NASA Technical Reports Server (NTRS)
Nataupsky, Mark; Crittenden, Lucille
1988-01-01
Stereo 3-D was researched as a means to present cockpit displays which enhance a pilot's situational awareness while maintaining a desirable level of mental workload. The initial study at the NASA Langley Research Center used two different pathways-in-the-sky to augment a computer-generated pictorial primary flight display. One pathway resembled the outline of signposts, while the other pathway resembled a monorail. That display was configured for a curved approach to a landing such as could be used in a Microwave Landing System (MLS) approach. It could also be used for military transports which would have to fly a precision curved pathway. Each trial was initialized with the pilot on the desired flight path. After 2 seconds, he suddenly was shifted to one of eight flight path offsets. The pilot was then required to make the initial pitch and/or roll input to correct back to the nominal flight path. As soon as the input was made, the trial was over. No input was required for control trials with no flight path offset. Pilots responded statistically significantly faster when the display was presented in the stereo version than when it was presented in the nonstereo version.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kohen, Hamid
1997-01-01
This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.
A concept for a fuel efficient flight planning aid for general aviation
NASA Technical Reports Server (NTRS)
Collins, B. P.; Haines, A. L.; Wales, C. J.
1982-01-01
A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
Energy management during the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.
Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Yamada, Tetsuya; Hiraki, Koju; Inatani, Yoshifumi
The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full-configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory.
A Limited Study of a Hypothetical Winged Anti-ICBM Point-Defense Missile
NASA Technical Reports Server (NTRS)
Brown, Clarence A., Jr.; Edwards, Frederick G.
1959-01-01
A preliminary investigation was conducted to determine whether a warhead stage of an antimissile missile could be placed within an arbitrary 2-nautical-mile-radius maneuver cylinder around an intercontinental-ballistic-missile (ICBM) flight path above an altitude of 140,000 feet, a horizontal range of 40 nautical miles, at a flight-path angle of approximately 20 deg, and within 50 seconds after take-off using only aerodynamic forces to turn the antimissile missile. The preliminary investigation indicated that an antimissile missile using aerodynamic forces for turning was capable of intercepting the ICBM for the stated conditions of this study although the turning must be completed below an altitude of approximately 70,000 feet to insure that the antimissile missile will be at the desired flight-path angle. Trim lift coefficients on the order of 2 to 3 and a maximum normal-acceleration force of from 25g to 35g were necessary to place the warhead stage in intercept position. The preliminary investigation indicated that for the two boosters investigated the booster having a burning time of 10 seconds gave greater range up the ICBM flight path than did the booster having a burning time of 15 seconds for the same trim lift coefficient and required the least trim lift coefficient for the same range.
Design and Testing of a Low Noise Flight Guidance Concept
NASA Technical Reports Server (NTRS)
Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.
2004-01-01
A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.
Investigation of aircraft landing in variable wind fields
NASA Technical Reports Server (NTRS)
Frost, W.; Reddy, K. R.
1978-01-01
A digital simulation study is reported of the effects of gusts and wind shear on the approach and landing of aircraft. The gusts and wind shear are primarily those associated with wind fields created by surface wind passing around bluff geometries characteristic of buildings. Also, flight through a simple model of a thunderstorm is investigated. A two-dimensional model of aircraft motion was represented by a set of nonlinear equations which accounted for both spatial and temporal variations of winds. The landings of aircraft with the characteristics of a DC-8 and a DHC-6 were digitally simulated under different wind conditions with fixed and automatic controls. The resulting deviations in touchdown points and the controls that are required to maintain the desired flight path are presented. The presence of large bluff objects, such as buildings in the flight path is shown to have considerable effect on aircraft landings.
Navigation Challenges of the Mars Phoenix Lander Mission
NASA Technical Reports Server (NTRS)
Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark
2008-01-01
The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.
Through the eyes of a bird: modelling visually guided obstacle flight
Lin, Huai-Ti; Ros, Ivo G.; Biewener, Andrew A.
2014-01-01
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated. PMID:24812052
Through the eyes of a bird: modelling visually guided obstacle flight.
Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A
2014-07-06
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.
A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds
NASA Technical Reports Server (NTRS)
Drinkwater, Fred J., III; Cooper, George E.
1958-01-01
The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit
2010-01-01
The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.
Comparison of closed loop model with flight test results
NASA Technical Reports Server (NTRS)
George, F. L.
1981-01-01
An analytic technique capable of predicting the landing characteristics of proposed aircraft configurations in the early stages of design was developed. In this analysis, a linear pilot-aircraft closed loop model was evaluated using experimental data generated with the NT-33 variable stability in-flight simulator. The pilot dynamics are modeled as inner and outer servo loop closures around aircraft pitch attitude, and altitude rate-of-change respectively. The landing flare maneuver is of particular interest as recent experience with military and other highly augmented vehicles shows this task to be relatively demanding, and potentially a critical design point. A unique feature of the pilot model is the incorporation of an internal model of the pilot's desired flight path for the flare maneuver.
Turbulence flight director analysis and preliminary simulation
NASA Technical Reports Server (NTRS)
Johnson, D. E.; Klein, R. E.
1974-01-01
A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
1994-01-01
An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.
Using wide area differential GPS to improve total system error for precision flight operations
NASA Astrophysics Data System (ADS)
Alter, Keith Warren
Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.
Proof-of-Concept Demonstrations of a Flight Adjustment Logging and Communication Network
NASA Technical Reports Server (NTRS)
Underwood, Matthew C.; Merlino, Daniel K.; Carboneau, Lindsey M.; Wilson, C. Logan; Wilder, Andrew J.
2016-01-01
The National Airspace System is a highly complex system of systems within which a number of participants with widely varying business and operating models exist. From the airspace user's perspective, a means by which to operate flights in a more flexible and efficient manner is highly desired to meet their business objectives. From the air navigation service provider's viewpoint, there is a need for increasing the capacity of the airspace, while maintaining or increasing the levels of efficiency and safety that currently exist in order to meet the charter under which they operate. Enhancing the communication between airspace operators and users is essential in order to meet these demands. In the spring of 2015, a prototype system that implemented an airborne tool to optimize en-route flight paths for fuel and time savings was designed and tested. The system utilized in-flight Internet as a high-bandwidth data link to facilitate collaborative decision making between the flight deck and an airline dispatcher. The system was tested and demonstrated in a laboratory environment, as well as in-situ. Initial results from these tests indicate that this system is not only feasible, but could also serve as a growth path and testbed for future air traffic management concepts that rely on shared situational awareness through data exchange and electronic negotiation between multiple entities operating within the National Airspace System.
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For each commuter category airplane, the takeoff flight path must be determined as follows...
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For each commuter category airplane, the takeoff flight path must be determined as follows...
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
14 CFR 25.123 - En route flight paths.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false En route flight paths. 25.123 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.123 En route flight paths. (a) For the en route configuration, the flight paths prescribed in paragraph (b) and (c) of this section must...
14 CFR 25.123 - En route flight paths.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false En route flight paths. 25.123 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.123 En route flight paths. (a) For the en route configuration, the flight paths prescribed in paragraph (b) and (c) of this section must...
14 CFR 25.115 - Takeoff flight path.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff flight path. 25.115 Section 25.115... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff flight path shall be considered to begin 35 feet above the takeoff surface at the end of the takeoff...
14 CFR 25.115 - Takeoff flight path.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 25.115 Section 25.115... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff flight path shall be considered to begin 35 feet above the takeoff surface at the end of the takeoff...
Combining control input with flight path data to evaluate pilot performance in transport aircraft.
Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney
2008-11-01
When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.
Control integration concept for hypersonic cruise-turn maneuvers
NASA Technical Reports Server (NTRS)
Raney, David L.; Lallman, Frederick J.
1992-01-01
Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.
A Concept of a Manned Satellite Reentry Which is Completed with a Glide Landing
NASA Technical Reports Server (NTRS)
Cheatham, Donald C. (Compiler)
1959-01-01
A concept for a manned satellite reentry from a near space orbit and a glide landing on a normal size airfield is presented. The reentry vehicle configuration suitable for this concept would employ a variable geometry feature in order that the reentry could be made at 90 deg. angle of attack and the landing could be made with a conventional glide approach. Calculated results for reentry at a flight-path angle of -1 deg. show that with an accuracy of 1 percent in the impulse of a retrorocket, the desired flight-path angle at reentry can be controlled within 0.02 deg. and the distance traveled to the reentry point, within 100 miles. The reentry point is arbitrarily defined as the point at which the satellite passes through an altitude of about 70 miles. Misalignment of the retrorocket by 10 deg. increased these errors by as much as 0.02 deg. and 500 miles. Intra-atmospheric trajectory calculations show that pure drag reentries starting with flight-path angles of -1 deg. or less produce a peak deceleration of 8g. Lift created by varying the angle of attack between 90 and 60 deg. is effective in decreasing the maximum deceleration and allows the range to the "recovery" point (where transition is made from reentry to gliding flight) to be increased by as much as 2,300 miles. A sideslip angle of 30 deg. allows lateral displacement of the flight path by as much as 60 deg. miles. Reaction controls would provide control-attitude alignment during the orbit phase. For the reentry phase this configuration should have low static longitudinal and roll stability in the 90 deg. angle-of-attack attitude. Control could be effected by leading-edge and trailing-edge flaps. Transition into the landing phase would be accomplished at an altitude of about 100,000 feet by unfolding the outer wing panels and pitching over to low angles of attack. Calculations indicate that glides can be made from the recovery point to airfields at ranges of from 150 to 200 miles, depending upon the orientation with respect to the original course.
NASA Technical Reports Server (NTRS)
Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)
2012-01-01
Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.
NASA Technical Reports Server (NTRS)
Knox, Charles E.
1993-01-01
A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.
A Natural Interaction Interface for UAVs Using Intuitive Gesture Recognition
NASA Technical Reports Server (NTRS)
Chandarana, Meghan; Trujillo, Anna; Shimada, Kenji; Allen, Danette
2016-01-01
The popularity of unmanned aerial vehicles (UAVs) is increasing as technological advancements boost their favorability for a broad range of applications. One application is science data collection. In fields like Earth and atmospheric science, researchers are seeking to use UAVs to augment their current portfolio of platforms and increase their accessibility to geographic areas of interest. By increasing the number of data collection platforms UAVs will significantly improve system robustness and allow for more sophisticated studies. Scientists would like be able to deploy an available fleet of UAVs to fly a desired flight path and collect sensor data without needing to understand the complex low-level controls required to describe and coordinate such a mission. A natural interaction interface for a Ground Control System (GCS) using gesture recognition is developed to allow non-expert users (e.g., scientists) to define a complex flight path for a UAV using intuitive hand gesture inputs from the constructed gesture library. The GCS calculates the combined trajectory on-line, verifies the trajectory with the user, and sends it to the UAV controller to be flown.
Simulator study of a pictorial display for general aviation instrument flight
NASA Technical Reports Server (NTRS)
Adams, J. J.
1982-01-01
A simulation study of a computer drawn pictorial display involved a flight task that included an en route segment, terminal area maneuvering, a final approach, a missed approach, and a hold. The pictorial display consists of the drawing of boxes which either move along the desired path or are fixed at designated way points. Two boxes may be shown at all times, one related to the active way point and the other related to the standby way point. Ground tracks and vertical profiles of the flights, time histories of the final approach, and comments were obtained from time pilots. The results demonstrate the accuracy and consistency with which the segments of the flight are executed. The pilots found that the display is easy to learn and to use; that it provides good situation awareness, and that it could improve the safety of flight. The small size of the display, the lack of numerical information on pitch, roll, and heading angles, and the lack of definition of the boundaries of the conventional glide slope and localizer areas were criticized.
Minimum-fuel, three-dimensional flight paths for jet transports
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1985-01-01
A number of studies dealing with fuel minimization are concerned with three-dimensional flight. However, only Neuman and Kreindler (1982) consider cases involving commercial jet transports. In the latter study, only the climb-out and descent portions of complete long-range flight paths below 10,000 ft altitude have been investigated. The present investigation is concerned with the computation of minimum-fuel nonturning and turning flight paths for climb-outs from 2000 to 10,000 ft for long-range flights (greater than 50 n mi), and for complete flight paths of lengths between 5 and 50 n mi.
14 CFR 23.61 - Takeoff flight path.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds...
Navigation Strategy for the Mars 2001 Lander Mission
NASA Technical Reports Server (NTRS)
Mase, Robert A.; Spencer, David A.; Smith, John C.; Braun, Robert D.
2000-01-01
The Mars Surveyor Program (MSP) is an ongoing series of missions designed to robotically study, map and search for signs of life on the planet Mars. The MSP 2001 project will advance the effort by sending an orbiter, a lander and a rover to the red planet in the 2001 opportunity. Each vehicle will carry a science payload that will Investigate the Martian environment on both a global and on a local scale. Although this mission will not directly search for signs of life, or cache samples to be returned to Earth, it will demonstrate certain enabling technologies that will be utilized by the future Mars Sample Return missions. One technology that is needed for the Sample Return mission is the capability to place a vehicle on the surface within several kilometers of the targeted landing site. The MSP'01 Lander will take the first major step towards this type of precision landing at Mars. Significant reduction of the landed footprint will be achieved through two technology advances. The first, and most dramatic, is hypersonic aeromaneuvering; the second is improved approach navigation. As a result, the guided entry will produce in a footprint that is only tens of kilometers, which is an order of magnitude improvement over the Pathfinder and Mars Polar Lander ballistic entries. This reduction will significantly enhance scientific return by enabling the potential selection of otherwise unreachable landing sites with unique geologic interest and public appeal. A landed footprint reduction from hundreds to tens of kilometers is also a milestone on the path towards human exploration of Mars, where the desire is to place multiple vehicles within several hundred meters of the planned landing site. Hypersonic aeromaneuvering is an extension of the atmospheric flight goals of the previous landed missions, Pathfinder and Mars Polar Lander (MPL), that utilizes aerodynamic lift and an autonomous guidance algorithm while in the upper atmosphere. The onboard guidance algorithm will control the direction of the lift vector, via bank angle modulation, to keep the vehicle on the desired trajectory. While numerous autonomous guidance algorithms have been developed for use during hypersonic flight at Earth, this will be the first flight of an autonomously directed lifting entry vehicle at Mars. However, without sufficient control and knowledge of the atmospheric entry conditions, the guidance algorithm will not perform effectively. The goal of the interplanetary navigation strategy is to deliver the spacecraft to the desired entry condition with sufficient accuracy and knowledge to enable satisfactory guidance algorithm performance. Specifically, the entry flight path angle must not exceed 0.27 deg. to a 3 sigma confidence level. Entry errors will contribute directly to the size of the landed footprint and the most significant component is entry flight path angle. The size of the entry corridor is limited on the shallow side by integrated heating constraints, and on the steep side by deceleration (g-load) and terminal descent propellant. In order to meet this tight constraint it is necessary to place a targeting maneuver seven hours prior to the time of entry. At this time the trajectory knowledge will be quite accurate, and the effects of maneuver execution errors will be small. The drawback is that entry accuracy is dependent on the success of this final late maneuver. Because propulsive maneuvers are critical events, it is desirable to minimize their occurrence and provide the flight team with as much response time as possible in the event of a spacecraft fault. A mission critical maneuver at Entry - 7 hours does not provide much fault tolerance, and it is desirable to provide a strategy that minimizes reliance on this maneuver. This paper will focus on the Improvements in interplanetary navigation that will decrease entry errors and will reduce the landed footprint, even in the absence of aeromaneuvering. The easiest to take advantage of are Improvements In the knowledge of the Mars ephemeris and gravity field due to the MGS and MSP'98 missions. Improvements In data collection and reduction techniques such as "precislon ranging' and near-simultaneous tracking will also be utilized. In addition to precise trajectory control, a robust strategy for communications and flight operations must also be demonstrated. The result Is a navigation and communications strategy on approach that utilizes optimal maneuver placement to take advantage of trajectory knowledge, minimizes risk for the flight operations team, is responsive to spacecraft hardware limitations, and achieves the entry corridor. The MSP2001 mission Is managed at JPL under the auspices of the Mars Exploration Directorate. The spacecraft flight elements are built and managed by Lockheed-Martin Astronautics in Denver, Colorado.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.
Pilots' Information Needs and Strategies for Operating in Icing Conditions
NASA Technical Reports Server (NTRS)
Vigeant-Langlois, Laurence N.; Hansman, R. John
2003-01-01
Pilot current use of icing information, pilot encounters and strategies for dealing with in-flight aircraft structural icing situations, and desired attributes of new icing information systems were investigated through a survey of pilots of several operational categories. The survey identified important information elements and fiequently used information paths for obtaining icing-related information. Free- response questions solicited descriptions of significant , icing encounters, and probed key icing-related decision and information criteria. Results indicated the information needs for the horizontal and vertical location of icing conditions and the identification of icing-free zones.
Status of a UAVSAR designed for repeat pass interferometry for deformation measurements
NASA Technical Reports Server (NTRS)
Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
NASA Technical Reports Server (NTRS)
Sallee, G. P.; Martin, R. L.
1980-01-01
The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
NASA Technical Reports Server (NTRS)
Lax, F. M.
1975-01-01
A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.
Piloted simulation of one-on-one helicopter air combat at NOE flight levels
NASA Technical Reports Server (NTRS)
Lewis, M. S.; Aiken, E. W.
1985-01-01
A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.
Functional integration of vertical flight path and speed control using energy principles
NASA Technical Reports Server (NTRS)
Lambregts, A. A.
1984-01-01
A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.
NASA Astrophysics Data System (ADS)
Buchholz, B.; Afchine, A.; Ebert, V.
2014-05-01
Because of the high travel speed, the complex flow dynamics around an aircraft and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realized with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 hPa to 800 hPa, and a water vapour concentration range of more than three orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements show an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2% and 5.1% during in flight operation on the HALO airplane. Under certain flight conditions we quantified for the first time stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the usually used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.
NASA Astrophysics Data System (ADS)
Buchholz, B.; Afchine, A.; Ebert, V.
2014-11-01
Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.
Three-dimensional impact angle constrained distributed guidance law design for cooperative attacks.
Wang, Xianghua; Lu, Xiao
2018-02-01
In this paper, a novel cooperative guidance law is proposed to make multiple missiles in the three-dimensional (3-D) space hit simultaneously the same target at pre-specified impact angles. Firstly, the normal accelerations which change the velocity direction (flight-path and heading angle) are designed such that all missiles will fly along the desired line of sight (LOS) after a given time which ensures the hit-to-kill interception at the desired impact angles; then the consensus variable is constructed using available information and can reach consensus under the proposed tangential acceleration which determines the velocity magnitude. Hence simultaneous hit-to-kill attack is achieved. Finally, some simulation studies are performed to verify the effectiveness of the proposed scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Evaluation of a computer-generated perspective tunnel display for flight path following
NASA Technical Reports Server (NTRS)
Grunwald, A. J.; Robertson, J. B.; Hatfield, J. J.
1980-01-01
The display was evaluated by monitoring pilot performance in a fixed base simulator with the vehicle dynamics of a CH-47 tandem rotor helicopter. Superposition of the predicted future vehicle position on the tunnel image was also investigated to determine whether, and to what extent, it contributes to better system performance (the best predicted future vehicle position was sought). Three types of simulator experiments were conducted: following a desired trajectory in the presence of disturbances; entering the trajectory from a random position, outside the trajectory; detecting and correcting failures in automatic flight. The tunnel display with superimposed predictor/director symbols was shown to be a very successful combination, which outperformed the other two displays in all three experiments. A prediction time of 4 to 7 sec. was found to optimize trajectory tracking for the given vehicle dynamics and flight condition. Pilot acceptance of the tunnel plus predictor/director display was found to be favorable and the time the pilot needed for familiarization with the display was found to be relatively short.
AFMS Flight Path: Building Future Leaders
2009-02-12
small numbers of deactivated squadrons were reactivated. In general, the Flight Path maintains the four squadron framework of OMG with an additional...MC fill all but two. Vast differences in rank and promotion rates further bias the AFMS to a non-DOPMA corps led entity . The Flight Path has done...Aeromedical Squadron (AMDS) can combine into an Aeromedical Dental Squadron ( ADOS ) or can reside as flights under the Medical Operations Squadron
Robotics virtual rail system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID
2011-07-05
A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.
Flight path-driven mitigation of wavefront curvature effects in SAR images
Doerry, Armin W [Albuquerque, NM
2009-06-23
A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.
14 CFR 25.123 - En route flight paths.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must represent the actual climb performance diminished by a gradient of climb of 1.1 percent for two... degradation of the gradient of climb is greater than one-half of the applicable actual-to-net flight path...-inoperative net flight path data must represent the actual climb performance diminished by a gradient of climb...
A tactual display aid for primary flight training
NASA Technical Reports Server (NTRS)
Gilson, R. D.
1979-01-01
A means of flight instruction is discussed. In addition to verbal assistance, control feedback was continously presented via a nonvisual means utilizing touch. A kinesthetic-tactile (KT) display was used as a readout and tracking device for a computer generated signal of desired angle of attack during the approach and landing. Airspeed and glide path information was presented via KT or visual heads up display techniques. Performance with the heads up display of pitch information was shown to be significantly better than performance with the KT pitch display. Testing without the displays showed that novice pilots who had received tactile pitch error information performed both pitch and throttle control tasks significantly better than those who had received the same information from the visual heads up display of pitch during the test series of approaches to landing.
DOT National Transportation Integrated Search
1999-03-01
This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...
Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.
2008-03-01
Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.
Automated flight path planning for virtual endoscopy.
Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S
1998-05-01
In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images.
An evaluation of head-up displays in civil transport operations
NASA Technical Reports Server (NTRS)
Lauber, J. K.; Bray, R. S.; Scott, B. C.
1981-01-01
To determine the advantages and disadvantages of head-up displays (HUD) in civil transport approach and landing operations, an operational evaluation was conducted on the flight simulator for advanced aircraft at Ames. A non-conformal HUD concept which contained raw data and Flight Director command information, and a conformal, flight path HUD concept was designed to permit terminal area maneuvering, intercept, final approach, flare, and landing operations. Twelve B-727 line pilots (Captains) flew a series of precision and non-precision approaches under a variety of environmental and operational conditions, including wind shear, turbulence and low ceilings and visibilities. A preliminary comparison of various system and pilot performance measures as a function of display type (Flight Director HUD, Flight Path HUD, or No HUD) indicates improvements in precision and accuracy of aircraft flight path control when using the HUDs. The results also demonstrated some potentially unique advantages of a flight path HUD during non-precision approaches.
Stability of simulated flight path control at +3 Gz in a human centrifuge.
Guardiera, Simon; Dalecki, Marc; Bock, Otmar
2010-04-01
Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.
Context Aware TCP for Intelligence, Surveillance and Reconnaissance Missions on Autonomous Platforms
2014-10-08
under the Unmanned Vehicle Experimental Communications Testbed (UVECT) flight test plan and were done over the Stockbridge Research Facility in the...sure the payload did not interfere with the command and control systems of the aircraft several flight paths were selected to exert the link and the...throughput from data source to destination. Figure 1 shows the flight path of a small RPA in a PoL flight path scenario. The change of SNR
Cockpit simulation study of use of flight path angle for instrument approaches
NASA Technical Reports Server (NTRS)
Hanisch, B.; Ernst, H.; Johnston, R.
1981-01-01
The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.
Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments
NASA Astrophysics Data System (ADS)
Hofmeister, Paul Gerke; Blum, Jürgen
2011-02-01
We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.
Optimum Strategies for Selecting Descent Flight-Path Angles
NASA Technical Reports Server (NTRS)
Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)
2016-01-01
An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Application of modern control design methodology to oblique wing research aircraft
NASA Technical Reports Server (NTRS)
Vincent, James H.
1991-01-01
A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.
Multiple-camera/motion stereoscopy for range estimation in helicopter flight
NASA Technical Reports Server (NTRS)
Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.
1993-01-01
Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.
NASA Technical Reports Server (NTRS)
Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.
1993-01-01
A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.
Improving the Flight Path Marker Symbol on Rotorcraft Synthetic Vision Displays
NASA Technical Reports Server (NTRS)
Szoboszlay, Zoltan P.; Hardy, Gordon H.; Welsh, Terence M.
2004-01-01
Two potential improvements to the flight path marker symbol were evaluated on a panel-mounted, synthetic vision, primary flight display in a rotorcraft simulation. One concept took advantage of the fact that synthetic vision systems have terrain height information available ahead of the aircraft. For this first concept, predicted altitude and ground track information was added to the flight path marker. In the second concept, multiple copies of the flight path marker were displayed at 3, 4, and 5 second prediction times as compared to a single prediction time of 3 seconds. Objective and subjective data were collected for eight rotorcraft pilots. The first concept produced significant improvements in pilot attitude control, ground track control, workload ratings, and preference ratings. The second concept did not produce significant differences in the objective or subjective measures.
NASA Technical Reports Server (NTRS)
2008-01-01
A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.
Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley
2017-10-23
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.
An experimental evaluation of head-up display formats
NASA Technical Reports Server (NTRS)
Naish, J. M.; Miller, D. L.
1980-01-01
Three types of head-up display format are investigated. Type 1 is an unreferenced (conventional) flight director, type 2 is a ground referenced flight path display, and type 3 is a ground referenced director. Formats are generated by computer and presented by reflecting collimation against a simulated forward view in flight. Pilots, holding commercial licenses, fly approaches in the instrument flight mode and in a combined instrument and visual flight mode. The approaches are in wind shear with varied conditions of visibility, offset, and turbulence. The displays are equivalent in pure tracking but there is a slight advantage for the unreferenced director in poor conditions. Flight path displays are better for tracking in the combined flight mode, possibly because of poor director control laws and the division of attention between superimposed fields. Workloads is better for the type 2 displays. The flight path and referenced director displays are criticized for effects of symbol motion and field limiting. In the subjective judgment of pilots familiar with the director displays, they are rated clearly better than path displays, with a preference for the unreferenced director. There is a fair division of attention between superimposed fields.
The flight planning - flight management connection
NASA Technical Reports Server (NTRS)
Sorensen, J. A.
1984-01-01
Airborne flight management systems are currently being implemented to minimize direct operating costs when flying over a fixed route between a given city pair. Inherent in the design of these systems is that the horizontal flight path and wind and temperature models be defined and input into the airborne computer before flight. The wind/temperature model and horizontal path are products of the flight planning process. Flight planning consists of generating 3-D reference trajectories through a forecast wind field subject to certain ATC and transport operator constraints. The interrelationships between flight management and flight planning are reviewed, and the steps taken during the flight planning process are summarized.
NASA Astrophysics Data System (ADS)
Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan
2012-11-01
A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter
2011-01-01
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.
NACA Flight-Path Angle and Air-Speed Recorder
NASA Technical Reports Server (NTRS)
Coleman, Donald G
1926-01-01
A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.
An avionics sensitivity study. Volume 1: Operational considerations
NASA Technical Reports Server (NTRS)
Scott, R. W.; Mcconkey, E. D.
1976-01-01
Equipment and operational concepts affecting aircraft in the terminal area are reported. Curved approach applications and modified climb and descent procedures for minimum fuel consumption are considered. The curved approach study involves the application of MLS guidance to enable execution of the current visual approach to Washington National Airport under instrument flight conditions. The operational significance and the flight path control requirements involved in the application of curved approach paths to this situation are considered. Alternative flight path control regimes are considered to achieve minimum fuel consumption subject to constraints related to air traffic control requirements, flight crew and passenger reactions, and airframe and powerplant limitations.
Four-dimensional guidance algorithms for aircraft in an air traffic control environment
NASA Technical Reports Server (NTRS)
Pecsvaradi, T.
1975-01-01
Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.
Flying qualities criteria for GA single pilot IFR operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.
1982-01-01
The flying qualities criteria in general aviation (GA) to decrease accidents are discussed. The following in-flight research is discussed: (1) identification of key aerodynamic configurations; (2) implementation of an in-flight simulator; (3) mission matrix design; (4) experimental systems; (5) data reduction; (6) optimal flight path reconstruction. Some of the accomplished work is reported: an integrated flight testing and flight path reconstruction methodology was developd, high accuracy in trajectory estimation was achieved with an experimental setup, and a part of the flight test series was flown.
A study of interior noise levels, noise sources and transmission paths in light aircraft
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Murray, B. S.; Theobald, M. A.
1983-01-01
The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.
Outdoor flocking of quadcopter drones with decentralized model predictive control.
Yuan, Quan; Zhan, Jingyuan; Li, Xiang
2017-11-01
In this paper, we present a multi-drone system featured with a decentralized model predictive control (DMPC) flocking algorithm. The drones gather localized information from neighbors and update their velocities using the DMPC flocking algorithm. In the multi-drone system, data packages are transmitted through XBee ® wireless modules in broadcast mode, yielding such an anonymous and decentralized system where all the calculations and controls are completed on an onboard minicomputer of each drone. Each drone is a double-layered agent system with the coordination layer running multi-drone flocking algorithms and the flight control layer navigating the drone, and the final formation of the flock relies on both the communication range and the desired inter-drone distance. We give both numerical simulations and field tests with a flock of five drones, showing that the DMPC flocking algorithm performs well on the presented multi-drone system in both the convergence rate and the ability of tracking a desired path. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.
2006-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.
The free-flight response of Drosophila to motion of the visual environment.
Mronz, Markus; Lehmann, Fritz-Olaf
2008-07-01
In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.
Trajectory specification for high capacity air traffic control
NASA Technical Reports Server (NTRS)
Paielli, Russell A. (Inventor)
2010-01-01
Method and system for analyzing and processing information on one or more aircraft flight paths, using a four-dimensional coordinate system including three Cartesian or equivalent coordinates (x, y, z) and a fourth coordinate .delta. that corresponds to a distance estimated along a reference flight path to a nearest reference path location corresponding to a present location of the aircraft. Use of the coordinate .delta., rather than elapsed time t, avoids coupling of along-track error into aircraft altitude and reduces effects of errors on an aircraft landing site. Along-track, cross-track and/or altitude errors are estimated and compared with a permitted error bounding space surrounding the reference flight path.
Kuiper Belt Objects Along the Pluto Express Path
NASA Technical Reports Server (NTRS)
Jewitt, David C.
1998-01-01
The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.
Flight in low-level wind shear
NASA Technical Reports Server (NTRS)
Frost, W.
1983-01-01
Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.
An evaluation of flight path formats head-up and head-down
NASA Technical Reports Server (NTRS)
Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.
1988-01-01
Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.
NASA Technical Reports Server (NTRS)
Smith, G. A.; Meyer, G.; Nordstrom, M.
1986-01-01
A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.
Flight-Path Characteristics for Decelerating From Supercircular Speed
NASA Technical Reports Server (NTRS)
Luidens, Roger W.
1961-01-01
Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.
NASA Technical Reports Server (NTRS)
Dudley, Michael R. (Editor); Duffy, Michael; Hirschberg, Michael; Moore, Mark; German, Brian; Goodrich, Ken; Gunnarson, Tom; Petermaier,Korbinian; Stoll, Alex; Fredericks, Bill;
2015-01-01
On August 3rd and 4th, 2015, a workshop was held at the NASA Ames Research Center, located at the Moffett Federal Airfield in California to explore the aviation communities interest in Transformative Vertical Flight (TVF) Concepts. The Workshop was sponsored by the AHS International (AHS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), and hosted by the NASA Aeronautics Research Institute (NARI). This second annual workshop built on the success and enthusiasm generated by the first TVF Workshop held in Washington, DC in August of 2014. The previous Workshop identified the existence of a multi-disciplinary community interested in this topic and established a consensus among the participants that opportunities to establish further collaborations in this area are warranted. The desire to conduct a series of annual workshops augmented by online virtual technical seminars to strengthen the TVF community and continue planning for advocacy and collaboration was a direct outcome of the first Workshop. The second Workshop organizers focused on four desired action-oriented outcomes. The first was to establish and document common stakeholder needs and areas of potential collaborations. This includes advocacy strategies to encourage the future success of unconventional vertiport capable flight concept solutions that are enabled by emerging technologies. The second was to assemble a community that can collaborate on new conceptual design and analysis tools to permit novel configuration paths with far greater multi-disciplinary coupling (i.e., aero-propulsive-control) to be investigated. The third was to establish a community to develop and deploy regulatory guidelines. This community would have the potential to initiate formation of an American Society for Testing and Materials (ASTM) F44 Committee Subgroup for the development of consensus-based certification standards for General Aviation scale vertiport capable flight systems. These standards need to accommodate novel fixed wing concepts that do not fit within the existing Federal Aviation Administration (FAA) rotorcraft certification framework (Code of Federal Regulations, Title 14, Chapter I, Subchapter C, Part 27). The fourth desired outcome was to launch an information campaign to ensure key U.S. Government agencies understand the potential benefits and industry interest in establishing new vertiport capable flight markets. This record of the Workshop proceedings documents Workshop activities and products including summaries of the video recorded technical presentations, overviews of three breakout sessions (Missions Operational Concepts, Prioritized Technical Challenges, Regulatory Roadmap), and a preliminary draft roadmap framework for TVF.
NASA Astrophysics Data System (ADS)
Kapania, Nitin R.; Gerdes, J. Christian
2015-12-01
This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design.
Evolved atmospheric entry corridor with safety factor
NASA Astrophysics Data System (ADS)
Liang, Zixuan; Ren, Zhang; Li, Qingdong
2018-02-01
Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.
Optimum flight paths of turbojet aircraft
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.
Flight Path Synthesis and HUD Scaling for V/STOL Terminal Area Operations
DOT National Transportation Integrated Search
1995-04-01
A two circle horizontal flightpath synthesis algorithm for Vertical/Short : Takeoff and Landing (V/STOL) terminal area operations is presented. This : algorithm provides a flight-path that is tangential to the aircraft's velocity : vector at the inst...
Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge.
Dalecki, Marc; Bock, Otmar; Guardiera, Simon
2010-05-01
We have previously shown that subjects produce exaggerated manual forces in +3 Gz. When subjects execute discrete flight path changes in a flight simulator, their performance is less stable in +3 Gz than in +1 Gz. Here we explore whether Gz-related deficits are found with continuous flight path changes. Novice subjects and fighter pilots sat in a high-fidelity flight simulator equipped with the reproduction of the Eurofighter 2000 cockpit, including the realistic flight stick, and pursued continuous altitude changes of a target airplane in +1 Gz and +3 Gz. Subjects also produced verbal responses in a Stroop task. Pursuit and Stroop tasks were administered alone and concurrently. Flight instability increased in +3 Gz compared to +1 Gz in novices (+46%), but not in pilots (+3%), and even there only during the first minute. Flight performance improved after the first minute in both subject groups. Stroop reaction time was higher in novices (+5.27%) than in pilots (+3.77%) at +3 Gz. Dual-task costs did not differ between groups or Gz levels. Deficits of force production in high Gz are largely compensated for when subjects apply forces to produce a continuously changing flight path. This compensation seems not to require additional cognitive resources and may be achieved by using visual feedback. Force production deficits in high Gz seem to have no appreciable effects on flight performance and cognitive load of experienced pilots using a force-plus-displacement stick in +3 Gz. It remains to be shown whether this conclusion extends to purely isometric sticks and to higher Gz levels.
Flight testing and simulation of an F-15 airplane using throttles for flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas
1992-01-01
Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.
Spiral tendency in blind flying
NASA Technical Reports Server (NTRS)
Carroll, Thomas; Mcavoy, William H
1929-01-01
The flight path followed by an airplane which was being flown by a blindfolded pilot was observed and recorded. When the pilot attempted to make a straight-away flight there was a tendency to deviate from the straight path and to take up a spiral one.
NASA Technical Reports Server (NTRS)
Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; DelCastillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.
2013-01-01
This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.
NASA Technical Reports Server (NTRS)
Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.
2013-01-01
This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where the reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.
B-737 flight test of curved-path and steep-angle approaches using MLS guidance
NASA Technical Reports Server (NTRS)
Branstetter, J. R.; White, W. F.
1989-01-01
A series of flight tests were conducted to collect data for jet transport aircraft flying curved-path and steep-angle approaches using Microwave Landing System (MLS) guidance. During the test, 432 approaches comprising seven different curved-paths and four glidepath angles varying from 3 to 4 degrees were flown in NASA Langley's Boeing 737 aircraft (Transport Systems Research Vehicle) using an MLS ground station at the NASA Wallops Flight Facility. Subject pilots from Piedmont Airlines flew the approaches using conventional cockpit instrumentation (flight director and Horizontal Situation Indicator (HSI). The data collected will be used by FAA procedures specialists to develop standards and criteria for designing MLS terminal approach procedures (TERPS). The use of flight simulation techniques greatly aided the preliminary stages of approach development work and saved a significant amount of costly flight time. This report is intended to complement a data report to be issued by the FAA Office of Aviation Standards which will contain all detailed data analysis and statistics.
Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.
de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E
2012-01-01
Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.
Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys
NASA Astrophysics Data System (ADS)
Konstantinov, M. S.; Thein, M.
2017-07-01
The method developed to avoid the complexity of solving the multipoint boundary value problem while optimizing interplanetary trajectories of the spacecraft with electric propulsion and a sequence of swing-bys is presented in the paper. This method is based on the use of the preliminary problem solutions for the impulsive trajectories. The preliminary problem analyzed at the first stage of the study is formulated so that the analysis and optimization of a particular flight path is considered as the unconstrained minimum in the space of the selectable parameters. The existing methods can effectively solve this problem and make it possible to identify rational flight paths (the sequence of swing-bys) to receive the initial approximation for the main characteristics of the flight path (dates, values of the hyperbolic excess velocity, etc.). These characteristics can be used to optimize the trajectory of the spacecraft with electric propulsion. The special feature of the work is the introduction of the second (intermediate) stage of the research. At this stage some characteristics of the analyzed flight path (e.g. dates of swing-bys) are fixed and the problem is formulated so that the trajectory of the spacecraft with electric propulsion is optimized on selected sites of the flight path. The end-to-end optimization is carried out at the third (final) stage of the research. The distinctive feature of this stage is the analysis of the full set of optimal conditions for the considered flight path. The analysis of the characteristics of the optimal flight trajectories to Jupiter with Earth, Venus and Mars swing-bys for the spacecraft with electric propulsion are presented. The paper shows that the spacecraft weighing more than 7150 kg can be delivered into the vicinity of Jupiter along the trajectory with two Earth swing-bys by use of the space transportation system based on the "Angara A5" rocket launcher, the chemical upper stage "KVTK" and the electric propulsion system with input electrical power of 100 kW.
Minimum noise impact aircraft trajectories
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Melton, R. G.
1981-01-01
Numerical optimization is used to compute the optimum flight paths, based upon a parametric form that implicitly includes some of the problem restrictions. The other constraints are formulated as penalties in the cost function. Various aircraft on multiple trajectores (landing and takeoff) can be considered. The modular design employed allows for the substitution of alternate models of the population distribution, aircraft noise, flight paths, and annoyance, or for the addition of other features (e.g., fuel consumption) in the cost function. A reduction in the required amount of searching over local minima was achieved through use of the presence of statistical lateral dispersion in the flight paths.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker
2017-01-01
The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.
Contact Graph Routing Enhancements Developed in ION for DTN
NASA Technical Reports Server (NTRS)
Segui, John S.; Burleigh, Scott
2013-01-01
The Interplanetary Overlay Network (ION) software suite is an open-source, flight-ready implementation of networking protocols including the Delay/Disruption Tolerant Networking (DTN) Bundle Protocol (BP), the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP), and many others including the Contact Graph Routing (CGR) DTN routing system. While DTN offers the capability to tolerate disruption and long signal propagation delays in transmission, without an appropriate routing protocol, no data can be delivered. CGR was built for space exploration networks with scheduled communication opportunities (typically based on trajectories and orbits), represented as a contact graph. Since CGR uses knowledge of future connectivity, the contact graph can grow rather large, and so efficient processing is desired. These enhancements allow CGR to scale to predicted NASA space network complexities and beyond. This software improves upon CGR by adopting an earliest-arrival-time cost metric and using the Dijkstra path selection algorithm. Moving to Dijkstra path selection also enables construction of an earliest- arrival-time tree for multicast routing. The enhancements have been rolled into ION 3.0 available on sourceforge.net.
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies
2012-10-30
control algorithm for UAVs in 3D space. Section IV derives a strategy for time-critical cooperative path following of multiple UAVs that relies on the...UAVs in 3D space, in which a fleet of UAVs is tasked to converge to and follow a set of desired feasible paths so as to meet spatial and temporal...cooperative trajectory generation is not addressed in this paper. In fact, it is assumed that a set of desired 3D time trajectories pd,i(td) : R → R3
A flight investigation with a STOL airplane flying curved, descending instrument approach paths
NASA Technical Reports Server (NTRS)
Benner, M. S.; Mclaughlin, M. D.; Sawyer, R. H.; Vangunst, R.; Ryan, J. L.
1974-01-01
A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined.
Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures
de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F. E.
2012-01-01
Background Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. Methodology/Principal Findings As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Conclusions Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality. PMID:23152764
Enhanced flight symbology for wide-field-of-view helmet-mounted displays
NASA Astrophysics Data System (ADS)
Rogers, Steven P.; Asbury, Charles N.; Szoboszlay, Zoltan P.
2003-09-01
A series of studies was conducted to improve the Army aviator's ability to perform night missions by developing innovative symbols that capitalize on the advantages of new wide field-of-view (WFOV) helmet-mounted displays (HMDs). The most important outcomes of the research were two new symbol types called the Cylinder and the Flight Path Predictor. The Cylinder provides a large symbolic representation of real-world orientation that enables pilots to maintain the world frame of reference even if the visibility of the world is lost due to dust, smoke, snow, or inadvertent instrument meteorological conditions (IMC). Furthermore, the Cylinder is peripherally presented, supporting the "ambient" visual mode so that it does not require the conscious attention of the viewer. The Flight Path Predictor was developed to show the predicted flight path of a maneuvering aircraft using earth-referenced HMD symbology. The experimental evidence and the pilot interview results show that the new HMD symbology sets are capable of preventing spatial disorientation, improving flight safety, enhancing flight maneuver precision, and reducing workload so that the pilot can more effectively perform the critical mission tasks.
Automatic guidance and control laws for helicopter obstacle avoidance
NASA Technical Reports Server (NTRS)
Cheng, Victor H. L.; Lam, T.
1992-01-01
The authors describe the implementation of a full-function guidance and control system for automatic obstacle avoidance in helicopter nap-of-the-earth (NOE) flight. The guidance function assumes that the helicopter is sufficiently responsive so that the flight path can be readily adjusted at NOE speeds. The controller, basically an autopilot for following the derived flight path, was implemented with parameter values to control a generic helicopter model used in the simulation. Evaluation of the guidance and control system with a 3-dimensional graphical helicopter simulation suggests that the guidance has the potential for providing good and meaningful flight trajectories.
A comparison of optimal and noise-abatement trajectories of a tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Schmitz, F. H.; Stepniewski, W. Z.; Gibs, J.; Hinterkeuser, W. Z.
1972-01-01
The potential benefits of flight path control to optimize performance and/or reduce the noise of a tilt-rotor aircraft operating in the takeoff and landing phases of flight are investigated. A theoretical performance-acoustic model is developed and then mathematically flown to yield representative takeoff and landing profiles. Minimum-time and minimum-fuel trajectories are compared to proposed noise-abatement profiles to assess the reductions in annoyance possible through flight path control. Significant reductions are feasible if a nearly vertical-takeoff flight profile is flown near the landing site; however, the time expended and fuel consumed increase.
Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb
1989-01-01
Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.
Feedback laws for fuel minimization for transport aircraft
NASA Technical Reports Server (NTRS)
Price, D. B.; Gracey, C.
1984-01-01
The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.
Aspects of Synthetic Vision Display Systems and the Best Practices of the NASA's SVS Project
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Jones, Denise R.; Young, Steven D.; Arthur, Jarvis J.; Prinzel, Lawrence J.; Glaab, Louis J.; Harrah, Steven D.; Parrish, Russell V.
2008-01-01
NASA s Synthetic Vision Systems (SVS) Project conducted research aimed at eliminating visibility-induced errors and low visibility conditions as causal factors in civil aircraft accidents while enabling the operational benefits of clear day flight operations regardless of actual outside visibility. SVS takes advantage of many enabling technologies to achieve this capability including, for example, the Global Positioning System (GPS), data links, radar, imaging sensors, geospatial databases, advanced display media and three dimensional video graphics processors. Integration of these technologies to achieve the SVS concept provides pilots with high-integrity information that improves situational awareness with respect to terrain, obstacles, traffic, and flight path. This paper attempts to emphasize the system aspects of SVS - true systems, rather than just terrain on a flight display - and to document from an historical viewpoint many of the best practices that evolved during the SVS Project from the perspective of some of the NASA researchers most heavily involved in its execution. The Integrated SVS Concepts are envisagements of what production-grade Synthetic Vision systems might, or perhaps should, be in order to provide the desired functional capabilities that eliminate low visibility as a causal factor to accidents and enable clear-day operational benefits regardless of visibility conditions.
NASA Technical Reports Server (NTRS)
2006-01-01
Just before the space shuttle reaches orbit, its three main engines shut down so that it can achieve separation from the massive external tank that provided the fuel required for liftoff and ascent. In jettisoning the external tank, which is completely devoid of fuel at this point in the flight, the space shuttle fires a series of thrusters, separate from its main engines, that gives the orbiter the maneuvering ability necessary to safely steer clear of the descending tank and maintain its intended flight path. These thrusters make up the space shuttle s Reaction Control System. While the space shuttle s main engines only provide thrust in one direction (albeit a very powerful thrust), the Reaction Control System engines allow the vehicle to maneuver in any desired direction (via small amounts of thrust). The resulting rotational maneuvers are known as pitch, roll, and yaw, and are very important in ensuring that the shuttle docks properly when it arrives at the International Space Station and safely reenters the Earth s atmosphere upon leaving. To prevent the highly complex Reaction Control System from malfunctioning during space shuttle flights, and to provide a diagnosis if such a mishap were to occur, NASA turned to a method of artificial intelligence that truly defied the traditional laws of computer science.
Methods of Constructing a Blended Performance Function Suitable for Formation Flight
NASA Technical Reports Server (NTRS)
Ryan, John J.
2017-01-01
This paper presents two methods for constructing an approximate performance function of a desired parameter using correlated parameters. The methods are useful when real-time measurements of a desired performance function are not available to applications such as extremum-seeking control systems. The first method approximates an a priori measured or estimated desired performance function by combining real-time measurements of readily available correlated parameters. The parameters are combined using a weighting vector determined from a minimum-squares optimization to form a blended performance function. The blended performance function better matches the desired performance function mini- mum than single-measurement performance functions. The second method expands upon the first by replacing the a priori data with near-real-time measurements of the desired performance function. The resulting blended performance function weighting vector is up- dated when measurements of the desired performance function are available. Both methods are applied to data collected during formation- flight-for-drag-reduction flight experiments.
Mars Science Laboratory Propulsive Maneuver Design and Execution
NASA Technical Reports Server (NTRS)
Wong, Mau C.; Kangas, Julie A.; Ballard, Christopher G.; Gustafson, Eric D.; Martin-Mur, Tomas J.
2012-01-01
The NASA Mars Science Laboratory (MSL) rover, Curiosity, was launched on November 26, 2011 and successfully landed at the Gale Crater on Mars. For the 8-month interplanetary trajectory from Earth to Mars, five nominal and two contingency trajectory correction maneuvers (TCM) were planned. The goal of these TCMs was to accurately deliver the spacecraft to the desired atmospheric entry aimpoint in Martian atmosphere so as to ensure a high probability of successful landing on the Mars surface. The primary mission requirements on maneuver performance were the total mission propellant usage and the entry flight path angle (EFPA) delivery accuracy. They were comfortably met in this mission. In this paper we will describe the spacecraft propulsion system, TCM constraints and requirements, TCM design processes, and their implementation and verification.
Comparison of workload measures on computer-generated primary flight displays
NASA Technical Reports Server (NTRS)
Nataupsky, Mark; Abbott, Terence S.
1987-01-01
Four Air Force pilots were used as subjects to assess a battery of subjective and physiological workload measures in a flight simulation environment in which two computer-generated primary flight display configurations were evaluated. A high- and low-workload task was created by manipulating flight path complexity. Both SWAT and the NASA-TLX were shown to be effective in differentiating the high and low workload path conditions. Physiological measures were inconclusive. A battery of workload measures continues to be necessary for an understanding of the data. Based on workload, opinion, and performance data, it is fruitful to pursue research with a primary flight display and a horizontal situation display integrated into a single display.
Optimal symmetric flight with an intermediate vehicle model
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.
1983-01-01
Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.
Aviation Safety Simulation Model
NASA Technical Reports Server (NTRS)
Houser, Scott; Yackovetsky, Robert (Technical Monitor)
2001-01-01
The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.
Monolithic mm-wave phase shifter using optically activated superconducting switches
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)
1992-01-01
A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.
System and method for optimal load and source scheduling in context aware homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.
A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.
Results of a simulator test comparing two display concepts for piloted flight-path-angle control
NASA Technical Reports Server (NTRS)
Kelley, W. W.
1978-01-01
Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.
The NASA super pressure balloon - A path to flight
NASA Astrophysics Data System (ADS)
Cathey, H. M.
2009-07-01
The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes
Kitamura, Tasuku; Imafuku, Michio
2015-01-01
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. PMID:26041360
Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes.
Kitamura, Tasuku; Imafuku, Michio
2015-06-22
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Development of an analytical guidance algorithm for lunar descent
NASA Astrophysics Data System (ADS)
Chomel, Christina Tvrdik
In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly"' or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory formatted as a function of downrange, altitude, speed, and flight path angle. The two elements of the guidance algorithm are joined in Monte Carlo analysis to prove their robustness to initial state dispersions and mass and thrust errors. The robustness of the retargeting algorithm is also demonstrated.
Kinetographic determination of airplane flight characteristics
NASA Technical Reports Server (NTRS)
Raethjen, P; Knott, H
1927-01-01
The author's first experiments with a glider on flight characteristics demonstrated that an accurate flight-path measurement would enable determination of the polar diagram from a gliding flight. Since then he has endeavored to obtain accurate flight measurements by means of kinetograph (motion-picture camera). Different methods of accomplishing this are presented.
Airline meteorological requirements
NASA Technical Reports Server (NTRS)
Chandler, C. L.; Pappas, J.
1985-01-01
A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.
NASA Technical Reports Server (NTRS)
Raofi, Behzad
2005-01-01
This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.
Abort-once-around entry corridor analysis program document
NASA Technical Reports Server (NTRS)
Kyle, H. C.
1975-01-01
The abort once around entry target corridor analysis program (ABECAP) was studied. The allowable range of flight path angles at entry interface for acceptable entry trajectories from a shuttle abort once around (AOA) situation was established. The solutions thus determined may be shown as corridor plots of entry interface flight path angle versus range from entry interface (EI) to the target.
Design and analysis of advanced flight planning concepts
NASA Technical Reports Server (NTRS)
Sorensen, John A.
1987-01-01
The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.
NASA Technical Reports Server (NTRS)
Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1979-01-01
A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.
Optimal guidance with obstacle avoidance for nap-of-the-earth flight
NASA Technical Reports Server (NTRS)
Pekelsma, Nicholas J.
1988-01-01
The development of automatic guidance is discussed for helicopter Nap-of-the-Earth (NOE) and near-NOE flight. It deals with algorithm refinements relating to automated real-time flight path planning and to mission planning. With regard to path planning, it relates rotorcraft trajectory characteristics to the NOE computation scheme and addresses real-time computing issues and both ride quality issues and pilot-vehicle interfaces. The automated mission planning algorithm refinements include route optimization, automatic waypoint generation, interactive applications, and provisions for integrating the results into the real-time path planning software. A microcomputer based mission planning workstation was developed and is described. Further, the application of Defense Mapping Agency (DMA) digital terrain to both the mission planning workstation and to automatic guidance is both discussed and illustrated.
NASA Technical Reports Server (NTRS)
Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.
2003-01-01
The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).
Evolution paths for advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1990-01-01
As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.
Turgut, Enis T; Usanmaz, Oznur; Rosen, Marc A
2018-05-01
In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NO x and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NO x . For a five-tonne aircraft mass increase, the average change in emissions indices are found to be -4.1% and -5.7% (CO), -5.4% and -8.2% (HC), and +1.1% and +1.6% (NO x ) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NO x during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7-8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NO x ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Predictors of Desire for Involvement in a State Rehabilitation Association.
ERIC Educational Resources Information Center
Heinemann, Allen W.; And Others
1986-01-01
Surveyed state rehabilitation association members to test a path model predicting desire for organizational involvement on the basis of breadth of expectations of the organization, professional identity, professional education, training satisfaction, and years in rehabilitation. Broader expectations predicted greater desire for organizational…
RSRM Nozzle-to-Case Joint J-leg Development
NASA Technical Reports Server (NTRS)
Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.
2003-01-01
Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.
Bridging the gap between high and low acceleration for planetary escape
NASA Astrophysics Data System (ADS)
Indrikis, Janis; Preble, Jeffrey C.
With the exception of the often time consuming analysis by numerical optimization, no single orbit transfer analysis technique exists that can be applied over a wide range of accelerations. Using the simple planetary escape (parabolic trajectory) mission some of the more common techniques are considered as the limiting bastions at the high and the extremely low acceleration regimes. The brachistochrone, the minimum time of flight path, is proposed as the technique to bridge the gap between the high and low acceleration regions, providing a smooth bridge over the entire acceleration spectrum. A smooth and continuous velocity requirement is established for the planetary escape mission. By using these results, it becomes possible to determine the effect of finite accelerations on mission performance and target propulsion and power system designs which are consistent with a desired mission objective.
Resource acquisition, distribution and end-use efficiencies and the growth of industrial society
NASA Astrophysics Data System (ADS)
Jarvis, A. J.; Jarvis, S. J.; Hewitt, C. N.
2015-10-01
A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end-use. With respect to energy, the growth of industrial society appears to have been near-exponential for the last 160 years. We provide evidence that indicates that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near-optimal directed networks (roads, railways, flight paths, pipelines, cables etc.). However, despite this continual striving for optimisation, the distribution efficiencies of these networks must decline over time as they expand due to path lengths becoming longer and more tortuous. Therefore, to maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system, namely at the points of acquisition and end-use of resources. We postulate that the maintenance of the growth of industrial society, as measured by global energy use, at the observed rate of ~ 2.4 % yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.
Three Dimensional Lightning Launch Commit Criteria Visualization Tool
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could display all of the data in a single visualization. The AMU determined there are two viable software packages that could satisfy the 45 WS requirement with further development and recommends the KSC Weather Office follow-up with both organizations to request development costs.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
Pilots strategically compensate for display enlargements in surveillance and flight control tasks.
Stelzer, Emily Muthard; Wickens, Christopher D
2006-01-01
Experiments were conducted to assess the impact of display size on flight control, airspace surveillance, and goal-directed target search. Research of 3-D displays has shown that display scale compression influences the perception of flight path deviation, though less is known about the causes that drive this effect. In addition, research on attention-based tasks has shown that information displaced to significant eccentricities can amplify effort, but it is unclear whether the effect generates a performance difference in complex displays. In Experiment 1, 16 pilots completed a low-fidelity flight control task under single- and dual-axis control. In Experiment 2, the control task from Experiment 1 was scaled up to a more realistic flight environment, and pilots performed hazard surveillance and target search tasks. For flight control, pilots exhibited less path error and greater stick activity with a large display, which was attributed both to greater enhanced resolution and to the fact that larger depictions of error lead to greater urgency in correcting deviations. Size did not affect hazard surveillance or search, as pilots were adaptive in altering scanning patterns in response to the enlargement of the displays. Although pilots were adaptive to display changes in search and surveillance, display size reduction diminished estimates of flight path deviation and control performance because of lowered resolution and control urgency. Care should be taken when manipulating display size, as size reduction can diminish control performance.
Echolocating bats use future-target information for optimal foraging.
Fujioka, Emyo; Aihara, Ikkyu; Sumiya, Miwa; Aihara, Kazuyuki; Hiryu, Shizuko
2016-04-26
When seeing or listening to an object, we aim our attention toward it. While capturing prey, many animal species focus their visual or acoustic attention toward the prey. However, for multiple prey items, the direction and timing of attention for effective foraging remain unknown. In this study, we adopted both experimental and mathematical methodology with microphone-array measurements and mathematical modeling analysis to quantify the attention of echolocating bats that were repeatedly capturing airborne insects in the field. Here we show that bats select rational flight paths to consecutively capture multiple prey items. Microphone-array measurements showed that bats direct their sonar attention not only to the immediate prey but also to the next prey. In addition, we found that a bat's attention in terms of its flight also aims toward the next prey even when approaching the immediate prey. Numerical simulations revealed a possibility that bats shift their flight attention to control suitable flight paths for consecutive capture. When a bat only aims its flight attention toward its immediate prey, it rarely succeeds in capturing the next prey. These findings indicate that bats gain increased benefit by distributing their attention among multiple targets and planning the future flight path based on additional information of the next prey. These experimental and mathematical studies allowed us to observe the process of decision making by bats during their natural flight dynamics.
NASA Technical Reports Server (NTRS)
Rediess, Herman A.; Hewett, M. D.
1991-01-01
The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.
Lock-In Imaging System for Detecting Disturbances in Fluid
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Dimarcantonio, Albert L. (Inventor)
2014-01-01
A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang
2016-08-01
Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.
Design and development of flapping wing micro air vehicle
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Solomon, A. Jeffey Markus; Kathiresh, E.; Brighton, D.; Velu, P. Shenbaga
2018-05-01
Birds and insects have different methods of producing lift and thrust for hovering and forward flight. Most birds, however, cannot hover. Wing tips of birds follow simple paths in flight, whereas insects have very complicated wing tip paths, for hovering and forward flight, which vary with each species. FMAV based on avian flight. Development of Flapping Wing Air Vehicle (FWAV) is an on-going quest to master the natural flyers by mechanical means. It is characterized by unsteady aerodynamics, whose knowledge is still developing. The present work aims at include being capable of manoeuvring around and over obstacles by adjusting pitch, yaw, and roll, able to glide for five seconds under its own power, skilful at alternating between flapping and gliding with minimal disruption of flight pattern and being durable enough to withstand impacts with minimal to no damage.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Person, L. H., Jr.
1981-01-01
The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.
Inertial instrument system for aerial surveying
Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.
1985-01-01
An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)
Moderation of near-field pressure over a supersonic flight model using laser-pulse energy deposition
NASA Astrophysics Data System (ADS)
Furukawa, D.; Aoki, Y.; Iwakawa, A.; Sasoh, A.
2016-05-01
The impact of a thermal bubble produced by energy deposition on the near-field pressure over a Mach 1.7 free-flight model was experimentally investigated using an aeroballistic range. A laser pulse from a transversely excited atmospheric (TEA) CO2 laser was sent into a test chamber with 68 kPa ambient pressure, focused 10 mm below the flight path of a conically nosed cylinder with a diameter of 10 mm. The pressure history, which was measured 150 mm below the flight path along the acoustic ray past the bubble, exhibited precursory pressure rise and round-off peak pressure, thereby demonstrating the proof-of-concept of sonic boom alleviation using energy deposition.
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Goodrick, Dan
2017-01-01
The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.
An experimental study of factors affecting the selective inhibition of sintering process
NASA Astrophysics Data System (ADS)
Asiabanpour, Bahram
Selective Inhibition of Sintering (SIS) is a new rapid prototyping method that builds parts in a layer-by-layer fabrication basis. SIS works by joining powder particles through sintering in the part's body, and by sintering inhibition of some selected powder areas. The objective of this research has been to improve the new SIS process, which has been invented at USC. The process improvement is based on statistical design of experiments. To conduct the needed experiments a working machine and related path generator software were needed. The machine and its control software were made available prior to this research. The path generator algorithms and software had to be created. This program should obtain model geometry data from a CAD file and generate an appropriate path file for the printer nozzle. Also, the program should generate a simulation file for path file inspection using virtual prototyping. The activities related to path generator constitute the first part of this research, which has resulted in an efficient path generator. In addition, to reach an acceptable level of accuracy, strength, and surface quality in the fabricated parts, all effective factors in the SIS process should be identified and controlled. Simultaneous analytical and experimental studies were conducted to recognize effective factors and to control the SIS process. Also, it was known that polystyrene was the most appropriate polymer powder and saturated potassium iodide was the most effective inhibitor among the available candidate materials. In addition, statistical tools were applied to improve the desirable properties of the parts fabricated by the SIS process. An investigation of part strength was conducted using the Response Surface Methodology (RSM) and a region of acceptable operating conditions for the part strength was found. Then, through analysis of the experimental results, the impact of the factors on the final part surface quality and dimensional accuracy was modeled. After developing a desirability function model, process operating conditions for maximum desirability were identified. Finally, the desirability model was validated.
Kuiper Belt Objects Along the Pluto-Express Path
NASA Technical Reports Server (NTRS)
Jewitt, David (Principal Investigator)
1997-01-01
The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan
2014-01-01
Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance
NASA Astrophysics Data System (ADS)
Smith, Nathan Allen
Unmanned aerial systems will be the dominant force in the aviation industry. Among these aircraft the use of high altitude long endurance unmanned aerial systems has increased dramatically. Based on the geometry of these types of aircraft the possible changing weather conditions during long flights poses many problems. These difficulties are compounded by the push towards fully autonomous systems. Large wingspan and, typically, small in-line landing gear make a landing in crosswind exceedingly difficult. This study uses a modified gain scheduling technique for optimizing the landing attitude for a generic vehicle based on geometry and crosswind speed. This is performed by directly utilizing the crosswind estimation to calculate a desired crab and roll angle that gives the lowest risk attitude for landing. An extended Kalman filter is developed that estimates the aircraft states as well as the 3D wind component acting on the aircraft. The aircraft used in this analysis is the DG808S, a large wingspan lightweight electric glider. The aircraft is modelled using Advanced Aircraft Analysis software and a six degree of freedom nonlinear simulation is implemented for testing. The controller used is a nonlinear model predictive controller. The simulations show that the extended Kalman filter is capable of estimating the crosswind and can therefore be used in the full aircraft simulation. Different crosswind settings are used which include both constant crosswind and gust conditions. Crosswind landing capabilities are increased by 35%. Deviation from the desired path in the cruise phase is reduced by up to 68% and time to path convergence is reduced by up to 53%.
Fade Analysis of ORCA DATA Beam at NTTR and Pax River
2010-08-01
bit-error-rate (BER) of the data beam on the downlink path. 15 Start Time-PST (Duration) Range Scin Index 1 Rx=5.1cm... Scin Index 2 Rx=13.7cm Scin Index 3 Rx=27.2cm Path Ave Cn2 (m-2/3) Path Ave Inner Scale Path Ave Outer Scale Flight 2 May 16
Synthetic vision systems: the effects of guidance symbology, display size, and field of view.
Alexander, Amy L; Wickens, Christopher D; Hardy, Thomas J
2005-01-01
Two experiments conducted in a high-fidelity flight simulator examined the effects of guidance symbology, display size, and geometric field of view (GFOV) within a synthetic vision system (SVS). In Experiment 1, 18 pilots flew highlighted and low-lighted tunnel-in-the-sky displays, as well as a less cluttered follow-me aircraft (FMA), through a series of curved approaches over rugged terrain. The results revealed that both tunnels supported better flight path tracking and lower workload levels than did the FMA because of the availability of more preview information. Increasing tunnel intensity had no benefit on tracking and, in fact, degraded traffic awareness because of clutter and attentional tunneling. In Experiment 2, 24 pilots flew a lowlighted tunnel configured according to different display sizes (small or large) and GFOVs (30 degrees or 60 degrees). Measures of flight path tracking and terrain awareness generally favored the 60 degrees GFOV; however, there were no effects of display size. Actual or potential applications of this research include understanding the impact of SVS properties on flight path tracking, traffic and terrain awareness, workload, and the allocation of attention.
Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
Kohl, Anna M; Kelasidi, Eleni; Mohammadi, Alireza; Maggiore, Manfredi; Pettersen, Kristin Y
2016-11-24
This paper investigates the problem of planar maneuvering control for bio-inspired underwater snake robots that are exposed to unknown ocean currents. The control objective is to make a neutrally buoyant snake robot which is subject to hydrodynamic forces and ocean currents converge to a desired planar path and traverse the path with a desired velocity. The proposed feedback control strategy enforces virtual constraints which encode biologically inspired gaits on the snake robot configuration. The virtual constraints, parametrized by states of dynamic compensators, are used to regulate the orientation and forward speed of the snake robot. A two-state ocean current observer based on relative velocity sensors is proposed. It enables the robot to follow the path in the presence of unknown constant ocean currents. The efficacy of the proposed control algorithm for several biologically inspired gaits is verified both in simulations for different path geometries and in experiments.
Flight operations noise tests of eight helicopters
DOT National Transportation Integrated Search
1985-08-01
This document presents acoustical data and flight path information acquired during the FAA/HAI Helicopter Flight Operations Noise Test Program. 'As-measured' noise levels of the Aerospatiale 365N, Agusta 109A, Bell 206L-1 and 222A, Hughes 500D, MBB B...
NASA Astrophysics Data System (ADS)
Sidibe, Souleymane
The implementation and monitoring of operational flight plans is a major occupation for a crew of commercial flights. The purpose of this operation is to set the vertical and lateral trajectories followed by airplane during phases of flight: climb, cruise, descent, etc. These trajectories are subjected to conflicting economical constraints: minimization of flight time and minimization of fuel consumed and environmental constraints. In its task of mission planning, the crew is assisted by the Flight Management System (FMS) which is used to construct the path to follow and to predict the behaviour of the aircraft along the flight plan. The FMS considered in our research, particularly includes an optimization model of flight only by calculating the optimal speed profile that minimizes the overall cost of flight synthesized by a criterion of cost index following a steady cruising altitude. However, the model based solely on optimization of the speed profile is not sufficient. It is necessary to expand the current optimization for simultaneous optimization of the speed and altitude in order to determine an optimum cruise altitude that minimizes the overall cost when the path is flown with the optimal speed profile. Then, a new program was developed. The latter is based on the method of dynamic programming invented by Bellman to solve problems of optimal paths. In addition, the improvement passes through research new patterns of trajectories integrating ascendant cruises and using the lateral plane with the effect of the weather: wind and temperature. Finally, for better optimization, the program takes into account constraint of flight domain of aircrafts which utilize the FMS.
V/STOL Systems Research Aircraft: A Tool for Cockpit Integration
NASA Technical Reports Server (NTRS)
Stortz, Michael W.; ODonoghue, Dennis P.; Tiffany, Geary (Technical Monitor)
1995-01-01
The next generation ASTOVL aircraft will have a complicated propulsion System. The configuration choices include Direct Lift, Lift-Fan and Lift+Lift /Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to decouple longitudinal and vertical responses allowing the pilot to close the loop on flight path and flight path acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision. has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flight path command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results will be used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.
Short pulse laser stretcher-compressor using a single common reflective grating
Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve
2004-05-25
The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.
Tentative civil airworthiness flight criteria for powered-lift transports
NASA Technical Reports Server (NTRS)
Hynes, C. S.; Scott, B. C.
1976-01-01
Representatives of the U.S., British, French, and Canadian airworthiness authorities participated in a NASA/FAA program to formulate tentative civil airworthiness flight criteria for powered-lift transports. The ultimate limits of the flight envelope are defined by boundaries in the airspeed/path-angle plane. Angle of attack and airspeed margins applied to these ultimate limits provide protection against both atmospheric disturbances and disturbances resulting from pilot actions or system variability, but do not ensure maneuvering capability directly, as the 30% speed margin does for conventional transports. Separate criteria provide for direct demonstration of adequate capability for approach path control, flare and landing, and for go-around. Demonstration maneuvers are proposed, and appropriate abuses and failures are suggested. Taken together, these criteria should permit selection of appropriate operating points within the flight envelopes for the approach, landing, and go-around flight phases which are likely to be most critical for powered-lift aircraft.
Prediction and Warning of Transported Turbulence in Long-Haul Aircraft Operations
NASA Technical Reports Server (NTRS)
Ellrod, Gary P. (Inventor); Spence, Mark D. (Inventor); Shipley, Scott T. (Inventor)
2017-01-01
An aviation flight planning system is used for predicting and warning for intersection of flight paths with transported meteorological disturbances, such as transported turbulence and related phenomena. Sensed data and transmitted data provide real time and forecast data related to meteorological conditions. Data modelling transported meteorological disturbances are applied to the received transmitted data and the sensed data to use the data modelling transported meteorological disturbances to correlate the sensed data and received transmitted data. The correlation is used to identify transported meteorological disturbances source characteristics, and identify predicted transported meteorological disturbances trajectories from source to intersection with flight path in space and time. The correlated data are provided to a visualization system that projects coordinates of a point of interest (POI) in a selected point of view (POV) to displays the flight track and the predicted transported meteorological disturbances warnings for the flight crew.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1980-01-01
A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.
Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.
1960-01-01
An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg. flight path at a 0 deg. It appears that the full-scale approximately the same as those obtained from the model for the range of attitudes and flight paths investigated.
Christodoulou, Manolis A; Kontogeorgou, Chrysa
2008-10-01
In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.
A review of supersonic cruise flight path control experience with the YF-12 aircraft
NASA Technical Reports Server (NTRS)
Berry, D. T.; Gilyard, G. B.
1976-01-01
Flight research with the YF-12 aircraft indicates that solutions to many handling qualities problems of supersonic cruise are at hand. Airframe/propulsion system interactions in the Dutch roll mode can be alleviated by the use of passive filters or additional feedback loops in the propulsion and flight control systems. Mach and altitude excursions due to atmospheric temperature fluctuations can be minimized by the use of a cruise autothrottle. Autopilot instabilities in the altitude hold mode have been traced to angle of attack-sensitive static ports on the compensated nose boom. For the YF-12, the feedback of high-passed pitch rate to the autopilot resolves this problem. Manual flight path control is significantly improved by the use of an inertial rate of climb display in the cockpit.
The Primary Flight Display and Its Pathway Guidance: Workload, Performance, and Situation Awareness
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Alexander, Amy L.; Hardy, Thomas J.
2003-01-01
In two experiments carried out in a high fidelity general aviation flight simulator, 42 instrument rated pilots flew a pathway-in-the-sky (tunnel) display through a series of multi-leg curved stepdown approaches through mountainous terrain. Both experiments examined how properties of the tunnel influenced flight path tracking performance, traffic awareness, terrain awareness and workload (assessed both by subjective and secondary task performance measures). Experiment 1, flown in simulated VMC, compared high and low intensity tunnels, with a less cluttered follow-me-airplane (FMA). The results revealed that both tunnels supported better flight path tracking than the FMA, because of the availability of more preview information. Increasing tunnel intensity, while reducing subjective workload, had no benefit on tracking, and degraded traffic detection performance. In Experiment 2, flown mostly in IMC, the low intensity tunnel was flown with a large (10 inch x 8 inch) and small (8 inch x 6.5 inch) display, representing a geometric field of view (GFOV) of either 30 degrees or 60 degrees. Most measures of flight path tracking performance favored the smaller display, and particularly the 60 degree GFOV, which presented a smaller appearing tunnel, and a wider range of terrain depiction. The larger GFOV also supported better terrain awareness, and yielded a lower secondary task assessment of workload. In both experiments, the final landing approach was terminated by a runway obstruction, and the tunnel guided pilots on a missed approach. In nearly all cases, pilots failed to notice an air hazard that lay in the missed approach path, but was only depicted in the outside view.
In-Service Evaluation of the Dalmo Victor Active Beacon Collision Avoidance System (BCAS/TCAS).
1982-10-01
expected to make any substantial change to this report on operational performance. Collectively, this report and the additional technical per- fomance...deviation from the recorded flight path, while 10 others might have required some change in flight path, depending on the vertical rate of the TCAS...They are based on data collected with no response by the TCAS aircraft crew and will change when the crew initiates response action to resolution
Multi-Sensor Fusion and Enhancement for Object Detection
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur
2005-01-01
This was a quick &week effort to investigate the ability to detect changes along the flight path of an unmanned airborne vehicle (UAV) over time. Video was acquired by the UAV during several passes over the same terrain. Concurrently, GPS data and UAV attitude data were also acquired. The purpose of the research was to use information from all of these sources to detect if any change had occurred in the terrain encompassed by the flight path.
Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf
2003-07-22
An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.
Aviation Safety: Efforts to Implement Flight Operational Quality Assurance Programs
DOT National Transportation Integrated Search
1997-12-01
Flight Operational Quality Assurance (FOQA) programs seek to use flight data to : detect technical flaws, unsafe practices, or conditions outside of desired : operating procedures early enough to allow timely intervention to avert : accidents or inci...
A kinematic/kinetic hybrid airplane simulator model : draft.
DOT National Transportation Integrated Search
2008-01-01
A kinematics-based flight model, for normal flight : regimes, currently uses precise flight data to achieve a high : level of aircraft realism. However, it was desired to further : increase the models accuracy, without a substantial increase in : ...
A kinematic/kinetic hybrid airplane simulator model.
DOT National Transportation Integrated Search
2008-01-01
A kinematics-based flight model, for normal flight : regimes, currently uses precise flight data to achieve a high : level of aircraft realism. However, it was desired to further : increase the models accuracy, without a substantial increase in : ...
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2013 CFR
2013-01-01
... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5... flight, power, and equipment controls, including emergency fuel shutoff valves, electrical controls... crew action to guard against loss of hydraulic or electric power to flight controls or to other...
A testbed for the evaluation of computer aids for enroute flight path planning
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.
1990-01-01
A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
When severe convective weather requires rerouting aircraft, FAA traffic managers employ severe weather avoidance plans (e.g., Playbook routes, Coded Departure Routes, etc.) These routes provide pilots with safe paths around weather-affected regions, and provide controllers with predictable, and often well-established flight plans. However, they often introduce large deviations to the nominal flight plans, which may not be necessary as weather conditions change. If and when the imposed traffic management initiatives (TMIs) become stale, updated shorter path flight trajectories may be found en route, providing significant time-savings to the affected flights. Multiple Flight Common Routes (MFCR) is a concept that allows multiple flights that are within a specified proximity or region, to receive updated shorter flight plans in an operationally efficient manner. MFCR is believed to provide benefits to the National Airspace System (NAS) by allowing traffic managers to update several flight plans of en route aircraft simultaneously, reducing operational workload within the TMUs of all affected ARTCCs. This paper will explore some aspects of the MFCR concept by analyzing multiple flights that have been selected for rerouting by the NAS Constraint Evaluation and Notification Tool (NASCENT). Various methods of grouping aircraft with common or similar routes will be presented, along with a comparison of the efficacy of these methods.
Man-machine cooperation in advanced teleoperation
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Das, Hari; Lee, Sukhan
1993-01-01
Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.
Live minimal path for interactive segmentation of medical images
NASA Astrophysics Data System (ADS)
Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.
2015-03-01
Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..
Modifying Ship Air-Wake Vortices for Aircraft Operations
NASA Technical Reports Server (NTRS)
Lamar, John E.
2004-01-01
Columnar-vortex generators (CVG) have been proposed as means to increase the safety of takeoffs and landings of aircraft on aircraft or helicopter carriers and other ships at sea. According to the proposal, CVGs would be installed at critical edge locations on ships to modify the vortices in the air wakes of the ships. The desired effects of modifications are to smooth airflows over takeoff and landing deck areas and divert vortices from takeoff and landing flight paths. With respect to aircraft operations, the wake flows of primary interest are those associated with the bow and side edges of aircraft-carrier decks and with superstructures of ships in general (see Figure 1). The bow and deck-edge vortices can adversely affect airplane and helicopter operations on carriers, while the superstructure wakes can primarily affect operations of helicopters. The concept of the CVG is not new; what is new is the proposed addition of CVGs to ship structures to effect favorable modifications of air wakes. Figure 2 depicts a basic CVG, vertical and horizontal CVGs installed on a simple superstructure, and horizontal CVGs installed on the bow and deck edges. The vertical CVGs would be closed at the deck but open at the top. Each horizontal CVG would be open at both ends. The dimensions of the CVGs installed on the aft edges of the superstructure would be chosen so that the portion of the flow modified by the vertical CVGs would interact synergistically with the portion of the flow modified by the horizontal CVG to move the air wake away from the takeoff-and-landing zone behind the superstructure. The deck-edge CVGs would be mounted flush with, and would extend slightly ahead of the bow of, the flight deck. The overall length of each tube would exceed that of the flight deck. Each deck-edge CVG would capture that portion of the airflow that generates a deck-edge vortex and would generate a columnar vortex of opposite sense to that of the unmodified vortex. The vortex generated by the CVG could be dispersed at its base, thereby removing unwanted turbulence in the path of an approaching airplane. The deck-edge CVGs would promote smooth flow over the entire flight deck. In the case of a Nimitz-class aircraft carrier like that of Figure 1, there would be a CVG on each of the outer edges of the two left portions of the flight deck and a single CVG on the right side of the flight deck. The forward-most CVG on the left side would take the generated vortex underneath the angled flight deck. A CVG could also be installed on the bow of the flight deck to smooth the flow of air onto the flight deck. In the case of wind incident on the deck from an azimuth other than straight ahead, the vortex generated by the bow CVG could, perhaps, be used to feed the CVG(s) of the leeward side edge of the flight deck.
NASA Technical Reports Server (NTRS)
Provost, David E.
1990-01-01
Viewgraphs on flight telerobotic servicer evolution are presented. Topics covered include: paths for FTS evolution; frequently performed actions; primary task states; EPS radiator panel installation; generic task definitions; path planning; non-contact alignment; contact planning and control; and human operator interface.
Possible methods for distinguishing icebergs from ships by aerial remote sensing
NASA Technical Reports Server (NTRS)
Howes, W. L.
1979-01-01
The simplest methods for aerial remote sensing which are least affected by atmospheric opacities are summarized. Radar is preferred for targets off the flight path, and microwave radiometry for targets along the flight path. Radar methods are classified by ability to resolve targets. Techniques which do not require target resolution are preferred. Among these techniques, polarization methods appear most promising, specifically those which differentiate the expected relatively greater depolarization by icebergs from that by ships or which detect doubly-reversed circular polarization.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.
Command Flight Path Display. Phase I and II. Appendix F.
1983-09-01
AD -R145 858 COMMAND FLIGHT PATH DISPLAY PHASE I AND 11 APPENDIX F / (U) SYSTEMS ASSOCIATES INC LONG BEACH CA RESOURCE MANAGEMENT SYSTEMS DIY SEP...34- (Appendix F) .ś. SYSTEMS ASSOCIATES INC* of CALIFORNIA t. Resource Management Systems Division DTICL it~~~ll ELECTE 1 o..-- , ~SEP 2 4 1984...Availability Codos Avail and/or Dist Special "i j L i 7 7 .... Contained in this appendix are the various plots generated dur- ing data reduction. Parameters
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
14 CFR 25.1321 - Arrangement and visibility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and line of vision when he is looking forward along the flight path. (b) The flight instruments... center position. (c) Required powerplant instruments must be closely grouped on the instrument panel. In...
14 CFR 25.1321 - Arrangement and visibility.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and line of vision when he is looking forward along the flight path. (b) The flight instruments... center position. (c) Required powerplant instruments must be closely grouped on the instrument panel. In...
NASA Technical Reports Server (NTRS)
Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.
1988-01-01
The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).
NASA Astrophysics Data System (ADS)
Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.
2015-11-01
Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.
Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo
2017-02-20
We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.
The Effect of Lift on Entry Corridor Depth and Guidance Requirements for the Return Lunar Flight
NASA Technical Reports Server (NTRS)
Wong, Thomas J.; Slye, Robert E.
1961-01-01
Corridors for manned vehicles are defined consistent with requirements for avoiding radiation exposure and for limiting values of peak deceleration. Use of lift increases the depth of the entry corridor. Mid-course guidance requirements appear to be critical only for the flight-path angle. Increasing the energy of the transport orbit increases the required guidance accuracy for the flight-path angle. Corrective thrust applied essentially parallel to the local horizontal produces the maximum change in perigee altitude for a given increment of velocity. Energy required to effect a given change in perigee altitude varies inversely with range measured from the center of the earth.
Application of Calspan pitch rate control system to the Space Shuttle for approach and landing
NASA Technical Reports Server (NTRS)
Weingarten, N. C.; Chalk, C. R.
1983-01-01
A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended.
NASA Technical Reports Server (NTRS)
Berthe, C. J.; Chalk, C. R.; Sarrafian, S.
1984-01-01
The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1984-01-01
Attention is given to a computer algorithm yielding the data required for a flight crew to navigate from an entry fix, about 100 nm from an airport, to a metering fix, and arrive there at a predetermined time, altitude, and airspeed. The flight path is divided into several descent and deceleration segments. Results for the case of a B-737 airliner indicate that wind and nonstandard atmospheric properties have a significant effect on the flight path and must be taken into account. While a range of combinations of Mach number and calibrated airspeed is possible for the descent segments leading to the metering fix, only small changes in the fuel consumed were observed for this range of combinations. A combination that is based on scheduling flexibility therefore seems preferable.
HyPlane for Space Tourism and Business Transportation
NASA Astrophysics Data System (ADS)
Savino, R.
In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.
Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure
NASA Technical Reports Server (NTRS)
Williams, M. S.; Fasanella, E. L.
1982-01-01
Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.
Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.
2015-12-29
Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.
Neutron capture studies with a short flight path
NASA Astrophysics Data System (ADS)
Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René
The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.
75 FR 75870 - Airworthiness Directives; Airbus Model A300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... to the aeroplane has two load paths, a Primary Load Path (PLP) and a Secondary Load Path (SLP), which is only engaged in case of PLP failure. Following the design intent, engagement of the SLP leads to... representative flights have demonstrated that, when the SLP is engaged, it does not systematically jam the THSA...
75 FR 52652 - Airworthiness Directives; Airbus Model A300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... to the aeroplane has two load paths, a Primary Load Path (PLP) and a Secondary Load Path (SLP), which is only engaged in case of PLP failure. Following the design intent, engagement of the SLP leads to... representative flights have demonstrated that, when the SLP is engaged, it does not systematically jam the THSA...
NASA Technical Reports Server (NTRS)
Bartolone, Anthony P.; Hughes, Monica F.; Wong, Douglas T.; Takallu, Mohammad A.
2004-01-01
Spatial disorientation induced by inadvertent flight into instrument meteorological conditions (IMC) continues to be a leading cause of fatal accidents in general aviation. The Synthetic Vision Systems General Aviation (SVS-GA) research element, an integral part of NASA s Aviation Safety and Security Program (AvSSP), is investigating a revolutionary display technology designed to mitigate low visibility events such as controlled flight into terrain (CFIT) and low-visibility loss of control (LVLoC). The integrated SVS Primary Flight Display (SVS-PFD) utilizes computer generated 3-dimensional imagery of the surrounding terrain augmented with flight path guidance symbology. This unique combination will provide GA pilots with an accurate representation of their environment and projection of their flight path, regardless of time of day or out-the-window (OTW) visibility. The initial Symbology Development for Head-Down Displays (SD-HDD) simulation experiment examined 16 display configurations on a centrally located high-resolution PFD installed in NASA s General Aviation Work Station (GAWS) flight simulator. The results of the experiment indicate that situation awareness (SA) can be enhanced without having a negative impact on flight technical error (FTE), by providing a general aviation pilot with an integrated SVS display to use when OTW visibility is obscured.
Use of off-the-shelf PC-based flight simulators for aviation human factors research.
DOT National Transportation Integrated Search
1996-04-01
Flight simulation has historically been an expensive proposition, particularly if out-the-window views were desired. Advances in computer technology have allowed a modular, off-the-shelf flight simulation (based on 80486 processors or Pentiums) to be...
HUD Guidance for the ASKA Experimental STOL Aircraft using Radar Position Information
NASA Technical Reports Server (NTRS)
Yazawa, Kenji; Terui, Yushi; Hardy, Gordon H.
1992-01-01
The paper describes a high performance HUD guidance system installed on the experimental powered-lift STOL aircraft Aska. Since the maiden flight in October 1985, the HUD system has been used in all the flight tests. The HUD has an accurate flight path symbol generated by inertial velocity from the IRS which is updated by up-linked precision radar position data. The flight path symbol is very useful for precise approach and flare control for Aska which has large ground effects. A synthetic runway is also presented, which is conformal with the real runway, using the position data from the ground tracking radar system. Under instrument meteorological conditions, the pilot can approach and land using the HUD synthetic runway as well as in visual meteorological conditions. The HUD system proved to be a valuable aid to the pilot for all the Aska flight tests. A NASA Ames Research Center test pilot demonstrated touch down accuracy of less than 8 meters (peak to peak) for a series of three landings.
NASA Technical Reports Server (NTRS)
James, R.; Brownlow, J. D.
1985-01-01
A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altitude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This report is in two parts. This is part 2, a discussion of the modeling of propagation path errors.
Display Provides Pilots with Real-Time Sonic-Boom Information
NASA Technical Reports Server (NTRS)
Haering, Ed; Plotkin, Ken
2013-01-01
Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms. A software system displays the location and intensity of shock waves caused by supersonic aircraft. This technology can be integrated into cockpits or flight control rooms to help pilots minimize sonic boom impact in populated areas. The system processes vehicle and flight parameters as well as data regarding current atmospheric conditions. The display provides real-time information regarding sonic boom location and intensity, enabling pilots to make the necessary flight adjustments to control the timing and location of sonic booms. This technology can be used on current-generation supersonic aircraft, which generate loud sonic booms, as well as future- generation, low-boom aircraft, anticipated to be quiet enough for populated areas.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1984-01-01
Concepts to save fuel while preserving airport capacity by combining time based metering with profile descent procedures were developed. A computer algorithm is developed to provide the flight crew with the information needed to fly from an entry fix to a metering fix and arrive there at a predetermined time, altitude, and airspeed. The flight from the metering fix to an aim point near the airport was calculated. The flight path is divided into several descent and deceleration segments. Descents are performed at constant Mach numbers or calibrated airspeed, whereas decelerations occur at constant altitude. The time and distance associated with each segment are calculated from point mass equations of motion for a clean configuration with idle thrust. Wind and nonstandard atmospheric properties have a large effect on the flight path. It is found that uncertainty in the descent Mach number has a large effect on the predicted flight time. Of the possible combinations of Mach number and calibrated airspeed for a descent, only small changes were observed in the fuel consumed.
Effects of Scene-Linked Symbology on Flight Performance
DOT National Transportation Integrated Search
1997-01-01
Previous research has shown that the presence of aircraft head-up display (HUD) : symbology indicating altitude improves maintenance of altitude, but at a cost : to (ground) path-following ability. We term this the altitude/path performance : trade-o...
Parallel Processing Systems for Passive Ranging During Helicopter Flight
NASA Technical Reports Server (NTRS)
Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)
1994-01-01
The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark A.; Bigelow, Matthew; Gilkey, Jeff C.
The Super Strypi Navigation, Guidance & Control Software is a real-time implementation of the navigation, guidance and control algorithms designed to deliver a payload to a desired orbit for the rail launched Super Strypi launch vehicle. The software contains all flight control algorithms required from pre-launch until orbital insertion. The flight sequencer module calls the NG&C functions at the appropriate times of flight. Additional functionality includes all the low level drivers and I/O for communicating to other systems within the launch vehicle and to the ground support equipment. The software is designed such that changes to the launch location andmore » desired orbit can be changed without recompiling the code.« less
NASA Technical Reports Server (NTRS)
Clement, James L., Jr.; Ritsher, Jennifer Boyd
2006-01-01
As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.
NASA Technical Reports Server (NTRS)
Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.
1973-01-01
A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.
Examining the Effect of Instructor Experience on Flight Training Time
ERIC Educational Resources Information Center
Polstra, Philip A., Sr.
2012-01-01
Maximizing training efficiency is desirable in many areas of business. The ever increasing costs of flight training combined with a predicted shortage of pilots have resulted in steps being taken to improve flight training efficiency. In the past, the majority of airline pilots received their flight training in the military. Over time a growing…
Are flying wildlife attracted to (or do they avoid) wind turbines?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, Ronald
A DOE-sponsored research project found strong evidence that flying wildlife avoid or are attracted to commercial-scale wind turbines from a distance. Some nocturnally migrating birds avoid flying near turbines and few or none change flight paths to approach them. High-flying bats less often avoid flying near turbines and some are attracted to them from a distance, although bats’ flight paths were often complex and convoluted. The findings are being prepared for submission to a peer-reviewed scientific journal (Larkin, in prep 2013).
Maneuver sequence design for the post-Jupiter leg of Pioneer Saturn
NASA Technical Reports Server (NTRS)
Frauenholz, R. B.; Brady, W. F.
1976-01-01
After passing the planet Jupiter in December 1974, Pioneer 11 is on a flight path on which it will encounter Saturn in late 1979. Following an uncorrected trajectory, the spacecraft would pass 2 million km behind Saturn. A sequence of midcourse maneuvers for modifying the Pioneer trajectory is discussed. The corrected flight path is to bring the spacecraft within 500,000 km of Saturn's satellite Titan. Attention is given to maneuver capabilities and constraints, the maneuver design concept, questions related to the selection of an interim aimpoint, and aspects of maneuver implementation.
Path changing methods applied to the 4-D guidance of STOL aircraft.
DOT National Transportation Integrated Search
1971-11-01
Prior to the advent of large-scale commercial STOL service, some challenging navigation and guidance problems must be solved. Proposed terminal area operations may require that these aircraft be capable of accurately flying complex flight paths, and ...
A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland
2003-01-01
Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.
1999-01-01
A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.
Applications of flight control system methods to an advanced combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.
1989-01-01
Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.
The path to an experiment in space (from concept to flight)
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.
AG Channel Measurement and Modeling Results for Over-Sea Conditions
NASA Technical Reports Server (NTRS)
Matolak, David; Sun, Rouyu
2014-01-01
This report describes results from flight tests conducted in an over-sea environment, for the purpose of characterizing the air-to-ground (AG) channel, for future unmanned aircraft system (UAS) communication system analysis and design. These results are for the first of a set of several flight tests conducted in different ground site (GS) environments. An ultimate aim of all these tests is the development of models for the AG channel that can be used in communication system evaluation. In this report we provide measured results for propagation path loss, root-mean square delay spread (RMS-DS), and the correlation coefficient of the primary received signal components on the four antennas (two antennas for C-band, two for L-band). For path loss, the curved-earth two-ray model provides a reasonable fit to the measured data, altered by several dB at the shortest link distances by aircraft antenna pattern effects. This two-ray model also accounts for the majority of measured RMS-DS results of a few tens of nanoseconds, except for the occasional intermittent reflections from surface objects. These intermittent reflections yield RMS-DS values up to several hundred nanoseconds. For portions of the flight path that were over a harbor area highly populated with boats, the channel was found to be more "continuously dispersive," with RMS-DS reaching approximately 250 ns. A separate model will be developed for this over-harbor setting. The correlation coefficient results are still undergoing analysis; preliminary observations are that correlation between signals on the same-band antennas is generally large (>0.6) for the C-band straight flight paths, whereas for the L-band signals and for the oval-shaped flight paths the correlation is generally small (below 0.4). Inter-band correlations are typically very small, and are well modeled as zero-mean Gaussian in distribution, with a standard deviation less than 0.2. Hence the over-sea channel effects in the two bands can be considered uncorrelated, which will allow for good diversity gains in dual-band systems. We describe initial modeling approaches for the over-sea channel; complete models for this and the over-harbor setting will appear in a subsequent report.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1990-01-01
General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.
NASA Technical Reports Server (NTRS)
Mixson, John S.; Wilby, John F.
1991-01-01
The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.
Development of flying qualities criteria for single pilot instrument flight operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.; Nixon, W. B.; Miller, G. E.
1982-01-01
Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.
Attentional Issues with Superimposed Symbology: Formats for Scene-Linked Displays
DOT National Transportation Integrated Search
1995-01-01
The head-up display (HUD) has been shown to be a superior presentation method : for flight path symbology over that of traditional flight director. Recent : studies, however, have shown that there are specific performance problems : associated with H...
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
Baier, David B; Gatesy, Stephen M; Dial, Kenneth P
2013-01-01
Past studies have shown that birds use their wings not only for flight, but also when ascending steep inclines. Uphill flap-running or wing-assisted incline running (WAIR) is used by both flight-incapable fledglings and flight-capable adults to retreat to an elevated refuge. Despite the broadly varying direction of travel during WAIR, level, and descending flight, recent studies have found that the basic wing path remains relatively invariant with reference to gravity. If so, joints undergo disparate motions to maintain a consistent wing path during those specific flapping modes. The underlying skeletal motions, however, are masked by feathers and skin. To improve our understanding of the form-functional relationship of the skeletal apparatus and joint morphology with a corresponding locomotor behavior, we used XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3-D skeletal kinematics in chukars (Alectoris chukar) during WAIR (ascending with legs and wings) and ascending flight (AF, ascending with wings only) along comparable trajectories. Evidence here from the wing joints demonstrates that the glenohumeral joint controls the vast majority of wing movements. More distal joints are primarily involved in modifying wing shape. All bones are in relatively similar orientations at the top of upstroke during both behaviors, but then diverge through downstroke. Total excursion of the wing is much smaller during WAIR and the tip of the manus follows a more vertical path. The WAIR stroke appears "truncated" relative to ascending flight, primarily stemming from ca. 50% reduction in humeral depression. Additionally, the elbow and wrist exhibit reduced ranges of angular excursions during WAIR. The glenohumeral joint moves in a pattern congruent with being constrained by the acrocoracohumeral ligament. Finally, we found pronounced lateral bending of the furcula during the wingbeat cycle during ascending flight only, though the phasic pattern in chukars is opposite of that observed in starlings (Sturnus vulgaris).
NASA Astrophysics Data System (ADS)
Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.
2018-01-01
The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
An on-board near-optimal climb-dash energy management
NASA Technical Reports Server (NTRS)
Weston, A. R.; Cliff, E. M.; Kelley, H. J.
1982-01-01
On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path.
Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.
2018-01-01
NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.
The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation
NASA Technical Reports Server (NTRS)
Greenwood, Eric; Sim, Ben W.
2013-01-01
In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.
High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations
NASA Astrophysics Data System (ADS)
Linford, Joel
2010-10-01
Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.
Navigating the Path to a Biomedical Science Career
ERIC Educational Resources Information Center
Zimmerman, Andrea McNeely
2017-01-01
The number of biomedical PhD scientists being trained and graduated far exceeds the number of academic faculty positions and academic research jobs. If this trend is compelling biomedical PhD scientists to increasingly seek career paths outside of academia, then more should be known about their intentions, desires, training experiences, and career…
Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships
NASA Astrophysics Data System (ADS)
Mueller, Joseph Bernard
Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across varying launch locations, and show that significant energy savings can be realized with minimum-energy flights, compared to minimum-time time flights, given small increases in flight time. The performance of the optimal trajectories are then studied with respect to solar energy production during ascent, as well as sensitivity of the solutions to small changes in drag coefficient and wind model parameters. Results of solar power model simulations indicate that solar energy is sufficient to power ascent flights, but that significant energy loss can occur for certain types of trajectories. Sensitivity to the drag and wind model is approximated through numerical simulations, showing that optimal solutions change gradually with respect to changing wind and drag parameters and providing deeper insight into the characteristics of optimal airship flights. Finally, alternative methods are developed to generate near-optimal ascent trajectories in a manner suitable for onboard implementation. The structures and characteristics of previously developed minimum-time and minimum-energy ascent trajectories are used to construct simplified trajectory models, which are efficiently solved in a smaller numerical optimization problem. Comparison of these alternative solutions to the original SNOPT solutions show excellent agreement, suggesting the alternate formulations are an effective means to develop near-optimal solutions in an onboard setting.
Control of a high beta maneuvering reentry vehicle using dynamic inversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Alfred Chapman
2005-05-01
The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to performmore » the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.« less
NASA Technical Reports Server (NTRS)
Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.
1959-01-01
A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
Comparison of Propulsion Options for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.
2018-01-01
NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.
NASA Technical Reports Server (NTRS)
Biezad, Daniel
1997-01-01
Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.
Aircraft landing control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)
1982-01-01
Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.
A function-based approach to cockpit procedure aids
NASA Technical Reports Server (NTRS)
Phatak, Anil V.; Jain, Parveen; Palmer, Everett
1990-01-01
The objective of this research is to develop and test a cockpit procedural aid that can compose and present procedures that are appropriate for the given flight situation. The procedure would indicate the status of the aircraft engineering systems, and the environmental conditions. Prescribed procedures already exist for normal as well as for a number of non-normal and emergency situations, and can be presented to the crew using an interactive cockpit display. However, no procedures are prescribed or recommended for a host of plausible flight situations involving multiple malfunctions compounded by adverse environmental conditions. Under these circumstances, the cockpit procedural aid must review the prescribed procedures for the individual malfunction (when available), evaluate the alternatives or options, and present one or more composite procedures (prioritized or unprioritized) in response to the given situation. A top-down function-based conceptual approach towards composing and presenting cockpit procedures is being investigated. This approach is based upon the thought process that an operating crew must go through while attempting to meet the flight objectives given the current flight situation. In order to accomplish the flight objectives, certain critical functions must be maintained during each phase of the flight, using the appropriate procedures or success paths. The viability of these procedures depends upon the availability of required resources. If resources available are not sufficient to meet the requirements, alternative procedures (success paths) using the available resources must be constructed to maintain the critical functions and the corresponding objectives. If no success path exists that can satisfy the critical functions/objectives, then the next level of critical functions/objectives must be selected and the process repeated. Information is given in viewgraph form.
Flight control synthesis for flexible aircraft using Eigenspace assignment
NASA Technical Reports Server (NTRS)
Davidson, J. B.; Schmidt, D. K.
1986-01-01
The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired eigenvector elements effects the synthesis results.
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2010 CFR
2010-01-01
... looseleaf binder to include a table of contents. If an applicant desires approval of both a ground school course and a flight school course, they must be combined in one looseleaf binder that includes a separate... include additional subjects in the ground course curriculum, such as international law, flight hygiene, or...
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Bodson, Marc
2012-01-01
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.
A Descent Rate Control Approach to Developing an Autonomous Descent Vehicle
NASA Astrophysics Data System (ADS)
Fields, Travis D.
Circular parachutes have been used for aerial payload/personnel deliveries for over 100 years. In the past two decades, significant work has been done to improve the landing accuracies of cargo deliveries for humanitarian and military applications. This dissertation discusses the approach developed in which a circular parachute is used in conjunction with an electro-mechanical reefing system to manipulate the landing location. Rather than attempt to steer the autonomous descent vehicle directly, control of the landing location is accomplished by modifying the amount of time spent in a particular wind layer. Descent rate control is performed by reversibly reefing the parachute canopy. The first stage of the research investigated the use of a single actuation during descent (with periodic updates), in conjunction with a curvilinear target. Simulation results using real-world wind data are presented, illustrating the utility of the methodology developed. Additionally, hardware development and flight-testing of the single actuation autonomous descent vehicle are presented. The next phase of the research focuses on expanding the single actuation descent rate control methodology to incorporate a multi-actuation path-planning system. By modifying the parachute size throughout the descent, the controllability of the system greatly increases. The trajectory planning methodology developed provides a robust approach to accurately manipulate the landing location of the vehicle. The primary benefits of this system are the inherent robustness to release location errors and the ability to overcome vehicle uncertainties (mass, parachute size, etc.). A separate application of the path-planning methodology is also presented. An in-flight path-prediction system was developed for use in high-altitude ballooning by utilizing the path-planning methodology developed for descent vehicles. The developed onboard system improves landing location predictions in-flight using collected flight information during the ascent and descent. Simulation and real-world flight tests (using the developed low-cost hardware) demonstrate the significance of the improvements achievable when flying the developed system.
A fuzzy logic controller for an autonomous mobile robot
NASA Technical Reports Server (NTRS)
Yen, John; Pfluger, Nathan
1993-01-01
The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.
User and technical documentation
NASA Astrophysics Data System (ADS)
1988-09-01
The program LIBRATE calculates velocities for trajectories from low earth orbit (LEO) to four of the five libration points (L2, L3, L4, and L5), and from low lunar orbit (LLO) to libration points L1 and L2. The flight to be analyzed departs from a circular orbit of any altitude and inclination about the Earth or Moon and finishes in a circular orbit about the Earth at the desired libration point within a specified flight time. This program produces a matrix of the delta V's needed to complete the desired flight. The user specifies the departure orbit, and the maximum flight time. A matrix is then developed with 10 inclinations, ranging from 0 to 90 degrees, forming the columns, and 19 possible flight times, ranging from the flight time (input) to 36 hours less than the input value, in decrements of 2 hours, forming the rows. This matrix is presented in three different reports including the total delta V's, and both of the delta V components discussed. The input required from the user to define the flight is discussed. The contents of the three reports that are produced as outputs are also described. The instructions are also included which are needed to execute the program.
NASA Technical Reports Server (NTRS)
McClinton, C.; Rondakov, A.; Semenov, V.; Kopehenov, V.
1991-01-01
NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.
Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Keller, James F.
This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric polynomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
2014-03-26
This long expsoure photograph shows the flight path of the Soyuz TMA-12M rocket as it launches from the Baikonur Cosmodrome in Kazakhstan on Wednesday, March 26, 2014. The rocket is carrying Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Studies in Forecasting Upper-Level Turbulence
2006-09-01
path, where they begin 9 to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing tips. b...the flight path, where they begin to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing
Speed and path control for conflict-free flight in high air traffic demand in terminal airspace
NASA Astrophysics Data System (ADS)
Rezaei, Ali
To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new waypoints in the airspace. As a byproduct, instead of minimal path modification, one can use the aircraft arrival time schedule to generate the sequence in which the aircraft reach their destinations.
Wind-tunnel acoustic results of two rotor models with several tip designs
NASA Technical Reports Server (NTRS)
Martin, R. M.; Connor, A. B.
1986-01-01
A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.
Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.
2002-01-01
Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.
Feasibility study of a procedure to detect and warn of low level wind shear
NASA Technical Reports Server (NTRS)
Turkel, B. S.; Kessel, P. A.; Frost, W.
1981-01-01
A Doppler radar system which provides an aircraft with advanced warning of longitudinal wind shear is described. This system uses a Doppler radar beamed along the glide slope linked with an on line microprocessor containing a two dimensional, three degree of freedom model of the motion of an aircraft including pilot/autopilot control. The Doppler measured longitudinal glide slope winds are entered into the aircraft motion model, and a simulated controlled aircraft trajectory is calculated. Several flight path deterioration parameters are calculated from the computed aircraft trajectory information. The aircraft trajectory program, pilot control models, and the flight path deterioration parameters are discussed. The performance of the computer model and a test pilot in a flight simulator through longitudinal and vertical wind fields characteristic of a thunderstorm wind field are compared.
Guidance and Control for Tactical Guided Weapons with Emphasis on Simulation and Testing
1979-05-01
VELOCITY TARGET TRAJECTORY NA MORE DIRECT MISSILE PATH NOTE: IN THE DIRECT PATH. LINE OF SIGHT RATE IS POSITIVE BEFORE BURNOUT AND NEGATIVE...FOLLOWING BURNOUT FIGURE 3-1 PROPORTIONAL NAVIGATION GUIDANCE AND A MORE DIRECT APPROACH PATH In thi Studie small two, b Becaus the ga for ot...During the tests, the missile was suspended in low- frequency slings, and both launch and burnout flight conditions were tested. An active
Overcoming Information Overload in the Cockpit
2009-07-15
has much dierent information needs than a Chinook pi- lot does ying an air assault mission. The former is concerned primarily with angle of attack...pi- lots with an altitude tracking cue. The device conveys path angle error, the error angle between the current ight path and the interception path... angle of attack, NASA’s Dryden Flight Research Center developed a Pressure Cu that utilized a number of inatable, pneumatic bladders, held to the
NASA Technical Reports Server (NTRS)
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
NASA Technical Reports Server (NTRS)
Allen, Julian H
1957-01-01
An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.
The aerodynamics of some guided projectiles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Some characteristic projectile shapes are considered with various added components intended to provide lift, stability, and control. The intent of the additions is to provide some means for altering the normal ballistic flight path of a projectile for various purposes such as: achieving greater accuracy at the impact point, selecting alternate impact points, extending range, improved evasion, and so on. The configurations presented illustrate the effects of a flare, wings, and tails for providing stability and lift, and the effects of aft-tails, a close-coupled flap, and all-moving forward wings for control. The relative merits of the various configurations, all of which provided for flight path alterations are discussed.
The aerodynamics of some guided projectiles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Some characteristic projectile shapes are considered with various added components intended to provide lift, stability, and control. The intent of the additions is to provide some means for altering the normal ballistic flight path of a projectile for various purposes such as: achieving greater accuracy at the impact point, selecting alternate impact points, extending range, improved evasion, and so on. The configurations presented illustrate the effects of a flare, wings, and tails for providing stability and lift, and the effects of aft-tails, a close-coupled flap, and all-moving forward wings for control. The relative merits of the various configurations, all of which provided for flight path alterations, are discussed.
Comparison of Low-Energy Lunar Transfer Trajectories to Invariant Manifolds
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Parker, Jeffrey S.
2011-01-01
In this study, transfer trajectories from the Earth to the Moon that encounter the Moon at various flight path angles are examined, and lunar approach trajectories are compared to the invariant manifolds of selected unstable orbits in the circular restricted three-body problem. Previous work focused on lunar impact and landing trajectories encountering the Moon normal to the surface, and this research extends the problem with different flight path angles in three dimensions. The lunar landing geometry for a range of Jacobi constants are computed, and approaches to the Moon via invariant manifolds from unstable orbits are analyzed for different energy levels.
DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.
2002-01-01
Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.
NASA Technical Reports Server (NTRS)
Gartner, W. B.; Baldwin, K. M.
1973-01-01
A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task.
UAV-based L-band SAR with precision flight path control
NASA Astrophysics Data System (ADS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Gregory A.; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul A.
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes1. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 m tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
UAV-Based L-Band SAR with Precision Flight Path Control
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul
2004-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
Aircraft path planning for optimal imaging using dynamic cost functions
NASA Astrophysics Data System (ADS)
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
NASA Technical Reports Server (NTRS)
Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.
1995-01-01
A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.
2004-09-09
KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Terry White inspects plastic-covered flight hardware in the Orbiter Processing Facility following Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. There was no damage to the Space Shuttle orbiters or to any other flight hardware.
Main propulsion functional path analysis for performance monitoring fault detection and annunciation
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
A total of 48 operational flight instrumentation measurements were identified for use in performance monitoring and fault detection. The Operational Flight Instrumentation List contains all measurements identified for fault detection and annunciation. Some 16 controller data words were identified for use in fault detection and annunciation.
NASA Technical Reports Server (NTRS)
Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.
2016-01-01
NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.
NASA Technical Reports Server (NTRS)
Naish, J. M.
1979-01-01
Two alternate head-up display devices (HUD) were compared for properties relevant to the accurate performance of concurrent tasks in real flight conditions and in various flight modes. The comparisons were made to find the disorientation resistance of the HUDs along with the tracking accuracy, interference resistance, fixation resistance, and error resistance. The use of displacement and flight path information for vertical control is discussed in terms of flight stability. Several combinations of symbols and driving signals are described, including a compensated control law, which were used in simulated flight to deal with wind shear.
The Altimetric Wet Tropospheric Correction: Progress Since The ERS-1 Mission
NASA Astrophysics Data System (ADS)
Eymard, L.; Obligis, E.
2006-07-01
To correct for the path delay due to humidity in the troposphere, dedicated microwave radiometers have been added to altimeters on ESA and NASA/CNES missions. This paper presents the major issues with calibration and retrieval of the wet tropospheric path d elay s ince E RS1, a s w ell a s n ew developments for in-flight monitoring, retrieval of the path delay over the open ocean and in coastal regions.
Measurement and Characterization of Helicopter Noise in Steady-State and Maneuvering Flight
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H.; Greenwood, Eric; Sickenberger, Richard D.; Gopalan, Gaurav; Sim, Ben Well-C; Conner, David; Moralez, Ernesto; Decker, William A.
2007-01-01
A special acoustic flight test program was performed on the Bell 206B helicopter outfitted with an in-flight microphone boom/array attached to the helicopter while simultaneous acoustic measurements were made using a linear ground array of microphones arranged to be perpendicular to the flight path. Air and ground noise measurements were made in steady-state longitudinal and steady turning flight, and during selected dynamic maneuvers. Special instrumentation, including direct measurement of the helicopter s longitudinal tip-path-plane (TPP) angle, Differential Global Positioning System (DGPS) and Inertial Navigation Unit (INU) measurements, and a pursuit guidance display were used to measure important noise controlling parameters and to make the task of flying precise operating conditions and flight track easier for the pilot. Special care was also made to test only in very low winds. The resulting acoustic data is of relatively high quality and shows the value of carefully monitoring and controlling the helicopter s performance state. This paper has shown experimentally, that microphones close to the helicopter can be used to estimate the specific noise sources that radiate to the far field, if the microphones are positioned correctly relative to the noise source. Directivity patterns for steady, turning flight were also developed, for the first time, and connected to the turning performance of the helicopter. Some of the acoustic benefits of combining normally separated flight segments (i.e. an accelerated segment and a descending segment) were also demonstrated.
Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.
Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F
2014-12-15
Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.
Bats coordinate sonar and flight behavior as they forage in open and cluttered environments
Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.
2014-01-01
Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632
On Students' Paths to College, Some Detours Are Desirable
ERIC Educational Resources Information Center
Selingo, Jeff
2012-01-01
Every spring, millions of 18-year-olds graduate from high school and start on one of three paths: (1) college; (2) the military; or (3) work. College is the choice encouraged most often by high-school guidance counselors, and for good reason. By 2020, two out of every three jobs will require some sort of higher education, according to the Center…
B-52/Pegasus with X-43A departing on first captive flight.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
B-52/Pegasus with X-43A in flight over Pacific Ocean.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
Close view of B-52/Pegasus with X-43A in flight.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
B-52/Pegasus with X-43A landing after first captive carry flight.
NASA Technical Reports Server (NTRS)
2001-01-01
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
SNC’s Dream Chaser Achieves Successful Free Flight at NASA Armstrong
2017-11-17
Sierra Nevada Corporation's Dream Chaser® spacecraft underwent a successful free-flight test on November 11, 2017 at NASA’s Armstrong Flight Research Center, Edwards, California. The test verified and validated the performance of the Dream Chaser in the critical final approach and landing phase of flight, meeting expected models for a future return from the International Space Station. The full-scale Dream Chaser test vehicle was lifted to 12,400 feet altitude by a 234-UT Chinook helicopter, released and flew a pre-planned flight path ending with a successful autonomous landing.
Automation of On-Board Flightpath Management
NASA Technical Reports Server (NTRS)
Erzberger, H.
1981-01-01
The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.
Laser production of articles from powders
Lewis, Gary K.; Milewski, John O.; Cremers, David A.; Nemec, Ronald B.; Barbe, Michael R.
1998-01-01
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.
Laser production of articles from powders
Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.
1998-11-17
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.
Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx
Zuidema, P.; Leon, D.; Pazmany, A.; ...
2012-01-05
Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upwardpointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the Gband (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (abovecloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to twomm and nearcoastal values reaching tenmm. The VOCALS-REx free troposphere wasmore » drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and insitu thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (≈100 m) resolution was estimated at 20 gm -2 and 3 gm -2 respectively for well-mixed conditions, and 25 gm -2 absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs <100 (40) gm -2. Coastal LWPs values were lower than those offshore. For the four dedicated 20° S flights, the mean (median) coastal LWP was 67 (61) gm -2, increasing to 166 (120) gm -2 1500 km offshore. Finally, the overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.« less
NASA Technical Reports Server (NTRS)
Weingarten, N. C.; Chalk, C. R.
1982-01-01
The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.
V/STOLAND digital avionics system for XV-15 tilt rotor
NASA Technical Reports Server (NTRS)
Liden, S.
1980-01-01
A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.
Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed
NASA Technical Reports Server (NTRS)
Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.
2006-01-01
Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.
Minimum fuel coplanar aeroassisted orbital transfer using collocation and nonlinear programming
NASA Technical Reports Server (NTRS)
Shi, Yun Yuan; Young, D. H.
1991-01-01
The fuel optimal control problem arising in coplanar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) without plane change. The basic approach here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the coplanar aeroassisted HEO to LEO orbit transfer consists of three phases. In the first phase, the transfer begins with a deorbit impulse at HEO which injects the vehicle into a elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and drag modulation to satisfy heating constraints and to exit the atmosphere with the desired flight path angle and velocity so that the apogee of the exit orbit is the altitude of the desired LEO. Finally, the second impulse is required to circularize the orbit at LEO. The performance index is maximum final mass. Simulation results show that the coplanar aerocapture is quite different from the case where orbital plane changes are made inside the atmosphere. In the latter case, the vehicle has to penetrate deeper into the atmosphere to perform the desired orbital plane change. For the coplanar case, the vehicle needs only to penetrate the atmosphere deep enough to reduce the exit velocity so the vehicle can be captured at the desired LEO. The peak heating rates are lower and the entry corridor is wider. From the thermal protection point of view, the coplanar transfer may be desirable. Parametric studies also show the maximum peak heating rates and the entry corridor width are functions of maximum lift coefficient. The problem is solved using a direct optimization technique which uses piecewise polynomial representation for the states and controls and collocation to represent the differential equations. This converts the optimal control problem into a nonlinear programming problem which is solved numerically by using a modified version of NPSOL. Solutions were obtained for the described problem for cases with and without heating constraints. The method appears to be more robust than other optimization methods. In addition, the method can handle complex dynamical constraints.
Alden, Dana L; Friend, John M; Lee, Angela Y; de Vries, Marieke; Osawa, Ryosuke; Chen, Qimei
2015-12-01
Two studies identified core value influences on medical decision-making processes across and within cultures. In Study 1, Japanese and American adults reported desired levels of medical decision-making influence across conditions that varied in seriousness. Cultural antecedents (interdependence, independence, and power distance) were also measured. In Study 2, American adults reviewed a colorectal cancer screening decision aid. Decision preparedness was measured along with interdependence, independence, and desire for medical information. In Study 1, higher interdependence predicted stronger desire for decision-making information in both countries, but was significantly stronger in Japan. The path from information desire to decision-making influence desire was significant only in Japan. The independence path to desire for decision-making influence was significant only in the United States. Power distance effects negatively predicted desire for decision-making influence only in the United States. For Study 2, high (low) interdependents and women (men) in the United States felt that a colorectal cancer screening decision aid helped prepare them more (less) for a medical consultation. Low interdependent men were at significantly higher risk for low decision preparedness. Study 1 suggests that Japanese participants may tend to view medical decision-making influence as an interdependent, information sharing exchange, whereas American respondents may be more interested in power sharing that emphasizes greater independence. Study 2 demonstrates the need to assess value influences on medical decision-making processes within and across cultures and suggests that individually tailored versions of decision aids may optimize decision preparedness. (c) 2015 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)
1992-01-01
A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.
Benjamin, Benson, and the Child's Gaze: Childhood Desire and Pleasure in the David Blaize Books
ERIC Educational Resources Information Center
Tribunella, Eric L.
2016-01-01
Walter Benjamin's writings on children and their books reflect a desire to imagine different possibilities in perceiving and engaging with the world. Benjamin's child, like the flâneur, experiences a particular way of seeing unfettered by instrumentality and characterised by a sense of wonder, aimlessness of path or purpose, and keen interest in…
ERIC Educational Resources Information Center
Li, Norman P.; Patel, Lily; Balliet, Daniel; Tov, William; Scollon, Christie N.
2011-01-01
We examined factors related to attitudes toward marriage and the importance of having children in both the US and Singapore. Path analysis indicated that life dissatisfaction leads to materialism, and both of these factors lead to favorable attitudes toward marriage, which leads to greater desire for children. Further analysis indicated this model…
A Method of Flight Measurement of Spins
NASA Technical Reports Server (NTRS)
Soule, Hartley A; Scudder, Nathan F
1932-01-01
A method is described involving the use of recording turn meters and accelerometers and a sensitive altimeter, by means of which all of the physical quantities necessary for the complete determination of the flight path, motion, attitude, forces, and couples of a fully developed spin can be obtained in flight. Data are given for several spins of two training type airplanes which indicate that the accuracy of the results obtained with the method is satisfactory.
Flight 20 (STS-45) polysulfide gas path investigation
NASA Technical Reports Server (NTRS)
Bjorkman, Rey C.; Bown, Charles W.; Smith, Scott D.; Walters, Jerry L.; Kulkarni, Suresh B.; Cook, Roger V.; Sebahar, David A.; Walker, Craig S.; Haddock, M. Reed; Lindstrom, Robert E.
1992-01-01
This report documents the results of the investigation into causes of gas paths on the 20A and 20B case-to-nozzle joints on STS-42. The investigation was conducted by the Investigation Board appointed by the senior vice president and general manager of Space Operations, Mr. R. E. Lindstrom, on 7 Feb. 1992. The probability of gas path occurrence in the nozzle-to-case-joint polysulfide had been identified during joint redesign. However, actual flight gas path incidence has been limited to RSRM-11 and the 20A and 20B segments. The blow-by condition on the 20A segment was a first time occurrence which was a special concern. The investigation covered all technical aspects associated with the gas path and blow-by conditions: materials and processing history, design requirements and as-built compliance to the design, thermal and structural analyses, computer modeling, and laboratory experimentation with the materials involved. The investigation was coordinated with Mr. Ken Jones at NASA Marshall in bi-weekly teleconferences. The Board also supported Dr. James C. Blair's independent NASA investigation team by providing copies of collected data, conducting requested analyses, and supporting several all-day teleconferences to provide understanding and resolve issues. The Dr. Blair support requirement was successfully concluded on 4 Mar. 1992.
Moments of inclination error distribution computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program is described which calculates orbital inclination error statistics using a closed-form solution. This solution uses a data base of trajectory errors from actual flights to predict the orbital inclination error statistics. The Scott flight history data base consists of orbit insertion errors in the trajectory parameters - altitude, velocity, flight path angle, flight azimuth, latitude and longitude. The methods used to generate the error statistics are of general interest since they have other applications. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included.
Assessment of an Automated Touchdown Detection Algorithm for the Orion Crew Module
NASA Technical Reports Server (NTRS)
Gay, Robert S.
2011-01-01
Orion Crew Module (CM) touchdown detection is critical to activating the post-landing sequence that safe?s the Reaction Control Jets (RCS), ensures that the vehicle remains upright, and establishes communication with recovery forces. In order to accommodate safe landing of an unmanned vehicle or incapacitated crew, an onboard automated detection system is required. An Orion-specific touchdown detection algorithm was developed and evaluated to differentiate landing events from in-flight events. The proposed method will be used to initiate post-landing cutting of the parachute riser lines, to prevent CM rollover, and to terminate RCS jet firing prior to submersion. The RCS jets continue to fire until touchdown to maintain proper CM orientation with respect to the flight path and to limit impact loads, but have potentially hazardous consequences if submerged while firing. The time available after impact to cut risers and initiate the CM Up-righting System (CMUS) is measured in minutes, whereas the time from touchdown to RCS jet submersion is a function of descent velocity, sea state conditions, and is often less than one second. Evaluation of the detection algorithms was performed for in-flight events (e.g. descent under chutes) using hi-fidelity rigid body analyses in the Decelerator Systems Simulation (DSS), whereas water impacts were simulated using a rigid finite element model of the Orion CM in LS-DYNA. Two touchdown detection algorithms were evaluated with various thresholds: Acceleration magnitude spike detection, and Accumulated velocity changed (over a given time window) spike detection. Data for both detection methods is acquired from an onboard Inertial Measurement Unit (IMU) sensor. The detection algorithms were tested with analytically generated in-flight and landing IMU data simulations. The acceleration spike detection proved to be faster while maintaining desired safety margin. Time to RCS jet submersion was predicted analytically across a series of simulated Orion landing conditions. This paper details the touchdown detection method chosen and the analysis used to support the decision.
Rule-based navigation control design for autonomous flight
NASA Astrophysics Data System (ADS)
Contreras, Hugo; Bassi, Danilo
2008-04-01
This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.
Identity motives underlying desired and feared possible future selves.
Vignoles, Vivian L; Manzi, Claudia; Regalia, Camillo; Jemmolo, Simone; Scabini, Eugenia
2008-10-01
Desired and feared possible future selves are important motivators of behavior and provide a temporal context for self-evaluation. Yet little research has examined why people desire some possible selves and fear others. In two studies, we tested the reflection of identity motives for self-esteem, efficacy, meaning, continuity, belonging, and distinctiveness in people's desired and feared possible future selves and in their possible future identity structures. As predicted, participants desired especially those possible futures in which motives for self-esteem, efficacy, meaning, and continuity would be satisfied, and they feared especially those in which the same four motives and, marginally, the motive for distinctiveness would be frustrated. Analyses supported an indirect path from belonging via self-esteem to desire and fear. Desired and feared possible future selves reflect potential satisfaction and frustration of these identity motives.
Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study
Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
A Flight Dynamic Model of Aircraft Spinning
1990-06-01
r Zaw rate about body axes S Aircraft wing area V Flight path velocity 3 a Angle of attack Sideslip angle 6, Aileron deflection, positive when right...Tests, May/June 1983 PartI. Unpublished data report. 6. MARTIN, C.A. and SECOMB, D.A. ; RAAF BPTA Phase II Wind Tun - nel Tests: Rotary Balance Tests
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
pathChirp: Efficient Available Bandwidth Estimation for Network Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrell, Les
2003-04-30
This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less
1998-08-10
Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Multiple Paths to Mathematics Practice in Al-Kashi's "Key to Arithmetic"
ERIC Educational Resources Information Center
Taani, Osama
2014-01-01
In this paper, I discuss one of the most distinguishing features of Jamshid al-Kashi's pedagogy from his "Key to Arithmetic", a well-known Arabic mathematics textbook from the fifteenth century. This feature is the multiple paths that he includes to find a desired result. In the first section light is shed on al-Kashi's life…
NASA Astrophysics Data System (ADS)
Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.
2014-12-01
Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.
Flight investigation of rotor/vehicle state feedback
NASA Technical Reports Server (NTRS)
Briczinski, S. J.; Cooper, D. E.
1975-01-01
The feasibility of using control feedback or rotor tip-path-plane motion or body state as a means of altering rotor and fuselage response in a prescribed manner was investigated to determine the practical limitations of in-flight utilization of a digital computer which conditions and shapes rotor flapping and fuselage state information as feedback signals, before routing these signals to the differential servo actuators. The analysis and test of various feedback schemes are discussed. Test results show that a Kalman estimator routine which is based on only the first harmonic contributions of blade flapping yields tip-path-plane coefficients which are adequate for use in feedback systems, at speeds up to 150 kts.
Fundamental limitations on V/STOL terminal guidance due to aircraft characteristics
NASA Technical Reports Server (NTRS)
Wolkovitch, J.; Lamont, C. W.; Lochtie, D. W.
1971-01-01
A review is given of limitations on approach flight paths of V/STOL aircraft, including limits on descent angle due to maximum drag/lift ratio. A method of calculating maximum drag/lift ratio of tilt-wing and deflected slipstream aircraft is presented. Derivatives and transfer functions for the CL-84 tilt-wing and X-22A tilt-duct aircraft are presented. For the unaugmented CL-84 in steep descents the transfer function relating descent angle to thrust contains a right-half plane zero. Using optimal control theory, it is shown that this zero causes a serious degradation in the accuracy with which steep flight paths can be followed in the presence of gusts.
2004-01-13
A United States Air Force Test Pilot School Blanik L-23 glider carrying a microphone and a pressure transducer flies near a BADS (Boom Amplitudes Direction System) sensor following flight at an altitude of 10 thousand feet under the path of the F-5E SSBE aircraft. The SSBE (Shaped Sonic Boom Experiment) was formerly known as the Shaped Sonic Boom Demonstration, or SSBD, and is part of DARPA's Quiet Supersonic Platform (QSP) program. On August 27, 2003, the F-5E SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Elise; Gundlach-Graham, Alexander W.; Enke, Chris
2013-05-01
Time-of-flight (TOF) and distance-of-flight (DOF) mass spectrometers require means for focusing ions at the detector(s) because of initial dispersions of position and energy at the time of their acceleration. Time-of-flight mass spectrometers ordinarily employ constant energy acceleration (CEA), which creates a space-focus plane at which the initial spatial dispersion is corrected. In contrast, constant-momentum acceleration (CMA), in conjunction with an ion mirror, provides focus of the initial energy dispersion at the energy focus time for ions of all m/z at their respective positions along the flight path. With CEA, the initial energy dispersion is not simultaneously correctable as its effectmore » on ion velocity is convoluted with that of the spatial dispersion. The initial spatial dispersion with CMA remains unchanged throughout the field-free region of the flight path, so spatial dispersion can be reduced before acceleration. Improved focus is possible when each dispersion can be addressed independently. With minor modification, a TOF mass spectrometer can be operated in CMA mode by treating the TOF detector as though it were a single element in the array of detectors that would be used in a DOF mass spectrometer. Significant improvement in mass resolution is thereby achieved, albeit over a narrow range of m/z values. In this paper, experimental and theoretical results are presented that illustrate the energy-focusing capabilities of both DOF and TOF mass spectrometry.« less
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven
2005-01-01
The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1990-01-01
A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.
Propulsion system/flight control integration for supersonic aircraft
NASA Technical Reports Server (NTRS)
Reukauf, P. J.; Burcham, F. W., Jr.
1976-01-01
Digital integrated control systems are studied. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. The existing analog air data computer, autothrottle, autopilot, and inlet control systems are converted to digital systems by using a general purpose airborne computer and interface unit. Existing control laws are programed and tested in flight. Integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are tested in flight. Analysis indicates that an integrated autothrottle autopilot gives good flight path control and that observers are used to replace failed sensors.
Commande de vol non lineaire d'un drone a voilure fixe par la methode du backstepping
NASA Astrophysics Data System (ADS)
Finoki, Edouard
This thesis describes the design of a non-linear controller for a UAV using the backstepping method. It is a fixed-wing UAV, the NexSTAR ARF from HobbicoRTM. The aim is to find the expressions of the aileron, the elevator, and the rudder deflection in order to command the flight path angle, the heading angle and the sideslip angle. Controlling the flight path angle allows a steady, climb or descent flight, controlling the heading cap allows to choose the heading and annul the sideslip angle allows an efficient flight. A good technical control has to ensure the stability of the system and provide optimal performances. Backstepping interlaces the choice of a Lyapunov function with the design of feedback control. This control technique works with the true non-linear model without any approximation. The procedure is to transform intermediate state variables into virtual inputs which will control other state variables. Advantages of this technique are its recursivity, its minimum control effort and its cascaded structure that allows dividing a high order system into several simpler lower order systems. To design this non-linear controller, a non-linear model of the UAV was used. Equations of motion are very accurate, aerodynamic coefficients result from interpolations between several essential variables in flight. The controller has been implemented in Matlab/Simulink and FlightGear.
Diasporic Lakou: A Haitian Academic Explores Her Path to Haiti Pre- and Post-Earthquake
ERIC Educational Resources Information Center
Desir, Charlene
2011-01-01
In this essay, Charlene Desir reflects on her role as an academic from the Haitian diaspora and her journey to reconnect to her Haitian roots after the 2010 earthquake. Desir begins by exploring her family background and the centrality of "lakou"--a sacred family space in which to connect to her ancestors and cultural ways of knowing. By…
Motion Planning with Six Degrees of Freedom.
1984-05-01
collision-free path taking "P" from some initial configuration to a desired goal configuration. _-- This thesis describes the first known implementation...configuration to a desired goal configuration. This thesis describes the first known implementation of a complete algorithm (at a given resolution) for...insight and clarity this thesis manifests. I am deeply indebted to my supervisor, Tomis Lozano-P~rez, for his guidance, support, and encouragement
Flight assessment of a data-link-based navigation-guidance concept
NASA Technical Reports Server (NTRS)
Abbott, T. S.
1983-01-01
With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.
Vortex-Free Flight Corridors for Aircraft Executing Compressed Landing Operations
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.
2006-01-01
A factor that limits airport arrival and departure rates is the need to wait between operations for the wake vortices of preceding aircraft to decay to a safe level. As airport traffic demand increases, creative methods will be needed to overcome the limitations caused by the hazard posed by vortex wakes so that airport capacities can be increased. The problem addressed here is the design of vortex-free trajectories for aircraft as they fly from their cruise altitudes down to their final approach paths and to a landing. The guidelines presented recommend that the flight path of each aircraft in a group executing nearly-simultaneous landings be spaced far enough apart laterally along organized flight paths so that the vortex wakes of preceding aircraft will not intrude into the airspace to be used by following aircraft. An example is presented as to how a combination of straight lines and circular arcs is able to provide each aircraft in a group with a vortex-free trajectory so that all are able to safely form the pattern needed for nearly simultaneous landings on a set of closely-spaced parallel runways. Although the guidelines me described for aircraft on approach, they are also applicable to departure, and to en route operations.
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Ballistic Missile Intercept from UCAV
2011-12-01
aerodynamic forces acting on the ballistic missile , generates a ballistic flight path of the ballistic missile target based on the model developed by...for use against ballistic missile targets) [14] Hutchins, R., ME4703 “ Missile Flight Analysis ” Course Notes, Spring 2005. [15] Stevens, B., and...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited BALLISTIC MISSILE
Water Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
1958-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
Water-Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.
1959-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene.
Knowles, Jeffrey M; Barchi, Jonathan R; Gaudette, Jason E; Simmons, James A
2015-08-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80-100 cm wide and 2-4 m long. Using the two-choice Y-shaped paradigm to compensate for left-right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18-35 dB weaker than overlapping echoes from surrounding chains.
NASA Astrophysics Data System (ADS)
Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.
2017-03-01
Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.
DOT National Transportation Integrated Search
2008-01-01
Computer simulations are often used in aviation studies. These simulation tools may require complex, high-fidelity aircraft models. Since many of the flight models used are third-party developed products, independent validation is desired prior to im...
Manipulating Genetic Material in Bacteria
NASA Technical Reports Server (NTRS)
1998-01-01
Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)
NASA Technical Reports Server (NTRS)
Young, J. W.; Goode, M. W.
1962-01-01
A simulation study has been made to determine a pilot's ability to control a low L/D vehicle to a desired point on the earth with initial conditions ranging from parabolic orbits to abort conditions along the boost phase of a deep-space mission. The program was conducted to develop procedures which would allow the pilot to perform the energy management functions required while avoiding the high deceleration or skipout region and to determine the information display required to aid the pilot in flying these procedures. The abort conditions studied extend from a region of relatively high flight-path angles at suborbital velocities while leaving the atmosphere to a region between orbital and near-escape velocity outside the atmosphere. The conditions studied included guidance from suborbital and superorbital aborts as well as guidance following return from a deepspace mission. In this paper, the role of the human pilot?s ability to combine safe return abort procedures with guidance procedures has been investigated. The range capability from various abort and entry conditions is also presented.
N+3 Aircraft Concept Designs and Trade Studies. Volume 1
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.;
2010-01-01
MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.
NASA Astrophysics Data System (ADS)
Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin
2018-02-01
A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.
Human Space Flight Plans Committee Report
2009-10-21
Copies of the U.S. Human Space Flight Plans Committee report are seen in the foreground of Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, left, and committee member Ed Crawley, right, during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters
NASA Technical Reports Server (NTRS)
Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard
2013-01-01
Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Pfister, L.; Selkirk, H. B.
1993-01-01
An overview is presented of the tropical component of STEP. The STEP cooperative experiments are described and summaries are presented of the STEP tropical ER-2 aircraft flights. STEP tropical results on dehydration and transfer and the mechanisms of upward transfer are summarized. Illustrations show flight paths for each sortie on satellite images and on 100 hPa synoptic flow charts, as well as the timing of flights with respect to overall cloudiness in the Australian region.
1995-09-01
path and aircraft attitude and other flight or aircraft parameters • Calculations in the frequency domain ( Fast Fourier Transform) • Data analysis...Signal filtering Image processing of video and radar data Parameter identification Statistical analysis Power spectral density Fast Fourier Transform...airspeeds both fast and slow, altitude, load factor both above and below 1g, centers of gravity (fore and aft), and with system/subsystem failures. Whether
Human Space Flight Plans Committee Report
2009-10-21
U.S. Human Space Flight Plans Committee member Ed Crawley, right, answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
U.S. Human Space Flight Plans Committee member Ed Crawley answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Copies of the U.S. Human Space Flight Plans Committee report are seen at a press conference where the committee released it's report findings on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, center, listens to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine answers a reporters question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul
2017-01-01
Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
NASA Technical Reports Server (NTRS)
Prabu, Dinesh K.; Allen, Gary A., Jr.; Cappuccio, Gelsomina; Spilker, Thomas R.; Hwang, Helen H.; Moses, Robert W.
2013-01-01
The present study considers ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and capsule diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30 is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is placed on the peak deceleration load and 10 bar is assumed as the limit for heritage carbon-phenolic material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a heat flux 2.5 kW/sq cm is utilized as a threshold below which the heritage carbon phenolic is considered mass inefficient. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a range of "critical" ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of 10 bar. The results are verified against known performance of the various probes used in the Pioneer Venus mission. It is anticipated that the results presented here will serve as a baseline in the development of a new class of ablative materials for future Venus missions.
Human performance evaluation of a pathway HMD
NASA Astrophysics Data System (ADS)
Lorenz, Bernd; Tobben, Helmut; Schmerwitz, Sven
2005-05-01
Head-up displays (HUD) and helmet (or head)-mounted displays (HMD) aim at reducing the pilot's visual scanning cost in support of concurrent monitoring of both instrument information (near domain) and the outside environment (far domain). An HMD used in combination with a head tracker enables the assessment of the pilot"s head direction in real time allowing symbologies to remain spatially linked to elements of the outside environment. The paper examines the potential added benefits of improved flight path tracking to be expected by displaying symbologies of a virtual 3D perspective pathway plus predictor information on an HMD. Results of a high-fidelity flight-simulation experiment are reported that involved a series of curved approaches supported with such a pathway HMD. The study used a monocular retinal-scanning HMD and involved 18 pilots. Dependent human performance data were derived from flight path tracking measures, subjective measures of mental workload and situation awareness and pilot reactions in response to an unexpected rare event in the outside scene (intruding aircraft on the active runway for the intended landing). Comparison with a standard head-down ILS baseline condition revealed a mix of performance costs and benefits, which is consistent with most of the human factors literature on the general use of HUDs and of HUDs used in combination with pathway guidance: The pathway HMD promoted substantially better flight path tracking but caused also a delayed response to the unexpected event. This effect points to some disadvantages of HUDs referred to as 'attention capture', which may become exaggerated by the additional use of pathway guidance symbology.
Development of a digital automatic control law for steep glideslope capture and flare
NASA Technical Reports Server (NTRS)
Halyo, N.
1977-01-01
A longitudinal digital guidance and control law for steep glideslopes using MLS (Microwave Landing System) data is developed for CTOL aircraft using modern estimation and control techniques. The control law covers the final approach phases of glideslope capture, glideslope tracking, and flare to touchdown for automatic landings under adverse weather conditions. The control law uses a constant gain Kalman filter to process MLS and body-mounted accelerometer data to form estimates of flight path errors and wind velocities including wind shear. The flight path error estimates and wind estimates are used for feedback in generating control surface commands. Results of a digital simulation of the aircraft dynamics and the guidance and control law are presented for various wind conditions.
STS-41 mission charts, computer-generated and artist concept drawings, photos
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 related charts, computer-generated and artist concept drawings, and photos of the Ulysses spacecraft and mission flight path provided by the European Space Agency (ESA). Charts show the Ulysses mission flight path and encounter with Jupiter (45980, 45981) and sun (illustrating cosmic dust, gamma ray burst, magnetic field, x-rays, solar energetic particles, visible corona, interstellar gas, plasma wave, cosmic rays, solar radio noise, and solar wind) (45988). Computer-generated view shows the Ulysses spacecraft (45983). Artist concept illustrates Ulysses spacecraft deploy from the space shuttle payload bay (PLB) with the inertial upper stage (IUS) and payload assist module (PAM-S) visible (45984). Ulysses spacecraft is also shown undergoing preflight testing in the manufacturing facility (45985, 45986, 45987).
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
Barker, Lee; Mamich, Harvey; McGregor, John
2016-01-01
On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.
In-flight turbulence benefits soaring birds
Mallon, Julie M.; Bildstein, Keith L.; Katzner, Todd E.
2016-01-01
Birds use atmospheric updrafts to subsidize soaring flight. We observed highly variable soaring flight by Black Vultures (Coragyps atratus) and Turkey Vultures (Cathartes aura) in Virginia, USA, that was inconsistent with published descriptions of terrestrial avian flight. Birds engaging in this behavior regularly deviated vertically and horizontally from linear flight paths. We observed the soaring flight behavior of these 2 species to understand why they soar in this manner and when this behavior occurs. Vultures used this type of soaring mainly at low altitudes (<50 m), along forest edges, and when conditions were poor for thermal development. Because of the tortuous nature of this flight, we describe it as “contorted soaring.” The primary air movement suitable to subsidize flight at this altitude and under these atmospheric conditions is small-scale, shear-induced turbulence, which our results suggest can be an important resource for soaring birds because it permits continuous subsidized flight when other types of updraft are not available.
2017-01-01
This paper presents a method for formation flight and collision avoidance of multiple UAVs. Due to the shortcomings such as collision avoidance caused by UAV’s high-speed and unstructured environments, this paper proposes a modified tentacle algorithm to ensure the high performance of collision avoidance. Different from the conventional tentacle algorithm which uses inverse derivation, the modified tentacle algorithm rapidly matches the radius of each tentacle and the steering command, ensuring that the data calculation problem in the conventional tentacle algorithm is solved. Meanwhile, both the speed sets and tentacles in one speed set are reduced and reconstructed so as to be applied to multiple UAVs. Instead of path iterative optimization, the paper selects the best tentacle to obtain the UAV collision avoidance path quickly. The simulation results show that the method presented in the paper effectively enhances the performance of flight formation and collision avoidance for multiple high-speed UAVs in unstructured environments. PMID:28763498
NASA Technical Reports Server (NTRS)
Dwyer, J. H., III; Palmer, E. A., III
1975-01-01
A simulator study was conducted to determine the usefulness of adding flight path vector symbology to a head-up display designed to improve glide-slope tracking performance during steep 7.5 deg visual approaches in STOL aircraft. All displays included a fixed attitude symbol, a pitch- and roll-stabilized horizon bar, and a glide-slope reference bar parallel to and 7.5 deg below the horizon bar. The displays differed with respect to the flight-path marker (FPM) symbol: display 1 had no FPM symbol; display 2 had an air-referenced FPM, and display 3 had a ground-referenced FPM. No differences between displays 1 and 2 were found on any of the performance measures. Display 3 was found to decrease height error in the early part of the approach and to reduce descent rate variation over the entire approach. Two measures of workload did not indicate any differences between the displays.
Evaluation of acoustic testing techniques for spacecraft systems
NASA Technical Reports Server (NTRS)
Cockburn, J. A.
1971-01-01
External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-09-28
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-01-01
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically. PMID:28956839
Flying qualities design criteria applicable to supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Chalk, C. R.
1980-01-01
A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.
NASA Astrophysics Data System (ADS)
Murgan, I.; Candel, I.; Ioana, C.; Digulescu, A.; Bunea, F.; Ciocan, G. D.; Anghel, A.; Vasile, G.
2016-11-01
In this paper, we present a novel approach to non-intrusive flow velocity profiling technique using multi-element sensor array and wide-band signal's processing methods. Conventional techniques for the measurements of the flow velocity profiles are usually based on intrusive instruments (current meters, acoustic Doppler profilers, Pitot tubes, etc.) that take punctual velocity readings. Although very efficient, these choices are limited in terms of practical cases of applications especially when non-intrusive measurements techniques are required and/or a spatial accuracy of the velocity profiling is required This is due to factors related to hydraulic machinery down time, the often long time duration needed to explore the entire section area, the frequent cumbersome number of devices that needs to be handled simultaneously, or the impossibility to perform intrusive tests. In the case of non-intrusive flow profiling methods based on acoustic techniques, previous methods concentrated on using a large number of acoustic transducers placed around the measured section. Although feasible, this approach presents several major drawbacks such as a complicated signal timing, transmission, acquisition and recording system, resulting in a relative high cost of operation. In addition, because of the geometrical constraints, a desired number of sensors may not be installed. Recent results in acoustic flow metering based on wide band signals and adaptive beamforming proved that it is possible to achieve flow velocity profiles using less acoustic transducers. In a normal acoustic time of flight path the transducers are both emitters and receivers, sequentially changing their roles. In the new configuration, proposed in this paper, two new receivers are added on each side. Since the beam angles of each acoustic transducer are wide enough the newly added transducers can receive the transmitted signals and additional time of flight estimation can be done. Thus, several flow velocities are possible to be computed. Analytically defined emitted wide band signals makes possible the identification of signals coming from each transducer. Using the adaptive beam-forming algorithm the receiving transducers can record different signals from the receiver, equivalent to different propagation paths. Therefore, different measurements of time of flight are possible, leading to additional flow velocity measurements. Results carried out in an experiment facility belonging to ICPE-CA, Bucharest - Romania allowed to the validation of the flow velocities computed using this new technique, in symmetric, asymmetric and uneven flow conditions. The acoustic derived values were referenced with those provided from a Pitot tube probe installed in the test channel and the results obtained by the method proposed in this paper are relatively close to this reference.
Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications
NASA Technical Reports Server (NTRS)
Pellish, Jonathan
2018-01-01
This presentation describes the accelerating use of Commercial off the Shelf (COTS) parts in space applications. Component reliability and threats in the context of the mission, environment, application, and lifetime. Provides overview of traditional approaches applied to COTS parts in flight applications, and shows challenges and potential paths forward for COTS systems in flight applications it's all about data!
NASA Dryden Flight Research Center C-17 Research Overview
NASA Technical Reports Server (NTRS)
Miller, Chris
2007-01-01
A general overview of NASA Dryden Flight Research Center's C-17 Aircraft is presented. The topics include: 1) 2006 Activities PHM Instrumentation Refurbishment; 2) Acoustic and Vibration Sensors; 3) Gas Path Sensors; 4) NASA Instrumentation System Racks; 5) NASA C-17 Simulator; 6) Current Activities; 7) Future Work; 8) Lawn Dart ; 9) Weight Tub; and 10) Parachute Test Vehicle.
Turbulence Model Effects on RANS Simulations of the HIFiRE Flight 2 Ground Test Configurations
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Mankbadi, Mina R.; Vyas, Manan A.
2014-01-01
The Wind-US Reynolds-averaged Navier-Stokes solver was applied to the Hypersonic International Flight Research Experimentation (HIFiRE) Flight 2 scramjet ground test configuration. Two test points corresponding to flight Mach numbers of 5.9 and 8.9 were examined. The emphasis was examining turbulence model effects on the prediction of flow path pressures. Three variants of the Menter k-omega turbulence model family were investigated. These include the baseline (BSL) and shear stress transport (SST) as well as a modified SST model where the shear stress limiter was altered. Variations in the turbulent Schmidt number were also considered. Choice of turbulence model had a substantial effect on prediction of the flow path pressures. The BSL model produced the highest pressures and the SST model produced the lowest pressures. As expected, the settings for the turbulent Schmidt number also had significant effects on predicted pressures. Small values for the turbulent Schmidt number enabled more rapid mass transfer, faster combustion, and in turn higher flowpath pressures. Optimal settings for turbulence model and turbulent Schmidt number were found to be rather case dependent, as has been concluded in other scramjet investigations.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-08-09
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-01-01
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932
Optimal short-range trajectories for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, G.L.; Erzberger, H.
1982-12-01
An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less
Assessment of ground effects on the propagation of aircraft noise: The T-38A flight experiment
NASA Technical Reports Server (NTRS)
Willshire, W. L., Jr.
1980-01-01
A flight experiment was conducted to investigate air to ground propagation of sound at gazing angles of incidence. A turbojet powered airplane was flown at altitudes ranging from 10 to 160 m over a 20-microphone array positioned over grass and concrete. The dependence of ground effects on frequency, incidence angle, and slant range was determined using two analysis methods. In one method, a microphone close to the flight path is compared to down range microphones. In the other method, comparisons are made between two microphones which were equidistant from the flight path but positioned over the two surfaces. In both methods, source directivity angle was the criterion by which portions of the microphone signals were compared. The ground effects were largest in the frequency range of 200 to 400 Hz and were found to be dependent on incidence angle and slant range. Ground effects measured for angles of incidence greater than 10 deg to 15 deg were near zero. Measured attenuation increased with increasing slant range for slant ranges less than 750 m. Theoretical predictions were found to be in good agreement with the major details of the measured results.
Control Law for Automatic Landing Using Fuzzy-Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of a fuzzy-logic control law for automatically landing an aircraft that handles both the control to lead an aircraft from horizontal flight at an altitude of 500 meters to flight along the glide-path course near the runway, as well as the control to direct the aircraft to land smoothly on a runway, was investigated. The control law for the automatic landing was designed to match the design goals of directing an aircraft from horizontal flight to flight along a glide-path course quickly and smoothly, and for landing smoothly on a runway. The design of the control law and evaluation of the control performance were performed considering the ground effect at landing. As a result, it was confirmed that the design goals were achieved. Even if the characteristics of the aircraft change greatly, the proposed control law is able to maintain the control performance. Moreover, it was confirmed to be able to land an aircraft safely during air turbulence. The present paper indicates that fuzzy-logic control is an effective and flexible method when applied to the control law for automatic landing, and the design method of the control law using fuzzy-logic control was obtained.
Control Law for Automatic Landing Using Fuzzy Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of fuzzy logic control law for automatic landing of aircraft, which cover both of control to lead aircraft from level flight at an altitude of 500m to the flight on the glide-path course near the runway and control for the aircraft to land smoothly on a runway, was studied. The control law of the automatic landing was designed to match the design goals of leading from the horizontal flight to the flight on the glide-path course quickly and smoothly and of landing smoothly on a runway. Because there is the ground effect at landing, design of control law and evaluation of control performance were done in consideration of the ground effect. As a result, it was confirmed that the design objective was achieved. Even if the characteristics of the plant changes greatly, this control law was able to maintain the control performance. Moreover, it was confirmed to be able to land safely when there was air turbulence. This paper shows that fuzzy logic control is an effective and flexible method when applied to control law for automatic landing and the design method of control law using fuzzy logic control was obtained.
Decomposition technique and optimal trajectories for the aeroassisted flight experiment
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Deaton, A. W.
1990-01-01
An actual geosynchronous Earth orbit-to-low Earth orbit (GEO-to-LEO) transfer is considered with reference to the aeroassisted flight experiment (AFE) spacecraft, and optimal trajectories are determined by minimizing the total characteristic velocity. The optimization is performed with respect to the time history of the controls (angle of attack and angle of bank), the entry path inclination and the flight time being free. Two transfer maneuvers are considered: direct ascent (DA) to LEO and indirect ascent (IA) to LEO via parking Earth orbit (PEO). By taking into account certain assumptions, the complete system can be decoupled into two subsystems: one describing the longitudinal motion and one describing the lateral motion. The angle of attack history, the entry path inclination, and the flight time are determined via the longitudinal motion subsystem. In this subsystem, the difference between the instantaneous bank angle and a constant bank angle is minimized in the least square sense subject to the specified orbital inclination requirement. Both the angles of attack and the angle of bank are shown to be constant. This result has considerable importance in the design of nominal trajectories to be used in the guidance of AFE and aeroassisted orbital transfer (AOT) vehicles.
Optimal Propellant Maneuver Flight Demonstrations on ISS
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis
2013-01-01
In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic manipulator relative to the ISS. Since 2005 USTO has been used for nominal ISS operations.
Consideration of other primate species as flight animals
NASA Technical Reports Server (NTRS)
Bourne, G. H.
1977-01-01
The different types of primates which might be used as flight animals are surveyed, and the pros and cons of using them are discussed. Various factors suggest that the most desirable animals for space studies are the rhesus, pig-tailed, Java, and squirrel monkeys. The capuchin monkey has assets for certain types of space experimentation.
A Design Comparison of Atmospheric Flight Vehicles for the Exploration of Titan
NASA Technical Reports Server (NTRS)
Gasbarre, Joseph F.; Wright, Henry S.; Lewis, Mark J.
2005-01-01
Titan, the largest moon of Saturn, is one of the most scientifically interesting locations in the Solar System. With a very cold atmosphere that is five times as dense as Earth s, and one and a half times the surface pressure, it also provides one of the most aeronautically fascinating environments known to humankind. While this may seem the ideal place to attempt atmospheric flight, many challenges await any vehicle attempting to navigate through it. In addition to these physical challenges, any scientific exploration mission to Titan will most likely have several operational constraints. One difficult constraint is the desire for a global survey of the planet and thus, a long duration flight within the atmosphere. Since many of the scientific measurements that would be unique to a vehicle flying through the atmosphere (as opposed to an orbiting spacecraft) desire near-surface positioning of their associated instruments, the vehicle must also be able to fly within the first scale height of the atmosphere. Another difficult constraint is that interaction with the surface, whether by landing or dropped probe, is also highly desirable from a scientific perspective. Two common atmospheric flight platforms that might be used for this mission are the airplane and airship. Under the assumption of a mission architecture that would involve an orbiting relay spacecraft delivered via aerocapture and an atmospheric flight vehicle delivered via direct entry, designs were developed for both platforms that are unique to Titan. Consequently, after a viable design was achieved for each platform, their advantages and disadvantages were compared. This comparison included such factors as deployment risk, surface interaction capability, mass, and design heritage. When considering all factors, the preferred candidate platform for a global survey of Titan is an airship.
Accomando, Alyssa W.; Vargas-Irwin, Carlos E.; Simmons, James A.
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape. PMID:29472848
Accomando, Alyssa W; Vargas-Irwin, Carlos E; Simmons, James A
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.
Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus).
Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph
2014-01-01
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.
Aerodynamic analysis of Pegasus - Computations vs reality
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan
1993-01-01
Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.
In-flight gust monitoring and aeroelasticity studies
NASA Astrophysics Data System (ADS)
Alvarez-Salazar, Oscar Salvador
An in-flight gust monitoring and aeroelasticity study was conducted on board NASA Dryden's F15-B/FTF-II test platform (``FTF''). A total of four flights were completed. This study is the first in a series of flight experiments being conducted jointly by NASA Dryden Flight Research Center and UCLA's Flight Systems Research Center. The first objective of the in-flight gust- monitoring portion of the study was to demonstrate for the first time anywhere the measurability of intensity variations of a collimated Helium-Neon laser beam due to atmospheric air turbulence while having both the source and target apertures mounted outside an airborne aircraft. Intensity beam variations are the result of forward scattering of the beam by variations in the air's index of refraction, which are carried across the laser beam's path by a cross flow or air (i.e., atmospheric turbulence shifting vertically in the atmosphere). A laser beam was propagated parallel to the direction of flight for 1/2 meter outside the flight test fixture and its intensity variations due to atmospheric turbulence were successfully measured by a photo- detector. When the aircraft did not fly through a field of atmospheric turbulence, the laser beam proved to be insensitive to the stream velocity's cross component to the path of the beam. The aeroelasticity portion of the study consisted of measurements of the dynamic response of a straight, 18.25 inch span, 4.00 inch chord, NACA 0006 airfoil thickness profile, one sided wing to in-flight aircraft maneuvers, landing gear buffeting, unsteady aerodynamics, atmospheric turbulence, and aircraft vibration in general. These measurements were accomplished through the use of accelerometers, strain gauges and in-flight video cameras. Data collected will be used to compute in-flight root loci for the wing as functions of the aircraft's stream velocity. The data may also be used to calibrate data collected by the gust-monitoring system flown, and help verify the accuracy of various aeroelastic modeling techniques for estimating the stability boundary of a flexible wing in flight (i.e., flutter).
Predictor laws for pictorial flight displays
NASA Technical Reports Server (NTRS)
Grunwald, A. J.
1985-01-01
Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.
NREL at 40: It All Started With a Desire to Harness the Sun | News | NREL
(PV) industry. Their job was to ultimately develop new solar technology and to chart a path toward its of reliability for PV modules and systems, helping bolster consumer and investor confidence in solar With a Desire to Harness the Sun July 5, 2017 Photo of PV panels under a bright blue sky. A PV array on
Changes in Naval Aviation Basic Instrument Flight Training: An Analysis.
1985-12-01
position to the desired attitude in relation to the horizon [Refs. 4,5: pp.2,16-3]. C. BASIC INSTRUMENT FLIGHT TRAINING The objective of basic...were related to the treatment lecture: 1. Basic Air Work (BAW) 2. Partial Panel 3. Unusual Attitudes (full panel) 4. Initial Climb to Altitude (ICA) 5...of student aviators was compared. The modifi- cations consisted of a lecture concentrating on the fundamentals of attitude instrument flight. One group
Digital flight control systems
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Vanlandingham, H. F.
1977-01-01
The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.
NASA Technical Reports Server (NTRS)
Hrabak, R. R.; Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described.
Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft
NASA Technical Reports Server (NTRS)
Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.
1976-01-01
An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene
Knowles, Jeffrey M.; Barchi, Jonathan R.; Gaudette, Jason E.; Simmons, James A.
2015-01-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80–100 cm wide and 2–4 m long. Using the two-choice Y-shaped paradigm to compensate for left–right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18–35 dB weaker than overlapping echoes from surrounding chains. PMID:26328724
Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures
NASA Technical Reports Server (NTRS)
Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.
2012-01-01
Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.
2017-06-01
aboard the NASA WB-57 aircraft flying over outflow region of Tropical Storm Patricia. Source: Doyle et al. (2017...flight track of the NASA WB-57 through the center of Hurricane Patricia at approximately 1800 UTC 23 October ......28 Figure 20. HDSS-observed wind...29 Figure 21. NASA WB-57 flight path (yellow line) overlaid on GOES enhanced infrared
NASA Technical Reports Server (NTRS)
Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.
1979-01-01
A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.
Tiltrotor noise reduction through flight trajectory management and aircraft configuration control
NASA Astrophysics Data System (ADS)
Gervais, Marc
A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise approaches that take into account the first-order effects of deceleration on the acoustics were systematically designed and compared to a baseline approach profile. The low-noise approaches yielded substantial noise reduction benefits on a hemisphere surrounding the aircraft and on a ground plane below the aircraft's trajectory.
Meteorological conditions during the summer 1986 CITE 2 flight series
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott
1990-01-01
An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.
Spatiotemporal Dynamics of Bumblebees Foraging under Predation Risk
NASA Astrophysics Data System (ADS)
Lenz, Friedrich; Ings, Thomas C.; Chittka, Lars; Chechkin, Aleksei V.; Klages, Rainer
2012-03-01
We analyze 3D flight paths of bumblebees searching for nectar in a laboratory experiment with and without predation risk from artificial spiders. For the flight velocities we find mixed probability distributions reflecting the access to the food sources while the threat posed by the spiders shows up only in the velocity correlations. The bumblebees thus adjust their flight patterns spatially to the environment and temporally to predation risk. Key information on response to environmental changes is contained in temporal correlation functions, as we explain by a simple emergent model.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.; Hardy, G. H.
1980-01-01
A flight research program was conducted to assess the effectiveness of manual control concepts and various cockpit displays in improving altitude (pitch, roll, and yaw) and longitudinal path control during short takeoff aircraft approaches and landings. Satisfactory flying qualities were demonstrared to minimum decision heights of 30 m (100 ft) for selected stabilization and command augmentation systems and flight director combinations. Precise landings at low touchdown sink rates were achieved with a gentle flare maneuver.
Analyses of shuttle orbiter approach and landing conditions
NASA Technical Reports Server (NTRS)
Teper, G. L.; Dimarco, R. J.; Ashkenas, I. L.; Hoh, R. H.
1981-01-01
A study of one shuttle orbiter approach and landing conditions are summarized. Causes of observed PIO like flight deficiencies are identified and potential cures are examined. Closed loop pilot/vehicle analyses are described and path/attitude stability boundaries defined. The latter novel technique proved of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. The analytical results are shown to be consistent with flight test and fixed base simulation. Conclusions are drawn relating to possible improvements of the shuttle orbiter/digital flight control system.
Human Space Flight Plans Committee Report
2009-10-21
NASA Public Affairs Officer Doc Mirelson, left, and Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, right, listen to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
(abstract) Geological Tour of Southwestern Mexico
NASA Technical Reports Server (NTRS)
Adams, Steven L.; Lang, Harold R.
1993-01-01
Nineteen Landsat Themic Mapper quarter scenes, coregistered at 28.5 m spatial resolution with three arc second digital topographic data, were used to create a movie, simulating a flight over the Guerrero and Mixteco terrains of southwestern Mexico. The flight path was chosen to elucidate important structural, stratigraphic, and geomorphic features. The video, available in VHS format, is a 360 second animation consisting of 10 800 total frames. The simulated velocity during three 120 second flight segments of the video is approximately 37 000 km per hour, traversing approximately 1 000 km on the ground.
NASA Technical Reports Server (NTRS)
Chandra, D.; Bussolari, S. R.; Hansman, R. J.
1989-01-01
A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.
Magnetic-cusp, cathodic-arc source
Falabella, S.
1995-11-21
A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission. 3 figs.
Optimal path planning for video-guided smart munitions via multitarget tracking
NASA Astrophysics Data System (ADS)
Borkowski, Jeffrey M.; Vasquez, Juan R.
2006-05-01
An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.
Path planning and Ground Control Station simulator for UAV
NASA Astrophysics Data System (ADS)
Ajami, A.; Balmat, J.; Gauthier, J.-P.; Maillot, T.
In this paper we present a Universal and Interoperable Ground Control Station (UIGCS) simulator for fixed and rotary wing Unmanned Aerial Vehicles (UAVs), and all types of payloads. One of the major constraints is to operate and manage multiple legacy and future UAVs, taking into account the compliance with NATO Combined/Joint Services Operational Environment (STANAG 4586). Another purpose of the station is to assign the UAV a certain degree of autonomy, via autonomous planification/replanification strategies. The paper is organized as follows. In Section 2, we describe the non-linear models of the fixed and rotary wing UAVs that we use in the simulator. In Section 3, we describe the simulator architecture, which is based upon interacting modules programmed independently. This simulator is linked with an open source flight simulator, to simulate the video flow and the moving target in 3D. To conclude this part, we tackle briefly the problem of the Matlab/Simulink software connection (used to model the UAV's dynamic) with the simulation of the virtual environment. Section 5 deals with the control module of a flight path of the UAV. The control system is divided into four distinct hierarchical layers: flight path, navigation controller, autopilot and flight control surfaces controller. In the Section 6, we focus on the trajectory planification/replanification question for fixed wing UAV. Indeed, one of the goals of this work is to increase the autonomy of the UAV. We propose two types of algorithms, based upon 1) the methods of the tangent and 2) an original Lyapunov-type method. These algorithms allow either to join a fixed pattern or to track a moving target. Finally, Section 7 presents simulation results obtained on our simulator, concerning a rather complicated scenario of mission.
A Venus/Saturn Mission Study: 45deg Sphere-Cone Rigid Aeroshells and Ballistic Entries
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.; Allen, Gary A.; Cappuccio, Gelsomina
2012-01-01
The present study considers ballistic entries into the atmospheres of Saturn and Venus using a 45deg sphere-cone rigid aeroshell (a legacy shape that has been successfully used in the Pioneer Venus and Galileo missions). For a number of entry mass and diameter combinations (i.e., various entries ballistic coefficients), entry velocities, and heading angles, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is place on the peak deceleration load and 10 bar is assumed as the spallation pressure threshold for the legacy material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a minimum margined heat flux threshold of 2.5 kW/sq cm is assumed for the heritage material. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a "critical" ballistic coefficient beyond which the steepest possible entries are determined by the spallation pressure threshold. The results are verified against known performance of the various probes used in the Galileo and Pioneer Venus missions. It is hoped that the results presented here will serve as a baseline in the development of a new class of ablative materials for Venus and Saturn missions being considered in a future New Frontiers class of NASA missions.
Global positioning system supported pilot's display
NASA Technical Reports Server (NTRS)
Scott, Marshall M., Jr.; Erdogan, Temel; Schwalb, Andrew P.; Curley, Charles H.
1991-01-01
The hardware, software, and operation of the Microwave Scanning Beam Landing System (MSBLS) Flight Inspection System Pilot's Display is discussed. The Pilot's Display is used in conjunction with flight inspection tests that certify the Microwave Scanning Beam Landing System used at Space Shuttle landing facilities throughout the world. The Pilot's Display was developed for the pilot of test aircraft to set up and fly a given test flight path determined by the flight inspection test engineers. This display also aids the aircraft pilot when hazy or cloud cover conditions exist that limit the pilot's visibility of the Shuttle runway during the flight inspection. The aircraft position is calculated using the Global Positioning System and displayed in the cockpit on a graphical display.
Flight investigation of manual and automatic VTOL decelerating instrument approaches and landings
NASA Technical Reports Server (NTRS)
Kelly, J. R.; Niessen, F. R.; Thibodeaux, J. J.; Yenni, K. R.; Garren, J. F., Jr.
1974-01-01
A flight investigation was undertaken to study the problems associated with manual and automatic control of steep, decelerating instrument approaches and landings under simulated instrument conditions. The study was conducted with a research helicopter equipped with a three-cue flight-director indicator. The scope of the investigation included variations in the flight-director control laws, glide-path angle, deceleration profile, and control response characteristics. Investigation of the automatic-control problem resulted in the first automated approach and landing to a predetermined spot ever accomplished with a helicopter. Although well-controlled approaches and landings could be performed manually with the flight-director concept, pilot comments indicated the need for a better display which would more effectively integrate command and situation information.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
Algorithms and Sensors for Small Robot Path Following
NASA Technical Reports Server (NTRS)
Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry
2002-01-01
Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.
X-29A flight control system performance during flight test
NASA Technical Reports Server (NTRS)
Chin, J.; Chacon, V.; Gera, J.
1987-01-01
An account is given of flight control system performance results for the X-29A forward-swept wing 'Advanced Technology Demonstrator' fighter aircraft, with attention to its software and hardware components' achievement of the requisite levels of system stability and desirable aircraft handling qualities. The Automatic Camber Control Logic is found to be well integrated with the stability loop of the aircraft. A number of flight test support software programs developed by NASA facilitated monitoring of the X-29A's stability in real time, and allowed the test team to clear the envelope with confidence.
1994-03-16
ER-2: ASHOE/MAESA Expidition art (P.I. S Hipskind) Airborne Southern Hemisphere Ozone Experiment; Measurements for Assessing the Effects of Stratospheric Aircraft - Aircraft Flight Path March 16, - November 1, 1994
Controller partitioning for integrated flight/propulsion control implementation
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1993-01-01
The notion of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control (IFPC) implementation is discussed. A systematic procedure is developed for determining partitioned airframe and engine subsystem controllers (subcontrollers), with the desired interconnection structure, that approximate the closed-loop performance and robustness characteristics of a given centralized controller. The procedure is demonstrated by application to IFPC design for a Short Take-Off and Vertical Landing (STOVL) aircraft in the landing approach to hover transition flight phase.
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1993-01-01
The notion of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control (IFPC) implementation is discussed. A systematic procedure is developed for determining partitioned airframe and engine subsystem controllers (subcontrollers), with the desired interconnection structure, that approximate the closed-loop performance and robustness characteristics of a given centralized controller. The procedure is demonstrated by application to IFPC design for a short take-off and vertical landing (STOVL) aircraft in the landing-approach-to-hover-transition flight phase.
NASA Technical Reports Server (NTRS)
Barth, Andrew; Mamich, Harvey; Hoelscher, Brian
2015-01-01
The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Lee, M. G.
1985-01-01
The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.
In-Flight Decision-Making by General Aviation Pilots Operating in Areas of Extreme Thunderstorms.
Boyd, Douglas D
2017-12-01
General aviation (comprised mainly of noncommercial, light aircraft) accounts for 94% of civil aviation fatalities in the United States. Although thunderstorms are hazardous to light aircraft, little research has been undertaken on in-flight pilot decision-making regarding their avoidance. The study objectives were: 1) to determine if the thunderstorm accident rate has declined over the last two decades; and 2) assess in-flight (enroute/landing) airman decision-making regarding adherence to FAA separation minima from thunderstorms. Thunderstorm-related accidents were identified from the NTSB database. To determine en route/arriving aircraft real-time thunderstorm proximity/relative position and airplane location, using a flight-tracking (Flight Aware®) website, were overlaid on a graphical weather image. Statistics employed Poisson and Chi-squared analyses. The thunderstorm-related accident rate was undiminished over the 1996-2014 period. In a prospective analysis the majority (enroute 77%, landing 93%) of flights violated the FAA-recommended separation distance from extreme convection. Of these, 79 and 69% (en route and landing, respectively) selected a route downwind of the thunderstorm rather than a less hazardous upwind flight path. Using a mathematical product of binary (separation distance, relative aircraft-thunderstorm position) and nominal (thunderstorm-free egress area) parameters, airmen were more likely to operate in the thunderstorm hazard zone for landings than en route operations. The thunderstorm-related accident rate, carrying a 70% fatality rate, remains unabated, largely reflecting nonadherence to the FAA-recommended separation minima and selection of a more hazardous route (downwind) for circumnavigation of extreme convective weather. These findings argue for additional emphasis in ab initio pilot training/recurrency on thunderstorm hazards and safe practices (separation distance and flight path).Boyd DD. In-flight decision-making by general aviation pilots operating in areas of extreme thunderstorms. Aerosp Med Hum Perform. 2017; 88(12):1066-1072.
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
Kinematic path planning for space-based robotics
NASA Astrophysics Data System (ADS)
Seereeram, Sanjeev; Wen, John T.
1998-01-01
Future space robotics tasks require manipulators of significant dexterity, achievable through kinematic redundancy and modular reconfigurability, but with a corresponding complexity of motion planning. Existing research aims for full autonomy and completeness, at the expense of efficiency, generality or even user friendliness. Commercial simulators require user-taught joint paths-a significant burden for assembly tasks subject to collision avoidance, kinematic and dynamic constraints. Our research has developed a Kinematic Path Planning (KPP) algorithm which bridges the gap between research and industry to produce a powerful and useful product. KPP consists of three key components: path-space iterative search, probabilistic refinement, and an operator guidance interface. The KPP algorithm has been successfully applied to the SSRMS for PMA relocation and dual-arm truss assembly tasks. Other KPP capabilities include Cartesian path following, hybrid Cartesian endpoint/intermediate via-point planning, redundancy resolution and path optimization. KPP incorporates supervisory (operator) input at any detail to influence the solution, yielding desirable/predictable paths for multi-jointed arms, avoiding obstacles and obeying manipulator limits. This software will eventually form a marketable robotic planner suitable for commercialization in conjunction with existing robotic CAD/CAM packages.
Scouts behave as streakers in honeybee swarms
NASA Astrophysics Data System (ADS)
Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf
2013-08-01
Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.
NASA Technical Reports Server (NTRS)
Cathcart, J. R.; Frank, A. J.; Massaglia, J. L.
1968-01-01
Computer program analyzes the entries and planetary trajectories of space vehicles. It obtains the equivalence of altitude and flight path angle, respectively, to acceleration load factor with respect to velocity for a given inertial velocity.
Eigenspace Design of Helicopter Flight Control Systems
1990-11-01
Attitude Changes ......... 44 2.6 Yaw Cross Coupling Criteria . ............................................... 45 I 4. i Definition of the Rigid Body...laws. The methodology detailed in this report allows the designer to synthesize control laws which result in desirable response types such as attitude ...it is simple to relate the desired frequency response characteristics to the natural frequencies and damping factors or the time constants of the
Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.
1990-01-01
Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1980-01-01
Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.
A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
1999-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.
Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
2001-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs
NASA Technical Reports Server (NTRS)
Turner, Wlat
2011-01-01
With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments
Diving-Flight Aerodynamics of a Peregrine Falcon (Falco peregrinus)
Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph
2014-01-01
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h−1. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon’s body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred. PMID:24505258
Task Decomposition Module For Telerobot Trajectory Generation
NASA Astrophysics Data System (ADS)
Wavering, Albert J.; Lumia, Ron
1988-10-01
A major consideration in the design of trajectory generation software for a Flight Telerobotic Servicer (FTS) is that the FTS will be called upon to perform tasks which require a diverse range of manipulator behaviors and capabilities. In a hierarchical control system where tasks are decomposed into simpler and simpler subtasks, the task decomposition module which performs trajectory planning and execution should therefore be able to accommodate a wide range of algorithms. In some cases, it will be desirable to plan a trajectory for an entire motion before manipulator motion commences, as when optimizing over the entire trajectory. Many FTS motions, however, will be highly sensory-interactive, such as moving to attain a desired position relative to a non-stationary object whose position is periodically updated by a vision system. In this case, the time-varying nature of the trajectory may be handled either by frequent replanning using updated sensor information, or by using an algorithm which creates a less specific state-dependent plan that determines the manipulator path as the trajectory is executed (rather than a priori). This paper discusses a number of trajectory generation techniques from these categories and how they may be implemented in a task decompo-sition module of a hierarchical control system. The structure, function, and interfaces of the proposed trajectory gener-ation module are briefly described, followed by several examples of how different algorithms may be performed by the module. The proposed task decomposition module provides a logical structure for trajectory planning and execution, and supports a large number of published trajectory generation techniques.
Chromatically corrected virtual image visual display. [reducing eye strain in flight simulators
NASA Technical Reports Server (NTRS)
Kahlbaum, W. M., Jr. (Inventor)
1980-01-01
An in-line, three element, large diameter, optical display lens is disclosed which has a front convex-convex element, a central convex-concave element, and a rear convex-convex element. The lens, used in flight simulators, magnifies an image presented on a television monitor and, by causing light rays leaving the lens to be in essentially parallel paths, reduces eye strain of the simulator operator.
Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement
NASA Technical Reports Server (NTRS)
Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan;
2015-01-01
An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.
NASA Technical Reports Server (NTRS)
Bateman, Don
1991-01-01
Wind shear detection status is presented in the form of view-graphs. The following subject areas are covered: second generation detection (Q-bias, gamma bias, temperature biases, maneuvering flight modulation, and altitude modulation); third generation wind shear detection (use wind shear computation to augment flight path and terrain alerts, modulation of alert thresholds based on wind/terrain data base, incorporate wind shear/terrain alert enhancements from predictive sensor data); and future research and development.
Development of Cloud-Based UAV Monitoring and Management System
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-01-01
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation. PMID:27854267
Development of Cloud-Based UAV Monitoring and Management System.
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-11-15
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.
An industrial robot singular trajectories planning based on graphs and neural networks
NASA Astrophysics Data System (ADS)
Łęgowski, Adrian; Niezabitowski, Michał
2016-06-01
Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.
Two-Hydrophone Heading and Range Sensor Applied to Formation-Flying for AUVs
2004-01-01
d=0.914 m, and c=1371.6 m/s. The leader was given a lawn - mower waypoint trajectory, and the follower’s waypoint trajectory was obtained by...shifting the leader’s trajectory by a desired distance. For the 40yd-abreast formation and the 10yd-abreast formation, the leader’s lawn - mower path was...shifted by 40yd and 10yd respectively. For the wedge formation, they still followed the same lawn - mower path as the previous one, but the follower
Statistical analysis of AFE GN&C aeropass performance
NASA Technical Reports Server (NTRS)
Chang, Ho-Pen; French, Raymond A.
1990-01-01
Performance of the guidance, navigation, and control (GN&C) system used on the Aeroassist Flight Experiment (AFE) spacecraft has been studied with Monte Carlo techniques. The performance of the AFE GN&C is investigated with a 6-DOF numerical dynamic model which includes a Global Reference Atmospheric Model (GRAM) and a gravitational model with oblateness corrections. The study considers all the uncertainties due to the environment and the system itself. In the AFE's aeropass phase, perturbations on the system performance are caused by an error space which has over 20 dimensions of the correlated/uncorrelated error sources. The goal of this study is to determine, in a statistical sense, how much flight path angle error can be tolerated at entry interface (EI) and still have acceptable delta-V capability at exit to position the AFE spacecraft for recovery. Assuming there is fuel available to produce 380 ft/sec of delta-V at atmospheric exit, a 3-sigma standard deviation in flight path angle error of 0.04 degrees at EI would result in a 98-percent probability of mission success.
Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data
NASA Technical Reports Server (NTRS)
Bosworth, John T.
1992-01-01
Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.
Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-05-01
Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Weed Quadrangle in California.
STS-1 operational flight profile. Volume 3: Ascent, cycle 3
NASA Technical Reports Server (NTRS)
1980-01-01
The ascent opeational flight profile for the space transportation system 1 flight is designed (1) to limit the maximum undispersed dynamic pressure to 580 lb/sq ft, (2) to follow the design load indicator profiles where q alpha is a specified profile and q beta is desired to be as close to zero as passible, and (3) to maximize nominal and abort performance. Significant trajectory parameters achieved are presented. A maximum dynamic pressure of 575 lb/sq ft was achieved, a minimum q alpha of -2187 lb-deg/sq ft was achieved, and q beta was limited to approximately + or - 100 lb-deg/sq ft in the high q region of the trajectory. The trajectory performance allows a press to main engine cutoff capability with one space shuttle main engine out at 262 seconds ground elapsed time. The orbital maneuvering system burns achieve a final orbit of 150.9 x 149.9 x 149.8 n. mi. and the desired inclination of 40.3 degrees.
Flight investigation of a vertical-velocity command system for VTOL aircraft
NASA Technical Reports Server (NTRS)
Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.
1977-01-01
A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.
Intraformation positioning system
NASA Astrophysics Data System (ADS)
Sheldon, Stuart; Zadzora, Timothy
1996-05-01
The IntraFormation Positioning System is a networked relative navigation system currently being developed for rendezvous, join-up, and formation flight of Air Force helicopters and fixed wing aircraft in instrument meteorological conditions. The system is designed to be integrated into existing aircraft and will display relative positions of all aircraft within a formation, as well as the relative positions of other formations participating in coordinated missions. The system uses a Global Positioning System receiver integrated with the aircraft Inertial Navigation System to generate accurate aircraft position and velocity data. These data are transmitted over a data link to all participating aircraft and displayed as graphic symbols at the relative range and bearing to own aircraft on a situational awareness display format similar to a radar plan position indicator. Flight guidance computation is based on the difference between a desired formation slot position and current aircraft position relative to the formation lead aircraft. This information is presented on the flight director display allowing the pilot to null out position errors. The system is being developed for the Air Force Special Operations Command; however, it is applicable to all aircraft desiring improved formation situational awareness and formation flight coordination.
Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator
NASA Technical Reports Server (NTRS)
Heath, Bruce E.; Crier, tomyka
2003-01-01
With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.
Graphs and Enhancing Maple Multiplication.
ERIC Educational Resources Information Center
Cecil, David R.; Wang, Rongdong
2002-01-01
Description of a technique in Maple programming language that automatically prints all paths of any desired length along with the name of each vertex, proceeding in order from the beginning vertex to the ending vertex for a given graph. (Author/MM)
Simple techniques for forecasting bicycle and pedestrian demand.
DOT National Transportation Integrated Search
2009-01-01
Bicycle lanes, sidewalks, and shared-use paths are some of the most : commonly requested transportation improvements in many parts of : the country. Increased fuel costs, desire to fit exercise into personal : routines, and land-use changes all are d...
14 CFR 25.445 - Auxiliary aerodynamic surfaces.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads..., and gusts as specified in § 25.341(a) acting at any orientation at right angles to the flight path. (b...
14 CFR 25.445 - Auxiliary aerodynamic surfaces.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads..., and gusts as specified in § 25.341(a) acting at any orientation at right angles to the flight path. (b...
RCS propulsion functional path analysis for performance monitoring fault detection and annunciation
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
The operational flight instrumentation required for performance monitoring and fault detection are presented. Measurements by the burn through monitors are presented along with manifold and helium source pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less
AEA Cell-Bypass-Switch Activation: An Update
NASA Technical Reports Server (NTRS)
Keys, Denney; Rao, Gopalakrishna M.; Wannemacher, Harry
2002-01-01
The objectives of this project included the following: (1) verify the performance of AEA cell bypass protection device (CBPD) under simulated EOS-Aqua/Aura flight hardware configuration; (2) assess the safety of the hardware under an inadvertent firing of CBPD switch, as well as the closing of CBPD; and (3) confirm that the mode of operation of CBPD switch is the formation of a continuous low impedance path (a homogeneous low melting point alloy). The nominal performance of AEA CBPD under flight operating conditions (vacuum except zero-G, and high impedance cell) has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). The formation of a continuous low impedance path (a homogeneous low melting point alloy) has been confirmed.
NASA Technical Reports Server (NTRS)
Elliott, Joe W.; Althoff, Susan L.; Sailey, Richard H.
1988-01-01
An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center to measure the inflow into a scale model helicopter rotor in forward flight (micron sub infinity = 0.30). The measurements were made with a two component Laser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip path plane). A conditional sampling technique was employed to determine the azimuthal position of the rotor at the time that each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 180 separate locations in order to clearly define the inflow character. These data are presented without analysis.
Flight Management System Execution of Idle-Thrust Descents in Operations
NASA Technical Reports Server (NTRS)
Stell, Laurel L.
2011-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.
Patch-based frame interpolation for old films via the guidance of motion paths
NASA Astrophysics Data System (ADS)
Xia, Tianran; Ding, Youdong; Yu, Bing; Huang, Xi
2018-04-01
Due to improper preservation, traditional films will appear frame loss after digital. To deal with this problem, this paper presents a new adaptive patch-based method of frame interpolation via the guidance of motion paths. Our method is divided into three steps. Firstly, we compute motion paths between two reference frames using optical flow estimation. Then, the adaptive bidirectional interpolation with holes filled is applied to generate pre-intermediate frames. Finally, using patch match to interpolate intermediate frames with the most similar patches. Since the patch match is based on the pre-intermediate frames that contain the motion paths constraint, we show a natural and inartificial frame interpolation. We test different types of old film sequences and compare with other methods, the results prove that our method has a desired performance without hole or ghost effects.
NASA Technical Reports Server (NTRS)
Lippisch, Alexander
1925-01-01
Before attempting to construct a human-powered aircraft, the aviator will first try to post himself theoretically on the possible method of operating the flapping wings. This report will present a graphic and mathematical method, which renders it possible to determine the power required, so far as it can be done on the basis of the wing dimensions. We will first consider the form of the flight path through the air. The simplest form is probably the curve of ordinary wave motion. After finding the flight curve, we must next determine the change in the angle of attack while passing through the different phases of the wave.
NASA Technical Reports Server (NTRS)
Morello, S. A.; Knox, C. E.; Steinmetz, G. G.
1977-01-01
The results of a flight evaluation of two electronic display formats for the approach to landing under instrument conditions are presented. The evaluation was conducted for a base-line electronic display format and for the same format with runway symbology and track information added. The evaluation was conducted during 3 deg, manual straight-in approaches with and without initial localizer offsets. Flight path tracking performance data and pilot subjective comments were examined with regard to the pilot's ability to capture and maintain localizer and glide slope by using both display formats.
5-inch-size liquid crystal flat panel display evaluation test by flight simulator
NASA Astrophysics Data System (ADS)
Kawahara, Hiroyasu; Watanabe, Akira; Wakairo, Kaoru; Udagawa, Tomoyuki; Kurihara, Yoichiro
An evaluation test is conducted on the function, performance, and display format of a 5x5 inch flat panel display (FPD) in a flight simulator. The FPD utilizes a color liquid crystal panel that is compact and lightweight and has excellent visibility. The simulator evaluation test is carried out in sequence with the conventional takeoff and landing to altitude, and then conversion to STOL procedures for flight path and subsequent approach and landing. It is shown that the liquid crystal display could be employed as a satisfactory indicator for aircraft instrumentation.
2D/3D Synthetic Vision Navigation Display
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.
2008-01-01
Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.
Analyses of Shuttle Orbiter approach and landing
NASA Technical Reports Server (NTRS)
Ashkenas, I. L.; Hoh, R. H.; Teper, G. L.
1982-01-01
A study of the Shuttle Orbiter approach and landing conditions is summarized. The causes of observed PIO-like flight deficiencies are listed, and possible corrective measures are examined. Closed-loop pilot/vehicle analyses are described, and a description is given of path-attitude stability boundaries. The latter novel approach is found to be of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. It is shown that the analytical results are consistent with flight test and fixed-base simulation. Conclusions are drawn concerning possible improvements in the Shuttle Orbiter/Digital Flight Control System.
2013-10-16
right) eartips The purpose of this study was to integrate the HGU-56/P and HGU-55/P flight helmets with PACE to measure the noise attenuation and...55/P flight helmet integrated with PACE 2.0 METHODS 2.1 Subjects Twenty paid volunteer subjects (9 male, 11 female) participated in the study ...Pan Pad Pat Path Pack Pass Buff Bus But Bug Buck Bun Sat Sag Sass Sack Sad Sap Run Sun Bun Gun Fun Nun 8 Distribution A: Approved for
Advanced flight computer. Special study
NASA Technical Reports Server (NTRS)
Coo, Dennis
1995-01-01
This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.
Desire thinking: what is it and what drives it?
Caselli, Gabriele; Spada, Marcantonio M
2015-05-01
The aim of this study was to provide an overview of the construct of desire thinking and test a metacognitive model of desire thinking and craving, based on the work of Spada, Caselli and Wells (2012; 2013), which aims to explain the perseveration of desire thinking. We conducted two studies involving four clinical samples (total N = 493) and a community sample (N = 494) presenting with different addictive behaviors. The relationships among variables were examined by testing the fit of path models within each sample. In the model presented it was proposed that positive metacognitions about desire thinking are associated with, in turn, imaginal prefiguration and verbal perseveration, marking the activation of desire thinking. Verbal perseveration is then associated to negative metacognitions about desire thinking and craving denoting the pathological escalation of desire thinking. Finally, a direct association between positive metacognitions about desire thinking and negative metacognitions about desire thinking would mark those occasions where target-achieving behaviour runs as an automatized schemata without the experience of craving. Results indicated a good model fit in the clinical sample and a variation in the model structure in the community sample. These findings provide further support for the application of metacognitive theory to desire thinking and craving in addictive behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wing, David J.; Ballin, Mark G.; Koczo, Stefan, Jr.; Vivona, Robert A.; Henderson, Jeffrey M.
2013-01-01
The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation.
Prompt-gamma monitoring in hadrontherapy: A review
NASA Astrophysics Data System (ADS)
Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.
2018-01-01
Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.
HIFiRE-5 Flight Test Preliminary Results (Postprint)
2013-11-01
DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test article leading edge...Reference System (DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test...pitch angle relative to earth as measured by IMU , or flight-path elevation angle as measured by GPS or IMU , degrees = body-fixed angular coordinate
Benefits of Using Pairwise Trajectory Management in the Central East Pacific
NASA Technical Reports Server (NTRS)
Chartrand, Ryan; Ballard, Kathryn
2016-01-01
Pairwise Trajectory Management (PTM) is a concept that utilizes airborne and ground-based capabilities to enable airborne spacing operations in oceanic regions. The goal of PTM is to use enhanced surveillance, along with airborne tools, to manage the spacing between aircraft. Due to the enhanced airborne surveillance of Automatic Dependent Surveillance-Broadcast (ADS-B) information and reduced communication, the PTM minimum spacing distance will be less than distances currently required of an air traffic controller. Reduced minimum distance will increase the capacity of aircraft operations at a given altitude or volume of airspace, thereby increasing time on desired trajectory and overall flight efficiency. PTM is designed to allow a flight crew to resolve a specific traffic conflict (or conflicts), identified by the air traffic controller, while maintaining the flight crew's desired altitude. The air traffic controller issues a PTM clearance to a flight crew authorized to conduct PTM operations in order to resolve a conflict for the pair (or pairs) of aircraft (i.e., the PTM aircraft and a designated target aircraft). This clearance requires the flight crew of the PTM aircraft to use their ADS-B-enabled onboard equipment to manage their spacing relative to the designated target aircraft to ensure spacing distances that are no closer than the PTM minimum distance. When the air traffic controller determines that PTM is no longer required, the controller issues a clearance to cancel the PTM operation.
In-flight detection and identification and accommodation of aircraft icing
NASA Astrophysics Data System (ADS)
Caliskan, Fikret; Hajiyev, Chingiz
2012-11-01
The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.
Conceptual Design of a Tiltrotor Transport Flight Deck
NASA Technical Reports Server (NTRS)
Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.
14 CFR 23.1321 - Arrangement and visibility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... so that any pilot seated at the controls can monitor the airplane's flight path and these instruments... effectively indicates the attitude must be on the panel in the top center position; (2) The instrument that...
Application of the V-Gamma map to vehicle breakup analysis
NASA Technical Reports Server (NTRS)
Salama, Ahmed; McRonald, Angus; Ahmadi, Reza; LIng, Lisa; Accad, Elie; Kim, Alex
2003-01-01
The V-Gamma map consists of all possible pairs of speed and flight path angle at atmospheric entry interface for accidental Earth reentries resulting from steady misaligned burns, incomplete burns, or no burn.
A smoke generator system for aerodynamic flight research
NASA Technical Reports Server (NTRS)
Richwine, David M.; Curry, Robert E.; Tracy, Gene V.
1989-01-01
A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.
Optical Air Flow Measurements in Flight
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.; Jentink, Henk W.
2004-01-01
This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.
Engines-only flight control system
NASA Technical Reports Server (NTRS)
Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)
1994-01-01
A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.
Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths
NASA Technical Reports Server (NTRS)
Rind, David; Lonergan, P.; Shah, K.
1999-01-01
The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows little geographical relationship to the high cloud input. Considering whether these effects would be observable, changing upper level cloud cover by as little as 0.4% produces warming greater than 2 standard deviations in the Microwave Sounding Unit (MSU) channels 4, 2 and 2r, in flight path regions and in the subtropics. Despite the simplified nature of these experiments, the results emphasize the sensitivity of the modeled climate to high level cloud cover changes, and thus the potential ability of aircraft to influence climate by altering clouds in the upper troposphere.
PathCase-SB architecture and database design
2011-01-01
Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889
Improvements in flight table dynamic transparency for hardware-in-the-loop facilities
NASA Astrophysics Data System (ADS)
DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger
2000-07-01
Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.
Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.
2016-01-01
Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.
Transition path time distributions for Lévy flights
NASA Astrophysics Data System (ADS)
Janakiraman, Deepika
2018-07-01
This paper presents a study of transition path time distributions for Lévy noise-induced barrier crossing. Transition paths are short segments of the reactive trajectories and span the barrier region of the potential without spilling into the reactant/product wells. The time taken to traverse this segment is referred to as the transition path time. Since the transition path is devoid of excursions in the minimum, the corresponding time will give the exclusive barrier crossing time, unlike . This work explores the distribution of transition path times for superdiffusive barrier crossing, analytically. This is made possible by approximating the barrier by an inverted parabola. Using this approximation, the distributions are evaluated in both over- and under-damped limits of friction. The short-time behaviour of the distributions, provide analytical evidence for single-step transition events—a feature in Lévy-barrier crossing as observed in prior simulation studies. The average transition path time is calculated as a function of the Lévy index (α), and the optimal value of α leading to minimum average transition path time is discussed, in both the limits of friction. Langevin dynamics simulations corroborating with the analytical results are also presented.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B
NASA Technical Reports Server (NTRS)
Frederick, Michael; Ratnayake, Nalin
2011-01-01
The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
Adaptive integral dynamic surface control of a hypersonic flight vehicle
NASA Astrophysics Data System (ADS)
Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick
2015-07-01
In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.
Pilot control through the TAFCOS automatic flight control system
NASA Technical Reports Server (NTRS)
Wehrend, W. R., Jr.
1979-01-01
The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.
Flight evaluation of a computer aided low-altitude helicopter flight guidance system
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond
1993-01-01
The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1986-01-01
The development of an electronic primary flight display format aligned with the aircraft velocity vector, a simulation evaluation comparing this format with an electronic attitude-aligned primary flight display format, and a flight evaluation of the velocity-vector-aligned display format are described. Earlier tests in turbulent conditions with the electronic attitude-aligned display format had exhibited unsteadiness. A primary objective of aligning the display format with the velocity vector was to take advantage of a velocity-vector control-wheel steering system to provide steadiness of display during turbulent conditions. Better situational awareness under crosswind conditions was also achieved. The evaluation task was a curved, descending approach with turbulent and crosswind conditions. Primary flight display formats contained computer-drawn perspective runway images and flight-path angle information. The flight tests were conducted aboard the NASA Transport Systems Research Vehicle (TSRV). Comparative results of the simulation and flight tests were principally obtained from subjective commentary. Overall, the pilots preferred the display format aligned with the velocity vector.
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...