno-associated viral vector (AAV)-mediated gene therapy and cell-mediated therapy using myogenic stem cells, are hopeful molecular strategies for muscular dystrophy. In addition, drug therapies based on the pathophysiology of muscular dystrophy patients are desirable. Multidisciplinary approaches to drug design would offer promising therapeutic strategies. Myostatin, a member of the transforming growth factor-beta superfamily, is predominantly produced by skeletal muscle and negatively regulates the growth and differentiation of cells of the skeletal muscle lineage. Myostatin inhibition would increase the skeletal muscle mass and prevent muscle degeneration, regardless of the type of muscular dystrophy. Myostatin inhibitors include myostatin antibodies, myostatin propeptide, follistatin and follistatin-related protein. Although follistatin possesses potent myostatin-inhibiting activity, it works as an efficient inhibitor of activins. Unlike myostatin, activins regulate the growth and differentiation of nearly all cell types, including cells of the gonads, pituitary gland and skeletal muscle. We have developed a myostatin-specific inhibitor derived from follistatin, designated FS I-I. Transgenic mice expressing this myostatin-inhibiting peptide under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. mdx mice were crossed with FS I-I transgenic mice and any improvement of the pathological signs was investigated. The resulting mdx/FS I-I mice exhibited increased skeletal muscle mass and reduced cell infiltration in muscles. Muscle strength was also recovered in mdx/FS I-I mice. Our data indicate that myostatin inhibition by this follistatin-derived peptide has therapeutic potential for muscular dystrophy.

  15. Effects of proton irradiation on the performance of InP/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Swartz, C. K.; Brinker, David J.; Wilt, D. M.

    1991-01-01

    InP solar cells are known to be more radiation resistant than either GaAs or Si. In addition, AMO total area efficiencies approaching 19 percent were attained for InP. However, the present high substrate cost presents a barrier to the eventual widespread use of InP cells in space. In addition, if cell thinning becomes desirable, their relative fragility presents a problem. For these reasons, the NASA Lewis Research Center has initiated a program, aimed at producing thin InP cells, by heteroepitaxial deposition of InP on cheaper, more durable substrates. To date, a short term feasibility study as Spire has resulted in cells processed from InP heteroepitaxially deposited on Si substrates with an intervening thin GaAs layer (InP/GaAs/Si) and cells produced from InP deposited on GaAs (InP/GaAs). As a result of this short study efficiencies of over 7 and 9 percent were achieved for InP/GaAs/Si and InP/GaAs respectively. Although these efficiencies are low, they represent a modest and encouraging starting point for a more intensive program. Obviously, when considering economy and mechanical strength, cells processed on silicon substrates are preferred. However, although the InP/GaAs cells are not the final desirable products of this program, their properties serve to highlight several roadblocks to be overcome in producing cells with the more desirable cost and strength properties. Hence, in the present case, the properties of the InP/GaAs cells before and after irradiation by 10 MeV protons are examined. A similar study of InP/GaAs/Si cells will be reported on at a later date.

  16. In vitro generation of three-dimensional substrate-adherent embryonic stem cell-derived neural aggregates for application in animal models of neurological disorders.

    PubMed

    Hargus, Gunnar; Cui, Yi-Fang; Dihné, Marcel; Bernreuther, Christian; Schachner, Melitta

    2012-05-01

    In vitro-differentiated embryonic stem (ES) cells comprise a useful source for cell replacement therapy, but the efficiency and safety of a translational approach are highly dependent on optimized protocols for directed differentiation of ES cells into the desired cell types in vitro. Furthermore, the transplantation of three-dimensional ES cell-derived structures instead of a single-cell suspension may improve graft survival and function by providing a beneficial microenvironment for implanted cells. To this end, we have developed a new method to efficiently differentiate mouse ES cells into neural aggregates that consist predominantly (>90%) of postmitotic neurons, neural progenitor cells, and radial glia-like cells. When transplanted into the excitotoxically lesioned striatum of adult mice, these substrate-adherent embryonic stem cell-derived neural aggregates (SENAs) showed significant advantages over transplanted single-cell suspensions of ES cell-derived neural cells, including improved survival of GABAergic neurons, increased cell migration, and significantly decreased risk of teratoma formation. Furthermore, SENAs mediated functional improvement after transplantation into animal models of Parkinson's disease and spinal cord injury. This unit describes in detail how SENAs are efficiently derived from mouse ES cells in vitro and how SENAs are isolated for transplantation. Furthermore, methods are presented for successful implantation of SENAs into animal models of Huntington's disease, Parkinson's disease, and spinal cord injury to study the effects of stem cell-derived neural aggregates in a disease context in vivo.

  17. Synthesis and characterization of metal oxide semiconductors by a facile co-electroplating-annealing method and formation of ZnO/CuO pn heterojunctions with rectifying behavior

    NASA Astrophysics Data System (ADS)

    Turkdogan, Sunay; Kilic, Bayram

    2018-01-01

    We have developed a unique growth method and demonstrated the growth of CuO and ZnO semiconductor materials and the fabrication of their pn heterojunctions in ambient atmosphere. The pn heterojunctions were constructed using inherently p-type CuO and inherently n-type ZnO materials. Both p- and n-type semiconductors and pn heterojunctions were prepared using a simple but versatile growth method that relies on the transformation of electroplated Cu and Zn metals into CuO and ZnO semiconductors, respectively and is capable of a large-scale production desired in most of the applications. The structural, chemical, optical and electrical properties of the materials and junctions were investigated using various characterization methods and the results show that our growth method, materials and devices are quite promising to be utilized for various applications including but not limited to solar cells, gas/humidity sensors and photodetectors.

  18. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes.

    PubMed

    Huang, Zhongjie; He, Mingfu; Yu, Mingzhe; Click, Kevin; Beauchamp, Damian; Wu, Yiying

    2015-06-01

    Efficient sensitized photocathodes are highly desired for solar fuels and tandem solar cells, yet the development is hindered by the scarcity of suitable p-type semiconductors. The generation of high cathodic photocurrents by sensitizing a degenerate n-type semiconductor (tin-doped indium oxide; ITO) is reported. The sensitized mesoporous ITO electrodes deliver cathodic photocurrents of up to 5.96±0.19 mA cm(-2), which are close to the highest record in conventional p-type sensitized photocathodes. This is realized by the rational selection of dyes with appropriate energy alignments with ITO. The energy level alignment between the highest occupied molecular orbital of the sensitizer and the conduction band of ITO is crucial for efficient hole injection. Transient absorption spectroscopy studies demonstrate that the cathodic photocurrent results from reduction of the photoexcited sensitizer by free electrons in ITO. Our results reveal a new perspective toward the selection of electrode materials for sensitized photocathodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Media additives to promote spheroid circularity and compactness in hanging drop platform.

    PubMed

    Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi

    2015-02-01

    Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.

  20. [A controversial definition of the limitations on reproductive medicine in Germany].

    PubMed

    Kentenich, Heribert; Utz-Billing, Isabell

    2006-01-01

    In principle, all kinds of sterility therapy can be defined as "medicine of desire". Stimulation, insemination, in-vitro fertilisation and ICSI are established methods and paid for by statutory health insurers. Some types of sterility therapy, though, are forbidden in Germany and thus form part of a "medicine of desire". These methods are only practised in foreign countries: oocyte donation, pre-implantational genetic diagnosis, embryo selection, surrogate motherhood, therapeutic cloning and preparation of embryonic stem cells. Taking oocyte donation as an example, the question of whether it is reasonable to ban oocyte donation will be discussed from a medical, psychological and ethical perspective. From the point of view of medicine, oocyte donation has proved to be successful with birth rates of 25-40% per cycle. No serious objections emerged from the follow-up of children, couples and the relationship between parents and children.The pros and cons of a more liberal and open handling should be discussed from an ethical point of view. Medically, psychologically and ethically the ban of oocyte donation in Germany does not seem to be justified.

  1. Generation of Murine Monoclonal Antibodies by Hybridoma Technology.

    PubMed

    Holzlöhner, Pamela; Hanack, Katja

    2017-01-02

    Monoclonal antibodies are universal binding molecules and are widely used in biomedicine and research. Nevertheless, the generation of these binding molecules is time-consuming and laborious due to the complicated handling and lack of alternatives. The aim of this protocol is to provide one standard method for the generation of monoclonal antibodies using hybridoma technology. This technology combines two steps. Step 1 is an appropriate immunization of the animal and step 2 is the fusion of B lymphocytes with immortal myeloma cells in order to generate hybrids possessing both parental functions, such as the production of antibody molecules and immortality. The generated hybridoma cells were then recloned and diluted to obtain stable monoclonal cell cultures secreting the desired monoclonal antibody in the culture supernatant. The supernatants were tested in enzyme-linked immunosorbent assays (ELISA) for antigen specificity. After the selection of appropriate cell clones, the cells were transferred to mass cultivation in order to produce the desired antibody molecule in large amounts. The purification of the antibodies is routinely performed by affinity chromatography. After purification, the antibody molecule can be characterized and validated for the final test application. The whole process takes 8 to 12 months of development, and there is a high risk that the antibody will not work in the desired test system.

  2. Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    PubMed Central

    Kazuki, Y; Hoshiya, H; Takiguchi, M; Abe, S; Iida, Y; Osaki, M; Katoh, M; Hiratsuka, M; Shirayoshi, Y; Hiramatsu, K; Ueno, E; Kajitani, N; Yoshino, T; Kazuki, K; Ishihara, C; Takehara, S; Tsuji, S; Ejima, F; Toyoda, A; Sakaki, Y; Larionov, V; Kouprina, N; Oshimura, M

    2011-01-01

    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis. PMID:21085194

  3. 3D Printing of Organs-On-Chips

    PubMed Central

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  4. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  5. 3D Printing of Organs-On-Chips.

    PubMed

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  6. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    PubMed

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Inhibitory effect of PRO 2000, a candidate microbicide, on dendritic cell-mediated human immunodeficiency virus transfer.

    PubMed

    Teleshova, Natalia; Chang, Theresa; Profy, Albert; Klotman, Mary E

    2008-05-01

    Without an effective vaccine against human immunodeficiency virus (HIV) infection, topical microbicide development has become a priority. The sulfonated polyanion PRO 2000, a candidate topical microbicide now in phase II/III clinical trials, blocks HIV infection of cervical tissue in vitro. Dendritic cells (DC) are among the first cell types to contact HIV in the genital tract and facilitate the spread of the virus. Thus, interfering with virus-DC interactions is a desirable characteristic of topical microbicides as long as that does not interfere with the normal function of DC. PRO 2000 present during capture of the replication-defective HIV(JRFL) reporter virus or replication-competent HIV(BaL) by monocyte-derived DC (MDDC) inhibited subsequent HIV transfer to target cells. Continuous exposure to PRO 2000 during MDDC-target cell coculture effectively inhibited HIV infection of target cells. PRO 2000 inhibited HIV capture by MDDC. In addition, the compound blocked R5 and X4 HIV envelope-mediated cell-cell fusion. Interestingly, simultaneous exposure to PRO 2000 and lipopolysaccharide attenuated the cytokine production in response to stimulation, suggesting that the compound altered DC function. While efficient blocking of MDDC-mediated virus transfer and infection in the highly permissive MDDC-T-cell environment reinforces the potential value of PRO 2000 as a topical microbicide against HIV, the impact of PRO 2000 on immune cell functions warrants careful evaluation.

  8. Chemically grafted fibronectin for use in QCM-D cell studies

    PubMed Central

    Sobolewski, Peter; Tomczyk, Nancy; Composto, Russell J.; Eckmann, David M.

    2014-01-01

    Traditionally, fibronectin has been used as a physisorbed surface coating (physFN) in cell culture experiments due to its critical role in cell adhesion. However, because the resulting layer is thick, unstable, and of unpredictable uniformity, this method of fibronectin deposition is unsuitable for some types of research, including quartz crystal microbalance (QCM) experiments involving cells. Here, we present a new method for chemical immobilization of fibronectin onto silicon oxide surfaces, including QCM crystals pre-coated with silicon oxide. We characterize these chemically coated fibronectin surfaces (chemFN) as well as physFN ones using surface ellipsometry (SE), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle measurements. A cell culture model demonstrates that cells on chemFN and physFN surfaces exhibit similar viability, structure, adhesion and metabolism. Finally, we perform QCM experiments using cells on both surfaces which demonstrate the superior suitability of chemFN coatings for QCM research, and provide real-time QCM-D data from cells subjected to an actin depolymerizing agent. Overall, our method of chemical immobilization of fibronectin yields great potential for furthering cellular experiments in which thin, stable and uniform coatings are desirable. As QCM research with cells has been rather limited in success thus far, we anticipate that this new technique will particularly benefit this experimental system by availing it to the much broader field of cell mechanics. PMID:24657645

  9. Allogeneic tumor cell vaccines

    PubMed Central

    Srivatsan, Sanjay; Patel, Jaina M; Bozeman, Erica N; Imasuen, Imade E; He, Sara; Daniels, Danielle; Selvaraj, Periasamy

    2014-01-01

    The high mortality rate associated with cancer and its resistance to conventional treatments such as radiation and chemotherapy has led to the investigation of a variety of anti-cancer immunotherapies. The development of novel immunotherapies has been bolstered by the discovery of tumor-associated antigens (TAAs), through gene sequencing and proteomics. One such immunotherapy employs established allogeneic human cancer cell lines to induce antitumor immunity in patients through TAA presentation. Allogeneic cancer immunotherapies are desirable in a clinical setting due to their ease of production and availability. This review aims to summarize clinical trials of allogeneic tumor immunotherapies in various cancer types. To date, clinical trials have shown limited success due potentially to extensive degrees of inter- and intra-tumoral heterogeneity found among cancer patients. However, these clinical results provide guidance for the rational design and creation of more effective allogeneic tumor immunotherapies for use as monotherapies or in combination with other therapies. PMID:24064957

  10. Allogeneic tumor cell vaccines: the promise and limitations in clinical trials.

    PubMed

    Srivatsan, Sanjay; Patel, Jaina M; Bozeman, Erica N; Imasuen, Imade E; He, Sara; Daniels, Danielle; Selvaraj, Periasamy

    2014-01-01

    The high mortality rate associated with cancer and its resistance to conventional treatments such as radiation and chemotherapy has led to the investigation of a variety of anti-cancer immunotherapies. The development of novel immunotherapies has been bolstered by the discovery of tumor-associated antigens (TAAs), through gene sequencing and proteomics. One such immunotherapy employs established allogeneic human cancer cell lines to induce antitumor immunity in patients through TAA presentation. Allogeneic cancer immunotherapies are desirable in a clinical setting due to their ease of production and availability. This review aims to summarize clinical trials of allogeneic tumor immunotherapies in various cancer types. To date, clinical trials have shown limited success due potentially to extensive degrees of inter- and intra-tumoral heterogeneity found among cancer patients. However, these clinical results provide guidance for the rational design and creation of more effective allogeneic tumor immunotherapies for use as monotherapies or in combination with other therapies.

  11. Necroptosis in acute kidney injury: a shedding light

    PubMed Central

    Wang, S; Zhang, C; Hu, L; Yang, C

    2016-01-01

    Acute kidney injury (AKI) is a common and severe clinical condition with a heavy healthy burden around the world. In spite of supportive therapies, the mortality associated with AKI remains high. Our limited understanding of the complex cell death mechanism in the process of AKI impedes the development of desirable therapeutics. Necroptosis is a recently identified novel form of cell death contributing to numerable diseases and tissue damages. Increasing evidence has suggested that necroptosis has an important role in the pathogenesis of various types of AKI. Therefore, we present here the signaling pathways and main regulators of necroptosis that are potential candidate for therapeutic strategies. Moreover, we emphasize on the potential role and corresponding mechanisms of necroptosis in AKI based on recent advances, and also discuss the possible therapeutic regimens based on manipulating necroptosis. Taken together, the progress in this field sheds new light into the prevention and management of AKI in clinical practice. PMID:26938298

  12. Membrane-less microfiltration using inertial microfluidics

    PubMed Central

    Warkiani, Majid Ebrahimi; Tay, Andy Kah Ping; Guan, Guofeng; Han, Jongyoon

    2015-01-01

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10–20 μm) and yeast (3–5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes. PMID:26154774

  13. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials.

    PubMed

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.

  14. CellAnimation: an open source MATLAB framework for microscopy assays.

    PubMed

    Georgescu, Walter; Wikswo, John P; Quaranta, Vito

    2012-01-01

    Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. walter.georgescu@vanderbilt.edu Supplementary data available at Bioinformatics online.

  15. Confirming preferences or collecting data? Information search strategies and romantic partner selection.

    PubMed

    Hennessy, Michael H; Fishbein, Marty; Curtis, Brenda; Barrett, Daniel

    2008-03-01

    This article investigates two kinds of information search strategies in the context of selecting romantic partners. Confirmatory searching occurs when people ask for more information about a romantic partner in order to validate or confirm their assessment. Balanced searches are characterized by a search for risk information for partners rated as attractive and for attractiveness information about partners rated as risky in order to attain a more complete evaluation. A factorial survey computer program randomly constructed five types of partner descriptions and college-age respondents evaluated nine descriptions in terms of both health risk and romantic attractiveness outcomes. The results show little evidence of balanced search strategies: for all vignette types the respondents searched for attractiveness information. Regression analysis of the search outcomes showed no difference between males and females in the desire for attractiveness or risk information, the amount of additional information desired, or the proportion of descriptions for which more information was desired. However, an attractive physical appearance did increase the amount of additional information desired and the proportion of vignettes for which more information was desired. The results were generally inconsistent with a balanced search hypothesis; a better characterization of the respondents' strategy might be "confirmatory bias."

  16. Synthetic Substrata to Instruct Human Pluripotent Stem Cell Fate: From Novel Ligands to Functional Biomaterials

    NASA Astrophysics Data System (ADS)

    Musah, Samira

    Human pluripotent stem (hPS) cells have the remarkable capacity to self-renew indefinitely and differentiate into desired cell types. They can serve as a virtually unlimited supply of cells for applications ranging from drug screening to cell therapies to understanding human development. Reaping the promise of hPS cells hinges on effective defined culture and differentiation conditions. Efforts to generate chemically-defined environments for hPS cell propagation and directed differentiation have been hindered by access to only a handful of ligands to target hPS cells. Additionally, progress has been limited also by lack of knowledge regarding the relevant functional properties of the cell culture substratum. To address these problems, I first employed forward-chemical-genetics coupled with self-assembled monolayer technology to identify novel peptides that bind to hPS cell-surface receptors. I then developed a controlled synthesis of hydrogels with tailored peptide display and mechanical properties. This approach yielded synthetic hydrogels with specific mechanical properties that function in a defined medium to robustly support hPS cell self-renewal. Finally, by starting from molecular level understanding that matrix elasticity regulates developmental pathways, I generated a highly efficient hydrogel platform that restricts hPS cell differentiation to neurons, even without soluble inductive factors. These results indicate that insoluble cues can be important information conduits to guide hPS cell fate decisions. I envision that the blueprint provided by this work can be utilized to devise new materials to guide hPS cell fate.

  17. Understanding the application of stem cell therapy in cardiovascular diseases.

    PubMed

    Sharma, Rakesh K; Voelker, Donald J; Sharma, Roma; Reddy, Hanumanth K

    2012-10-30

    Throughout their lifetime, an individual may sustain many injuries and recover spontaneously over a period of time, without even realizing the injury in the first place. Wound healing occurs due to a proliferation of stem cells capable of restoring the injured tissue. The ability of adult stem cells to repair tissue is dependent upon the intrinsic ability of tissues to proliferate. The amazing capacity of embryonic stem cells to give rise to virtually any type of tissue has intensified the search for similar cell lineage in adults to treat various diseases including cardiovascular diseases. The ability to convert adult stem cells into pluripotent cells that resemble embryonic cells, and to transplant those in the desired organ for regenerative therapy is very attractive, and may offer the possibility of treating harmful disease-causing mutations. The race is on to find the best cells for treatment of cardiovascular disease. There is a need for the ideal stem cell, delivery strategies, myocardial retention, and time of administration in the ideal patient population. There are multiple modes of stem cell delivery to the heart with different cell retention rates that vary depending upon method and site of injection, such as intra coronary, intramyocardial or via coronary sinus. While there are crucial issues such as retention of stem cells, microvascular plugging, biodistribution, homing to myocardium, and various proapoptotic factors in the ischemic myocardium, the regenerative potential of stem cells offers an enormous impact on clinical applications in the management of cardiovascular diseases.

  18. Optimization of Protocols for Derivation of Mouse Embryonic Stem Cell Lines from Refractory Strains, Including the Non Obese Diabetic Mouse

    PubMed Central

    Davies, Timothy J.

    2012-01-01

    The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes. PMID:21933027

  19. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    PubMed

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.

  20. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.

    PubMed

    Kiro, Ruth; Shitrit, Dror; Qimron, Udi

    2014-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.

  1. Hybrid Elastin-like Polypeptide–Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density

    PubMed Central

    2015-01-01

    Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP’s lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell–matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics. PMID:25111283

  2. Modular Integration of Upconverting Nanocrystal-Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release.

    PubMed

    Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki

    2015-12-02

    Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Role of tumbling in bacterial swarming

    NASA Astrophysics Data System (ADS)

    Sidortsov, Marina; Morgenstern, Yakov; Be'er, Avraham

    2017-08-01

    Typical wild-type bacteria swimming in sparse suspensions exhibit a movement pattern called "run and tumble," characterized by straight trajectories (runs) interspersed by shorter, random reorientation (tumbles). This is achieved by rotating their flagella counterclockwise, or clockwise, respectively. The chemotaxis signaling network operates in controlling the frequency of tumbles, enabling navigation toward or away from desired regions in the medium. In contrast, while in dense populations, flagellated bacteria exhibit collective motion and form large dynamic clusters, whirls, and jets, with intricate dynamics that is fundamentally different than trajectories of sparsely swimming cells. Although collectively swarming cells do change direction at the level of the individual cell, often exhibiting reversals, it has been suggested that chemotaxis does not play a role in multicellular colony expansion, but the change in direction stems from clockwise flagellar rotation. In this paper, the effects of cell rotor switching (i.e., the ability to tumble) and chemotaxis on the collective statistics of swarming bacteria are studied experimentally in wild-type Bacillus subtilis and two mutants—one that does not tumble and one that tumbles independently of the chemotaxis system. We show that while several of the parameters examined are similar between the strains, other collective and individual characteristics are significantly different. The results demonstrate that tumbling and/or flagellar directional rotor switching has an important role on the dynamics of swarming, and imply that swarming models of self-propelled rods that do not take tumbling and/or rotor switching into account may be oversimplified.

  4. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system

    PubMed Central

    Kosinski, Aaron M.; Brugnano, Jamie L.; Seal, Brandon L.; Knight, Frances C.; Panitch, Alyssa

    2012-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is a popular material used to prepare nanoparticles for drug delivery. However, PLGA nanoparticles lack desirable attributes including active targeting abilities, resistance to aggregation during lyophilization, and the ability to respond to dynamic environmental stimuli. To overcome these issues, we fabricated a nanoparticle consisting of a PLGA core encapsulated within a shell of poly(N-isopropylacrylamide). Dynamic light scattering and transmission electron microscope imaging were used to characterize the nanoparticles, while an MTT assay and ELISA suggested biocompatibility in THP1 cells. Finally, a collagen type II binding assay showed successful modification of these nanoparticles with an active targeting moiety. PMID:23507885

  5. Novel Multiplex Fluorescent PCR-Based Method for HLA Typing and Preimplantational Genetic Diagnosis of β-Thalassemia.

    PubMed

    Khosravi, Sharifeh; Salehi, Mansour; Ramezanzadeh, Mahboobeh; Mirzaei, Hamed; Salehi, Rasoul

    2016-05-01

    Thalassemia is curable by bone marrow transplantation; however, finding suitable donors with defined HLA combination remains a major challenge. Cord blood stem cells with preselected HLA system through preimplantation genetic diagnosis (PGD) proved very useful for resolving scarce HLA-matched bone marrow donors. A thalassemia trait couple with an affected child was included in this study. We used informative STR markers at the HLA and beta globin loci to develop a single cell multiplex fluorescent PCR protocol. The protocol was extensively optimized on single lymphocytes isolated from the couple's peripheral blood. The optimized protocol was applied on single blastomeres biopsied from day 3 cleavage stage IVF embryos of the couple. Four IVF embryos biopsied on day 3 and a single blastomere of each were provided for genetic diagnosis of combined β-thalassemia mutations and HLA typing. Of these, one embryo was diagnosed as homozygous normal for the thalassemia mutation and HLA matched with the existing affected sibling. The optimized protocol worked well in PGD clinical cycle for selection of thalassemia-unaffected embryos with the desired HLA system. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  6. A reflective-type, quasi-optical metasurface filter

    NASA Astrophysics Data System (ADS)

    Sima, Boyu; Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader

    2017-08-01

    We introduce a new technique for designing quasi-optical, reflective-type spatial filters. The proposed filter is a reflective metasurface with a one dimensional, frequency-dependent phase gradient along the aperture. By careful design of each unit cell of the metasurface, the phase shift gradient provided by the adjacent unit cells can be engineered to steer the beam towards a desired, anomalous reflection direction over the passband region of the filter. Outside of that range, the phase shift gradient required to produce the anomalous reflection is not present and hence, the wave is reflected towards the specular reflection direction. This way, the metasurface acts as a reflective filter in a quasi-optical system where the detector is placed along the direction of anomalous reflection. The spectral selectivity of this filter is determined by the frequency dispersion of the metasurface's phase response. Based on this principle, a prototype of the proposed metasurface filter, which operates at 10 GHz and has a bandwidth of 3%, is designed. The device is modeled using a combination of theoretical analysis using the phased-array theory and full-wave electromagnetic simulations. A prototype of this device is also fabricated and characterized using a free-space measurement system. Experimental results agree well with the simulations.

  7. Benefits and risks of testosterone treatment for hypoactive sexual desire disorder in women: a critical review of studies published in the decades preceding and succeeding the advent of phosphodiesterase type 5 inhibitors

    PubMed Central

    Reis, Sandra Léa Bonfim; Abdo, Carmita H. N.

    2014-01-01

    With advancing age, there is an increase in the complaints of a lack of a libido in women and erectile dysfunction in men. The efficacy of phosphodiesterase type 5 inhibitors, together with their minimal side effects and ease of administration, revolutionized the treatment of erectile dysfunction. For women, testosterone administration is the principal treatment for hypoactive sexual desire disorder. We sought to evaluate the use of androgens in the treatment of a lack of libido in women, comparing two periods, i.e., before and after the advent of the phosphodiesterase type 5 inhibitors. We also analyzed the risks and benefits of androgen administration. We searched the Latin-American and Caribbean Health Sciences Literature, Cochrane Library, Excerpta Medica, Scientific Electronic Library Online, and Medline (PubMed) databases using the search terms disfunção sexual feminina/female sexual dysfunction, desejo sexual hipoativo/female hypoactive sexual desire disorder, testosterona/testosterone, terapia androgênica em mulheres/androgen therapy in women, and sexualidade/sexuality as well as combinations thereof. We selected articles written in English, Portuguese, or Spanish. After the advent of phosphodiesterase type 5 inhibitors, there was a significant increase in the number of studies aimed at evaluating the use of testosterone in women with hypoactive sexual desire disorder. However, the risks and benefits of testosterone administration have yet to be clarified. PMID:24714838

  8. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    PubMed Central

    Chen, Li; Liu, Xin; Belani, Chandra; Cheng, Hua

    2015-01-01

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. PMID:26116531

  9. Simultaneous extraction of proteins and metabolites from cells in culture

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Weindl, Daniel; Ghelfi, Jenny; Dittmar, Gunnar; Hiller, Karsten

    2014-01-01

    Proper sample preparation is an integral part of all omics approaches, and can drastically impact the results of a wide number of analyses. As metabolomics and proteomics research approaches often yield complementary information, it is desirable to have a sample preparation procedure which can yield information for both types of analyses from the same cell population. This protocol explains a method for the separation and isolation of metabolites and proteins from the same biological sample, in order for downstream use in metabolomics and proteomics analyses simultaneously. In this way, two different levels of biological regulation can be studied in a single sample, minimizing the variance that would result from multiple experiments. This protocol can be used with both adherent and suspension cell cultures, and the extraction of metabolites from cellular medium is also detailed, so that cellular uptake and secretion of metabolites can be quantified. Advantages of this technique includes:1.Inexpensive and quick to perform; this method does not require any kits.2.Can be used on any cells in culture, including cell lines and primary cells extracted from living organisms.3.A wide variety of different analysis techniques can be used, adding additional value to metabolomics data analyzed from a sample; this is of high value in experimental systems biology. PMID:26150938

  10. Optimization of Organic Solar Cells: Materials, Devices and Interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Nanjia

    Due to the increasing demand for sustainable clean energy, photovoltaic cells have received intensified attention in the past decade in both academia and industry. Among the types of cells, organic photovoltaic (OPV) cells offer promise as alternatives to conventional inorganic-type solar cells owning to several unique advantages such as low material and fabrication cost. To maximize power conversion efficiencies (PCEs), extensive research efforts focus on frontier molecular orbital (FMO) energy engineering of photoactive materials. Towards this objective, a series of novel donor polymers incorporating a new building block, bithiophene imide (BTI) group are developed, with narrow bandgap and low-lying highest occupied molecular orbital (HOMO) energies to increase short circuit current density, Jsc, and open circuit voltage, Voc.. Compared to other PV technologies, OPVs often suffer from large internal recombination loss and relatively low fill factors (FFs) <70%. Through a combination of materials design and device architecture optimization strategies to improve both microscopic and macroscopic thin film morphology, OPVs with PCEs up to 8.7% and unprecedented FF approaching 80% are obtained. Such high FF are close to those typically achieved in amorphous Si solar cells. Systematic variations of polymer chemical structures lead to understanding of structure-property relationships between polymer geometry and the resulting blend film morphology characteristics which are crucial for achieving high local mobilities and long carrier lifetimes. Instead of using fullerene as the acceptors, an alternative type of OPV is developed employing a high electron mobility polymer, P(NDI2OD-T2), as the acceptor. To improve the all-polymer blend film morphology, the influence of basic solvent properties such as solvent boiling point and solubility on polymer phase separation and charge transport properties is investigated, yielding to a high PCE of 2.7% for all-polymer solar cells. To take advantages of the inherent mechanical flexibility associated with organic materials, the development of transparent, flexible substrates to replace the conventionally used polycrystalline ITO electrodes is highly desirable. Employing an ultraflexible amorphous zinc indium tin oxide (a-ZITO) transparent conducting oxide (TCO), highly efficient OPVs with similar PCEs to rigid ones are obtained. Furthermore, these cells show no significant PCE reduction under controlled bending test.

  11. Implementing Outcomes Based Accountability in Children's Services. Case Studies

    ERIC Educational Resources Information Center

    Bergeron, Caroline; Chamberlain, Tamsin; George, Nalia; Golden, Sarah; Mundy, Ellie; Southcott, Clare; Walker, Fiona

    2010-01-01

    Outcomes Based Accountability (OBA) is an approach that Children's Trusts and Children's Services can use to assist with planning services and assessing their performance. The OBA approach focuses on outcomes that are desired and monitoring and evidencing progress towards those desired outcomes. OBA makes a distinction between two types of…

  12. Patterns of workplace supervisor support desired by abused women.

    PubMed

    Perrin, Nancy A; Yragui, Nanette L; Hanson, Ginger C; Glass, Nancy

    2011-07-01

    The purpose of this study was to understand differences in patterns of supervisor support desired by female victims of intimate partner violence (IPV) and to examine whether the pattern of support desired at work is reflective of a woman's stage of change in the abusive relationship, IPV-related work interference, and IPV-related job reprimands or job loss. We conducted interviews in Spanish or English with adult women working in low-income jobs who had been physically or sexually abused by an intimate partner/ ex-partner in the past year ( N = 133). Cluster analysis revealed three distinct clusters that form a hierarchy of type of support wanted: those who desired limited support; those who desired confidential, time-off, and emotional support; and those who desired support in wide variety of ways from their supervisor. The clusters appeared to reflect stages of behavior change in an abusive relationship. Specifically, the limited-support cluster may represent an early precontemplation stage, with women reporting the least interference with work. The support-in-every-way cluster may represent later stages of change, in which women are breaking away from the abusive partner and report the greatest interference with work. Women in the confidential-, time-off-, and emotional-support cluster are in a transition stage in which they are considering change and are exploring options in their abusive relationship. Understanding the hierarchy of the type of support desired, and its relationship to stages of change in the abusive relationship and work interference, may provide a strong foundation for developing appropriate and effective workplace interventions to guide supervisors in providing support to women experiencing IPV.

  13. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish

    PubMed Central

    Allodi, Ilary; Hedlund, Eva

    2014-01-01

    Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish. PMID:24904255

  14. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish.

    PubMed

    Allodi, Ilary; Hedlund, Eva

    2014-01-01

    Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.

  15. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  16. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  17. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.

    PubMed

    Stops, A J F; Heraty, K B; Browne, M; O'Brien, F J; McHugh, P E

    2010-03-03

    Mesenchymal stem cell (MSC) differentiation can be influenced by biophysical stimuli imparted by the host scaffold. Yet, causal relationships linking scaffold strain magnitudes and inlet fluid velocities to specific cell responses are thus far underdeveloped. This investigation attempted to simulate cell responses in a collagen-glycosaminoglycan (CG) scaffold within a bioreactor. CG scaffold deformation was simulated using micro-computed tomography (CT) and an in-house finite element solver (FEEBE/linear). Similarly, the internal fluid velocities were simulated using the afore-mentioned microCT dataset with a computational fluid dynamics solver (ANSYS/CFX). From the ensuing cell-level mechanics, albeit octahedral shear strain or fluid velocity, the proliferation and differentiation of the representative cells were predicted from deterministic functions. Cell proliferation patterns concurred with previous experiments. MSC differentiation was dependent on the level of CG scaffold strain and the inlet fluid velocity. Furthermore, MSC differentiation patterns indicated that specific combinations of scaffold strains and inlet fluid flows cause phenotype assemblies dominated by single cell types. Further to typical laboratory procedures, this predictive methodology demonstrated loading-specific differentiation lineages and proliferation patterns. It is hoped these results will enhance in-vitro tissue engineering procedures by providing a platform from which the scaffold loading applications can be tailored to suit the desired tissue. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Influence of social desirability on age differences in self-reports of mood and personality

    PubMed Central

    Soubelet, Andrea; Salthouse, Timothy A.

    2011-01-01

    Increased age has been found to be associated with differences in affect and personality which have been interpreted in terms of better emotional regulation and increased maturity. However, these findings have largely been based on self-report data, and the primary goal of the current research was to investigate the hypothesis that age-related differences in affect and in certain desirable personality traits might, at least partially, reflect age differences in social desirability. As expected, increased age was associated with lower levels of negative affect and neuroticism and higher levels of positive affect, life satisfaction, agreeableness and conscientiousness, and scores on the social desirability scale were positively related to age and to desirable self-report characteristics, but negatively related to undesirable self-report characteristics. Importantly, controlling for the variance in the social desirability measure resulted in less positive age trends in both types of self-report measures. PMID:21682727

  19. Operating a redox flow battery with a negative electrolyte imbalance

    DOEpatents

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  20. MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection.

    PubMed

    Cai, Li; Chen, Ze-Zhong; Chen, Min-Yan; Tang, Hong-Wu; Pang, Dai-Wen

    2013-01-01

    In this work, we have prepared three types of aptamer-conjugated Rubpy-doped silica nanoparticles for Human breast carcinoma MCF-7 cells labeling. Probe A is prepared through covalent conjugation between amine-labeled MUC-1 aptamer and carboxyl-modified Rubpy-doped NPs (NPs-aptamer). Probe B is prepared based on the interaction between biotin-labeled MUC-1 aptamer and avidin-conjugated Rubpy-doped NPs (NPs-avidin-biotin-aptamer). For Probe C, there is a PEG with flexible long chain as the bridge between avidin and the NPs (NPs-PEG-avidin-biotin-aptamer). In addition, we further investigate the practical number of MUC-1 aptamers on an NP of each probe using hoechst33258 dye. The binding efficiency of MUC-1 aptamer on the three types of probes as follows: Probe A < Probe B < Probe C. In addition, microscopic fluorescence imaging shows that Probe C containing the PEG molecules can be effectively applied for the recognition of MUC-1 protein in human breast carcinoma MCF-7 cells thus demonstrates that the PEG with flexible long chain as the bridge between the aptamer and NP can greatly enhances the freedom of MUC-1 aptamer. Compared with common organic dyes, the dye-doped silica nanoparticles serve as a stable bioprobe because of their facile conjugation with the desirable biomolecules, and have exhibited great potential in bioanalysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Manual braille writer

    DOEpatents

    Hawk, L.S.; Turner, J.H.

    1992-07-28

    A manual-type braille writer is described that provides for both writing and reading in a normal left-to-right manner. In the preferred form, this braille writer has a clip board type base, and in the preferred embodiment a guide plate assembly can be moved to, and releasable fixed at, selected vertical locations along this base. The guide plate assembly is provided with a plurality of character cells uniformly spaced along rows across the guide plate assembly as well as in uniformly spaced rows. This guide plate assembly has a lower portion to be placed under a sheet of paper positioned on the clip board base and an upper portion to be positioned on top of the sheet. This upper portion is hinged with respect to the lower portion. Each character cell is typically made up of six appropriately spaced pins extending up from the lower portion that are aligned with a rosette-shaped cutout in the upper portion. A stylus member is provided that has a distal end to be fitted into the cutout of the character cell so that a recess in the end thereof presses the writing paper over the pin associated with that recess to produce a braille dot at that location. When desired, the upper portion can be lifted up so that the text already written can be read or to determine the place for initiating writing when writing has been interrupted. 10 figs.

  2. Manual braille writer

    DOEpatents

    Hawk, Lawrence S.; Turner, Joe H.

    1992-01-01

    A manual-type braille writer that provides for both writing and reading in a normal left-to-right manner. In the preferred form, this braille writer has a clip board type base, and in the preferred embodiment a guide plate assembly can be moved to, and releasable fixed at, selected vertical locations along this base. The guide plate assembly is provided with a plurality of character cells uniformly spaced along rows across the guide plate assembly as well as in uniformly spaced rows. This guide plate assembly has a lower portion to be placed under a sheet of paper positioned on the clip board base and an upper portion to be positioned on top of the sheet. This upper portion is hinged with respect to the lower portion. Each character cell is typically made up of six appropriately spaced pins extending up from the lower portion that are aligned with a rosette-shaped cutout in the upper portion. A stylus member is provided that has a distal end to be fitted into the cutout of the character cell so that a recess in the end thereof presses the writing paper over the pin associated with that recess to produce a braille dot at that location. When desired, the upper portion can be lifted up so that the text already written can be read or to determine the place for initiating writing when writing has been interrupted.

  3. MOLD-SHAPED, NANOFIBER SCAFFOLD-BASED CARTILAGE ENGINEERING USING HUMAN MESENCHYMAL STEM CELLS AND BIOREACTOR

    PubMed Central

    Janjanin, Sasa; Li, Wan-Ju; Morgan, Meredith T.; Shanti, Rabie M.; Tuan, Rocky S.

    2008-01-01

    Background Mesenchymal stem cell (MSC)-based tissue engineering is a promising future alternative to autologous cartilage grafting. This study evaluates the potential of using MSCs, seeded into electrospun, biodegradable polymeric nanofibrous scaffolds, to engineer cartilage with defined dimensions and shape, similar to grafts used for subcutaneous implantation in plastic and reconstructive surgery. Materials and methods Human bone marrow derived MSCs seeded onto nanofibrous scaffolds and placed in custom-designed molds were cultured for up to 42 days in bioreactors. Chondrogenesis was induced with either transforming growth factor-β1 (TGF-β1) alone or in combination with insulin-like growth factor-I (IGF-I). Results Constructs exhibited hyaline cartilage histology with desired thickness and shape as well as favorable tissue integrity and shape retention, suggesting the presence of elastic tissue. Time-dependent increase in cartilage matrix gene expression was seen in both types of culture; at Day 42, TGF-β1/IGF-I treated cultures showed higher collagen type II and aggrecan expression. Both culture conditions showed significant time-dependent increase in sulfated glycosaminoglycan and hydroxyproline contents. TGF-β1/IGF-I treated samples were significantly stiffer; with equilibrium compressive Young’s modulus values reaching 17 kPa by Day 42. Conclusions The successful ex vivo development of geometrically defined cartilaginous construct using customized molding suggests the potential of cell-based cartilage tissue for reconstructive surgery. PMID:18316094

  4. Pgas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger

    PubMed Central

    Yin, Xian; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2017-01-01

    ABSTRACT The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, Pgas, which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger, an excellent platform for the production of organic acids, and we found that the promoter Pgas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein (sGFP) was successfully expressed by Pgas at pH 2.0, verifying the results of the transcriptional analysis. Next, Pgas was used to express the cis-aconitate decarboxylase (cad) gene of Aspergillus terreus in A. niger, allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that Pgas strength was independent of acid type and acid ion concentration, showing dependence on pH only. IMPORTANCE The promoter Pgas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering. PMID:28087530

  5. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.

    PubMed

    Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M

    2014-02-01

    Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.

  6. The object of my desire: Five-year-olds rapidly reason about a speaker's desire during referential communication.

    PubMed

    San Juan, Valerie; Chambers, Craig G; Berman, Jared; Humphry, Chelsea; Graham, Susan A

    2017-10-01

    Two experiments examined whether 5-year-olds draw inferences about desire outcomes that constrain their online interpretation of an utterance. Children were informed of a speaker's positive (Experiment 1) or negative (Experiment 2) desire to receive a specific toy as a gift before hearing a referentially ambiguous statement ("That's my present") spoken with either a happy or sad voice. After hearing the speaker express a positive desire, children (N=24) showed an implicit (i.e., eye gaze) and explicit ability to predict reference to the desired object when the speaker sounded happy, but they showed only implicit consideration of the alternate object when the speaker sounded sad. After hearing the speaker express a negative desire, children (N=24) used only happy prosodic cues to predict the intended referent of the statement. Taken together, the findings indicate that the efficiency with which 5-year-olds integrate desire reasoning with language processing depends on the emotional valence of the speaker's voice but not on the type of desire representations (i.e., positive vs. negative) that children must reason about online. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams

    NASA Astrophysics Data System (ADS)

    Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.

    2016-12-01

    Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.

  8. Plant cell walls to ethanol.

    USDA-ARS?s Scientific Manuscript database

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  9. Confirming Preferences or Collecting Data? Information Search Strategies and Romantic Partner Selection

    PubMed Central

    Hennessy, Michael; Fishbein, Martin; Curtis, Brenda; Barrett, Daniel W.

    2010-01-01

    This article investigates two kinds of information search strategies in the context of selecting romantic partners. Confirmatory searching occurs when people ask for more information about a romantic partner in order to validate or confirm their assessment. Balanced searches are characterized by a search for risk information for partners rated as attractive and for attractiveness information about partners rated as risky in order to attain a more complete evaluation. A factorial survey computer program randomly constructed 5 types of partner descriptions and college-age respondents evaluated nine descriptions in terms of both health risk and romantic attractiveness outcomes. The results show little evidence of balanced search strategies: for all vignette types the respondents searched for attractiveness information. Regression analysis of the search outcomes showed no difference between males and females in the desire for attractiveness or risk information, the amount of additional information desired, or the proportion of descriptions for which more information was desired. However, an attractive physical appearance did increase the amount of additional information desired and the proportion of vignettes for which more information was desired. The results were generally inconsistent with a balanced search hypothesis; a better characterization of the respondents' strategy might be “confirmatory bias.” PMID:18350465

  10. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials

    PubMed Central

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J.

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models—of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells—to investigate the relative effects of reducing two important voltage-gated Ca currents—the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action. PMID:25360118

  11. The high life: Transport of microbes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Smith, David J.; Griffin, Dale W.; Jaffe, Daniel A.

    2011-07-01

    Microbes (bacteria, fungi, algae, and viruses) are the most successful types of life on Earth because of their ability to adapt to new environments, reproduce quickly, and disperse globally. Dispersal occurs through a number of vectors, such as migrating animals or the hydrological cycle, but transport by wind may be the most common way microbes spread. General awareness of airborne microbes predates the science of microbiology. People took advantage of wild airborne yeasts to cultivate lighter, more desirable bread as far back as ancient Egypt by simply leaving a mixture of grain and liquids near an open window. In 1862, Louis Pasteur's quest to disprove spontaneous generation resulted in the discovery that microbes were actually single-celled, living creatures, prevalent in the environment and easily killed with heat (pasteurization). His rudimentary experiments determined that any nutrient medium left open to the air would eventually teem with microbial life because of free-floating, colonizing cells. The same can happen in a kitchen: Opportunistic fungal and bacterial cells cause food items exposed to the air to eventually spoil.

  12. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production

    PubMed Central

    Häkkinen, Suvi T.; Reuter, Lauri; Nuorti, Ninni; Joensuu, Jussi J.; Rischer, Heiko; Ritala, Anneli

    2018-01-01

    Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein–Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named ‘Hulk,’ produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43–55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved. PMID:29434617

  13. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production.

    PubMed

    Häkkinen, Suvi T; Reuter, Lauri; Nuorti, Ninni; Joensuu, Jussi J; Rischer, Heiko; Ritala, Anneli

    2018-01-01

    Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.

  14. The high life: Transport of microbes in the atmosphere

    USGS Publications Warehouse

    Smith, D.J.; Griffin, Dale W.; Jaffe, D.A.

    2011-01-01

    Microbes (bacteria, fungi, algae, and viruses) are the most successful types of life on Earth because of their ability to adapt to new environments, reproduce quickly, and disperse globally. Dispersal occurs through a number of vectors, such as migrating animals or the hydrological cycle, but transport by wind may be the most common way microbes spread. General awareness of airborne microbes predates the science of microbiology. People took advantage of wild airborne yeasts to cultivate lighter, more desirable bread as far back as ancient Egypt by simply leaving a mixture of grain and liquids near an open window. In 1862, Louis Pasteur's quest to disprove spontaneous generation resulted in the discovery that microbes were actually single-celled, living creatures, prevalent in the environment and easily killed with heat (pasteurization). His rudimentary experiments determined that any nutrient medium left open to the air would eventually teem with microbial life because of free-floating, colonizing cells. The same can happen in a kitchen: Opportunistic fungal and bacterial cells cause food items exposed to the air to eventually spoil.

  15. Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield

    PubMed Central

    2014-01-01

    Background Wood cell walls are rich in cellulose, hemicellulose and lignin. Hence, they are important sources of renewable biomass for producing energy and green chemicals. However, extracting desired constituents from wood efficiently poses significant challenges because these polymers are highly cross-linked in cell walls and are not easily accessible to enzymes and chemicals. Results We show that aspen pectate lyase PL1-27, which degrades homogalacturonan and is expressed at the onset of secondary wall formation, can increase the solubility of wood matrix polysaccharides. Overexpression of this enzyme in aspen increased solubility of not only pectins but also xylans and other hemicelluloses, indicating that homogalacturonan limits the solubility of major wood cell wall components. Enzymatic saccharification of wood obtained from PL1-27-overexpressing trees gave higher yields of pentoses and hexoses than similar treatment of wood from wild-type trees, even after acid pretreatment. Conclusions Thus, the modification of pectins may constitute an important biotechnological target for improved wood processing despite their low abundance in woody biomass. PMID:24450583

  16. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  17. Influence of In Vitro and In Vivo Oxygen Modulation on β Cell Differentiation From Human Embryonic Stem Cells

    PubMed Central

    Cechin, Sirlene; Álvarez-Cubela, Silvia; Giraldo, Jaime A.; Molano, Ruth D.; Villate, Susana; Ricordi, Camillo; Pileggi, Antonello; Inverardi, Luca

    2014-01-01

    The possibility of using human embryonic stem (hES) cell-derived β cells as an alternative to cadaveric islets for the treatment of type 1 diabetes is now widely acknowledged. However, current differentiation methods consistently fail to generate meaningful numbers of mature, functional β cells. In order to address this issue, we set out to explore the role of oxygen modulation in the maturation of pancreatic progenitor (PP) cells differentiated from hES cells. We have previously determined that oxygenation is a powerful driver of murine PP differentiation along the endocrine lineage of the pancreas. We hypothesized that targeting physiological oxygen partial pressure (pO2) levels seen in mature islets would help the differentiation of PP cells along the β-cell lineage. This hypothesis was tested both in vivo (by exposing PP-transplanted immunodeficient mice to a daily hyperbaric oxygen regimen) and in vitro (by allowing PP cells to mature in a perfluorocarbon-based culture device designed to carefully adjust pO2 to a desired range). Our results show that oxygen modulation does indeed contribute to enhanced maturation of PP cells, as evidenced by improved engraftment, segregation of α and β cells, body weight maintenance, and rate of diabetes reversal in vivo, and by elevated expression of pancreatic endocrine makers, β-cell differentiation yield, and insulin production in vitro. Our studies confirm the importance of oxygen modulation as a key variable to consider in the design of β-cell differentiation protocols and open the door to future strategies for the transplantation of fully mature β cells. PMID:24375542

  18. Electrolytic Valving Isolation for Cell Co-Culture Microenvironment with Controlled Cell Pairing Ratios

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2016-01-01

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341

  19. Human neuroblastoma (SH-SY5Y) cell culture and differentiation in 3-D collagen hydrogels for cell-based biosensing.

    PubMed

    Desai, Anu; Kisaalita, William S; Keith, Charles; Wu, Z-Z

    2006-02-15

    Cell-based three-dimensional systems are desirable in the field of high throughput screening assays due to their potential similarity to in vivo environment. We have used SH-SY5Y human neuroblastoma cells cultured in 3-D collagen hydrogel, confocal microscopy and immunofluorescence staining, to assess the merit of the system as a functional, cell-based biosensor. Our results show differences between 2-D and 3-D resting membrane potential development profile upon differentiation. There was no statistically significant difference in SH-SY5Y proliferation rate between 2-D monolayer and 3-D collagen culture formats. A large percentage of cells (2-D, 91.30% and 3-D, 84.93%) did not develop resting membrane potential value equal to or lower than -40 mV; instead cells exhibited a heterogeneous resting membrane potential distribution. In response to high K(+) (50 mM) depolarization, 3-D cells were less responsive in terms of increase in intracellular Ca(2+), in comparison to 2-D cells, supporting the hypothesis that 2-D cell calcium dynamics may be exaggerated. L-Type Ca(2+) expression levels based on staining results was inconsistent with Bay K 8644 channel activation results, strongly suggesting that either the majority of the channels were non-functional or could not be activated by Bay K 8644. In general, the results in this study confirm the depolarization-induced differences in intracellular calcium release when cultured using a 2-D versus a 3-D matrix.

  20. 77 FR 34355 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ..., training conditions, technological environment, types of jobs and tasks, types of programs needed, and... information on organizational goals (e.g., desired performance), training conditions (e.g., technological environment), specific jobs and tasks, types of programs needed, and target audience. Evaluation respondents...

  1. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP85-99) epitope: Towards selective immunosuppression.

    PubMed

    Tapeinou, Anthi; Giannopoulou, Efstathia; Simal, Carmen; Hansen, Bjarke E; Kalofonos, Haralabos; Apostolopoulos, Vasso; Vlamis-Gardikas, Alexios; Tselios, Theodore

    2018-01-01

    Anthraquinone type compounds, especially di-substituted amino alkylamino anthraquinones have been widely studied as immunosuppressants. The anthraquinone ring is part of mitoxandrone that has been used for the treatment of multiple sclerosis (MS) and several types of tumors. A desired approach for the treatment of MS would be the immunosuppression and elimination of specific T cells that are responsible for the induction of the disease. Herein, the development of a peptide compound bearing an anthraquinone derivative with the potential to specifically destroy the encephalitogenic T cells responsible for the onset of MS is described. The compound consists of the myelin basic protein (MBP) 85-99 immunodominant epitope (MBP 85-99 ) coupled to an anthraquinone type molecule (AQ) via a disulfide (S-S) and 6 amino hexanoic acid (Ahx) residues (AQ-S-S-(Ahx) 6 MBP 85-99 ). AQ-S-S-(Ahx) 6 MBP 85-99 could bind to HLA II DRB1*-1501 antigen with reasonable affinity (IC 50 of 56 nM) The compound was localized to the nucleus of Jurkat cells (an immortalized line of human T lymphocytes) 10 min after its addition to the medium and resulted in lowered Bcl-2 levels (apoptosis). Entrance of the compound was abolished when cells were pre-treated with cisplatin, an inhibitor of thioredoxin reductase. Accordingly, levels of free thiols were elevated in the culture supernatants of Jurkat cells exposed to N-succinimidyl 3-(2-pyridyldithio) propionate coupled to (Ahx) 6 MBP 85-99 via a disulphide (SPDP-S-S-(Ahx) 6 MBP 85-99 ) but returned to normal after exposure to cisplatin. These results raise the possibility of AQ-S-S-(Ahx) 6 MBP 85-99 being used as an eliminator of encephalitogenic T cells via implication of the thioredoxin system for the generation of the toxic, thiol-containing moiety (AQ-SH). Future experiments would ideally determine whether SPDP-S-S-(Ahx) 6 MBP 85-99 could incorporate into HLA II DRB1*-1501 tetramers and neutralize encephalitogenic T cell lines sensitized to MBP 85-99 . Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    PubMed

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Type I error probabilities based on design-stage strategies with applications to noninferiority trials.

    PubMed

    Rothmann, Mark

    2005-01-01

    When testing the equality of means from two different populations, a t-test or large sample normal test tend to be performed. For these tests, when the sample size or design for the second sample is dependent on the results of the first sample, the type I error probability is altered for each specific possibility in the null hypothesis. We will examine the impact on the type I error probabilities for two confidence interval procedures and procedures using test statistics when the design for the second sample or experiment is dependent on the results from the first sample or experiment (or series of experiments). Ways for controlling a desired maximum type I error probability or a desired type I error rate will be discussed. Results are applied to the setting of noninferiority comparisons in active controlled trials where the use of a placebo is unethical.

  4. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established or reasonable cost manufacturing techniques, manufacturability of the materials in dimensions required for integration into battery cells of practical capacities, low Technology Readiness levels (TRl), and the ability to achieve the desired performance by the customer need dates. The advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide (lithium NMC) cathode with a silicon-based composite anode was selected as the technology that can offer the best combination of safety, specific energy, energy density, and likelihood of success. Tasks over the next three years will focus on development of electrode materials, compatible electrolytes, and separator materials, and integration of promising components to assess their combined performance in working cells. Cells of the chosen chemistry will be developed to TRl 6 by 2014 and will then be transferred to the customers for infusion into their mission paths.

  5. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment.

    PubMed

    Abcouwer, Steven F; Gardner, Thomas W

    2014-04-01

    Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation occurring before observable vascular pathologies. In this article, we consider the pathology of DR from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision. © 2014 New York Academy of Sciences.

  6. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment

    PubMed Central

    Abcouwer, Steven F.; Gardner, Thomas W.

    2014-01-01

    Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation before observable vascular pathologies. In this article, we consider the pathology of diabetic retinopathy from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision. PMID:24673341

  7. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    PubMed

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  8. Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions.

    PubMed

    Wang, Kai; Luo, Ying

    2013-07-08

    As one important category of biological molecules on the cell surface and in the extracellular matrix (ECM), glycosaminoglycans (GAGs) have been widely studied for biomedical applications. With the understanding that the biological functions of GAGs are driven by the complex dynamics of physiological and pathological processes, methodologies are desired to allow the elucidation of cell-GAG interactions with molecular level precision. In this study, a microtiter plate-based system was devised through a new surface modification strategy involving polydopamine (PDA) and GAG molecules functionalized with hydrazide chemical groups. A small library of GAGs including hyaluronic acid (with different molecular weights), heparin, and chondroitin sulfate was successfully immobilized via defined binding sites onto the microtiter plate surface under facile aqueous conditions. The methodology then allowed parallel studies of the GAG-modified surfaces in a high-throughput format. The results show that immobilized GAGs possess distinct properties to mediate protein adsorption, cell adhesion, and inflammatory responses, with each property showing dependence on the type and molecular weight of specific GAG molecules. The PDA-assisted immobilization of hydrazide-functionalized GAGs allows biomimetic attachment of GAG molecules and retains their bioactivity, providing a new methodology to systematically probe fundamental cell-GAG interactions to modulate the bioactivity and biocompatibility of biomaterials.

  9. Successful pregnancy and delivery after simultaneous islet-kidney transplantation.

    PubMed

    Assalino, Michela; Podetta, Michele; Demuylder-Mischler, Sandrine; Francini, Katyuska; Pernin, Nadine; Randin, Jean-Pierre; Bosco, Domenico; Andres, Axel; Berney, Thierry

    2018-04-19

    Allogeneic islet of Langerhans transplantation is a recognized beta-cell replacement therapy for patients affected by type 1 diabetes mellitus. Type 1 diabetes mellitus is a condition associated with an increased risk of adverse outcomes for pregnant women and fetuses. We report the case of a 29-year-old woman with type 1 diabetes mellitus, who underwent successful allogeneic islet transplantation with simultaneous kidney transplantation. She achieved durable insulin independence after 2 islet infusions. Pregnancy was desired and planned 2 years after the last islet infusion. Multidisciplinary monitoring of pregnancy was carried out and the immunosuppressive regimen was adapted. Euglycemia was maintained throughout pregnancy without the need for exogenous insulin. After an uneventful pregnancy, she delivered on term an otherwise healthy male child with imperforate anus that was immediately surgically corrected. In conclusion, allogeneic islet transplantation is a suitable treatment for women of childbearing age with complicated type 1 diabetes mellitus, allowing physiologic glycemic control during pregnancy with a low risk of graft loss. This target can be achieved only by a tight multidisciplinary follow-up, including immunosuppressive therapy adaptation and adequate diabetes and obstetrical monitoring. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.

  10. Genetic selection for a highly functional cysteine-less membrane protein using site-saturation mutagenesis

    PubMed Central

    Arendt, Cassandra S.; Ri, Keirei; Yates, Phillip A.; Ullman, Buddy

    2007-01-01

    We describe an efficient method for generating highly functional membrane proteins with variant amino acids at defined positions that couples a modified site-saturation strategy with functional genetic selection. We applied this method to the production of a cysteine-less variant of the Crithidia fasciculata inosine-guanosine permease CfNT2, in order to facilitate biochemical studies using thiol-specific modifying reagents. Of ten endogenous cysteine residues in CfNT2, two cannot be replaced with serine or alanine without loss of function. High-quality single- and double-mutant libraries were produced by combining a previously reported site-saturation mutagenesis scheme based on the Quikchange method with a novel gel purification step that effectively eliminated template DNA from the products. Following selection for functional complementation in S. cerevisiae cells auxotrophic for purines, several highly functional non-cysteine substitutions were efficiently identified at each desired position, allowing the construction of cysteine-less variants of CfNT2 that retained wild-type affinity for inosine. This combination of an improved site-saturation mutagenesis technique and positive genetic selection provides a simple and efficient means to identify functional and perhaps unexpected amino acid variants at a desired position. PMID:17481563

  11. Multijunction high-voltage solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Goradia, C.; Chai, A. T.

    1981-01-01

    Multijunction cell allows for fabrication of high-voltage solar cell on single semiconductor wafer. Photovoltaic energy source using cell is combined on wafer with circuit it is to power. Cell consists of many voltage-generating regions internally or externally interconnected to give desired voltage and current combination. For computer applications, module is built on silicon wafer with energy for internal information processing and readouts derived from external light source.

  12. Effects of Flavor and Texture on the Sensory Perception of Gouda-Type Cheese Varieties during Ripening Using Multivariate Analysis.

    PubMed

    Shiota, Makoto; Iwasawa, Ai; Suzuki-Iwashima, Ai; Iida, Fumiko

    2015-12-01

    The impact of flavor composition, texture, and other factors on desirability of different commercial sources of Gouda-type cheese using multivariate analyses on the basis of sensory and instrumental analyses were investigated. Volatile aroma compounds were measured using headspace solid-phase microextraction gas chromatography/mass spectrometry (GC/MS) and steam distillation extraction (SDE)-GC/MS, and fatty acid composition, low-molecular-weight compounds, including amino acids, and organic acids, as well pH, texture, and color were measured to determine their relationship with sensory perception. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed to discriminate between 2 different ripening periods in 7 sample sets, revealing that ethanol, ethyl acetate, hexanoic acid, and octanoic acid increased with increasing sensory attribute scores for sweetness, fruity, and sulfurous. A partial least squares (PLS) regression model was constructed to predict the desirability of cheese using these parameters. We showed that texture and buttery flavors are important factors affecting the desirability of Gouda-type cheeses for Japanese consumers using these multivariate analyses. © 2015 Institute of Food Technologists®

  13. T regulatory cells participate in the control of germinal centre reactions

    PubMed Central

    Alexander, Carla-Maria; Tygrett, Lorraine T; Boyden, Alexander W; Wolniak, Kristy L; Legge, Kevin L; Waldschmidt, Thomas J

    2011-01-01

    Germinal centre (GC) reactions are central features of T-cell-driven B-cell responses, and the site where antibody-producing cells and memory B cells are generated. Within GCs, a range of complex cellular and molecular events occur which are critical for the generation of high affinity antibodies. These processes require exquisite regulation not only to ensure the production of desired antibodies, but to minimize unwanted autoreactive or low affinity antibodies. To assess whether T regulatory (Treg) cells participate in the control of GC responses, immunized mice were treated with an anti-glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) monoclonal antibody (mAb) to disrupt Treg-cell activity. In anti-GITR-treated mice, the GC B-cell pool was significantly larger compared with control-treated animals, with switched GC B cells composing an abnormally high proportion of the response. Dysregulated GCs were also observed regardless of strain, T helper type 1 or 2 polarizing antigens, and were also seen after anti-CD25 mAb treatment. Within the spleens of immunized mice, CXCR5+ and CCR7− Treg cells were documented by flow cytometry and Foxp3+ cells were found within GCs using immunohistology. Final studies demonstrated administration of either anti-transforming growth factor-β or anti-interleukin-10 receptor blocking mAb to likewise result in dysregulated GCs, suggesting that generation of inducible Treg cells is important in controlling the GC response. Taken together, these findings indicate that Treg cells contribute to the overall size and quality of the humoral response by controlling homeostasis within GCs. PMID:21635248

  14. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    PubMed

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  15. Adaptive plasma for cancer therapy: physics, mechanism and applications

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2017-10-01

    One of the most promising applications of cold atmospheric plasma (CAP) is the cancer therapy. The uniqueness of plasma is in its ability to change composition in situ. Plasma self-organization could lead to formation of coherent plasma structures. These coherent structures tend to modulate plasma chemistry and composition, including reactive species, the electric field and charged particles. Formation of coherent plasma structures allows the plasma to adapt to external boundary conditions, such as different cells types and their contextual tissues. In this talk we will explore possibilities and opportunities that the adaptive plasma therapeutic system might offer. We shall define such an adaptive system as a plasma device that is able to adjust the plasma composition to obtain optimal desirable outcomes through its interaction with cells and tissues. The efficacy of cold plasma in a pre-clinical model of various cancer types such as lung, bladder, breast, head, neck, brain and skin has been demonstrated. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. Recently mechanism of plasma selectivity based on aquaporin hypothesis has been proposed. Aquaporins (AQPs) are the confirmed membrane channels of H2O2 and other large molecules. We have demonstrated that the anti-cancer capacity of plasma could be inhibited by silencing the expression of AQPs. Additional possible cell feedback mechanism was recently discovered. It is associated with production of reactive species during direct CAP treatment by cancer cells. Selective production of hydrogen peroxide by different cells can lead to adaptation of chemistry at the plasma-cell interface based on the cellular input. In particular we have found that the discharge voltage is an important factor affecting the ratio of reactive oxygen species to reactive nitrogen species in the gas phase and this correlates well with effect of hydrogen peroxide production by cells. This work was supported by a National Science Foundation, Grant No. 1465061.

  16. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    PubMed

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery constitutes a simple technology available in many laboratories, this new tool might be useful to further investigate the role of Ca 2+ in human mesenchymal stem cells biological processes such as proliferation and differentiation.

  17. Remyelination after Lysophosphatidyl Choline-Induced Demyelination Is Stimulated by Bone Marrow Stromal Cell-Derived Oligoprogenitor Cell Transplantation.

    PubMed

    Nazm Bojnordi, M; Ghasemi, H H; Akbari, E

    2015-01-01

    Bone marrow stromal cells (BMSCs) are a desirable cell source that may be useful for the treatment of neurodegenerative diseases given their capacity to differentiate into various types of cells. The current study aimed to investigate whether oligoprogenitor cell (OPC)-derived BMSCs have therapeutic benefits in an animal model of local demyelination. BMSCs were transdifferentiated into OPCs using a defined culture medium supplemented with a combination of inducers. The differentiation capacity of the BMSCs was evaluated at the end of the induction phase by assessing the expression levels of the glial-specific markers oligodendrocyte transcription factor 2 and O4 surface antigen. Local demyelination was induced in the corpus callosum of adult female rats via direct injection of lysophosphatidylcholine (LPC) followed by engraftment of BMSC-generated OPCs. The rats were divided into sham control, vehicle control, and cell-transplanted groups. The changes in the extent of demyelination and the robustness of the remyelination event were assessed using Luxol Fast Blue staining and immunohistochemical analysis 1 week after LPC injection and 2 weeks after cell transplantation. Consequently, transplantation of OPCs into the demyelinated corpus callosum model resulted in differentiation of the cells into mature oligodendrocytes that were immunopositive for myelin basic protein. Furthermore, OPC transplantation mitigated demyelination and augmented remyelination relative to controls. These findings suggest that BMSC-derived OPCs can be utilized in therapeutic approaches for the management of demyelination-associated diseases such as multiple sclerosis. © 2015 S. Karger AG, Basel.

  18. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    PubMed

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Paralyzed by desire: a new type of body integrity identity disorder.

    PubMed

    Giummarra, Melita J; Bradshaw, John L; Hilti, Leonie M; Nicholls, Michael E R; Brugger, Peter

    2012-03-01

    Body incongruity in body integrity identity disorder (BIID) manifests in the desire to have a healthy limb amputated. We describe a variant of the disorder: the desire to become paralyzed (paralysis-BIID). Sixteen otherwise healthy participants, recruited through Internet-based forums, websites, or word of mouth, completed questionnaires about details of their desire and accompanying symptoms. Onset of the desire for paralysis typically preceded puberty. All participants indicated a specific level for desired spinal cord injury. All participants simulated paralysis through mental imagery or physical pretending, and 9 (56%) reported erotic interest in paraplegia and/or disability. Our key new finding was that 37.5% of paralysis-BIID participants were women, compared with 4.4% women in a sample of 68 individuals with amputation-BIID. BIID reflects a disunity between self and body, usually with a prominent sexual component. Sex-related differences are emerging: unlike men, a higher proportion of women desire paralysis than desire amputation, and, while men typically seek unilateral amputation, women typically seek bilateral amputation. We propose that these sex-related differences in BIID manifestation may relate to sex differences in cerebral lateralization, or to disruption of representation and/or processing of body-related information in right-hemisphere frontoparietal networks.

  20. A Role for M-Matrices in Modelling Population Growth

    ERIC Educational Resources Information Center

    James, Glyn; Rumchev, Ventsi

    2006-01-01

    Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…

  1. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems

    PubMed Central

    Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases. PMID:26840840

  2. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine

    PubMed Central

    Hacker, Michael C.; Nawaz, Hafiz Awais

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468

  3. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.

    PubMed

    Hacker, Michael C; Nawaz, Hafiz Awais

    2015-11-19

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.

  4. Genetic engineering of microorganisms for biodiesel production

    PubMed Central

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  5. Genetic engineering of microorganisms for biodiesel production.

    PubMed

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.

  6. NIR stimulus-responsive core-shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy.

    PubMed

    Sun, Kai; You, Chaoqun; Wang, Senlin; Gao, Zhiguo; Wu, Hongshuai; Tao, W Andy; Zhu, Xiaoli; Sun, Baiwang

    2018-07-13

    A novel core-shell type nanoparticle (CSNP) was designed here to target co-delivery of doxorubicin (DOX) and photosensitizer indocyanine green (ICG) to tumor sites by the aid of NIR induced photothermal conversion effect for the purpose of synergistic chemo-photothermal cancer therapy. The electrostatically self-assembled CSNPs were prepared by amino-functionalized mesoporous silica nanoparticles (MSN-NH 2 ) as the positive inner core and DSPE-PEG 2000 -COOH and DSPE-PEG 2000 -FA modified lecithin as the negative outer shell. The obtained CSNPs were nanospheres with a uniform size of 47 nm, which were kept stable at 4 °C in PBS (pH = 7). Research on the release of NIR stimulus (808 nm, 1.54 W cm -2 , 6 min) manifested that the release property of the CSNPs was controllable under low pH conditions. In addition, specific concentration (40 μg ml -1 ) ICG-loaded CSNPs, achieving an appropriate temperature up to 45 °C, indicated a desired photothermal conversion efficiency. For targeting the folate receptor, the folate modified CSNPs enabled us to reach a higher cellular uptake by the mean fluorescence intensity. In vitro cell assay, the prepared CSNPs showed outstanding inhibitory efficiency (2.07% cell viability and 91.8% cell apoptosis) on MCF-7 cells for 24 h when irradiated by an 808 nm laser with a power of 1.54 W cm -2 for 6 min. Our research highlights that the prepared nanoparticles hold potential promise for cancer treatment based on photothermal conversion performance and FA-targeted delivery.

  7. NIR stimulus-responsive core–shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy

    NASA Astrophysics Data System (ADS)

    Sun, Kai; You, Chaoqun; Wang, Senlin; Gao, Zhiguo; Wu, Hongshuai; Tao, W. Andy; Zhu, Xiaoli; Sun, Baiwang

    2018-07-01

    A novel core–shell type nanoparticle (CSNP) was designed here to target co-delivery of doxorubicin (DOX) and photosensitizer indocyanine green (ICG) to tumor sites by the aid of NIR induced photothermal conversion effect for the purpose of synergistic chemo-photothermal cancer therapy. The electrostatically self-assembled CSNPs were prepared by amino-functionalized mesoporous silica nanoparticles (MSN-NH2) as the positive inner core and DSPE-PEG2000-COOH and DSPE-PEG2000-FA modified lecithin as the negative outer shell. The obtained CSNPs were nanospheres with a uniform size of 47 nm, which were kept stable at 4 °C in PBS (pH = 7). Research on the release of NIR stimulus (808 nm, 1.54 W cm‑2, 6 min) manifested that the release property of the CSNPs was controllable under low pH conditions. In addition, specific concentration (40 μg ml‑1) ICG-loaded CSNPs, achieving an appropriate temperature up to 45 °C, indicated a desired photothermal conversion efficiency. For targeting the folate receptor, the folate modified CSNPs enabled us to reach a higher cellular uptake by the mean fluorescence intensity. In vitro cell assay, the prepared CSNPs showed outstanding inhibitory efficiency (2.07% cell viability and 91.8% cell apoptosis) on MCF-7 cells for 24 h when irradiated by an 808 nm laser with a power of 1.54 W cm‑2 for 6 min. Our research highlights that the prepared nanoparticles hold potential promise for cancer treatment based on photothermal conversion performance and FA-targeted delivery.

  8. 48 CFR 228.105 - Other types of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Other types of bonds. 228..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Bonds 228.105 Other types of bonds... surety company are desired. [70 FR 8538, Feb. 22, 2005] ...

  9. Types of Data Systems

    ERIC Educational Resources Information Center

    Gould, Tate; Nicholas, Amy; Ruggiero, Tony; Blandford, William; Thayer, Sara; Bull, Bruce

    2015-01-01

    There are several types of data systems that support data from Part C/619 programs. Although the system types have similarities, each has its own unique characteristics and purposes. The attributes that make one type of data system a particularly good fit for one data-related need or function can be less desirable for another need or function. In…

  10. Glycoengineering in CHO Cells: Advances in Systems Biology.

    PubMed

    Tejwani, Vijay; Andersen, Mikael R; Nam, Jong Hyun; Sharfstein, Susan T

    2018-03-01

    For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post-translational modifications, particularly glycosylation, which unlike protein synthesis, is a non-templated process. Consequently, both native and recombinant glycoprotein production generate heterogeneous mixtures containing variable amounts of different glycoforms. Stability, potency, plasma half-life, and immunogenicity of the glycoprotein biologic are directly influenced by the glycoforms. Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g., heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling, and glycan and glycoprotein analysis that together will provide new strategies for glycoengineering of CHO cells with desired or enhanced glycosylation capabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantum Dots Investigated for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in their fluorescence (see the photograph).

  12. Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells.

    PubMed

    Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui

    2014-10-01

    The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.

  13. Design of Light-Controlled Protein Conformations and Functions.

    PubMed

    Ritterson, Ryan S; Hoersch, Daniel; Barlow, Kyle A; Kortemme, Tanja

    2016-01-01

    In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality.

  14. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine.

    PubMed

    Mir, Tanveer Ahmad; Nakamura, Makoto

    2017-06-01

    Three-dimensional (3D) printing technology has been used in industrial worlds for decades. Three-dimensional bioprinting has recently received an increasing attention across the globe among researchers, academicians, students, and even the ordinary people. This emerging technique has a great potential to engineer highly organized functional bioconstructs with complex geometries and tailored components for engineering bioartificial tissues/organs for widespread applications, including transplantation, therapeutic investigation, drug development, bioassay, and disease modeling. Although many specialized 3D printers have been developed and applied to print various types of 3D tissue constructs, bioprinting technologies still have several technical challenges, including high resolution distribution of cells, controlled deposition of bioinks, suitable bioink materials, maturation of cells, and effective vascularization and innervation within engineered complex structures. In this brief review, we discuss about bioprinting approach, current limitations, and possibility of future advancements for producing engineered bioconstructs and bioartificial organs with desired functionalities.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanan, Emily J.; Eigenbrot, Charles; Bryan, Marian C.

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. Here in this paper, wemore » describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.« less

  16. Gender-specificity of solitary and dyadic sexual desire among gynephilic and androphilic women and men.

    PubMed

    Dawson, Samantha J; Chivers, Meredith L

    2014-04-01

    Incentive motivation theory proposes that sexual desire emerges from sexual arousal, and is triggered by sexually competent stimuli. Research demonstrates gender and sexual orientation differences in the features that contribute to the competency of sexual stimuli. Men's and gynephilic women's genital arousal tends to be gender-specific with preferred gender eliciting significantly greater genital arousal than nonpreferred gender. In contrast, stimuli depicting preferred and nonpreferred gender elicit similar degrees of genital arousal among androphilic women, termed a gender-nonspecific pattern. Given these differences in the features that elicit a sexual response, and that sexual desire is proposed to emerge from sexual arousal, the question remains as to whether sexual desire would emerge only through exposure to preferred stimuli or whether patterns of responsive desire would parallel those observed for genital arousal. The study aims to examine patterns of dyadic and solitary sexual desire in response to stimuli differing in incentive value. Thirty androphilic women, 21 gynephilic women, 21 gynephilic men, and 16 androphilic men participated in a sexual psychophysiological session. Participants viewed sexual stimuli that varied the gender of the actors and the intensity of sexual activities depicted. Participants reported their degree of desire for sex with a partner (dyadic desire) and desire to masturbate (solitary desire), before and after each film. Men and gynephilic women exhibited gender-specific patterns of sexual desire. Androphilic women's dyadic desire showed significantly less differentiation between genders, and their solitary desire did not differentiate at all. No gender difference was observed for either type of desire. All groups reported greater desire as stimulus intensity increased. Gender-nonspecific sexual response is not limited to the sexual arousal patterns of androphilic women, but extends to include responsive sexual desire. Men and gynephilic women, however, show gender-specific responsive sexual desire that parallels their sexual arousal patterns. © 2014 International Society for Sexual Medicine.

  17. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes.

    PubMed

    Xiang, Di; Yuan, Yunsheng; Chen, Li; Liu, Xin; Belani, Chandra; Cheng, Hua

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of Sericin as a Fetal Bovine Serum-Replacing Cryoprotectant During Freezing of Human Mesenchymal Stromal Cells and Human Osteoblast-Like Cells

    PubMed Central

    Verdanova, Martina; Pytlik, Robert

    2014-01-01

    A reliable, cryoprotective, xeno-free medium suitable for different cell types is highly desirable in regenerative medicine. There is danger of infection or allergic reaction with the use of fetal bovine serum (FBS), making it problematic for medical applications. The aim of the present study was to develop an FBS-free cryoprotective medium for human mesenchymal stromal cells (hMSCs; primary cells) and immortalized human osteoblasts (SAOS-2 cell line). Furthermore, we endeavored to eliminate or reduce the presence of dimethyl sulfoxide (DMSO) in the medium. Sericin, a sticky protein derived from the silkworm cocoon, was investigated as a substitute for FBS and DMSO in the freezing medium. Cell viability (24 hours after thawing, both hMSC and SAOS-2) and colony-forming ability (2 weeks after thawing, only for hMSCs) were both determined. The FBS-free medium with 1% sericin in 10% DMSO was found to be a suitable freezing medium for primary hMSCs, in contrast to immortalized human osteoblasts. Surprisingly, the storage of hMSCs in a cultivation medium with only 10% DMSO also provided satisfactory results. Any drop in DMSO concentration led to significantly worse survival of cells, with little improvement in hMSC survival in the presence of sericin. Thus, sericin may substitute for FBS in the freezing medium for primary hMSCs, but cannot substitute for DMSO. PMID:24749876

  19. In vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.

    PubMed

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti-23Nb-0.7Ta-2Zr-0.5N and Ti-6Al-4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti-6Al-4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti-23Nb-0.7Ta-2Zr-0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti-6Al-4V and holds great potential for future clinical prosthetic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and uncover a role for adhesion, and the degree of traction force exerted on the substrate in guiding these lineage outcomes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    NASA Astrophysics Data System (ADS)

    Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.

    2018-03-01

    Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

  2. A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome.

    PubMed

    Kanter, Jenny E; Kramer, Farah; Barnhart, Shelley; Duggan, Jeffrey M; Shimizu-Albergine, Masami; Kothari, Vishal; Chait, Alan; Bouman, Stephan D; Hamerman, Jessica A; Hansen, Bo F; Olsen, Grith S; Bornfeldt, Karin E

    2018-05-01

    Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin's effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6C hi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes. © 2018 by the American Diabetes Association.

  3. Concepts and practices used to develop functional PLGA-based nanoparticulate systems.

    PubMed

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell-type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.

  4. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    PubMed Central

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  5. Flunarizine suppresses endothelial Angiopoietin-2 in a calcium - dependent fashion in sepsis

    PubMed Central

    Retzlaff, Jennifer; Thamm, Kristina; Ghosh, Chandra C.; Ziegler, Wolfgang; Haller, Hermann; Parikh, Samir M.; David, Sascha

    2017-01-01

    Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to an infection leading to systemic inflammation and endothelial barrier breakdown. The vascular-destabilizing factor Angiopoietin-2 (Angpt-2) has been implicated in these processes in humans. Here we screened in an unbiased approach FDA-approved compounds with respect to Angpt-2 suppression in endothelial cells (ECs) in vitro. We identified Flunarizine – a well-known anti-migraine calcium channel (CC) blocker – being able to diminish intracellular Angpt-2 protein in a time- and dose-dependent fashion thereby indirectly reducing the released protein. Moreover, Flunarizine protected ECs from TNFα-induced increase in Angpt-2 transcription and vascular barrier breakdown. Mechanistically, we could exclude canonical Tie2 signalling being responsible but found that three structurally distinct T-type - but not L-type - CC blockers can suppress Angpt-2. Most importantly, experimental increase in intracellular calcium abolished Flunarizine’s effect. Flunarizine was also able to block the injurious increase of Angpt-2 in murine endotoxemia in vivo. This resulted in reduced pulmonary adhesion molecule expression (intercellular adhesion molecule-1) and tissue infiltration of inflammatory cells (Gr-1). Our finding could have therapeutic implications as side effects of Flunarizine are low and specific sepsis therapeutics that target the dysregulated host response are highly desirable. PMID:28276491

  6. Flunarizine suppresses endothelial Angiopoietin-2 in a calcium - dependent fashion in sepsis.

    PubMed

    Retzlaff, Jennifer; Thamm, Kristina; Ghosh, Chandra C; Ziegler, Wolfgang; Haller, Hermann; Parikh, Samir M; David, Sascha

    2017-03-09

    Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to an infection leading to systemic inflammation and endothelial barrier breakdown. The vascular-destabilizing factor Angiopoietin-2 (Angpt-2) has been implicated in these processes in humans. Here we screened in an unbiased approach FDA-approved compounds with respect to Angpt-2 suppression in endothelial cells (ECs) in vitro. We identified Flunarizine - a well-known anti-migraine calcium channel (CC) blocker - being able to diminish intracellular Angpt-2 protein in a time- and dose-dependent fashion thereby indirectly reducing the released protein. Moreover, Flunarizine protected ECs from TNFα-induced increase in Angpt-2 transcription and vascular barrier breakdown. Mechanistically, we could exclude canonical Tie2 signalling being responsible but found that three structurally distinct T-type - but not L-type - CC blockers can suppress Angpt-2. Most importantly, experimental increase in intracellular calcium abolished Flunarizine's effect. Flunarizine was also able to block the injurious increase of Angpt-2 in murine endotoxemia in vivo. This resulted in reduced pulmonary adhesion molecule expression (intercellular adhesion molecule-1) and tissue infiltration of inflammatory cells (Gr-1). Our finding could have therapeutic implications as side effects of Flunarizine are low and specific sepsis therapeutics that target the dysregulated host response are highly desirable.

  7. Controlling solar light and heat in a forest by managing shadow sources

    Treesearch

    Howard G. Halverson; James L. Smith

    1974-01-01

    Control of solar light and heat to develop the proper growth environment is a desirable goal in forest management. The amount of sunlight and heat reaching the surface is affected by shadows cast by nearby objects, including trees. In timbered areas, the type of forest management practiced can help develop desired microclimates. The results depend on the size and...

  8. Eigenspace Design of Helicopter Flight Control Systems

    DTIC Science & Technology

    1990-11-01

    Attitude Changes ......... 44 2.6 Yaw Cross Coupling Criteria . ............................................... 45 I 4. i Definition of the Rigid Body...laws. The methodology detailed in this report allows the designer to synthesize control laws which result in desirable response types such as attitude ...it is simple to relate the desired frequency response characteristics to the natural frequencies and damping factors or the time constants of the

  9. IL-7 signaling imparts polyfunctionality and stemness potential to CD4+ T cells

    PubMed Central

    Ding, Zhi-Chun; Liu, Chufeng; Cao, Yang; Habtetsion, Tsadik; Kuczma, Michal; Pi, Wenhu; Kong, Heng; Cacan, Ercan; Greer, Susanna F.; Cui, Yan; Blazar, Bruce R.; Munn, David H.; Zhou, Gang

    2016-01-01

    ABSTRACT The functional status of CD4+ T cells is a critical determinant of antitumor immunity. Polyfunctional CD4+ T cells possess the ability to concomitantly produce multiple Th1-type cytokines, exhibiting a functional attribute desirable for cancer immunotherapy. However, the mechanisms by which these cells are induced are neither defined nor it is clear if these cells can be used therapeutically to treat cancer. Here, we report that CD4+ T cells exposed to exogenous IL-7 during antigenic stimulation can acquire a polyfunctional phenotype, characterized by their ability to simultaneously express IFNγ, IL-2, TNFα and granzyme B. This IL-7-driven polyfunctional phenotype was associated with increased histone acetylation in the promoters of the effector genes, indicative of increased chromatin accessibility. Moreover, forced expression of a constitutively active (CA) form of STAT5 recapitulated IL-7 in inducing CD4+ T-cell polyfunctionality. Conversely, the expression of a dominant negative (DN) form of STAT5 abolished the ability of IL-7 to induce polyfunctional CD4+ T cells. These in-vitro-generated polyfunctional CD4+ T cells can traffic to tumor and expand intratumorally in response to immunization. Importantly, adoptive transfer of polyfunctional CD4+ T cells following lymphodepletive chemotherapy was able to eradicate large established tumors. This beneficial outcome was associated with the occurrence of antigen epitope spreading, activation of the endogenous CD8+ T cells and persistence of donor CD4+ T cells exhibiting memory stem cell attributes. These findings indicate that IL-7 signaling can impart polyfunctionality and stemness potential to CD4+ T cells, revealing a previously unknown property of IL-7 that can be exploited in adoptive T-cell immunotherapy. PMID:27471650

  10. A novel platelet lysate hydrogel for endothelial cell and mesenchymal stem cell-directed neovascularization.

    PubMed

    Robinson, Scott T; Douglas, Alison M; Chadid, Tatiana; Kuo, Katie; Rajabalan, Ajai; Li, Haiyan; Copland, Ian B; Barker, Thomas H; Galipeau, Jacques; Brewster, Luke P

    2016-05-01

    Mesenchymal stem cells (MSC) hold promise in promoting vascular regeneration of ischemic tissue in conditions like critical limb ischemia of the leg. However, this approach has been limited in part by poor cell retention and survival after delivery. New biomaterials offer an opportunity to localize cells to the desired tissue after delivery, but also to improve cell survival after delivery. Here we characterize the mechanical and microstructural properties of a novel hydrogel composed of pooled human platelet lysate (PL) and test its ability to promote MSC angiogenic activity using clinically relevant in vitro and in vivo models. This PL hydrogel had comparable storage and loss modulus and behaved as a viscoelastic solid similar to fibrin hydrogels despite having 1/4-1/10th the fibrin content of standard fibrin gels. Additionally, PL hydrogels enabled sustained release of endogenous PDGF-BB for up to 20days and were resistant to protease degradation. PL hydrogel stimulated pro-angiogenic activity by promoting human MSC growth and invasion in a 3D environment, and enhancing endothelial cell sprouting alone and in co-culture with MSCs. When delivered in vivo, the combination of PL and human MSCs improved local tissue perfusion after 8days compared to controls when assessed with laser Doppler perfusion imaging in a murine model of hind limb ischemia. These results support the use of a PL hydrogel as a scaffold for MSC delivery to promote vascular regeneration. Innovative strategies for improved retention and viability of mesenchymal stem cells (MSCs) are needed for cellular therapies. Human platelet lysate is a potent serum supplement that improves the expansion of MSCs. Here we characterize our novel PL hydrogel's desirable structural and biologic properties for human MSCs and endothelial cells. PL hydrogel can localize cells for retention in the desired tissue, improves cell viability, and augments MSCs' angiogenic activity. As a result of these unique traits, PL hydrogel is ideally suited to serve as a cell delivery vehicle for MSCs injected into ischemic tissues to promote vascular regeneration, as demonstrated here in a murine model of hindlimb ischemia. Published by Elsevier Ltd.

  11. Speed genome editing by transient CRISPR/Cas9 targeting and large DNA fragment deletion.

    PubMed

    Luo, Jing; Lu, Liaoxun; Gu, Yanrong; Huang, Rong; Gui, Lin; Li, Saichao; Qi, Xinhui; Zheng, Wenping; Chao, Tianzhu; Zheng, Qianqian; Liang, Yinming; Zhang, Lichen

    2018-06-07

    Genetic engineering of cell lines and model organisms has been facilitated enormously by the CRISPR/Cas9 system. However, in cell lines it remains labor intensive and time consuming to obtain desirable mutant clones due to the difficulties in isolating the mutated clones and sophisticated genotyping. In this study, we have validated fluorescent protein reporter aided cell sorting which enables the isolation of maximal diversity in mutant cells. We further applied two spectrally distinct fluorescent proteins DsRed2 and ECFP as reporters for independent CRISPR/Cas9 mediated targeting, which allows for one-cell-one-well sorting of the mutant cells. Because of ultra-high efficiency of the CRISPR/Cas9 system with dual reporters and large DNA fragment deletion resulting from independent loci cleavage, monoclonal mutant cells could be easily identified by conventional PCR. In the speed genome editing method presented here, sophisticated genotyping methods are not necessary to identify loss of function mutations after CRISPR/Cas9 genome editing, and desirable loss of function mutant clones could be obtained in less than one month following transfection. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Pgas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger.

    PubMed

    Yin, Xian; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-03-15

    The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, P gas , which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger , an excellent platform for the production of organic acids, and we found that the promoter P gas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein ( sGFP ) was successfully expressed by P gas at pH 2.0, verifying the results of the transcriptional analysis. Next, P gas was used to express the cis -aconitate decarboxylase ( cad ) gene of Aspergillus terreus in A. niger , allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that P gas strength was independent of acid type and acid ion concentration, showing dependence on pH only. IMPORTANCE The promoter P gas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering. Copyright © 2017 American Society for Microbiology.

  13. Engineered Proteins: Redox Properties and Their Applications

    PubMed Central

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  14. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant".

    PubMed

    Raik, Shalini; Kumar, Ajay; Bhattacharyya, Shalmoli

    2018-03-01

    Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  15. Aspen ecosystems: Objectives for sustaining biodiversity

    Treesearch

    Robert B. Campbell; Dale L. Bartos

    2001-01-01

    Recognizing the historical abundance of major vegetation cover types is the foundation for estimating the magnitude and significance of conversion from one cover type to another and the proportion of existing cover types that are in properly functioning condition. Techniques to determine desired conditions are discussed. Existing situations for the need to treat...

  16. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals

    PubMed Central

    Kumar, Dharmendra; Talluri, Thirumala R; Anand, Taruna; Kues, Wilfried A

    2015-01-01

    Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals. PMID:25815117

  17. Practices of shake-flask culture and advances in monitoring CO2 and O2.

    PubMed

    Takahashi, Masato; Aoyagi, Hideki

    2018-05-01

    About 85 years have passed since the shaking culture was devised. Since then, various monitoring devices have been developed to measure culture parameters. O 2 consumed and CO 2 produced by the respiration of cells in shaking cultures are of paramount importance due to their presence in both the culture broth and headspace of shake flask. Monitoring in situ conditions during shake-flask culture is useful for analysing the behaviour of O 2 and CO 2 , which interact according to Henry's law, and is more convenient than conventional sampling that requires interruption of shaking. In situ monitoring devices for shake-flask cultures are classified as direct or the recently developed bypass type. It is important to understand the characteristics of each type along with their unintended effect on shake-flask cultures, in order to improve the existing devices and culture conditions. Technical developments in the bypass monitoring devices are strongly desired in the future. It is also necessary to understand the mechanism underlying conventional shake-flask culture. The existing shaking culture methodology can be expanded into next-generation shake-flask cultures constituting a novel culture environment through a judicious selection of monitoring devices depending on the intended purpose of shake-flask culture. Construction and sharing the databases compatible with the various types of the monitoring devices and measurement instruments adapted for shaking culture can provide a valuable resource for broadening the application of cells with shake-flask culture.

  18. Microfabricated discontinuous-edge surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro.

    PubMed

    Hamilton, D W; Wong, K S; Brunette, D M

    2006-05-01

    The fabrication of surfaces that stimulate increased adhesion, migration, and differentiated function of osteoblasts has been viewed as being desirable for many orthopedic applications. Previous studies have shown that microfabricated pits and grooves alter adhesion, spreading, matrix secretion, and production of mineral by rat calvarial osteoblasts (RCOs). The mechanisms underlying these effects are unknown, although microenvironment and cell alignment are considered to play a role. The aim of this work was to investigate the behavior of RCOs on microfabricated discontinuous-edge surfaces (DESs), which could provide an alternative means to control both the microenvironment and cellular alignment. Two types of discontinuous-type structures were employed, gap-cornered boxes and micron scale pillars. DES gap-cornered boxes and the pillars influenced the arrangement of F-actin, microtubules, and vinculin. Osteoblasts were guided in their direction of migration on both types of substrata. Both box DESs and pillars altered the staining intensity and localization pattern of phosphotyrosine and src-activated FAK localization. Cell multilayering, matrix deposition, and mineralization were enhanced on both discontinuous topographies when compared with smooth controls. This study shows that DESs alter adhesion, migration, and proliferative responses from osteoblasts at early time points (<1 week) and promote multilayering, matrix deposition, and mineral deposition at later times (2-6 weeks). Such topographical patterns could potentially be employed as effective surface features on bone-contacting implants or in membrane-based periodontal applications.

  19. Social support during delivery in rural central Ghana: a mixed methods study of women's preferences for and against inclusion of a lay companion in the delivery room.

    PubMed

    Alexander, Amir; Mustafa, Aesha; Emil, Sarah A V; Amekah, Ebenezer; Engmann, Cyril; Adanu, Richard; Moyer, Cheryl A

    2014-09-01

    This study aimed to explore pregnant women's attitudes towards the inclusion of a lay companion as a source of social support during labour and delivery in rural central Ghana. Quantitative demographic and pregnancy-related data were collected from 50 pregnant women presenting for antenatal care at a rural district hospital and analysed using STATA/IC 11.1. Qualitative attitudinal questions were collected from the same women through semi-structured interviews; data were analysed using NVivo 9.0. Twenty-nine out of 50 women (58%) preferred to have a lay companion during facility-based labour and delivery, whereas 21 (42%) preferred to deliver alone with the nurses in a facility. Women desiring a companion were younger, had more antenatal care visits, had greater educational attainment and were likely to be experiencing their first delivery. Women varied in the type of companion they prefer (male partner vs female relative). What was expected in terms of social support differed based upon the type of companion. Male companions were expected to provide emotional support and to 'witness her pain'. Female companions were expected to provide emotional support as well as instrumental, informational and appraisal support. Three qualitative themes were identified that run counter to the inclusion of a lay helper: fear of an evil-spirited companion, a companion not being necessary or helpful, and being 'too shy' of a companion. This research challenges the assumption of a unilateral desire for social support during labour and delivery, and suggests that women differ in the type of companion and type of support they prefer during facility deliveries. Future research is needed to determine the direction of the relationship--whether women desire certain types of support and thus choose companions they believe can meet those needs, or whether women desire a certain companion and adjust their expectations accordingly.

  20. Desired Precision in Multi-Objective Optimization: Epsilon Archiving or Rounding Objectives?

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Sahraei, S.

    2016-12-01

    Multi-objective optimization (MO) aids in supporting the decision making process in water resources engineering and design problems. One of the main goals of solving a MO problem is to archive a set of solutions that is well-distributed across a wide range of all the design objectives. Modern MO algorithms use the epsilon dominance concept to define a mesh with pre-defined grid-cell size (often called epsilon) in the objective space and archive at most one solution at each grid-cell. Epsilon can be set to the desired precision level of each objective function to make sure that the difference between each pair of archived solutions is meaningful. This epsilon archiving process is computationally expensive in problems that have quick-to-evaluate objective functions. This research explores the applicability of a similar but computationally more efficient approach to respect the desired precision level of all objectives in the solution archiving process. In this alternative approach each objective function is rounded to the desired precision level before comparing any new solution to the set of archived solutions that already have rounded objective function values. This alternative solution archiving approach is compared to the epsilon archiving approach in terms of efficiency and quality of archived solutions for solving mathematical test problems and hydrologic model calibration problems.

  1. Electrospun Collagen/Silk Tissue Engineering Scaffolds: Fiber Fabrication, Post-Treatment Optimization, and Application in Neural Differentiation of Stem Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Bofan

    Biocompatible scaffolds mimicking the locally aligned fibrous structure of native extracellular matrix (ECM) are in high demand in tissue engineering. In this thesis research, unidirectionally aligned fibers were generated via a home-built electrospinning system. Collagen type I, as a major ECM component, was chosen in this study due to its support of cell proliferation and promotion of neuroectodermal commitment in stem cell differentiation. Synthetic dragline silk proteins, as biopolymers with remarkable tensile strength and superior elasticity, were also used as a model material. Good alignment, controllable fiber size and morphology, as well as a desirable deposition density of fibers were achieved via the optimization of solution and electrospinning parameters. The incorporation of silk proteins into collagen was found to significantly enhance mechanical properties and stability of electrospun fibers. Glutaraldehyde (GA) vapor post-treatment was demonstrated as a simple and effective way to tune the properties of collagen/silk fibers without changing their chemical composition. With 6-12 hours GA treatment, electrospun collagen/silk fibers were not only biocompatible, but could also effectively induce the polarization and neural commitment of stem cells, which were optimized on collagen rich fibers due to the unique combination of biochemical and biophysical cues imposed to cells. Taken together, electrospun collagen rich composite fibers are mechanically strong, stable and provide excellent cell adhesion. The unidirectionally aligned fibers can accelerate neural differentiation of stem cells, representing a promising therapy for neural tissue degenerative diseases and nerve injuries.

  2. Generating size-controlled embryoid bodies using laser direct-write.

    PubMed

    Dias, A D; Unser, A M; Xie, Y; Chrisey, D B; Corr, D T

    2014-06-01

    Embryonic stem cells (ESCs) have the potential to self-renew and differentiate into any specialized cell type. One common method to differentiate ESCs in vitro is through embryoid bodies (EBs), three-dimensional cellular aggregates that spontaneously self-assemble and generally express markers for the three germ layers, endoderm, ectoderm, and mesoderm. It has been previously shown that both EB size and 2D colony size each influence differentiation. We hypothesized that we could control the size of the EB formed by mouse ESCs (mESCs) by using a cell printing method, laser direct-write (LDW), to control both the size of the initial printed colony and the local cell density in printed colonies. After printing mESCs at various printed colony sizes and printing densities, two-way ANOVAs indicated that the EB diameter was influenced by printing density after three days (p = 0.0002), while there was no effect of the printed colony diameter on the EB diameter at the same timepoint (p = 0.74). There was no significant interaction between these two factors. Tukey's honestly significant difference test showed that high-density colonies formed significantly larger EBs, suggesting that printed mESCs quickly aggregate with nearby cells. Thus, EBs can be engineered to a desired size by controlling printing density, which will influence the design of future differentiation studies. Herein, we highlight the capacity of LDW to control the local cell density and colony size independently, at prescribed spatial locations, potentially leading to better stem cell maintenance and directed differentiation.

  3. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  4. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system.

    PubMed

    Cheong, Taek-Chin; Compagno, Mara; Chiarle, Roberto

    2016-03-09

    Applications of the CRISPR-Cas9 system to edit the genome have widely expanded to include DNA gene knock-out, deletions, chromosomal rearrangements, RNA editing and genome-wide screenings. Here we show the application of CRISPR-Cas9 technology to edit the mouse and human immunoglobulin (Ig) genes. By delivering Cas9 and guide-RNA (gRNA) with retro- or lenti-virus to IgM(+) mouse B cells and hybridomas, we induce class-switch recombination (CSR) of the IgH chain to the desired subclass. Similarly, we induce CSR in all human B cell lines tested with high efficiency to targeted IgH subclass. Finally, we engineer mouse hybridomas to secrete Fab' fragments instead of the whole Ig. Our results indicate that Ig genes in mouse and human cells can be edited to obtain any desired IgH switching helpful to study the biology of normal and lymphoma B cells. We also propose applications that could transform the technology of antibody production.

  5. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    PubMed

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells provided a rule-of-thumb criterion for the validation of sample preparation. The fractured freeze-dried cells allowed 3-D SIMS imaging and localization of 13C 15N labeled molecules and therapeutic drugs containing an elemental tag. Examples are shown to demonstrate that both diffusible elements and molecules are prone to artifact-induced relocation at subcellular scale if the sample preparation is compromised. The sample preparation is problem dependent and may vary widely between the diverse sample types of biological systems and the type of instrument used for SIMS analysis. The sample preparation, however, must be validated so that SIMS can be applied with confidence in biology and medicine.

  7. Drug discovery for alopecia: gone today, hair tomorrow.

    PubMed

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-03-01

    Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8(+)NK group 2D-positive (NKG2D(+)) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play.

  8. Human cartilage tissue fabrication using three-dimensional inkjet printing technology.

    PubMed

    Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao

    2014-06-10

    Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.

  9. Cell openness manipulation of low density polyurethane foam for efficient sound absorption

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae

    2017-10-01

    Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.

  10. Digital to synchro converter

    NASA Technical Reports Server (NTRS)

    Predina, Joseph P. (Inventor)

    1989-01-01

    A digital-to-synchro converter is provided where a binary input code specifies a desired shaft angle and where an resolver type position transducer is employed with additional circuitry to generate a shaft position error signal indicative of the angular difference between the desired shaft angle and the actual shaft angle. The additional circuitry corrects for known and calculated errors in the shaft position detection process and equipment.

  11. Formally verifying Ada programs which use real number types

    NASA Technical Reports Server (NTRS)

    Sutherland, David

    1986-01-01

    Formal verification is applied to programs which use real number arithmetic operations (mathematical programs). Formal verification of a program P consists of creating a mathematical model of F, stating the desired properties of P in a formal logical language, and proving that the mathematical model has the desired properties using a formal proof calculus. The development and verification of the mathematical model are discussed.

  12. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  13. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    PubMed

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    PubMed

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. © 2016 Wiley Periodicals, Inc.

  15. Design and synthesis of a series of bioavailable fatty acid synthase (FASN) KR domain inhibitors for cancer therapy.

    PubMed

    Lu, Tianbao; Schubert, Carsten; Cummings, Maxwell D; Bignan, Gilles; Connolly, Peter J; Smans, Karine; Ludovici, Donald; Parker, Michael H; Meyer, Christophe; Rocaboy, Christian; Alexander, Richard; Grasberger, Bruce; De Breucker, Sabine; Esser, Norbert; Fraiponts, Erwin; Gilissen, Ron; Janssens, Boudewijn; Peeters, Danielle; Van Nuffel, Luc; Vermeulen, Peter; Bischoff, James; Meerpoel, Lieven

    2018-05-08

    We designed and synthesized a new series of fatty acid synthase (FASN) inhibitors with potential utility for the treatment of cancer. Extensive SAR studies led to highly active FASN inhibitors with good cellular activity and oral bioavailability, exemplified by compound 34. Compound 34 is a potent inhibitor of human FASN (IC 50  = 28 nM) that effectively inhibits proliferation of A2780 ovarian cells (IC 50  = 13 nM) in lipid-reduced serum (LRS). This cellular activity can be rescued by addition of palmitate, consistent with an on-target effect. Compound 34 is also active in many other cell types, including PC3M (IC 50  = 25 nM) and LnCaP-Vancouver prostate cells (IC 50  = 66 nM), and is highly bioavailable (F 61%) with good exposure after oral administration. In a pharmacodynamics study in H460 lung xenograft-bearing mice, oral treatment with compound 34 results in elevated tumor levels of malonyl-CoA and decreased tumor levels of palmitate, fully consistent with the desired target engagement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Preclinical and clinical data for the use of mesenchymal stem cells in articular cartilage tissue engineering.

    PubMed

    Tang, Quen Oak; Carasco, Clare Francesca; Gamie, Zakareya; Korres, Nectarios; Mantalaris, Athanasios; Tsiridis, Eleftherios

    2012-10-01

    With an ageing population, the prevalence of osteoarthritis (OA) has increased. Mesenchymal Stem Cells (MSCs) have been proposed to be an attractive alternative candidate in the tissue engineering of articular cartilage primarily due to its abundant source, reduced cartilage donor site morbidity, and strong capacity for proliferation and potential to differentiate toward a chondrogenic phenotype. A current overview of human, in vivo, and in vitro evidence on the use of MSCs in cartilage tissue engineering. We demonstrate robust evidence that MSCs have the potential to regenerate articular cartilage. We also identify the complexity of designing a suitable preclinical model and the challenges in considering its clinical application such as type of MSC, scaffold, culture construct and the method by which growth factors are delivered. Of great interest is further characterization of the factors that may prevent MSC-derived chondrocytes to undergo premature hypertrophy and to understand what enables the terminal developmental pathway for permanent hyaline cartilage regeneration. Despite this, there is an abundance of evidence suggesting that MSCs are a desirable cell source and will have significant impact in tissue engineering of cartilage in the future.

  17. Modulation of Silica Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of Amino and Sulfonate Surface Groups: Effects of Serum

    PubMed Central

    2015-01-01

    To study the importance of the surface charge for cellular uptake of silica nanoparticles (NPs), we synthesized five different single- or multifunctionalized fluorescent silica NPs (FFSNPs) by introducing various ratios of amino and sulfonate groups into their surface. The zeta potential values of these FFSNPs were customized from highly positive to highly negative, while other physicochemical properties remained almost constant. Irrespective of the original surface charge, serum proteins adsorbed onto the surface, neutralized the zeta potential values, and prevented the aggregation of the tailor-made FFSNPs. Depending on the surface charge and on the absence or presence of serum, two opposite trends were found concerning the cellular uptake of FFSNPs. In the absence of serum, positively charged NPs were more strongly accumulated by human osteoblast (HOB) cells than negatively charged NPs. In contrast, in serum-containing medium, anionic FFSNPs were internalized by HOB cells more strongly, despite the similar size and surface charge of all types of protein-covered FFSNPs. Thus, at physiological condition, when the presence of proteins is inevitable, sulfonate-functionalized silica NPs are the favorite choice to achieve a desired high rate of NP internalization. PMID:26030456

  18. Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types.

    PubMed

    Hosoyama, Katsuhiro; Wakao, Shohei; Kushida, Yoshihiro; Ogura, Fumitaka; Maeda, Kay; Adachi, Osamu; Kawamoto, Shunsuke; Dezawa, Mari; Saiki, Yoshikatsu

    2018-06-01

    Aortic aneurysms result from the degradation of multiple components represented by endothelial cells, vascular smooth muscle cells, and elastic fibers. Cells that can replenish these components are desirable for cell-based therapy. Intravenously injected multilineage-differentiating stress-enduring (Muse) cells, endogenous nontumorigenic pluripotent-like stem cells, reportedly integrate into the damaged site and repair the tissue through spontaneous differentiation into tissue-compatible cells. We evaluated the therapeutic efficacy of Muse cells in a murine aortic aneurysm model. Human bone marrow Muse cells, isolated as stage-specific embryonic antigen-3 + from bone marrow mesenchymal stem cells, or non-Muse cells (stage-specific embryonic antigen-3 - cells in mesenchymal stem cells), bone marrow mesenchymal stem cells, or vehicle was intravenously injected at day 0, day 7, and 2 weeks (20,000 cells/injection) after inducing aortic aneurysms by periaortic incubation of CaCl 2 and elastase in severe combined immunodeficient mice. At 8 weeks, infusion of human Muse cells attenuated aneurysm dilation, and the aneurysmal size in the Muse group corresponded to approximately 62.5%, 55.6%, and 45.6% in the non-Muse, mesenchymal stem cell, and vehicle groups, respectively. Multiphoton laser confocal microscopy revealed that infused Muse cells migrated into aneurysmal tissue from the adventitial side and penetrated toward the luminal side. Histologic analysis demonstrated robust preservation of elastic fibers and spontaneous differentiation into endothelial cells and vascular smooth muscle cells. After intravenous injection, Muse cells homed and expanded to the aneurysm from the adventitial side. Subsequently, Muse cells differentiated spontaneously into vascular smooth muscle cells and endothelial cells, and elastic fibers were preserved. These Muse cell features together led to substantial attenuation of aneurysmal dilation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  19. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds.

    PubMed

    Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina

    2017-12-01

    Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility.

    PubMed

    Dash, Biraja C; Réthoré, Gildas; Monaghan, Michael; Fitzgerald, Kathleen; Gallagher, William; Pandit, Abhay

    2010-11-01

    Polymeric hollow spheres can be tailored as efficient carriers of various therapeutic molecules due to their tunable properties. However, the entry of these synthetic vehicles into cells, their cell viability and blood compatibility depend on their physical and chemical properties e.g. size, surface charge. Herein, we report the effect of size and surface charge on cell viability and cellular internalization behaviour and their effect on various blood components using chitosan/polyglutamic acid hollow spheres as a model system. Negatively charged chitosan/polyglutamic acid hollow spheres of various sizes 100, 300, 500 and 1000 nm were fabricated using a template based method and covalently surface modified using linear polyethylene glycol and methoxyethanol amine to create a gradient of surface charge from negative to neutrally charged spheres respectively. The results here suggest that both size and surface charge have a significant influence on the sphere's behaviour, most prominently on haemolysis, platelet activation, plasma recalcification time, cell viability and internalization over time. Additionally, cellular internalization behaviour and viability was found to vary with different cell types. These results are in agreement with those of inorganic spheres and liposomes, and can serve as guidelines for tailoring polymeric solid spheres for specific desired applications in biological and pharmaceutical fields, including the design of nanometer to submicron-sized delivery vehicles. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Receptor tyrosine kinase-like orphan receptor 1 (ROR-1): An emerging target for diagnosis and therapy of chronic lymphocytic leukemia.

    PubMed

    Aghebati-Maleki, Leili; Shabani, Mahdi; Baradaran, Behzad; Motallebnezhad, Morteza; Majidi, Jafar; Yousefi, Mehdi

    2017-04-01

    Chronic lymphocytic leukemia (CLL) is characterized by reposition of malignant B cells in the blood, bone marrow, spleen and lymph nodes. It remains the most common leukemia in the Western world. Within the recent years, major breakthroughs have been made to prolong the survival and improve the health of patients. Despite these advances, CLL is still recognized as a disease without definitive cure. New treatment approaches, based on unique targets and novel drugs, are highly desired for CLL therapy. The Identification and subsequent targeting of molecules that are overexpressed uniquely in malignant cells not normal ones play critical roles in the success of anticancer therapeutic strategies. In this regard, ROR family proteins are known as a subgroup of protein kinases which have gained huge popularity in the scientific community for the diagnosis and treatment of different cancer types. ROR1 as an antigen exclusively expressed on the surface of tumor cells can be a target for immunotherapy. ROR-1 targeting using different approaches such as siRNA, tyrosine kinase inhibitors, cell therapy and antibody induces tumor growth suppression in cancer cells. In the current review, we aim to present an overview of the efforts and scientific achievements in targeting ROR family, particularly ROR-1, for the diagnosis and treatment of chronic lymphocytic leukemia (CLL). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Adsorption of Streptococcus faecalis on diatomite carriers for use in biotransformations.

    PubMed

    Anderson, W A; Bay, P; Legge, R L; Moo-Young, M

    1990-01-01

    Adsorption of cells on particulate carriers is potentially one of the most cost-effective immobilization techniques available. Diatomite carriers, such as Celite, have desirable physical properties, are inexpensive, and are suitable for both mycelial and bacterial systems. This work investigated the use of diatomite carriers as a biocatalyst support in a packed-bed reactor where L-tyrosine was enzymatically decarboxylated using adsorbed, non-growing cells of Streptococcus faecalis. Composition of microbial adsorption on different Celite types, with mean pore sizes ranging from 0.55 to 22 microns, showed there was no significant difference in biomass loading capacity under the conditions used. Using Celite 560, biomass loadings in a packed-bed reactor varied from 10 to 30 g dm-3 of reactor volume, which compares favourably with other adsorption methods. When used to decarboxylate L-tyrosine, the reactor was found to have a half-life of 15-20 h. A combination of enzyme activity loss and slow leakage of biomass from the packed-bed reactor was responsible for the decline in conversion. Treatment of the S. faecalis cells with glutaraldehyde significantly reduced the enzyme activity loss and extended the reactor half-life to 65 h, but had little effect on the rate of cell leakage from the reactor. Further work on reduction of cell leakage rate seems necessary for evaluation of the system's practicality.

  3. Elixir of Life: Thwarting Aging With Regenerative Reprogramming.

    PubMed

    Beyret, Ergin; Martinez Redondo, Paloma; Platero Luengo, Aida; Izpisua Belmonte, Juan Carlos

    2018-01-05

    All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity. © 2017 American Heart Association, Inc.

  4. Cell-Free HA-MA/PLGA Scaffolds with Radially Oriented Pores for In Situ Inductive Regeneration of Full Thickness Cartilage Defects.

    PubMed

    Dai, Yuankun; Gao, Zhenzhen; Ma, Lie; Wang, Dongan; Gao, Changyou

    2016-11-01

    A bioactive scaffold with desired microstructure is of great importance to induce infiltration of somatic and stem cells, and thereby to achieve the in situ inductive tissue regeneration. In this study, a scaffold with oriented pores in the radial direction is prepared by using methacrylated hyaluronic acid (HA-MA) via controlled directional cooling of a HA-MA solution, and followed with photo-crosslinking to stabilize the structure. Poly(lactide-co-glycolide) (PLGA) is further infiltrated to enhance the mechanical strength, resulting in a compressive modulus of 120 kPa. In vitro culture of bone marrow stem cells (BMSCs) reveals spontaneous cell aggregation inside this type of scaffold with a spherical morphology. In vivo transplantation of the cell-free scaffold in rabbit knees for 12 w regenerates simultaneously both cartilage and subchondral bone with a Wakitani score of 2.8. Moreover, the expression of inflammatory factor interleukin-1β (IL-1β) is down regulated, although tumor necrosis factor-α (TNF-α) is remarkably up regulated. With the anti-inflammatory, bioactive properties and good restoration of full thickness cartilage defect in vivo, the oriented macroporous HA-MA/PLGA hybrid scaffold has a great potential for the practical application in the in situ cartilage regeneration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A study on identification of bacteria in environmental samples using single-cell Raman spectroscopy: feasibility and reference libraries.

    PubMed

    Baritaux, Jean-Charles; Simon, Anne-Catherine; Schultz, Emmanuelle; Emain, C; Laurent, P; Dinten, Jean-Marc

    2016-05-01

    We report on our recent efforts towards identifying bacteria in environmental samples by means of Raman spectroscopy. We established a database of Raman spectra from bacteria submitted to various environmental conditions. This dataset was used to verify that Raman typing is possible from measurements performed in non-ideal conditions. Starting from the same dataset, we then varied the phenotype and matrix diversity content included in the reference library used to train the statistical model. The results show that it is possible to obtain models with an extended coverage of spectral variabilities, compared to environment-specific models trained on spectra from a restricted set of conditions. Broad coverage models are desirable for environmental samples since the exact conditions of the bacteria cannot be controlled.

  6. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.

    PubMed

    Hansen, Benjamin J; Liu, Ying; Yang, Rusen; Wang, Zhong Lin

    2010-07-27

    Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor.

  7. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough.

    PubMed

    Sun, Xi; Zhang, Cui-Ying; Wu, Ming-Yue; Fan, Zhi-Hua; Liu, Shan-Na; Zhu, Wen-Bi; Xiao, Dong-Guang

    2016-04-04

    Trehalose is related to several types of stress responses, especially freezing response in baker's yeast (Saccharomyces cerevisiae). It is desirable to manipulate trehalose-related genes to create yeast strains that better tolerate freezing-thaw stress with improved fermentation capacity, which are in high demand in the baking industry. The strain overexpressing MAL62 gene showed increased trehalose content and cell viability after prefermention-freezing and long-term frozen. Deletion of NTH1 in combination of MAL62 overexpression further strengthens freezing tolerance and improves the leavening ability after freezing-thaw stress. The mutants of the industrial baker's yeast with enhanced freezing tolerance and leavening ability in lean dough were developed by genetic engineering. These strains had excellent potential industrial applications.

  8. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.

    PubMed

    Jones, Stephanie E; Elliot, Marie A

    2017-07-01

    Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cell and method for electrolysis of water and anode

    NASA Technical Reports Server (NTRS)

    Aylward, J. R. (Inventor)

    1981-01-01

    An electrolytic cell for converting water vapor to oxygen and hydrogen include an anode comprising a foraminous conductive metal substrate with a 65-85 weight percent iridium oxide coating and 15-35 weight percent of a high temperature resin binder. A matrix member contains an electrolyte to which a cathode substantially inert. The foraminous metal member is most desirably expanded tantalum mesh, and the cell desirably includes reservoir elements of porous sintered metal in contact with the anode to receive and discharge electrolyte to the matrix member as required. Upon entry of a water vapor containing airstream into contact with the outer surface of the anode and thence into contact with iridium oxide coating, the water vapor is electrolytically converted to hydrogen ions and oxygen with the hydrogen ions migrating through the matrix to the cathode and the oxygen gas produced at the anode to enrich the air stream passing by the anode.

  10. Research on dental implant and its industrialization stage

    NASA Astrophysics Data System (ADS)

    Dongjoon, Yang; Sukyoung, Kim

    2017-02-01

    Bone cell attachment to Ti implant surfaces is the most concerned issue in the clinical implant dentistry. Many attempts to achieve the fast and strong integration between bone and implant have been tried in many ways, such as selection of materials (for example, Ti, ZrO2), shape design of implant (for example, soft tissue level, bone level, taped or conical, etc), and surface modification of implants (for example, roughed. coated, hybrid), etc. Among them, a major consideration is the surface design of dental implants. The surface with proper structural characteristics promotes or induces the desirable responses of cells and tissues. To obtain such surface which has desirable cell and tissue response, a variety of surface modification techniques has been developed and employed for many years. In this review, the method and trend of surface modification will be introduced and explained in terms of the surface topography and chemistry of dental implants.

  11. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    PubMed

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  12. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOEpatents

    Mason, David M.

    1984-01-01

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  13. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  14. Design of fuel cell powered data centers for sufficient reliability and availability

    NASA Astrophysics Data System (ADS)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  15. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    PubMed

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  16. Instruments for Imaging from Far to Near

    NASA Technical Reports Server (NTRS)

    Mungas, Greg; Boynton, John; Sepulveda, Cesar

    2009-01-01

    The acronym CHAMP (signifying camera, hand lens, and microscope ) denotes any of several proposed optoelectronic instruments that would be capable of color imaging at working distances that could be varied continuously through a range from infinity down to several millimeters. As in any optical instrument, the magnification, depth of field, and spatial resolution would vary with the working distance. For example, in one CHAMP version, at a working distance of 2.5 m, the instrument would function as an electronic camera with a magnification of 1/100, whereas at a working distance of 7 mm, the instrument would function as a microscope/electronic camera with a magnification of 4.4. Moreover, as described below, when operating at or near the shortest-working-distance/highest-magnification combination, a CHAMP could be made to perform one or more spectral imaging functions. CHAMPs were originally intended to be used in robotic geological exploration of the Moon and Mars. The CHAMP concept also has potential for diverse terrestrial applications that could include remotely controlled or robotic geological exploration, prospecting, field microbiology, environmental surveying, and assembly- line inspection. A CHAMP (see figure) would include two lens cells: (1) a distal cell corresponding to the objective lens assembly of a conventional telescope or microscope and (2) a proximal cell that would contain the focusing camera lens assembly and the camera electronic image-detector chip, which would be of the active-pixel-sensor (APS) type. The distal lens cell would face outward from a housing, while the proximal lens cell would lie in a clean environment inside the housing. The proximal lens cell would contain a beam splitter that would enable simultaneous use of the imaging optics (that is, proximal and distal lens assemblies) for imaging and illumination of the field of view. The APS chip would be mounted on a focal plane on a side face of the beam splitter, while light for illuminating the field of view would enter the imaging optics via the end face of the beam splitter. The proximal lens cell would be mounted on a sled that could be translated along the optical axis for focus adjustment. The position of the CHAMP would initially be chosen at the desired working distance of the distal lens from (corresponding to an approximate desired magnification of) an object to be examined. During subsequent operation, the working distance would ordinarily remain fixed at the chosen value and the position of the proximal lens cell within the instrument would be adjusted for focus as needed.

  17. Hydrogen passivation of n+p and p+n heteroepitaxial InP solar cell structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, B.; Ringel, S. A.; Hoffman, R., Jr.

    1995-01-01

    High-efficiency, heteroepitaxial (HE) InP solar cells, grown on GaAs, Si or Ge substrates, are desirable for their mechanically strong, light-weight and radiation-hard properties. However, dislocations, caused by lattice mismatch, currently limit the performance of the HE cells. This occurs through shunting paths across the active photovoltaic junction and by the formation of deep levels. In previous work we have demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of dislocations in specially designed HE InP test structures. In this work, we present the first report of successful hydrogen passivation in actual InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in HE n+n InP cell structures from as-grown values of approximately 10(exp 15)/cm(exp -3), down to 1-2 x 10(exp 13)/cm(exp -3). The deep levels in the p-type base region of the cell structure match those of our earlier p-type test structures, which were attributed to dislocations or related point defect complexes. All dopants were successfully reactivated by a 400 C, 5 minute anneal with no detectable activation of deep levels. I-V analysis indicated a subsequent approximately 10 fold decrease in reverse leakage current at -1 volt reverse bias, and no change in the forward biased series resistance of the cell structure which indicates complete reactivation of the n+ emitter. Furthermore, electrochemical C-V profiling indicates greatly enhanced passivation depth, and hence hydrogen diffusion, for heteroepitaxial structures when compared with identically processed homoepitaxial n+p InP structures. An analysis of hydrogen diffusion in dislocated InP will be discussed, along with comparisons of passivation effectiveness for n+p versus p+n heteroepitaxial cell configurations. Preliminary hydrogen-passivated HE InP cell results will also be presented.

  18. Role of Architecture in the Function and Specificity of Two Notch-Regulated Transcriptional Enhancer Modules

    PubMed Central

    Liu, Feng; Posakony, James W.

    2012-01-01

    In Drosophila melanogaster, cis-regulatory modules that are activated by the Notch cell–cell signaling pathway all contain two types of transcription factor binding sites: those for the pathway's transducing factor Suppressor of Hairless [Su(H)] and those for one or more tissue- or cell type–specific factors called “local activators.” The use of different “Su(H) plus local activator” motif combinations, or codes, is critical to ensure that only the correct subset of the broadly utilized Notch pathway's target genes are activated in each developmental context. However, much less is known about the role of enhancer “architecture”—the number, order, spacing, and orientation of its component transcription factor binding motifs—in determining the module's specificity. Here we investigate the relationship between architecture and function for two Notch-regulated enhancers with spatially distinct activities, each of which includes five high-affinity Su(H) sites. We find that the first, which is active specifically in the socket cells of external sensory organs, is largely resistant to perturbations of its architecture. By contrast, the second enhancer, active in the “non-SOP” cells of the proneural clusters from which neural precursors arise, is sensitive to even simple rearrangements of its transcription factor binding sites, responding with both loss of normal specificity and striking ectopic activity. Thus, diverse cryptic specificities can be inherent in an enhancer's particular combination of transcription factor binding motifs. We propose that for certain types of enhancer, architecture plays an essential role in determining specificity, not only by permitting factor–factor synergies necessary to generate the desired activity, but also by preventing other activator synergies that would otherwise lead to unwanted specificities. PMID:22792075

  19. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    NASA Astrophysics Data System (ADS)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  20. Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures.

    PubMed

    Wang, Samantha B; Lee-Goldman, Alexandria; Ravikrishnan, Janani; Zheng, Lili; Lin, Henry

    2018-04-01

    Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed. © 2017 Wiley Periodicals, Inc.

  1. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer chemistry.

  2. Desire-state attribution: Benefits of a novel paradigm using the food-sharing behavior of Eurasian jays (Garrulus glandarius).

    PubMed

    Ostojić, Ljerka; Cheke, Lucy G; Shaw, Rachael C; Legg, Edward W; Clayton, Nicola S

    2016-01-01

    In recent years, we have investigated the possibility that Eurasian jay food sharing might rely on desire-state attribution. The female's desire for a particular type of food can be decreased by sating her on it (specific satiety) and the food sharing paradigm can be used to test whether the male's sharing pattern reflects the female's current desire. Our previous findings show that the male shares the food that the female currently wants. Here, we consider 3 simpler mechanisms that might explain the male's behavior: behavior reading, lack of self-other differentiation and behavioral rules. We illustrate how we have already addressed these issues and how our food sharing paradigm can be further adapted to answer outstanding questions. The flexibility with which the food sharing paradigm can be applied to rule out alternative mechanisms makes it a useful tool to study desire-state attribution in jays and other species that share food.

  3. NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability

    PubMed Central

    Sommermeyer, Daniel; Conrad, Heinke; Krönig, Holger; Gelfort, Haike; Bernhard, Helga; Uckert, Wolfgang

    2013-01-01

    The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy. PMID:22907642

  4. Assessing food appeal and desire to eat: the effects of portion size & energy density

    PubMed Central

    2011-01-01

    Background Visual presentation of food provides considerable information such as its potential for palatability and availability, both of which can impact eating behavior. Methods We investigated the subjective ratings for food appeal and desire to eat when exposed to food pictures in a fed sample (n = 129) using the computer paradigm ImageRate. Food appeal and desire to eat were analyzed for the effects of food group, portion size and energy density of the foods presented as well as by participant characteristics. Results Food appeal ratings were significantly higher than those for desire to eat (57.9 ± 11.6 v. 44.7 ± 18.0; p < 0.05). Body mass index was positively correlated to desire to eat (r = 0.20; p < 0.05), but not food appeal. Food category analyses revealed that fruit was the highest rated food category for both appeal and desire, followed by discretionary foods. Additionally, overweight individuals reported higher ratings of desire to eat large portions of food compared to smaller portions (p < 0.001), although these effects were relatively small. Energy density of the foods was inversely correlated with ratings for both appeal and desire (r's = - 0.27; p's < 0.01). Conclusions Results support the hypothesis that individuals differentiate between food appeal and desire to eat foods when assessing these ratings using the same type of metric. Additionally, relations among food appeal and desire to eat ratings and body mass show overweight individuals could be more responsive to visual foods cues in a manner that contributes to obesity. PMID:21943082

  5. Assessing food appeal and desire to eat: the effects of portion size & energy density.

    PubMed

    Burger, Kyle S; Cornier, Marc A; Ingebrigtsen, Jan; Johnson, Susan L

    2011-09-25

    Visual presentation of food provides considerable information such as its potential for palatability and availability, both of which can impact eating behavior. We investigated the subjective ratings for food appeal and desire to eat when exposed to food pictures in a fed sample (n=129) using the computer paradigm ImageRate. Food appeal and desire to eat were analyzed for the effects of food group, portion size and energy density of the foods presented as well as by participant characteristics. Food appeal ratings were significantly higher than those for desire to eat (57.9±11.6 v. 44.7±18.0; p<0.05). Body mass index was positively correlated to desire to eat (r=0.20; p<0.05), but not food appeal. Food category analyses revealed that fruit was the highest rated food category for both appeal and desire, followed by discretionary foods. Additionally, overweight individuals reported higher ratings of desire to eat large portions of food compared to smaller portions (p<0.001), although these effects were relatively small. Energy density of the foods was inversely correlated with ratings for both appeal and desire (r's=-0.27; p's<0.01). Results support the hypothesis that individuals differentiate between food appeal and desire to eat foods when assessing these ratings using the same type of metric. Additionally, relations among food appeal and desire to eat ratings and body mass show overweight individuals could be more responsive to visual foods cues in a manner that contributes to obesity.

  6. How much does what you eat matter? The potential role of meal size, fat content, and gender on ratings of desirability.

    PubMed

    Yantcheva, B; Brindal, E

    2013-08-01

    This study examined how the amount and type of food that a person eats affects perceptions of their personal desirability, femininity/masculinity, and body size while accounting for any assumed similarity biases. Female students (18 to 59 years old) were recruited through the School of Psychology at the University of Adelaide. Participants (n = 191) rated the characteristics of a fictional person based on information in a personal profile. Profiles were identical aside from experimental manipulations of gender (male/female), meal size (small/large) and meal type (regular fat/high fat) with meal manipulations calculated using nutrient recommendations. Ratings of desirability and body size were affected primarily by meal type with targets described as eating a regular fat meal seen as more desirable (M = 5.40, SD = 0.56) and thinner (M = 3.93, SD = 1.05) than those having a high fat meal (M = 5.09, SD = 0.66; M = 4.29, SD = 1.04) (p = .001). Meal size manipulations affected only ratings of body size with larger meals (M = 4.25, SD = 0.88) resulting in higher ratings relative to smaller meals (M = 3.96, SD = 1.20) (p = .036). Despite a suggestion of interactions between target gender and both meal characteristics for ratings of femininity/masculinity in our results, post-hoc analyses largely failed to reveal any pairwise differences. Perceived similarity to the target did relate to levels of desirability (p = .006), and self-esteem positively associated with ratings of target body size (p = .010). Even though men's perceptions of eating behaviours were not reported in this paper, these findings have implications for a better understanding of social pressures faced not only by women, but also for men, as potentially both genders may be affected by eating norms regarding the healthiness of a meal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Qualitative Maintenance Experience Handbook

    DTIC Science & Technology

    1975-10-20

    differences in type and location of actuators results. DESIRABLE FEATURES: 1. The simpler assist methods are easier to get to usually and are smaller...the wheels differ somewhat in method of removal, there exists no particular features that would qualify as 4 "undesirable." 3. The AV-8 requires special... different airplanes, this survey identifies desirable and unde- sirable features evident in the various installations of the same compo- nent. In essence

  8. Bullying and the Need to Belong: Early Adolescents' Bullying-Related Behavior and the Acceptance They Desire and Receive from Particular Classmates

    ERIC Educational Resources Information Center

    Olthof, Tjeert; Goossens, Frits A.

    2008-01-01

    Based on the notion that one of the motives underlying children's antisocial behavior is their need to belong to particular peers, it was examined how each of four types of bullying-related behavior would be related to the acceptance that 10 to 13-year-old children desired and received from same- and other-sex children with different…

  9. Polymer microarray technology for stem cell engineering

    PubMed Central

    Coyle, Robert; Jia, Jia; Mei, Ying

    2015-01-01

    Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624

  10. Histological staining can enhance the performance of spectroscopic microscopy on sensing nanoarchitectural alterations of biological cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Cherkezyan, Lusik; Li, Yue; Capoglu, Ilker; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2017-02-01

    Our group had previously established that nanoscale three-dimensional refractive index (RI) fluctuations of a linear, dielectric, label-free medium can be sensed in the far field through spectroscopic microscopy, regardless of the diffraction limit of optical microscopy. Adopting this technique, Partial Wave Spectroscopic (PWS) Microscopy was able to sense nanoarchitectural alterations in early-stage cancers. With the success of PWS on detecting cancer from healthy clinical samples, we further investigated whether and how histological staining can enhance the performance of PWS by both finite difference time domain (FDTD) simulations and experiments. In this investigation, the dispersion models of hematoxylin and eosin were extracted from the absorption spectra of H and E stained cells. Using these models, the effect of staining were studied via FDTD simulations of unstained versus stained samples with various nanostructures. We observed that, the spectral variance was increased and the spectral variance difference between two samples with distinct nanostructures was enhanced in stained samples by over 200%. Furthermore, we investigated with FDTD whether molecule-specific staining can be used to enhance signals from a medium composing of the desired molecule. Samples with two mixed random media were created and the desired medium was either stained or unstained. Our results showed that the difference between the nanostructures of only the desired medium was enhanced in stained samples. We concluded that, with molecule-specific staining, PWS can selectively target the nanoarchitecture of a desired molecule. Lastly, these results were validated by experiments using human buccal cells from healthy or lung cancer patients. This study has significant impact in improving the performance of PWS on quantifying nanoarchitectural alterations during cancer.

  11. Gene Therapy of Breast Cancer: Studies of Selection Promoter/Enhancer-Modified Vectors to Deliver Suicide Genes.

    DTIC Science & Technology

    1996-09-01

    bone marrow (BM) or peripheral blood (PB) as sources of hematopoietic stem cells is being used as a treatment option for patients with breast cancer 1...peripheral blood (PB) may affect the outcome of patients receiving high dose chemotherapy with autologous transplantation of hematopoietic stem cell ...cancer cell contamination to relapse remains unclear, tumor-free hematopoietic stem cell products for autologous transplantation are nonetheless desirable

  12. A novel scheme for abnormal cell detection in Pap smear images

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Wachman, Elliot S.; Farkas, Daniel L.

    2004-07-01

    Finding malignant cells in Pap smear images is a "needle in a haystack"-type problem, tedious, labor-intensive and error-prone. It is therefore desirable to have an automatic screening tool in order that human experts can concentrate on the evaluation of the more difficult cases. Most research on automatic cervical screening tries to extract morphometric and texture features at the cell level, in accordance with the NIH "The Bethesda System" rules. Due to variances in image quality and features, such as brightness, magnification and focus, morphometric and texture analysis is insufficient to provide robust cervical cancer detection. Using a microscopic spectral imaging system, we have produced a set of multispectral Pap smear images with wavelengths from 400 nm to 690 nm, containing both spectral signatures and spatial attributes. We describe a novel scheme that combines spatial information (including texture and morphometric features) with spectral information to significantly improve abnormal cell detection. Three kinds of wavelet features, orthogonal, bi-orthogonal and non-orthogonal, are carefully chosen to optimize recognition performance. Multispectral feature sets are then extracted in the wavelet domain. Using a Back-Propagation Neural Network classifier that greatly decreases the influence of spurious events, we obtain a classification error rate of 5%. Cell morphometric features, such as area and shape, are then used to eliminate most remaining small artifacts. We report initial results from 149 cells from 40 separate image sets, in which only one abnormal cell was missed (TPR = 97.6%) and one normal cell was falsely classified as cancerous (FPR = 1%).

  13. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead

    PubMed Central

    Jones, Tim D.; Hearn, Arron R.; Holgate, Robert G.E.; Kozub, Dorota; Fogg, Mark H.; Carr, Francis J.; Baker, Matthew P.; Lacadena, Javier; Gehlsen, Kurt R.

    2016-01-01

    Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics. PMID:27578884

  14. PCL/PVA nanofibrous scaffold improve insulin-producing cells generation from human induced pluripotent stem cells.

    PubMed

    Abazari, Mohammad Foad; Soleimanifar, Fatemeh; Aleagha, Maryam Nouri; Torabinejad, Sepehr; Nasiri, Navid; Khamisipour, Gholamreza; Mahabadi, Javad Amini; Mahboudi, Hossein; Enderami, Seyed Ehsan; Saburi, Ehsan; Hashemi, Javad; Kehtari, Mousa

    2018-05-31

    Pancreatic differentiation of stem cells will aid treatment of patients with type I diabetes mellitus (T1DM). Synthetic biopolymers utilization provided extracellular matrix (ECM) and desired attributes in vitro to enhance conditions for stem cells proliferation, attachment and differentiation. A mixture of polycaprolactone and polyvinyl alcohol (PCL/PVA)-based scaffold, could establish an in vitro three-dimensional (3D) culture model. The objective of this study was investigation of the human induced pluripotent stem cells (hiPSCs) differentiation capacity to insulin-producing cells (IPCs) in 3D culture were compared with conventional culture (2D) groups evaluated at the mRNA and protein levels by quantitative PCR and immunofluorescence assay, respectively. The functionality of differentiated IPCs was assessed by C-peptide and insulin release in response to glucose stimulation test. Real-Time PCR results showed that iPSCs-IPCs expressed pancreas-specific transcription factors (Insulin, Pdx1, Glucagon, Glut2 and Ngn3). The expressions of these transcription factors in PCL/PVA scaffold were higher than 2D groups. In addition to IPCs specific markers were detected by immunochemistry. These cells in both groups secreted insulin and C-peptide in a glucose challenge test by ELISA showing in vitro maturation. The results of current study demonstrated that enhanced differentiation of IPCs from hiPSCs could be result of PCL/PVA nanofibrous scaffolds. In conclusion, this research could provide a new approach to beta-like cells replacement therapies and pancreatic tissue engineering for T1DM in the future. Copyright © 2017. Published by Elsevier B.V.

  15. Integration of living cells into nanostructures using non-conventional self-assembly

    NASA Astrophysics Data System (ADS)

    Carnes, Eric C.

    Patternable cell immobilization is an essential feature of any solid-state device designed for interrogating or exploiting living cells. Immobilized cells must remain viable in a robust matrix that promotes fluidic connectivity between the cells and their environment while retaining the ability to establish and maintain necessary chemical gradients. A suitable inorganic matrix can be constructed via evaporation-induced self-assembly of nanostructured silica, in which phospholipids are used in place of traditional surfactant structure-directing agents in order to enhance cell viability and to create a coherent interface between the cell and the surrounding three-dimensional nanostructure. We have used this technique to develop two distinct cell encapsulation processes: cell-directed assembly and cell-directed integration. Cell-directed assembly is a one-step procedure that provides superior viability of immobilized cells by encouraging cells to interact with the developing host matrix. Limitations of this system include low viability for some cell types due to exposure to solvents and stresses, as well as a lack of control over the developing host nanostructure. Cell-directed integration addresses these shortcomings by introducing a two-step process in which cells become encapsulated in a pre-formed silica matrix. The validity of each encapsulation method has been demonstrated with Gram-positive and Gram-negative bacteria, yeast, and mammalian cells. The ability of the immobilized cells to establish relevant gradients of ions or signaling molecules, a key feature of these systems, has been characterized. Additionally, extension of cell encapsulation to address lingering questions in cell biology is addressed. We have also adapted these immobilization processes to be compatible with a variety of patterning strategies having tailorable properties. Widely available photolithography techniques, as well as direct aerosol deposition, have been adapted to provide methods for obtaining both positive and negative transfer of desired cell patterns. Multi-step lithography is also used to create a highly functional system allowing spatial control of not only cells but also media and other molecules of interest.

  16. Analysis of α-particle-induced chromosomal aberrations by chemically-induced PCC. Elaboration of dose-effect curves.

    PubMed

    Puig, Roser; Pujol, Mònica; Barrios, Leonardo; Caballín, María Rosa; Barquinero, Joan-Francesc

    2016-09-01

    In a similar way to high-dose exposures to low-LET radiations, cells show difficulties reaching mitosis after high-LET radiation exposure. For this reason, techniques have been proposed that are able to analyze chromosome aberrations in interphase by prematurely condensing the chromosomes (PCC-techniques). Few dose-effect curves for high-LET radiation types have been reported, and none for α-particles. The aim of this study was to evaluate, by chemically-induced PCC, the chromosome aberrations induced by several doses of α-particles. Monolayers of peripheral lymphocytes were exposed to an α-source of Americium-241 with a mean energy entering the cells of 2.7 MeV. Lymphocytes were exposed to 10 doses, from 0-2.5 Gy, and then cultured for 48 h. Colcemid and Calyculin-A were added at 24 and 1 h before harvesting, respectively. During microscope analysis, chromosome rings and extra chromosome pieces were scored in G2/M-PCC and M cells, while dicentric chromosomes were only scored in M cells. As the dose increased, fewer cells were able to reach mitosis and the proportion of G2/M-PCC cells increased. Chromosome rings were hardly observed in M cells when compared to G2/M-PCC cells. Extra fragments were more frequent than rings in both G2/M-PCC and M cells, but with lower frequencies than in G2/M-PCC cells. The distribution of dicentrics and extra fragments showed a clear overdispersion; this was not so evident for rings. The dose-effect curves obtained fitted very well to a linear model. Damaged cells after α-particle irradiation show more difficulties in reaching mitosis than cells exposed to γ-rays. After α-particle irradiation the frequency of all the chromosome aberrations considered increased linearly with the dose, and α-particles clearly produced more dicentrics and extra chromosome pieces with respect to γ-rays. After α-particle exposure, the existence of extra chromosome fragments in PCC cells seems to be a good candidate for use as a biomarker for dose assessment. However, the observed frequencies of different types of chromosomal aberrations could be influenced by some methodological aspects; for this reason, and in order to avoid possible methodological bias, standardization of the technique will be desirable.

  17. Evaluations of Conflicts Between Latino Values and Autonomy Desires Among Puerto Rican Adolescents.

    PubMed

    Villalobos Solís, Myriam; Smetana, Judith G; Tasopoulos-Chan, Marina

    2017-09-01

    Puerto Rican adolescents (N = 105; M age  = 15.97 years, SD = 1.40) evaluated hypothetical situations describing conflicts between Latino values (family obligations and respeto) and autonomy desires regarding personal, friendship, and dating activities. Adolescents judged that peers should prioritize Latino values over autonomy, which led to greater feelings of pride than happiness. However, they believed that teens would prioritize autonomy over Latino values, which led to greater feelings of happiness than pride. Adolescents reasoned about autonomy desires as personal issues, whereas reasoning about Latino values was multifaceted, including references to conventions and concerns for others. Furthermore, judgments and reasoning depended on the type of autonomy desire and Latino value and sometimes, by participants' age and sex. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  18. Chemical camouflage of antigenic determinants: stealth erythrocytes.

    PubMed

    Scott, M D; Murad, K L; Koumpouras, F; Talbot, M; Eaton, J W

    1997-07-08

    In a number of clinical circumstances it would be desirable to artificially conceal cellular antigenic determinants to permit survival of heterologous donor cells. A case in point is the problem encountered in transfusions of patients with rare blood types or chronically transfused patients who become allosensitized to minor blood group determinants. We have tested the possibility that chemical modification of the red blood cell (RBC) membrane might serve to occlude antigenic determinants, thereby minimizing transfusion reactions. To this end, we have covalently bound methoxy(polyethylene glycol) (mPEG) to the surface of mammalian RBC via cyanuric chloride coupling. Human RBC treated with this technique lose ABO blood group reactivity as assessed by solution-phase antisera agglutination. In accord with this, we also find a profound decrease in anti-blood group antibody binding. Furthermore, whereas human monocytes avidly phagocytose untreated sheep RBC, mPEG-derivatized sheep RBC are ineffectively phagocytosed. Surprisingly, human and mouse RBC appear unaffected by this covalent modification of the cell membrane. Thus, mPEG-treated RBC are morphologically normal, have normal osmotic fragility, and mPEG-derivatized murine RBC have normal in vivo survival, even following repeated infusions. Finally, in preliminary experiments, mPEG-modified sheep RBC intraperitoneally transfused into mice show significantly improved (up to 360-fold) survival when compared with untreated sheep RBC. We speculate that similar chemical camouflage of intact cells may have significant clinical applications in both transfusion (e.g., allosensitization and autoimmune hemolytic disease) and transplantation (e.g., endothelial cells and pancreatic beta cells) medicine.

  19. An Examination of Preferences for Social Presence in Online Courses with Regard to Personality Type

    ERIC Educational Resources Information Center

    Rose, Daniel Merritt

    2012-01-01

    The purpose of this research was to examine the connections between personality types as illustrated by the Myers Briggs Type Indicator and the desire for social presence components within a technology based learning environment. Participants in the study were undergraduate and graduate students enrolled in an educational technology program at a…

  20. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    PubMed

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  1. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient.

    PubMed

    Lee, Sujin; Hong, Juhee; Lee, Junghoon

    2016-02-28

    Our tissues consist of individual cells that respond to the elasticity of their environment, which varies between and within tissues. To better understand mechanically driven cell migration, it is necessary to manipulate the stiffness gradient across a substrate. Here, we have demonstrated a new variant of the microfabricated polymeric pillar array platform that can decouple the stiffness gradient from the ECM protein area. This goal is achieved via a "stepped" micro pillar array device (SMPAD) in which the contact area with the cell was kept constant while the diameter of the pillar bodies was altered to attain the proper mechanical stiffness. Using double-step SU-8 mold fabrication, the diameter of the top of every pillar was kept uniform, whereas that of the bottom was changed, to achieve the desired substrate rigidity. Fibronectin was immobilized on the pillar tops, providing a focal adhesion site for cells. C2C12, HeLa and NIH3T3 cells were cultured on the SMPAD, and the motion of the cells was observed by time-lapse microscopy. Using this simple platform, which produces a purely physical stimulus, we observed that various types of cell behavior are affected by the mechanical stimulus of the environment. We also demonstrated directed cell migration guided by a discrete rigidity gradient by varying stiffness. Interestingly, cell velocity was highest at the highest stiffness. Our approach enables the regulation of the mechanical properties of the polymeric pillar array device and eliminates the effects of the size of the contact area. This technique is a unique tool for studying cellular motion and behavior relative to various stiffness gradients in the environment.

  2. Highly Sensitive Colorimetric Cancer Cell Detection Based on Dual Signal Amplification.

    PubMed

    Yu, Tao; Dai, Pan-Pan; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-02-01

    Facile and efficient detection of cancer cells at their preclinical stages is one of the central challenges in cancer diagnostics. A direct, rapid, highly sensitive and specific biosensor for detection of cancer biomarkers is desirable in early diagnosis and prognosis of cancer. In this work, we developed, for the first time, an easy and intuitive dispersion-dominated colorimetric strategy for cancer cell detection based on combining multi-DNA released from an aptamer scaffold with cyclic enzymatic amplification, which was triggered by aptamer DNA conformational switch and demonstrated by non-cross-linking gold nanoparticles (Au NPs) aggregation. First, five kinds of messenger DNAs (mDNAs) were aligned on the cancer cell aptamers modified on magnetic beads (MBs) to form mDNAs-Apt-MBs biocompatible nanosensors. In the presence of target cells, the aptamer would bind to the receptors on the cell membranes, and mDNAs would be released, resulting in the first amplification that one biological binding event would cause the release of multiple kinds of mDNAs simultaneously. After magnetic separation, the released mDNAs were introduced into the cyclic enzymatic amplification to cleave more single strand DNA (ssDNA) fragments. Instead of modification of Au NPs, these fragments and mDNAs could be adsorbed on the surface of Au NPs to prevent particle aggregation and ensure the stability and color of solution in high salt environments. The linear response for HL-60 cells in a concentration range from 10 to 10(4) cells was obtained with a detection limit of four cells in buffer solution. Moreover, the feasibility of the proposed strategy was demonstrated in a diluted serum sample. This dual signal amplification method can be extended to other types of cancer cells, which has potential application in point-of-care cancer diagnosis.

  3. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  4. Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity.

    PubMed

    Wang, Jie; Lv, Yanlin; Wan, Wei; Wang, Xuefei; Li, Alexander D Q; Tian, Zhiyuan

    2016-02-01

    As a very sensitive technique, photoswitchable fluorescence not only gains ultrasensitivity but also imparts many novel and unexpected applications. Applications of near-infrared (NIR) fluorescence have demonstrated low background noises, high tissue-penetrating ability, and an ability to reduce photodamage to live cells. Because of these desired features, NIR-fluorescent dyes have been the premium among fluorescent dyes, and probes with photoswitchable NIR fluorescence are even more desirable for enhanced signal quality in the emerging optical imaging modalities but rarely used because they are extremely challenging to design and construct. Using a spiropyran derivative functioning as both a photoswitch and a fluorophore to launch its periodically modulated red fluorescence excitation energy into a NIR acceptor, we fabricated core-shell polymer nanoparticles exhibiting a photoswitchable fluorescence signal within the biological window (∼700-1000 nm) with a peak maximum of 776 nm. Live cells constantly synthesize new molecules, including fluorescent molecules, and also endocytose exogenous particles, including fluorescent particles. Upon excitation at different wavelengths, these fluorescent species bring about background noises and interferences covering nearly the whole visible region and therefore render many intracellular targets unaddressable. The oscillating NIR fluorescence signal with an on/off ratio of up to 67 that the polymer nanoparticles display is beyond the typical background noises and interferences, thus producing superior sharpness, reliability, and signal-to-noise ratios in cellular imaging. Taking these salient features, we anticipate that these types of nanoparticles will be useful for in vivo imaging of biological tissue and other complex specimens, where two-photon activation and excitation are used in combination with NIR-fluorescence photoswitching.

  5. Identification of control targets in Boolean molecular network models via computational algebra.

    PubMed

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  6. Application of Ti6Al7Nb Alloy for the Manufacture of Biomechanical Functional Structures (BFS) for Custom-Made Bone Implants.

    PubMed

    Szymczyk, Patrycja; Ziółkowski, Grzegorz; Junka, Adam; Chlebus, Edward

    2018-06-08

    Unlike conventional manufacturing techniques, additive manufacturing (AM) can form objects of complex shape and geometry in an almost unrestricted manner. AM’s advantages include higher control of local process parameters and a possibility to use two or more various materials during manufacture. In this work, we applied one of AM technologies, selective laser melting, using Ti6Al7Nb alloy to produce biomedical functional structures (BFS) in the form of bone implants. Five types of BFS structures (A1, A2, A3, B, C) were manufactured for the research. The aim of this study was to investigate such technological aspects as architecture, manufacturing methods, process parameters, surface modification, and to compare them with such functional properties such as accuracy, mechanical, and biological in manufactured implants. Initial in vitro studies were performed using osteoblast cell line hFOB 1.19 (ATCC CRL-11372) (American Type Culture Collection). The results of the presented study confirm high applicative potential of AM to produce bone implants of high accuracy and geometric complexity, displaying desired mechanical properties. The experimental tests, as well as geometrical accuracy analysis, showed that the square shaped (A3) BFS structures were characterized by the lowest deviation range and smallestanisotropy of mechanical properties. Moreover, cell culture experiments performed in this study proved that the designed and obtained implant’s internal porosity (A3) enhances the growth of bone cells (osteoblasts) and can obtain predesigned biomechanical characteristics comparable to those of the bone tissue.

  7. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor.

    PubMed

    Nakajima, Ken-ichiro; Wess, Jürgen

    2012-10-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M₃ muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types.

  8. Classification of nanoparticle diffusion processes in vital cells by a multifeature random forests approach: application to simulated data, darkfield, and confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Thorsten; Kroll, Alexandra; Wiemann, Martin; Lipinski, Hans-Gerd

    2016-04-01

    Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking makes it possible to characterize the particle and the surrounding cell. In case of free diffusion, the mean squared displacement for each trajectory of a nanoparticle can be measured which allows computing the corresponding diffusion coefficient and, if desired, converting it into the hydrodynamic diameter using the Stokes-Einstein equation and the viscosity of the fluid. However, within the more complex system of a cell's cytoplasm unrestrained diffusion is scarce and several other types of movements may occur. Thus, confined or anomalous diffusion (e.g. diffusion in porous media), active transport, and combinations thereof were described by several authors. To distinguish between these types of particle movement we developed an appropriate classification method, and simulated three types of particle motion in a 2D plane using a Monte Carlo approach: (1) normal diffusion, using random direction and step-length, (2) subdiffusion, using confinements like a reflective boundary with defined radius or reflective objects in the closer vicinity, and (3) superdiffusion, using a directed flow added to the normal diffusion. To simulate subdiffusion we devised a new method based on tracks of different length combined with equally probable obstacle interaction. Next we estimated the fractal dimension, elongation and the ratio of long-time / short-time diffusion coefficients. These features were used to train a random forests classification algorithm. The accuracy for simulated trajectories with 180 steps was 97% (95%-CI: 0.9481-0.9884). The balanced accuracy was 94%, 99% and 98% for normal-, sub- and superdiffusion, respectively. Nanoparticle tracking analysis was used with 100 nm polystyrene particles to get trajectories for normal diffusion. As a next step we identified diffusion types of nanoparticles in vital cells and incubated V79 fibroblasts with 50 nm gold nanoparticles, which appeared as intensely bright objects due to their surface plasmon resonance. The movement of particles in both the extracellular and intracellular space was observed by dark field and confocal laser scanning microscopy. After reducing background noise from the video it became possible to identify individual particle spots by a maximum detection algorithm and trace them using the robust single-particle tracking algorithm proposed by Jaqaman, which is able to handle motion heterogeneity and particle disappearance. The particle trajectories inside cells indicated active transport (superdiffusion) as well as subdiffusion. Eventually, the random forest classification algorithm, after being trained by the above simulations, successfully classified the trajectories observed in live cells.

  9. Design and demonstration of a pumpless 14 compartment microphysiological system.

    PubMed

    Miller, Paula G; Shuler, Michael L

    2016-10-01

    We describe a human "Body-on-a-chip" device (or microphysiological system) that could be used to emulate drug distribution, metabolism, and action in the body. It is based upon a physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model, where multiple chambers representing different organs are connected with fluidic channels to mimic multi-organ interactions within the body. Here we describe a pumpless 14 chamber (13 organs) microfluidic cell culture device that provides a separation between barrier and nonbarrier types of cell cultures. Our barrier chamber layer (skin, GI tract, and lung) allows for direct access and/or exposures to chemical or biological reagents forcing these reagents to pass through a barrier of cells established on a microfabricated membrane before exposing the nonbarrier tissue chambers (fat, kidney, heart, adrenal glands, liver, spleen, pancreas, bone marrow, brain, muscle) or entering the microfluidic circulation within the device. Our nonbarrier tissue chambers were created as three-dimensional configurations by resuspending cells in hydrogel (PGMatrix). We used cell lines to represent five of these organs (barrier lines-A549 [lung] and Caco2 [GI]) (nonbarrier lines-HepG2 C3A [liver], Meg01 [bone marrow], and HK2 [kidney]). The dimensions of our straight duct-like channels to each organ chamber were designed to provide the appropriate flow of a culture medium. The organ volumes and organ flow rates that have been reported for an average human male were used to estimate the desired fluid retention times in each organ chamber. The flow through the channels was induced by gravity on a custom programmed rocker platform which enabled pumpless operation and minimized bubble entrapment. The purpose of this paper is to describe the design and operation of a 14 chamber multi-organ system representing 13 tissues/organs with both barrier and nonbarrier tissue chambers and to study the interactive responses among the various cell lines. We demonstrate that five different cell lines survived with high viability (above 85%) for 7 days. We compared the individual observed flow rates to the compartments to the desired or estimated flow rates. This work demonstrates the feasibility of constructing, operating and maintaining a simple, gravity-driven, multi-organ microphysiological system with the capability of measuring cellular functions such as CYP1A1 and CYP3A4 activities, albumin release, urea, maintenance of tight junctions, and presence of surfactant for a sustained period. Biotechnol. Bioeng. 2016;113: 2213-2227. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Phthalocyanines And Their Sulfonated Derivatives As Photosensitizers In Photodynamic Therapy.

    NASA Astrophysics Data System (ADS)

    Riesz, Peter; Krishna, C. Murali

    1988-02-01

    Photodynamic therapy (PDT) of human tumors with hematoporphyrin derivative (HpD) has achieved encouraging results. However, HpD is a complex mixture whose composition varies in different preparations and with time of storage. The future promise of PDT for cancer treatment depends on the development of new chemically defined sensitizers which absorb more strongly than HpD in the 600-800 nm region. A shift to higher wavelengths is desirable since it allows increased light penetration in human tissues. In vivo, these sensitizers should be non-toxic, localize selectively in tumors and generate cytotoxic species upon illumination with a high quantum yield. These damaging species may be singlet oxygen (1O2) produced by the transfer of energy from the triplet state of the sensitizer to oxygen (Type II) or superoxide anion radicals formed by electron transfer to oxygen or substrate radicals generated by electron or hydrogen transfer directly from the sensitizer (Type I). The recent work of several groups indicating that phthalocyanines and their water soluble derivatives are promising candidates for PDT is reviewed. The photophysics, photochemistry, photosensitized killing of cultured mammalian cells and the use for in vivo photodynamic therapy of phthalocyanines is outlined. Our studies of the post-illumination photohemolysis of human red blood cells as a model system for membrane photomodification sensitized by phthalocyanine sulfonates are consistent with the predominant role of 1O2 as the damaging species.

  11. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.

    PubMed

    Giacalone, Joseph C; Sharma, Tasneem P; Burnight, Erin R; Fingert, John F; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2018-02-28

    Human induced pluripotent stem cells (hiPSCs) are the ideal cell source for autologous cell replacement. However, for patients with Mendelian diseases, genetic correction of the original disease-causing mutation is likely required prior to cellular differentiation and transplantation. The emergence of the CRISPR-Cas9 system has revolutionized the field of genome editing. By introducing inexpensive reagents that are relatively straightforward to design and validate, it is now possible to correct genetic variants or insert desired sequences at any location within the genome. CRISPR-based genome editing of patient-specific iPSCs shows great promise for future autologous cell replacement therapies. One caveat, however, is that hiPSCs are notoriously difficult to transfect, and optimized experimental design considerations are often necessary. This unit describes design strategies and methods for efficient CRISPR-based genome editing of patient- specific iPSCs. Additionally, it details a flexible approach that utilizes positive selection to generate clones with a desired genomic modification, Cre-lox recombination to remove the integrated selection cassette, and negative selection to eliminate residual hiPSCs with intact selection cassettes. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  12. Thermoresponsive release of viable microfiltrated Circulating Tumor Cells (CTCs) for precision medicine applications

    PubMed Central

    Ao, Zheng; Parasido, Erika; Rawal, Siddarth; Williams, Anthony; Schlegel, Richard; Liu, Stephen; Albanese, Chris; Cote, Richard J.; Agarwal, Ashutosh; Datar, Ram H.

    2015-01-01

    Stimulus responsive release of Circulating Tumor Cells (CTCs), with high recovery rates from their capture platform, is highly desirable for off-chip analyses. Here, we present a temperature responsive polymer coating method to achieve both release as well as culture of viable CTCs captured from patient blood samples. PMID:26426331

  13. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  14. In vitro eugenics.

    PubMed

    Sparrow, Robert

    2014-11-01

    A series of recent scientific results suggest that, in the not-too-distant future, it will be possible to create viable human gametes from human stem cells. This paper discusses the potential of this technology to make possible what I call 'in vitro eugenics': the deliberate breeding of human beings in vitro by fusing sperm and egg derived from different stem-cell lines to create an embryo and then deriving new gametes from stem cells derived from that embryo. Repeated iterations of this process would allow scientists to proceed through multiple human generations in the laboratory. In vitro eugenics might be used to study the heredity of genetic disorders and to produce cell lines of a desired character for medical applications. More controversially, it might also function as a powerful technology of 'human enhancement' by allowing researchers to use all the techniques of selective breeding to produce individuals with a desired genotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Eating behaviour among nutrition students and social desirability as a confounder.

    PubMed

    Freitas, Dóris; Oliveira, Bruno Mpm; Correia, Flora; Pinhão, Sílvia; Poínhos, Rui

    2017-06-01

    The study of eating behaviour should consider the presence of potential sources of bias, including social desirability. This is particularly relevant among students of Nutrition Sciences, since they have a higher risk of eating disorders. To analyse the effect of social desirability in the assessment of eating behaviour dimensions among nutrition students. In this cross-sectional study, we analysed data from 149 students of Nutrition Sciences. Participants completed a questionnaire assessing social desirability and eating behaviour dimensions (emotional, external and binge eating, flexible and rigid control, and eating self-efficacy). Among males, social desirability had a negative association with binge eating, while among women it had a negative association with emotional, external and binge eating and a positive association with eating self-efficacy. In both subsamples, social desirability showed no significant association with any of the two types of dietary restraint (rigid and flexible control). Overall, the association between social desirability and eating behaviour dimensions among students of Nutrition Sciences occurs in the same direction as found in students from other areas. However, alongside these similarities, there is a stronger association between social desirability and binge eating among male students of Nutrition Sciences. We hypothesize that this may be related with the different knowledge of students from different areas, and the way they perceive and face the treatment of eating disorders. Our study shows that social desirability should be considered while assessing eating behaviour among nutrition students, particularly when studying external eating, binge eating and eating self-efficacy. Moreover, when tailoring interventions to reduce the possible effects of eating behaviour on nutritionists and dieticians' practice, we should consider the influence of social desirability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering.

    PubMed

    Denecke, Bernd; Horsch, Liska D; Radtke, Stefan; Fischer, Johannes C; Horn, Peter A; Giebel, Bernd

    2015-11-01

    One of the major challenges in tissue engineering is to supply larger three-dimensional (3D) bioengineered tissue transplants with sufficient amounts of nutrients and oxygen and to allow metabolite removal. Consequently, artificial vascularization strategies of such transplants are desired. One strategy focuses on endothelial cells capable of initiating new vessel formation, which are settled on scaffolds commonly used in tissue engineering. A bottleneck in this strategy is to obtain sufficient amounts of endothelial cells, as they can be harvested only in small quantities directly from human tissues. Thus, protocols are required to expand appropriate cells in sufficient amounts without interfering with their capability to settle on scaffold materials and to initiate vessel formation. Here, we analysed whether umbilical cord blood (CB)-derived endothelial colony-forming cells (ECFCs) fulfil these requirements. In a first set of experiments, we showed that marginally expanded ECFCs settle and survive on different scaffold biomaterials. Next, we improved ECFC culture conditions and developed a protocol for ECFC expansion compatible with 'Good Manufacturing Practice' (GMP) standards. We replaced animal sera with human platelet lysates and used a novel type of tissue-culture ware. ECFCs cultured under the new conditions revealed significantly lower apoptosis and increased proliferation rates. Simultaneously, their viability was increased. Since extensively expanded ECFCs could still settle on scaffold biomaterials and were able to form tubular structures in Matrigel assays, we conclude that these ex vivo-expanded ECFCs are a novel, very potent cell source for scaffold-based tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Di; Yuan, Yunsheng; Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax proteinmore » in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. - Highlights: • Niclosamide is a promising therapeutic candidate for adult T cell leukemia. • Niclosamide employs a novel mechanism through proteasomal degradation of Tax. • Niclosamide downregulates certain cellular pro-survival molecules.« less

  18. Syk inhibitors.

    PubMed

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  19. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    PubMed Central

    2015-01-01

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties. PMID:25383627

  20. Lightweight bladder lined pressure vessels

    DOEpatents

    Mitlitsky, Fred; Myers, Blake; Magnotta, Frank

    1998-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  1. Method for forming a bladder for fluid storage vessels

    DOEpatents

    Mitlitsky, Fred; Myers, Blake; Magnotta, Frank

    2000-01-01

    A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.

  2. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Challenges and Perspectives on the Development of Small-Molecule EGFR Inhibitors against T790M-Mediated Resistance in Non-Small-Cell Lung Cancer.

    PubMed

    Song, Zhendong; Ge, Yang; Wang, Changyuan; Huang, Shanshan; Shu, Xiaohong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-07-28

    Because of the development of drug-resistance mutations, particularly the "gatekeeper" threonine(790)-to-methionine(790) (T790M) mutation in the ATP-binding pocket of the epidermal growth factor receptor (EGFR), the current generation of EGFR tyrosine kinase inhibitors lost their clinical efficacy. Recently, a large number of small-molecule inhibitors with striking inhibitory potency against EGFR mutants with the T790M change have been identified. In particular, the inhibitors rociletinib and osimertinib, which can selectively target both sensitizing mutations and the T790M resistance while sparing the wild-type (WT) form of the receptor, have been designated as breakthrough therapies in the treatment of mutant non-small-cell lung cancer (NSCLC) by the U.S. FDA in 2014. We hope that this review on the small-molecule EGFR T790M inhibitors, along with their discovery strategies, will assist in the design of future T790M-containing EGFR inhibitors with high levels of selectivity over WT EGFR, broad kinase selectivity, and desirable physicochemical properties.

  4. Characterization and validation of fluorescent receptor ligands: a case study of the ionotropic serotonin receptor.

    PubMed

    Hovius, Ruud

    2013-01-01

    The application of fluorescent receptor ligands has become widespread, incited by two important reasons. "Seeing is believing"-it is possible to visualize in real time in live cells ligand-receptor interactions, and to locate the receptors with subcellular precision allowing one to follow, e.g., internalization of the ligand-receptor complex. The high sensitivity of photon detection permits observation of on the one hand receptor-ligand interactions on cells with low, native receptor abundance, and on the other of individual fluorophores unveiling the stochastic properties of single ligand-receptor complexes.The major bottlenecks that impede extensive use of fluorescent ligands are due to possible dramatic changes of the pharmacological properties of a ligand upon chemical modification and fluorophore conjugation, aggravated by the observation that different fluorophores can provoke very dissimilar effects. This makes it virtually impossible to predict beforehand which labelling strategy to use to produce a fluorescent ligand with the desired qualities.Here, we focus on the design, synthesis, and evaluation of a high-affinity fluorescent antagonist for the ionotropic serotonin type-3 receptor.

  5. Measuring Epistemic Curiosity in Young Children

    ERIC Educational Resources Information Center

    Piotrowski, Jessica Taylor; Litman, Jordan A.; Valkenburg, Patti

    2014-01-01

    Epistemic curiosity (EC) is the desire to obtain new knowledge capable of either producing positive experiences of intellectual interest (I-type) or of reducing undesirable conditions of informational deprivation (D-type). Although researchers acknowledge that there are individual differences in young children's epistemic curiosity, there are…

  6. Method and apparatus for tuning high power lasers

    DOEpatents

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  7. Liquid Metal Anode for JP-8 Fuel Cell

    DTIC Science & Technology

    2009-01-15

    bases. They react preferentially with acidic sulfur and its compounds, S, SO2 and H2S. These reactions of cerium oxides with sulfur and its...by sulfur . The dominating thermodynamic reaction is the formation of metal sulfides or sulfates , not the desired electrochemical reduction...oxidation of sulfur to make sulfuric acid . Vanadium carbide used as a fuel cell anode has been evaluated by Japanese researchers and CellTech Power. Its

  8. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    PubMed

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  9. Strengths-based behavioral intervention for parents of adolescents with type 1 diabetes using an mHealth app (Type 1 Doing Well): Protocol for a pilot randomized controlled trial

    USDA-ARS?s Scientific Manuscript database

    Supportive parent involvement for adolescents' type 1 diabetes (T1D) self-management promotes optimal diabetes outcomes. However, family conflict is common and can interfere with collaborative family teamwork. Few interventions have used explicitly strengths-based approaches to help reinforce desire...

  10. Glycan Engineering for Cell and Developmental Biology.

    PubMed

    Griffin, Matthew E; Hsieh-Wilson, Linda C

    2016-01-21

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Australasian emergency physicians: a learning and educational needs analysis. Part Four: CPD topics desired by emergency physicians.

    PubMed

    Dent, Andrew W; Weiland, Tracey J; Paltridge, Debbie

    2008-06-01

    To report the preferences of Fellows of the Australasian College for Emergency Medicine for topics they would desire for their continuing professional development (CPD). A mailed survey of Fellows of the Australasian College for Emergency Medicine asked for Likert type responses on the desirability of CPD on 15 procedural skills, 13 management skills, 11 clinical emergency topics, 9 topics related to teaching, 7 related to diagnostics and 5 evidence based practice topics. CPD in procedural skills of advanced and surgical airways, ED ultrasound, ventilation, skills, plastic procedures and regional anaesthesia were nominated as desirable by 85% of emergency physicians (EP). More than 90% desired CPD in ophthalmological, otorhinolaryngeal, neonatal and paediatric emergencies. Of diagnostic skills, more than 80% considered CPD on computerized tomography, electrocardiography and plain X-ray interpretation as desirable, well as CPD about teaching in general, simulation and preparing candidates for fellowship exams. Of the 12 management skills, 11 were seen as desirable topics by more than 70%, with counter disaster planning, giving feedback and dealing with complaints the most popular. All evidence based practice related skills, including interpreting statistics and undertaking literature searches were seen as desirable topics by more than 80% of EP. This information may assist in the planning of future educational interventions for emergency physicians. EP seek CPD on management, educational and other non clinical skills, as well as topics relating directly to patient care.

  12. Lattice engineering through nanoparticle–DNA frameworks

    DOE PAGES

    Tian, Ye; Zhang, Yugang; Wang, Tong; ...

    2016-02-22

    Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using themore » same particles can be assembled by introduction of the corresponding DNA polyhedral frames. As a result, this approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.« less

  13. Microbeam studies of the sensitivity of structures within living cells

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1992-01-01

    Determining the biological effects of low doses of radiation with high linear energy transfer (LET) is complicated by the stochastic nature of charged-particle interactions. Populations of cells exposed to very low radiation doses contain a few cells which have been hit by a charged particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, a few cells receive two or more events. Because the effects of damage produced by separate events can interact in the cell, we have had to make assumptions about the nature of these interactions in order to interpret the results of the experiments. Many of those assumptions can be tested if we can be sure of the number of charged-particle events which occur in individual cells, and correlate this number with the biological effect. We have developed a special irradiation facility at Pacific Northwest Laboratory (PNL) to control the actual number of charged particle tracks that pass through cell nuclei. The beam from a 2 MeV tandem accelerator is collimated to approximately 5 microns. Cells, grown in special dishes with 1.5 microns thick plastic bottoms, are positioned so that the desired portion of the cell aligns with the collimator. A shutter in the beam line is opened and closed after the desired number of particle tracks has been counted. This approach can be used to investigate the effects of the interaction between irradiated and unirradiated cells in an organized system, as well as to study the effects of spatial and temporal distribution of radiation damage within single cells.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. Concise Review: Fabrication, Customization, and Application of Cell Mimicking Microparticles in Stem Cell Science

    PubMed Central

    Labriola, Nicholas R.; Azagury, Aharon; Gutierrez, Robert; Mathiowitz, Edith

    2018-01-01

    Abstract Stem and non‐stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues. Thus, cell mimicking microparticles (CMMPs) have been developed to more accurately recapitulate the properties of surrounding cells while still offering ways to tailor what stimuli are presented. This nascent field holds the promise of reducing, or even eliminating, the need for live cells in select, regenerative medicine therapies, and diagnostic applications. Recent, CMMP‐based studies show great promise for the technology, yet only reproduce a small subset of cellular characteristics from among those possible: size, morphology, topography, mechanical properties, surface molecules, and tailored chemical release to name the most prominent. This Review summarizes the strengths, weaknesses, and ideal applications of micro/nanoparticle fabrication and customization methods relevant to cell mimicking and provides an outlook on the future of this technology. Moving forward, researchers should seek to combine multiple techniques to yield CMMPs that replicate as many cellular characteristics as possible, with an emphasis on those that most strongly influence the desired therapeutic effects. The level of flexibility in customizing CMMP properties allows them to substitute for cells in a variety of regenerative medicine, drug delivery, and diagnostic systems. Stem Cells Translational Medicine 2018;7:232–240 PMID:29316362

  15. Structure-function relationships in the stem cell's mechanical world A: seeding protocols as a means to control shape and fate of live stem cells.

    PubMed

    Zimmermann, Joshua A; Knothe Tate, Melissa L

    2011-12-01

    Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell volume was shown to be dependent on initial seeding density whereas nucleus shape was shown to depend on developmental context but not seeding density. Both smaller cell volumes and flatter nuclei were found to correlate with increased expression of markers for mesenchymal condensation as well as chondrogenic and osteogenic differentiation but a decreased expression of pre-condensation and adipogenic markers. Considering the data presented here, both seeding density and protocol significantly alter the morphology of mesenchymal stem cells even at very early stages of cell culture. Thus, these design parameters may play a critical role in the success of tissue engineering strategies seeking to recreate condensation events. However, a better understanding of how these changes in cell volume and nucleus shape relate to the differentiation of MSCs is important for prescribing precise seeding conditions necessary for the development of the desired tissue type. In a companion study (Part B, following), we address the effect of concomitant volume and shape changing stresses on spatiotemporal distribution of the cytoskeletal proteins actin and tubulin. Taken together, these studies bring us one step closer to our ultimate goal of elucidating the dynamics of nucleus and cell shape change as tissue templates grow (cell proliferation) and specialize (cell differentiation).

  16. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.

    1996-01-01

    The Naval Research Laboratory (NRL) has been involved in the development of solar cells for space applications since the 1960s. It quickly became apparent in this work that radiation damage caused to solar cells by electrons and protons trapped by the earth's magnetic field would seriously degrade the power output of photovoltaic arrays in extended missions. Techniques were therefore developed to harden the cells by shielding them with coverglass, etc. Ultimately, however, there is a limit to such approaches, which is determined by the radiation response of the semiconductor material employed. A desire for high efficiency and radiation resistance led to the development of alternative cell technologies such as GaAs, which has since become the technology of choice for many applications. InP cells are currently the most radiation resistant, high efficiency, planar cells known. NRL first sponsored InP solar cell technology in 1986, when Arizona State University was contracted to grow p/n cells by liquid phase epitaxy. NRL's interest in InP cells was generated by the results presented by Yamaguchi and his co-workers in the early 1980s on the remarkable radiation resistance of cells grown by diffusion of S into Zn doped p-type InP substrates. These cells also had beginning of life (BOL) efficiencies approximately 16%(AM0). Related to the radiation resistance of the cells was the fact that radiation-induced damage could be optically annealed by sunlight. Relatively large quantities of 1 x 2 cm(exp 2) diffused junction cells were made and were used on the MUSES-A and the EXOS-D satellites. These cells were also available in the U.S. through NIMCO, and were studied at NRL and elsewhere. Workers at NASA Lewis became involved in research in InP cells about the same time as NRL.

  17. Establishment of a Somatic Cell Bank for Indian Buffalo Breeds and Assessing the Suitability of the Cryopreserved Cells for Somatic Cell Nuclear Transfer.

    PubMed

    Selokar, Naresh L; Sharma, Papori; Krishna, Ananth; Kumar, Deepak; Kumar, Dharmendra; Saini, Monika; Sharma, Arpna; Vijayalakshmy, Kennady; Yadav, Prem Singh

    2018-06-01

    Biobanks of cryopreserved gametes and embryos of domestic animals have been utilized to spread desired genotypes and to conserve the animal germplasm of endangered breeds. In principle, somatic cells can be used for the same purposes, and for reviving of animals, the somatic cells must be suitable for animal cloning techniques, such as somatic cell nuclear transfer. In the present study, we derived and cryopreserved somatic cells from three breeds of riverine and swamp-like type buffaloes and established a somatic cell bank. In total, 350 cryovials of 14 different individual animals (25 cryovials per animal) were cryopreserved and informative data such as breed value, origin, and others were documented. Immunostaining of the established cells against vimentin and cytokeratin suggested a commitment to the fibroblast lineage. In addition, microsatellite analysis was performed and documented for unambiguous parentage verification of clones in the future. Subsequently, the cryopreserved cells were tested for their suitability as nuclear donors (n = 7) using handmade cloning, and the reconstructed embryos were cultured in vitro. The cleavage rates (95.99% ± 2.17% vs. 82.18% ± 2.50%) and blastocyst rates (37.73% ± 1.54% vs. 24.31% ± 1.78%) were higher (p < 0.05) for riverine buffalo cells than that of swamp-like buffalo cells, whereas the total cell numbers of blastocysts (258.16 ± 36.25 vs. 198.16 ± 36.25, respectively) were similar. In conclusion, we demonstrated the feasibility of biobanking of buffalo somatic cells, and that the cryopreserved cells can be used to produce cloned embryos. This study encourages the development of somatic cell biobanks of domestic livestock, including endangered breeds of buffalo, to preserve valuable genotypes for future revitalization by animal cloning techniques.

  18. Optical Manipulation of Single Magnetic Beads in a Microwell Array on a Digital Microfluidic Chip.

    PubMed

    Decrop, Deborah; Brans, Toon; Gijsenbergh, Pieter; Lu, Jiadi; Spasic, Dragana; Kokalj, Tadej; Beunis, Filip; Goos, Peter; Puers, Robert; Lammertyn, Jeroen

    2016-09-06

    The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.

  19. Desire to Have Children Among Transgender People in Germany: A Cross-Sectional Multi-Center Study.

    PubMed

    Auer, Matthias K; Fuss, Johannes; Nieder, Timo O; Briken, Peer; Biedermann, Sarah V; Stalla, Günter K; Beckmann, Matthias W; Hildebrandt, Thomas

    2018-05-01

    Many trans individuals undergo medical interventions that result in irreversible loss of fertility. Little is known about their desire to have children and attitudes toward fertility preservation options. To study how the desire for children and the use of fertility preservation options varies among trans women and trans men in different transitioning stages in Germany. In this cross-sectional multi-center study, N = 99 trans women and N = 90 trans men were included. Of these, 26 of each sex were just about to start medical treatment. Outcome parameter were the prevalence and determinants of a desire to have children in trans persons. Before treatment, a desire for children was significantly higher in trans men compared to trans women (P = .016). In contrast, in those who had already started treatment, a current desire to have children was equally present in about one fourth of participants of both genders while the interest in having children in the future was significantly higher in trans women (69.9%) than in trans men (46.9%; P = .034). Although 76.1% of trans women and 76.6% of trans men indicated that they had at least thought about preserving germ cells before starting medical transition, only 9.6% of trans women and 3.1% of trans men had put this idea into practice. Most trans men in both groups indicated that insemination of a female partner with sperm from an unrelated donor was a suitable option to fulfill their child wish, potentially explaining their low interest in preserving their own germ cells. Finally, a logistic regression analysis accounting for potential confounders revealed that overall trans women were more than twice as likely to have a current desire to have children (odds ratio 2.58), and this wish was on average 5.3% lower with each year of increasing age. A low level of fertility preservation among trans persons is contrasted by a high level of desire for children. This highlights the importance of counseling trans individuals regarding fertility preservation options. To our knowledge, this is the first study that addresses desire to have children in a clinical sample of trans women. It is also the first that investigates this issue among trans men who have not started medical treatment, and the first comparison of both genders. A limitation for the generalization of our results is the special legal context in Germany that forbids oocyte donation for reciprocal in vitro fertilization. Reproductive desire is high among trans individuals, but the use of reproductive options is surprisingly low. Auer MK, Fuss J, Nieder TO, et al. Desire to Have Children Among Transgender People in Germany: A Cross-Sectional Multi-Center Study. J Sex Med 2018;15:757-767. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  20. Drug discovery for alopecia: gone today, hair tomorrow

    PubMed Central

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-01-01

    Introduction Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. Areas covered In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8+NK group 2D-positive (NKG2D+) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. Expert opinion The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play. PMID:25662177

  1. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells.

    PubMed

    Imagawa, Kazuo; Takayama, Kazuo; Isoyama, Shigemi; Tanikawa, Ken; Shinkai, Masato; Harada, Kazuo; Tachibana, Masashi; Sakurai, Fuminori; Noguchi, Emiko; Hirata, Kazumasa; Kage, Masayoshi; Kawabata, Kenji; Sumazaki, Ryo; Mizuguchi, Hiroyuki

    2017-02-02

    Bile salt export pump (BSEP) plays an important role in hepatic secretion of bile acids and its deficiency results in severe cholestasis and liver failure. Mutation of the ABCB11 gene encoding BSEP induces BSEP deficiency and progressive familial intrahepatic cholestasis type 2 (PFIC2). Because liver transplantation remains standard treatment for PFIC2, the development of a novel therapeutic option is desired. However, a well reproducible model, which is essential for the new drug development for PFIC2, has not been established. Therefore, we attempted to establish a PFIC2 model by using iPSC technology. Human iPSCs were generated from patients with BSEP-deficiency (BD-iPSC), and were differentiated into hepatocyte-like cells (HLCs). In the BD-iPSC derived HLCs (BD-HLCs), BSEP was not expressed on the cell surface and the biliary excretion capacity was significantly impaired. We also identified a novel mutation in the 5'-untranslated region of the ABCB11 gene that led to aberrant RNA splicing in BD-HLCs. Furthermore, to evaluate the drug efficacy, BD-HLCs were treated with 4-phenylbutyrate (4PBA). The membrane BSEP expression level and the biliary excretion capacity in BD-HLCs were rescued by 4PBA treatment. In summary, we succeeded in establishing a PFIC2 model, which may be useful for its pathophysiological analysis and drug development.

  2. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells

    PubMed Central

    Imagawa, Kazuo; Takayama, Kazuo; Isoyama, Shigemi; Tanikawa, Ken; Shinkai, Masato; Harada, Kazuo; Tachibana, Masashi; Sakurai, Fuminori; Noguchi, Emiko; Hirata, Kazumasa; Kage, Masayoshi; Kawabata, Kenji; Sumazaki, Ryo; Mizuguchi, Hiroyuki

    2017-01-01

    Bile salt export pump (BSEP) plays an important role in hepatic secretion of bile acids and its deficiency results in severe cholestasis and liver failure. Mutation of the ABCB11 gene encoding BSEP induces BSEP deficiency and progressive familial intrahepatic cholestasis type 2 (PFIC2). Because liver transplantation remains standard treatment for PFIC2, the development of a novel therapeutic option is desired. However, a well reproducible model, which is essential for the new drug development for PFIC2, has not been established. Therefore, we attempted to establish a PFIC2 model by using iPSC technology. Human iPSCs were generated from patients with BSEP-deficiency (BD-iPSC), and were differentiated into hepatocyte-like cells (HLCs). In the BD-iPSC derived HLCs (BD-HLCs), BSEP was not expressed on the cell surface and the biliary excretion capacity was significantly impaired. We also identified a novel mutation in the 5′-untranslated region of the ABCB11 gene that led to aberrant RNA splicing in BD-HLCs. Furthermore, to evaluate the drug efficacy, BD-HLCs were treated with 4-phenylbutyrate (4PBA). The membrane BSEP expression level and the biliary excretion capacity in BD-HLCs were rescued by 4PBA treatment. In summary, we succeeded in establishing a PFIC2 model, which may be useful for its pathophysiological analysis and drug development. PMID:28150711

  3. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.

    PubMed

    Islam, Afroja T; Siddique, Ariful H; Ramulu, T S; Reddy, Venu; Eu, Young-Jae; Cho, Seung Hyun; Kim, CheolGi

    2012-12-01

    In this work, we demonstrated the alignment of polystyrene latex microspheres (diameter of 1 ~45 μm), bio-functionalized superparamagnetic beads (diameter 2.8 μm), and live cells (average diameter 1 ~2 μm) using an ultrasonic standing wave (USW) in a PDMS microfluidic channel (330 μm width) attached on a Si substrate for bio-medical applications. To generate a standing wave inside the channel, ultrasound of 2.25 MHz resonance frequency (for the channel width) was applied by two ultrasound transducers installed at both sides of the channel which caused the radiation force to concentrate the micro-particles at the single pressure nodal plane of USW. By increasing the frequency to the next resonance condition of the channel, the particles were concentrated in dual nodal planes. Migration time of the micro-particles towards the single nodal plane was recorded as 108 s, 17 s, and 115 s for polystyrene particles of 2 μm diameter, bio-functionalized magnetic beads, and live cells, respectively. These successful alignments of the bio-functionalized magnetic beads along the desired part of the channel can enhance the performance of a sensor which is applicable for the bio-hybrid system and the alignment of live cells without any damage can be used for sample pre-treatment for the application of lab-on-a-chip type bioassays.

  4. THE ANALYSIS OF MIXED DISCRETE AND CONTINUOUS OUTCOMES USING DESIRABILITY FUNCTIONS.

    EPA Science Inventory

    Multiple types of outcomes are sometimes measured on each animal in toxicology dose-response experiments, and multiple analyses may increase the overall type I error. One approach to analyzing these outcomes in an integrated way is through the use of a composite score. We int...

  5. Note: Ultra-low birefringence dodecagonal vacuum glass cell.

    PubMed

    Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-01

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10(-8). After baking the cell at 150 °C, we reach a pressure below 10(-10) mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  6. Toward an ethics of psychoanalysis: a critical reading of Lacan's ethics.

    PubMed

    Kirshner, Lewis A

    2012-12-01

    Lacan's seminar The Ethics of Psychoanalysis (1959-1960) pursues, from a Freudian perspective, a fundamental philosophical question classically addressed by Aristotle's Nichomachean Ethics: How is human life best lived and fulfilled? Is there is an ethic of this type intrinsic to psychoanalysis? Lacan placed the problem of desire at the center of his Ethics. His notorious self-authorized freedom from convention and probable crossing of limits (see Roudinesco 1993) may have led mainstream analysts to ignore his admonition: "At every moment we need to know what our effective relationship is to the desire to do good, to the desire to cure" (Lacan 1959-1960, p. 219). This means that the analyst's desire, as well as the patient's, is always in play in his attempt to sustain an ethical position. An examination of Lacan's seminar highlights this link, but also points to a number of unresolved issues. The patient's desire is a complex matter, readily entangled in neurotic compromise, defense, and transference, and the analyst's commitment to it is also problematic because of the inevitable co-presence of his own desire. Lacan suggested that more emphasis be placed in training on the desire of the analyst, but beyond that a proposal is advanced for the institutionalization of a "third" as reviewer and interlocutor in routine analytic practice. Analysis may not be a discipline that can be limited to a dyadic treatment relationship.

  7. Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds.

    PubMed

    Yu, Yuanman; Chen, Jie; Chen, Rui; Cao, Lingyan; Tang, Wei; Lin, Dan; Wang, Jing; Liu, Changsheng

    2015-05-13

    Rapid and controlled vascularization within scaffolds remains one of the key limitations in tissue engineering applications. This study describes the fabrication and characterization of 2-N,6-O-sulfated chitosan (26SCS)-coated hierarchical scaffold composed of poly(lactic-co-glycolic acid) (PLGA) microspheres, as a desirable vehicle for vascular endothelial growth factor (VEGF) delivery and consequent angiogenic boosting in vitro. Owing to the hierarchical porous structure and high affinity between VEGF and 26SCS, the 26SCS-modified PLGA (S-PLGA) scaffold possesses excellent entrapment and sustained release of VEGF. Using human umbilical vein endothelial cells (HUVECs) as a cell model, the VEGF-loaded S-PLGA scaffold shows desirable cell viability and attachment. The bioactivity of released VEGF is validated by intracellular nitric oxide secretion and capillary tube formation, demonstrating the improved capacity of VEGF-mediated pro-angiogenesis ascribed to 26SCS incorporation. Such a strategy will afford an effective method to prepare a scaffold with promoted angiogenesis.

  8. Connections for solid oxide fuel cells

    DOEpatents

    Collie, Jeffrey C.

    1999-01-01

    A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

  9. Gels as battery separators for soluble electrode cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gahn, R. F. (Inventor)

    1977-01-01

    Gels are formed from silica powders and hydrochloric acid. The gels are then impregnated into a polymeric foam and the resultant sheet material is then used in applications where the transport of chloride ions is desired. Specifically disclosed is the utilization of the sheet in electrically rechargeable redox flow cells which find application in bulk power storage systems.

  10. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  11. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  12. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  13. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  14. Polyhedral meshing in numerical analysis of conjugate heat transfer

    NASA Astrophysics Data System (ADS)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  15. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Elizabeth, Elmy; Baranwal, Gaurav; Krishnan, Amit G.; Menon, Deepthy; Nair, Manitha

    2014-03-01

    Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 μM, 750 μM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 μM. Above 750 μM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.

  16. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.

    PubMed

    Ng, Wei Long; Qi, Jovina Tan Zhi; Yeong, Wai Yee; Naing, May Win

    2018-01-23

    Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.

  17. Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions.

    PubMed

    White, K; Büning, H; Kritz, A; Janicki, H; McVey, J; Perabo, L; Murphy, G; Odenthal, M; Work, L M; Hallek, M; Nicklin, S A; Baker, A H

    2008-03-01

    Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors.

  18. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    PubMed

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  19. Localization of a Bacterial Group II Intron-Encoded Protein in Eukaryotic Nuclear Splicing-Related Cell Compartments

    PubMed Central

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns. PMID:24391881

  20. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.

    PubMed

    Wisotzki, Emilia I; Friedrich, Ralf P; Weidt, Astrid; Alexiou, Christoph; Mayr, Stefan G; Zink, Mareike

    2016-06-01

    As a biomaterial, it is well established that gelatin exhibits low cytotoxicity and can promote cellular growth. However, to circumvent the potential toxicity of chemical crosslinkers, reagent-free crosslinking methods such as electron irradiation are highly desirable. While high energy irradiation has been shown to exhibit precise control over the degree of crosslinking, these hydrogels have not been thoroughly investigated for biocompatibility and degradability. Here, NIH 3T3 murine fibroblasts are seeded onto irradiated gelatin hydrogels to examine the hydrogel's influence on cellular viability and morphology. The average projected area of cells seeded onto the hydrogels increases with irradiation dose, which correlates with an increase in the hydrogel's shear modulus up to 10 kPa. Cells on these hydrogels are highly viable and exhibits normal cell cycles, particularly when compared to those grown on glutaraldehyde crosslinked gelatin hydrogels. However, proliferation is reduced on both types of crosslinked samples. To mimic the response of the hydrogels in physiological conditions, degradability is monitored in simulated body fluid to reveal strongly dose-dependent degradation times. Overall, given the low cytotoxicity, influence on cellular morphology and variability in degradation times of the electron irradiated gelatin hydrogels, there is significant potential for application in areas ranging from regenerative medicine to mechanobiology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Clarification of vaccines: An overview of filter based technology trends and best practices.

    PubMed

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Primer Extension Mutagenesis Powered by Selective Rolling Circle Amplification

    PubMed Central

    Huovinen, Tuomas; Brockmann, Eeva-Christine; Akter, Sultana; Perez-Gamarra, Susan; Ylä-Pelto, Jani; Liu, Yuan; Lamminmäki, Urpo

    2012-01-01

    Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material. PMID:22355397

  3. Comparative transduction mechanisms of hair cells in the bullfrog uticulus. 2: Sensitivity and response dynamics to hair bundle displacement

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    The present study was motivated by an interest in seeing whether hair cell types in the bullfrog utriculus might differ in their voltage responses to hair bundle displacement. Particular interest was in assessing the contributions of two factors to the responses of utricular hair cells. First, interest in examining the effect of hair bundle morphology on the sensitivity of hair cells to natural stimulation was motivated by the observation that vestibular hair cells, unlike many auditory hair cells, are not free-standing but rather linked to an accessory cupular or otolithic membrane via the tip of their kinocilium. Interest also laid in examining the contribution, if any, of adaptation to the response properties of utricular hair cells. Hair cells in auditory and vibratory inner ear endorgans adapt to maintained displacements of their hair bundles, sharply limiting their low frequency sensitivity. This adaptation is mediated by a shift in the displacement-response curve (DRC) of the hair cell along the displacement axis. Observations suggest that the adaptation process occurs within the hair bundle and precedes mechanoelectric transduction. Recent observations of time-dependent changes in hair bundle stiffness are consistent with this conclusion. Adaptation would be expected to be most useful in inner ear endorgans in which hair cells are subject to large static displacements that could potentially saturate their instantaneous response and compromise their sensitivity to high frequency stimulation. The adaptation process also permits hair cells to maintain their sensory hair bundle in the most sensitive portion of their DRC. In vestibular otolith organs in which static sensitivity is desirable, any adaptation process in the hair cells may be undesirable. The rate and extent of the decline of the voltage responses was measured of utricular hair cells to step and sinusoidal hair bundle displacements. Then for similar resting potentials and response amplitudes, the voltage responses of individual hair cells were compared to both hair bundle displacement and intracellular current.

  4. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    NASA Astrophysics Data System (ADS)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants. Electronic supplementary information (ESI) available: Calculation of roughness parameters Rz, Rz,max, and Rz, prom. Nano-HAp powder degradation after immersion in phosphate buffer (pH = 7.4). Optical phase contrast microphotographs of MSC adhesion on nano-HAp and nano-HAp/Co I coatings at different concentrations. Laser scanning confocal microphotographs of MSCs' α-SMA expression spreading on large amounts of nano-HAp (MI) coatings. Immunofluorescence microphotograph analysis by image software. See DOI: 10.1039/c5nr04850h

  5. Hybrid Pulsed Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  6. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    DOE PAGES

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; ...

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na 0.44MnO 2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na 0.66[Mn 0.66Ti 0.34]O 2. The tunnel-type structure of Na 0.44MnO 2 obtained for thismore » compound was confirmed by XRD and atomic-scale STEM/EELS. When cycled as positive electrode in full cells using NaTi 2(PO 4) 3/C as negative electrode in 1M Na 2SO 4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g -1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na 0.66[Mn 0.66Ti 0.34]O 2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less

  7. ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine

    PubMed Central

    Meher, Prabina K.; Sahu, Tanmaya K.; Gahoi, Shachi; Rao, Atmakuri R.

    2018-01-01

    Heat shock proteins (HSPs) play a pivotal role in cell growth and variability. Since conventional approaches are expensive and voluminous protein sequence information is available in the post-genomic era, development of an automated and accurate computational tool is highly desirable for prediction of HSPs, their families and sub-types. Thus, we propose a computational approach for reliable prediction of all these components in a single framework and with higher accuracy as well. The proposed approach achieved an overall accuracy of ~84% in predicting HSPs, ~97% in predicting six different families of HSPs, and ~94% in predicting four types of DnaJ proteins, with bench mark datasets. The developed approach also achieved higher accuracy as compared to most of the existing approaches. For easy prediction of HSPs by experimental scientists, a user friendly web server ir-HSP is made freely accessible at http://cabgrid.res.in:8080/ir-hsp. The ir-HSP was further evaluated for proteome-wide identification of HSPs by using proteome datasets of eight different species, and ~50% of the predicted HSPs in each species were found to be annotated with InterPro HSP families/domains. Thus, the developed computational method is expected to supplement the currently available approaches for prediction of HSPs, to the extent of their families and sub-types. PMID:29379521

  8. Decoding the Substrate Supply to Human Neuronal Nitric Oxide Synthase

    PubMed Central

    Habermeier, Alice; Closs, Ellen I.

    2013-01-01

    Nitric oxide, produced by the neuronal nitric oxide synthase (nNOS) from L-arginine is an important second messenger molecule in the central nervous system: It influences the synthesis and release of neurotransmitters and plays an important role in long-term potentiation, long-term depression and neuroendocrine secretion. However, under certain pathological conditions such as Alzheimer’s or Parkinson’s disease, stroke and multiple sclerosis, excessive NO production can lead to tissue damage. It is thus desirable to control NO production in these situations. So far, little is known about the substrate supply to human nNOS as a determinant of its activity. Measuring bioactive NO via cGMP formation in reporter cells, we demonstrate here that nNOS in both, human A673 neuroepithelioma and TGW-nu-I neuroblastoma cells can be fast and efficiently nourished by extracellular arginine that enters the cells via membrane transporters (pool I that is freely exchangeable with the extracellular space). When this pool was depleted, NO synthesis was partially sustained by intracellular arginine sources not freely exchangeable with the extracellular space (pool II). Protein breakdown made up by far the largest part of pool II in both cell types. In contrast, citrulline to arginine conversion maintained NO synthesis only in TGW-nu-I neuroblastoma, but not A673 neuroepithelioma cells. Histidine mimicked the effect of protease inhibitors causing an almost complete nNOS inhibition in cells incubated additionally in lysine that depletes the exchangeable arginine pool. Our results identify new ways to modulate nNOS activity by modifying its substrate supply. PMID:23874440

  9. The iCRISPR platform for rapid genome editing in human pluripotent stem cells.

    PubMed

    Zhu, Zengrong; González, Federico; Huangfu, Danwei

    2014-01-01

    Human pluripotent stem cells (hPSCs) have the potential to generate all adult cell types, including rare or inaccessible human cell populations, thus providing a unique platform for disease studies. To realize this promise, it is essential to develop methods for efficient genetic manipulations in hPSCs. Established using TALEN (transcription activator-like effector nuclease) and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) systems, the iCRISPR platform supports a variety of genome-engineering approaches with high efficiencies. Here, we first describe the establishment of the iCRISPR platform through TALEN-mediated targeting of inducible Cas9 expression cassettes into the AAVS1 locus. Next, we provide a series of technical procedures for using iCRISPR to achieve one-step knockout of one or multiple gene(s), "scarless" introduction of precise nucleotide alterations, as well as inducible knockout during hPSC differentiation. We present an optimized workflow, as well as guidelines for the selection of CRISPR targeting sequences and the design of single-stranded DNA (ssDNA) homology-directed DNA repair templates for the introduction of specific nucleotide alterations. We have successfully used these protocols in four different hPSC lines, including human embryonic stem cells and induced pluripotent stem cells. Once the iCRISPR platform is established, clonal lines with desired genetic modifications can be established in as little as 1 month. The methods described here enable a wide range of genome-engineering applications in hPSCs, thus providing a valuable resource for the creation of diverse hPSC-based disease models with superior speed and ease.

  10. T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy.

    PubMed

    Kyte, Jon Amund; Gaudernack, Gustav; Faane, Anne; Lislerud, Kari; Inderberg, Else Marit; Brunsvig, Paal; Aamdal, Steinar; Kvalheim, Gunnar; Wälchli, Sébastien; Pule, Martin

    2016-01-01

    We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides. From long-term survivors, we isolated >100 CD4 + Th-cell clones recognizing telomerase epitopes. The clones were characterized with regard to HLA restriction, functional avidity, fine specificity, proliferative capacity, cytokine profile, and recognition of naturally processed epitopes. DP4 is the most prevalent HLA molecule worldwide. Two DP4-restricted T-cell clones with different functional avidity, C13 and D71, were selected for molecular T-cell receptor (TCR) cloning. Both clones showed a high proliferative capacity, recognition of naturally processed telomerase epitopes, and a polyfunctional and Th1-weighted cytokine profile. TCR C13 and D71 were cloned into the retroviral vector MP71 together with the compact and GMP-applicable marker/suicide gene RQR8. Both TCRs were expressed well in recipient T cells after PBMC transduction. The transduced T cells co-expressed RQR8 and acquired the desired telomerase specificity, with a polyfunctional response including production of TNFa, IFNγ, and CD107a. Interestingly, the DP4-restricted TCRs were expressed and functional both in CD4 + and CD8 + T cells. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired hTERT-specificity and functionality. We hypothesize that adoptive therapy with Th cells may offer a powerful novel approach for overcoming tumor tolerance and synergize with other forms of immunotherapy.

  11. Concise Review: Fabrication, Customization, and Application of Cell Mimicking Microparticles in Stem Cell Science.

    PubMed

    Labriola, Nicholas R; Azagury, Aharon; Gutierrez, Robert; Mathiowitz, Edith; Darling, Eric M

    2018-02-01

    Stem and non-stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues. Thus, cell mimicking microparticles (CMMPs) have been developed to more accurately recapitulate the properties of surrounding cells while still offering ways to tailor what stimuli are presented. This nascent field holds the promise of reducing, or even eliminating, the need for live cells in select, regenerative medicine therapies, and diagnostic applications. Recent, CMMP-based studies show great promise for the technology, yet only reproduce a small subset of cellular characteristics from among those possible: size, morphology, topography, mechanical properties, surface molecules, and tailored chemical release to name the most prominent. This Review summarizes the strengths, weaknesses, and ideal applications of micro/nanoparticle fabrication and customization methods relevant to cell mimicking and provides an outlook on the future of this technology. Moving forward, researchers should seek to combine multiple techniques to yield CMMPs that replicate as many cellular characteristics as possible, with an emphasis on those that most strongly influence the desired therapeutic effects. The level of flexibility in customizing CMMP properties allows them to substitute for cells in a variety of regenerative medicine, drug delivery, and diagnostic systems. Stem Cells Translational Medicine 2018;7:232-240. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  12. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.

    PubMed

    Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar

    2017-01-01

    Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.

  13. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  14. Force required for correcting the deformity of pectus carinatum and related multivariate analysis.

    PubMed

    Chen, Chenghao; Zeng, Qi; Li, Zhongzhi; Zhang, Na; Yu, Jie

    2017-12-24

    To measure the force required for correcting pectus carinatum to the desired position and investigate the correlations of the required force with patients' gender, age, deformity type, severity and body mass index (BMI). A total of 125 patients with pectus carinatum were enrolled in the study from August 2013 to August 2016. Their gender, age, deformity type, severity and BMI were recorded. A chest wall compressor was used to measure the force required for correcting the chest wall deformity. Multivariate linear regression was used for data analysis. Among the 125 patients, 112 were males and 13 were females. Their mean age was 13.7±1.5 years old, mean Haller index was 2.1±0.2, and mean BMI was 17.4±1.8 kg/m 2 . Multivariate linear regression analysis showed that the desirable force for correcting chest wall deformity was not correlated with gender and deformity type, but positively correlated with age and BMI and negatively correlated with Haller index. The desirable force measured for correcting chest wall deformities of patients with pectus carinatum positively correlates with age and BMI and negatively correlates with Haller index. The study provides valuable information for future improvement of implanted bar, bar fixation technique, and personalized surgery. Retrospective study. Level 3-4. Copyright © 2018. Published by Elsevier Inc.

  15. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  16. Actively tunable transverse waves in soft membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Wu, Bin; Muhammad, Du, Qiujiao; Huang, Guoliang; Lü, Chaofeng; Chen, Weiqiu

    2018-04-01

    Membrane-type metamaterials have shown a fantastic capacity for manipulating acoustic waves in the low frequency range. They have the advantages of simple geometry, light weight, and active tunability. In general, these membrane-type metamaterials contain a rigid frame support, leading to a fixed configuration. However, in some instances, flexible and reconfigurable devices may be desirable. A soft membrane-type acoustic metamaterial that is highly flexible and controllable is designed here. Different from the previously designed membrane-type metamaterials, the stiff supporting frame is removed and the stiff mass at the center of each unit cell is replaced by the soft mass, realized by bonding fine metallic particles in the central region. In contrast to the previous studies, the propagation of elastic transverse waves in such a soft metamaterial is investigated by employing the plane wave expansion method. Both the Bragg scattering bandgaps and locally resonant bandgaps are found to coexist in the soft metamaterial. The influences of structural parameters and finite biaxial pre-stretch on the dynamic behavior of this soft metamaterial are carefully examined. It is shown that whether or not the wave propagation characteristics are sensitive to the finite deformation does not depend on the property and pre-stretch of the membrane. In addition, a broadband complete bandgap and a pseudo-gap formed by the combination of two extremely adjacent directional bandgaps are observed in the low-frequency range, and both can be controlled by the finite pre-stretch.

  17. Incidence Rates of Clinical Mastitis among Canadian Holsteins Classified as High, Average, or Low Immune Responders

    PubMed Central

    Miglior, Filippo; Mallard, Bonnie A.

    2013-01-01

    The objective of this study was to compare the incidence rate of clinical mastitis (IRCM) between cows classified as high, average, or low for antibody-mediated immune responses (AMIR) and cell-mediated immune responses (CMIR). In collaboration with the Canadian Bovine Mastitis Research Network, 458 lactating Holsteins from 41 herds were immunized with a type 1 and a type 2 test antigen to stimulate adaptive immune responses. A delayed-type hypersensitivity test to the type 1 test antigen was used as an indicator of CMIR, and serum antibody of the IgG1 isotype to the type 2 test antigen was used for AMIR determination. By using estimated breeding values for these traits, cows were classified as high, average, or low responders. The IRCM was calculated as the number of cases of mastitis experienced over the total time at risk throughout the 2-year study period. High-AMIR cows had an IRCM of 17.1 cases per 100 cow-years, which was significantly lower than average and low responders, with 27.9 and 30.7 cases per 100 cow-years, respectively. Low-AMIR cows tended to have the most severe mastitis. No differences in the IRCM were noted when cows were classified based on CMIR, likely due to the extracellular nature of mastitis-causing pathogens. The results of this study demonstrate the desirability of breeding dairy cattle for enhanced immune responses to decrease the incidence and severity of mastitis in the Canadian dairy industry. PMID:23175290

  18. Incidence rates of clinical mastitis among Canadian Holsteins classified as high, average, or low immune responders.

    PubMed

    Thompson-Crispi, Kathleen A; Miglior, Filippo; Mallard, Bonnie A

    2013-01-01

    The objective of this study was to compare the incidence rate of clinical mastitis (IRCM) between cows classified as high, average, or low for antibody-mediated immune responses (AMIR) and cell-mediated immune responses (CMIR). In collaboration with the Canadian Bovine Mastitis Research Network, 458 lactating Holsteins from 41 herds were immunized with a type 1 and a type 2 test antigen to stimulate adaptive immune responses. A delayed-type hypersensitivity test to the type 1 test antigen was used as an indicator of CMIR, and serum antibody of the IgG1 isotype to the type 2 test antigen was used for AMIR determination. By using estimated breeding values for these traits, cows were classified as high, average, or low responders. The IRCM was calculated as the number of cases of mastitis experienced over the total time at risk throughout the 2-year study period. High-AMIR cows had an IRCM of 17.1 cases per 100 cow-years, which was significantly lower than average and low responders, with 27.9 and 30.7 cases per 100 cow-years, respectively. Low-AMIR cows tended to have the most severe mastitis. No differences in the IRCM were noted when cows were classified based on CMIR, likely due to the extracellular nature of mastitis-causing pathogens. The results of this study demonstrate the desirability of breeding dairy cattle for enhanced immune responses to decrease the incidence and severity of mastitis in the Canadian dairy industry.

  19. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.

    PubMed

    Zhang, Yi-Heng Percival

    2015-11-15

    The largest obstacle to the cost-competitive production of low-value and high-impact biofuels and biochemicals (called biocommodities) is high production costs catalyzed by microbes due to their inherent weaknesses, such as low product yield, slow reaction rate, high separation cost, intolerance to toxic products, and so on. This predominant whole-cell platform suffers from a mismatch between the primary goal of living microbes - cell proliferation and the desired biomanufacturing goal - desired products (not cell mass most times). In vitro synthetic biosystems consist of numerous enzymes as building bricks, enzyme complexes as building modules, and/or (biomimetic) coenzymes, which are assembled into synthetic enzymatic pathways for implementing complicated bioreactions. They emerge as an alternative solution for accomplishing a desired biotransformation without concerns of cell proliferation, complicated cellular regulation, and side-product formation. In addition to the most important advantage - high product yield, in vitro synthetic biosystems feature several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this perspective review, the general design rules of in vitro synthetic pathways are presented with eight supporting examples: hydrogen, n-butanol, isobutanol, electricity, starch, lactate,1,3-propanediol, and poly-3-hydroxylbutyrate. Also, a detailed economic analysis for enzymatic hydrogen production from carbohydrates is presented to illustrate some advantages of this system and the remaining challenges. Great market potentials will motivate worldwide efforts from multiple disciplines (i.e., chemistry, biology and engineering) to address the remaining obstacles pertaining to cost and stability of enzymes and coenzymes, standardized building parts and modules, biomimetic coenzymes, biosystem optimization, and scale-up, soon. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Associations between Depression and Health Behaviour Change: Findings from 8 Cycles of the Canadian Community Health Survey.

    PubMed

    Clayborne, Zahra M; Colman, Ian

    2018-01-01

    The primary objective of this study was to examine associations between depression and several measures of health behaviour change across 8 cycles of a population-based, cross-sectional survey of Canadians. The secondary objective of this study was to describe the prevalence of the types of health behaviour changes undergone/sought and types of barriers to change reported, comparing those with and without depression. The sample comprised 65,801 respondents to the Canadian Community Health Survey between 2007 and 2014. Past-year depression was assessed via structured interview (CIDI-SF). Measures of health behaviour change included recent changes made, desire to make changes, and barriers towards making changes. Analyses involved logistic regression, with estimates across cycles pooled using fixed-effects meta-analyses. Pooled prevalences of types of health behaviour changes undergone/sought and types of barriers to change experienced were reported, and associations with depression were examined. Depression was associated with higher odds of reporting a recent health behaviour change (pooled odds ratio [OR] = 1.39; 95% confidence interval [CI], 1.30 to 1.48), desire to make health behaviour changes (pooled OR = 1.61; 95% CI, 1.49 to 1.74), and barriers towards change (pooled OR = 1.54; 95% CI, 1.44 to 1.65). The most common change undergone and sought was increased exercise; the most common barrier reported was a lack of willpower. Individuals dealing with depression are more likely to report recent health behaviour changes and the desire to make changes but are also more likely to report barriers towards change.

  1. Acarbose plus metformin fixed-dose combination in the management of type 2 diabetes.

    PubMed

    Joshi, Shashank R; Ramachandran, Ambady; Chadha, Manoj; Chatterjee, Sudip; Rathod, Rahul; Kalra, Sanjay

    2014-08-01

    The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide. Concerns in the management of diabetes include drug-induced hypoglycemia, poor control of postprandial blood glucose level and weight gain. A carbohydrate-rich diet can cause more load on the intestinal cells producing α-glucosidase. Many patients need combination treatment based on their level of glycemic control and other associated parameters. In such cases, a therapy that provides effective glycemic control with minimal or no risk of adverse events like hypoglycemia or weight gain is highly desired. The chances of cardiovascular events are high in diabetes patients; hence, medicines providing benefits beyond glycemic control such as reduced cardiovascular risk factors may be ideal in such patients. Current available data are related to the rationale and clinical trials on the fixed-dose combination of acarbose plus metformin in management of type 2 diabetes. Combination therapy is routinely prescribed in the management of T2DM. Drugs with complimentary mechanisms should be used to maximize the efficacy of combination therapy. The combination of metformin and acarbose is a rational therapy because of their different and complimentary mechanisms of action, which provides effective glycemic control with additional cardiovascular benefits and minimizes adverse events.

  2. Consideration of other primate species as flight animals

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.

    1977-01-01

    The different types of primates which might be used as flight animals are surveyed, and the pros and cons of using them are discussed. Various factors suggest that the most desirable animals for space studies are the rhesus, pig-tailed, Java, and squirrel monkeys. The capuchin monkey has assets for certain types of space experimentation.

  3. Self-organizing hierarchies in sensor and communication networks.

    PubMed

    Prokopenko, Mikhail; Wang, Peter; Valencia, Philip; Price, Don; Foreman, Mark; Farmer, Anthony

    2005-01-01

    We consider a hierarchical multicellular sensing and communication network, embedded in an ageless aerospace vehicle that is expected to detect and react to multiple impacts and damage over a wide range of impact energies. In particular, we investigate self-organization of impact boundaries enclosing critically damaged areas, and impact networks connecting remote cells that have detected noncritical impacts. Each level of the hierarchy is shown to have distinct higher-order emergent properties, desirable in self-monitoring and self-repairing vehicles. In addition, cells and communication messages are shown to need memory (hysteresis) in order to retain desirable emergent behavior within and between various hierarchical levels. Spatiotemporal robustness of self-organizing hierarchies is quantitatively measured with graph-theoretic and information-theoretic techniques, such as the Shannon entropy. This allows us to clearly identify phase transitions separating chaotic dynamics from ordered and robust patterns.

  4. Mesoporous Silica Nanoparticle-Mediated Intracellular Cre Protein Delivery for Maize Genome Editing via loxP Site Excision1,2[W][OPEN

    PubMed Central

    Martin-Ortigosa, Susana; Peterson, David J.; Valenstein, Justin S.; Lin, Victor S.-Y.; Trewyn, Brian G.; Lyznik, L. Alexander; Wang, Kan

    2014-01-01

    The delivery of proteins instead of DNA into plant cells allows for a transient presence of the protein or enzyme that can be useful for biochemical analysis or genome modifications. This may be of particular interest for genome editing, because it can avoid DNA (transgene) integration into the genome and generate precisely modified “nontransgenic” plants. In this work, we explore direct protein delivery to plant cells using mesoporous silica nanoparticles (MSNs) as carriers to deliver Cre recombinase protein into maize (Zea mays) cells. Cre protein was loaded inside the pores of gold-plated MSNs, and these particles were delivered by the biolistic method to plant cells harboring loxP sites flanking a selection gene and a reporter gene. Cre protein was released inside the cell, leading to recombination of the loxP sites and elimination of both genes. Visual selection was used to select recombination events from which fertile plants were regenerated. Up to 20% of bombarded embryos produced calli with the recombined loxP sites under our experimental conditions. This direct and reproducible technology offers an alternative for DNA-free genome-editing technologies in which MSNs can be tailored to accommodate the desired enzyme and to reach the desired tissue through the biolistic method. PMID:24376280

  5. Isolation and measurement of the features of arrays of cell aggregates formed by dielectrophoresis using the user-specified Multi Regions Masking (MRM) technique

    NASA Astrophysics Data System (ADS)

    Yusvana, Rama; Headon, Denis; Markx, Gerard H.

    2009-08-01

    The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.

  6. Use of Genome Editing Tools to Treat Sickle Cell Disease

    PubMed Central

    Tasan, Ipek; Jain, Surbhi; Zhao, Huimin

    2016-01-01

    Recent advances in genome editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review we will discuss the three programmable nucleases that are commonly used for genome editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy. PMID:27250347

  7. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells

    PubMed Central

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-01-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583

  8. Analysis of integrated photovoltaic-thermal systems using solar concentrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, M.B.

    1983-01-01

    An integrated photovoltaic-thermal system using solar concentrators utilizes the solar radiation spectrum in the production of electrical and thermal energy. The electrical conversion efficiency of this system decreases with increasing solar cell temperature. Since a high operating temperature is desirable to maximize the quality of thermal output of the planned integrated system, a proper choice of the operating temperature for the unit cell is of vital importance. The analysis predicts performance characteristics of the unit cell by considering the dependence of the heat generation, the heat absorption and the heat transmission on the material properties of the unit cell structure.more » An analytical model has been developed to describe the heat transport phenomena occurring in the unit cell structure. The range of applicability of the one-dimensional and the two-dimensional models, which have closed-form solutions, has been demonstrated. Parametric and design studies point out the requirements for necessary good electrical and thermal performance. A procedure utilizing functional forms of component characteristics in the form of partial coefficients of the dependent variable has been developed to design and operate the integrated system to have a desirable value of the thermal to electrical output ratio both at design and operating modes.« less

  9. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  10. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  11. Deterministic Joint Remote Preparation of a Four-Qubit Cluster-Type State via GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bin; Zhou, Xiao-Yan; An, Xing-xing; Cui, Meng-Meng; Fu, De-sheng

    2016-08-01

    A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.

  12. BIOPSYCHOSOCIAL DETERMINANTS OF HYPOACTIVE SEXUAL DESIRE IN WOMEN: A NARRATIVE REVIEW.

    PubMed

    Malary, Mina; Khani, Soghra; Pourasghar, Mehdi; Moosazadeh, Mahmood; Hamzehgardeshi, Zeinab

    2015-12-01

    As a mental response to sexual stimuli, sexual desire determines human sexual behavior and represents the cognitive capacity of sexual stimulation, so that avoiding sexual activity has a very negative effect on the discharge of intimacy and joy in couple's relationship and threatens the stability relationship, which can finally end in sexual dissatisfaction and divorce; it may even affect the reproduction. This study, reviews the literature on biopsychosocial determinants of hypoactive sexual desire disorder in women in childbearing ages. The search was done from January to March 2015 by the use of the data bases ProQuest, Pubmed, CINAHL, Ovid and Medline and the words sexual desire, related factors and biopsychosocial determinants were used as free text words. The words reduce sexual desire, hypoactive sexual desire disorder, dyadic relationship, biopsychosocial factors and women were used as keywords in the search. Also, the articles focusing on any aspects of sexual desire such as biological, social and psychological factors and relationship factors alone or integrated, were included in the study. The articles which specifically targeted the hypoactive sexual desire disorder in pregnant and lactating women and also the articles targeting biopsychosocial factors related to other types of sexual function disorder such as arousal disorder, orgasm disorder and dyspareunia, were all excluded from this study. After reviewing the literature, the findings were categorized in three main class of effect of biologic factors on sexual desire and sexual hypoactivity, the effect of psychological factors on sexual desire and the effect of cultural factors and couple's relationship on sexual desire, each of these domains cover a wide range (such as hormonal changes, chronic diseases, psychological difficulties (perceived stress, anxiety, depression). Incompatibility of couples, the spouse's sexual function disorder) which may overlap. Because of the complexity of etiology and the difficulty of treating hypoactive sexual desire disorder, it is necessary to use biopsychosocial approaches to diagnose and treat the disorder. According to the findings of this reviewing study, the factors able to affect sexual desire and activity are not distinct and often overlap, therefore, the complicated etiology of hypoactive sexual desire disorder often needs multidimensional intervention to use biopsychosocial approach; Multi factor assessment with a combination of psychological, physical, social and hormonal intervention can be effective in making strategies to treat the symptoms of HSDD.

  13. Shielded Coaxial Optrode Arrays for Neurophysiology

    PubMed Central

    Naughton, Jeffrey R.; Connolly, Timothy; Varela, Juan A.; Lundberg, Jaclyn; Burns, Michael J.; Chiles, Thomas C.; Christianson, John P.; Naughton, Michael J.

    2016-01-01

    Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent. PMID:27375415

  14. A pressure-polishing set-up to fabricate patch pipettes that seal on virtually any membrane, yielding low access resistance and efficient intracellular perfusion.

    PubMed

    Benedusi, Mascia; Aquila, Marco; Milani, Alberto; Rispoli, Giorgio

    2011-11-01

    When performing whole-cell configuration recordings, it is important to minimize series resistance to reduce the time constant of charging the cell membrane capacitance and to reduce error in membrane potential control. To this end, an existing method was improved by widening the patch pipette shank through the calibrated combination of heat and air pressure. The heat was produced by passing current through a filament that was shaped appropriately to ensure a homogeneous heating of the pipette shank. Pressurized air was applied to the lumen of a pipette, pulled from a borosilicate glass microcap, via the pressure port of a modified commercial holder. The pipette reshaping was viewed on an LCD monitor connected to a contrast-intensified CCD camera and coupled to a modified bright-field stereomicroscope. By appropriately regulating the timing of air pressure and the application of heating, the pipette shank and, independently, the tip opening diameter were widened as desired. The methods illustrated here to fabricate and use the patch pipettes, using just one glass type, allowed the sealing of a wide variety of cell types isolated from different amphibian, reptilian, fish, and mammalian tissues as well as a variety of artificial membranes made with many different lipid mixtures. The access resistance yielded by pressure-polished pipettes was approximately one-fourth the size of the one attained with conventional pipettes; besides improving the electrical recordings, this minimized intracellular ion accumulation or depletion as well. Enlarged shank geometry allowed for fast intracellular perfusion as shown by fluorescence imaging, also via pulled quartz or plastic tubes, which could be inserted very close to the pipette tip.

  15. Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled Receptor

    PubMed Central

    Nakajima, Ken-ichiro

    2012-01-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M3 muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types. PMID:22821234

  16. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion andmore » maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.« less

  17. Apigenin manipulates the ubiquitin-proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells.

    PubMed

    Singh, Vishal; Sharma, Vikas; Verma, Vikas; Pandey, Deepti; Yadav, Santosh K; Maikhuri, Jagdamba P; Gupta, Gopal

    2015-12-01

    To investigate apigenin (5,7,4-trihydroxyflavone), a dietary flavonoid with proteasome-inhibitory activity (desired for the management of multiple types of cancers), against FDA-approved anticancer proteasome inhibitor bortezomib in context to its effects on the tumor suppressor estrogen receptor-beta (ER-β) in prostate cancer cells. Prostate cancer (PC-3) cells were treated with either apigenin or bortezomib, and proliferation inhibition was correlated with proteasomal biochemistry, ER-degradation and cell apoptosis. Apigenin specifically inhibited only chymotrypsin-like activity of proteasome without affecting trypsin and caspase-like activities, which was in contrast to the non-specific inhibition of all the three activities by bortezomib. Apigenin selectively increased the protein levels of ER-β at 1.8 and 10.0 µM (without affecting mRNA levels) and preferentially accumulated ubiquitinated ER-β over ER-α in PC-3. Apigenin-treated cells exhibited increased ER-β interactions with ubiquitin-protein ligase E6AP, downregulated PSMA5 (α-5 subunit for assembly of 20S proteasome) without affecting PSMB1 (β-1 subunit), PSMB2 (β-2 subunit) and PSMB5 (β-5 subunit, whose overexpression by bortezomib causes drug resistance) of proteasome at mRNA levels. Caspase-3 activation in PC-3 by apigenin was dependent on caspase-8 activity but independent of mitochondrial membrane depolarization. The deubiquitinase USP14 activity, which antagonizes degradation of proteins via proteasome, was significantly increased by apigenin treatment. Apigenin selectively inhibits proteasomal degradation of tumor suppressor ER-β by specifically inhibiting chymotrypsin-like activity of proteasome, preventing its assembly via PSMA5 and inhibiting USP14 enzyme activity in prostate cancer cells, resulting in cancer cell apoptosis. Unlike bortezomib, apigenin's actions are subtle, precise, mechanistically distinct and capable of abstaining drug resistance.

  18. Scavenger Receptor B1 is a Potential Biomarker of Human Nasopharyngeal Carcinoma and Its Growth is Inhibited by HDL-mimetic Nanoparticles

    PubMed Central

    Zheng, Ying; Liu, Yanyan; Jin, Honglin; Pan, Shaotao; Qian, Yuan; Huang, Chuan; Zeng, Yixin; Luo, Qingming; Zeng, Musheng; Zhang, Zhihong

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is a very regional malignant head and neck cancer that has attracted widespread attention for its unique etiology, epidemiology and therapeutic options. To achieve high cure rates in NPC patients, theranostic approaches are actively being pursued and improved efforts remain desirable in identifying novel biomarkers and establishing effective therapeutic approaches with low long-term toxicities. Here, we discovered that the scavenger receptor class B type I (SR-B1) was overexpressed in all investigated NPC cell lines and 75% of NPC biopsies, demonstrating that SR-B1 is a potential biomarker of NPC. Additional functional analysis showed that SR-B1 has great effect on cell motility while showing no significant impact on cell proliferation. As high-density lipoproteins (HDL) exhibit strong binding affinities to SR-B1 and HDL mimetic peptides are reportedly capable of inhibiting tumor growth, we further examined the SR-B1 targeting ability of a highly biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier and investigated its therapeutic effect on NPC. Results show that NPC cells with higher SR-B1 expression have superior ability in taking up the core constituents of HPPS. Moreover, HPPS inhibited the motility and colony formation of 5-8F cells, and significantly suppressed the NPC cell growth in nude mice without inducing tumor cell necrosis or apoptosis. These results indicate that HPPS is not only a NPC-targeting nanocarrier but also an effective anti-NPC drug. Together, the identification of SR-B1 as a potential biomarker and the use of HPPS as an effective anti-NPC agent may shed new light on the diagnosis and therapeutics of NPC. PMID:23843895

  19. PbrmiR397a regulates lignification during stone cell development in pear fruit.

    PubMed

    Xue, Cheng; Yao, Jia-Long; Qin, Meng-Fan; Zhang, Ming-Yue; Allan, Andrew C; Wang, De-Fu; Wu, Jun

    2018-05-13

    Lignified stone cells substantially reduce fruit quality. Therefore, it is desirable to inhibit stone cell development by using genetic technologies. However, the molecular mechanisms regulating lignification are poorly understood in fruit stone cells. In this study, we have shown that microRNA (miR) miR397a regulates fruit cell lignification by inhibiting laccase (LAC) genes that encode key lignin biosynthesis enzymes. Transient overexpression of PbrmiR397a, which is the miR397a of Chinese pear (Pyrus bretschneideri), and simultaneous silencing of three LAC genes reduced the lignin content and stone cell number in pear fruit. A single nucleotide polymorphism (SNP) identified in the promoter of the PbrmiR397a gene was found to associate with low levels of fruit lignin, after analysis of the genome sequences of sixty pear varieties. This SNP created a TCA-element that responded to salicylic acid (SA) to induce gene expression as confirmed using a cell-based assay system. Furthermore, stable overexpression of PbrmiR397a in transgenic tobacco plants reduced the expression of target LAC genes and decreased the content of lignin but did not change the ratio of syringyl and guaiacyl lignin monomers. Consistent with reduction of lignin content, the transgenic plants showed fewer numbers of vessel elements and thinner secondary walls in the remaining elements compared to wild-type control plants. This study has advanced our understanding of the regulation of lignin biosynthesis and provided useful molecular genetic information for improving pear fruit quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application

    PubMed Central

    Chen, Shu; Hu, Sheng; Smith, Elizabeth F.; Ruenraroengsak, Pakatip; Thorley, Andrew J.; Menzel, Robert; Goode, Angela E.; Ryan, Mary P.; Tetley, Teresa D.; Porter, Alexandra E.; Shaffer, Milo S. P.

    2014-01-01

    The use of a thermochemical grafting approach provides a versatile means to functionalise as-synthesised, bulk multi-walled carbon nanotubes (MWNTs) without altering their inherent structure. The associated retention of properties is desirable for a wide range of commercial applications, including for drug delivery and medical purposes; it is also pertinent to studies of intrinsic toxicology. A systematic series of water-compatible MWNTs, with diameter around 12 nm have been prepared, to provide structurally-equivalent samples predominantly stabilised by anionic, cationic, or non-ionic groups. The surface charge of MWNTs was controlled by varying the grafting reagents and subsequent post-functionalisation modifications. The degree of grafting was established by thermal analysis (TGA). High resolution transmission electron microscope (HRTEM) and Raman measurements confirmed that the structural framework of the MWNTs was unaffected by the thermochemical treatment, in contrast to a conventional acid-oxidised control which was severely damaged. The effectiveness of the surface modification was demonstrated by significantly improved solubility and stability in both water and cell culture medium, and further quantified by zeta-potential analysis. The grafted MWNTs exhibited relatively low bioreactivity on human immortal alveolar epithelial type 1-like cells (TT1) following 24h exposure as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and lactate dehydrogenase release (LDH) assays. The exposure of TT1 cells to MWNTs suppressed the release of the inflammatory mediators, interleukin 6 (IL-6) and interleukin 8 (IL-8). TEM cell uptake studies indicated efficient cellular entry of MWNTs into TT1 cells, via a range of mechanisms. Cationic MWNTs showed a more substantial interaction with TT1 cell membranes than anionic MWNTs, demonstrating a surface charge effect on cell uptake. PMID:24631251

Top